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We construct a minimal projective bimodule resolution for every finite-dimen-
sional quantum complete intersection of codimension two. Then we use this
resolution to compute both the Hochschild cohomology and homology for such
an algebra. In particular, we show that the cohomology vanishes in high degrees,
while the homology is always nonzero.

1. Introduction

The notion of quantum complete intersections originates from the work by Manin
[1987], who introduced the concept of quantum symmetric algebras. These alge-
bras were used by Avramov, Gasharov and Peeva [1997] to study modules behaving
homologically as modules over commutative complete intersections. In particular,
they introduced quantum regular sequences of endomorphisms of modules, thus
generalizing the classical notion of regular sequences.

Benson, Erdmann and Holloway [2007] defined and studied a new rank variety
theory for modules over finite-dimensional quantum complete intersections. For
this theory to work, it is essential that the commutators defining the quantum com-
plete intersection be roots of unity, so that a linear combination of the generators
behave itself as a generator. In this setting, at least for quantum complete intersec-
tions of codimension two, the Hochschild cohomology ring is infinite-dimensional,
and a priori there might be connections between rank varieties and the support
varieties defined by Snashall and Solberg [2004] (see also [Erdmann et al. 2004]).

Whether or not the higher Hochschild cohomology groups of a finite-dimen-
sional algebra of infinite global dimension can vanish, known as “Happel’s ques-
tion”, was unknown until the appearance of [Buchweitz et al. 2005]. In that pa-
per, the authors constructed a four-dimensional selfinjective algebra whose total
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Hochschild cohomology is five-dimensional, thus giving a negative answer to Hap-
pel’s question. The algebra they constructed is the smallest possible noncommu-
tative quantum complete intersection.

In this paper we study finite-dimensional quantum complete intersections of
codimension two. For such an algebra, we construct a minimal projective bimodule
resolution, and use this to compute the Hochschild homology and cohomology. In
particular, we show that the higher Hochschild cohomology groups vanish if and
only if the commutator element is not a root of unity, whereas the Hochschild
homology groups never vanish. Thus we obtain a large class of algebras having
the same homological properties as the algebra used in [Buchweitz et al. 2005].

2. The minimal projective resolution

Throughout this paper, let k be a field and q ∈ k a nonzero element. In the main
results, this element is assumed not to be a root of unity, implying indirectly that
k is an infinite field. We fix two integers a, b ≥ 2, and denote by A the k-algebra

A = k〈X, Y 〉/(Xa, XY − qY X, Y b).

This is a finite-dimensional algebra of dimension ab, and it is justifiably a quantum
complete intersection of codimension 2; it is the quotient of the quantum symmetric
algebra

k〈X, Y 〉/(XY − qY X)

by the quantum regular sequence Xa and Y b (as defined in [Avramov et al. 1997,
Section 2]). We denote the generators of A by x and y, and use the set

{yi x j
} 0≤i<b, 0≤ j<a

as a k-basis. The opposite algebra of A is denoted by Aop, and the enveloping
algebra A⊗k Aop by Ae.

We now construct explicitly a minimal projective bimodule resolution

P : · · · → P2
d2
−→ P1

d1
−→ P0

µ
−→ A→ 0,

in which Pn is free and of rank n+ 1, viewing the bimodules as left Ae-modules.
The generators 1⊗ 1 of Pn are labeled ε(i, j) for i, j ≥ 0, such that

Pn =
⊕

i+ j=n

Ae ε(i, j).
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For each s ≥ 0, define the four elements of Ae:

τ1(s)= qs(1⊗ x)− (x ⊗ 1)

τ2(s)= (1⊗ y)− qs(y⊗ 1)

γ1(s)=
a−1∑
j=0

q js(xa−1− j
⊗ x j )

γ2(s)=
b−1∑
j=0

q js(y j
⊗ yb−1− j ).

Let P0
µ
−→ A be the multiplication map w ⊗ z 7→ wz. The kernel of this map is

generated by τ1(0) and τ2(0). Now let R1 and R2 be the commutative subalgebras
of A generated by x and y, respectively. The annihilator of τi (0), viewed as an
element of Re

i , is γi (0), and the complex

· · · → Re
i
τi (0)
−−→ Re

i
γi (0)
−−→ Re

i
τi (0)
−−→ Re

i
µ
−→ Ri → 0

is a minimal projective bimodule resolution of Ri [Holm 2000].

In general, given any algebra 0 and an automorphism 0
ψ
−→ 0, we may endow

every 0-module X with a new module structure by restricting scalars via ψ . In
this way, we obtain a new module ψ X , whose underlying set is the same as that of
X , but where scalar multiplication is given by

γ · x = ψ(γ )x

for γ ∈ 0 and x ∈ X . This new module is the twist of X with respect to ψ . A
homomorphism X→ Y of 0-modules induces a homomorphism

ψ X→ ψY

of twisted modules.
Now for i = 1, 2, define an algebra automorphism Re

i
σi
−→ Re

i by

σ1 : x ⊗ 1 7→ x ⊗ 1, 1⊗ x 7→ q(1⊗ x),

σ2 : y⊗ 1 7→ q(y⊗ 1), 1⊗ y 7→ 1⊗ y.

When we twist the above resolution of Ri by the automorphism σ s
i for some s ≥ 0,

then multiplication by τi (0) and γi (0) become multiplication by τi (s) and γi (s),
respectively. We denote this twisted resolution by Ri (s).
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We now define a double complex

...
��

...
��

...
��

Aeε(0, 2)
��

Aeε(1, 2)
��

oo Aeε(2, 2)
��

oo · · ·oo

Aeε(0, 1)
��

Aeε(1, 1)
��

oo Aeε(2, 1)
��

oo · · ·oo

Aeε(0, 0) Aeε(1, 0)oo Aeε(2, 0)oo · · ·oo

whose total complex P turns out to be the projective bimodule resolution we are
seeking. Along row 2s we use the resolution R1(bs), and along row 2s+1 we use
the resolution R1(bs+ 1). Explicitly, the row maps are given by

ε(2r, 2s) 7→ γ1(bs)ε(2r − 1, 2s),

ε(2r + 1, 2s) 7→ τ1(bs)ε(2r, 2s),

ε(2r, 2s+ 1) 7→ γ1(bs+ 1)ε(2r − 1, 2s+ 1),

ε(2r + 1, 2s+ 1) 7→ τ1(bs+ 1)ε(2r, 2s+ 1).

