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The Frobenius structure of
local cohomology

Florian Enescu and Melvin Hochster

Given a local ring of positive prime characteristic there is a natural Frobenius
action on its local cohomology modules with support at its maximal ideal. In
this paper we study the local rings for which the local cohomology modules
have only finitely many submodules invariant under the Frobenius action. In
particular we prove that F-pure Gorenstein local rings as well as the face ring of
a finite simplicial complex localized or completed at its homogeneous maximal
ideal have this property. We also introduce the notion of an antinilpotent Frobe-
nius action on an Artinian module over a local ring and use it to study those rings
for which the lattice of submodules of the local cohomology that are invariant
under Frobenius satisfies the ascending chain condition.

1. Introduction

All given rings in this paper are commutative, associative with identity, and Noe-
therian. Throughout, p denotes a positive prime integer. For the most part, we
shall be studying local rings, that is, Noetherian rings with a unique maximal ideal.
Likewise our main interest is in rings of positive prime characteristic p. If (R, m)
is local of characteristic p, there is a natural action of the Frobenius endomorphism
of R on each of its local cohomology modules H,f; (R). We call an R-submodule
N of one of these local cohomology modules F-stable if the action of F maps N
into itself.

One of our objectives is to understand when a local ring, (R, m), especially a
reduced Cohen—Macaulay local ring, has the property that only finitely many R-
submodules of its local cohomology modules are F-stable. When this occurs we
say that R is FH-finite. We shall also study the problem of determining conditions
under which the local cohomology modules of R have finite length in the category
of R-modules with Frobenius action. We say that R has finite FH-length in this
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case. Of course, when the ring is Cohen—Macaulay there is only one nonvanishing
local cohomology module, H%(R), where d = dim(R). The problem of studying
the F-stable submodules of H,ﬁ(R) arises naturally in tight closure theory, taking a
point of view pioneered by K. Smith [2003; 1994; 1997a; 1997b]. For example, if
R is complete, reduced, and Gorenstein, the largest proper F-stable submodule of
H,ﬁ (R) corresponds to the tight closure of 0 (in the finitistic sense, see [Hochster
and Huneke 1990, §8]), and its annihilator is the test ideal of R. Also see Discus-
sion 2.10 here. We would like to note here that other results related to F-stable
submodules of local cohomology may be found in [Enescu 2001; 2003; Katzman
2006; Sharp 2007].

The main result of Section 3 is one of general interest. Let M be a module
over an excellent local ring R and consider a family of submodules {N, },ca of M
closed under sum, intersection and primary decomposition. Our result states, in
particular, that if the set {Anng(M/N,) : A € A} consists of radical ideals then it
is finite.

This theorem has a number of important corollaries. One of them, relevant to
our objectives and also proven by Sharp [2007, Theorem 3.10 and Corollary 3.11],
states that for any local ring R of prime characteristic p > 0, if Frobenius acts
injectively on an Artinian R-module M, then the set of annihilators of F-stable sub-
modules of M is a finite set of radical ideals closed under primary decomposition.
This leads to the fact that if R is F-pure and Gorenstein (or even quasi-Gorenstein)
then H¢(R) has only finitely F-stable R-submodules. See Section 3. Another one
is the fact that in an excellent local ring a family of radical ideals closed under
sum, intersection and primary decomposition is finite.

In Section 4 we explain the relationship between FH-finite rings and rings that
have finite FH-length. We introduce the notion of an antinilpotent Frobenius action
on an Artinian module over a local ring. Using results of [Lyubeznik 1997] and
[Hochster 2008], we show that the local cohomology of a local ring R of charac-
teristic p is antinilpotent if and only if the local cohomology of R[[x] has finite
FH-length, in which case the local cohomology of R and every formal power series
ring over R is FH-finite.

In Section 5 we show that if R is the face ring of a finite simplical complex
localized or completed at its homogeneous maximal ideal, then R is FH-finite. See
Theorem 5.1.

2. Notation and terminology

Discussion 2.1 (Some basics about tight closure). Unless otherwise specified, we
shall assume throughout that R is a Noetherian ring of positive prime characteristic
p, although this hypothesis is usually repeated in theorems and definitions. R°
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denotes the complement of the union of the minimal primes of R, and so, if R is
reduced, R° is simply the multiplicative system of all nonzero divisors in R. We
shall write F¢ (or F% if we need to specify the base ring) for the Peskine—Szpiro
or Frobenius functor from R-modules to R-modules. Note that F¢ preserves both
freeness and finite generation of modules, and is exact precisely when R is regular
(see [Herzog 1974; Kunz 1969]). If N € M we write N4 for the image of F*(N)
in F¢(M), although it depends on the inclusion N — M, not juston N. If u € M we
write u?* for the image 1 ®u of u in F°(M). With this notation, (u+v)? =u9 4 v?
and (ru)? =r%uf foru, ve M andr € R.

From time to time, we assume some familiarity with basic tight closure theory
in prime characteristic p > 0. We use the standard notation N, for the tight closure
of the submodule N in the module M. If M is understood, the subscript is omitted,
which is frequently the case when M = R and N =1 is an ideal. We refer the reader
to [Hochster and Huneke 1989; 1990; 1994; 2008; Huneke 1996] for background
in this area.

In particular, we assume cognizance of certain facts about test elements, includ-
ing the notion of a completely stable test element. We refer the reader to [Hochster
and Huneke 1990, §6 and §8; 1989; 1994, §6; Aberbach et al. 1993, §2] for more
information about test elements and to [Aberbach et al. 1993, §3] for a discussion
of several basic issues related to the localization problem for tight closure.

Discussion 2.2 (Local cohomology and the action of the Frobenius endomor-
phism). Our basic reference for local cohomology is [Grothendieck 1967]. Let R
be an arbitrary Noetherian ring, let / be an ideal of R and let M be any R-module.
The i-th local cohomology module H 1’ (M) with support in I may be obtained in
several ways. It may be defined as h_rn)t Extlk(R /I, M): here, any sequence of
ideals cofinal with the powers of I may be used instead of the sequence of powers,
{1'};. Alternatively, we may define C*(f; R) to be the complex 0 — c'-scl=o
where C° = R, C!' =R ¢ and the map is the canonical map R — Ry, and then
if f is a sequence of elements f1, ..., f, we may define C*(f; R) to be the
tensor product over R of the n complexes C*( f;; R). Finally, let C*( f; M) denote
C'(i; R) ® M, which has the form: N

0—>M—>@Mfi —)@Mﬁfj — "'_>Mf1"'fn — 0.
i i<j

The cohomology of this complex turns out to be Hp (M), where I =(f1, ..., fu)R,

and actually depends only on the radical of the ideal /.

By the standard theory of local duality (see [Grothendieck 1967, Theorem 6.3])
when (S, mg, L) is Gorenstein with dim(S) = n and M is a finitely generated
S-module,

H, (M) = Exty™' (S, M)"
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as functors of M, where N = Homg(N, Es(L)). Here, Eg(L) is an injective
hull of L over S. In particular, if (R, m, K) is local of Krull dimension d and
is a homomorphic image of a Gorenstein local ring S of dimension n, then wg =
Ext"_d(R, S) whose Matlis dual over S, and, hence, over R as well, is H,ﬁ(R).
We refer to a finitely generated R-module wg as a canonical module for R if wy =
HZ(R). Tt is unique up to isomorphism, since its completion is dual to H%(R).
Our discussion shows that a canonical module exists if R is a homomorphic image
of a Gorenstein ring; in particular, wg exists if R is complete. When R is Cohen—
Macaulay, one has that

H (M) = Ext} (M, wg)

functorially for all finitely generated R-modules M.

When R is a normal local domain, wg is isomorphic as an R-module with an
ideal of pure height one, that is, with a divisorial ideal.

Finally, suppose that (R, m, K) — (S, mg, L) is a local homomorphism such
that S a module-finite extension of R. Let w = wg be a canonical module for
R. Then Hompg(S, w) is a canonical module for S. Here, the rings need not be
Cohen—Macaulay, nor domains. To see this, note that one can reduce at once to
the complete case. We have

H? (S)= HI(S) = S® HE(R).

Then Eg(L) may be identified with Hompg (S, Eg(K)); moreover, on S-modules,
the functors Homgz(_, Eg(K)) and Homg(_, Es(L)) are isomorphic. Hence

Homg(HZ (S), Es(L)) = Homg (S ®r Ha(R), Er(K)).
By the adjointness of tensor and Hom, this becomes
Homg (S, Homg (HZ(R), Ex(K))) = Homg(S, o),

as required.

When M = R we have an action of the Frobenius endomorphism on the complex
C*(f: R) induced by the Frobenius endomorphisms of the various rings R, where
g is a product of a subset of fi, ..., f,, and the action on the cohomology is
independent of the choice of f;.

An alternative point of view is that, quite generally, if M — M’ is any map of
R-modules then there is an induced map H } (M) — HI’ (M’). When S is an R-
algebra and / an ideal of R we get a map H;(R) — H}(S) for all i, and H;(S)
may be identified with H } 5(8). In particular, we may take S = R and let the
map R — S be the Frobenius endomorphism. Since IS = I'P! here, this gives
a map Hj(R) — H}, (R). But since Rad (/") = Rad (1), H},,(R) = H}(R)
canonically. The map H;(R) — H;(R) so obtained again gives the action of the



The Frobenius structure of local cohomology 725

Frobenius endomorphism on H ;(R). We shall denote this action by F; note that
F(ru)=rPF(u).

