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We define traces associated to a weakly holomorphic modular form f of ar-
bitrary negative even integral weight and show that these traces appear as co-
efficients of certain weakly holomorphic forms of half-integral weight. If the
coefficients of f are integral, then these traces are integral as well. We obtain a
negative weight analogue of the classical Shintani lift and give an application to
a generalization of the Shimura lift.

1. Introduction

Recently there has been a resurgence of interest in the classical theory of singular
moduli, these being the values of the modular j-function at quadratic irrationalities.
This resurgence is due largely to the influential papers of Borcherds [1995; 1998]
and Zagier [2002]. The present paper arose from a suggestion, made at the end
of Zagier’s paper, to extend some of the results given there on traces of singular
moduli to higher weights. One such generalization has been given recently by
Bringmann and Ono [2007], who provide an identity for the traces associated to
certain Maass forms in terms of the Fourier coefficients of half-integral weight
Poincaré series. However, it does not seem to be known when these traces are
integral or even rational. Here we will identify the traces associated to a weakly
holomorphic form f of negative-integral weight with the coefficients of certain
weakly holomorphic forms of half-integral weight and show that these coefficients
are integral when the coefficients of f are integral. We will use this identification to
obtain a negative weight analogue of the classical Shintani lift. We also give an ap-
plication to Borcherds’s generalization of the Shimura lift to weakly holomorphic
modular forms.
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Recall that a weakly holomorphic modular form of weight k, where k ∈ 2Z, is
a holomorphic function f on the upper half-plane H that satisfies

( f |kγ )(τ )= (cτ +d)−k f
(aτ+b

cτ+d

)
= f (τ ) for all γ =

( a b
c d

)
∈ 0 = PSL(2,Z)

and that has a q-expansion f (τ ) =
∑

n a(n)qn with a(n) = 0 for all but finitely
many n< 0; here, as usual, q = e(τ )= e2π iτ . Let M !k denote the vector space of all
weakly holomorphic modular forms of weight k. Similarly, for k= s+1/2 with s ∈
Z, let M !k denote the space of holomorphic functions on H that transform like θ2k

under 00(4), have at most poles in the cusps, and have a q-expansion supported
on integers n with (−1)sn ≡ 0, 1 (mod 4). Here, as usual, θ(τ )=

∑
n∈Z qn2

. For
any k, let Mk ⊂ M !k denote the subspace of holomorphic forms and Sk ⊂ Mk the
subspace of cusp forms.

In this paper d is always an integer with d ≡ 0, 1 (mod 4), and D is always a
fundamental discriminant (possibly 1). Suppose d D < 0 and F is a 0-invariant
function on H. Define the twisted trace

Trd,D(F)=
∑

Q
w−1

Q χ(Q)F(τQ),

where the sum is over a complete set of 0-inequivalent positive definite integral
quadratic forms Q(x, y)= ax2

+bxy+cy2 with discriminant d D= b2
−4ac, and

τQ =
−b+
√

d D
2a

∈H (1)

is the associated CM point. Here wQ is equal to 1 unless Q ∼ a(x2
+ y2) or

Q ∼ a(x2
+ xy+ y2), in which case wQ is equal to 2 or 3, respectively. Also

χ(Q)= χ(a, b, c)=


χD(r) if (a, b, c, D)= 1 and

Q represents r , where (r, D)= 1;
0 if (a, b, c, D) > 1,

(2)

where χD is the Kronecker symbol. It is known that χ is well defined on classes,
that χ restricts to a real character (a genus character) on the group of primitive
classes, and that all such characters arise this way.

For the usual j-function j = E3
4/1 ∈ M !0 with Fourier expansion

j (τ )= q−1
+ 744+ 196884q + 21493760q2

+ · · · ,

it is classical that the value j (τQ) is an algebraic integer in an abelian extension
of Q(

√
d D). Let j1 = j − 744. Zagier [2002] showed that for a fundamental
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discriminant D 6= 1 we have

q−|D|+
∑
d>0

d−1/2 Trd,D( j1)q |d| ∈ M !1/2 if D < 0,

q−|D|− D−1/2
∑
d<0

Trd,D( j1)q |d| ∈ M !3/2 if D > 0,

and that both forms have integral Fourier coefficients. For instance, when D=−3
and D = 5 we have the two weakly holomorphic forms

q−3
− 248q + 26752q4

− 85995q5
+ · · · ∈ M !1/2 and

q−5
+ 85995q3

− 565760q4
+ 52756480q7

+ · · · ∈ M !3/2,

and Tr5,−3( j1)= Tr−3,5( j1)= j
( 1+
√
−15

2

)
− j

( 1+
√
−15

4

)
=−85995

√
5.

In this paper we will give such a result when j1 is replaced by a function f of
negative weight. To state it, first define the Maass raising operator ∂k in τ = x+iy:

∂k =D−
k

4πy
, where D = 1

2π i
d

dτ
= q d

dq
. (3)

Now ∂k( f |kγ )= (∂k f )|k+2γ for any γ ∈PSL(2,R). Thus, if f ∈M !2−2s for s ∈Z+,
the function ∂s−1 f is 0-invariant, where

∂s−1
≡ (−1)s−1∂−2 ◦ ∂−4 ◦ · · · ◦ ∂4−2s ◦ ∂2−2s . (4)

After Maass we know that ∂s−1 f is an eigenfunction of the Laplacian

1=−y−2
(
∂2

∂x2 +
∂2

∂y2

)
with eigenvalue s(1− s), so ∂s−1 f is a weak Maass form (see for example [Bru-
inier et al. 2008, page 162] for a precise definition). Using a method that readily
generalizes, Zagier [2002] showed in special cases that ∂s−1 f is a rational function
of j and h = E∗2 E4 E6/1, where