Similarly, along column 2r we use the resolution R2(ar), and along column 2r+1
we use the resolution R2(ar + 1), introducing a sign in the odd columns. The
column maps are therefore given by

ε(2r, 2s) 7→ γ2(ar)ε(2r, 2s− 1),

ε(2r, 2s+ 1) 7→ τ2(ar)ε(2r, 2s),

ε(2r + 1, 2s) 7→ −γ2(ar + 1)ε(2r + 1, 2s− 1),

ε(2r + 1, 2s+ 1) 7→ −τ2(ar + 1)ε(2r + 1, 2s).

It is straightforward to verify that these maps indeed define a double complex; all
the four different types of squares commute. The transpose of the matrices defining
the maps in the resulting double complex are given by



γ1(0) −τ2(as+1) 0 0 0 0 · · · 0
0 τ1(1) γ2(as) 0 0 0 · · · 0
0 0 γ1(b) −τ2(a[s−1]+1) 0 0 · · · 0
0 0 0 τ1(b+1) γ2(a[s−1]) 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

0 0 · · · 0 γ1(bs) −τ2(1) 0
0 0 · · · 0 0 τ1(bs+1) γ2(0)


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for the map at stage 2(s+ 1), and

τ1(0) τ2(as) 0 0 0 0 · · · 0
0 γ1(1) −γ2(a[s−1]+1) 0 0 0 · · · 0
0 0 τ1(b) τ2(a[s−1]) 0 0 · · · 0
0 0 0 γ1(b+1) −γ2(a[s−2]+1) 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

0 0 · · · 0 γ1(b[s−1]+1) −γ2(1) 0
0 0 · · · 0 0 τ1(bs) τ2(0)


for the map at stage 2s+ 1.

Now, for each n ≥ 0, denote the generator ε(i, n − i) by f n
i , so that the n-th

bimodule in the total complex P is

Pn =

n⊕
i=0

Ae f n
i ,

the free Ae-module of rank n+ 1 having generators

{ f n
0 , f n

1 , . . . , f n
n }.

Then the maps Pn
dn
−→ Pn−1 in P are given by

d2t : f 2t
i 7→

{
γ2(

ai
2 ) f 2t−1

i + γ1(
2bt−bi

2 ) f 2t−1
i−1 , for i even,

−τ2(
ai−a+2

2 ) f 2t−1
i + τ1(

2bt−bi−b+2
2 ) f 2t−1

i−1 , for i odd,

d2t+1 : f 2t+1
i 7→

{
τ2(

ai
2 ) f 2t

i + γ1(
2bt−bi+2

2 ) f 2t
i−1, for i even,

−γ2(
ai−a+2

2 ) f 2t
i + τ1(

2bt−bi+b
2 ) f 2t

i−1, for i odd,

where we use the convention f n
−1 = f n

n+1 = 0. The following result shows that the
complex is exact.

Proposition 2.1. The complex P is exact, and is therefore a minimal projective
resolution

P : · · · → P2
d2
−→ P1

d1
−→ P0

µ
−→ A→ 0

of the left Ae-module A.

Proof. We will show that the complex P⊗A k is exact, and a minimal projective
resolution of the A-module k. Then the arguments in [Green and Snashall 2004]
show that the complex P is exact.
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When applying −⊗A k to Ae
= A⊗k Aop, the elements x and y in Aop become

zero, and so the elements τi (s)⊗ 1 and γi (s)⊗ 1 are just given by

τ1(s)⊗ 1=−(x ⊗ 1),

τ2(s)⊗ 1=−qs(y⊗ 1),

γ1(s)⊗ 1= (xa−1
⊗ 1),

γ2(s)⊗ 1= q(b−1)s(yb−1
⊗ 1).

We shall identify these elements with −x , −qs y, xa−1 and q(b−1)s yb−1, respec-
tively. Moreover, whenever the commutator element q is involved, its precise
power does not affect the dimensions of the vector spaces we are considering,
so we shall write q∗ for simplicity.

Fix a number n≥ 0. The free bimodule Pn has generators ε(i, j), with n= i+ j
and i, j ≥ 0. When the degree is not ambiguous, we shall denote the element

ε(i, j)⊗ 1 ∈ Pn ⊗A k

by e j , and we shall denote the map

Pn ⊗A k
dn⊗1
−−−→ Pn−1⊗A k

by d̂n . Moreover, we denote by Ui the left A-submodule of Pn−1⊗A k generated
by d̂n(e j ), so that

Im d̂n =U0+ · · ·+Un ⊆ Pn−1⊗A k.

We now compute the dimensions of these modules Ui . Assume first that n is
even. Then

U0 = Axa−1e0,

Ui = A[(q∗y)ei−1+ (q∗x)ei ], for odd 0< i < n,

Ui = A
[
(q∗yb−1)ei−1+ (q∗xa−1)ei

]
, for even 0< i < n,

Un = Ayb−1en−1,

and so we see that dim U0 = b, dim Un = a, and otherwise dim Ui = ab− 1 and
dim U j = a+ b+ 1 for i odd and j even. When n is odd, then

U0 = Axe0,

Ui = A[(−q∗y)ei−1+ (q∗xa−1)ei ], for odd 0< i < n,

Ui = A
[
(q∗yb−1)ei−1+ (q∗x)ei

]
, for even 0< i < n,

Un = Ayen−1,
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and so in this case we see that dim U0= b(a−1), dim Un = a(b−1), and otherwise
dim Ui = a(b− 1)+ 1 and dim U j = b(a− 1)+ 1 for i odd and j even.

