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Elliptic divisibility sequences arise as sequences of denominators of the integer
multiples of a rational point on an elliptic curve. Silverman proved that almost
every term of such a sequence has a primitive divisor (that is, a prime divisor
that has not appeared as a divisor of earlier terms in the sequence). If the elliptic
curve has complex multiplication, then we show how the endomorphism ring
can be used to index a similar sequence and we prove that this sequence also has
primitive divisors. The original proof fails in this context and will be replaced
by an inclusion-exclusion argument and sharper diophantine estimates.

1. Introduction

Consider an elliptic curve E , given by a general Weierstrass model with coefficients
in the ring of integers OL of a number field L . Fix an L-valued point P of infinite
order on E . For n ∈ Z, define the coprime OL-ideals An and Bn by

x(n P)OL = An B−2
n . (1.1)

We call the sequence B1, B2, B3, . . . an elliptic divisibility sequence. Such a
sequence satisfies the strong divisibility property

gcd(Bm, Bn)= Bgcd(m,n) (m, n ∈ Z),

which in particular implies the (weak) divisibility property: if m |n, then Bm | Bn .
By a primitive divisor of the term Bn , we mean a prime p | Bn that does not

divide any term Bm with n -m. Silverman proved that almost every term in an
elliptic divisibility sequence has a primitive divisor [Silverman 1988]. This is the
elliptic curve analogue of a theorem of Zsigmondy for Q∗ [Bang 1886; Zsigmondy
1892].

MSC2000: primary 14H52; secondary 14K22.
Keywords: complex multiplication, divisibility sequence, elliptic curve, endomorphism, primitive

divisor, Zsigmondy.
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If the curve E has complex multiplication, then (1.1) makes sense for all n in
the endomorphism ring O = End L(E) and hence we get a sequence indexed by O

instead of only Z. We extend this definition to ideals a of O by setting

Ba =

∑
α∈a

Bα,

the ideal generated by the ideals Bα for α ∈ a. We will prove that this indeed
extends the definition (in the sense that BαO = Bα), and that the resulting ideal-
indexed sequence satisfies the strong divisibility property Ba + Bb = Ba+b. By the
elliptic divisibility sequence associated to P , we will mean this sequence, indexed
by ideals of O.

By a primitive divisor of the term Ba, we now mean a prime p | Ba which does
not divide any term Bb with a -b. Our main theorem is a Zsigmondy-type theorem
for elliptic curves with complex multiplication.

Main Theorem. Let E,O and P be as above. Then for all but finitely many in-
vertible O-ideals a, the ideal Ba has a primitive divisor.

The Main Theorem applies both in the case O = Z and in the complex multi-
plication case, that is, when O is a quadratic order, but is a new result only in the
latter case.

The number of primitive divisors. If not all endomorphisms of E over L are
defined over L , then our Main Theorem implies the following result on the number
of primitive divisors in the Z-indexed sequence B1, B2, B3, . . . . Let K ′ be the field
of fractions of O ′

= End L(E).

Corollary 1.2. Define, for n ∈ Z, the numbers

rn = #{p ∈ N : p |n, p is a prime ramifying in O ′Z and p -n, p - [OK ′ : O ′
]},

sn = #{p ∈ N : p |n and p is a prime splitting in O ′/Z}.

Then for almost all n, the term Bn has at least rn + sn + 1 primitive divisors, of
which at least sn split in K ′L/L.

In particular, this shows the existence of lots of split primitive divisors in ellip-
tic divisibility sequences coming from elliptic curves over Q that have complex
multiplication. It seems that there are also many inert primitive divisors, but we
cannot prove this. There are conjectures by Cornelissen and Zahidi [2007] about
the existence of inert primitive divisors that imply results related to Hilbert’s Tenth
Problem over Q.

The size of the primitive part. For any integer n, we define the primitive part
DZ

n of Bn to be the L-ideal dividing Bn such that every prime divisor of DZ
n is a

primitive divisor of Bn and no divisor of Bn/DZ
n is a primitive divisor of Bn . Our
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methods also yield estimates on the size of the primitive part of Z-indexed elliptic
divisibility sequences that are sharper than what can be gotten with Silverman’s
original proof. We use the notation ‖DZ

n ‖ := NL/Q(DZ
n )

1/[L:Q] for the “size” of the
ideal DZ

n and we denote the canonical height of the point P by ĥ(P).
Silverman’s proof can be optimized to give an estimate

log ‖DZ
n ‖ ≥ ĥ(P)

(
1 −

∑
p |n

1
p2 − o(1)

)
n2,

where 0.5477 < 1 −
∑

p p−2 < 0.5478 for the sum over all primes. If we apply
our methods, we get the following sharper estimate.

Proposition 1.3. For all ε > 0,

log ‖DZ
n ‖ = ĥ(P) sn n2

+ O(nε) (as n → ∞),

where
sn =

∑
m |n

µ(m)m−2
=

∏
p |n

(1 − p−2)

is between ζ(2)−1 > 0.6079 and 1.

In fact, the proof gives O(d(n)(log n)(log log n)4) instead of O(nε), where d(n)
is the number of divisors of n.

Division polynomials. An alternative approach to defining elliptic divisibility se-
quences is by using division polynomials. If E/L is an elliptic curve, given by
a Weierstrass model, then for any integer n ∈ Z, the n-th division polynomial of
E is the polynomial ψn = ψE,n ∈ L[x, y] ⊂ L(E), as given for short Weierstrass
models in [Silverman 1986] and [Washington 2003] and in general in [Ayad 1992].
If P ∈ E(L) is a fixed L-valued point on E , then we call the sequence (ψn(P))n∈Z

an elliptic divisibility sequence of division polynomial type.
Along with the division polynomials ψn , one usually also defines polynomials

φn = φE,n ∈ L[x] for which we have

[n]
∗x =

φn

ψ2
n
. (1.4)

This explains the similarity between Bn and ψn(P): both represent the square root
of the denominator of x(n P), but they can differ because ψn(P) and φn(P) may
not be integers, and because there may be cancellation of factors in (1.4). However,
Bn andψn(P) differ only in finitely many valuations. For a more precise statement,
see [Ayad 1992].

The division polynomials satisfy the recurrence relation

ψm+nψm−n = ψm+1ψm−1ψ
2
n −ψn+1ψn−1ψ

2
m for m, n ∈ Z. (1.5)
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Ward [1948] extensively studied sequences of integers that satisfy both this recur-
rence and the divisibility property; he called them elliptic divisibility sequences.
Later, his terminology was adopted for the sequences (ψn(P))n and (Bn)n . In
fact, every sequence of integers (ψn)n that satisfies (1.5) and the initial conditions
ψ0 = 0, ψ1 = 1, ψ2ψ3 6= 0, ψ2 |ψ4, excepting some degenerate cases, is of the
form ψn =ψE,n(P) for some elliptic curve E/C and some point P ∈ E(C) [Ward
1948, Theorem 12.1].

Chudnovsky and Chudnovsky [1986] suggested letting sequences of division
polynomial type be indexed by the endomorphism ring of the elliptic curve, using
division polynomials ψα for arbitrary endomorphisms α. The special cases where
the curve has complex multiplication by

√
−1 or a primitive third root of unity

were studied by Ward [1950] and Durst [1952] respectively. The CM division
polynomialsψα and their computational aspects have recently been studied in more
detail by Satoh [2004].