Definition 2.3. When R has prime characteristic p > 0, we may construct a non-
commutative, associative ring R{F} from R which is an R-free left module on the
symbols 1, F, F2, ..., F¢, ...byrequiring that Fr =r” F when r € R. We shall
say that an R-module M is an R{F'}-module if there is given an action F : M — M
such that for all » € R and for all u € M, F(ru) = rPu. This is equivalent to the
condition that M be an R{F}-module so as to extend the R-module structure on M.
We then call an R-submodule N of M F-stable if F(N) C N, which is equivalent
to requiring that N be an R{F}-submodule of N. If M is any R{F}-module and S
is an R-algebra then there is an S{F}-module structure on S ® g M determined by
the condition that F (s @ u) = s” ® F(u).

In particular, since we have an R{F}-module structure on H ;(R), we may refer
to the F-stable submodules of H 1’ (R).

If R is local of Krull dimension d and xi, ..., x; is a system of parameters,
then H?(R) may be identified with

lim R/(x, ..., xp),
t

where the #-th map in the direct limit system
1 1
R/(x), ..., xi) — R/, Lo X

is induced by multiplication by x; - - - x4. If R is Cohen—Macaulay the maps in this
direct limit system are injective. When H¢ (R) is thought of as a direct limit in this
way, we write (r; x{, e xfi) for the image in H,g (R) of the element represented
by rin R/(x{, ..., x}). The action of the Frobenius endomorphism on the highest
local cohomology module in this case may be described as sending

(ry xt, oo xh)y > (rfs xft, e xgt).
Discussion 2.4 (Another point of view for F-stable submodules). Let (R, m, K)
be local of Krull dimension d, where R has characteristic p > 0. Consider an
F-stable submodule N C H,ﬁ(R). Suppose that R is reduced. We have an iso-
morphism of (R, m, K) with (S, n, L) where S = R'/? givenby ®: R — R!/?,
where @ (r) = r'/P. We have a commutative diagram:

R, R
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where ¢ : R € R'/? is the inclusion map. In general, when ® : R — S is any ring
isomorphism, for each submodule N of H } (R) there is a corresponding submodule
N’ of H<i1>(1)(S)- In fact, if ¥ = ®~!, and we use ¥Q to indicate restriction of
scalars from R-modules to S-modules, then Hé)( 1)(8) is canonically isomorphic
with ¥(H!(R)) and N’ is the image of ¥N in Hc’i,(l)(S). Note that ¥ is an exact
functor.

When § = RY? and I = m, the modules

H o (S), Hi(S), H}s(S), and H,, (S)

may all be identified: the first three may be identified because ®(m) and m S both
have radical n, and the last two because if fi, ..., f, generate m their images
g1, ..., gn in S generate mS and the complexes C*(f; S) and C*(g; S) are iso-
morphic. The condition that N is F-stable is equivalent to the condition that N
maps into N’ in H,’;l(S) = Hé)(m)(S). A very important observation is this:

(xx) With notation as just above, if N is F-stable and J € R kills N (for example,
if J = AnngN) then ®(J) kills the image of N in H,;(Rl/”).

The hypothesis that N is F-stable means that N maps into the corresponding
submodule N’, and N’ is clearly killed by ®(J).

Definition 2.5. A local ring (R, m) of Krull dimension d is FH-finite if, for all i,
0 <i <d, only finitely many R-submodules of H' (R) are F-stable. We shall say
that R has finite FH-length if for all i, H! (R) has finite length in the category of
R{F}-modules.

Our main focus in studying the properties of being FH-finite and of having finite
FH-length is when the local ring R is Cohen—Macaulay. Of course, in this case
there is only one nonzero local cohomology module, H¢(R). However, we show
that every face ring has finite FH-length in Section 5.

Since every H! (R) has DCC even in the category of R-modules, we know that
H! (R) has finite length in the category of R{F}-modules if and only if it has ACC
in the category of R{F}-modules. Of course, it is also equivalent to assert that
there is a finite filtration of H,;(R) whose factors are simple R{F}-modules.

Discussion 2.6 (Purity). Recall that a map of R-modules N — N’ is pure if for
every R-module M the map N g M — N’ ®g M is injective. Of course, this
implies that N — N’ is injective, and may be thought of as a weakening of the
condition that 0— N — N’ split, that is, that N be a direct summand of N". If N’/ N
is finitely presented, N — N’ is pure if and only if it is split. For a treatment of the
properties of purity, see, for example, [Hochster and Huneke 1995, Lemma 2.1,
p. 49].
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An R algebra S is called pure if R — § is pure as a map of R-modules, that
is, for every R-module M, the map M = R Qg M — S ®r M is injective. A
Noetherian ring R of characteristic p is called F-pure (respectively, F-splif) if the
Frobenius endomorphism F : R — R is pure (respectively, split). Evidently, an
F-split ring is F-pure and an F-pure ring is reduced. If R is an F-finite Noetherian
ring, F-pure and F-split are equivalent (since the cokernel of F : R — R is finitely
presented as a module over the left hand copy of R), and the two notions are also
equivalent when (R, m, K) is complete local, for in this case, R — § is split if
and only if R®r E — S ®g E is injective, where E = Eg(K). An equivalent
condition is that the map obtained by applying Homg(_, E) be surjective, and
since R = Homg(E, E), by the adjointness of tensor and Hom that map can be
identified with the maps Homz (S, R) - Homg(R, R) = R.

We say that a local ring R is F-injective if F acts injectively on all of the local
cohomology modules of R with support in m. This holds if R is F-pure.

When R is reduced, the map F : R — R may be identified with the algebra
inclusion R € R'/?, and so R is F-pure (respectively, F-split) if and only if it is
reduced and the map R € R!/? is pure (respectively, split).

Lemma 2.7. Let (R, m, K) be a Noetherian local ring of positive prime charac-
teristic p and Krull dimension d.

(a) R is FH-finite (respectively, has finite FH-length) if and only if its completion
R is FH-finite.

(b) Suppose that (R, m) — (S, mg) is a local homomorphism of local rings such
that mS is primary to the maximal ideal of S, that is, such that the closed
fiber S/mS has Krull dimension 0. Suppose either that R — S is flat (hence,
faithfully flat), split over R, or that S is pure over R. If S is FH-finite, then
R is FH-finite, and if S has finite FH-length, then R has finite FH-length.
More generally, the poset of F-stable submodules of any local cohomology
module H! (R) injects in order-preserving fashion into the poset of F-stable
submodules of H,£15 (S).

(c) R is F-injective if and only if RisF -injective. R is F-pure if and only if Ris
F-pure.

Proof. Completion does not affect either what the local cohomology modules are
nor what the action of Frobenius is. Since each element of a local cohomology
module over R is killed by a power of m, these are already R-modules. Thus, (a)
is obvious.

Part (b) follows from the fact that the local cohomology modules of S may be
obtained by applying S ® g _ to those of R, and that the action of F is then the
one discussed in Definition 2.3 for tensor products, that is, F (s @ u) = s” @ F (u).
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From this one sees that if N is F-stable in H,’;l(R), then S ®z N is F-stable in
S ®r H,;(R) = H,ilS(S). Thus, we only need to see that if N € N’ are distinct
F-stable submodules of H,, (R), then the images of S® N and S ® N’ are distinct
in S ® H! (R). It suffices to see this when R — S is pure: the hypothesis of
faithful flatness or that R — S is split over R implies purity. But N’/N injects into
H! (R)/N,and S®g N’/N in turn injects into S ®g (H!, (R)/N) by purity, so the
image of u € N’ — N is nonzero in

S®r (H! (R)/N)= H' (S)/Im (S® N).

This shows that 1 ® u is in the image of S ® N’ in H,f1(S) but not in the image of
S®N.

Part (c), in the case of F-injectivity, follows from the fact that it is equivalent to
the injectivity of the action of F on the H! (R), and that neither these modules nor
the action of F changes when we complete. In the case of F-purity, we prove that
if R is F-pure then so is R; the other direction is trivial. Consider an ideal / of the
completion, and suppose that there is some element u of the completion such that
u ¢ I butu? € I'P). Choose N such that u ¢ I +m™ R. We see that we may assume
that / is primary to the maximal ideal of R, which implies that it is the expansion
of its contraction J to R. Then we may choose v € R suchthatv—u el =J R.
But then v ¢ J but v? —u? € JIPIR, and since u” € J? R we have that

vP e Jlﬂ]jé\m R = jlrl

and so v € J, a contradiction. Thus, ideals of R are contracted with respect to
Frobenius, and, consequently, R is reduced. Then R — R'/7 is cyclically pure, by
the contractedness of ideals with respect to Frobenius that we just proved, which
shows that it is pure; see [Hochster 1977, Theorem 1.7]. It follows that R is F-
pure. ([

Discussion 2.8 (Gamma construction). Let K be a field of positive characteristic
p with a p-base A. Let I' be a fixed cofinite subset of A. For e € N we denote
by Kr . the purely inseparable field extension of K that is the result of adjoining
p°-th roots of all elements in I' to K, which is unique up to unique isomorphism
over K.

Now suppose that (R, m) is a complete local ring of positive prime characteristic
p and that K C R is a coefficient field, that is, it maps bijectively onto R/m.
Let xq, ..., x4 be a system of parameters for R, so that R is module-finite over
A=KI[x1, ...,x4]] € R. Let Ar denote

U Kl",e[[xly L] -xd]]’

eeN
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which is a regular local ring that is faithfully flat and purely inseparable over A.
Moreover, the maximal ideal of A expands to that of Ar. We shall let Ry denote
Ar ®4 R, which is module-finite over the regular ring Ar and which is faithfully
flat and purely inseparable over R. The maximal ideal of R expands to the maximal
ideal of Rr. The residue class field of Ry is Kr.