E∗2(τ )= 1− 24
∑
n≥1

σ(n)qn
−

3
πy

is the nonholomorphic weight 2 Eisenstein series and σ(n)=
∑

m |n m. For a CM
point like τQ given in (1), it was shown by Ramanujan [1914, Equation (23), page
33] that h(τQ) is algebraic. More precisely, h(τQ) ∈Q( j (τQ)); see [Masser 1975,
Theorem A1, page 114]. Using this, we can deduce the remarkable fact that for
any f ∈ M !2−2s with s ≥ 1 and with rational Fourier coefficients, the “singular”
value of the weak Maass form ∂s−1 f (τQ) is algebraic. We are thus motivated to
study Trd,D(∂

s−1 f ) for such f .
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For D a fundamental discriminant, let ŝ = s if (−1)s D > 0 and ŝ = 1 − s
otherwise. It is also convenient to set

Tr∗d,D( f )= (−1)b(ŝ−1)/2c
|d|−ŝ/2

|D|(ŝ−1)/2 Trd,D(∂
s−1 f ).

Suppose f ∈ M !2−2s for s ≥ 2 has Fourier coefficients a(n). For D fundamental,
define the D-th Zagier lift of f to be

ZD f (τ )=
∑
m>0

a(−m)ms−ŝ
∑
n |m

χD(n)n ŝ−1q−m2
|D|/n2

+
1
2 L(1− s, χD)a(0)+

∑
d:d D<0

Tr∗d,D( f )q |d|.

The linear map f 7→ ZD( f ) is a negative weight analogue of the Shintani lift on
integral weight cusp forms. This follows from our main result, whose proof will
be completed in Section 5.

Theorem 1. Suppose f ∈ M !2−2s for an integer s ≥ 2. If D is a fundamental
discriminant with (−1)s D > 0, we have that ZD f ∈ M !3/2−s , while if (−1)s D < 0,
then ZD f ∈ M !s+1/2. If f has integral Fourier coefficients, then so does ZD f .

Here we will not treat the case s = 1, which requires special considerations
and which can be dealt with by the methods of [Zagier 2002]. Furthermore, when
s = 2, 3, 4, 5, 7, Theorem 1 can also be deduced from results of [Zagier 2002].
The first new example occurs when s = 6 and D = 1, where we have the pair

f (τ )= E14(τ )/1(τ)
2
= q−2

+ 24q−1
− 196560− 47709536 q + · · · ∈ M !

−10,

Z1 f (τ )= q−4
+56 q−1

+390+15360 q3
+42264 q4

+615240 q7
+· · · ∈ M !

−9/2.

Here −1
2ζ(−5) · 196560= 390 and the first few values of Tr∗d,1( f ) are

3−4∂5 f
( 1+
√
−3

2

)
= 15360, 2−7∂5 f (i)= 42264, 7−3∂5 f

( 1+
√
−7

2

)
= 615240.

Similarly, when D =−3 we have

Z−3 f (τ )= 211q−12
− 8q−3

− 15360q − 53319598080q4
+ · · · ∈ M !13/2.

The main new difficulty in proving Theorem 1 comes from the existence of
cusp forms in M !2s . The method of Poincaré series adapts nicely to handle it. A
key dividend of the method is the last statement of Theorem 1, showing that the
integrality of coefficients is preserved under the lift.

Remarks. First, it follows from Theorem 1 that if (−1)s D > 0, then the image
ZD( f )∈ M !3/2−s is determined by its principal part and hence by the principal part
of f . Furthermore, a(0) is divisible by the denominator of each of the L-values
1
2 L(1−s, χD), provided that the Fourier coefficients of f are integral. Using well-
known properties of the generalized Bernoulli numbers, one can reproduce the
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divisibility properties that follow from work of Siegel [1969, pages 254–256]. On
the other hand, if (−1)s D < 0 then 1

2 L(1− s, χD)= 0.
Next, it can be shown that the Zagier lift is compatible with the Hecke operators.

For details, see the end of Section 5.
Finally, using a theta lift, Bruinier and Funke [2006] have generalized Zagier’s

result in various other ways, for instance to higher levels, where the existence of
cusp forms in the dual weight is also a complication; see also [Funke 2007].

As another application of these methods, we will give a simple proof of a basic
property of the Shimura lift for weakly holomorphic modular forms. For

g(τ )=
∑

n b(n)qn
∈ M !s+1/2

with s ∈ Z+ and D fundamental with (−1)s D > 0, define the D-th Shimura lift
of g by

SD g(τ )= 1
2 L(1− s, χD)b(0)+

∑
m>0

(∑
n |m

χD(n)ns−1b(m2
|D|/n2)

)
qm . (5)

When g is holomorphic, this is the usual definition. We will repeatedly use the
basic fact that SD g ∈ M2s if g ∈ Ms+1/2; see [Kohnen and Zagier 1981]. Recall
that a CM point is a point in H of the form (−b +

√
b2− 4ac)/2a for integral

a, b, c. The proof of the following result will be completed in Section 6. In the
case D = 1, it is due to Borcherds [1998] and follows from a special case of
[Theorem 14.3] there; see [Example 14.4].

Theorem 2. For g ∈ M !s+1/2 with s ≥ 2 and D a fundamental discriminant with
(−1)s D>0, the lift SD g is a meromorphic modular form of weight 2s for 0 whose
possible poles are of order at most s and occur at CM points.

2. Weakly holomorphic forms

In this section we will define a canonical basis for the space M !k for any k= s+1/2
with s ∈ Z in which all basis elements have integral Fourier coefficients. Then we
will construct forms in M !k when s ≥ 2 using Poincaré series.