Our aim is to compute the dimensions of various intersections and sums obtained
from the modules Ui . In order to do this, we need the fact that for any elements
z1, z2 ∈ A, the implication

z1x s
= z2 yt

H⇒ z1 = v1 yt
+w1xa−s and z2 = v2x s

+w2 yb−t (2-1)

holds, where vi and wi are some elements in A depending on z1 and z2. To see
this, write

z1 = g0+ g1 y+ · · ·+ gb−1 yb−1 and z2 = h0+ h1 y+ · · ·+ hb−1 yb−1,

where the gi and hi are polynomials in x . Then∑
i

hi yt+i
= z2 yt

= z1x s
=

∑
j

(q− js g j x s)y j ,

and comparing the coefficients of y j , we find that g j x s
= 0 for j < t . Therefore,

for these values of j , the polynomial g j must be a multiple of xa−s . Then we can
write ∑

j<t

g j y j
= w1xa−s

for some w1 ∈ A, giving

z1 =
∑
j<t

g j y j
+

∑
j≥t

g j y j
= w1xa−s

+ v1 yt ,

where v1 =
∑

j≥t g j y j−t . This proves the statement for z1, and the proof for z2 is
similar.

We now compute the intersections of pairs of the modules Ui . Suppose n is
even, and fix an even integer 0≤ j ≤ n. If u belongs to U j ∩U j+1, then there are
elements z1, z2 ∈ A such that

u = z1
[
(q∗yb−1)e j−1+ (q∗xa−1)e j

]
= z2[(q∗y)e j + (q∗x)e j+1].

The coefficients of e j−1 and e j+1 must be zero, whereas those of e j must be equal,
giving

(z1q∗)xa−1
= (z2q∗)y.

By (2-1), there are elements v1, v2, w1, w2 ∈ A such that

z1q∗ = v1 y+w1x, z2q∗ = v2xa−1
+w2 yb−1,

hence u ∈ Ayxa−1e j . Conversely, any element in Ayxa−1e j belongs to U j ∩U j+1,
showing

U j ∩U j+1 = Ayxa−1e j ,
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and that the dimension of this intersection is b− 1. Similarly, we compute three
other types of intersections using the same method, and record everything in the
table:

n j intersection dimension

even even U j ∩U j+1 = Ayxa−1e j b− 1
even odd U j ∩U j+1 = Ayb−1xe j a− 1
odd even U j ∩U j+1 = Ayxe j (a− 1)(b− 1)
odd odd U j ∩U j+1 = Ayb−1xa−1e j 1

Next we show that the equality

(U0+U1+ · · ·+Us)∩Us+1 =Us ∩Us+1 (2-2)

holds for any s ≥ 1. Suppose first that both n and s are even. The inclusion
Us ∩Us+1 ⊆ (U0 +U1 + · · · +Us) ∩Us+1 obviously holds, so suppose u is an
element belonging to (U0+U1+ · · ·+Us)∩Us+1. Then u can be written as

u = z0xa−1e0+ z1[(q∗y)e0+ (q∗x)e1] + · · · + zs
[
(q∗yb−1)es−1+ (q∗xa−1)es

]
= zs+1[(q∗y)es + (q∗x)es+1],

in which the coefficient of es+1 must be zero. Moreover, the coefficients of es must
be equal, that is,

(zs+1q∗)y = (zsq∗)xa−1,

and so from (2-1) we see that there exist elements v,w ∈ A such that

zs+1 = vxa−1
+wyb−1.

This gives
u = (vxa−1

+wyb−1) q∗yes = vq∗xa−1 yes,

and we see directly that u belongs to Us ∩Us+1. Equation (2-2) therefore holds
when n and s are even, and the same arguments show that the equality holds re-
gardless of the parity of n and s.

Using what we just showed, an induction argument gives the equality

dim(U0+ · · ·+Us)=

s∑
i=0

dim Ui −

s−1∑
i=0

dim(Ui ∩Ui+1).

Then by counting dimensions, we see that the dimension of Im d̂n is given by

dim Im d̂n =

{
tab+ 1, when n = 2t,
(t + 1)ab− 1, when n = 2t + 1.
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The exactness of the complex P⊗A k now follows easily; the image of d̂n+1 is
contained in the kernel of d̂n , and the dimension of Pn⊗A k is ab(n+1). It follows
that Im d̂n+1 and Ker d̂n are of the same dimension.

As for minimality, it suffices to show that Im d̂n does not have a projective
summand. This follows from the description of this module as the sum of Ui .
Namely, we see directly that the element yb−1xa−1

∈ A annihilates each Ui , and
therefore also Im d̂n . �

3. Hochschild (co)homology

Having obtained the bimodule resolution of A = k〈X, Y 〉/(Xa, XY − qY X, Y b),
we turn now to its Hochschild homology and cohomology groups. Let B be a
bimodule, and recall that the Hochschild homology of A with coefficients in B,
denoted HH∗(A, B), is the k-vector space

HH∗(A, B)= TorAe

∗
(B, A),

where B is viewed as a right Ae-module. Dually, the Hochschild cohomology of
A with coefficients in B, denoted HH∗(A, B), is the k-vector space

HH∗(A, B)= Ext∗Ae(A, B),

where B is viewed as a left Ae-module. Of particular interest is the case B = A,
namely the Hochschild homology and cohomology of A, denoted HH∗(A) and
HH∗(A), respectively. Now, by viewing A and B as left Ae-modules, it follows
from [Cartan and Eilenberg 1956, VI.5.3] that D(HH∗(A, B)) is isomorphic, as a
vector space, to TorAe

∗
(D(B), A), where D denotes the usual k-dual Homk(−, k).

In particular, by taking B = A, we see that

dimk HHn(A)= dimk TorAe

n (D(A), A)

for all n ≥ 0.
Our algebra A is Frobenius; it is easy to check that the map A

φ
−→ D(A) of left

A-modules, defined by

φ(1) :
∑

0≤ j≤b−1
0≤i≤a−1

c j,i y j x i
7→ cb−1,a−1,

is an isomorphism. To such a Frobenius isomorphism, one can always associate a
k-algebra automorphism A

ν
−→ A, a Nakayama automorphism, with the (defining)

property that

w ·φ(1)= φ(1) · ν(w)
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for all elements w ∈ A. In our case, the elements x and y generate A, and since

x ·φ(1)= φ(1) · q1−bx and y ·φ(1)= φ(1) · qa−1 y,

we see that the automorphism defined by

ν : x 7→ q1−bx, y 7→ qa−1 y

is a Nakayama automorphism. The composite map φ ◦ ν−1 is then a bimodule
isomorphism between the right Ae-modules ν A1 and D(A), where the scalar action
on ν A1 is given by

u · (w1⊗w2)= ν(w2)uw1.