We note that R depends on the choice of coefficient field K for R, and the
choice of I, but does not depend on the choice of system of parameters xy, ..., x4.
We refer the reader to [Hochster and Huneke 1994, §6] for more details. It is of
great importance that Rr is F-finite, that is, finitely generated as a module over
F(Rr). This implies that it is excellent; see [Kunz 1976].

It is shown in [Hochster and Huneke 1994] that, if R is reduced, then for any
sufficiently small choice of the cofinite subset I of A, R is reduced. It is also
shown in [Hochster and Huneke 1994] that if R is Cohen—Macaulay (respectively,
Gorenstein), then Rr is Cohen—Macaulay (respectively, Gorenstein).

Lemma 2.9. Let R be a complete local ring of positive prime characteristic p. Fix
a coefficient field K and a p-base A for K. Let notation be as in Discussion 2.8.

(a) Let W be an Artinian R-module with an R{F}-module structure such that the
action of F is injective. Then for any sufficiently small choice of I cofinite in
A, the action of F on Rr @g W is also injective.

(b) Suppose that F acts injectively on a given local cohomology module of R.
Then F acts injectively on the corresponding local cohomology module of Ry
for all sufficiently small cofinite I'. In particular, if R is F-injective, then so is
Rr.

(c) Suppose that R is F-pure. Then for any choice of I" cofinite in the p-base
such that Ry is reduced, and, hence, for all sufficiently small cofinite I, Rr is
F-pure.

Proof. For part (a), let V denote the finite-dimensional K -vector space that is the
socle of W. Let Wr = Rr ®g W. Because the maximal ideal m of R expands
to the maximal ideal of Rr, and Rr is R-flat, the socle in Wr may be identified
with Vr = Kr ® V. If F has a nonzero kernel on Wr then that kernel has nonzero
intersection with Vr, and that intersection will be some K -subspace of V. Pick
I" such that the dimension of the kernel is minimum. Then the kernel is a nonzero
subspace T of Vi whose intersection with V C Vr is 0. Choose a basis vy, ..., v
for V and choose a basis for 7" as well. Write each basis vector for 7" as Z?:l ajjvj,
where the a;; are elements of Kr. Thus, the rows of the matrix o = (a;;) represent
a basis for 7. Put the matrix « in reduced row echelon form: the leftmost nonzero
entries of the rows are each 1, the columns of these entries are distinct, proceeding
from left to right as the index of the row increases, and each column containing
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the leading 1 of a row has its other entries equal to 0. This matrix is uniquely
determined by the subspace T'. It has at least one coefficient a not in K (in fact, at
least one in every row), since 7 does not meet V.

Now choose I € T' such that a ¢ K/, which is possible by [Hochster and
Huneke 1994, Lemma 6.12]. Then the intersection of 7" with V» must be smaller
than T, or else T will have a Kt basis consisting of linear combinations of the v;
with coefficients in K, and this will give a matrix § over K with the same row
space over Kr as before. When we put 8 in row echelon form, it must agree with
o, which forces the conclusion that a € K1, a contradiction.

Part (b) follows immediately from part (a).

To prove part (c), consider a choice of I" sufficiently small that R is reduced.
Let E be the injective hull of K over R. For each power m' of the maximal ideal
of R, we have that

Rr‘/(mt) = Kr Qk R/m’.

Thus, the injective hull of K over Rr may be identified with Kr Q¢ E. We are
given that the map E — E ®p R!/? is injective. We want to show that the map

Er — Er ®g, (Rr)"/?

is injective. Since the image of a socle generator in E is a socle generator in ET,
it is equivalent to show the injectivity of the map E — Er ®g,. (Rr)"/?.

The completion of Rr may be thought of as the complete tensor product of
Kr with R over K C R. However, if one tensors with a module in which every
element is killed by a power of the maximal ideal we may substitute the ordinary
tensor product for the complete tensor product. Moreover, since Rr is reduced, we
may identify (Rp)!/? with (R'/P)1/,: the latter notation means that we are using
K'/P as a coefficient field for R'/7, that we are using the p-th roots A/ of the
elements of the p-base A (chosen for K) as a p-base for K!/7, and that we are
using the set I''/? of p-th roots of elements of I as the cofinite subset of A!/? in

the construction of Rll/lf’p. But
(K'Pypim = (Kp)'/P.

Keeping in mind that every element of Ep is killed by a power of the maximal
ideal, and that Er = K1 Qg E, we have that

Er ®g, RY” = (Kr ®k E) ko (Ki'” ®@gup RYP)
and so, writing L for K, we have that

Er ®g RY? Z (L ®k E) ®Logr (L'? @1 RVP).
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Now, if K is any ring, L and R are any K -algebras, S is any (L ® ¢ R)-algebra (in
our case, S = L'/? ® 1/, R'/P), and E is any R-module, there is an isomorphism

(LR®k E)QrLexr S=E®rS,

which maps (c @ u) ® s to u ® cs. (The inverse map sends u @ s to (1 @ u) ® s.
Note that (cQu)®@s =(1Qu)®cs in (L ®k E) Qrgir S-)
Applying this fact, we find that Er ®g,. Rllﬂ/ P is isomorphic with

EQr(LY?®1» RYP) = E®g (RYP @gi/p LVP) = (E ®g RYP) Qg1 LVP

by the commutativity and associativity of tensor product. But E injects into £ Qg
R'/P by hypothesis and the latter injects into (E ®g R'/?) ® x1/» L'/P simply be-
cause K'/7 is a field and L'/? is a nonzero free module over it. ]

Discussion 2.10 (Finiteness conditions on local cohomology as an F-module and
tight closure). We want to make some connections between F-submodules of local
cohomology and tight closure theory. Let R be a reduced local ring of characteristic
p > 0. Let us call a submodule of H = H,fl (R) strongly proper if it is annihilated
by a nonzero divisor of R. Assume that R has test elements. The finitistic tight
closure of 0 in a module M is the union of the submodules 0}, as N runs through
the finitely generated submodules of M. It is not known, in general, whether the
tight closure of 0 in an Artinian module over a complete local ring is the same as
the finitistic tight closure: a priori, it might be larger. See [Lyubeznik and Smith
1999; 2001; Elitzur 2003; Stubbs 2008] for results in this direction.

However, if (R, m, K) is an excellent reduced equidimensional local ring with
dim(R) = d, the two are the same for H,Z(R): if u is in the tight closure of 0 and
represented by f modulo /, = (x!, ..., x}) in HY(R) = l’in)[ R/(x{, ..., xR,
then there exists ¢ € R° such that for all ¢ = p® > 1 the class of cu? maps to 0
under the map R/1;,; — H,ﬁ(R), that is, for some kg, cu?(xy -- cxg)k e Lytvktq
forall ¢ > 1. But Iy;ik, g (X1 - cxg)ke C Iq*t (since R is excellent, reduced, and
local, it has a completely stable test element, and this reduces to the complete case,
which follows from [Hochster and Huneke 1990, Theorem 7.15]), and so if d is a
test element for R we have that cdu? € 1,, = It[q] for all g >> 0, and so the class of
u modulo /; is in the tight closure of 0 in R/I; and hence in the image of R/I; in
H,Z(R), as required.

Let us note that the finitistic tight closure of 0 in H is an F-stable strongly proper
submodule of H,ﬁ (R), as shown in [Lyubeznik and Smith 2001, Proposition 4.2].
The reason is that it is immediate from the definition of tight closure that if u € 0%,
then u? e Oji/[q], where ¢ = p¢ and N'9! denotes an image of F¢(N) in F¢(H) for
some ambient module H 2 N. In particular, u? € O*I}e( N)- Moreover, if ¢ is a test
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element for the reduced ring R, then ¢ € R° and so c is a nonzero divisor, and ¢
kills O, for every finitely generated R-module N.

Conversely, any strongly proper F-stable submodule N C H is in the tight clo-
sure of 0. If ¢ is a nonzero divisor that kills N and u € N, then cu? =0 for all g:
when we identify F¢(H) with H, u? is identified with F°(u).

What are the strongly proper submodules of H = HY(R)? If (R, m, K) is
complete with E = Eg(K) the injective hull of the residue class field and canonical
module w := HomR(H,fl(R), E), then submodules of H correspond to the proper
homomorphic images of w: the inclusion N € H is dual under Homz(_, E)toa
surjection @ —» Homg (N, E). If R is a domain, for every proper N C H we have
that ® — Hompg (N, E) is a proper surjection, and therefore is killed by a nonzero
divisor. Therefore, we have the following results of K. E. Smith [1997a]; see
Proposition 2.5 on page 169 and the remark on page 170 immediately following
the proof of Proposition 2.5. See also [Smith 2003, Theorem 3.1.4], where the
restricted generality is not needed.

Proposition 2.11 (K. E. Smith). If R is a reduced equidimensional excellent local
ring of characteristic p, then the tight closure 0* of 0 in H,ﬁ(R) (which is the
same in the finitistic and ordinary senses) is the largest strongly proper F-stable
submodule of H,‘nl(R). If R is a complete local domain, it is the largest proper F-
stable submodule of H,ﬁ (R).

A Noetherian local ring is called F-rational if some (equivalently, every) ideal
generated by parameters is tightly closed. An excellent F-rational local ring is a
Cohen—Macaulay normal domain. The completion of an excellent F-rational local
ring is again F-rational. See [Hochster and Huneke 1994, Proposition 6.27a]. From
this and Discussion 2.10 we have at once:

Proposition 2.12 [Smith 1997a, Theorem 2.6, p. 170]. Let R be an excellent
Cohen—Macaulay local ring of characteristic p and Krull dimension d. Then R
is F-rational if and only iin(R) is a simple R{F}-module.

