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In this paper we define Banach spaces of overconvergent half-integral weight
p-adic modular forms and Banach modules of families of overconvergent half-
integral weight p-adic modular forms over admissible open subsets of weight
space. Both spaces are equipped with a continuous Hecke action for which Up2

is moreover compact. The modules of families of forms are used to construct
an eigencurve parameterizing all finite-slope systems of eigenvalues of Hecke
operators acting on these spaces. We also prove an analog of Coleman’s theorem
stating that overconvergent eigenforms of suitably low slope are classical.
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1. Introduction

In [Ramsey 2006], the author set up a geometric theory of modular forms of weight
k/2 for odd positive integers k, complete with geometrically defined Hecke oper-
ators. This approach naturally led to a theory of overconvergent p-adic modular
forms of such weights equipped with a Hecke action for which Up2 is compact.

In this paper we define overconvergent half-integral weight p-adic modular
forms of general p-adic weights, as well as rigid-analytic families thereof over

MSC2000: primary 11F33; secondary 14G22, 11F37.
Keywords: modular forms of half-integral weight, p-adic modular forms, eigenvarieties.
This research is supported in part by NSF Grant DMS-0503264.
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admissible open subsets of weight space. We use the latter spaces and Buzzard’s
eigenvariety machine [Buzzard 2007] to construct a half-integral weight eigencurve
parameterizing all systems of eigenvalues of Hecke operators occurring on spaces
of half-integral weight overconvergent eigenforms of finite slope. In contrast to the
integral weight situation, this space does not parameterize actual forms because a
half-integral weight form that is an eigenform for all Hecke operators is not always
characterized by its weight and collection of Hecke eigenvalues. We also prove an
analog of Coleman’s result that overconvergent eigenforms of suitably low slope
are classical.

This paper lays the foundation for a forthcoming one in which the author will
construct a map from our half-integral weight eigencurve to its integral weight
counterpart (at least after passage to the underlying reduced spaces) that rigid-
analytically interpolates the classical Shimura lifting introduced in [Shimura 1973].

2. Preliminaries

General notation. Fix a prime number p. The symbol K will always denote a
complete and discretely-valued field extension of Qp. For such K we denote the
ring of integers by OK and the maximal ideal therein by mK . The absolute value
on K will always be normalized by |p| = 1/p.

2.1. Modular curves. For positive integers N and n, X1(N ) and X1(N , n) will
denote the usual moduli stacks of generalized elliptic curves with level structure.
The former classifies generalized elliptic curves with a point P of order N , while
the latter classifies generalized elliptic curves with a pair (P,C) consisting of a
point P of order N and a cyclic subgroup C of order n meeting the subgroup
generated by P trivially (plus a certain ampleness condition for nonsmooth curves).
This level structure will always be taken to be the Drinfeld-style level structure
found in [Katz and Mazur 1985], [Conrad 2007], and the appendix to this paper,
and in all cases the base ring will be a Z(p)-algebra.

Throughout this paper we will make extensive use of certain admissible opens
in rigid spaces associated to some of these modular curves. Traditionally these
opens were defined using the Eisenstein series E p−1, but this requires that we
pose unfavorable restrictions on p and N . Fortunately, more recent papers of
Buzzard [2003] and Goren and Kassaei [2006] define these opens and explore their
properties in greater generality using alternative techniques. These authors define a
“measure of singularity” v(E)∈Q≥0 associated to an elliptic curve over a complete
extension of Qp. In case v(E) ≤ p/(p + 1), one may associate to E a canonical
subgroup Hp(E) of order p in an appropriately functorial manner. Moreover, one
understands v(E/C) for finite cyclic subgroups C ⊆ E as well as the canonical
subgroup of E/C when it exists. Inductively applying this with C = Hp(E), one
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can define (upon further restricting v(E)) canonical subgroups Hpm (E) of higher
p-power order. For details regarding these constructions and facts, see [Buzzard
2003, Section 3] and [Goren and Kassaei 2006, Section 4].