2. Formal groups

Let Lv be the completion of the number field L with respect to a normalized dis-
crete valuation v. Denote the ring of v-integers of Lv by Rv and let E be an elliptic
curve, given by a Weierstrass equation

y2
+ a1xy + a3 = x3

+ a2x2
+ a4x + a6 (2.1)

with coefficients in Rv. For n ≥ 1, define subsets En(Lv) of E(Lv) by

En(Lv) = {P ∈ E(Lv) : v(x(P))≤ −2n} ∪ {O}.

We want to study these sets because for n ≥ 1, we have that

v(Bα)≥ n ⇐⇒ αP ∈ En(Lv). (2.2)

The formal group of E gives a means of studying En(Lv).
We have two main goals in this section. First we will generalize part of the

theory of formal groups as in [Silverman 1986] to arbitrary isogenies instead of
only multiplication by integers in Z. This will result in the identity

v(Bαβ)= v(Bα)+ v(β)

which holds if v(Bα) is sufficiently large (see Proposition 2.8 and Lemma 3.4).
This is very useful, because it bounds the part of the growth of Bα that is caused
by the occurrence of higher powers of nonprimitive divisors.

At the end of this section, we will prove that the sets En(Lv) are modules over
the endomorphism ring O (see Corollary 2.10). By (2.2), this implies the divisibility
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property
Bα | Bαβ α, β ∈ O.

Formal groups and isogenies. We start by associating homomorphisms of formal
groups to arbitrary isogenies of elliptic curves.

Let z = −x/y and w = −1/y. Then the Weierstrass equation of the elliptic
curve E becomes

w = z3
+ a1zw+ a2z2w+ a3w

2
+ a4zw2

+ a6w
3. (2.3)

Let w(T ) ∈ Lv[[T ]] be the unique power series such that (2.3) is satisfied with
z = T . Then (T, w(T )) is a “formal point” on the curve (2.3).

We define a homomorphism of rings P : Lv(E) → Lv((T )) from the function
field of E to the field of Laurent series over Lv by z 7→ T, w 7→w(T ). One could
think of P as the map which “evaluates” elliptic functions in the formal point
(T, w(T )).

As z is a uniformizer at the point at infinity O of E , we see that P maps functions
that are regular at O to power series in Lv[[T ]].

Suppose that E ′ is another elliptic curve, also given by a Weierstrass equation
with coefficients in Rv. We use ′ in the notation to specify functions and so on
related to E ′. To any isogeny φ : E → E ′ that is defined over Lv, we associate a
power series

Fφ(T )= P(φ∗z′) ∈ Lv[[T ]]. (2.4)

This power series is a homomorphism of formal groups. We will not check this,
since it will follow trivially from Lemma 2.6 below. Notice that Fφ(T ) has no
constant term, so we get a map F∗

φ : Lv((T ))→ Lv((T )), f (T ) 7→ f (Fφ(T )). We
now have a commutative diagram

Lv(E)
P

z 7→T
w 7→w(T )

// Lv((T ))

Lv(E ′)

φ∗

OO

P′

z′
7→T

w′
7→w′(T )

// Lv((T )).

F∗

φ

OO

(2.5)

We only need to check the commutativity of the diagram for the generators z′ and
w′ of Lv(E ′). For z′, it holds by definition. For w′, it follows from the fact that its
image on the top right satisfies the Weierstrass equation for E ′ with z′

= T .
As z is a uniformizer at O , the space of differentials that are regular at O is

�E,O = Lv,O(E) dz and we get a map

Lv,O(E) dz → Lv[[T ]] dT, gdz 7→ P(g) dT,

which we also denote by P.
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Let ω ∈�E,O denote the invariant differential

ω =
dx

2y + a1x + a3
,

and write ω̂(T ) for P(ω). As ω is an invariant differential of the curve E , we see
that ω̂(T ) is an invariant differential of the formal group Ê of E . In fact, the dz-
coefficient of ω̂ is 1, so it is the (unique) normalized invariant differential of the
formal group Ê of E .

The integral log(T ) of ω̂ is an isomorphism of formal groups from Ê to the
additive formal group Ga . Denote the inverse by exp(T ).

Lemma 2.6. For any isogeny φ : E → E ′ over Lv, we have

Fφ(T )= expÊ ′(c logÊ(T )),

where c ∈ Lv is such that φ∗ω′
= cω.

Proof. If we apply P to the identity φ∗ω′
= cω, then we get ω̂ ′(Fφ(T ))= cω̂(T ).

The result is obtained by integration, followed by application of expÊ ′ . �

Recall that Rv is the ring of v-integers of Lv. Let M be the maximal ideal of
Rv and l = Rv/M the residue field. Reduction of the Weierstrass equation gives a
cubic curve Ẽ over l. We denote the group of nonsingular points by Ẽns(l)⊂ Ẽ(l).

Let E0(Lv) be the group of Lv-valued points that reduce to points in Ẽns(l)
modulo v. Reduction modulo v then is a group homomorphism E0(Lv)→ Ẽns(l)
with kernel E1(Lv). By [Silverman 1986, VII.2.2], we have an isomorphism of
groups

E1(Lv)→ Ê(M),

P 7→ z(P),
(2.7)

where the inverse sends u ∈ M to the point P ∈ E(Lv) with coordinates z(P)= u,
w(P) = w(u). For any point P ∈ E1(Lv), the fact that (x(P), y(P)) satisfies
the Weierstrass equation implies that 2v(y(P))= 3v(x(P)), and hence v(z(P))=
−

1
2v(x(P)). In particular, the sets En(Lv) are subgroups of E(Lv) and correspond

to the groups Ê(Mn) through the isomorphism (2.7).
Now let φ : E → E ′ be an isogeny defined over Lv, where we assume that both

E and E ′ are given by Weierstrass equations with coefficients in R. Furthermore,
let c be the unique element of Lv such that φ∗ω′

= cω.

Proposition 2.8. If both v(x(P)) and v(x(P))− 2v(c) are strictly smaller than
−2v(p)/(p − 1), then

v
(
x ′(φ(P))

)
= v

(
x(P)

)
− 2v(c).
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Proof. By the isomorphism E1(Lv)∼= Ê(M) above and Lemma 2.6, we have

z′(φ(P))= Fφ(z(P))= expÊ ′

(
c logÊ (z(P))

)
.

By [Silverman 1986, IV.6.4], both logÊ(u) and expÊ ′(u) converge for u ∈ M

with v(u) > v(p)/(p −1) and both preserve the valuation. Therefore, we find that
v
(
x ′(φ(P))

)
= −2v

(
z′(φ(P))

)
= −2v

(
z(P)

)
− 2v(c)= v

(
x(P)

)
− 2v(c). �

Formal groups and Complex Multiplication. The main theorem of this section
is the following.

Theorem 2.9. For any α ∈ O = End Lv (E), the power series Fα(T ) ∈ Lv[[T ]] has
v-integral coefficients. In other words, the homomorphism of formal groups Fα(T )
is defined over Rv.

Corollary 2.10. For any n ≥ 1, the group En(Lv) is an O-submodule of E(Lv).
Moreover, we have an isomorphism of O-modules

En(Lv)/En+1(Lv)∼= l,

where l is the residue field of Lv.

Proof of the corollary. First of all, the theorem shows that Ê(Mn) is an O-module
with the action of α given by z 7→ Fα(z). Now for any P ∈ En(Lv), convergence
of Fα(z(P)) implies convergence of w

(
Fα(z(P))

)
. But by (2.5), Fα(z(P)) and

w
(
Fα(z(P))

)
can only converge to z(αP) and w(αP) respectively. In particular,

the isomorphism of groups En(Lv)∼= Ê(Mn) is an isomorphism of O-modules.
The second statement follows from the obvious isomorphism

Ê(Mn)/Ê(Mn+1)∼= Mn/Mn+1. �

As we will see, Theorem 2.9 follows easily from the theory of Néron models.
However, we will also give a more elementary proof. The elementary proof actually
consists of proofs for two special cases that together cover every case. One proof
uses continuity of the coefficients of Fα(T ) as functions of α and works only if p
splits in the field of fractions of O. The other uses explicit equations for isogenies,
but fails in the exceptional case where p = 2 and 2 splits in O.