We begin by recalling the canonical basis for M !2s defined in [Duke and Jenkins
2008] for any s ∈ Z. Write 2s = 12`+ k ′ with uniquely determined ` ∈ Z and
k ′ ∈ {0, 4, 6, 8, 10, 14}, so that if ` ≥ 0, then ` is the dimension of the space S2s

of cusp forms of weight 2s. For every integer m ≥ −`, there exists a unique
f2s,m ∈ M !2s with a q-expansion of the form f2s,m(τ )= q−m

+
∑

n>` a2s(m, n)qn ,
and together they form a basis for M !2s . The basis element f2s,m can be given
explicitly in the form f2s,m = f2s P( j), where f2s = f2s,−` = 1

`Ek′ and P is a
polynomial of degree m + `. As shown in [Duke and Jenkins 2008], the basis
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elements have the generating function∑
m≥−`

f2s,m(z)q
m
=

f2s(z) f2−2s(τ )

j (τ )− j (z)
= −

∑
m≥`+1

f2−2s,m(τ )r
m, (6)

where r = e(z). It follows from this that the coefficients a2s(m, n) are integral and
satisfy the duality relation

a2s(m, n)=−a2−2s(n,m). (7)

In order to formulate a similar result for M !k when k = s+ 1/2 with s ∈ Z, let `
be defined by 2s = 12`+ k ′ as above. By the Shimura correspondence given in
[Kohnen 1980], one finds that the maximal order of a nonzero f ∈ M !k at i∞ is

A =
{

2`− (−1)s if ` is odd,
2` otherwise.

If B < A is the next admissible exponent we can construct functions in M !k of the
form

fk(τ )= q A
+ O(q B+4) and f ∗k (τ )= q B

+ O(q B+4).

If we write s = 12a+b, where b ∈ {6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19}, then
fk and f ∗k can be given explicitly in the form

fk(τ )=1(4τ)
a fb+1/2(τ ) and f ∗k (τ )=1(4τ)

a f ∗b+1/2(τ ),

where the forms fb+1/2, f ∗b+1/2 ∈ Mb+1/2 are given in the appendix and have inte-
gral Fourier coefficients. Using them, it is easy to construct a unique basis for M !k
consisting of functions of the form

fk,m(τ )= q−m
+
∑

n>A ak(m, n)qn, (8)

where m ≥−A has (−1)s−1m ≡ 0, 1 (mod 4). Here fk,−A = fk and fk,−B = f ∗k .
This can be done recursively: fk,m(τ ) is obtained by multiplying fk,m−4(τ ) by
j (4τ) and then subtracting a suitable linear combination of the forms fk,m′(τ ) with
m′ <m. We also have the following generating function, whose proof is similar to
Zagier’s proof [2002] of the k = 1/2 case:∑

m

fk,m(z)q
m
=

fk(z) f ∗2−k(τ )+ f ∗k (z) f2−k(τ )

j (4τ)− j (4z)
=−

∑
m

f2−k,m(τ )r
m .

This and the fact that fk and f ∗k have integral Fourier coefficients gives the follow-
ing result.

Proposition 1. The Fourier coefficients ak(m, n) defined in (8) are integral and
satisfy the duality relation

ak(m, n)=−a2−k(n,m) for all m, n ∈ Z. (9)
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Another way to construct weakly holomorphic forms is by Poincaré series. Here
we will only need them for k = s + 1/2, where s ≥ 2. Set j (γ, τ ) = θ(γτ)/θ(τ )
for γ ∈ 00(4). For m ∈ Z, define the Poincaré series

Pk,m(τ )=
∑

γ∈0∞\00(4)

e(mγτ) j (γ, τ )−2k,

where 0∞ is the subgroup of translations in 00(4). For k ≥ 5/2, this series is
absolutely convergent and represents a weakly holomorphic form of weight k for
00(4), but it is not in M !k since its Fourier coefficients are not supported on n with
(−1)sn ≡ 0, 1 (mod 4). When m = 0, the Poincaré series is an Eisenstein series
that Cohen [1975] projected to a form in Mk and whose Fourier coefficients are
expressed in terms of the values of Dirichlet L-functions at 1− s. When m > 0,
Kohnen [1985] showed how to obtain in this way cusp forms in Sk . Bruinier et al.
[2006] observed that a similar procedure works for m < 0. Petersson [1950] had
explicitly computed the Fourier expansions of Pk,m in terms of Bessel functions and
Kloosterman sums, and the projections gk,m of Pk,m to M !k have Fourier expansions
that are simple modifications of these. To give them, for m, n ∈ Z and c ∈ Z+ with
c ≡ 0 (mod 4), let

Kk(m, n; c)=
∑

a (mod c)

(c
a

)
ε2k

a e
(ma+na

c

)
(10)

be the Kloosterman sum, where
(c

a

)
is the extended Legendre symbol and

εa =

{
1 if a ≡ 1 (mod 4),
i if a ≡ 3 (mod 4).

Also, let δodd(n)= 1 if n is odd and δodd(n)= 0 otherwise.

Proposition 2. Suppose k = s+1/2, where s ≥ 2. Then, for any nonzero integer m
with (−1)sm≡ 0, 1 (mod 4), there exists a form gk,m ∈M !k with Fourier expansion

gk,m(τ )= qm
+

∑
n ≥ 1

(−1)sn ≡ 0,1 (mod 4)

bk(m, n)qn

where for (−1)s ≡ 0, 1 (mod 4) the coefficient bk(m, n) is given explicitly by the
absolutely convergent sum

bk(m, n)= 2π i−k
∣∣∣ n
m

∣∣∣k−1/2 ∑
c>0

c ≡ 0 (mod 4)

(1+ δodd(c/4))c−1Kk(m, n; c)

×

{
Ik−1(4π

√
|mn|/c) if m < 0,

Jk−1(4π
√
|mn|/c) if m > 0.
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When m = 0, a similar formula holds, and it can be further evaluated to give
Cohen’s formulas. A modified version holds when s = 1; see [Bruinier et al.
2006].

Of course, gk,−m can be expressed in terms of the basis elements fk,m . If there
are no nonzero cusp forms in M2s , then gk,−m= fk,m for all m. In general, however,

gk,−m − fk,m ∈ Sk (11)

is a nonzero cusp form. It seems likely that the Fourier coefficients bk(m, n) of
gk,m are irrational, even transcendental, in general.