We will denote the Tate elliptic curve over Z((q)) by Tate(q); see [Katz 1973].
Our notations concerning the Tate curve differ from those often found in the litera-
ture as follows. In the presence of, for example, level N structure, previous authors
(for example [Katz 1973]) have preferred to consider the curve Tate(q N ) over the
base Z((q)). Points of order N on this curve are used to characterize the behavior
of a modular form at the cusps, and are all defined over the fixed ring Z((q))[ζN ]

(where ζN is some primitive N -th root of 1). We prefer to fix the curve Tate(q) and
instead consider extensions of the base. Thus, in the presence of level N structure,
we introduce the formal variable qN , and define q = q N

N . Then the curve Tate(q) is
defined over the subring Z((q)) of Z((qN )), and all of its N -torsion is defined over
the ring Z((qN ))[ζN ]. To be precise, the N -torsion is given by

ζ i
N q j

N for 0 ≤ i, j ≤ N − 1.

Cusps will always be referred to by specifying a level structure on the Tate curve.
Suppose that N ≥ 5 so that we have a fine moduli scheme X1(N )Qp , and let

K/Qp be a finite extension (which will generally be fixed in applications). If
r ∈ [0, 1] ∩ Q, then the region in the rigid space X1(N )an

K whose points corre-
spond to pairs (E, P) with v(E) ≤ r is an admissible affinoid open. We denote
by X1(N )an

≥ p−r the connected component of this region that contains the cusp as-
sociated to the datum (Tate(q), ζN ) for some (equivalently, any) choice of prim-
itive N -th root of unity ζN . Similarly, X1(N , n)an

≥ p−r will denote the connected
component of the region defined by v(E) ≤ r in X1(N , n)an

K containing the cusp
associated to (Tate(q), ζN , 〈qn〉) for any such ζN . For smaller N one defines these
spaces by first adding prime-to-p level structure to rigidify the moduli problem and
proceeding as above, and then taking invariants. Similarly, the space X0(N )an

≥ p−r

is defined as the quotient of X1(N )an
≥ p−r by the action of the diamond operators.

See [Buzzard 2007, Section 6] for a more detailed discussion of these quotients.

2.2. Norms. If X is an admissible formal scheme over OK (in the sense of [Bosch
and Lütkebohmert 1993]), we will denote its (Raynaud) generic fiber by Xrig and
its special fiber by X0. In case X = Spf(A) is a formal affine, we have Xrig =

Sp(A ⊗OK K ) and X0 = Spec(A/πA), where π ∈ OK is a uniformizer. We recall
for later use that the natural specialization map sp : Xrig → X0 is surjective on the
level of closed points; see [Bosch and Lütkebohmert 1993, Proposition 3.5].

Assume that X is reduced, and let L be an invertible sheaf on X (that is to say, a
sheaf of modules on this ringed space that is Zariski-locally free of rank one). For
a point x ∈ Xrig(L), let x̂ : Spf(OL)→ X denote the unique extension of x to the
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formal model. Then the canonical identification

H 0(Sp(L), x∗Lrig)= H 0(Spf(OL), x̂∗L)⊗OL L

furnishes a norm | · |x on this one-dimensional vector space by declaring the formal
sections on the right to be the unit ball. Now for any admissible open U ⊆ Xrig and
any f ∈ H 0(U,Lrig), we define

‖ f ‖U = sup
x∈U

|x∗ f |x .

Note that, in case L = OX, this is simply the usual supremum norm on functions.
There is no reason for ‖ f ‖U to be finite in general, but in case U is affinoid then

this is indeed finite and endows H 0(U,Lrig) with the structure of a Banach space
over K , as we now demonstrate.

Lemma 2.1. Suppose X is a reduced quasicompact admissible formal scheme
over OK , let L be an invertible sheaf on X, and let U be an admissible affinoid
open in Xrig. Then H 0(U,Lrig) is a K -Banach space with respect to ‖ · ‖U .

Proof. By Raynaud’s theorem there is quasicompact admissible formal blowup
π : X′

→ X and an admissible formal open U in X′ with generic fiber U. For x ∈ U,
let x̂ ′ denote the unique extension to an OL -valued point of U, and let x̂ denote its
image in X (which is the same x̂ as above by uniqueness). Then we have

H 0(Spf(OL), x̂ ′∗π∗L)= H 0(Spf(OL), x̂∗L)

as lattices in H 0(Sp(L),Lrig). It follows that | f |x = |π∗ f |x , and we may compute
‖ f ‖U using the models X′ and π∗L. Hence we may as well assume that U is the
generic fiber of an admissible formal open U in X. Furthermore, we may just as
well replace X by U and assume that U is the generic fiber of X itself.