For both the Néron model proof and the elementary proof, we will need to
deal with changes of coordinates in the Weierstrass equations, so we will use the
following lemma.

Lemma 2.11. Every isomorphism ψ : E → E ′ over Lv of elliptic curves given by
Weierstrass equations is of the form

ψ(x, y)= (u2x + r, u3 y + u2sx + t)
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with u ∈ L∗
v and r, s, t ∈ Lv. Such an isomorphism satisfies ψ∗ω′

= u−1ω. More-
over, if v(u)≥ 0 and both E and E ′ have v-integral coefficients, then r , s and t are
v-integral.

Proof. This is exactly what is proven in the proof of [Silverman 1986, VII.1.3(d)].
�

Corollary 2.12. Letψ and u be as above. If v(u)=0, then the power series Fψ(T )
associated to ψ as in (2.4) has v-integral coefficients.

Proof. From the equations above, we compute

φ∗z′
=

u−1z + ru−3w

1 − su−1z − tu−3w
.

As u−1, r, s, t ∈ Rv, we find that Fψ(T ) has coefficients in Rv. �

Proof using Néron models. Suppose that the elliptic curves E1 and E2 are given
by Weierstrass equations with coefficients in Rv and let φ : E1 → E2 be an isogeny,
defined over Lv.

Lemma 2.13. If the Weierstrass equation for E2 is minimal, that is, v(1) is min-
imal among all Weierstrass models of E2 with coefficients in Rv, then Fφ(T ) has
v-integral coefficients.

Proof. Let E1, E2 be the closed subschemes of P2
Rv given by the Weierstrass equa-

tions of E1, E2 and denote the smooth parts by E0
1, E0

2. We will prove, using the
Néron model, that the map φ : E1 → E2 can be extended to a morphism of schemes
φ : E0

1 → E0
2 over Rv.

We then localize this morphism at the closed point s of the zero section of E0
2.

Let z2 = −x2/y2, w2 = −1/y2 be the coordinate functions of E2. The completion
of the local ring

OE0
2,s

= Rv[z2, w2](z2)

with respect to the ideal (z2) is exactly the ring Rv[[z2]] of power series in z2, where
we identify w2 with the power series w2(z2) that was defined below (2.3). As φ
maps the zero section to the zero section, it induces a morphism Rv[[z2]]→ Rv[[z1]].
The image of z2 under this morphism is exactly Fφ(z1), so Fφ(T ) has coefficients
in Rv.

It remains to prove that the extension of φ exists. Let N denote the Néron model
of E2 over Rv as in [Bosch, Lütkebohmert and Raynaud 1990, 1.2.1 and 1.3.2] or
[Silverman 1994, § IV.5 and IV.6.1]. Then N is a smooth Rv-scheme with generic
fibre NLv = E2 which satisfies the following universal property: for any smooth
Rv-scheme X and any morphism of Lv-schemes f : X Lv → E2, there exists a
unique morphism of Rv-schemes g : X → N extending f in the sense that gLv = f .
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The special fibre Nl of N may consist of multiple components. One of them
contains the special fibre of the identity section. Let N0 denote N with all other
components of Nl removed. Then by [Bosch, Lütkebohmert and Raynaud 1990,
1.5.5] or [Silverman 1994, IV.9.1], we have E0

2 = N0. Moreover, by the universal
property of the Néron model, φ extends to a unique morphism of Rv-schemes
φ : E0

1 → N and since the special fibre of E0
1 has only one component, the image

lies inside N0
= E0

2. �

Proof of Theorem 2.9. If the Weierstrass model of E is minimal, then Lemma
2.13 proves Theorem 2.9. Otherwise, let E ′′ be a minimal model. By a change of
coordinates z′

= u−1z′′, w′
= u−3w′′ with v(u)≥ 0, we obtain a model E ′ from the

minimal model E ′′ such that v(1(E ′)) = v(1(E)). Write Fα, F ′
α and F ′′

α for the
power series associated to α with respect to the different models. We know that F ′′

α

has v-integral coefficients, so F ′
α(T )= u−1 F ′′

α (uT ) also has v-integral coefficients.
As v(1(E))= v(1(E ′)), it follows from Corollary 2.12 that Fα(T ) has v-integral
coefficients. �

Elementary proof. Let K be the field of fractions of O.

Proof of Theorem 2.9 assuming that p splits in K/Q. For any nonnegative integer
n, consider the map 8n : Kv → Lv, mapping α ∈ Kv to the n-th coefficient of the
power series expÊ ′(α logÊ(T )) ∈ Lv[[T ]]. The goal is to prove that 8n(O) ⊂ Rv
for every n. As p splits in K/Q, we have Qp = Kv, so O ⊂ Zp. The map 8n is
continuous, because it is a polynomial map. Moreover, as Ê is defined over R, we
have 8n(Z)⊂ R. Since Z is dense in Zp, we are done. �

The ring O = End Lv (E) is an order in the imaginary quadratic field K ; hence
it is generated as a ring over Z by a single element α. We have a homomorphism
of rings O → End Lv (Ê) and we wish to show that the image is contained in the
subring End Rv (Ê). It therefore suffices to prove that the generator α of O maps to
an element of End Rv (Ê). We will use the formulas of Vélu [1971] that describe
an isogeny explicitly in terms of its kernel. Therefore, we want to pick α in such
a way that v(N (α))= 0 so that we know that the α-torsion is v-integral.

We make such a choice as follows: let p > 0 be the rational prime such that
v(p) > 0 and let α0 be any generator of O. Write α = α0 + n with n ∈ Z. Then
N (α) = N (α0)+ nTr(α0)+ n2 is a quadratic polynomial in n, and hence has at
most two zeroes modulo p. The only case in which we cannot pick an integer n
with p - N (α) is when p = 2 and the polynomial has two distinct roots modulo 2,
that is, p = 2 splits in O.

Lemma 2.14. Let E/Lv be an elliptic curve, given by a Weierstrass equation with
coefficients a1, . . . , a6 ∈ Rv and let 0 be a finite subgroup of E(Lv). Then there is
an elliptic curve E ′, together with an isogeny σ : E → E ′ with kernel 0 such that
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the coefficients of Fσ (T ) and the coefficients of the Weierstrass equation for E ′ are
in the ring B = Z[a1, . . . , a6, x(Q), y(Q) : Q ∈ 0] and moreover σ ∗ω′

= ω.