Consequently, we see that

dimk HHn(A)= dimk TorAe

n (ν A1, A)

for all n ≥ 0.
Now let α, β ∈k be nonzero scalars, and let A

ψ
−→ A be the automorphism defined

by x 7→ αx and y 7→ βy. Tensoring the deleted projective bimodule resolution PA

with the right Ae-module ψ A1, we obtain an isomorphism

· · · // ψ A1⊗Ae Pn+1

o

��

1⊗dn+1 // ψ A1⊗Ae Pn

o

��

1⊗dn // ψ A1⊗Ae Pn−1

o

��

// · · ·

· · · //⊕n+1
i=0 (ψ A1)en+1

i

δ
ψ
n+1 //

⊕n
i=0(ψ A1)en

i
δ
ψ
n //⊕n−1

i=0 (ψ A1)en−1
i

// · · ·

of complexes, where {en
0, en

1, . . . , en
n} is the standard generating set of n+1 copies

of ψ A1. The map δψn is then given by

δ
ψ
2t : yu xve2t

i 7→
Kψ

1 (t, i, u, v)yu+b−1xve2t−1
i + Kψ

2 (t, i, u, v)yu xv+a−1e2t−1
i−1 , for i even,

[q(ai−a+2+2v)/2
−β]yu+1xve2t−1

i
+[αq(2bt−bi−b+2+2u)/2

− 1]yu xv+1e2t−1
i−1 , for i odd,

δ
ψ
2t+1 : yu xve2t+1

i 7→{
[β − q(ai+2v)/2

]yu+1xve2t
i + Kψ

3 (t, i, u, v)yu xv+a−1e2t
i−1, for i even,

Kψ
4 (t, i, u, v)yu+b−1xve2t

i + [αq(2bt−bi+b+2u)/2
− 1]yu xv+1e2t

i−1, for i odd,

where we use the convention en
−1 = en

n+1 = 0. Here the elements Kψ
j (t, i, u, v),

which are scalars whose values depend on the parameters ψ , t , i , u and v, are
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defined as follows:

Kψ
1 (t, i, u, v)=

b−1∑
j=0

q j (ai+2v)/2βb−1− j ,

Kψ
2 (t, i, u, v)=

a−1∑
j=0

q j (2bt−bi+2u)/2α j ,

Kψ
3 (t, i, u, v)=

a−1∑
j=0

q j (2bt−bi+2+2u)/2α j ,

Kψ
4 (t, i, u, v)=

b−1∑
j=0

q j (ai−a+2+2v)/2βb−1− j .

When q is not a root of unity, and the characteristic of k does not divide a or b,
these scalars are all nonzero when the automorphism ψ is either the identity or the
Nakayama automorphism. For, in this case, the elements are of the form

qs(1+ qm
+ q2m

+ · · ·+ qrm)

for some m, s ∈Z and r = a−1 or r = b−1. When m = 0, this element is nonzero
since the characteristic of k does not divide a or b, and, if it was zero for some
m 6= 0, then q would be a root of unity because of the equality

(1+ qm
+ q2m

+ · · ·+ qrm)(1− qm)= 1− q(r+1)m .

In the following result we use this complex to compute the Hochschild homology
of our algebra A.

Theorem 3.1. When q is not a root of unity, the Hochschild homology of A is given
by

dimk HHn(A)=


a+ b− 1, when n = 0,
a+ b, when n ≥ 1 and char k divides both a and b,
a+ b− 1, when n ≥ 1 and char k divides one of a and b,
a+ b− 2, when n ≥ 1 and char k does not divide a or b.

Proof. We need to compute the homology groups of the above complex in the case
when ψ is the identity automorphism on A, that is, when α= 1= β. We do this by
computing Ker δ1

2t for t ≥ 1 and Ker δ1
2t+1 for t ≥ 0, and we treat these two cases

separately.

Ker δ1
2t . The image under the map δ1

2t of a basis vector

yu xve2t
i ∈

2t⊕
i=0

Ae2t
i
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is given by
K 1

1 (t, i, u, v)yu+b−1xve2t−1
i + K 1

2 (t, i, u, v)yu xv+a−1e2t−1
i−1 , for i even,

[q(ai−a+2+2v)/2
− 1]yu+1xve2t−1

i
+[q(2bt−bi−b+2+2u)/2

− 1]yu xv+1e2t−1
i−1 , for i odd.

From the definition of the scalars K 1
1 and K 1

2 , we see that

K 1
1 (t, i, u, v)= 0 ⇐⇒ i = 0, v = 0, char k|b,

K 1
2 (t, i, u, v)= 0 ⇐⇒ i = 2t, u = 0, char k|a,

and therefore we first compute the dimension of Ker δ1
2t under the assumption that

the characteristic of k does not divide a or b.
First, we count the number of single basis vectors in

⊕2t
i=0 Ae2t

i belonging to
Ker δ1

2t . For even i , we have

δ1
2t(y

u xve2t
i )= 0 for all even i ⇐⇒ u+ b− 1≥ b and v+ a− 1≥ a

⇐⇒ 1≤ u ≤ b− 1 and 1≤ v ≤ a− 1,

from which we obtain (b− 1)(a− 1)(t + 1) vectors (there are t + 1 even numbers
in the set {0, 1, . . . , 2t}). For odd i , we have

δ1
2t(y

u xve2t
i )= 0 for all odd i ⇐⇒ u+ 1≥ b and v+ 1≥ a

⇐⇒ u = b− 1 and v = a− 1,

giving t vectors (there are t odd numbers in the set {0, 1, . . . , 2t}). Next, we count
the other single basis vectors which are mapped to zero, starting with those for
which i is even. The element e2t−1

