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The algebra of a finite group over a field k of characteristic zero is known to be a
projective separable k-algebra; but these separable algebras are of a very special
type, characterized by Brauer and Witt.

In contrast with that, we prove that any projective separable k-algebra is a
quotient of the group algebra of a suitable group scheme, finite étale over k. In
particular, any finite separable field extension K ⊂ L , even a noncyclotomic one,
may be generated by a finite étale K -group scheme.
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Introduction

Following Wedderburn and Brauer, the rational group algebra Q〈0〉 of a finite
group 0 may be described as follows: its center is a product K1 × · · · × Ks of
fields, each isomorphic to a subfield of the cyclotomic extension Q(ζm), where m
is the exponent of 0, and the group algebra itself is a product A1×· · ·× As , where
Ai is a central simple Ki -algebra.

In general, the factors Ki of the center are not equal to cyclotomic extensions
of Q, i.e., they cannot be generated themselves by a finite group, as shown by
the following example (which I owe to Vincent Beck). Let p be a prime; denote
by L = Q(ζp) the cyclotomic extension of level p. Let S ⊂ F×p ' Gal(L/Q)

be any subgroup, and write K = L S for its invariant subfield. Then one has an
isomorphism of Q-algebras

Q〈Fp o S〉 →Q〈S〉×EndK (L).

MSC2000: primary 20C05; secondary 14L15, 16S34, 16S35, 16W30.
Keywords: group algebra, finite étale group scheme, Weil restriction, separable algebra.
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(The map Q〈Fp o S〉 → EndK (L) is defined by (a, s) 7→ (ζ i
p 7→ ζ a+si

p )). The
center of this group algebra is thus equal to Q〈S〉× K ; for a suitable choice of S,
the extension Q→ K is not cyclotomic.

The question of characterizing which algebras may occur as a quotient of the
algebra of a finite group was already raised by Schur, but solved only around 1950,
by Brauer and Witt. Even then, they got a characterization only up to Morita
equivalence; see [Fontaine 1971; Yamada 1974].

In this paper, we shift this problem a little: the base ring k is now a semilo-
cal ring, containing the field Q, and we are dealing with projective separable k-
algebras; this notion is the natural generalization of the “absolute semisimplicity”
which is used when k is a field, and it is equivalent, for commutative algebras, to
being étale.

We prove in Section 5 that any projective separable k-algebra is a quotient of
the group algebra of a suitable group scheme, finite étale over k. In particular, we
prove that any finite separable field extension K ⊂ L , even a noncyclotomic one,
may be generated by a finite étale K -group scheme. Roughly speaking, a separable
algebra is a finite product of matrix algebras twisted by some étale torsor; the group
scheme we propose is a finite group generating the split form of the algebra, but
twisted by the same torsor.

Despite a formal analogy with the Brauer–Witt theory, our result does not add
much to it: even in the simplest case, that of the quaternions, our method gives a
nonconstant group scheme for generating this R-algebra, in fact a group which is
a definitely twisted form of the dihedral group D4.

Notation. The categories in use will be denoted by the following symbols:

Gp stands for the category of groups.

For a commutative ring k,

k-Al denotes the category of k-algebras; its objects are thus the ring morphisms
k→ A such that the image of k is contained in the center of A.

k-Alc denotes the category of commutative k-algebras.

We say that a commutative ring k is connected if its spectrum Spec(k) is con-
nected; that is, if k is not isomorphic to a proper finite product of rings.

Local rank. In this paper, most of the k-modules are locally free, but the base rings
are seldom connected, and the rank of these modules seldom constant. Moreover,
the constructions we have in mind, because they use the Weil restriction relative to
a finite flat morphism X → S, cannot be done locally on X . Thus we can’t avoid
introducing and using the local rank of a locally free k-module M of finite type,
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which is the map

n : Spec(k)→ N, p 7→ rankkp(Mp).

This map is constant on each connected component of Spec(k). We need words to
refer to these things; we propose the terms

• k-integer for a locally constant map Spec(k)→ N, and

• k-rank (of a locally free k-module M of finite type) for the local rank alluded
to above.

For a k-integer n, we can define the k-algebra Mn(k), the k-group scheme µn,k ,
and any other object which may be defined locally on Spec(k) for the Zariski
topology. We have to be careful with the connected components where the k-
integer vanishes: M0(k)= 0 (endomorphisms of the null space), but µ0,k =Gm,k ,
since for every invertible element x , one has x0

= 1.

1. The algebra of a group scheme

1.1. The algebra of a constant group. At first, let us recall, in the case of a con-
stant group scheme, the well known constructions of its ring of functions (also
called its representing algebra), and the construction of the algebra of such a group.
Compare [Waterhouse 1979, Chapter 2].

1.1.1. Let k be a commutative ring. For a finite group 0, we let
∏

0k denote the
ring of the maps from the set 0 to k (we reserve the notation k0 for the ring of
invariants when is given an action of 0 on k); it is contravariant in 0. The product
in 0 induces a morphism of commutative k-algebras∏

0

k →
∏

0×0

k '
∏
0

k⊗k
∏
0

k.

More explicitly, let (δρ)ρ∈0 be the basis made up with the usual Kronecker maps
δρ : 0→ k; then the morphism above is given by

δρ 7→
∑

στ=ρ

δσ ⊗ δτ .

We thus get what is sometimes called a k-Hopf-algebra, but we prefer to emphasize
the scheme point of view: Spec

(∏
0k

)
is a k-group scheme; it is called the constant

k-group 0, and it is denoted by 0k .

1.1.2. The group algebra of 0 over k will be denoted by k〈0〉, instead of k[0],
because the symbol with brackets k[V ] often denotes also the commutative ring of
algebraic, or regular, functions on the scheme V ; see [Waterhouse 1979, 4.5], for
example.
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Recall that the group algebra k〈0〉 is the free k-module based on the set 0, with
multiplication induced by that of 0. It is equipped with a commutative coproduct
given by the map

k〈0〉 → k〈0〉⊗k k〈0〉,
∑
σ

aσσ 7→
∑
σ

aσσ ⊗ σ

The dual of this ring is isomorphic to the ring of functions on 0; namely, consider
the k-linear isomorphism∏

0

k→ Homk(k〈0〉, k), δρ 7→
(∑

σ

aσσ 7→ aρ

)
. (1-1)

The right-hand side (the dual as a k-module) may be endowed with the multiplica-
tion coming from dualizing the coproduct mentioned above; then this k-linear map
is an isomorphism of k-algebras, as one can check immediately.

By dualizing the preceding morphism, we get the isomorphism

Homk
(∏

0

k, k
)
→ k〈0〉, ξ 7→

∑
σ∈0

ξ(δσ )σ.

In Section 1.3, we will proceed along the same lines to define the algebra of a
k-group scheme, and to get, in Proposition 1.3.2, an analogue of this well-known
result:

Lemma 1.1.1. Let 0 be a finite group, and let k → A be a k-algebra, whose
multiplicative group is denoted by A×. Then one has an isomorphism of bifunctors

Homk-Al(k〈0〉, A) −̃→ HomGp(0, A×).

1.2. The multiplicative group functor. Let k→ A be a k-algebra; recall that the
ring A is not assumed to be commutative, but the morphism is required to send k
into the center of A.

We will denote by Gm,A/k the multiplicative group functor of A, namely the
functor

Gm,A/k : k-Alc→ Gp, k ′ 7→Gm,A/k(k ′) = (k ′⊗k A)×.

It is also written GL1(A) by Borel, and µA by Demazure and Gabriel.

Lemma 1.2.1 [Waterhouse 1979, 7.5; Demazure and Gabriel 1970, p. 149]. Sup-
pose that the k-algebra A is a projective (i.e., locally free) k-module of finite type.
Then the functor Gm,A/k is representable by an affine k-group scheme of finite type.

Sketch of proof. Let AD
= Homk(A, k) be the linear dual of A, and let

S = Symk(AD)

be the symmetric algebra of that module. Let ξ ∈ AD
⊗k A be the element that corre-

sponds to the identity of A under the canonical isomorphism AD
⊗k A →̃ Endk(A).
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(If you prefer more explicit things, you can choose a basis (ei ) of A, and the dual
basis (X i ) of AD; this allows you to write ξ =

∑
X i ⊗ ei .) We must consider this

element
ξ ∈ AD

⊗k A ⊂ S⊗k A

as the generic element of A, since each specification S → k ′ of the parameters
towards a commutative k-algebra k ′, gives rise to an element in k ′ ⊗k A, namely
the image of ξ .