3. Weak Maass forms

Next we will show that for f ∈ M !2−2s with s ∈ Z+, the function ∂s−1 f is a weak
Maass form, and we will compute its Fourier expansion. Recall that ∂s−1 was
defined in (4). Then we express ∂s−1 f2−2s,m in terms of certain Poincaré series.
We need the following result which, in essence, is due to Maass; see also [Lewis
and Zagier 2001, page 250].

Proposition 3. Suppose f (τ ) =
∑

n a(n)qn
∈ M !2−2s for integral s ≥ 1. Then

∂s−1 f is a weak Maass form for 0 with eigenvalue s(1− s). Explicitly, we have

∂s−1 f (τ )= 2πy1/2
∑

n>0
a(−n)ns−1/2 Is−1/2(2πny)e(−nx)

+ (−1)s−1
(
π1/2−s0(s− 1/2)y1−sa(0)

+ 2y1/2
∑

n 6=0
a(n)|n|s−1/2Ks−1/2(2π |n|y)e(nx)

)
,

where I and K are the usual Bessel functions.

Proof. By induction it is readily shown that for n > 0

∂s−1e(−nτ)= ns−1
s−1∑
m=0

(s−1+m)!
m!(s−1−m)!

(−4πny)me(−nτ).

Standard formulas for Bessel functions with half-integral parameter [Gradshteyn
and Ryzhik 1994] yield

∂s−1e(−nτ)= 2 ns−1/2 y1/2(π Is−1/2(2πny)+ (−1)s−1Ks−1/2(2πny)
)
e(nx),

∂s−1e(nτ)= 2(−1)s−1 ns−1/2 y1/2Ks−1/2(2πny)e(nx),

∂s−1(1)= (−1)s−1π1/2−s0(s− 1/2)y1−s .

These formulas easily give the stated formula, thus finishing the proof. �
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We next express the weak Maass form ∂s−1 f2−2s,m associated to the basis ele-
ment f2−2s,m in terms of certain Poincaré series, when s ≥ 2 and 2s = 12`+ k ′ as
before. For m ∈ Z with m 6= 0, consider the Poincaré series (see [Niebur 1973])

Fm(τ, s)= 2π |m|s−1/2
∑

γ∈0∞\0

e(m Re γτ)(Im γτ)1/2 Is−1/2(2π |m| Im γτ), (12)

which converges absolutely for Re s > 1. Here 0∞ is the subgroup of translations
in 0. Clearly Fm(γτ, s)= Fm(τ, s) for γ ∈ 0 and 1Fm(τ, s)= s(1− s)Fm(τ, s).

Proposition 4. For integral s ≥ 2, we have for m ≥ `+ 1

∂s−1 f2−2s,m(τ )= F−m(τ, s)+
∑

0<n<`+1

a2−2s(m,−n)F−n(τ, s). (13)

Proof. We need the Fourier expansion of Fm . This can be found, for instance, in
[Fay 1977]. Let ξ(s)= π−s/20(s/2)ζ(s). Then we have

Fm(τ, s)= 2π |m|s−1/2 y1/2 Is−1/2(2π |m|y)e(mx)+ 4πσ2s−1(|m|)
(2s−1)ξ(2s)

y1−s

+ 4π |m|s−1/2
∑
n 6=0

c(m, n; s)y1/2Ks−1/2(2π |n|y)e(nx), (14)

where

c(m, n; s)=
∑
c>0

c−1K0(m, n; c) ·
{

I2s−1(4π
√
|mn| c−1) if mn < 0,

J2s−1(4π
√
|mn| c−1) if mn > 0

and
K0(m, n; c)=

∑
a (mod c)∗

e
(ma+na

c

)
is the usual Kloosterman sum, the * restricting the sum to (a, c)= 1. Consider the
Maass form

φ(τ)= ∂s−1 f2−2s,m(τ )−
(
F−m(τ, s)+

∑
0<n<`+1

a2−2s(m,−n)F−n(τ, s)
)
.

By Proposition 3 and (14), we have

φ(τ)= c(0)y1−s
+
∑

n 6=0 c(n)y1/2Ks−1/2(2π |n|y)e(nx),

where each c(n) can be computed explicitly in terms of the cs(m, n) and the
a2−2s(m, n). Since φ ∈ L2(0\H)with eigenvalue s(1−s), it must be equal to 0. �

In the case s = 1, the Poincaré series Fm(τ, 1) is defined through analytic con-
tinuation (see for example [Niebur 1973]), and Proposition 4 continues to hold in
the modified form

f0,m(τ )= jm(τ )= F−m(τ, 1)− 24σ(m) for m ≥ 1.
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4. Preliminary formulas for the trace

For the proof of Theorem 1, we will need to compute the trace of ∂s−1 f2−2s,m in
terms of the coefficients of the basis elements fs+1/2,m . In view of Proposition 4,
we are reduced to computing Trd,D(Fm( · , s)), where Fm(τ, s) is the Poincaré
series defined in (12). When D = s = 1, it was shown in [Duke 2006] that this
trace may be expressed in a simple way in terms of a certain exponential sum. In
general we need the exponential sum introduced in [Kohnen 1985]:

Sm(d, D; c)=
∑

b (mod c)
b2
≡Dd (mod c)

χ
(c

4
, b, b2

−Dd
c

)
e
(2mb

c

)
,

where χ is defined in (2) and c≡0 (mod 4). Clearly S−m(d, D; c)= Sm(d, D; c)=
Sm(d, D; c). We have the following identity.

Proposition 5. Let s ≥ 2 and m 6= 0. Suppose D is fundamental and that d D < 0.
Then

Trd,D(Fm( · , s))=
√

2π |m|s−1/2
|d|1/4|D|1/4

×

∑
c≡0 (mod 4)

c−1/2Sm(d, D; c)Is−1/2

(4π
√

m2|d D|
c

)
.