Example 2.13. The ring obtained by killing the size ¢ minors of a matrix of in-
determinates in the polynomial ring in those indeterminates is an example of an
F-rational ring. In fact this ring is weakly F-regular, that is, every ideal is tightly
closed. The local ring at the origin is therefore FH-finite by the above result: the
unique nonvanishing local cohomology module is R{F}-simple.

Proposition 2.14 [Smith 1997b, 4.17.1]. Let R be a Cohen—Macaulay local do-
main and suppose that there is an m-primary ideal A such that A1* C I for every
ideal I of R generated by part of a system of parameters. Then R has finite FH-
length.
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Proof. Let d be the dimension of R. By the discussion above, every proper F-stable
submodule of H = Hi(R) is contained in 07,. But the discussion above shows that
07, is a union of submodules of the form 7*/I where I is a parameter ideal, and
so 07, is killed by 2, and has finite length even as an R-module. ]

See Theorem 4.22, which gives a stronger conclusion when the residue class
field is perfect and R is F-injective.

Example 2.15. Let R = K[ X, Y, Z]|/(X? + Y3 + Z3), where K is a field of
positive characteristic different from 3. Then R is a Gorenstein domain, and the
tight closure of 0 in H? (R) is just the socle, a copy of K: the tight closure of every
parameter ideal is known to contain just one additional element, a representative
of the generator of the socle modulo the parameter ideal. Evidently R is FH-finite.
It is known (see, for example, [Hochster and Roberts 1976, Proposition 5.21c,
p. 157]) that R is F-injective if and only if the characteristic of K is congruent to
1 modulo 3. If the characteristic is congruent to 2 modulo 3, R[[¢] does not have
FH-finite length by Theorem 4.16 of Section 4.

Example 2.16. We construct a complete local F-injective domain of dimension
one (hence, it is Cohen—Macaulay) that is not FH-finite. Note that Theorem 4.22
implies that there are no such examples when the residue class field of the ring is
perfect.

Let K be an infinite field of characteristic p > 0 (it will be necessary that K not
be perfect) and let L be a finite algebraic extension field of K such that

(1) [L : LP[K]] > 2 (all one needs is that the dimension of L/LP[K] over K is
at least 2) and

(2) L does not contain any element of K'/7? — K (equivalently, L’ N K = KP).

Then the quotient L /K has infinitely many K {F}-submodules but F acts injec-
tively on it. Moreover, if R = K + xL[[x] € L[[x] then R is a complete local
one-dimensional domain that is F-injective but not FH-finite.

The conditions in (1) and (2) above may be satisfied as follows: if k is infinite
perfect of characteristic p > 2, K = k(u, v), where u and v are indeterminates, and

L=K[yl/(* +uy” —v),
then (1) and (2) above are satisfied.

Proof. The image of L under F is L” —this need not be a K-vector space, but
L, = LP[K] is a K-vector space containing the image of F. All of the K-vector
subspaces of L strictly between L; and L are F-stable, and there are infinitely
many. The statement that F acts injectively on L/K is exactly the statement that
LPNK =KP?.
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With R as above, the exact sequence
0—-R—L[x]—-L/K—0
yields a long exact sequence for local cohomology:

0— L/K— H!(R)— H!(L[x]) — 0.

m

Since L /K embeds in Hnl1 (R) as an F-stable submodule and m kills it, its R-module
structure is given by its K-vector space structure. Moreover, since F is injective
on Hnl1 (L[[x1), F-injectivity holds for R if and only if it holds for L/K.

This establishes all assertions except that the given example satisfies (1) and (2).
Note that the expression y?” 4+ uy? — v is irreducible over k[y, u, v] (the quotient
is k[y, u]). Suppose that L contains an element w of K!/? not in K. Then

[K[w]: K]=p,

and so [L : K[w]] = 2. It follows that y satisfies a monic quadratic equation over
Klw].
But if we enlarge K[w] to all of K'/? we know the quadratic equation that y
satisfies:
y2+ul/Py — /P =0,

which is clearly irreducible over K'/7 = k(u'/?, v'/P). This quadratic is unique,
so we must have u!/?, v!/P are both in K [w], a contradiction, since adjoining both
produces an extension of K of degree p?.

It remains to determine [L : LP[K]] = [K[y] : K[y”]]. Since y? satisfies an
irreducible quadratic equation over K, [K[y”]: K] =2, and so [K[y]: K[y?]] =

27” = p > 2, by assumption. (]

3. Annihilators of F-stable submodules and the FH-finite property
for F-pure Gorenstein local rings

In this section we shall prove a theorem of independent interest which can be used
to establish that certain families of radical ideals in excellent local rings are finite.
As an immediate corollary to it, we obtain that if R is local, excellent, then any
family of radical ideals closed under sum, intersection and primary decomposi-
tion is finite. Another consequence is that if R is a local ring of positive prime
characteristic p and M is an Artinian R{F}-module such that F acts injectively
on M, then the set of annihilator ideals in R of F-stable submodules of M is a
finite set of radical ideals closed under primary decomposition (R. Y. Sharp [2007,
Theorem 3.10 and Corollary 3.11] proved this result independently). In fact, it
consists of a finite set of prime ideals and their intersections. From this we deduce
that an F-pure Gorenstein local ring is FH-finite. We say that a family of radical
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ideals of a Noetherian ring is closed under primary decomposition if for every ideal
[ in the family and every minimal prime P of I, the ideal P is also in the family.
The following result is the main theorem of this section.

Theorem 3.1. Let M be a Noetherian module over an excellent local ring (R, m).
Then there is no family {N,},ca of submodules of M satisfying all four of the
conditions below:

(1) The family is closed under finite sum.
(2) The family is closed under finite intersection.
3) All of the ideals Anng(M/N) for N in the family are radical.

(4) There exist infinitely many modules in the family such that if N, N' are any
two of them, the minimal primes of N are mutually incomparable with the
minimal primes of N'.

Hence, if a family of submodules {N,},cp of M satisfies conditions (1), (2), and
(3) above and the set

{Anng(M/N,) : A € A}
is closed under primary decomposition, then this set of annihilators is finite.

Proof. Assume that one has a counterexample. We use both induction on the
dimension of R and Noetherian induction on M. Take a counterexample in which
the ring has minimum dimension. One can pass to the completion. Radical ideals
stay radical, and (4) is preserved (although there may be more minimal primes).
The key point is that if P, Q are incomparable primes of R, and Ris the completion
of R, then PR, Qﬁ are radical with no minimal prime in common. A common
minimal prime would contain (P + Q) R, a contradiction, since the minimal primes
of PR lie over P. This, applied together with the fact that the minimal primes of
1\7/7V are minimal over P R for some minimal prime P of M /N, enables us to pass
to the completion.

Take infinitely many N; as in condition (4). Let My be maximal among sub-
modules of M contained in infinitely many of the N;. Then the set of modules
in the family containing M, gives a new counterexample, and we may pass to all
quotients by My (M need not be in the family to make this reduction). Thus, by
Noetherian induction on M we may assume that every infinite subset of the N; has
intersection 0.

Consider the set of all primes of R in the support of an M/N;. If Q # m is in
the support of infinitely many we get a new counterexample over Ry. The (N;)o
continue to have the property that no two have a minimal prime in common (in
particular, they are distinct). Since R had minimum dimension for a counterexam-
ple, we can conclude that every Q other than m is in the support of just finitely
many M/Nj.
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Choose h as large as possible such that there are infinitely many primes of height
h occurring among the minimal primes of an M /N;. Then there are only finitely
many primes of height 4 + 1 or more occurring as a minimal prime of an M/N;,
and, by the preceding paragraph, each one occurs for only finitely many »;. Delete
sufficiently many ; from the sequence so that no prime of height bigger than &
occurs among the minimal primes of the M /N;.

Let D1(i) = ﬂizl N;. By Chevalley’s lemma, D (i) is contained in m*M
for i) sufficiently large; fix such a value of i;. Let W; = D;(i;). Let Dy(j) =
ﬂs —i;+1 Ns. Then D,(j) is contained in m?M for sufficiently large j; fix such a
value i;. Recursively, we can choose a strictly increasing sequence of integers {i,};
with igp = 0 such that every

it
N~
s=ij—1+1

is contained in m>M. In this way we can construct a sequence Wi, W», Ws, ...
with the same properties as the N; but such that all of them are in m*M. Now
Wi+ Wy + -+« + W, stabilizes for t > 0, since M is Noetherian, and the stable
value W is contained in m?>M. There cannot be any prime other than m in the
support of M/ W, or it will be in the support of M/W; for all j and this will put it
in the support of infinitely many of the original N;. Hence, the annihilator of M/ W
is an m-primary ideal, and, by construction, it is contained in m? and, therefore,
not radical, a contradiction.

It remains only to prove the final statement. If the set of annihilators were infinite
it would contain infinitely many prime ideals. Since there are only finitely many
possibilities for the height, infinitely many of them would be prime ideals of the
same height. The modules in the family having these primes as annihilator satisfy
condition (4), a contradiction. O

By applying Theorem 3.1 to the family of ideals of R, we immediately have:

Corollary 3.2. A family of radical ideals in an excellent local ring closed under
sum, intersection, and primary decomposition is finite.

Discussion 3.3. For any local ring (R, m, K) we let E denote an injective hull of
the residue class field, and we write _* for Homg(_, E). Note that E is also a
choice for E3(K), and that its submodules over R are the same as its submodules
over R. E is determined up to nonunique isomorphism: the obvious map R—
Hompg(E, E) is an isomorphism, and so every automorphism of E is given by
multiplication by a unit of R.