Since S⊗k A is a finite and locally free S-module, we dispose of the usual norm
N : S⊗k A→ S, namely, N (x)= det(y 7→ xy). Then we can check easily that the
algebra of fractions SN (ξ) represents Gm,A/k as a functor from k-Alc to the category
of sets.

The group structure is induced by the algebra morphism SN (ξ)→ SN (ξ)⊗k SN (ξ)

given by extending to symmetric algebra, and localizing, the linear map

AD (mult.)D

−→ (A⊗k A)D
←̃− AD

⊗k AD
⊂ Symk(AD)⊗k Symk(AD). �

1.3. The group-algebra. We now deal with group schemes over k, instead of con-
stant groups; their category will be denoted by k-Gp. We are looking for something
like a left adjoint to the multiplicative group functor, that is, a functor which, to a k-
group scheme G, would associate a k-algebra k〈G〉, endowed with an isomorphism
of functors

Homk-Al(k〈G〉, A) −̃→ Homk-Gp(G, Gm,A).

Fortunately, in what follows, we have available strong enough finiteness assump-
tions to guarantee that these objects exist.

1.3.1. We will try to stick to the notations and terminology used in [Waterhouse
1979]. We recall some of them:

Let G = Spec(R) be an affine k-group scheme.

• u : k→ R stands for the canonical map,

• m : R⊗k R→ R stands for the multiplication,

• 1 : R→ R⊗k R denotes the coproduct,

• ε : R→ k denotes the counit,

• S indicates the coinverse.

Suppose that R is finite and locally free as a k-module; let RD
= Homk(R, k)

be the linear dual of R; then the k-module RD may be endowed with a structure
of a (usually noncommutative) k-algebra: the product is defined as the map

RD
⊗k RD

' (R⊗k R)D 1D

−→ RD
;
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the associativity of this multiplication comes from the associativity of the product
in the group G, and the map εD

: k→ RD actually defines a morphism of algebras
since it corresponds to the unity of G.

Definition 1.3.1. Let G = Spec(R) be an affine k-group scheme with R finite and
locally free as a k-module. We define the k-algebra of the group G, and we note
k〈G〉 the linear dual RD endowed with the algebra structure given above.

Let k→ k ′ be a commutative k-algebra. We denote by Gk′ = Spec(k ′⊗k R) the
group scheme over k ′ obtained by base change. For G finite and locally free, there
is an isomorphism

k〈G〉⊗k k ′ −̃→ k ′〈Gk′〉

since one has the following sequence of standard isomorphisms, the first one com-
ing from the local freeness of R over k:

k〈G〉⊗k k ′ = Homk(R, k)⊗k k ′ ' Homk(R, k ′) ' Homk′(k ′⊗k R, k ′) = k ′〈Gk′〉.

Proposition 1.3.2. Let G=Spec(R) be an affine k-group scheme with R finite and
locally free as a k-module.Then, for any finite and locally free k-algebra k → A,
there is a bijection of functors in G

Homk-Al(k〈G〉, A) −̃→ Homk-Gp(G, Gm,A/k).

Proof. For every k-algebra k ′ ∈ k-Alc, consider the multiplications in the group
G(k ′) and in the ring k〈G〉⊗k k ′, that is the multiplications in Homk-Alc(R, k ′) and
in Homk(R, k ′); they are both given by dualizing the same map 1 : R→ R⊗k R;
therefore, from the mere inclusion

Homk-Alc(R, k ′)⊂ Homk(R, k ′)

we deduce a morphism of multiplicative monoids

G(k ′)→ k ′⊗k k〈G〉.

Since every element of G(k ′) has an inverse, its image is invertible in the ring
k ′ ⊗k k〈G〉. We have thus defined a morphism of (ordinary) groups, which is
functorial in k ′,

G(k ′)= Homk-Alc(R, k ′) → (Homk(R, k ′))× =Gm,k〈G〉/k(k ′),

that is a morphism of group functors on k-Alc

G→Gm,k〈G〉/k . (1-2)

A morphism of k-algebras k〈G〉 → A clearly induces a morphism of group
functors

Gm,k〈G〉/k→Gm,A/k .
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By composition with (1-2), we get a map which is functorial in G

Homk-Al(k〈G〉, A)→ Homk-Gp(G, Gm,A/k). (1-3)

Conversely, let G → Gm,A/k be a morphism of k-group schemes. We want to
produce from it a morphism of k-algebras k〈G〉→ A. Since the k-group Gm,A/k is
not finite over k (except if k= A), the above elementary construction does not allow
to define something like k〈Gm,A/k〉, nor, of course, a morphism k〈Gm,A/k〉 → A.
At first sight, we are given, for each commutative k-algebra k ′, the two solid arrows
in the following diagram, and we need to complete it with the dotted one:

Homk-Alc(R, k ′) //

((QQQQQQQQQQQQQ
k ′⊗k A

Homk(R, k ′)

88

To achieve this, we must use the representability of Gm,A/k (Lemma 1.2.1): since
the groups G and Gm,A/k are affine, the given morphism G→Gm,A/k is associated
to a morphism of k-algebras

Symk(AD)N (ξ)→ R.

The compatibility with the group laws implies the commutativity of the squares

AD //

(mult.)D

��

Symk(AD)N (ξ)
//

��

R

1

��
AD
⊗k AD // Symk(AD)N (ξ)⊗k Symk(AD)N (ξ)

// R⊗k R

By dualizing, one gets a k-linear map

RD
→ A

(Recall that both R and A are locally free k-modules of finite rank). Now the above
diagram shows that this map is compatible with 1D and with the multiplication in
A. We have thus defined a map

Homk-Al(k〈G〉, A)← Homk-Gp(G, Gm,A/k).

which we can easily check to be the inverse of (1-3). �

1.4. Another approach to the group algebra. We now sketch a very general def-
inition of an algebra that looks like a “group algebra”, and which may appear to
be more natural than the previous one, if less explicit; but, this new algebra can
be proven to satisfy the required left adjoint property only when the group is finite
étale; and, for these groups, this algebra coincides with the previous one.
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1.4.1. Let k be a ring, and let G be a group functor on k-Alc; let F : k-Alc→ k-Al

be the functor defined by
F(k ′)= k ′〈G(k ′)〉.

Thus, F(k ′) is the usual k ′-algebra of the discrete group G(k ′).
Let F̃ be the sheaf associated to F for the étale topology. The algebra F̃(k) of

global sections of this sheaf is equipped with the map

Homk-Gp(G, Gm,A/k)→ Homk-Al(F̃(k), A), (1-4)

defined as follows: a morphism of functors G→Gm,A gives, for each k ′ ∈ k-Alc,
a group homomorphism

G(k ′)→Gm,A(k ′)= (k ′⊗k A)×

which gives rise to a morphism of k ′-algebras

F(k ′)= k ′〈G(k ′)〉 → k ′⊗k A.

We thus get a morphism of sheaves from F̃ to the sheaf k ′ 7→ k ′⊗k A, and, finally,
taking their global sections, we get a morphism of k-algebras F̃(k)→ A. It is not
clear if the map (1-4) should be bijective without strong hypothesis.

Proposition 1.4.1. For a finite étale k-group G, the group algebra k〈G〉, defined
in Definition 1.3.1, is canonically isomorphic to the ring of global sections of the
étale sheaf associated to the functor k ′ 7→ k ′〈G(k ′)〉, considered above.

For the proof, we need the following variant of the Dedekind independence
result.

Lemma 1.4.2. Let G=Spec(R) be a finite étale k-group, and let k〈G〉 be its group
algebra in the sense of Definition 1.3.1. Then, for k ′ ∈ k-Alc, the morphism

k ′〈G(k ′)〉 → k〈G〉⊗k k ′ = Homk(R, k ′)

is injective. In other words, the elements of G(k ′) = Homk-Alc(R, k ′) are linearly
independent in Homk(R, k ′).

Moreover, there exists a finite étale k-algebra k ′ for which this morphism is an
isomorphism.

We may suppose that Spec(k ′) is connected, and we rewrite k ′ as k for simplicity.
Let g1, . . . , gs ∈G(k) be distinct elements, seen as k-morphisms R→ k; since R is
étale over k, each morphism gi : R→ k gives a projective R-module structure on k,
in other words, each kernel Ji =Ker(gi )⊂ R is generated by an idempotent ei ∈ R.
These ideals are pairwise comaximal: in fact, the ring R/Ji ' k being assumed
to be connected, the image of an idempotent e j is either 0, and then Ji = J j and
i = j , or this image is 1, implying that Ji + J j = R.
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The Chinese remainder theorem then implies that the morphism induced by the
s morphisms gi ,

R→ ks,

is surjective. This, in turn, clearly implies that the gi are linearly independent.
Since R is finite and étale over k, it is split by a finite étale morphism k→ k ′,

i.e one has an isomorphism of k ′-algebras

k ′⊗k R −̃→
∏

G(k′)
k ′.