Proof. We have the absolutely convergent expression that

Trd,D(Fm( · , s))= 2π |m|s−1/2
∑

Q

χ(Q)
ωQ

∑
γ∈0∞\0

e(m Re γτQ)(Im γτQ)
1/2

× Is−1/2(2π |m| Im γτQ)

=
√

2π |m|s−
1
2 |d|1/4|D|1/4

∞∑
a=1

a−1/2 Is−1/2

(
π
√

m2|d D|
a

)
×

[∑
Q

χ(Q)
ωQ

∑
γ

e(m Re(γτQ))
]
,

where the sum over γ is over all γ ∈ 0∞\0 with Im γτQ =
√
|Dd|/(2a). Con-

sider the sum in brackets in the expression above. For fixed a > 0, the values of
2a Re(γτQ) run over the (mod 2a)-incongruent solutions to the quadratic congru-
ence b2

≡ d D (mod 4a) with multiplicity wQ as γ and Q run over their respective
representatives. Thus the term in brackets is equal to 1

2 Sm(d, D; 4a). Replacing
4a with c finishes the proof. �

We need to express the traces in terms of the Fourier coefficients of modular
forms. This is done by applying an identity, originally due to Salié in a special
case, to transform the sum of exponential sums in Proposition 5 into a sum of
Kloosterman sums. This sum may then be interpreted in terms of the Fourier
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coefficients of half-integral weight Poincaré series. This technique goes back to
Zagier [1975], who applied it in the context of base-change. Kohnen [1985] applied
it to the Shimura lift of cusp forms. More recently, this method has proved to
be fruitful in the context of weakly holomorphic forms. Duke [2006] applied it
to give a new proof of Zagier’s original identity for traces of singular moduli.
The technique has since been extended in various ways in [Jenkins 2006] and
[Bringmann and Ono 2007]; in particular, the latter gave the following formula for
the trace of Fm(τ, s) in terms of the coefficients bk(m, n) of half-integral weight
Poincaré series when m =−1 and (−1)s D < 0.

Proposition 6. Suppose m 6= 0, s ≥ 2 and d D < 0 with D fundamental. Then

Trd,D(Fm( · , s))= ε|d|s/2|D|(1−s/2)
∑
n |m

χD(n)ns−1bs+1/2

(
−|d|, m2

|D|
n2

)
if (−1)s D > 0;

Trd,D(Fm( · , s))= ε|d|(1−s)/2
|D|s/2|m|2s−1

∑
n |m

χD(n)n−sbs+1/2

(
−m2
|D|

n2 , |d|
)
,

if (−1)s D < 0.

Here the sums n |m are over the positive divisors of m, ε = (−1)b(s+1)/2c, and
bs+1/2 was defined in Proposition 2.

Proof. Recall the Kloosterman sum associated to modular forms of half-integral
weight defined in (10). It is clear that replacing k with k+ 2 does not change this
sum; each Ks+1/2(m, n, c) is equal to K1/2(m, n; c) or K3/2(m, n; c), depending
on whether s is even or odd, respectively. In fact, we have the relations

K1/2(m, n; c)= i · K3/2(−m,−n; c)= K1/2(n,m; c). (15)

We have the following identity for the Kloosterman sums, which can be proved by
a slight modification of the proof of Kohnen [1985, Proposition 5, page 258]; see
also [Duke 2006; Jenkins 2006; Tóth 2005].

Lemma 1. For integers m 6= 0 and c > 0 with 4|c, an integer d with d ≡ 0, 1
(mod 4) and D a fundamental discriminant, we have the identity

Sm(d, D; c)= (1− i)
∑

n |(m,c/4)

(1+δodd(c/(4n)))χD(n)
√

n
c

K1/2(d,m2 D/n2
; c/n).

By Proposition 5 and Lemma 1, we quickly derive that

Trd,D(Fm( · , s))=
√

2π(1− i)|m|s−1/2
|d|1/4|D|1/4

∑
n |m

χD(n)n−1/2

×

∑
c≡0 (mod 4)

c−1(1+ δodd(c/4))K1/2(d,m2 D/n2
; c)Is−1/2

(4π
c

√
m2|Dd|/n2

)
.
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Comparison with Proposition 2 and the use of (15) finishes the proof. �

5. The Zagier lift

In this section we give the proof of Theorem 1. The following proposition gives an
explicit formula for the Zagier lift of f ∈M !2−2s when (−1)s D> 0. In its proof we
make repeated use of the classical Shimura lift, integral and half-integral weight
duality from (7) and (9), and the fact that the constant term of a form in M !2 must
vanish. Write 2s = 12`+ k ′ with k ′ ∈ {0, 4, 6, 8, 10, 14} as above.

Proposition 7. Suppose s ≥ 2 is an integer and f (τ ) =
∑

n a(n)qn
∈ M !2−2s .

Suppose D is a fundamental discriminant with (−1)s D > 0. Then the D-th Zagier
lift of f is given by

ZD f =
∑
m>0

a(−m)
∑
n |m

χD(n)ns−1 f3/2−s,m2|D|/n2 . (16)

Proof. Recall that when (−1)s D > 0, the Zagier lift was defined by

ZD f (τ )=
∑
m>0

a(−m)
∑
n |m

χD(n)ns−1q−m2
|D|/n2

+
1
2 L(1− s, χD)a(0)+

∑
d:d D<0

Tr∗d,D( f )q |d|,

where
Tr∗d,D( f )= (−1)b(s−1)/2c

|d|−s/2
|D|(s−1)/2 Trd,D(∂

s−1 f ).

We prove Proposition 7 by comparing the Fourier coefficients of ZD f with those
of the function on the right side of (16), which we will denote simply by F . We
do this separately for the positive coefficients, the principal parts, and the constant
terms.