Now suppose that R is complete. Then RY = E and EY = R, by Matlis duality.
Matlis duality gives an antiequivalence between modules with ACC and modules
with DCC: in both cases, the functor used is a restriction of _". In particular, the
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natural map N — NVV is an isomorphism whenever N has DCC or ACC. Note
that there is an order-reversing bijection between ideals / of R and submodules N
of E given by I — Anngl and N — AnngN': this is a consequence of the fact
that the inclusion N < E is dual to a surjection N « R so that N¥ = R/ for a
unique ideal I of R, and since I = AnngN ", we have that I/ = AnngN. Note that
NZENYYZ(R/I)Y =Z=Homg(R/I, E) = Anngl. When R is regular or even if R
is Gorenstein, E = H,Z(R).

When R is complete local and W is Artinian, Matlis duality provides a bijection
between the submodules of W and the surjections from WY = M, and each such
surjection is determined by its kernel N. This gives an order-reversing bijection
between the submodules of W and the submodules of M. Specifically, V € W
corresponds to ker(WY — VV) = ker(M — VV), and N € M corresponds to
ker(MY — (M/N)"). Here, MY = (W)Y = W canonically. This bijection con-
verts sums to intersections and intersections to sums; the point is that the sum (inter-
section) of a family of submodules is the smallest (respectively, largest) submodule
containing (respectively, contained in) all of them, and the result follows from the
fact that the correspondence is an order antiisomorphism. Since the annihilator of
a module kills the annihilator of its dual, Matlis duality preserves annihilators: it
is obvious that the annihilator of a module kills its dual, and we have that each of
the two modules is the dual of the other. In particular, under the order-reversing
bijection between submodules V of W and submodules N of M, we have that

AnngV = Anng(M/N).

Discussion 3.4. Let (R, m, K) — (S, n, L) be local, and suppose that mS is
n-primary and that L is finite algebraic over K: both these conditions hold if S
is module-finite over R. Let E = Er(K) and Eg(L) denote choices of injective
hulls for K over R and for L over S, respectively. The functor Homg(_, E) from
S-modules to S-modules may be identified with

Homp(_®g S, E) =Homg(_, Homg(S, E)),

which shows that Homg (S, E) is injective as an S-module. Every element is killed
by a power of the maximal ideal of S, since m.S is primary to n, and the value of the
functoron L = S/n is Homg (L, E) =Homg (L, K) since the image of L is killed
by m. But this is L as an L-module. Thus, Eg(L) = Homg(S, E), and the functor
Hompg(_, E), on S-modules, is isomorphic with the functor Homg( _, Eg(L)).

The following proposition can be seen as a consequence of the more general
Theorem 3.6 and its corollary in [Sharp 2007]. However, its proof is not very
difficult and we include it here for the convenience of the reader.

Proposition 3.5. Let R be a ring of characteristic p and let W be an R{F}-module.
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(a) If F acts injectively on W, the annihilator in R of every F-stable submodule
is radical.

(b) If I is the annihilator of an F-stable submodule V of W, then I :g f is also
the annihilator of an F-stable submodule, namely, fV. Hence, if I is radical
with minimal primes Py, ..., Py then every P; (and every finite intersection
of a subset of the P}) is the annihilator of an F-stable submodule of M.

Proof. If V is F-stable and u € R is such that u” € AnngV, then
FwuV)=u?F(V)Cu?V =0.

Since F is injective on W, uV = 0. This proves part (a). For part (b), note that fV
is F-stable since F(fV)= fPF(V) C fPV C fV and u(fV) =0 if and only if
(uf)V=0ifand only if uf € AnngV =1 if and only if u € I :g f. For the final
statement, choose f in all of the P; except P;, and note that I :3 f = P;. More
generally, given a subset of the P;, choose f in all of the minimal primes except
those in the specified subset. (]

Now we are in position to state an important consequence of our main result in
this section. This result has also been obtained by Sharp [2007, Theorem 3.10 and,
more precisely, Corollary 3.11]. Our proof is via Theorem 3.1 so we will include
here.

Theorem 3.6 (R. Y. Sharp). Let R be a local ring of positive prime characteristic
p and let W be an Artinian R{F}-module. Suppose that F acts injectively on W.
Then

{AnngV :V is an F-stable submodule of W'}

is a finite set of radical ideals, and consists of all intersections of the finitely many
prime ideals in it.

Proof. By Proposition 3.5, it suffices to prove that family of annihilators is fi-
nite. We may replace R by its completion without changing M or the action of
F on M. The set of F-stable submodules is unaffected. The annihilator of each
such submodule in R is obtained from its annihilator in R by intersection with R.
Therefore, it suffices to prove the result when R is complete, and we henceforth
assume that R is complete.

As in Discussion 3.3 fix an injective hull E of K and let ¥ = Homg(_, E).
Matlis duality gives a bijection of submodules of W with submodules of M = W".
The F-stable submodules of W are obviously closed under sum and intersection.
Therefore, the submodules N of M that correspond to them are also closed under
sum and intersection. We refer to these as the costable submodules of M. The
annihilators of the modules M /N, where N runs through the costable submodules
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of M, are the same as the annihilators of the F-stable submodules of W. We may
now apply the final statement of Theorem 3.1. (Il

It is now easy to prove the second main result of this section. Recall that a local
ring (R, m, K) of Krull dimension d is quasi-Gorenstein if H%(R) is an injective
hull of K; equivalently, this means that R is a canonical module for R in the sense
that its Matlis dual is H (R).

Theorem 3.7. Let (R, m, K) be a local ring of prime characteristic p > 0. If
R is F-pure and quasi-Gorenstein, then Hi(R) has only finitely many F-stable
submodules. Hence, if R is F-pure and Gorenstein, then R is FH-finite.

Proof. There is no loss of generality in replacing R by its completion. We apply
Theorem 3.6 to the action of F on H,ﬁ(R) = E. The point is that because E¥ = R,
the dual of the F-stable module V has the form R/, where [ is the annihilator of
V, and so V is uniquely determined by its annihilator.

Since there are only finitely many possible annihilators, there are only finitely
many F-stable submodules of HY(R). g

In relation to this theorem the following observation is interesting.! Since we
do not know a reference for it in the case of F-rational rings, we will also sketch a
proof of it. For the definition of tight closure in the case of modules and its variant
of finitistic tight closure, we refer the reader to [Hochster and Huneke 1990]. The
result on F-rational rings is not actually related to rest of the paper, but we include
it for the sake of completness.

Remark 3.8. Let (R, m, K) be alocal ring of prime characteristic p > 0. Assume
that R is quasi-Gorenstein. Then R is F-pure if and only if R is F-injective. If R
is excellent as well, then R is weakly F-regular if and only if R is F-rational.

Proof. If R is F-pure (respectively, weakly F-regular), then it is immediate that R
is F-injective (respectively F-rational).

Assume that R is F-injective. To prove that R is F-pure, one can proceed exactly
as in [Fedder 1983, Lemma 3.3].

Now assume that R is F-rational. We can assume that R is complete. Let
E = ER(K). To prove that R is weakly F-regular we need to show that the finitistic
tight closure of zero in E equals zero, that is,

S
0=03"¢.

But E is isomorphic to H = H,ﬁ(R), and Ozf & = 03, = 0 since R is F-rational.
This finishes the sketch of the proof. (I

'We thank Karl Schwede for suggesting that we incorporate this remark in our paper.
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4. F-purity, finite length, and antinilpotent modules

In this section we prove that certain quotients by annihilators are F-split, and we
study the family of F-stable submodules of the highest local cohomology both in
the F-pure Cohen—Macaulay case, and under less restrictive hypotheses. We do
not know an example of an F-injective ring which does not have finite FH-length,
but we have not been able to prove that one has finite FH-length even in the F-split
Cohen—Macaulay case. We also give various characterizations of when a local ring
has finite FH-length.

Theorem 4.1. Let (R, m, K) be a local ring of prime characteristic p > 0 of
Krull dimension d. Suppose that R is F-split. Let N be an F-stable submodule of
H,Z(R), and let J = Anng N. Then R/J is F-split. In fact, let ® : R — RY? such
that ®(r) = r'/P. If T : RY? — R is any R-linear splitting, then for every such
annihilator ideal J, T(®(J)) C J, and so T induces a splitting

(R/NHVP = RYVP/D(J)— R/J.

Proof. Let H=HY(R). Whenwe apply _®gH tot:RCR"? andto T : R'/? — R,
we get maps

o:H— R’ ®H=HI(R"?)= H!(R'?),
where n is the maximal ideal of R!/?, and also amap T: H,ﬁ (R'/P)— H. Therefore

o equals t Qg idy and T equals T ®gidy.
Letu € H and s € RY/?. We have

T(sa(u)) = (T ®ridy)(s(1®@u)) = (T @ridy)(s ®u) =T (s) S u,

and since 7' (s) € R, this is simply T (s)u. To show that T(J'/Py C J, we need to
prove that T(J'/P)kills N in HZ(R). Take u € N and j € J. Then

TGP =TGP (am)),

taking s = j!/7. But now, since N is an F-stable submodule of H%(R), @ maps
N into the corresponding submodule N’ of H%(R!/P), whose annihilator in R!/?
is ®(J). We therefore have that j!/? kills «(N) € N’. This is the displayed fact
(*%) in Discussion 2.4. Therefore, T (j'/?)u =0, and T(jl/P) eJ. U

We now want to discuss the condition of having finite FH-length.

Proposition 4.2. Let R be a characteristic p local ring with nilradical J, and let
M be an Artinian R{F}-module. Then M has finite R{F}-length if and only if JM
has finite length as an R-module and M /J M has finite (R/J){F}-length.