It is now clear that any linear form R→ k ′ is a linear combination, with coefficients
in k ′, of the projections k ′⊗k R→k ′, which indeed correspond to elements in G(k ′).

Proof of the proposition. Denote by H the functor given by H(k ′)= k〈G〉⊗k k ′ =
Homk(R, k ′); it is clearly a sheaf in the étale topology. We have to show that the
functor map F→ H induces an isomorphism

F̃ −̃→ H.

According to the previous lemma, for any k ′ étale over k, the map F(k ′)→ H(k ′)
is injective, and it is even bijective if k→ k ′ factors trough a k0 which splits R.

Then, following [Artin 1962, chapter II], we use the construction F  F+ to
get the associated sheaf F̃ ; roughly speaking, a section of F+(U ) “is” a coherent
family of sections of F given locally on U , that is, an element of the kernel

F(U ′) // // F(U ′×U U ′) ,

where U ′ → U is an étale covering. Since F is a subfunctor of the sheaf H , it
is a “separated” presheaf, or, with Artin’s notations, F satisfy the property (+);
therefore, by [Artin 1962, II.1.4], F+ is already the associated sheaf F̃ . But the
injectivity of F → H , and the definition of F+, alluded to above, imply that the
map F̃→ H is still injective. Now, over the “covering” Spec(k0)→ Spec(k), the
morphism F→ H becomes an isomorphism, thus also the morphism F̃→ H ; as
F̃ and H are sheaves, the map F̃→ H is an isomorphism everywhere. �

1.5. Galois description. We now translate essentially the same considerations to
the more concrete situation of Galois extensions. Let k → K be a finite Galois
extension of fields, with Galois group π =Gal(K/k); suppose the k-group scheme
G be split by K , i.e., that G K is isomorphic to the constant (finite) group 0K ; this
group G is thus associated to an action of π on 0, that is to a morphism

π→ AutGp(0).
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(See [Waterhouse 1979, 6.3] or [Demazure and Gabriel 1970, II.5.1.7, p. 237].)
The ring of polynomial maps on G is then given by

R =
(∏

0

K
)π

,

where the action of σ ∈ π on an element x : 0→ K ∈
∏

0 K is

σ x = (γ 7→ σ(x(σ−1γ )).

Proposition 1.5.1. The k-group-algebra of G is the ring

k〈G〉 = (K 〈0〉)π ,

where both the coefficients in K and the basis 0 are acted on by the Galois group π .

To prove this we go back to the isomorphism (1-1)

ϕ :
∏
0

K −̃→ HomK (K 〈0〉, K ), δγ 7→
(∑

γ ′
aγ ′γ

′
7→ aγ

)
,

and we must see that it induces an isomorphism(∏
0

K
)π
−̃→ Homk(K 〈0〉π , k).

The morphism ϕ may be characterized as follows: Given (x :0→ K )∈
∏

0 K , the
K -linear map ϕ(x) is defined on the basis 0, by ϕ(x)(γ )= x(γ ). It is clear that ϕ

is π -equivariant (if HomK (K 〈0〉, K ) is acted on by π , both on K 〈0〉 and on K );
taking the invariants, we thus get an isomorphism(∏

0

K
)π
−̃→ HomK (K 〈0〉, K )π .

Since k → K is a Galois extension, one has k = K π . It remains to produce an
isomorphism

HomK (K 〈0〉, K )π −̃→ HomK π ((K 〈0〉)π , K π ).

We will apply to V = K 〈0〉 the following general result: let V be a K -vector space
endowed with a semilinear action of π ; that means that the group V is equipped
with a morphism π → AutZ(V ) such that, for σ ∈ π , x ∈ V and λ ∈ K , one has
σ(λx) = σ(λ)σ (x). The group V π is then a vector space over K π , and we have
an isomorphism

K ⊗K π V π
−̃→ V

(See [Bourbaki 1981, A V, §10, Prop. 7, p. 61], for example.) From this we deduce
the sequence of isomorphisms

HomK (V, K )π'HomK (K⊗K π V π , K )π'HomK π (V π , K )π'HomK π (V π , K π ).
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Remark 1.5.2. It is easy to show an example where k〈G〉* k〈0〉: with notations
as above, suppose there exist an element γ ∈0, and an element a ∈ K , having both
a trivial stabilizer for the action of π . Let

x =
∑
σ∈π

σ(a)σ (γ ) ∈ K 〈0〉.

It is clear that x is π -invariant and does not lie in k〈0〉. Thus, in this case,
(K 〈0〉)π * K π

〈0π
〉.

2. Group generation of finite étale algebras

2.1. The Weil restriction. Let k→ K be a finite étale morphism of (commutative)
rings. The direct image, or Weil restriction, or norm, is the functor

RK/k : K -Alc→ k-Alc

which is left adjoint to the base change functor; for any (commutative) k-algebra
A, and any (commutative) K -algebra A′, we thus have a bijection

Homk-Alc(RK/k(A′), A) −̃→ HomK -Alc(A′, K ⊗k A),

which is functorial in A and in A′. The existence and the main properties of this
functor are explained in [Demazure and Gabriel 1970, I.1.6.6, p. 30] and in [Bosch
et al. 1990, 7.6].

Suppose that K is a product K = K1×K2; then a K -algebra A′ also decomposes
as a product A′ = A′1× A′2, where A′i is a Ki -algebra, and one has an isomorphism

RK/k(A′)' RK1/k(A′1)⊗k RK2/k(A′2).

In particular, in the split case K = kd , where A′ =
∏d

i=1 Ai , we have

Rkd/k(A1× · · ·× Ad)= A1⊗k · · · ⊗k Ad .

(From a scheme-theoretic viewpoint, the Weil restriction transforms disjoint unions
into products.)

We will use this functor only for K -algebras coming from k, that is, for algebras
of the form A′ = K ⊗k B for a k-algebra B. The bijection above then reads as

Homk-Alc(RK/k(K ⊗k B), A) −̃→ Homk-Alc(B, K ⊗k A).

We may regard the ring RK/k(K⊗k B) as the form of the tensor product B⊗d twisted
by the Sd -torsor P associated to K ; this torsor is the functor P : k-Alc→ Ens

defined by
P(k ′)= Isomk′-Alc(k ′⊗k K , k ′d)
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This point of view, if easy to conceive, is a little hard writing down (but see [Ferrand
1998, 6.2.2 and 7.3.2], and Section 2.2 below). Anyway, it is clear that for the trivial
étale algebra K = kd , the k-algebra RK/k(K ⊗k B) is indeed isomorphic to B⊗d ,
due to the above isomorphism, or to the explicit bijections

Homk-Alc(B, K ⊗k A) ' Homk-Alc(B, Ad) ' Homk-Alc(B, A)d

' Homk-Alc(B⊗d , A).

We will use the same symbol RK/k for the Weil restriction of schemes; in par-
ticular, if G ′ = Spec(A′) is an affine K -group, we write RK/k(G ′) for the scheme
Spec(RK/k(A′)); letting G = Spec(RK/k(A′)), one has, for any k ′ ∈ k-Alc,

G(k ′)= Homk-Alc(RK/k(A′), k ′)= HomK -Alc(A′, K ⊗k k ′)= G ′(K ⊗k k ′).

(This isomorphism shows, among other properties, that G = RK/k(G ′) is a k-
group).

The Weil restriction of a constant K -group is usually not a constant k-group.

2.2. The twisted Klein group RC/R(µ2,C). As an example which anticipates the
next result, and which is also used later, we now compute the Weil restriction from
C to R, of the group µ2,C = Spec(C[T ]/(T 2

− 1)); this Weil restriction will also
appear as a twisted form of the Klein group µ2 ×µ2. Let A be the R-algebra of
regular functions on this Weil restriction; so we have

RC/R(µ2,C)= Spec(A).

We find that
A = R[X, Y ]/(X2

− Y 2
− 1, XY ).

