Vol. 2, No. 3, 2008

Download this article
Download this article For screen
For printing
Recent Issues

Volume 10
Issue 9, 1845–2052
Issue 8, 1601–1843
Issue 7, 1373–1600
Issue 6, 1147–1371
Issue 5, 939–1146
Issue 4, 695–938
Issue 3, 451–694
Issue 2, 215–450
Issue 1, 1–214

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Author Index
To Appear
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Minimal $\gamma$-sheaves

Manuel Blickle

Vol. 2 (2008), No. 3, 347–368

In a seminal work Lyubeznik [1997] introduces a category F-finite modules in order to show various finiteness results of local cohomology modules of a regular ring R in positive characteristic. The key notion on which most of his arguments rely is that of a generator of an F-finite module. This may be viewed as an R finitely generated representative for the generally nonfinitely generated local cohomology modules. In this paper we show that there is a functorial way to choose such an R-finitely generated representative, called the minimal root, thereby answering a question that was left open in Lyubeznik’s work. Indeed, we give an equivalence of categories between F-finite modules and a category of certain R-finitely generated modules with a certain Frobenius operation which we call minimal γ-sheaves.

As immediate applications we obtain a globalization result for the parameter test module of tight closure theory and a new interpretation of the generalized test ideals of Hara and Takagi [2004] which allows us to easily recover the rationality and discreteness results for F-thresholds of Blickle et al. [2008].

positive characteristic, D-module, F-module, Frobenius operation
Mathematical Subject Classification 2000
Primary: 13A35
Received: 10 December 2007
Revised: 13 February 2008
Accepted: 2 March 2008
Published: 1 May 2008
Manuel Blickle
Mathematik Essen
Universität Duisburg-Essen
45117 Essen