Cover X by a finite collection of admissible formal affine opens Ui trivializing L.
Pick a trivializing section `i of L on Ui . Let Ui = (Ui )rig, so that the Ui form
an admissible cover of U by admissible affinoid opens. Then, for any section
f ∈ H 0(U,Lrig), we may write f |Ui = ai`i for a unique ai ∈ O(Ui ), and one easily
checks that ‖ f ‖U = maxi‖ai‖sup. The desired assertion now follows easily from
the analogous assertion about the supremum norm on a reduced affinoid. �

The following lemma and its corollary establish a sort of maximum modulus
principle for these norms.

Lemma 2.2. Suppose X = Spf(A) is a reduced admissible affine formal scheme
over OK , and let U ⊆ X0 be a Zariski-dense open subset of the special fiber. Sup-
pose that the generic fiber X = Sp(A ⊗OK K ) is equidimensional. Then, for any
a ∈ A⊗OK K , the supremum norm of a over X is achieved on sp−1(U ).
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Proof. Let us first prove the lemma in the case that A is normal. First note that
if ‖a‖sup = 0, then the result is obvious. Otherwise, since the supremum norm is
power-multiplicative we may assume that ‖a‖sup is a norm from K and scale to
reduce to the case ‖a‖sup = 1. By [de Jong 1995, Theorem 7.4.1] it follows that
a ∈ A (this is where normality is used). If the reduction a0 ∈ A0 = A/πA vanishes
at every closed point of U , then it vanishes everywhere by density, so an

0 = 0 in
A0 for some n, which is to say that π |an in A. But this is impossible because
by power-multiplicativity we have ‖an

‖sup = 1 for all n ≥ 1. Thus a0 must be
nonvanishing at some point of U . By the surjectivity of the specialization map we
can find a point x reducing to this point. Clearly then |a(x)| = 1, which establishes
the normal case.

Suppose that X is equidimensional of dimension d . We claim that it follows
that the special fiber X0 must be equidimensional of dimension d as well. Indeed,
inside each irreducible component of this special fiber we can find a nonempty
Zariksi-open subset V that does not meet any of the other irreducible components.
The generic fiber Vrig is an admissible open in X and therefore has dimension d .
It follows that V has dimension d, and the claim follows.

Let f : X̃→X be the normalization map (meaning Spf applied to the normaliza-
tion map on algebras), and note that this map is finite by general excellence consid-
erations. By [Conrad 1999, Theorem 2.1.3] the generic fiber of this map coincides
with the normalization of X . Thus X̃rig is also equidimensional of dimension d ,
and the argument above shows that X̃0 is equidimensional of dimension d as well.
Now since f is finite it follows that f0 carries generic points to generic points. In
particular we see that f −1

0 (U ) is Zariski-dense in X̃0. Thus by the normal case
proved above, there exists an x ∈ X̃rig reducing to f −1

0 (U ) at which a (thought of
as an element of Ã ⊗OK K ) attains its supremum norm. But then f (x) is a point
in X reducing to U with the same property, since the supremum norm of a is the
same thought of on X or on X̃ (since X̃ → X is surjective). �

Remark 2.3. Note that the proof in the normal case did not use the equidimension-
ality hypothesis. This hypothesis may not be required in the general case, but the
above proof breaks down without it since it is not clear how to control the special
fiber under normalization in general, especially if X0 is nonreduced (as is often the
case for us).