(To see this, the usual trick is to construct the Weil restriction in order for the
canonical morphism

RC/R(µ2,C)C −→ µ2,C (2-1)

to exist. So, we start with the map C[T ] −→ C⊗R R[X, Y ] given by

T 7→ 1⊗ X + i ⊗ Y,

and we impose the conditions on X and Y for the image of T 2
−1 to be zero; that

immediately gives the required relations.)
Let x and y be the classes in A, of X and Y respectively. We will then show

that A is an R-vector space of rank 4, and that the set {x, y} may be included in
a basis; the simplest way for doing so is to introduce the element s = x + y ∈ A,
whose powers are s2

= x2
+ y2, s3

= x − y and s4
= 1; it is then clear that one

gets a morphism
R[S]/(S4

− 1)−→ A
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which is easily checked to be an isomorphism. Despite this isomorphism, the
group RC/R(µ2,C) is obviously not isomorphic to µ4,R. In fact, the group law on
RC/R(µ2,C) is associated to the morphism 1 : A→ A⊗R A given by

1(x)= x ⊗ x − y⊗ y, 1(y)= x ⊗ y+ y⊗ x .

The conjugation in C induces an involution of the functor RC/R, and thus an
involution u on A, compatible with 1; it is given by u(x) = x, u(y) = −y. By
composing with (2-1), we thus get another morphism C[T ]/(T 2

− 1)→ C⊗R A;
putting both together, we get

C[T1, T2]/(T 2
1 −1, T 2

2 −1)−→C⊗R A, t1 7→ 1⊗ x+ i⊗ y, t2 7→ 1⊗ x− i⊗ y

It is clearly an isomorphism; moreover, the conjugation in C induces on C⊗R A an
automorphism which corresponds, in the left hand algebra, to the transposition of
T1 and T2: this is the algebraic meaning of the statement that the Weil restriction
RC/R(µ2,C) is a twisted form of the Klein group µ2×µ2.

We now define a surjective morphism from the R-algebra of the Weil restriction,
to C

R〈RC/R(µ2,C)〉 −→ C.

(This is the simplest example for Theorem 2.3 below.) Actually, since {x, y} is
part of a basis of A, the map

R〈RC/R(µ2,C)〉 = AD
= HomR(A, R)→ C, α 7→ α(x)+ iα(y),

is surjective; it is also a morphism of algebras, as one can check from the definition
of 1 given above.

But, if, instead of the nonconstant group RC/R(µ2,C), you prefer to generate C

with a constant one, you can, as everybody does, use the cyclic group of order four
{±1,±i}.

Theorem 2.3. Let k→ K be a finite étale morphism. Let n : Spec(K )→ N be an
K -integer which is invertible in k. Then the Weil restriction

G = RK/k(µn,K )= Ker(Gm,K/k
n
−→ Gm,K/k)

is a finite étale group scheme over Spec(k). According to Proposition 1.3.2, the
inclusion G ⊂Gm,K/k induces a morphism of k-algebras

k〈G〉 → K . (2-2)

This morphism is surjective.
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Recall form Section 1.2 that Gm,K/k denotes the group scheme over Spec(k)

given by the multiplicative group of K ; since K is commutative one has, here,
Gm,K/k = RK/k(Gm,K ).

Proof. The hypothesis on n means that we are given a decomposition as a product
K =K1×· · ·×Ks , and a family (n1, . . . , ns) of integers, each of which is invertible
in k; the K -group µn,K is equal, over the open-closed set Spec(Ki ), to µni ,Ki .

The properties of the Weil restriction do not allow to reduce to the case where
n is constant, but we may suppose Spec(k) to be connected; then there exists a
faithfully flat étale morphism k→ k ′, with Spec(k ′) connected, a finite set I and
an isomorphism of k ′-algebras

k ′⊗k K '
∏
I

k ′.

The decomposition of K as the product associated to n gives the surjective map

α : I → {1, 2, . . . , s}

such that, for j = 1, . . . , s, one has

k ′⊗k K j =
∏

α−1( j)
k ′.

The definition of the direct image now gives

G(k ′)= µn(k ′⊗k K )=
∏
i∈I

µnα(i)(k
′).

This last group will be noted as
∏

I µnα(k ′). Since n is supposed to be invertible
in k, the group schemes µn j are étale and finite; this shows that G is finite and
étale over k.

Now the surjectivity of the morphism (2-2) can be checked after any faithfully
flat base change k→ k ′; so we may suppose that the ring k ′, connected as above,
is big enough so that it contains, for all i ∈ I , an nα(i)-th root of unity ζi different
from 1; by connectedness, 1− ζi is invertible.1

We have to show that every idempotent of
∏

I k ′ is in the image of the morphism

k ′
〈∏

I
µnα(k ′)

〉
→

∏
I

k ′.

1A quick proof I learned from Pascal Autissier: Let R be a connected ring containing two roots
u an v of a separable polynomial P(T ); then either u − v is zero, or it is invertible in R. In fact,
letting P(T ) = (T − u)Q(T ), one has P ′ = (T − u)Q′+ Q, so (T − u)P ′ = (T − u)2 Q′+ P , and
then (v−u)P ′(v)= (v−u)2 Q′(v); since P is separable, P ′(v) is invertible in R, and thus, the ideal
(v − u)R is equal to its square; it is therefore generated by an idempotent. But, by assumption, R
doesn’t contain any nontrivial idempotent.
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Fix i0 ∈ I , and let e= (ei )∈
∏

I k ′= k ′⊗k K , be the idempotent given by ei0 = 1,
and ei = 0 for i 6= i0. Consider the element f = ( fi ) ∈

∏
I µnα(k ′), with fi0 = ζi0 ,

and for i 6= i0, fi = 1. One has

(1− ζi0)e = 1− f.

But 1− ζi0 is invertible in the base ring k ′. So we are done. �

2.4. The case of a Galois field extension. By using the Galois descent machinery,
we now generalize Section 2.2 to a Galois extension of fields k→ K , with Galois
group π , and where 2 is invertible in k; we take n = 2.

One has the inclusion

µ2 = {±1} → K× ⊂ K

Extend it as ∏
π

µ2→
∏
π

K .

The elements of these sets will be seen as maps from π to µ2, and to K respectively.
We define a left action of π on these maps: for σ, τ ∈ π ,

(σ u)(τ )= u(τσ ).

(Note that, for this action, π acts on the source (= π ), but not the target (= K ).)
We consider the ring

∏
π K as a K -algebra via the morphism K →

∏
π K given

by x 7→ (σ 7→ σ(x)); this morphism is π -equivariant, and taking the invariants
gives back the initial morphism

k = K π
→ K '

(∏
π

K
)π

.

The group scheme G is now defined by the abstract group G(K ) =
∏

πµ2,
equipped with the given above action of π . We thus have a π -equivariant map

G(K )→
(∏

π

K
)×
⊂

∏
π

K .

It induces a morphism of K -algebras

K 〈G(K )〉 →
∏
π

K .

To be explicit: for x ∈ K , and g ∈ G(K ), the image of xg ∈ K 〈G(K )〉 is the map
π → K given by σ 7→ σ(x)g(σ ); this morphism is π -equivariant for π acting on
K 〈G(K )〉 by the rule τ (xg) = τ(x)τ g; it is also surjective since the Kronecker
idempotent δσ ∈

∏
π K is the image of 1

2(1+ g), where g(τ ) = −1 if τ 6= σ , and
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g(σ )= 1. Taking the invariants, one gets the surjective morphism

k〈G〉 1.5.1
=

(
K 〈G(K )〉

)π
→ K =

(∏
π

K
)π

.

3. Some properties of separable algebras

Let k be a commutative ring. A k-algebra k→ A is said to be separable if A is a
projective A⊗k Aopp-module, for the module structure given by

A⊗k Aopp
× A→ A, (x ⊗ y, a) 7→ xay.

This notion was introduced and studied by Auslander and Goldman [Auslander
and Goldman 1960] (or see [Knus and Ojanguren 1974]); it generalizes what is
called absolutely semisimplicity when k is a field. Nowadays, separable algebras
are as ubiquitous as their commutative counterparts, the étale algebras.

The definition above is equivalent to the more explicit following one:

Definition 3.1. Let p : A⊗k A → A be the product map, given by p(a⊗b)= ab;
this map is A⊗k Aopp-linear. The separability is equivalent to the existence of an
element e ∈ A⊗k A such that p(e)= 1, and, for all c ∈ A, c⊗ 1 · e = e · 1⊗ c. To
avoid any doubt on which product is used in this equality, we write e=

∑
i ai⊗bi ;

then one must have
∑

ai bi = 1, and for any c ∈ A,
∑

cai ⊗ bi =
∑

ai ⊗ bi c.

Such an element e is called a separability idempotent for A.

Lemma 3.2. Let k→ A be a separable algebra, and let M be a left A-module. If
M is k-projective, then it is A-projective as well.

We give the proof from [Orzech and Small 1975, p. 13], because it shows how
the product by e acts as taking the mean value, which is usual when dealing with
finite groups. So let u : P → M be a surjective map of left A-modules, and let
v : M → P be a k-linear right inverse (uv = 1). Look at Homk(M, P) as a left
A⊗k Aopp-module, by letting

(x ⊗ y · v)(m)= xv(ym).