Consider first the positive coefficients. By Propositions 4 and 6, we have for
m > ` that

−Tr∗d,D( f2−2s,m)=
∑
n |m

χD(n)ns−1bs+1/2(−|d|;m
2
|D|/n2)

+

∑̀
j=1

a2−2s(m,− j)
∑
h | j

χD(h)hs−1bs+1/2(−|d|; j2
|D|/h2). (17)

From (11), we have the cusp form

C(τ )= gs+1/2,−|d|(τ )− fs+1/2,|d|(τ )=
∑
n≥1

c(n)qn.

Thus

bs+1/2(−|d|, j2
|D|/h2)= as+1/2(|d|, j2

|D|/h2)+ c( j2
|D|/h2).
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However, SD C , the D-th Shimura lift of C , is a cusp form of weight 2s with j-th
coefficient

∑
h | j χD(h)hs−1c( j2

|D|/h2). The contribution to −Tr∗d,D( f2−2s,m) in
(17) from coefficients of C , which is

∑
n |m

χD(n)ns−1c(m2
|D|/n2)+

∑̀
j=1

a2−2s(m,− j)
∑
h | j

χD(h)hs−1c( j2
|D|/h2),

can be interpreted as the constant term of (SD C) f2−2s,m ∈ M !2, which must be
zero. Thus we have

−Tr∗d,D( f2−2s,m)=
∑
n |m

χD(n)ns−1as+1/2(|d|,m2
|D|/n2)

+

∑̀
j=1

a2−2s(m,− j)
∑
h | j

χD(h)hs−1as+1/2(|d|, j2
|D|/h2). (18)

By duality, Tr∗d,D( f2−2s,m) is the coefficient of q |d| in the Fourier expansion of

∑
n |m

χD(n)ns−1 f3/2−s,m2|D|/n2 −

∑̀
j=1

a2s(− j,m)
∑
h | j

χD(h)hs−1 f3/2−s, j2|D|/h2 .

For an arbitrary form f =
∑

a(m)qm
∈M !2−2s , we have f =

∑
m>` a(−m) f2−2s,m ,

and so

Tr∗d,D( f )=
∑
m>`

a(−m)Tr∗d,D( f2−2s,m)

is the coefficient of q |d| in∑
m>`

a(−m)
(∑

n |m

χD(n)ns−1 f3/2−s,m2|D|/n2

−

∑̀
j=1

a2s(− j,m)
∑
h | j

χD(h)hs−1 f3/2−s, j2|D|/h2

)
.

For 1≤ j ≤ ` we have, once again using that the constant of a form in M !2 vanishes,
that a(− j)=−

∑
m>` a(−m)a2s(− j,m). Thus the form in the previous equation

simplifies to F .
Next consider the principal parts. The properties of the basis elements given in

Section 2 show that f3/2−s,m2|D|/n2 = 0 if m2
|D|/n2 < C for some C that depends

only on the weight 3/2− s. We use this and the Fourier expansion

f3/2−s,m2|D|/n2(τ )= q−m2
|D|/n2

+

∑
h

a3/2−s(m2
|D|/n2, h)qh
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to write the negative powers of q appearing in the Fourier expansion of F as∑
m>0

a(−m)
∑
n |m

χD(n)ns−1q−m2
|D|/n2

−

∑
m>0

a(−m)
∑
n |m

m2
|D|/n2<C

χD(h)ns−1q−m2
|D|/n2

+

∑
m,h>0

a(−m)
∑
n |m

χD(n)ns−1a3/2−s(m
2
|D|/n2,−h)q−h .

The first sum is the principal part of ZD f , so we must prove that the remaining
part, call it S, vanishes. By duality,

S =−
∑
m>0

a(−m)
( ∑

n |m
m2
|D|/n2<C

χD(n)ns−1q−m2
|D|/n2

+

∑
h>0

∑
n |m

χD(n)ns−1as+1/2(−h,m2
|D|/n2)q−h

)
.

Now for any h > 0, the coefficient of qm in the Shimura lift SD fs+1/2,−h of the
cusp form fs+1/2,−h is given by∑

n |m

χD(n)ns−1
·

(
as+1/2(−h,m2

|D|/n2)+

{
1 if m2

|D|/n2
= h,

0 otherwise.

)
.

(The last term here arises from the initial qh in the Fourier expansion of fs+1/2,−h ,
since as+1/2(−h, h) is zero by definition.) From this, it is clear that the coef-
ficient of q−h in S for each h > 0 can be interpreted as the constant term of
(SD fs+1/2,−h) f ∈ M !2, so S = 0.

Finally we evaluate the constant term of F , again using duality, as∑
m>0

a(−m)
∑
n |m

χD(n)ns−1a3/2−s(m
2
|D|/n2, 0)

=−

∑
m>0

a(−m)
∑
n |m

χD(n)ns−1as+1/2(0,m2
|D|/n2).

Since s ≥ 2, we have by [Kohnen and Zagier 1981]

SD fs+1/2,0(τ )=
1
2 L(1− s, χD)+

∑
m>0

(∑
n |m

χD(n)hs−1as+1/2(0, n2
|D|/h2)

)
qm,

and the constant term of (SD fs+1/2,0) f ∈ M !2 is

1
2 L(1− s, χD)a(0)+

∑
m>0

a(−m)
(∑

n |m

χD(n)ns−1as+1/2(0,m2
|D|/n2)

)
= 0. �
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We also need the corresponding statement if (−1)s D < 0.

Proposition 8. Suppose s ≥ 2 is an integer and f ∈M !2−2s has Fourier coefficients
a(n). Suppose D is a fundamental discriminant with (−1)s D < 0. Then the D-th
Zagier lift of f is given by

ZD f =
∑
m>0

a(−m)m2s−1
∑
n |m

χD(n)n−s fs+1/2,m2|D|/n2 + g, (19)

where g ∈ Ss+1/2 is the unique cusp form whose Fourier coefficients b(n) match
those of ZD f for the first ` positive values of n with (−1)sn ≡ 0, 1 (mod 4).