Corollary 2.4. Suppose X is a reduced quasicompact admissible formal scheme
over OK , let U ⊆ X0 be a Zariski-dense open, and let L be an invertible sheaf
on X. Assume that Xrig is equidimensional. Then, for any f ∈ H 0(Xrig,Lrig) we
have

‖ f ‖Xrig = sup
x∈sp−1(U )

|x∗ f |x = max
x∈sp−1(U )

|x∗ f |x .
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Proof. Cover X with a finite collection of admissible formal affine opens trivializ-
ing L, and apply Lemma 2.2 on each such affine separately. �

The invertible sheaves whose sections we will be taking norms of in this paper
will all be of the form OX (D) for some divisor D on X = X1(N )K or X1(N , n)K

supported on the cusps. In the end, the main consequence of Corollary 2.4 (namely,
Lemma 2.5) will be that these norms are equal to the supremum norm of the re-
striction of the section in question to the complement of the residue disks around
the cusps (where it is simply an analytic function). We feel it worthwhile to give
more natural definitions using the above norm machinery in the cases that it applies
to (those where we have nice moduli schemes to work with), in the hope that the
techniques used and Corollary 2.4 will be useful in other similar situations. The
reader content with this equivalent “ad hoc” definition (that is, the supremum norm
on the complement of the residue disks around the cusps) can skip to Section 2.3
and ignore the appendix altogether.

In order to endow spaces of sections of a line bundle as in the previous paragraph
with norms using the techniques above, we need formal models of the spaces X
and sheaves O(D). For technical reasons (involving regularity of certain moduli
stacks), we are forced to work over Zp in going about this. The formal models
over OK will then be obtained by extension of scalars. The general procedure for
obtaining formal models over Zp goes as follows. Let X denote one the stacks
X1(N ) or X1(N , n) over Zp, and assume that the generic fiber XQp is a scheme.
Let D be a divisor on XQp that is supported on the cusps. If the closure D of D
in X lies in the maximal open subscheme X sch of X and this subscheme is regular
along D, then this closure is Cartier and we may associate to it the invertible sheaf
O(D) on X sch. Let (X sch)̂ and O(D)̂ denote the formal completions of these objects
along the special fiber.

In case X = X1(N ) or X1(N , n) with p - n, assume that N has a divisor that is
prime to p and at least 5. Then X sch

= X by [Conrad 2007, Theorem 4.2.1], and X
is regular (at least over Z(p)) by [Conrad 2007, Theorem 4.1.1]. That passage
to Zp preserves regularity follows by excellence considerations from the fact that
Z(p) → Zp is geometrically regular. Strictly speaking, the results of [Conrad 2007]
do not apply to X1(N , n) as stated, but since p - n, the proofs of these results are
still valid over Z(p), as is observed in the appendix. Since X is proper over Zp, we
have X̂rig = X an

Qp
(the analytification of the algebraic generic fiber of X ) and hence

we have a formal model (X̂ ,O(D)̂ ) of (X an
Qp
,O(D)).

Suppose that X = X1(Mp, p2) for an integer M ≥ 5 prime to p. Let D be
any divisor supported on the cusps in the connected component X1(Mp, p2)an

≥1 of
the ordinary locus. By Theorem A.11, the closure D of D in X lies in X sch and
is Cartier. Thus we obtain a formal model ((X sch)̂,O(D)̂ ) of ((X sch)̂rig,O(D)).
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Observe that, by Lemma A.9 and the comments that follow it, X sch is simply the
complement of a finite collection of cusps on the characteristic p fiber (namely,
the ones with nontrivial automorphisms). It follows that the open immersion

(X sch)̂rig ↪→ (X sch
Qp
)an ∼= X an

Qp
(1)

identifies the Raynaud generic fiber on the left with the complement of the residue
disks around the cusps in the analytification on the right that reduce to the missing
points in characteristic p. Thus (1) is an isomorphism when restricted to any
connected component of the locus defined by v(E) ≤ r that contains no such
cusps. In particular, by Theorem A.11 it is an isomorphism when restricted to
X1(Mp, p2)an

≥ p−r .
Given a complete discretely valued extension K/Qp, we may extend scalars on

our formal models of O(D) to arrive at norms on the following spaces:

• sections of O(D) over any admissible open U in X = X1(N )an
K (respectively

X1(N , n)an
K with p - n), where D is (the scalar extension of) a divisor on

X1(N )Qp (respectively X1(N , n)Qp ) and N is divisible by an integer that is
prime to p and at least 5; and

• sections of O(D) over any admissible open U in X = X1(Mp, p2)an
≥ p−r ,

where D is (the scalar extension of) a divisor that is supported on the cusps
in X1(Mp, p2)an

Qp
and M is an integer that is prime to p and at least 5.