Then it makes sense to consider the map ev; we check that it is an A-linear right
inverse of u. It is A-linear since, for c ∈ A, one has

c(ev)= (c⊗ 1 · e)v = (e · 1⊗ c)v,

and then
c(ev)(m)= (

∑
aiv(bi cm))= (ev)(cm)

Moreover, it is easy to check that u(ev)= 1. Therefore, M is A-projective.
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3.3. In the following, we only consider separable algebras which in addition are
projective k-modules of finite type; since a projective separable algebra must be
a finitely generated k-module (see [Knus and Ojanguren 1974, p. 82] or [Orzech
and Small 1975, p. 13]), we call such algebras simply projective separable. The
main examples of projective separable algebras are

• finite étale (commutative) k-algebras;

• k-algebras Endk(P) of endomorphisms of a projective k-module of finite type;
if P is free, and denoting by (ei j ) the usual basis of the ring of matrices, the
element

∑
i, j ei j ⊗ e j i is a separability idempotent;

• the algebra k〈0〉 of a finite group 0 whose order n is invertible in k; for a
separability idempotent one may then take 1

n

∑
σ∈0 σ ⊗ σ−1.

3.4. Let A be a k-algebra. Then A is projective separable if and only if there
exists a faithfully flat morphism k→ k ′ (even an étale one), a finite family (ni )i∈I

of k ′-integers ni , and an isomorphism of k ′-algebras

k ′⊗k A '
∏
i∈I

Mni (k
′)

This characterization, or a direct proof, shows:

Proposition. Let A be a projective separable k-algebra. Then the center K of A
is finite étale over k and A is projective separable over K [Knus and Ojanguren
1974, III, 5.5].

A K -algebra that is projective separable and central is called an Azumaya K -
algebra.

In this paper, we shall not consider the Morita equivalence between Azumaya
algebra, nor the Brauer group.

3.5. Existence of a maximal étale subalgebra. A careful reading of the proof
given in [Auslander and Goldman 1960, p. 384] or in [Knus and Ojanguren 1974,
III,6.4], which both concern a local base ring, leads to the following very slight
generalization:

Proposition. Let k be a semilocal ring and k→ A a projective separable algebra,
with center K . Then there exists a maximal commutative subalgebra L ⊂ A, which
is finite étale over the center K , and then also finite étale over k. Moreover, if the
rank of A as a K -module is constant, equal to n2, then the rank of L over K is n.

3.6. Let L be a maximal étale subalgebra of A. From the inclusion L⊂ A come two
structures of L-module on A: we note respectively by L A and AL the L-modules
given by multiplication of “scalars” in L on the left, and on the right. Since L is
étale over K , both these L-modules are projective (Lemma 3.2).
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Proposition 3.7 [Knus and Ojanguren 1974, III.6.1]. The morphism from A⊗K L
to EndL(AL) given by a⊗ λ 7→ (a′ 7→ aa′λ), is an isomorphism.

4. Construction of the group G

For this section, we fix the following notations:

• k→ A is a projective separable k-algebra;
• K denotes the center of A;
• L denotes a chosen maximal étale subalgebra L ⊂ A;
• L A is the L-module for the law given by the multiplication on the left; it is a

locally free L-module.

We thus have the algebra inclusions

k ⊂ K ⊂ L ⊂ A.

4.1. Introducing the “normalizer” of L in A. The inclusion of k-algebras L ⊂ A
gives rise to a closed immersion of multiplicative group functors

Gm,L/k ⊂Gm,A/k .

Denote the normalizer of this subgroup by

N= NormGm,A/k (Gm,L/k)

Let us be more explicit. For k ′ ∈ k-Alc, one has

N(k ′)=
{
a ∈ (k ′⊗k A)× | a(k ′⊗k L)×a−1

= (k ′⊗k L)×
}
.

We show, by the standard Lie-type argument, that N(k ′) acts, in fact, on the
whole algebra k ′⊗k L , and not only on its invertible elements. Let, as usual, k ′[ε]
be the ring of dual numbers over k ′ (ε2

= 0); one has an exact sequence of groups

0−→ k ′⊗k L
x 7→1+εx
−−−→ Gm,L/k(k ′[ε])−→Gm,L/k(k ′),

where the first term k ′⊗k L stands for the additive underlying group of that ring. As
the group functor Gm,L/k is acted upon by N, one sees that N also acts on the above
kernel, that is on the functor in additive groups k ′ 7→ k ′⊗k L; to be precise, a section
a ∈ N(k ′) induces the inner automorphism x 7→ axa−1 of the group (k ′ ⊗k L)×,
and thus it defines an automorphism w of the k ′-algebra k ′⊗k L , characterized by

ax = w(x)a for all x ∈ k ′⊗k L . (4-1)

By its very definition, this automorphism w is the identity on the subalgebra k ′⊗k K .
Therefore we get a morphism of group functors

N= NormGm,A/k (Gm,L/k)→ Aut(L/K ),
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where Aut(L/K ) is the functor on the category of commutative k-algebras given
by

Aut(L/K )(k ′) = Aut(k′⊗k K )-Alc(k ′⊗k L)

(Technically, the base ring k should appear in the symbol Aut(L/K ), but it is clear
from the context that this functor, like most of the others under consideration, is
defined on the category of commutative k-algebras.)

Let us introduce the local rank of A as a K -module; since A is locally a matrix
algebra, this rank is a square; so, let n : Spec(K )→ N be the map defined by

rankKq(Aq)= n(q)2.

Since L is étale over K the L-module L A is locally free by Lemma 3.2. As the
K -rank of L is n, the L-rank of L A is also n — with a slight abuse of notation, this
last n being the composite map

Spec(L)→ Spec(K )
n
→ N.

Denote by L the determinant of the L-module L A, that is the invertible L-module
defined by

L= detL(L A)=
∧

n
L A

Fix k ′ ∈ k-Alc, and consider a section a ∈ N(k ′); as above, we write w for the
inner automorphism of k ′⊗k L defined by a — see (4-1). The product by a on the
left in k ′⊗k A is thus a w-semilinear map, that we may write as a k ′⊗k L-linear
map

k ′⊗k A→ w?(k ′⊗k A), a′ 7→ aa′

The n-th exterior power of this map gives a k ′⊗k L-linear map

det(a) : k ′⊗k L→ w?(k ′⊗k L)

(The notation det(a), usually reserved for endomorphisms, is a bit improper here;
but it cannot cause any confusion.)

4.2. Constructing the group functor G. Because k is supposed to be semilocal,
the ring L is also semilocal since it is finite over k; hence, the invertible L-module
L is isomorphic to L; we choose a basis e ∈ L, i.e., an isomorphism

L −̃→ L, x 7→ xe.

We now define the group functor G as the stabilizer of the basis e of L, for its
action through det; more precisely,

G(k ′)=
{
a ∈ NormGm,A/k (Gm,L/k)(k ′) | det(a)(1⊗ e)= 1⊗ e

}
.

(Although the map det is not a morphism, G is indeed a group.)
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Proposition 4.3. We maintain the assumptions and notation at the beginning of
Section 4, and we suppose in addition that the ring k is semilocal and that the
K -integer n is invertible in k. Then the group functor G, defined above, fits into
the following commutative diagram, whose rows are exact sequences of sheaves on
Spec(k) for the étale topology:

1 // RL/k(µn,L) //

��

G //

��

Aut(L/K ) // 1

1 // Gm,L/k //

n
��

NormGm,A/k (Gm,L/k) // Aut(L/K ) // 1

Gm,L/k

In particular, G is finite étale over k.

The proof occupies Sections 4.4–4.5.

4.4. The sequence 1 → Gm,L/k → NormGm,A/k(Gm,L) → Aut(L/K ) → 1 is
exact.

(a) Exactness at N = NormGm,A/k (Gm,L/k). The property of L being a “maximal
commutative” subalgebra may be interpreted as the exactness of the following se-
quence of K -modules

0→ L→ A→ HomK (L , A),

where the map on the right associates to a ∈ A the K -linear map x 7→ ax − xa.
Such exactness is preserved by any flat base change.

Now, consider a section a ∈ N(k ′), where k ′ is flat over k; suppose that the
conjugation by a gives the identity in Aut(L/K )(k ′); this means that axa−1

= x for
all x ∈ k ′⊗k L; thus a commutes with all the elements of the maximal commutative
subalgebra k ′⊗k L; therefore, one has a ∈Gm,L/k(k ′).