2t is zero by definition. Hence when i = 2t and
v+ a− 1≥ a, that is, when 1≤ v ≤ a− 1, we see that yu xve2t

i maps to zero. But
the vectors for which u is nonzero were counted above. Hence the new vectors are
xve2t

2t for 1 ≤ v ≤ a− 1. Similarly, the element e2t−1
−1 is zero by definition. Hence

when i = 0 and u + b− 1 ≥ b, that is, when 1 ≤ u ≤ b− 1, we see that yu xve2t
i

maps to zero. But here the vectors for which v is nonzero were counted above,
and so the new vectors are yue2t

0 for 1≤ u ≤ b−1. It is easy to see that except for
these a+b−2 new vectors, there is no other single basis vector yu xve2t

i in Ker δ1
2t

for which i is even, since both K 1
1 (t, i, u, v) and K 1

2 (t, i, u, v) are always nonzero.
Moreover, when i is odd, neither e2t−1

i nor e2t−1
i−1 are zero, and the coefficients

[q(ai−a+2+2v)/2
− 1], and [q(2bt−bi−b+2+2u)/2

− 1]

are both nonzero. Hence in this case there are no new basis vectors mapped to
zero.
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Now we count the number of nontrivial linear combinations of two or more
basis vectors in

⊕2t
i=0 Ae2t

i belonging to Ker δ1
2t . Let i be even. If the first term of

δ1
2t(y

u xve2t
i ) is nonzero, then the only way to “kill” it is to involve the second term

of δ1
2t(y

u+b−1xv−1e2t
i+1). Thus to get a nontrivial linear combination, we see that

u, v and i must satisfy u = 0, 1 ≤ v ≤ a − 1 and i = 0, 2, . . . , 2t − 2. For these
parameter values, the second term of δ1

2t(y
u xve2t

i ) vanishes, as does the first term
of δ1

2t(y
u+b−1xv−1e2t

i+1). Therefore, for a suitable nonzero scalar C(a, b, i, u, v),
the linear combination

xve2t
i +C(a, b, i, u, v)yb−1xv−1e2t

i+1

is mapped to zero for 1≤ v ≤ a−1 and i = 0, 2, . . . , 2t−2, and there are (a−1)t
such elements. If the second term of δ1

2t(y
u xve2t

i ) is nonzero, then the only way
to “kill” it is to involve the first term of δ1

2t(y
u−1xv+a−1e2t

i−1). To get a nontrivial
linear combination, the parameters u, v and i must satisfy 1 ≤ u ≤ b− 1, v = 0
and i = 2, 4, . . . , 2t , and for these values the first term of δ1

2t(y
u xve2t

i ) and the
second term of δ1

2t(y
u−1xv+a−1e2t

i−1) vanish. Thus, for a suitable nonzero scalar
C ′(a, b, i, u, v), the linear combination

yue2t
i +C ′(a, b, i, u, v)yu−1xa−1e2t

i−1

is mapped to zero for 1 ≤ u ≤ b− 1 and i = 2, 4, . . . , 2t , and there are (b− 1)t
such elements.

We have now accounted for all the elements of Ker δ1
2t , when the characteristic

of k does not divide a or b. If the characteristic of k divides a, then we must add
to our list the element e2t

2t . Similarly, if the characteristic of k divides b, then we
must add to our list the element e2t

0 . Finally, if the characteristic of k divides both a
and b, then we must add both these two elements to our list (and they are different
elements since t ≥ 1). Summing up, we see that the total dimension of Ker δ1

2t is
given by

dimk Ker δ1
2t =


abt + ab− 1, when char k does not divide a or b,
abt + ab+ 1, when char k divides both a and b,
abt + ab, otherwise.

Ker δ1
2t+1. The image under the map δ1

2t+1 of a basis vector

yu xve2t+1
i ∈

2t+1⊕
i=0

Ae2t+1
i
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is given by{
[1− q(ai+2v)/2

]yu+1xve2t
i + K 1

3 (t, i, u, v)yu xv+a−1e2t
i−1, for i even

K 1
4 (t, i, u, v)yu+b−1xve2t

i + [q
(2bt−bi+b+2u)/2

− 1]yu xv+1e2t
i−1, for i odd.

From the definition of the elements K 1
3 and K 1

4 , we see that they are always
nonzero, contrary to the case above where there were parameters for which K 1

1 and
K 1

2 vanished. Therefore, the characteristic of k does not matter when we compute
the dimension of Ker δ1

2t+1.
We follow the same procedure as we did for Ker δ1

2t . First we count the number
of single basis vectors in

⊕2t+1
i=0 Ae2t+1

i belonging to Ker δ1
2t+1. For even i , we

have

δ1
2t+1(y

u xve2t+1
i )= 0 for all even i ⇐⇒ u+ 1≥ b and v+ a− 1≥ a

⇐⇒ u = b− 1 and 1≤ v ≤ a− 1,

resulting in (a − 1)(t + 1) vectors (there are (t + 1) even numbers in the set
{0, 1, . . . , 2t + 1}). When i is odd, we have

δ1
2t+1(y

u xve2t+1
i )= 0 for all odd i ⇐⇒ u+ b− 1≥ b and v+ 1≥ a

⇐⇒ 1≤ u ≤ b− 1 and v = a− 1,

giving (b−1)(t+1) vectors (there are (t+1) odd numbers in the set {0, 1, . . . , 2t+
1}). Next, we count the other single basis vectors in

⊕2t+1
i=0 Ae2t+1

i belonging to
Ker δ1

2t+1, starting with those for which i is even. The element e2t
−1 is zero; hence

for i = 0 the second term in δ1
2t+1(y

u xve2t+1
i ) vanishes. If now v = 0, then the

coefficient [1−q(ai+2v)/2
] vanishes, and therefore the vector yue2t+1

0 maps to zero
for 0≤ u ≤ b−1. There are b such vectors, and none of them was counted above.
Moreover, it is not hard to see that there is no other vector yu xve2t+1

i in Ker δ1
2t+1

for which i is even. As for the case when i is odd, the element e2t
2t+1 is zero by

definition, and the coefficient [q(2bt−bi+b+2u)/2
− 1] vanishes for i = 2t + 1 and

u = 0. Therefore, the vector xve2t+1
2t+1 maps to zero for 0 ≤ v ≤ a − 1. These a

vectors have not been counted before, and Ker δ1
2t+1 does not contain more vectors

yu xve2t+1
i for which i is odd.