Lemma 2.5. Let X , D, and U be as in either of the two cases above, and assume
that U contains every component of the ordinary locus that it meets. Let U′ de-
note the complement of the residue disks around the cusps in U. Then, for any
f ∈ H 0(U,O(D)), we have ‖ f ‖U = ‖ f |U′‖sup.

Proof. We will treat the case of X = X1(N )an
K ; the other cases are proved in exactly

the same manner. First note that, since points in U′ reduce to points outside of the
support of D, the claim is equivalent to the claim that ‖ f ‖U = ‖ f |U′‖U′ . That is,
the norm on U′ that we have defined using formal models happens to be equal to
the supremum norm on U′.

Note that the supersingular loci of U and U′ coincide, so the contributions to
the above norms over this locus are equal, and it suffices to check the assertion
upon restriction to the ordinary locus. By assumption, the ordinary locus in U is a
finite union of connected components of the ordinary locus in X1(N )an

K . Each such
component corresponds via reduction to an irreducible component of the special
fiber. Let X denote the admissible formal open in X1(N )̂ given by the union of
the components so obtained with the supersingular points removed. Then Xrig is
precisely the ordinary locus in U, and the result now follows from Corollary 2.4
with U equal to the complement of the cusps in X0. �
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Remark 2.6. There remain some curves on which we will need to have norms for
sections of O(D) but to which the norm machinery as set up here does not apply.
Namely, for p 6= 2 we have the curves X1(4pm)an

K and X1(4pm, p2)an
K , while for

p = 2 we have X1(2m+1 N )an
K and X1(2m+1 N , 4)an

K , where m ≥ 1 and N ∈ {1, 3}.
The previous lemma suggests an ad hoc workaround to this problem. In case we
are working with sections of O(D) for a cuspidal divisor on one of these curves, we
simply define the norm to be the supremum norm of the restriction of our section
to the complement of the residue disks about the cusps. A more natural definition
would likely result from considerations of “formal stacks”, but this norm would
surely turn out to be equal to ours by an analogue of Lemma 2.5.

2.3. Weight space. Throughout most of this paper, W will denote p-adic weight
space (everywhere except for the beginning of Section 7, where it is allowed to be
a general reduced rigid space for the purpose of reviewing a general construction).
That is, W is a rigid space over Qp whose points with values in an extension K/Qp

are W(K ) = Homcont(Z
×
p , K ×). Define q = p if p 6= 2 and q = 4 if p = 2. Let

τ : Z×
p → (Z/qZ)× → Q×

p denote reduction composed with the Teichmüller lifting,
and let 〈x〉 = x/τ(x) ∈ 1 + qZp. For a weight κ we have

κ(x)= κ(〈x〉)κ(τ (x))= κ(〈x〉)τ (x)i

for a unique integer i with 0 ≤ i < ϕ(q) (where ϕ denotes Euler’s function).
Moreover, this breaks up the space W as the admissible disjoint union of ϕ(q)
admissible opens Wi , each of which is isomorphic to a one-dimensional open ball.

For each positive integer n, let Wn denote the admissible open subspace of W

whose points are those κ with

|κ(1 + q)pn−1
− 1| ≤ |q|.

Then Wi
n := Wi

∩ Wn is an affinoid disk in Wi , and the {Wi
n}n form a nested

admissible cover of Wi .
To each integer λ we may associate the weight x 7→ xλ. This weight, which

by abuse of notation we simply refer to as λ, lies in Wi for the unique i ≡ λ

(mod ϕ(q)). Also, if λ is an integer and ψ : (Z/qpn−1Z)× → C×
p is a character,

then x 7→ xλψ(x) is a point in W (with values in Qp(µpn−1)) that lies in Wn , as
standard estimates for |ζ − 1| for roots of unity ζ demonstrate.