Proof. JM has a finite filtration by submodules J'M, and F acts trivially on each
factor. 0
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Because of Proposition 4.2, we shall mostly limit our discussion of finite FH-
length to the case where R is reduced.

Discussion 4.3. Let (R, m, K) be alocal ring of characteristic p > 0 and let M be
an Artinian R{F}-module. We note that M is also an Artinian R {F}-module with
the same action of F, and we henceforth assume that R is complete in this discus-
sion. We shall also assume that R is reduced. (In the excellent case, completing
will not affect whether the ring is reduced.) Fix an injective hull E = Ex(K) for
the residue field and let " denote the functor Homgz( _, E).

Lemma 4.4. Let (R, m, K) be a local ring of characteristic p. Then we may
construct S local and faithfully flat over R with maximal ideal mS such that S is
complete and faithfully flat over R, such that S is Cohen—Macaulay if R is Cohen—
Macaulay, such that S is F-injective if R is, and such that S is F-split if R is F-pure.
For every i, the poset of F-stable modules of H,;;(R) injects by a strictly order-
preserving map into the poset of F-stable modules of H,;;S(S) = H! (S). Hence, R
is FH-finite (respectively, has finite FH-length) if S is FH-finite (respectively, has
FH-finite length).

Proof. By Lemma 2.7, we may first replace R by its completion R. We then
choose a coefficient field K and a p-base A for K, and replace R by Rr for T a
sufficiently small cofinite subset of A, using Lemma 2.9. Finally, we replace Rr
by its completion. The map on posets is induced by applying S ®p . ]

Discussion 4.5 (Reductions in the Cohen—Macaulay F-pure case). Consider the
following three hypotheses on a local ring R of prime characteristic p > 0:

(1) R is F-injective and Cohen—Macaulay, with perfect residue class field.
(2) R is F-pure.
(3) R is F-pure and Cohen—Macaulay.

In all three cases we do not know, for example, whether the top local coho-
mology module has only finitely many F-stable submodules. The point we want
to make is that Lemma 4.4 permits us to reduce each of these questions to the
case where R is complete and F-finite. Moreover, because F-pure then implies
F-split, in cases (2) and (3) the hypothesis that R be F-pure may be replaced by
the hypothesis that R be F-split.

If V C V' C W are F-stable R-submodules of the R{F}-module W, we refer to
V’/V as a subquotient of W. Also, we let F*(V) denote the R-span of F¥(V) in
W. We next note:

Proposition 4.6. Let R be a ring of positive prime characteristic p and let W be
an R{F}-module. The following conditions on W are equivalent:

(a) If V is an F-stable submodule of W, then F acts injectively on W/ V.
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(b) F acts injectively on every subquotient of W.
(c) The action of F on any subquotient of W is not nilpotent.
(d) The action of F on any nonzero subquotient of W is not zero.

(e) If V C V' are F-stable submodules of W such that F*(V') C V for some k > 1
then V' =V.

Proof. (a) and (b) are equivalent because a subquotient V’/V is an R{F'}-submodule
of W/ V. If the action of F on a subquotient V”/V C W/V is not injective, the
kernel has the form V'/V where V' is F-stable. Hence (b) and (d) are equivalent. If
F is nilpotent on V”/V it has a nonzero Kernel of the form V'/ V. This shows that
(c) is also equivalent. (e) follows because F k kills V' /V ifand only if F kivhycw.

O

Definition 4.7. With R and W as in Proposition 4.6 we shall say that W is an-
tinilpotent if it satisfies the equivalent conditions (a)—(e).

Theorem 4.8 [Lyubeznik 1997, Theorem 4.7, p. 108]. Let R be a local ring of
prime characteristic p > 0 and let W be an Artinian R-module that has an action
F of Frobenius on it. Then W has a finite filtration

0=LoSNCSLICSN S CL,SN=M

by F-stable submodules such that every N;/L; is nilpotent, that is, killed by a
single power of F, while every L j /N ;_ is simple in the category of R{F}-modules,
with a nonzero action of F on it. The integer s and the isomorphism classes of the
modules L j/N;_y are invariants of W.

Note that the assumption that the action of F on a simple module L # 0 is
nonzero is equivalent to the assertion that the action of F is injective, for if F' has
a nontrivial kernel it is an R{F}-submodule and so must be all of L.

Proposition 4.9. Let the hypothesis be as in Theorem 4.8 and let W have a filtra-
tion as in that theorem. Then:

(a) W has finite length as an R{F}-module if and only if each of the factors N /L
has finite length in the category of R-modules.

(b) W is antinilpotent if and only if in some (equivalently, every filtration) as in
Theorem 4.8, the nilpotent factors are all zero.

Proof. (a) This comes down to the assertion that if a power of F kills W then
W has finite length in the category of R{F}-modules if and only if it has finite
length in the category of R-modules. But W has a finite filtration with factors
FJ(W)/FJT1 (W) on which F acts trivially, and the result is obvious when F acts
trivially.
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(b) If W is antinilpotent, then the nilpotent factors in any finite filtration must
be 0, since they are subquotients of W. Now suppose that W has a finite filtration
by simple R{F}-modules on which F acts injectively. Suppose that we have 0 C
V C V' C W such that F acts trivially on V’/V. This filtration and the filtration
by simple R{F}-modules on which F acts injectively have a common refinement
in the category of R{F}-modules. This implies that V'/V has a finite filtration
in which all the factors are simple R{F}-modules on which F acts injectively.
Since F must be zero on the smallest nonzero submodule in the filtration, this is a
contradiction. O

Corollary 4.10. Let R be a local ring of positive prime characteristic p. If M is
an Artinian R-module that is antinilpotent as an R{F}-module, then so is every
submodule, quotient module, and every subquotient of M in the category of R{F}-
modules.

Proof. 1t suffices to show this for submodules and quotients. But if N is any R{F}-
submodule, the filtration 0 € N € M has a common refinement with the filtration
of M with factors that are simple R{F'}-modules with nontrivial F-action. O

We also note the following, which is part of [Lyubeznik 1997, Theorem 4.2].

Theorem 4.11 (Lyubeznik). Let T — R be a surjective map from a complete
regular local ring T of prime characteristic p > 0 onto a local ring (R, m, K).
Then there exists a contravariant additive functor ¥t g from the category of R{F}-
modules that are Artinian over R to the category of Fr-finite modules in the sense
of Lyubeznik such that:

(a) 7 R is exact.
(b) ¥1.r(M) =0 if and only if the action of some power of F on M is zero.

Theorem 4.12. Let R be a local ring of positive prime characteristic p. Let M be
an Artinian R-module that is antinilpotent as an R{F}-module. Then M has only
finitely many R{F}-submodules.

Proof. We may replace R by its completion and write R as 7/J where T is a
complete regular local ring of characterisitc p. By Theorem 4.11 above, we have
a contravariant exact functor ¥r g on R{F}-modules Artinian over R to Fr-finite
modules in the sense of Lyubeznik. This functor is faithfully exact when restricted
to antinilpotent modules, and all subquotients of M are antinilpotent. It follows
that if M and M, are distinct R{F}-submodules of M, then N; and N, are distinct,
where
N; = ker(%(M) — %(M,))

fori =1, 2. By the main result of [Hochster 2008], an F7-finite module in the sense
of Lyubeznik over a regular local ring 7 has only finitely many Fr-submodules,
from which the desired result now follows at once. ]
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Discussion 4.13 (Local cohomology after adjunction of a formal indeterminate).
Let R be any ring and M an R-module. Let x be a formal power series indetermi-
nate over R. We shall denote by M (x~!) the R[[x]-module

M &7 (ZIx, x~'1/Z[x)).

This is evidently an R[x]-module, and since every element is killed by a power of
x, it is also a module over R[[x]. Note that if R is an A-algebra, this module may
also be described as M ®, (A[x, x~']/A[x]). In particular,

M(x~ "= M ®g (R[x, x"'1/R[x]),

and if R contains a field K, M(x~!) = M ®x (K[x, x~']/K[x]). We have that
M=M®@x™" forall n > 1 via the map u — u ® x~", and we write Mx~" for
M @ x~". As an R-module, M (x~!) = ,—; Mx™", a countable direct sum of
copies of M. The action of x kills Mx~! and for n > 1 maps Mx~" to Mx~"—D
in the obvious way, sending ux ™" to ux~"~Y. Then M — M(x~') is a faithfully
exact functor from R-modules to R[[x]]-modules. If R has prime characteristic
p > 0and M is an R{F}-module, then we may also extend this to an R[[x]{F}-
module structure on M (x~!) by letting F send ux™" +— F(u)x~P". This gives a
convenient way of describing what happens to local cohomology when we adjoin
a formal power series indeterminate to a local ring R.

Proposition 4.14. Let R be a Noetherian ring, let I be a finitely generated ideal
of R, and let x be a formal power series indeterminate over R. Let J denote the
ideal (I, x)R[x] of R[x]

(a) Foreveryi,
Hj(RIx]) = Hj(R)(x7").
If R has prime characteristic p > 0 then the action of Frobenius on H } (RIxM)
agrees with the action on H ; (R)(x~"y described above.
(b) In particular, if (R, m, K) is local and J = n, the maximal ideal of R[[x],
then for every i,
Hi(RIxT) = H,, (R)(x ™).
(c) If (R, m, K) is local and M is Artinian, then M{x~"') is Artinian over R[[x].
(d) If (R, m, K) is local of prime characteristic p > 0 and M is a simple R{F'}-

module on which the action of F is not 0, then M (x~') is a simple R[x{F}-
module.