Proof. Vélu’s article [1971] gives a Weierstrass equation for an elliptic curve E ′

and an isogeny σ : E → E ′ with kernel 0. The coefficients of the Weierstrass
equation are computed explicitly as elements of B. Moreover, the isogeny σ is
given as follows. Let S be a complete set of representatives of 0/{±1}. Then

σ ∗x ′
= x +

∑
Q∈S

( tQ

x − xQ
+

uQ

(x − xQ)2

)
,

σ ∗y′
= y +

∑
Q∈S

(
uQ

2y + a1x + a3

(x − xQ)3
+

tQ(a1(x − xQ)+ (y − yQ))+ vQ

(x − xQ)2

)
,

where for each Q ∈ S, Vélu gives tQ, uQ and vQ explicitly as elements of B.
The power series w(T ) = P(− 1

y ) has coefficients in Z[a1, . . . , a6] and starts
with T 3. Therefore, P(x) = T/w(T ) and P(y) = −1/w(T ) have coefficients in
Z[a1, . . . , a6] and start with T −2 and −T −3 respectively. The formula above now
shows that P(σ ∗x ′) and P(σ ∗y′) have coefficients in B and the lowest degree terms
are respectively T −2 and −T −3. As a consequence, Fσ (T )= −P(σ ∗y) is a power
series over B with lowest degree term T . �

Proof of Theorem 2.9 if v(2) = 0 or 2 does not split in O/Z . As we have noted
before, we can pick α such that O = Z[α] and v(N (α))= 0 and it suffices to prove
the theorem for such an α.

Without loss of generality, we may assume that Lv contains the coordinates of
all points in the kernel E[α] of α.

Apply Lemma 2.14 with 0 = E[α] to get an isogeny σ with kernel E[α]. Then
by [Silverman 1986, III.4.11], there is an isomorphism ψ : E ′

→ E such that
α = ψ ◦ σ .

Notice that every point in E[α] is N (α)-torsion, so its coordinates are v-integral
by [Silverman 1986, VII.3.4]. Therefore, both Fσ (T ) and E ′ have v-integral co-
efficients. The power series Fψ(T ) also has v-integral coefficients because of
Corollary 2.12 and v(u) = −v(α) = 0. As Fα(T ) = Fψ◦ σ (T ) = Fψ(Fσ (T )),
this finishes the proof. �

Integrality of torsion points. We finish our discussion of formal groups with a
result on integrality of O-torsion points.

Let F be any formal group over Rv and suppose that End Rv (F) contains a sub-
ring O isomorphic to an order in a number field. Identify f (T )∈ O with f ′(0)∈ Rv
and let p = O ∩ M.
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Lemma 2.15. View F(M) as an O-module. Then for any torsion element z ∈

F(M), the annihilator of z is p-primary, that is, not divisible by a prime different
from p.

Proof. For any α ∈ O ⊂ R, denote the corresponding element of End Rv (F) by
[α]. Suppose that z has annihilator a. Write a = bc, where c is p-primary and b

is coprime to p. We need to prove b = O. So suppose that b 6= O. Take any pair
of elements α ∈ c \ a and β ∈ b \ p, so αβ ∈ a. Now [α] z is a nonzero element
of F(M) that is in the kernel of [β]. But [β](T ) = βT + · · · is an isomorphism,
because v(β)= 0. Contradiction. �

Now suppose again that E/Lv is an elliptic curve, given by a Weierstrass equation
with coefficients in Rv. Let O = End Lv (E) and p = M∩ O.

Corollary 2.16. Suppose that Q ∈ E(Lv) is a torsion point. If the annihilator of
Q is not p-primary, then x(Q) is v-integral. �

3. Elliptic divisibility sequences with complex multiplication

Let E/L be an elliptic curve, given by a Weierstrass equation with coefficients in
the ring of integers of the number field L . Let O = End L(E) and let K be the field
of fractions of O. There is a natural choice of an embedding of K into L mapping
an endomorphism to the element of L by which it multiplies invariant differentials
of E .

Fix a point P ∈ E(L) and let (Bα)α∈O be defined by x(αP)OL = AαB−2
α (with

Aα and Bα coprime). For an example, see Table 1.
In the previous section, we have defined O-submodules En(Lv) of E(Lv) for

which
v(Bα)≥ n ⇐⇒ αP ∈ En(Lv). (3.1)

As a consequence, we get the following result.

Lemma 3.2. For all α, β ∈ O, if α |β, then Bα | Bβ . �

The elliptic divisibility sequence associated to P is the sequence (Ba)a, indexed
by ideals a of O and given by

Ba =

∑
α∈a

Bα.

In other words, for every discrete valuation v of L , we have

v(Ba)= min
α∈a

v(Bα).

By Lemma 3.2, we have BαO = Bα for every α ∈ O. Moreover, by definition we
have the weak divisibility property: if a |b, then Ba | Bb. Actually, we even have
the following strong divisibility property.
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α Bα
1 1 = 1
1 + i 1 + i
2 (1 + i)2 = 2
2 + i 2 − i
2 + 2i (3)(1 + i)3

3 (3 + 2i)(3 − 2i) = 13
3 + i (1 + i)(2 + i)(4 − i)
3 + 2i (5 + 4i)(6 − i)
3 + 3i (1 + i)(3 + 2i)(3 − 2i)
4 (1 + i)4(3)(7) = 22

· 3 · 7
4 + i (5 − 2i)(14 − i)
4 + 2i (1 + i)2(4 + i)(2 − i)(16 + 9i)
4 + 3i (2 + i)(14 − 9i)(32 + 23i)
4 + 4i (1 + i)5(3)(7)(8 + 7i)(8 − 7i)
5 (2 + i)2(2 − i)2(6 + 5i)(6 − 5i) = 52

· 61
5 + i (1 + i)(6 + i)(5 − 4i)(31 − 20i)
5 + 2i (11 + 4i)(2 + 7i)(40 + 17i)
5 + 3i (1 + i)(14 + i)(5 + 2i)(159 − 40i)
5 + 4i (17 − 10i)(27 − 2i)(173 + 172i)
...

...

6 (1 + i)2(3 + 2i)(3 − 2i)(239) = 2 · 13 · 239
7 (1469 + 84i)(1469 − 84i) = 2165017
8 (1 + i)6(3)(7)(31)(8 + 7i)(8 − 7i)(16 + i)(16 − i) = 23

· 3 · 7 · 31 · 113
·257

Table 1. The curve E : y2
= x3

− 2x has CM by Z[i] via
i(x, y) = (−x, iy). This table gives the sequence defined by
P = (−1, 1). The nonprimitive divisors are underlined in both
the Z[i]-indexed sequence on the left and the Z-indexed sequence
on the right. Some primitive divisors on the right are not primitive
on the left.

Lemma 3.3. For any pair of O-ideals a, b, we have

Ba+b = Ba + Bb.

Proof. The divisibility property implies that the left hand side divides the right.
Now let v be a discrete valuation of L and let n be the valuation of the right hand
side. Then v(Ba), v(Bb) ≥ n, so αP and βP are in the group En(Lv) for all
α ∈ a, β ∈ b. As every element of a + b is of the form α + β and we have that
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(α + β)P = αP + βP , it follows that γ P ∈ En(Lv) for every γ ∈ a + b, so the
valuation of the right hand side is at least n. �

Notice that any interpolation of the O-indexed sequence to an ideal-indexed se-
quence is completely determined by the strong divisibility property.

We call a prime q of L a primitive divisor of Ba if it divides Ba, but does not
divide any Bb with a -b. Given q, there is a unique ideal rq of O such that q is a
primitive divisor of Brq . We call rq the rank of apparition of q. Notice that rq is
the annihilator of P in the O-module E(Lq)/E1(Lq), which is the reduction of E
modulo q if E is nonsingular modulo q. For any ideal a of O, we have

q | Ba ⇐⇒ rq |a.

For any a, we can factor the ideal Ba as a product of an ideal Da and an ideal
Ba/Da in such a way that all primes dividing Da are primitive divisors of Ba

and all primes dividing Ba/Da are not. We call Da the primitive part of Ba. In the
same way, we can define the primitive part of the classical Z-indexed sequence and
denote it by DZ

n . The Main Theorem is equivalent to the statement that Da = OL

for only finitely many a coprime to the conductor.