Proof. Using Propositions 4 and 6 as before, we find that

Tr∗d,D( f2−2s,m)=
∑̀
j=1

a2−2s(m,− j) j2s−1
∑
h | j

χD(h)h−sbs+1/2(− j2
|D|/h2

; |d|)

+m2s−1
∑
n |m

χD(n)n−sbs+1/2(−m2
|D|/n2

; |d|).

Thus an arbitrary form f =
∑

a(m)qm
=
∑

m>` a(−m) f2−2s,m has trace Tr∗d,D( f )
given by∑
m>`

a(−m)
(

m2s−1
∑
n |m

χD(n)n−sbs+1/2(−m2
|D|/n2

; |d|)

+

∑̀
j=1

a2−2s(m,− j) j2s−1
∑
h | j

χD(h)h−sbs+1/2(− j2
|D|/h2

; |d|)
)

=

∑
m>0

a(−m)m2s−1
∑
n |m

χD(n)n−sbs+1/2(−m2
|D|/n2

; |d|), (20)

where we have simplified as before. This is just the coefficient of q |d| in the mod-
ular form F ∈ M !s+1/2 given by

F =
∑
m>0

a(−m)m2s−1
∑
n |m

χD(n)n−s gs+1/2,−m2|D|/n2 .

Now since gs+1/2,−m2|D|/n2 − fs+1/2,m2|D|/n2 ∈ Ss+1/2 from (11), we find that

F =
∑
m>0

a(−m)m2s−1
∑
n |m

χD(n)n−s fs+1/2,m2|D|/n2 + g

for a certain cusp form g, and, arguing as in Proposition 7, the principal part of F
matches the principal part of ZD f . Since the constant term and positive coefficients
of F match those of ZD f , Proposition 8 now follows. �
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The first statement of Theorem 1 follows from Propositions 7 and 8. The state-
ment on integrality follows from Proposition 1 in the case (−1)s D> 0. Otherwise
we can reduce to this case using the following identity, which holds if (−1)s D< 0
and D′ is fundamental with (−1)s D′ > 0:

Tr∗m2 D′,D( f )=−m2s−1
∑
a |m

µ(a)χD′(a)
∑

b |ma−1

χD(b)(ab)−s Tr∗(m/ab)2 D,D′( f ).

This identity is a consequence of the following lemma.

Lemma 2. For D and D′ fundamental discriminants with DD′ < 0 and m ∈ Z+,

Trm2 D′,D =
∑
a |m

µ(a)χD′(a)
∑

b |ma−1

χD(b)Tr (m/ab)2 D,D′ .

Lemma 2 is obtained by writing the trace as a sum of sums over primitive qua-
dratic forms, noting that χD = χD′ for such primitive forms, and applying Möbius
inversion.

We now briefly indicate how one shows that the Zagier lift is compatible with
the Hecke operators. If k ∈ 2Z> 0 and p is a prime, the weight k Hecke operator
|k T (p) acts on a modular form f (τ )=

∑
n a(n)qn

∈ M !k by

f |k T (p)=
∑

n

(a(pn)+ pk−1a(n/p))qn.

If k ∈ 2Z≤ 0, we multiply this by p1−k so that |k T (p) preserves the integrality of
Fourier coefficients.

When 0< s ∈ Z, the half-integral weight Hecke operator |s+1/2T (p2) acts on a
form g(τ )=

∑
n b(n)qn

∈ M !s+1/2 by

g|s+1/2T (p2)=
∑

n

(
b(p2n)+ ((−1)sn/p)ps−1b(n)+ p2s−1b(n/p2)

)
qn.

Again, for s ≤ 0, we normalize this by multiplying by p1−2s .
It is straightforward to see that (ZD f )|3/2−ŝ T (p2) = ZD( f |2−2s T (p)) for any

prime p. In the case that (−1)s D > 0, we need only use the explicit Fourier
expansion of the Zagier lift to compare principal parts. If (−1)s D< 0, though, we
must also show that

Tr∗(−1)sn,D( f |2−2s T (p))=Tr∗(−1)snp2,D( f )+((−1)sn/p)ps−1 Tr∗(−1)sn,D( f )

+ p2s−1 Tr∗(−1)sn/p2,D( f ) (21)

for the first ` positive values of n with (−1)sn ≡ 0, 1 (mod 4). To see that this
holds, we argue as in the proof of [Zagier 2002, Theorem 5(ii)] to show that
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Tr (−1)sn,D((∂
s−1 f )|0T (p)) equals

Tr (−1)snp2,D(∂
s−1 f )+ ((−1)sn/p)Tr (−1)sn,D(∂

s−1 f )+ p Tr (−1)sn/p2,D(∂
s−1 f ),

and we use the fact that if k < 0, then ∂k( f |k T (p))= p · (∂k f )|k+2T (p) to obtain
Equation (21).

6. The Shimura lift

In this final section we prove Theorem 2. For this we need two propositions:

Proposition 9. Suppose s ∈ Z+ and τ ∈H. As a function of z ∈H,

∂s−1
( f2s(z) f2−2s(τ )

j (τ )− j (z)

)
is a meromorphic modular form of weight 2s with poles of order at most s that only
occur at points equivalent to τ under 0.

Proof. Observe first that if f has weight k and g has weight 0 then Equation (3)
gives ∂k( f g) = g∂k( f ) + f D(g). Apply this repeatedly with g(τ ) = ( j (τ ) −
j (z))−n for 1≤ n < s. We derive that

∂s−1
( f2−2s(τ )

j (τ )− j (z)

)
=

s∑
n=1

gn(τ )
( j (z)− j (τ ))n

for gn ∈ M !0,

from which the result follows easily. �

Theorem 2 is a consequence of Proposition 9 together with the following explicit
formula for the D-th Shimura lift of fs+1/2,|d|. Write 2s = 12`+ k ′ as above.