(e) If (R, m, K) is local of prime characteristic p > 0 and M is an antinilpotent
R{F}-module, then M {x~) is an antinilpotent R[[x]{ F'}-module.
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Proof. (a) Let f1, ..., fu € R generate I. Then H }(R) is the i-th cohomology
of the complex C*( J3 R), and H }(R[[x]]) is the i-th cohomology module of the
complex

C*(f,x; RIxID =C*(f; R)®rC*(x; RIxID.
The complex C*(x; R[[x]) is simply

0— R[x]— RlxIx—0

and has augmentation R{x~"). Since R[x], R[x], and R{x~') are all R-flat,
we have that H} (R[[x]) is the i-th cohomology module of the mapping cone of
the injection of complexes

C*(f; RIx]) = C*(f; RIx1.),

which may be identified with the cohomology of the quotient complex, and so with
the cohomology of C*(f; R(x~1)) = C*(f; R)(x~"). Since R(x~') is R-flat (in
fact, R-free), applying__ ®r R(x~') commutes with formation of cohomology,
from which the result follows. Part (b) is immediate from part (a).

To prove (c), note that every element of M (x~!) is killed by a power of m and
of x, and so by a power of n. It therefore suffices to see that the annihilator of n
is a finite-dimensional vector space over K. But the annihilator of x is Mx~!, and
the annihilator of m in Mx~! is isomorphic with the annihilator of m in M.

We next prove (d). Since the kernel of the action of F on M is an F-stable
R-submodule of M, the fact that M is a simple R{F}-module implies that F acts
injectively on M. Suppose that N is a nonzero R[x]/{F}-submodule of M, and
that u;x~!' 4+ .- - +u;x~* € N. By multiplying by x*~! we see that u;x~! € N.
Hence, N has nonzero intersection Njx ' with Mx~!. N; is an R-submodule of
M. 1t is also F-stable, since if ux~! € N then

P VFux Y =Fuwx'eNnMx™".

Thus, N contains Mx~!. In every degree K, let Nyx~"=NNMx~—". Then N, #£0,
forif u e M — {0} and ¢ = p° > h,

X" Fe(ux™Y = Fé(u)x !,

and F(u) # 0. Moreover, the R-submodule N, € M is F-stable, for if vx " e
Npx~, then xP"="F(vx=") = F(v)x™" € Njx~". Thus, N, = M for all h > 1,
and so N = M.

For part (e), if M has a finite filtration by simple R{F'}-modules M; on which F
has nonzero action, then applying N +— N (x~!) gives a finite filtration of M (x~!)
with factors M ( x~1), each of which is a simple R[x][{F}-module by part (d) on
which F has nonzero action. [l
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Theorem 4.15. Let (R, m, K) be a local ring of prime characteristic p > 0. Let
x be a formal power series indeterminate over R. Let M be an R{F}-module that
is Artinian as an R-module. Then the following are equivalent:

(1) M is antinilpotent.
(2) M(x~"y has finite length over R[x]{F}.
(3) M({x~"Y has only finitely many F-stable submodules over R[[x].

When these equivalent conditions hold, M has only finitely many F-stable mod-
ules over R.

Proof. We show that (2) = (1) = (3). Assume (2). If M is not antinilpotent, it has
a subquotient N # 0 on which the action of F is 0. Then N{x~!) is a subquotient
of M(x™"), and so has finite length as an R[[x]l{ F}-module. Since F kills it, it
must have finite length as an R[[x]l-module. But this is clearly false, since no power
of x kills N(x~1).

To see that (1) = (3), note that by Proposition 4.14 (e), the fact that M is
antinilpotent implies that M (x~!) is antinilpotent over R[[x]], and the result now
follows from Theorem 4.12. The implication (3) = (2) is obvious. O

The next result is an immediate corollary.

Theorem 4.16. Let (R, m, K) be a local ring of prime characteristic p > 0 and
let x = x1 and x3, ..., x, be formal power series indeterminates over R. Let
R, = R[[x1, ..., x,]l, where Ry = R, and let m,, be its maximal ideal. Then the
following conditions on R are equivalent:

(1) The local cohomology modules H,;(R) are antinilpotent.

(2) The ring R[[x] has FH-finite length.

(3) The ring R, is FH-finite for every n € N.

(4) The local cohomology modules H,’;ln (R,) are antinilpotent over R, for all
neN.

(5) The ring R, has FH-finite length for all n € N.

When these conditions hold, R is F-injective.

Proof. We have that (1) = (4) by Proposition 4.14 (a) and (e) and a straightfor-
ward induction on n. This implies that R, is FH-finite for all n by Theorem 4.12.
Thus, (4) = (3) = (5) = (2), and it suffices to prove that (2) = (1), which is a
consequence of Theorem 4.15.

The statement that R is then F-injective is obvious, since F acts injectively on
any antinilpotent module. O
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Corollary 4.17. Let (R, m, K) be an F-pure Gorenstein local ring of prime char-
acteristic p > 0 and Krull dimension d. Then H,Z(R) is antinilpotent, and so F
acts injectively on every subquotient of H,ﬁ (R).

Proof. The hypothesis also holds for R[[x]], and so the result follows from Theorem
3.7 and Theorem 4.16. |

Corollary 4.18. Let (R, m, K) be an F-pure Gorenstein local ring of prime char-
acteristic p > 0 and of Krull dimension d. Let J be an ideal of R such that
dim(R/J) = d. Then H,Z (R/J) is antinilpotent, and so F acts injectively on
H,Z(R /J) (here, F is induced naturally from the Frobenius action F on R/J).
Hence, if R/J is Cohen—Macaulay, it is F-injective.

Proof. Since R and R/J have the same dimension, the long exact sequence for local
cohomology gives an R{F}-module surjection H,Z(R) —» H,‘,i (R/J), which shows
that H,ﬁ’l(R /J) is antinilpotent as an R{F}-module, and therefore as an (R/J){F}
module as well. [l

Next we shall need the following result from [Watanabe 1991]: the F-pure case
is attributed there to Srinivas. See [Watanabe 1991, Theorem 2.7] and the comment
that precedes it.

Theorem 4.19 (Watanabe and Srinivas). Leth: (R, m, K) — (S, n, L) be alocal
homomorphism of local normal domains of prime characterisitic p > 0 such that S
is module-finite over R and the map h is étale in codimension one. If R is strongly
F-regular, then so is S. If R is F-pure, then so is S.

The explicit statement in [Watanabe 1991] is for the F-regular case, by which
the author means the weakly F-regular case. However, the proof given uses the
criterion (i) of [Watanabe 1991, Proposition 1.4], that the local ring (R, m, K)
is weakly F-regular if and only if O is tightly closed in Eg(K), which is correct
for finitistic tight closure but not for the version of tight closure being used in
[Watanabe 1991]. In fact, condition (i) as used in [Watanabe 1991] characterizes
strong F-regularity in the F-finite case, and we take it as the definition of strong
F-regularity here.

On the other hand, there are no problems whatsoever in proving the final state-
ment about F-purity. The action of Frobenius Fs: Es(L) — Fs(Es(L)) is shown to
be the same as the action of Frobenius when Eg(L) is viewed as R-module. Since
R is F-pure, the Frobenius action M — Fg(M) is injective for any R-module.

Corollary 4.20 (Watanabe). Let (R, m) be a normal local domain of characteris-
tic p > 0. Let I be an ideal of pure height one, and suppose that I has finite order
k > 1 in the divisor class group of R. Choose a generator u of I®. We let
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with 1 identified with R using the isomorphism R = I® such that 1 — u. (If
t is an indeterminate, we can give the following more formal description: form
T = @?OZO [t C R[t], and let S = T/(utk —1).) This ring is module-finite over
R, and if k is relatively prime to p, it is étale over R in codimension one.

Hence, if k is relatively prime to p, then S is strongly F-regular if and only if R
is strongly F-regular, and S is F-pure if and only if R is F-pure.

Moreover, if | = w is a canonical module for R, then S is quasi-Gorenstein.

The final statement is expected because, by the discussion of canonical modules
for module-finite extensions in Discussion 2.2, we have that wg = Homg (S, w) and
Hompg(0®, w) Z 0=~ = *k=0=D) See [Watanabe 1991; Tomari and Watan-
abe 1992; Watanabe and Yoshida 2004, §3; Singh 2003] for further details and
background on this technique. The result above will enable us to use this “canon-
ical cover trick” to prove the theorem below by reduction to the quasi-Gorenstein
case. A word of caution is in order: even if R is Cohen—Macaulay, examples in
[Singh 2003] show that the auxiliary ring S described in Corollary 4.20 need not be
Cohen—Macaulay, and so one is forced to consider the quasi-Gorenstein property.
There are examples (see [Singh 2003, Theorem 6.1]) where R is F-rational but §
is not Cohen—Macaulay. On the other hand, if R is strongly F-regular, the result
of [Watanabe 1991] shows that S is as well; in particular, S is Cohen—Macaulay in
this case.

Theorem 4.21. Let R be a Cohen—Macaulay F-pure normal local domain of Krull
dimension d such that R has canonical module w = wg of finite order k relatively
prime to p in the divisor class group of R. Then H,Z(R) is antinilpotent, so R is
FH-finite.

Proof. Since the hypotheses are stable under adjunction of a power series indeter-
minate, it follows from Theorem 4.16 that it is sufficient to show that R is F H-
finite. We may identify w with a pure height one ideal of / of R. We form the
ring S described in Corollary 4.20. Then S is F-pure and quasi-Gorenstein, and
so HZ(S) has only finitely many F-stable submodules by Theorem 3.7. The same
holds for H¢(R) by Lemma 2.7 (b), while the lower local cohomology modules
of R with support in m vanish. U

The following improves the conclusion of Proposition 2.14 with some additional
hypotheses.