Valuations. For any discrete valuation v of L , let p be the characteristic of the
residue field. For any ideal a of O, set v(a)= minα∈a v(α), or equivalently v(a)=
v(a OL). From the theory of formal groups, we get the following important property
of elliptic divisibility sequences.

Lemma 3.4. For every pair of nonzero integral O-ideals a, b, if v(Ba) >
v(p)
p−1 , then

v(Bab)= v(Ba)+ v(b).

Proof. Assume first that a and b are principal, say a = αO and b = βO. Then the
statement follows immediately from Proposition 2.8 applied to the map β and the
point αP .

Now let a and b be arbitrary. We claim

v(Bab)= min
α∈a
β∈b

v(Bαβ).

Proof of the claim: If α∈a, β ∈b, then αβ ∈ab, so “≤” follows from the divisibility
property. On the other hand, let γ ∈ ab be such that v(Bγ ) is minimal. Then
v(Bab)= v(Bγ ). We can write γ in the form γ = α1β1 + · · · + αnβn , so by (3.1),
we have

v(Bγ )≥ min
1≤i≤n

v(Bαiβi )≥ min
α∈a
β∈b

v(Bαβ),

which proves the claim.
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Notice that by the divisibility property, v(Bα) ≥ v(Ba) >
v(p)
p−1 for all α ∈ a, so

the claim implies

v(Bab)= min
α∈a
β∈b

(v(Bα)+ v(β))= min
α∈a

v(Bα)+ min
β∈b

v(β)= v(Ba)+ v(b). �

Lemma 3.4 for Z-indexed sequences is also given by Silverman [1988] for L =Q

and Cheon and Hahn [1998; 1999] for L an arbitrary number field. The versions
in [Silverman 1988] and [Cheon and Hahn 1999] are correct, but, unfortunately,
[Cheon and Hahn 1998] omits the condition v(Bm) > v(p)/(p − 1) and mentions
only the weaker condition v(Bm) > 0, which is too weak, as we can see from the
following example.

Example 3.5. Let E/Q be given by the Weierstrass equation y2
+xy = x3

+x2
−2x

and let P = (− 1
4 ,

7
8) ∈ E(Q). Then P is a nontorsion point and 2P = ( 121

64 ,
913
512),

so B1 = 2, B2 = 8, so that ord2(B2) 6= ord2(B1)+ord2(2), contradicting Lemma 1
of [Cheon and Hahn 1998].

Suppose that v is normalized, that is, v(L∗)=Z. If v(p)< p−1, then the conditions
v(Ba) > 0 and v(Ba) > v(p)/(p −1) are equivalent. Notice that we can only have
v(p) ≥ p − 1 if v is ramified or p = 2, so there are only finitely many valuations
for which we cannot use the weaker condition v(Ba) > 0.

In fact, if L = Q and 2 divides the coefficient a1 of the Weierstrass equation
(2.1), then the duplication formula [Silverman 1986, III.2.3(d)] tells us that even
in the case v(2) > 0 we may use the condition v(Bm) > 0.

For the finitely many remaining valuations, we will use an asymptotic version.
The first step is the following lemma.

Lemma 3.6. For any pair of elements α, β ∈ Z, if v(Bα) > 0, then

v(Bαβ)≥ v(Bα),

where we have equality if and only if v(β)= 0.

Proof. Let n = v(Bα). By Corollary 2.10, the O-module En(Lv)/En+1(Lv) is
isomorphic to the residue field l of Lv. If v(β)=0, then β induces an automorphism
of l, and hence we have equality. Otherwise, β acts as multiplication by 0 on l and
we have v(Bαβ) > n. �

For any valuation v, let r be the positive generator of rv ∩ Z, where rv is the rank
of apparition of v.

Lemma 3.7. There is a bound Fv ∈ Z such that for all integers m ∈ rZ, we have
|v(Bm)− v(m)| ≤ Fv.

Proof. Let r > 0 be a generator of rv ∩ Z, let k be the smallest integer greater than
v(p)/(p −1) and let p l be the largest power of p dividing m/r . Then Lemma 3.6



Divisibility sequences for elliptic curves with CM 197

gives v(Bm)= v(Br p l ), so we may assume m = r p l . If l ≥ k, then Lemma 3.4 with
b = (p l−k), a = (r pk) gives v(Bm)− v(m)= v(Br pk )− v(r pk), which is constant
and there are only finitely many remaining possibilities for l. �

Corollary 3.8. For all pairs (m, n)∈ (rZ×Z), we have |v(Bmn)−v(Bm)−v(n)|≤
2Fv. �

For every ideal a of O, set N (a)= [O : a].

Corollary 3.9. For every ideal a of O, we have v(Ba)≤ Fv + v(N (a)).

Proof. By the divisibility property, we have v(Ba)≤ v(BN (a))≤ v(N (a))+ Fv. �

Silverman’s proof. In [1988], Silverman proved that for O = Z, all but finitely
many terms have a primitive divisor. His proof generalizes to arbitrary number
fields L , but not to sequences indexed by quadratic imaginary orders. We will
now look at Silverman’s proof and see what goes wrong if we try to apply it to
sequences indexed by (ideals of) the endomorphism ring.

Let V ∞ be the set of archimedean valuations of L that restrict to the standard
absolute value on Q. Let V 0 be the set of nonarchimedean valuations of L that
are normalized in the sense that each satisfies |

1
p |v = p for some prime number

p ∈ Z. For every v ∈ V = V ∞
∪ V 0, let nv = [Lv : Qv]. For fractional ideals I of

L , set ‖I‖ =
∣∣NL/Q(I )

∣∣1/[L:Q]. Let hx be the height on E relative to x , defined by
hx(P) = h(x(P)), where h is the logarithmic height on Q as given in [Silverman
1986, § VIII.6]. Then by definition

hx(αP)=

∑
v∈V

nv
[L : Q]

log max{|x(αP)|v, 1}

= log ‖B2
α‖ +

∑
v∈V ∞

nv
[L : Q]

log max{|x(αP)|v, 1}. (3.10)

A theorem of Siegel [Silverman 1986, IX.3.1] says that the (finitely many) terms in
the final sum are o(1) hx(αP) as ‖α‖ tends to infinity, where o(1) denotes some-
thing which tends to 0. At the same time, those terms are clearly nonnegative,
so

(1 − o(1)) hx(αP)≤ log ‖B2
α‖ ≤ hx(αP) as ‖α‖ → ∞.

We express this in terms of the canonical height function ĥ : E(Q)→ R, as defined
in [Silverman 1986, § VIII.9]. That function satisfies

ĥ(P)= (deg( f ))−1h( f (P))+ O(1)

for every function f ∈ L(E) and hence ĥ(φ(P))= deg(φ) ĥ(P) for every isogeny
of elliptic curves φ. As the degree of multiplication by α is ‖α‖

2 and the degree
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of the function x is 2, we get

(1 − o(1)) ‖α‖
2 ĥ(P)≤

1
2

log ‖B2
α‖ ≤ ‖α‖

2 ĥ(P)+ O(1) as ‖α‖ → ∞.

The classical proof of the existence of primitive divisors is based on these esti-
mates, combined with the following result. Let DZ

n be the primitive part of Bn in
the Z-indexed sequence, so Bn/DZ

n is the greatest OL-ideal dividing Bn that is not
divisible by any primitive divisors of Bn .

Lemma 3.11. There is a positive integer N such that for all n ∈ Z,

Bn

DZ
n

∣∣∣ N
∏

p

p Bn/p,

where the product ranges over the primes dividing n.