(b) The proof of the (local) surjectivity of NormGm,A/k (Gm,L/k)→Aut(L/K ) needs
several steps.

4.4.1. We begin with the “split” case where A = EndK (L), the inclusion L ⊂ A
being isomorphic to the map m : L→ EndK (L) given by the multiplication. Then
each automorphism of K -algebras w : L→ L is the restriction to L of the conjuga-
tion by w in EndK (L), as the formula wm(x)w−1

=m(w(x)) shows. That implies
the surjectivity in this case.

We will now show that the general case is “locally” isomorphic to this split one.
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4.4.2. There is an isomorphism of algebras ω : A⊗K L −̃→EndK (L)⊗K L making
the following diagram commutative (it is an isomorphism of L-algebras for the
product on the right by elements of L).

L ⊗K L
ι⊗1 // A⊗K L

ω

��
L ⊗K L

m⊗1
// EndK (L)⊗K L

Proof. Look at A as an L ⊗K L-module via the law (x ⊗ y, a) 7→ xay; since
L ⊗K L is étale over K , and since A is locally free over K , A is locally free as a
L ⊗K L-module (Lemma 3.2); as both A and L ⊗K L have the same rank n2 over
K , the module A is of rank 1 over L ⊗K L . But the ring L ⊗K L is finite over the
semilocal ring k; therefore it is also semilocal, and then any rank one projective
module over L ⊗K L is isomorphic to L ⊗K L . Thus we can find ε ∈ A such that
the map

L ⊗K L→ A, x ⊗ y 7→ xεy,

is an isomorphism. On considering both L ⊗K L and A as L-modules for the
product on the right, we get an isomorphism of L-algebras

EndL(AL) −̃→ EndL(L ⊗K L).

We obtain the isomorphism ω by composing the above one with the isomorphism
indicated in Proposition 3.7:

A⊗K L
3.7
−→ EndL(AL) −̃→ EndL(L ⊗K L) −̃→ EndK (L)⊗K L .

The required commutativity of the square is easy to check. �

4.4.3. There exist a finite injective étale morphism k→ k ′ and an isomorphism of
k ′-algebras

ω′ : A⊗k k ′ −̃→ EndK (L)⊗k k ′

making commutative the diagram

L ⊗k k ′
ι⊗1 // A⊗k k ′

ω′

��
L ⊗k k ′

m⊗1
// EndK (L)⊗k k ′

(The difference with the previous diagram is that the tensor products are now taken
over k.)
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Proof. Let k ′ = RK/k(L) be the Weil restriction of L from Section 2.1; it is a
finite étale k-algebra, and by its very definition, it is equipped with a morphism of
K -algebras

L → K ⊗k k ′.

Now, for any K -module V , we have the isomorphisms

(V ⊗K L)⊗L (K ⊗k k ′)' V ⊗K (K ⊗k k ′)' V ⊗k k ′.

It is now clear that the required square is obtained from the square of the step 4.4.2
by the base change L→ K ⊗k k ′.

One can interpret this step by saying that the inclusion ι : L → A is a twisted
form, for the finite étale topology on k, of the map m : L → EndK (L), given by
the product in L .

That ends the proof that the map NormGm,A/k (Gm,L/k)→ Aut(L/K ) is locally
surjective. �

4.5. The sequence 1 → RL/k(µn,L) → G → Aut(L/K ) → 1 is exact.

(a) Exactness at G. Due to the exactness of the bottom row of the diagram of
Proposition 4.3, we have to check the equality

G∩Gm,L/k = RL/k(µn,L).

But, for k ′ over k, a section a ∈Gm,L/k(k ′)= (k ′⊗k L)× has to be seen as a scalar
for the k ′⊗k L-module k ′⊗k A, which is of rank n; therefore, one has det(a)= an;
since e ∈ L is a basis over L , the equality det(a)(1⊗ e) = 1⊗ e is equivalent to
an
= 1.

(b) We now check that the morphism G −→ Aut(L/K ) is “locally” surjective:
given k ′ finite étale over k, and given an automorphism w ∈ Aut(L/K )(k ′), we
have to find a finite étale morphism k ′ → k ′′, and a section a ∈ G(k ′′) such that
w induces on k ′′ ⊗k L the conjugation by a. We already know this to be true for
the bottom morphism NormGm,A/k (Gm,L/k)→ Aut(L/K ); we have thus to show
the following: given k ′ finite étale over k and a ∈ N(k ′), there exists a finite étale
morphism k ′→ k ′′, and a section y ∈Gm,L/k(k ′′) such that y−1a ∈ G(k ′′). But, in
any case, since e ∈ L is a basis over L , there exists x ∈ (k ′⊗k L)× such that

det(a)(1⊗ e) = x · 1⊗ e.

Let k ′→ k ′1 be finite étale morphism which “splits” k ′⊗k L . Thus, there exists
a finite set I and an isomorphism

k ′1⊗k L −̃→
∏
I

k ′1.
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To the element x ∈ (k ′ ⊗k L)× there corresponds a family (xi )i∈I of invertible
elements of k ′1; since the integer n is supposed invertible in k, each of the polyno-
mials Y n

− xi ∈ k ′1[Y ] is separable; therefore, there exists a finite étale morphism
k ′1→ k ′′, and a family (yi )∈

∏
I k ′′ such that yn

i = xi . Going back to k ′′⊗k L via its
isomorphism with

∏
I k ′′, we get an element y ∈ k ′′⊗k L such that yn

= x ; therefore
y−1a ∈ G(k ′′).

5. Group generation of separable algebras

Recall the result we want to prove.

Theorem 5.0. Let k be a semilocal ring containing the field Q. Let k → A be
a projective separable algebra. Then, there exists a finite étale k-group G and a
surjective morphism of k-algebras

k〈G〉 → A.

5.1. Fixed points. We begin by recalling the few facts we need about the fixed
points under the action of a group functor.

Let k ⊂ K ⊂ L be two finite injective étale morphisms of rings. Let W ⊂
Aut(L/K ) be a subgroup functor (it is a functor on k-Alc). We will denote by
LW
⊂ L the subring of the elements which are absolutely invariant under W , that

is the set of those x ∈ L such that for all k-algebra k ′, the image of x in k ′ ⊗k L
is invariant under the group W (k ′). Suppose that W is affine and flat over k; let
u : k→ R be its (commutative) algebra of functions, so that W = Spec(R); then
the action of W on L is given by a morphism of k-algebras

δ : L −→ L ⊗k R

The ring of invariants LW is then characterized by the exactness of the sequence

LW // L
1⊗u //

δ
// L ⊗k R .

In fact, fix k ′ ∈ k-Alc; an automorphism w ∈W (k ′) may be seen as a morphism of
k-algebras w : R→ k ′; it leads to the commutative diagram

L
1⊗u //

δ
//

��

L ⊗k R

1⊗w

��
L ⊗k k ′

Id //

w′
// L ⊗k k ′

where w′ is induced from (1⊗w) ◦ δ; this is nothing but the automorphism given
by w, acting on L ⊗k k ′. That shows the claim.
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The relevance of using group functors (instead of constant groups) appears again
in the following result: in a weak sense, any finite étale morphism is “galoisian”.

Lemma 5.1.1. Let k ⊂ K ⊂ L be two finite injective étale morphisms of rings.
Then

LAut(L/K )
= K .

To make notations lighter, let W = Aut(L/K ). The inclusion K ⊂ LW comes
from the definition.

For the converse, it is enough to show the inclusion k ′ ⊗k LW
⊂ k ′ ⊗k K for

a faithfully flat morphism k→ k ′ . Remark first that for any such morphism, the
canonical morphism

k ′⊗k (LW )−→ (k ′⊗k L)W (k′)

is clearly injective. Let us now take for k→ k ′ a finite étale morphism which splits
the finite étale algebras K and L; the inclusion k ′⊗k K ⊂ k ′⊗k L is then isomorphic
to the inclusion

∏
I k ′⊂

∏
J k ′ associated to some surjective map α : J→ I of finite

sets; in this situation, the group W (k ′) is isomorphic to the subgroup 0 ⊂ SJ of
all the bijections σ of J such that α ◦ σ = α; precisely, one has 0 =

∏
i∈I Sα−1(i).

As the map α clearly induces a bijection J/0' I , the elements of k ′⊗k L =
∏

J k ′

which are invariants under the automorphisms in 0 are those of
∏

I k ′ = k ′⊗k K .