At last we count the number of nontrivial linear combinations of two or more
basis vectors in

⊕2t+1
i=0 Ae2t+1

i belonging to Ker δ1
2t+1. Let i be even, and suppose

the first term of δ1
2t+1(y

u xve2t+1
i ) is nonzero. The only way to cancel this term is to

involve the second term of δ1
2t+1(y

u+1xv−1e2t+1
i+1 ). Now, the first term in the latter

vanishes, as does the second term of δ1
2t+1(y

u xve2t+1
i ), since v must be nonzero.

Thus, for a suitable nonzero scalar C ′′(a, b, i, u, v), the element

yu xve2t+1
i +C ′′(a, b, i, u, v)yu+1xv−1e2t+1

i+1
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belongs to Ker δ1
2t+1, when the parameters satisfy 0≤ u ≤ b−2, 1≤ v ≤ a−1 and

i = 0, 2, . . . , 2t . There are (a−1)(b−1)(t+1) such elements. Finally, suppose the
second term of δ1

2t+1(y
u xve2t+1

i ) is nonzero. To cancel it, we must involve the first
term in δ1

2t+1(y
u−b+1xv+a−1e2t+1

i−1 ), and so we see that the only possibility for u and
v is u = b−1 and v= 0. Therefore, for a suitable nonzero scalar C ′′′(a, b, i, u, v),
the element

yb−1e2t+1
i +C ′′′(a, b, i, u, v)xa−1e2t+1

i−1

is mapped to zero for i = 2, 4, . . . , 2t . There are t such linear combinations.
All the elements of Ker δ1

2t+1 are now accounted for, and so when summing up
we obtain the dimension of this vector space:

dimk Ker δ1
2t+1 = abt + ab+ a+ b− 1.

Using the identities

dimk Ker δ1
n + dimk Im δ1

n = dimk An+1
= (n+ 1)ab,

we can now calculate the Hochschild homology of A. The dimension formula gives
dimk Im δ1

2t+1 = abt + ab− a− b+ 1, in particular dimk Im δ1
1 = 2ab− a− b+ 1,

giving
dimk HH0(A)= dimk A− dimk Im δ1

1 = a+ b− 1.

Applying the formula to the results we obtained, when computing Ker δ1
2t ,

dimk Im δ1
2t+2 =


abt + ab+ 1, when char k does not divide a or b,
abt + ab− 1, when char k divides both a and b,
abt + ab, otherwise,

and so by calculating dimk HHn(A) = dimk Ker δ1
n − dimk Im δ1

n+1 for n ≥ 1, we
get

dimk HHn(A)=


a+ b− 2, when char k does not divide a or b,
a+ b, when char k divides both a and b,
a+ b− 1, otherwise.

This completes the proof. �

In particular, since a and b are both at least 2, the Hochschild homology of A
does not vanish in high degrees (or in any degree). This was conjectured by Han
[2006] to hold for all finite-dimensional algebras of infinite global dimension, and
in the same paper it was proved that this conjecture holds for monomial algebras.

The converse of this conjecture always holds when the algebra modulo its radical
is separable over the ground field. Namely, in this situation, if the global dimension
of the algebra is finite, then the algebra has finite projective dimension as a bimod-
ule, and hence its Hochschild homology vanishes in high degrees. The same holds
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of course for Hochschild cohomology, and following this easy observation, Happel
[1989] remarked that “the converse seems to be not known”. Thus the cohomology
version of Han’s conjecture came to be known as “Happel’s question”. However,
this cohomology version is false in general; it was proved in [Buchweitz et al.
2005] that there do exist finite-dimensional algebras of infinite global dimension
for which Hochschild cohomology vanishes in high degrees. The counterexample
used in the paper was precisely our algebra A with a = 2 = b, and the following
result shows that the same holds for arbitrary a and b. Contrary to the homology
case, the dimensions of the cohomology groups do not depend on the characteristic
of k.

Theorem 3.2. When q is not a root of unity, the Hochschild cohomology of A is
given by

dimk HHn(A)=


2, for n = 0,
2, for n = 1,
1, for n = 2,
0, for n ≥ 3.

In particular, the Hochschild cohomology of A vanishes in high degrees.

Proof. It is well known and easy to see that, in general, HH0(A) is isomorphic to
the center of A, that is, the subalgebra

{w ∈ A | wz = zw for all z ∈ A}.

The center of our algebra A is the vector space spanned by the “first” and the
“last” elements in its basis, namely the elements 1 and yb−1xa−1. Hence HH0(A)
is 2-dimensional.

To compute the Hochschild cohomology groups of positive degree, we compute
the homology of the complex obtained prior to Theorem 3.1, in the case when ψ
is the Nakayama automorphism ν. In this case, the scalars α and β are given by

α = q1−b, and β = qa−1.

We apply the same method as we did when computing homology; we compute
Ker δν2t for t ≥ 1 and Ker δν2t+1 for t ≥ 0, treating the two cases separately.

Ker δν
2t . The result when applying the map δν2t to a basis vector

yu xve2t
i ∈

2t⊕
i=0

(ν A1)e2t
i
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is given by
K ν

1 (t, i, u, v)yu+b−1xve2t−1
i + K ν

2 (t, i, u, v)yu xv+a−1e2t−1
i−1 , for i even

[q(ai−a+2+2v)/2
− qa−1

]yu+1xve2t−1
i

+[q(2bt−bi−3b+4+2u)/2
− 1]yu xv+1e2t−1

i−1 , for i odd.