Proof. Let v be a discrete valuation of L , normalized by v(L∗)= Z and let q ⊂ OL

be the prime ideal corresponding to v.
Suppose that the valuation of the left hand side is positive. Then q is not a

primitive divisor of Bn , so there is a prime p |n for which v(Bn/p) > 0.
Let r > 0 be such that rZ = rv ∩ Z and let q > 0 be the rational prime such that

v(q) > 0. If v(q) < q − 1, then apply Lemma 3.4 with a = (n/p) and b = (p).
This yields v(Bn)= v(Bn/p)+v(p), which is at most equal to the valuation of the
right hand side.

For the finitely many valuations with v(q)≥ q − 1, we apply Corollary 3.8 and
find that v(Bn)≤ v(Bn/p)+v(p)+2Fv. Hence the assertion follows if we take N
such that v(N )≥ 2Fv for those finitely many valuations. �

The lemma and the estimates together imply

log ‖DZ
n ‖ ≥ log ‖Bn‖ − log ‖n‖ −

∑
p |n

log ‖Bn/p‖ − log ‖N‖

≥

(
1 − o(1)−

∑
p |n

p−2
)

n2 ĥ(P) (n → ∞),

where 1 −
∑

p |n p−2
≥ 0.547. From some point on, ‖DZ

n ‖ has to be greater than
1, which proves the following theorem.

Theorem 3.12 ([Silverman 1988]). For all but finitely many n ∈ N, Bn has a prim-
itive divisor in the Z-indexed sequence.
�

Unfortunately, this proof does not work for elliptic divisibility sequences with
complex multiplication, since there are too many primes of small norm: if we
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repeat the argument for example with O = Z[i], then the estimate becomes

log ‖Dα‖ ≥

(
1 − o(1)−

∑
p |α

|p|
−2

)
|α|

2 ĥ(P).

If 30 |α, then 1 + i, 2 + i, 2 − i and 3 are prime divisors of α and
∑

p |α |p|
−2

≥

1
2 +

1
9 +

1
5 +

1
5 > 1, which makes the estimate useless.

The proof of Theorem 3.12 that we have seen is an inclusion-exclusion argument
with a single inclusion and one exclusion for every prime, which is insufficient in
the general case as we have just shown. Therefore, we will go all the way with the
inclusion-exclusion principle.

Notice that every inclusion gives an o(1), so if we have a growing number of
inclusions, then we need to know more about the o(1) functions involved. Further-
more, inclusion-exclusion works best with unique factorization, so we really need
the ideal-indexed sequence and our estimates will need to hold for the ideal-indexed
sequence as well.

We start with the estimates for the element-indexed sequence.

David’s Theorem. The more explicit version of Siegel’s theorem that we will use
is David’s theorem. It estimates linear forms in elliptic logarithms and the result is
similar to Baker’s result for ordinary logarithms.

Let L ⊂ C be a number field, k an integer and E/L an elliptic curve, together
with a lattice 3 and a complex analytic isomorphism f : C/3 → E(C). For
1 ≤ i ≤ k, fix an L-valued point Pi ∈ E(L) and an elliptic logarithm ui of Pi , that
is, a complex number ui such that f (ui )= Pi .

Theorem 3.13 (David). Let L be the linear form X1u1+· · ·+Xkuk in the variables
X1, . . . , Xk . There exists a constant F , depending on E , L , f and the Pi , such that
for all b = (b1, . . . , bk)∈ Ln , if B =maxi {H(bi )} is sufficiently large and L(b) 6=0,
then

log |L(b)|>−F log(B) (log log(B))k+1.

Proof. This is a special case of [David 1995, Théorème 2.1]. �

Corollary 3.14. Let E be an elliptic curve, given by a general Weierstrass equa-
tion with coefficients in a number field L and let P ∈ E(L) be a point of infinite
order. For any archimedean valuation v of L , there is a constant G such that for
all α ∈ O with ‖α‖ large enough,

log |x(αP)|v < G log ‖α‖ (log log ‖α‖)4.

Proof. Completion with respect to v gives an embedding of L into C. Now let
u1, u2 ∈ C be generators of the period lattice 3 of E , define F = ([−1

2 ,
1
2 ]u1 +

[−
1
2 ,

1
2 ]u2) and let u3 ∈ C be an elliptic logarithm of P . Take b3 = α and let
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b1, b2 ∈ Z be such that L = b1u1 + b2u2 + b3u3 is in F. Then f (L)= αP and on
the compact set F, we have x( f (z))= z−2g(z) for a holomorphic, hence bounded,
function g. Therefore, there is a constant C such that

log |x(αP)| ≤ −2 log |L| + C

< 2F log(B)(log log(B))4 + C

if B = maxi |bi | is large enough.
As −b1u1 is the integer multiple of u1 that is nearest to the intersection of the

line u1R with the line αu3 + u2R, we see that |b1| is bounded by a linear function
in |α|. In the same way, |b2| is also bounded by a linear function in |α|. �

If we apply this to (3.10), then we get

log ‖Bα‖ = ‖α‖
2 ĥ(P) + O(log ‖α‖ (log log ‖α‖)4) (‖α‖ → ∞).

Attaching points to the ideal-indexed sequence. David’s theorem uses points
on elliptic curves, but we need the estimates also for the ideal-indexed sequence.
Therefore, for every ideal a of O, we will define a point aP . These points will not
all lie on E , but they will lie on a finite set of isogenous curves.

For any α ∈ O, let E[α] be the kernel of [α]. Then for any ideal a, we define

E[a] =

⋂
α∈a

E[α]

and we get a quotient isogeny

a : E → E/E[a] =: Ea

which is defined over L [Silverman 1986, III.4.13.2]. Let C be the set of integral
O-ideals modulo equivalence, where we call a and b equivalent if there exists an
element x ∈ K ∗ such that a = xb. By [Cox 1989, Proposition 7.4], the set C is the
union of the class groups of the orders O ′

⊂ OK that contain O, hence it is finite.
If a and b are in the same class in C, then the curves Ea and Eb are isomorphic
over L . For each class [a] 6= [O] in C, we fix an elliptic curve E[a], together with
a Weierstrass equation with coefficients in OL , such that E[a] is isomorphic to Ea.
For the trivial class, we take E[O] = E . Then we have an isogeny a : E → E[a]

which is defined up to automorphism of E[a].
For any pair of ideals a, b such that a |b, there exists a unique quotient isogeny

λ= λa,b such that b = λ◦a [Silverman 1986, III.4.11]. As both a and b are defined
over L , so is λ.

For every ideal a, the point aP ∈ E[a](L) is defined up to automorphism of E[a].
We now define Ãa and B̃a to be the coprime OL-ideals such that

x(aP)OL = Ãa B̃−2
a .
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It follows from Corollary 2.10 that B̃a depends only on the ideal a and the choice
of Weierstrass equation, but not on the automorphism. Moreover, αP = (αO)P
(up to automorphism), so if a is principal, then B̃a = Ba.

For every ideal class [a], define the invariant differential

ω[a] = ωE[a]
=

dxE[a]

yE[a]

and the fractional OL-ideal

C[a] =
a∗ω[a]

ωE
(aOL)

−1.

Note that the ideal C[a] does not depend on the choice of a representative a and
that C[O] equals OL .

Let V be the set of normalized discrete valuations of L . For any v in V , let
p = pv be the prime number such that v(p) > 0 and let tv be the least integer
greater than v(p)/(p −1)+C[a] −C[b] for all [a], [b]. It exists, because the set of
ideal classes is finite.