5.2. Proof of the theorem. As in Section 4, we denote by K the center of A, and by
n2 the K -rank of A as a locally free K -module. We again choose an étale maximal
subalgebra L ⊂ A, and a generator of the invertible L-module L = detL(L A) =∧n

L A.
According to Proposition 4.3 we can define a sequence of morphisms between

finite étale groups

1 // RL/k(µn,L) // G0 // Aut(L/K ) // 1

which is exact as a sequence of sheaves for the étale topology.

5.2.1. Now suppose given a k-subgroup W ⊂ Aut(L/K ), which is finite étale
over k, and such that LW

= K (according to Lemma 5.1.1, W may be the whole
Aut(L/K ), but it may also be the (constant) Galois group of L/K in case this
morphism is galoisian).

We then define the group G for the theorem as the pull-back of G0, as shown in
the diagram

1 // RL/k(µn,L) // G //

��

W

��

// 1

1 // RL/k(µn,L) // G0 // Aut(L/K ) // 1
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Consider the canonical morphism

f : k〈G〉 → A

associated, via Proposition 1.3.2, to the inclusion G⊂ G0 ⊂ N⊂Gm,A/k . We will
prove it to be surjective.

5.2.2. The first step is to prove that an element a ∈ A which commutes with any
“local” section of G is in fact in the center K of A.

Let a be such an element; the hypothesis means that for each commutative alge-
bra k→k ′, the image of a in k ′⊗k A commutes with the elements of G(k ′)⊂k ′⊗k A.

First, we show that a ∈ L . By assumption, a f (b) = f (b)a for all b ∈ k〈G〉.
By Theorem 2.3, the k-algebra L is generated by the subgroup RL/k(µn,L) ⊂ G;
thus, the element a must commute with all the elements of L; but L is a maximal
commutative subalgebra; therefore, a ∈ L .

Next we show that a ∈ K = LW . Let w ∈W (k ′); since the morphism of sheaves
G→W is surjective, we may find a faithfully flat extension k ′′ of k ′ and a section
g ∈ G(k ′′), such that

w(1⊗ a)= g(1⊗ a)g−1

The hypothesis on a then implies that w(1⊗ a)= 1⊗ a.

5.2.3. Let C be the center of the group algebra k〈G〉. We prove that

f (C)= K .

Take c ∈ C ; since the image f (c) commutes with the local sections of G, the pre-
vious step shows that f (c) ∈ K . Conversely, let us check the inclusion K ⊂ f (C).
The group RK/k(µn,K ) is clearly a subfunctor of G, and we have, by Theorem 2.3,

f (k〈RK/k(µn,K )〉)= K .

Moreover, since RK/k(µn,K ) is a subgroup of Gm,K/k , it is included in the center
of G⊂Gm,A/k ; therefore k〈RK/k(µn,K )〉 ⊂ C , and we are done.

5.2.4. We now conclude the proof of the surjectivity of f . The k-algebra B= k〈G〉
is separable since the order of the étale group G is invertible in k (recall that Q⊂ k);
it is thus an Azumaya C-algebra. Since f (C) is contained in the center K of A,
the K -algebra A can be seen as a C-algebra, and f as a morphism of C-algebras
from the Azumaya C-algebra B to A. According to [Knus and Ojanguren 1974,
III.5.3, p. 95], f induces an isomorphism

B⊗C AB
−̃→ A,
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where AB
= {a ∈ A | a f (b)= f (b)a for all b ∈ B}; but this ring is equal to K , as

seen in 5.2.2, and the map C→ K is surjective, by 5.2.3. Therefore the morphism
f : B→ A is surjective.

6. Examples

Let K be a field of characteristic zero.

6.1. Some finite groups generating a matrix algebra. We begin with the “stan-
dard” representation of the symmetric group

K 〈Sn+1〉 −→Mn(K ) (6-1)

More generally, let 0 be a group acting transitively on the set I = {0, 1, . . . , n};
consider the K 〈0〉-module U =M(I, K )' K n+1 whose elements are the maps u :
I→ K ; it is the direct sum U =U0⊕U1, of the submodules U0={u |

∑
i u(i)=0},

and U1 = U0; this last module is a K -vector space of rank one, generated by the
constant map with value 1. The algebra EndK 〈0〉(U ) decomposes as the product
EndK 〈0〉(U0)× EndK 〈0〉(U1), and the second factor is isomorphic to K . On the
other hand, by expressing the elements of EndK (U ) as matrices indexed by I × I ,
one can check that the K -vector space EndK 〈0〉(U )⊂EndK (U ) has a basis indexed
by the quotient set (I × I )/0; the factor EndK 〈0〉(U1) is generated by the class of
the diagonal which is one orbit in I× I ; therefore, the morphism K→EndK 〈0〉(U0)

is an isomorphism if and only if 0 has just one more orbit on the product, that is
if 0 is 2-transitive on I ; by the Wedderburn double centralizer theorem we finally
get the following well-known characterization (for a proof using character theory,
see [Serre 1977, §2.3, exercise 2]):

Proposition 6.1.1. The morphism K 〈0〉 → EndK (U0) is surjective if and only if
the action of 0 is 2-transitive on I .

We return to (6-1). The matrix algebra Mn(K ) ' EndK (U0) is thus shown to
be generated by the symmetric group Sn+1, but this group is far from being of the
type we introduced in Section 4. Let us try to get close to these constructions.

We define a commutative étale maximal subalgebra of EndK (U0) coming from
a commutative subgroup of Sn+1: namely, let H ⊂Sn+1 be the subgroup gener-
ated by the cyclic permutation ρ = (0, 1, 2, . . . , n), and let L ⊂ EndK (U0) be the
subalgebra it generates; since the composite map

K 〈H〉 → EndK (U0)×EndK (U1) → EndK (U )

is injective, we readily get an isomorphism

K [X ]/(Xn
+ Xn−1

+ · · ·+ 1) −̃→ L
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showing that L is étale of rank n (recall that Q ⊂ K ). Let N ⊂ Sn+1 be the
normalizer of ρ; this group is isomorphic to the semidirect product

0 = Z/(n+ 1)Z o (Z/(n+ 1)Z)×;

consider the morphism
K 〈0〉 → EndK (U0);

according to Proposition 6.1.1, this morphism is surjective if and only if the integer
n + 1 is prime. If it is not, we may follow the method of Section 4; it leads to a
nonconstant group scheme (see also Section 6.3).

In any case, it is easy — and this is certainly well known — to get smaller finite
(constant) subgroups of GLn(K ) which generate Mn(K ); for example, choose a
transitive group W of permutations of the canonical basis of K n , say the group
generated by a cycle of length n, and let D ⊂ GLn(K ) be the group of diagonal
matrices with coefficients ±1; then the morphism

K 〈D o W 〉 →Mn(K )

is easily seen to be surjective.

6.2. Back to quaternions. For the following remarks, it is useful to define the
R-algebra of quaternions as a subring of the ring of complex 2× 2 matrices

H=

{(
a −b̄
b ā

) ∣∣∣∣ a, b ∈ C

}
.

We choose the maximal étale subalgebra L ⊂ H consisting of the matrices of the
form

(a
0

0
ā

)
; we denote by δ : C→ L the isomorphism given by δ(a)=

(a
0

0
ā

)
.

Recall that the choice of a generator i ∈ C leads to an isomorphism of R-group
functors

µ2,R −̃→ Aut(C/R).

Namely, to an R-algebra K and an element u ∈ K such that u2
= 1, one associates

the K -automorphism of K ⊗R C, given by 1⊗ i 7→ u ⊗ i . For the sequel, it is
better to describe Aut(C/R) without any choice, as follows: let ε = 1

2(1+ u); this
is an idempotent of K , and the automorphism associated to u may be rewritten
as z 7→ εz + (1 − ε)z̄; that only involves the automorphism z 7→ z̄ induced by
the conjugation on the factor C. Similarly, we denote by W = Aut(L/R) the
constant Galois group functor of L/R; the group W (K ) contains the involution
c : K ⊗R L→ K ⊗R L given by

(a
0

0
ā

)
7→

( ā
0

0
a

)
, and one has

W (K )= Gal(K ⊗R L/K )= {εId+ (1− ε)c | ε2
= ε ∈ K }.
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Set j =
( 0

1
−1
0

)
; then, {1, j} is a basis of the L-module LH associated to the

multiplication on the left. Let K be a commutative R-algebra. For x ∈ K ⊗R L ,
we have j x j−1

= c(x). Any element of K ⊗R H may be written as(
a −b̄
b ā

)
=

(
a 0
0 ā

)
+

(
b̄ 0
0 b

)
·

(
0 −1
1 0

)
= δ(a)+ δ(b̄) · j,

with a, b∈ K⊗RC; an expression which we simplify in x+y j , with x, y ∈ K⊗R L .
Note that det x=aā∈K for x=δ(a). One checks that det(x+y j)=det x+det y.