Theorem 4.22. Let (R, m, K) be an F-injective Cohen—Macaulay local ring with
of prime characteristic p > 0 such that K is perfect. Suppose that R has an m-
primary ideal A such that AI* C I for every ideal I generated by a system of
parameters. Let d = dim(R). Then H,fl(R) is antinilpotent, so that R and every
formal power series ring over R is FH-finite.
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Proof. Let H = H,Z(R) and let V =0%,, which, as in the proof of Proposition 2.14,
is killed by 2 and has finite length. Then R/%l is a complete local ring with a
perfect residue class field, and contains a unique coefficient field K. This gives V
the structure of a K-module, that is, it is a finite-dimensional K -vector space, and
F :V — V is K-linear if we let the action of K on the second copy of V be such
that c-v =cPv for c € K. Since K is perfect, the dimension of V does not change
when we restrict F in this way. Since R is F-injective, the action of F on V is then
a vector space isomorphism, and is then also an isomorphism when restricted to
subquotients that are K { F'}-modules. It follows that V is antinilpotent over R{F},
and to complete the proof it will suffice to show that F' cannot act trivially on the
simple R{F}-module H/ V.
Choose a system of parameters xi, ..., xs for R. Let

I, = (xi, e, x;)R.

For any sufficiently large value of #, we may identify V with I*/I. If F acts
trivially on H/V, then for all large ¢, the image of 1 € R/I, € H under F is 0 in
H/V, which means that (x; - - - x4)?~" € I, and then A(x; - - - x4)?~" C I ;. This
implies that

. -1
AC Iy g (1 x)P ™ = Tpi—pt1,

for all ¢ >> 0, which is clearly false. O

S. Face rings

We give a brief treatment of the decomposition of the local cohomology of face
rings over a field with support in the homogeneous maximal ideal. This is discussed
in [Bruns and Herzog 1993, §5.3], although not in quite sharp enough a form for
our needs here, and there are sharp results in substantially greater generality in
[Brun et al. 2007, Theorem 5.5, p. 218]. However, neither result discusses the
R{F}-structure.

Let K be a fixed field of positive characteristic p and let A be an abstract finite
simplicial complex with vertices xi, ..., x,. Let I denote the ideal in the poly-
nomial ring § = K[x1, ..., x,] generated by all monomials in the x; such that the
set of variables occurring in the monomial is not a face of A. This ideal is evi-
dently generated by the square-free monomials in the x; corresponding to minimal
subsets of the variables that are not faces of A. Let K[A] = S/, the face ring (or
Stanley—Reisner ring) of A over K. The minimal primes of K[A] correspond to
the maximal faces o of A; the quotient by the minimal prime corresponding to o
is a polynomial ring in the variables occurring in o. The Krull dimension of K[A]
is therefore one more than the dimension of the simplicial complex A.
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If o is any face of A, the link, denoted link(o'), of o in A is the abstract simplicial
complex consisting of all faces 7 of A disjoint from o such that c Ut € A. The
link of the empty face is A itself. By a theorem of G. Reisner [1976], K[A] is
Cohen—Macaulay if and only if the reduced simplicial cohomology of every link
vanishes except possibly in the top dimension, that is, in the dimension of the link
itself.

Note that the reduced simplicial cohomology H (A; K) of a finite simplicial
complex A # @ is the same as the simplicial cohomology unless i = 0, in which
case its dimension as a K-vector space is one smaller. If A is an i-simplex, the
reduced simplicial cohomology vanishes in all dimensions, unless A is empty, in
which case we have H~'(2; K) = K, H (; K) =0 for all i # —1. Note also
that & is the only simplicial complex A such that Hi(A; K) # 0 for a value of
i <O.

Let m be the homogeneous maximal ideal of K[A]. We shall show that K[A],,
and its completion are FH-finite in all cases, and in fact, the local cohomology
modules are antinilpotent. This follows from the following theorem, which also
recovers Reisner’s result [1976] mentioned above in a finer form; it also gives a
completely explicit description of all the H! (K[A]), including their structure as
R{F}-modules. We write |v| for the cardinality of the set v. If v € A, we let

K[v]=K[A]/(x; - xi ¢ v),

which is a K[A]-algebra and is also the polynomial ring over K in the variables
x; that are vertices of v. Then H,’;(S,,) vanishes except when i = |v|. Wheni =v
it is the highest nonvanishing local cohomology of a polynomial ring, and, if the
characteristic of K is p > 0, itis a simple R{F}-module on which F acts injectively.

Note that if p > 0 is prime, k = Z/pZ, R and K are rings of characteristic p,
and H is an R{F}-module, K ®, H has the structure of a (K ®, R){F}-module:
the action of F' is determined by the rule F(c @ u) = c” ® F(u) for all c € K and
u € H. This is well defined because the action of F' restricts to the identity map
onZ/pZ.

Theorem 5.1. With R = K[A] as above, let k denote the prime field of K. Let m
and [ be the homogeneous maximal ideals of R and k[A], respectively. Then

HY (R = @D B (link(v); K) @ H)Y (k[v]). (1)
VEA

If K has characteristic p > 0, this is also an isomorphism of R{F}-modules, with
the action of F described in the paragraph above. Hence, every H,il (R) is a finite
direct sum of simple R{F}-modules on which F acts injectively.
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If (Ry, my) is either R,, or its completion, then for all i, H! (R) may be identi-
fied with H,’;,ll (Ry), and H,;'“ (Ry) is a finite direct sum of simple R{F}-modules on
which F acts injectively, and so is antinilpotent and FH-finite over R;.

Proof. If o is a subset of the x; we denote by x (o) the product of the x; for j € 0.
Thus, in K[A], the image of x (o) is nonzero if and only if ¢ € A. Our convention
is that 0 = @ is in A, is the unique face of dimension —1, and that x (@) = 1. We
write [A]; for the set of faces of A of dimension i. Then H,;(K [A]) is the i-th
cohomology module of the complex C*® whose i-th term is displayed below:

0> K[A] > > P K[Alio)—> .

ogeA;_|

The initial nonzero term K[A] may be thought of as K[A],(z) and the highest
nonzero terms occur in degree dim(A) + 1. Let 8 = (64, ..., 6,) € Z" by an n-
tuple of integers. We want to calculate that §-graded piece of H, (K[A]). This
is the same as the i-th cohomology of the #-graded piece of the complex: denote
by C*[60] the 6-graded piece of the complex C*. Let neg(8) (respectively, pos(8);
respectively, supp(6) ) denote the set of variables x; such that 6; is strictly negative
(respectively, strictly positive; respectively, nonzero). Thus, supp(6) is the disjoint
union of neg(f) and pos(8).

Let v = neg(f) and & = pos(9). Then K[A], () has a nonzero component in
degree 0 if and only if v € 0 and 0 U € A, and then there is a unique copy
of K corresponding to 6 in the complex. By deleting the variables occurring in
v = neg(#) from each face, we find that C*[#] corresponds, with a shift in degree
by the cardinality |v| of v, to the complex used to calculate the reduced simplicial
cohomology of A, , where this is the subcomplex of the link of v consisting of all
simplices t such that tUm € A. If 7w is nonempty, A, » is a cone on any vertex in
7. Hence, the graded component of local cohomology in degree 6 can be nonzero
only when pos(f) = & and v = neg(6) € A. It now follows that

[H}, (K[AD]e = @D H M (link v)x”,

if m =@ and v € A is the set of variables corresponding to strictly negative entries
in 8, and is zero otherwise.
It follows that we may identify

H, (K[A]) = @( P A aink v)w),
VEA *supp(w)=neg(w)=v

where w runs through all monomials with nonpositive exponents such that the set
of variables with strictly negative exponents is v.
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We next want to show that if v € A, then

P [HL(KIAD] = H M (link(v); K) @k HY'(K[v]).
supp(6)=neg(0)=v

The term on the right may also be written as Hi—I-1 (link(v); K) ®, H,‘fl («[vD.
We also need to check that the actions of F agree.

The action of F on C*(x; K[A]) is obtained from the action of F, by applying
K®, ,on C*(x; k[A]). Thus, we reduce at once to the case where K = «, which
we assume henceforth.

Let y ® w be an element in the cohomology, where y € Hi="=1(link(v); K)
and w is a monomial in the variables of v with all exponents strictly negative. The
action of x; by multiplication is obvious in most cases. If x; ¢ v, the product is O.
If x; occurs with an exponent other than —1 in w, one simply gets y ® (x;w). The
main nontrivial point is that if x; occurs with exponent —1 in w, x; kills y ® w.
To verify this, let v/ = v — {x;}. Take a cocycle n that represents y. After we
multiply by x;, we get an element of H'~VI(link(1")). Note that each simplex
remaining when we delete the variables in v’ involves x;, and so that the cocycle
n’ we get from n may be viewed as a cocycle of the complex used to compute the
reduced simplicial cohomology of the closed star of x; in link(v"). Since this closed
star is a cone, that cohomology is 0. This shows that x; kills every homogeneous
component whose degree has —1 in the i-th coordinate.

We have completed the calculation of the structure of the local cohomology as
an R-module. On the other hand, given v € A, because the field is «, when F acts
on the complex

P @ BRI,
supp(6)=neg(6)=v

the value of F acting on an element of the form nw, where 7 is a cocycle, is simply
nw?, and so it follows that

Fly@w)=yQuw’.

This shows that R{F}-module structure is preserved by the isomorphism (1). [J
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