Lemma 3.15. Let a |b be O-ideals and v ∈ V a normalized discrete valuation. If
v(B̃a)≥ tv, then

v(B̃b)= v(B̃a)+ v(b)− v(a)+ v(C[b])− v(C[a]).

Proof. This result follows if we apply Proposition 2.8 to the isogeny λ = λa,b ,
which satisfies v(λ∗ω[b]/ω[a])= v(b)− v(a)+ v(C[b])− v(C[a]). �

Corollary 3.16. Let v, a be as above. If v(B̃a)≥ tv, then v(Ba)= v(B̃a)−v(C[a]).

Proof. For any α ∈ a, we have

v(Bα)= v(B̃α)= v(B̃a)+ v(α)− v(a)− v(C[a])≥ v(B̃a)− v(C[a]),

where the inequality is an equality if v(α)= v(a). As v(Ba)= min{v(Bα) : α ∈ a},
the result follows. �

From now on we restrict to invertible ideals a. For the general case, see Section 4.
Let S be the subset of valuations v ∈ V such that tv = 1.

Lemma 3.17. For every v ∈ S and every invertible O-ideal a, we have v(B̃a) =

v(Ba).

Proof. Notice first of all that v ∈ S implies v(C[a])= 0 for all a. By Corollary 3.16,
the only thing we need to prove is that if v(Ba) > 0, then v(B̃a) > 0.

Let a = αO + βO. Then αa−1 and βa−1 are coprime O-ideals, so we can take
a ∈ αa−1 and b ∈ βa−1 such that a +b = 1. Then 0> v(x(αP))≥ v(x(aaP)) and
0 > v(x(βP)) ≥ v(x(baP)). As E[a],1(Lv) is a group, we find v(x(aP)) < 0, so
we are done. �
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For the finitely many valuations that are not in S, we will be satisfied with the
following asymptotic version.

Lemma 3.18. For any invertible O-ideal a and any v ∈ V , we have

v(Ba)= v(B̃a)+ O
(
v(N (a))

)
(N (a)→ ∞).

Proof. If v(B̃a)≥ tv, then the assertion follows from Corollary 3.16. Otherwise, it
is equivalent to Corollary 3.9. �

If we apply Lemma 3.17 to the valuations in S and Lemma 3.18 to the rest, then
we find

log N (Ba)= log N (B̃a)+ O(log N (a)) (N (a)→ ∞). (3.19)

Next, we apply David’s Theorem, so let v be any archimedean valuation of L .

Proposition 3.20. There is a constant G such that for all but finitely many invert-
ible O-ideals a,

log |x(aP)|v < G log ‖a‖ (log log ‖a‖)4.

Proof. First of all, notice that it suffices to prove this for every ideal class separately.
So fix [a] ∈ C and a representative ã of [a].

Let 3 = u1Z + u2Z be a lattice such that E[a],Lv (C)
∼= C/3 and let u3 ∈ C be

such that u3(mod 3) corresponds to [̃a]P .
For any a ∈ [a], let b3 = α/β be a generator of a/̃a. Then the point aP corre-

sponds to b3u3 (mod 3).
Let b1, b2 ∈ Z be such that L = b1u1 + b2u2 + b3u3 is in a fixed fundamental

parallelogram for 3. Then by David’s theorem,

log |x(aP)|< 2F log(B) (log log(B))4

if B = maxi H(bi ) is large enough. Notice that the denominator of b3 divides ã,
so log H(b3) = log ‖b3‖ + O(1) = log ‖a‖ + O(1). At the same time, b1 and b2

are bounded by a linear function in ‖b3‖, so we find the desired result. �

Theorem 3.21. For all invertible O-ideals a, we have

log ‖Ba‖ = ‖a‖
2 ĥ(P) + O(log ‖a‖ (log log ‖a‖)4) (‖a‖ → ∞),

where ‖a‖ = [O : a]
1/[K :Q].

Proof. If we apply Proposition 3.20 to (3.10), then we get

log ‖B̃a‖ = ĥ(aP) + O(log ‖a‖(log log ‖a‖)4).

The left hand side is log ‖Ba‖+ O(log ‖a‖) by (3.19). If O = OK , then [Silverman
1994, II.1.5] says that a has degree ‖a‖

2. In general, it is [Shimura 1998, Proposi-
tion II.10]. �
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Corollary 3.22. For any pair of nonzero invertible O-ideals a, b such that ‖a‖ is
suitably large,

Ba | Bb ⇐⇒ a |b.

In particular, for any pair of nonzero elements α, β such that ‖α‖ is suitably large,

Bα | Bβ ⇐⇒ α |β.

Proof. Suppose that Ba | Bb. If d = (a, b), then Bd = (Ba, Bb) = Ba and d |a. If d

strictly contains a, then this contradicts the bounds of Theorem 3.21. �

Proof of the Main Theorem. We will now use the estimates and an inclusion-
exclusion argument to prove the existence of primitive divisors.

We have seen in Lemma 3.4 that only a small part of the growth of Ba comes
from higher powers of nonprimitive divisors. We “neglect” this by introducing
B ′

a =
∏

b |a Db, in which these higher powers are eliminated.

Lemma 3.23. For all a and almost every discrete valuation v, we have

v(B ′

a)≤ v(Ba)≤ v(B ′

a)+ v(a).

With an added Fv + log N (a) on the right hand side, the inequality holds for all v.
In particular, ∣∣log ‖Ba‖ − log ‖B ′

a‖
∣∣ ≤ log ‖a‖ + C.

Proof. Let v be any discrete valuation of L . The first inequality is true by definition.
Now suppose that v(Ba)>0 and let r be the rank of apparition of v. If v(p)< p−1,
then Lemma 3.4 implies v(Ba) ≤ v(Bar) = v(Br)+ v(a) = v(B ′

a)+ v(a). For the
finitely many valuations with v(p) ≥ p − 1, Corollary 3.9 shows that the same
holds with an added Fv + log N (a).

The final statement follows if one sums over all v. �

We will now prove the Main Theorem for ideals coprime to the index f =

[OK : O]. For the general case, see Section 4.

Proof. Let µ be the Möbius function for the set of ideals of O coprime to f , so

µ(b)=

{
0 if a square of an ideal divides b,

(−1)n if b is a product of n distinct primes.

The inclusion-exclusion principle yields

log ‖Da‖ =

∑
b |a

µ(b) log ‖B ′

a/b‖

=

∑
b |a

µ(b) log ‖Ba/b‖ O(log ‖a‖),
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to which we can apply Theorem 3.21 and get

log ‖Da‖ = ĥ(P)
∑
b |a

µ(b) ‖a/b‖
2

+

∑
b |a

O(log ‖a‖ (log log ‖a‖)4)

= ‖a‖
2 ĥ(P)

∏
p |a

(1 − ‖p‖
−2) + O(‖a‖

ε).

The product is at least ∏
p≤‖a‖

(1 − p−1)2,

and Mertens’ Theorem [Hardy and Wright 1938, 22.9 Theorem 430] states that∏
p≤X

(1 − p−1)∼
e−γ

log X
(X → ∞),

where γ ≈ 0.5772 is the Euler constant. If we pick ε < 2, then this finishes the
proof of the Main Theorem for ideals coprime to the index f . In the general case,
inclusion-exclusion is harder and we will show how to do it in Section 4.

For Z-indexed sequences, regardless of whether the curve has complex multi-
plication, (3.24) is exactly Proposition 1.3. �

We will now prove the corollary about splitting behavior of primitive divisors
in Z-indexed sequences over CM curves. Let K ′ be the field of fractions of O ′

=

End L(E).