3. Some modular functions

Our definition of the spaces of half-integral weight modular forms will follow the
general approach of [Coleman and Mazur 1998] (in the integral weight p-adic
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situation) and [Ramsey 2006] (in the half-integral weight situation). The motivat-
ing idea behind this approach is to reduce to weight zero by dividing by a well-
understood form of the same weight. For example, if f is a half-integral weight
p-adic modular form of weight k/2, θ is the usual Jacobi theta function of weight
1/2, and Eλ is the weight λ = (k − 1)/2 Eisenstein series introduced below, then
f/(Eλθ) should certainly be a meromorphic modular function of weight zero. As
we have no working notion of “half-integral weight p-adic modular form”, we
simply use the weight zero forms so obtained as the definition of this notion. One
must of course work out issues such as exactly what kind of poles are introduced,
how dividing by θEλ affects the nebentypus character, and how to translate the
classical Hecke action into an action on these new forms. The precise definition
will be given in Section 4.

This was carried out in [Ramsey 2006] by dividing by θ k instead of θEλ. That
approach had the disadvantage of limiting us to classical weights k/2, whereas
the current approach will work for more general p-adic weights (and indeed, for
families of modular forms) since Eλ interpolates nicely in the variable λ.

This technique of division to reduce to weight zero in order to define modular
forms forces us to modify the usual construction of the Hecke operators using the
Hecke correspondences on the curve X1(N ) by multiplying by certain functions on
the source spaces of these correspondences. Our first task is to define these func-
tions and to establish their overconvergence properties. Since we are dividing by
Eλθ to reduce to weight zero, we will require, for each prime number `, a modular
function whose q-expansion (at the appropriate cusp and on the appropriate space,
which depends on whether or not `= p) is

Eλ(q`2)θ(q`2)

Eλ(q)θ(q)
.

Factoring this into its Eisenstein part and theta part, we split the problem into two
problems, the first of which is nearly done in the integral-weight literature (see
[Buzzard 2007; Coleman and Mazur 1998]), and the second of which is done in
[Ramsey 2006]. We briefly review both problems here, but see these references for
details. Note that all analytic spaces in this section are taken over Qp.

Let c denote the cusp on X1(4)Q corresponding to the point ζ4q2 of order 4 on
the Tate curve. Define a Q-divisor 64N on the curve X1(4N )Q by

64 :=
1
4π

∗
[c], where π : X1(4N )Q → X1(4)Q

is the obvious degeneracy map. This divisor is set up to look like the divisor of
zeros of the pullback of the Jacobi theta function θ to X1(4N )Q and will later be
used to control poles introduced in dividing by Eλθ .
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In [Ramsey 2006], we defined a rational function2`2 on X1(4, `2)Q with divisor

div(2`2)= π∗

264 −π∗

164

such that

2`2(Tate(q), ζ4, 〈q`2〉)=

∑
n∈Z

qn2

`2

/ ∑
n∈Z

qn2
= θ(q`2)/θ(q).

Here π1 and π2 are the maps comprising the `2 Hecke correspondence on X1(4)
and are defined in Section 5.1. Strictly speaking, we had assumed ` 6= 2 in the
arguments in [Ramsey 2006], but if one is only interested in the result above, then
one can easily check that the arguments work for `= 2 verbatim.

Let us now turn to the Eisenstein part of the above functions. For further details
and proofs of the claims in this paragraph, see [Buzzard 2007, Sections 6 and 7].
Let

E(q) := 1 +
2

ζp(κ)

∑
n

( ∑
d |n , p -d

κ(d)d−1
)

qn
∈ O(W0)[[q]]

be the q-expansion of the p-deprived Eisenstein family over W0. Note that there
are no problems with zeros of ζp since we are restricting our attention to W0. For
a particular choice of κ ∈ W0, we denote by Eκ(q) the expansion obtained by
evaluating all of the coefficients at κ . In particular, for a positive integer λ no less
than 2 and divisible by ϕ(q), Eλ(q) is the q-expansion of the usual p-deprived
classical Eisenstein series of weight λ and level p.

Let ` be a prime number. If ` 6= p, then there exists a rigid analytic function E`
on X0(p`)an

≥1 ×W0 whose q-expansion at (Tate(q), µp`) is E(q)/E(q`). If `= p,
then the same holds with X0(p`)an

≥1 replaced by X0(p)an
≥1 and µp` replaced by µp.