From the definition of the elements K ν
1 and K ν

2 , we see that

K ν
1 (t, i, u, v)= 0 ⇐⇒ i = 0, v = a− 1, char k|b,

K ν
2 (t, i, u, v)= 0 ⇐⇒ i = 2t, u = b− 1, char k|a,

and so we first compute the dimension of Ker δν2t in the case when the characteristic
of k does not divide a or b.

First, we count the number of single basis vectors in
⊕2t

i=0(ν A1)e2t
i belonging

to Ker δν2t . As in the homology case, we have

δν2t(y
u xve2t

i )= 0 for all even i ⇐⇒ u+ b− 1≥ b and v+ a− 1≥ a

⇐⇒ 1≤ u ≤ b− 1 and 1≤ v ≤ a− 1,

δν2t(y
u xve2t

i )= 0 for all odd i ⇐⇒ u+ 1≥ b and v+ 1≥ a

⇐⇒ u = b− 1 and v = a− 1,

from which we obtain (b − 1)(a − 1)(t + 1) + t vectors. Next, we count the
other single basis vectors in

⊕2t
i=0(ν A1)e2t

i belonging to Ker δν2t . Since K ν
1 and

K ν
2 are always nonzero, the number of such vectors for which i is even is the

same as in the homology case, namely a + b − 2. As for the vectors for which
i is odd, it is no longer true that the coefficients are always nonzero. The co-
efficient [q(ai−a+2+2v)/2

− qa−1
] vanishes when i = 1 and v = a − 2, whereas

[q(2bt−bi−3b+4+2u)/2
− 1] vanishes when i = 2t − 1 and u = b − 2. Both these

cases will occur, since t is at least 1 when we compute Ker δν2t . However, these
coefficients need to vanish simultaneously for the basis vector to belong to Ker δν2t ,
and this only happens when t = 1, since then 2t − 1 = 1. Thus, when t = 1 the
vector yb−2xa−2e2

1 maps to zero, whereas when t ≥2 there are no new basis vectors
in Ker δν2t for which i is odd.

Now we count the number of nontrivial linear combinations of two or more
basis vectors in

⊕2t
i=0(ν A1)e2t

i belonging to Ker δν2t . These elements are precisely
the same as in the homology case, and we do not encounter problems because of
the “new” basis vector in Ker δν2 we obtained above. Therefore, the number of such
linear combinations is (a− 1)t + (b− 1)t .

We now look at what happens when the characteristic of k divides a or b. If
char k divides a, then we must add the vector xa−1e2t

0 to the list of single basis
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vectors mapped to zero. However, this vector already appears in one of the non-
trivial linear combinations; hence it does not contribute to the total dimension.
Similarly, when char k divides b, then the new vector yb−1e2t

2t belongs to the list
of single basis vectors mapped to zero. But again this vector already appears in
one of the nontrivial linear combinations, and it will therefore not contribute to the
total dimension. This argument is still valid if char k divides both a and b. This
shows that the dimension of Ker δν2t is independent of the characteristic of k.

In total, we see that the dimension of Ker δν2t is almost the same as it was in the
homology case when the characteristic of k did not divide a or b; we need one
additional vector when t = 1. Therefore, the dimension is given by

dimk Ker δν2t =

{
2ab, when t = 1,
abt + ab− 1, when t ≥ 2.

Ker δν
2t+1. The image under the map δν2t+1 of a basis vector

yu xve2t+1
i ∈

2t+1⊕
i=0

(ν A1)e2t+1
i

is given by{
[qa−1

− q(ai+2v)/2
]yu+1xve2t

i + K ν
3 (t, i, u, v)yu xv+a−1e2t

i−1, for i even,

K ν
4 (t, i, u, v)yu+b−1xve2t

i + [q
(2bt−bi−b+2+2u)/2

− 1]yu xv+1e2t
i−1, for i odd.

Now, from the definition of the scalars K ν
3 and K ν

4 , we see that K ν
3 is always

nonzero, while we have

K ν
4 (t, i, u, v)= 0 ⇐⇒ i = 1, v = a− 2, char k|b.

Therefore, we first compute the dimension of Ker δν2t+1 under the assumption that
the characteristic of k does not divide b.

First, we count the number of single basis vectors in
⊕2t+1

i=0 (ν A1)e2t+1
i belonging

to Ker δν2t+1. As in the homology case, we have

δν2t+1(y
u xve2t+1

i )= 0 for all even i ⇐⇒ u+ 1≥ b and v+ a− 1≥ a

⇐⇒ u = b− 1 and 1≤ v ≤ a− 1,

δν2t+1(y
u xve2t+1

i )= 0 for all odd i ⇐⇒ u+ b− 1≥ b and v+ 1≥ a

⇐⇒ 1≤ u ≤ b− 1 and v = a− 1,

from which we obtain (a− 1)(t + 1)+ (b− 1)(t + 1) vectors. Next, we count the
other single basis vectors in

⊕2t+1
i=0 (ν A1)e2t+1

i belonging to Ker δν2t+1, treating first
the ones for which i is even. When i = 0, the second term of δν2t+1(y

u xve2t+1
i )

vanishes, and the first term then vanishes if u = b − 1 or v = a − 1. Some of
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these vectors are among the ones counted above, the new ones are yb−1e2t+1
0 and

yu xa−1e2t+1
0 for 0 ≤ u ≤ b − 2. Except for these b elements, there are no other

single basis elements in Ker δν2t+1 for which i is even. As for those for which i is
odd, we see that the first term of δν2t+1(y

u xve2t+1
i ) vanishes when i = 2t + 1. In

this case, the second term vanishes if u = b− 1 or v = a− 1, and of these vectors
the ones which have not been counted before are the a elements xa−1e2t+1