For x, y ∈ K ⊗R L , the next formula gives the condition of invertibility, and the
inverse.

(x + y j)(c(x)− y j)= (det x + det y)1.

Let N = NormGm,H/R
(Gm,L/R) be the normalizer. An invertible element x + y j

is in N(K ) if and only if, for any z ∈ (K ⊗R L)×, one has

(x + y j)z(c(x)− y j) ∈ K ⊗R L .

By looking at the coefficient of j , we see that this condition means that, for any
z ∈ (K ⊗R L)×, one has

xy(z− c(z))= 0.

But, if z =
( 1⊗i

0
0
−1⊗i

)
, the element z− c(z) is invertible; therefore the conditions

on x + y j for being in N(K ) are det x + det y ∈ K× and xy = 0.
We now follow Section 4.2 for constructing a group G which will generate H:

we take e= 1∧ j as a basis of L=
∧2

LH. Let us compute the “wedge two” of the
left product by x+ y j (written as x ·1+ y · j for clarity): one finds, since j2

=−1,

(x · 1+ y · j)∧ (x · j − y · 1)= x2
· 1∧ j − (y · j)∧ (y · 1)= (x2

+ y2) · 1∧ j.

Thus, using the isomorphism δ : C→ L , one has

G(K )' {(a, b) ∈ (K ⊗R C)2
| ab = 0, a2

+ b2
= 1, aā+ bb̄ ∈ K×}. (6-2)

The group law takes j into account:

(a, b).(a′, b′)= (aa′− bb̄′, ab′+ bā′). (6-3)

Now consider the map G→W that sends x + y j to the automorphism

z 7→ (x+ y j)z (x+ y j)−1.

We check that, with the notation of (6-2), the map G(K )→W (K ) can be written as

(a, b) 7→
( aā

aā+bb̄

)
Id+

( bb̄
aā+bb̄

)
c.

The conditions given in (6-2) imply that the coefficient aā
aā+bb̄

is indeed an idem-
potent of K .
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Finally, the group functor G comes within an exact sequence

1−→ RC/R(µ2,C)−→ G−→W −→ 1,

where RC/R(µ2,C) denotes the Weil restriction already considered in Section 2.2,
and where the left hand map is defined as follows: an element in a∈RC/R(µ2,C)(K )

is an element in K ⊗R C such that a2
= 1; it is mapped to (a, 0) ∈ G(K ).

This sequence splits locally but not globally. In fact, a splitting of G(K )→W (K )

must map c ∈ W (K ) to an involution (a, b) ∈ G(K ), whose image back to W (K )

must be c; the last condition implies a= 0 and then b2
= 1, and, according to (6-3),

the first condition implies bb̄ = −1. In R⊗R C = C, such an element b cannot
exist; but in C⊗R C you can take b= i⊗ i . Thus the sequence is split over C, and
it is not split over R.

As seen in the Section 2.2, the group scheme RC/R(µ2,C) is a twisted form of
the Klein four group; therefore, the group G constructed above is a twisted form
of the dihedral group D4; it has nothing to do with the (constant) quaternion group
Q8 which, of course, also generates H.

6.3. A split case. Let K → L be a finite Galois extension of fields, of degree
n, with galois group W = Gal(L/K ). We consider the (Azumaya) algebra A =
EndK (L) equipped with its maximal étale subalgebra L .

In this situation, we will see that different choices for a basis of the invertible
sheave L may lead, following Section 4.2, to nonisomorphic groups G.

6.3.1. The normalizer of L× is known to be isomorphic to a semidirect product:

NormA×(L×) −̃→ L×o W, a 7→ (a(1), a(1)−1a). (6-4)

In fact, if an element a ∈ A×, seen as a K -linear automorphism of L , is assumed
to normalize L×, then for any x ∈ L× there exists x ′ ∈ L× such that for all y ∈ L×,

a(xa−1(y))= x ′y;

Letting y = a(1), we see that x ′ = a(1)−1a(x); the above equality then gives

a(1)−1a(xy)= a(1)−1a(x)a(1)−1a(y).

Therefore,the map z 7→ a(1)−1a(z) is a K -algebra automorphism of L; the map
(6-4) is thus well defined. Consider now an element (x, w) ∈ L× o W ; the map
a defined by a(y) = xw(y) normalizes the (left product by an) element z ∈ L×,
since a(za−1(y))= xw(za−1(y))= w(z)y; therefore, (6-4) is an isomorphism.

6.3.2. We now choose a first basis of L, by using the isomorphism

L ⊗K L D
−̃→ EndK (L)= A, x ⊗ y∗ 7→ (z 7→ y∗(z)x)
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(As before, L D stands for the K -linear dual HomK (L , K )). The structure of L-
module on L A corresponds to the structure of L-module on L⊗K L D coming from
the first factor. For the sheaf L =

∧n
L A introduced in Section 4.1, we thus have

the isomorphism

L=
∧n

L
(L ⊗K L D)= L ⊗K

∧n

K
(L D).

Let e′ ∈
∧n

K (L D) be any basis of this K -vector space of rank one; take e =
1⊗ e′ ∈ L ⊗K

∧n
K (L D) as an L-basis of L.

The isomorphism of L ⊗K L D corresponding to the left product by a = xw ∈

NormA×(L×), is given by y ⊗ z∗ 7→ xw(y)⊗ z∗. Therefore, the “wedge” of this
map is

det L(a) : L−→ w?(L), y⊗ e′ 7→ xnw(y)⊗ e′

The group scheme G1 we are looking for, along the lines of Section 4.2, is
“locally” given by the set of sections a of N such that detL(a)(e) = e; thus, for a
connected (commutative) K -algebra K ′, one has

G1(K ′)= {(x, w) ∈ (K ′⊗K L)×o W | xn
= 1}

That is,
G1 = RL/K (µn,L) o WK ,

where WK denotes the constant group scheme on Spec(K ) defined by W .

6.3.3. We choose another basis for L by using the following consequence from
Galois theory: every endomorphism a ∈ EndK (L) is writable in a unique way as

a =
∑
w∈W

xww,

with the xw in L .
Choose a total ordering {w1, . . . , wn} on the set W , and let e = w1 ∧ · · · ∧wn;

it is an L-basis of L.
Consider, as above, the product in A by the element a = xw ∈ NormA×(L×);

the determinant of the matrix, relative to the basis W , of the multiplication on the
left by w is nothing but the sign, noted sgnW (w), of the permutation of the finite
set W , given by w′ 7→ ww′. We thus have, for ye ∈ L,

detL(a)(ye)= xnw(y)sgnW (w)e.

The group G2 associated to this new basis is thus given (for K ′ connected) by

G2(K ′)= {(x, w), x ∈ (K ′⊗K L)× | w ∈W, xnsgnW (w)= 1}.

This is a subgroup of the semidirect product (K ′ ⊗K L)× o W , but it is not iso-
morphic to G1(K ′).
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In fact, for (x, w)∈G2(K ′), if sgnW (w)=−1, then x may be of order 2n (Recall
that sgnW (w) = 1 except if W is of even order, and the subgroup generated by w

contains a 2-Sylow subgroup of W ).

6.4. Crossed products. Keeping the hypotheses and the notation of Section 6.3,
we now consider the Azumaya K -algebra associated to a 2-cocycle θ , that is, a
map

θ :W ×W −→ L×

satisfying, for s, t, u ∈W , the relation

s(θ(t, u))θ(st, u)−1θ(s, tu)θ(s, t)−1
= 1.

We suppose that the cocycle is normalized, in the sense that, for any s ∈ W , one
has

θ(s, 1)= θ(1, s)= 1.

The algebra A= (L/K , θ) associated to θ is the free L-module with basis (es)s∈W ,
endowed with the product extending linearly the following relations, for s, t ∈ W
and λ ∈ L ,

eset = θ(s, t)est (6-5)

and
esλ= s(λ)es .

The identity of A is e1, and Le1 ⊂ A is a maximal étale K -subalgebra of A; the
normalizer of its multiplicative group is the set {λes | λ ∈ L×, s ∈ W }. According
to Equation (6-5), the determinant of the matrix of the map a 7→ λesa, relative to
the basis (et) is

det(a 7→ λesa)= λn.
( ∏

t∈W
θ(s, t)

)
.sgnW (s).

Letting
γ (s)=

( ∏
t∈W

θ(s, t)
)
.sgnW (s),

we find for the group functor G⊂Gm,L/K o W ,

G(K ′)= {(λ, s) | λ ∈ (K ′⊗K L)×, s ∈W, λnγ (s)= 1}.
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