Proposition 10. Suppose s ≥ 2, (−1)s D > 0 and d D < 0. Then

SD fs+1/2,|d|(z)= Tr∗d,D

( f2s(z) f2−2s(τ )

j (τ )− j (z)

)
+ f (z),

where f ∈ M2s is the unique holomorphic form whose Fourier coefficients a(n)
match those of SD fs+1/2,|d| for n = 0, . . . , `.

Proof. By (5) we have, writing r = e(z),

SD fs+1/2,|d|(z)= 1
2 L(1− s, χD)as+1/2(|d|, 0)

+

∑
m>0

(∑
n |m

χD(n)ns−1as+1/2(|d|,m2
|D|/n2)

)
rm .
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By this and (18) we have

−

∑
m>`

Tr∗d,D( f2−2s,m)r
m
= SD fs+1/2,|d|(z)−

1
2 L(1− s, χD)as+1/2(|d|, 0)

−

∑
0<m≤`

(∑
n |m

χD(n)ns−1as+1/2(|d|,m2
|D|/n2)

)
rm

+

[∑̀
j=1

∑
m>`

a2−2s(m,− j)rm
∑
h | j

χD(h)hs−1as+1/2(|d|, j2
|D|/h2)

]
.

Using integral weight duality (7), the bracketed term equals

−

∑̀
j=1

( f2s,− j (z)− r j )
∑
h | j

χD(h)hs−1as+1/2(|d|, j2
|D|/h2),

so the previous equation, after some cancellation, becomes

−

∑
m>`

Tr∗d,D( f2−2s,m)r
m
= SD fs+1/2,|d|(z)− f (z).

Then this and (6) imply the claimed identity, at least when Im z > maxQ Im τQ .
The full result now follows by analytic continuation. �
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Appendix

The table below gives explicit formulas for the first two basis elements fb+1/2
and f ∗b+1/2 of weight b+1/2 for various b as polynomials in the weight 1/2 theta
function θ =

∑
n∈Z qn2

and the weight 2 Eisenstein series on00(4) given by F(z)=∑
∞

n=0 σ(2n+ 1)q2n+1. Both θ and F have integral Fourier coefficients.
The space of holomorphic modular forms on00(4) of weight s+1/2 is generated

by the forms Fnθ2s+1−4n , where 0 ≤ n ≤ b(2s + 1/4)c; see [Cohen 1975]. Thus,
in order to construct these basis elements we examine the Fourier expansion of the
form f =

∑b(2s+1)/4c
n=0 A(n)Fnθ2s+1−4n and choose the coefficients A(n) so that

f is in the plus space M !s+1/2 and has the appropriate leading terms in its Fourier
expansion. The table shows that all of the A(n) are integral for the first two basis
elements of each half-integral weight, so it follows that all of the fb+1/2 and f ∗b+1/2
have integral Fourier coefficients.
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b fb+1/2
f ∗b+1/2

6 Fθ9
− 18F2θ5

+ 32F3θ = q + O(q4)

θ13
− 26Fθ9

+ 156F2θ5
= 1+ O(q4)

8 Fθ13
− 26F2θ9

+ 152F3θ5
+ 128F4θ = q + O(q4)

θ17
− 34Fθ13

+ 340F2θ9
− 816F3θ5

= 1+ O(q4)

9 F3θ7
− 16F4θ3

= q3
+ O(q4)

θ19
− 38Fθ15

+ 456F2θ11
− 1672F3θ7

= 1+ O(q4)

10 Fθ17
− 34F2θ13

+ 336F3θ9
− 800F4θ5

+ 512F5θ = q + O(q4)

θ21
− 42Fθ17

+ 588F2θ13
− 2912F3θ9

+ 2496F4θ5
= 1+ O(q4)

11 F3θ11
− 12F4θ7

− 64F5θ3
= q3
+ O(q4)

θ23
− 46Fθ19

+ 736F2θ15
− 4600F3θ11

+ 8096F4θ7
= 1+ O(q4)

12 F4θ9
− 16F5θ5

= q4
+ O(q5)

Fθ21
− 42F2θ17

+ 584F3θ13
− 2808F4θ9

+ 1792F5θ5
+ 2048F6θ = q + O(q5)

13 F3θ15
− 32F4θ11

+ 272F5θ7
− 256F6θ3

= q3
+ O(q4)

θ27
− 54Fθ23

+ 1080F2θ19
− 9576F3θ15

+ 34048F4θ11
− 26752F5θ7

= 1+ O(q4)

14 F4θ13
− 36F5θ9

+ 320F6θ5
= q4
+ O(q5)

Fθ25
− 50F2θ21

+ 896F3θ17
− 6664F4θ13

+ 16672F5θ9
− 3072F6θ5

+ 8192F7θ = q + O(q5)

15 F4θ15
− 30F5θ11

+ 224F6θ7
= q4
+ O(q7)

F3θ19
− 38F4θ15

+ 444F5θ11
− 1408F6θ7

− 1024F7θ3
= q3
+ O(q7)

16 F4θ17
− 32F5θ13

+ 272F6θ9
− 256F7θ5

= q4
+ O(q5)

Fθ29
− 58F2θ25

+ 1272F3θ21
− 12824F4θ17

+ 56064F5θ13
− 71552F6θ9

− 4096F7θ5
+ 32768F8θ = q + O(q5)

17 F4θ19
− 38F5θ15

+ 440F6θ11
− 1408F7θ7

= q4
+ O(q7)

F3θ23
− 46F4θ19

+ 724F5θ15
− 4240F6θ11

+ 5632F7θ7
− 4096F8θ3

= q3
+ O(q7)

19 F4θ23
− 46F5θ19

+ 720F6θ15
− 4064F7θ11

+ 3584F8θ7
= q4
+ O(q7)

F3θ27
− 54F4θ23

+ 1068F5θ19
− 9120F6θ15

+ 28608F7θ11
− 6144F8θ7

− 16384F9θ3
= q3
+ O(q7)
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