2t+1 and
yb−1xve2t+1

2t+1 for 0≤ v ≤ a−2. It is not hard to see that Ker δν2t+1 does not contain
any other element yu xve2t+1

i for which i is odd.
Finally, we count the number of nontrivial linear combinations of two or more

basis elements in
⊕2t+1

i=0 (ν A1)e2t+1
i belonging to Ker δν2t+1. In the homology case,

these were
yu xve2t+1

i +C ′′(a, b, i, u, v)yu+1xv−1e2t+1
i+1

for 0≤ u ≤ b− 2, 1≤ v ≤ a− 1 and i = 0, 2, . . . , 2t , and

yb−1e2t+1
i +C ′′′(a, b, i, u, v)xa−1e2t+1

i−1

for i = 2, 4, . . . , 2t , where C ′′ and C ′′′ are suitable scalars. The t latter elements
also belong to Ker δν2t+1, but among the (a−1)(b−1)(t+1) first elements there are
some combinations that are not mapped to zero. Namely, we must discard the b−1
elements for which i = 0 and v = a− 1, since we showed above that yu xa−1e2t+1

0
maps to zero for 0≤ u ≤ b−2. Similarly, we must discard the a−1 combinations
for which i = 2t and u = b−2, since yb−1xve2t+1

2t+1 maps to zero for 0≤ v ≤ a−2.
However, when t = 0, then the situations i = 0 and i = 2t are the same, and the
element

yb−2xa−1e1
0+C ′′(a, b, i, u, v)yb−1xa−2e1

1

has been discarded twice. Thus the total number of nontrivial linear combinations
is (a − 1)(b− 1)(t + 1)+ t − (a − 1)− (b− 1) when t ≥ 1, and one more when
t = 0.

What happens when char k divides b? The element yu xa−2e2t+1
1 is not mapped

to zero for any u, and it does not “interfere” with one of the nontrivial linear combi-
nations. Hence the dimension of Ker δν2t+1 is also independent of the characteristic
of k.

In total, we see that the dimension of Ker δν2t+1 differs from that in the homology
case, since we need to subtract (a−1)+(b−1) when t ≥ 1 and (a−1)+(b−1)−1
when t = 0. Thus, the dimension is given by

dimk Ker δν2t+1 =

{
ab+ 2, when t = 0,
abt + ab+ 1, when t ≥ 1.

We can now calculate the positive degree cohomology groups. We have

dimk Ker δν1 = ab+ 2,
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and, since dimk Ker δν2 = 2ab, we must have dimk Im δν2 = ab, giving

dimk HH1(A)= dimk Ker δν1 − dimk Im δν2 = 2.

Furthermore, since dimk Ker δν3 = 2ab+ 1, we must have dimk Im δν3 = 2ab− 1,
giving

dimk HH2(A)= dimk Ker δν2 − dimk Im δν3 = 1.

Similarly, direct computations show that the cohomology groups HHn(A) vanish
when n ≥ 3, thereby completing the proof. �

When the commutator element q is a root of unity, it is not hard to see that the
dimensions of infinitely many of the kernels in the complex we used to compute
(co)homology will increase. Therefore, the Hochschild homology of A is still
nonzero in all degrees, while it is no longer true that all the higher Hochschild
cohomology groups vanish. We record this fact in the final result, which also gives
the multiplicative structure of the Hochschild cohomology ring when q is not a
root of unity.

Theorem 3.3. The Hochschild cohomology ring HH∗(A) is finite-dimensional if
and only if q is not a root of unity. When this is the case, the algebra is isomorphic
to the (five-dimensional graded) fibre product

k[U ]/(U 2)×k k〈V,W 〉/(V 2, V W +W V,W 2),

where U is in degree zero and V and W are in degree one.

Proof. Suppose q is not a root of unity. Recall first the initial part

P2
d2
−→ P1

d1
−→ P0

µ
−→ A→ 0

of the projective bimodule resolution of A, where µ is the multiplication map. The
maps d1 and d2 are defined on generators as follows:

d1 : f 1
0 7→ [(1⊗ y)− (y⊗ 1)] f 0

0 ,

f 1
1 7→ [(1⊗ x)− (x ⊗ 1)] f 0

0 ,

d2 : f 2
0 7→

[
(1⊗ yb−1)+ (y⊗ yb−2)+ · · ·+ (yb−1

⊗ 1)
]

f 1
0 ,

f 2
1 7→ [q(1⊗ x)− (x ⊗ 1)] f 1

0 + [(1⊗ y)− q(y⊗ 1)] f 1
1 ,

f 2
2 7→

[
(1⊗ xa−1)+ (x ⊗ xa−2)+ · · ·+ (xa−1

⊗ 1)
]

f 1
1 .

Define two bimodule maps

g : P1→ A,
{

f 1
0 7→ y,

f 1
1 7→ 0,

h : P1→ A,
{

f 1
0 7→ 0,

f 1
1 7→ x .
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One checks directly that
g ◦ d2 = 0= h ◦ d2,

and that neither of the two maps is liftable through d1. Consequently they represent
the two basis elements of HH1(A)= Ext1Ae(A, A).

We may identify the degree zero part of HH∗(A) with the center of A, the two-
dimensional vector space spanned by the elements 1 and yb−1xa−1. The latter
element annihilates both g and h; hence HH∗(A) is isomorphic to the k-fibre prod-
uct of the algebra generated by yb−1xa−1 with the algebra generated by g and h.
Since the Hochschild cohomology ring of a finite-dimensional algebra is always
graded commutative (see [Snashall and Solberg 2004, Corollary 1.2]), both g and
h square to zero. Therefore, as HH2(A) is one-dimensional, we are done if we can
show that the product hg ∈ HH2(A) is nonzero.

Define a bimodule map g0 : P1→ P0 by

g0 : f 1
0 7→ (y⊗ 1) f 0

0 , f 1
1 7→ 0.

It is not hard to see that there exists an element w ∈ Ae such that the map g1 : P2→

P1, defined by

g1 : f 2
0 7→ w f 1

0 , f 2
1 7→ q(y⊗ 1) f 1

1 , f 2
2 7→ 0

gives a commutative diagram

P2

g1

��

d2 // P1

g0

��

g

  
P1

d1 // P0
µ // A.

The product hg ∈HH2(A) is then represented by the composite map h ◦ g1, under
which the images of the generators in P2 are given by

h ◦ g1 : f 2
0 7→ 0, f 2

1 7→ qyx, f 2
2 7→ 0.

This map is not liftable through d2, and therefore it represents a nonzero element
of HH2(A). Consequently, the product hg is nonzero. �
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