Corollary 3.24. Suppose that not all endomorphisms of E over L are defined over
L. Define for n ∈ Z, the numbers

rn = #{p ∈ N : p |n, p is a prime ramifying in O ′/Z and p - [OK ′ : O ′
]},

sn = #{p ∈ N : p |n and p is a prime splitting in O ′/Z}.

Then for almost all n, the term Bn has at least rn + sn + 1 primitive divisors, of
which at least sn split in K ′L/L.

Proof. Let σ denote the unique nontrivial automorphism of K L/L . Notice that
Bσ(a) = σ(Ba) for every O-ideal a.

Suppose that n is large enough such that Ba has a primitive divisor (in the O-
ideal-indexed sequence) for all a with ‖a‖ ≥

√
n.

For any prime number p |n that splits in K/Q, write (p) = pσ(p). Then Bn/p

has a primitive divisor q ⊂ OL . If q is ramified or inert in K L/L , then σ(q) = q,
so q is also a divisor of Bn/σ(p), contradicting the assumption that q is primitive at
Bn/p. Therefore, q is a prime of L that splits in K L/L and is a primitive of Bn in
the N-indexed sequence.
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There are at least rn + 1 more primitive divisors, because Bn itself also has a
primitive divisor as well as each Bn/p where p = p2 is a ramifying prime divisor
of n. �

4. The general case

We will now show how to give a proof of the Main Theorem even for ideals that
may not be coprime to the index [OK : O]. The set of all ideals does not have unique
factorization, so the Möbius functions become more tricky. Moreover, when we do
inclusion-exclusion with invertible ideals that are not coprime to [OK : O], we will
encounter ideals that are not invertible. The first thing we need to do is therefore
to generalize Theorem 3.21 to ideals that may not be invertible.

The only part of the proof of Theorem 3.21 that uses invertibility of the ideal a

is the part of the proof of Lemma 3.17 that states that if v(Ba) > 0, then v(B̃a) > 0.
We prove this in the general case for a smaller set of valuations S′. Recall that S
was the set of all normalized discrete valuations v of L for which v(p) < p − 1
and v(C[a]) = 0 for all [a]. We let S′ be the set of valuations in S for which
also v([OK : O])= 0 and the Weierstrass equation of E[a] is nonsingular for every
[a] ∈ C. Notice that S′ still contains all but finitely many valuations of V .

Lemma 4.1. For every v ∈ S′ and every O-ideal a, we have that v(B̃a)= v(Ba).

Proof. The only thing left to prove is that if v(Ba)> 0, then v(B̃a)> 0. We already
know this for invertible ideals a. Write a = bc, where b is coprime to the index
f = [OK : O] and c divides f n for some integer n. Without loss of generality, we
may assume that all points in E[c] [ f n

] are defined over Lv and that v(Lv) = Z.
We claim that the reduction morphism

E[b](Lv)[ f n
] → (E[b](Lv)/E[b],1(Lv))[ f n

] (4.2)

is an isomorphism of O-modules. This morphism of O-modules is injective by
[Silverman 1986, VII.3.4] or Lemma 2.15 and since E[b] has good reduction mod-
ulo v and v( f ) = 0, both sides have the same cardinality f 2n [Silverman 1986,
III.6.4(b)], which proves the claim.

Now consider the point bP ∈ E[b](Lv). Since the lemma is already proved for
invertible ideals, we know that (bP + E[b],1(Lv)) is γ -torsion for every γ ∈ c.
As (4.2) is an isomorphism of O-modules, this implies that there is a point Q ∈

E[b](Lv)[c] such that bP ≡ Q modulo E[b],1(Lv). In particular, by Lemma 2.13
(or also Proposition 2.8 if we remove some more valuations from S), cbP ≡ cQ
modulo E[bc],1(Lv) and cQ = O on E[bc]. �

It follows that Theorem 3.21 holds for all ideals a of O.
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Next, we do inclusion-exclusion in general. Let µ(a, b) be defined recursively
for b |a by

µ(a, a)= 1 and
∑
c |b |a

µ(a, b)= 0 (for all c |a with c 6= a).

Previously, µ(a, b) depended only on a/b and we denoted it by µ(a/b).
The inclusion-exclusion principle, Lemma 3.23 and Theorem 3.21 give

log ‖Da‖ = ĥ(P)
∑
b |a

µ(a, b) ‖b‖
2

+

∑
b |a

O(log ‖a‖ (log log ‖a‖)4).

The set of ideals of O is the direct sum of the sets of ideals of the localizations of
O at its primes. Therefore, the Möbius function of the ideals of O is the product of
the Möbius functions of the localizations at the primes of O.

Lemma 4.3. Let p be a prime ideal of O and I ⊂ Op a nontrivial invertible ideal
of the localization. Then there is a unique ideal J0 | I (which is not necessarily
invertible) such that J0 6= I and such that for every ideal J | I with J 6= I , we have
J | J0. Moreover, the norm of this ideal is N (I )/N (p).

Note that in terms of the Möbius functions, we have µ(I, J0)=−1 and µ(I, J )=0
for all J 6= I, J0.

Proof. It is clear that any two ideals as in the lemma are equal, so we only need to
prove the existence. If p is invertible, then the statement holds with J0 = I/p.

So suppose that p is singular and let p be the rational prime with p | p. Let n be
such that O = Z+nOK and set O ′

= Z+(n/p)OK . Let R and R′ be the localizations
of O and O ′ at the O-ideal p. As I is invertible, it is principal, say I = αR. Let
J0 = αR′. We need to show that every R-ideal J that strictly contains I contains
J0.

If we allow fractional ideals, then without loss of generality, we may assume
α = 1, so I = R and J0 = R′. Let ω ∈ R′ be such that R′

= Z(p) +ωZ(p) and let
T, N ∈ Z(p) be such that ω2

− Tω+ N = 0. We need to prove ω ∈ J . Take any
element γ of J \ R. We have γ = a + bω with a, b ∈ Q. After multiplication by a
power of p, we may assume γ ∈ (1/p)R \ R, so pa and b are both in Z(p), but not
both in pZ(p). If a ∈ Z(p), then b 6∈ pZ(p), hence ω= b−1(γ − a) ∈ J . Otherwise,
γ pω = apω+ bp(Tω− N ) is in J and so is pω, hence apω is in J and ap ∈ R∗.

Finally, from the construction, we get N (I )/N (J0)=[R′
: R]= p =[R : pR′

]=

N (p). �

We conclude that if a is invertible, then

log ‖Da‖ = ‖a‖
2 ĥ(P)

∏
p |a

(1 − ‖p‖
−2) + O(‖a‖

ε), (4.4)
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which proves the Main Theorem.
The following example shows why we restrict to invertible ideals in our main

result. Suppose that the index [OK : O] is a prime number p and that p is inert
in OK . For any O-ideal a, we have aOK ⊃ a ⊃ paOK . If a is p-primary, then
aOK = pnOK for some n. On the other hand, any group a which is strictly between
pnOK and pn+1OK , is an O-module and there are p + 1 such groups. We find

µ(pnOK , a)=


1 if a = pnOK ,
−1 if a is strictly between pn−1OK and pnOK ,
p if a = pn−1OK ,
0 otherwise.

The inclusion-exclusion principle now gives

log ‖Dpn−1OK ‖ = ĥ(P)(p2n−1
− (p + 1)p2n−2

+ pp2n−3)+ O(n log(n)4)

= O(n log(n)4).

Only the error term remains, so we cannot conclude from this that there exists a
primitive divisor. On the other hand, the size of the error term does leave some
space for primitive divisors, so other methods are needed to give a result on prim-
itive divisors of Ba for noninvertible ideals a.
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