Buzzard [2007] shows that there exists a sequence of rational numbers

1/(p + 1) > r1 ≥ r2 ≥ · · · ≥ rn ≥ · · ·> 0

with ri < p2−i/q(1+p) such that, when restricted to X0(p`)an
≥1 × W0

n (respectively,
X0(p)an

≥1 × W0
n if ` = p), E` analytically continues to an invertible function on

X0(p`)an
≥ p−rn ×W0

n (respectively, X0(p)an
≥ p−rn ×W0

n if `= p). Fix such a sequence
once and for all. Let us first extend these results to square level.

Lemma 3.1. Let ` 6= p be a prime number. There exists an invertible function
E`2 on X0(p`2)an

≥1 × W0 whose q-expansion at (Tate(q), µp`2) is E(q)/E(q`
2
).

Moreover, the function E`2 , when restricted to W0
n , analytically continues to an

invertible function on X0(p`2)an
≥ p−rn × W0

n .
There exists an invertible function Ep2 on X0(p)an

≥1 × W0 whose q-expansion at
(Tate(q), µp) is E(q)/E(q p2

). Moreover, the function Ep2 , when restricted to W0
n ,

analytically continues to an invertible function on X0(p)an
≥ p−rn/p × W0

n .
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Proof. Let ` be a prime different from p. There are two natural maps

X0(p`2)an
Qp

→ X0(p`)an
Qp
,

namely those given on noncuspidal points by

(E,C) � d`,1 // (E, `C) and (E,C) � d`,2 // (E/p`C,C/p`C).

Both of these restrict to maps

d`,1, d`,2 : X0(p`2)an
≥ p−rn → X0(p`)an

≥ p−rn .

We define E`2 to be the invertible function

E`2 := d∗

`,1E` · d∗

`,2E` ∈ O(X0(p`2)an
≥ p−rn × W0

n)
×. (2)

The q-expansion of E`2 at (Tate(q), µp`2) is

E`(d`,1(Tate(q), µp`2))E`(d`,2(Tate(q), µp`2))

= E`(Tate(q), µp`)E`(Tate(q)/µ`, µp`2/µ`)

= E`(Tate(q), µp`)E`(Tate(q`), µp`)

=
E(q)
E(q`)

E(q`)
E(q`2

)
=

E(q)
E(q`2

)
.

One must take additional care if `= p. Then there is a well-defined map

d : X0(p)an
≥ p−rn/p → X0(p)an

≥ p−rn , (E,C) 7→ (E/C, Hp2/C),

where Hp2 is the canonical subgroup of E of order p2. This follows from the fact
that X0(p)an

≥ p−rn/p consists of pairs (E,C) with C equal to the canonical subgroup
of E of order p, and standard facts about quotienting by such subgroups; see for
example [Buzzard 2003, Theorem 3.3]. We define an invertible function by

Ep2 := Ep · d∗Ep ∈ O(X0(p)an
≥ p−rn/p × W0

n)
×,

where we have implicitly restricted Ep to

X0(p)an
≥ p−rn/p × W0

n ⊆ X0(p)an
≥ p−rn × W0

n.

The q-expansion of Ep2 at (Tate(q), µp) is

Ep(Tate(q), µp)Ep(d(Tate(q), µp))

= Ep(Tate(q), µp)Ep(Tate(q)/µp, µp2/µp)

= Ep(Tate(q), µp)Ep(Tate(q p), µp)

=
E(q)

E(q p)

E(q p)

E(q p2
)

=
E(q)

E(q p2
)
. �
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Let

π : X1(p, `2)an
Qp

→

{
X0(p`2)an

Qp
if ` 6= p,

X0(p)an
Qp

if `= p

denote the map given on noncuspidal points by

(E, P,C) 7−→

{
(E/C, (〈P〉 + E[`2

])/C) if ` 6= p,
(E/C, 〈P〉/C) if `= p.

Note that we have

π(Tate(q), ζp, 〈q`2〉)=

{
(Tate(q`2), µp`2) if ` 6= p,
(Tate(qp2), µp) if `= p.

(3)

This observation suggests that perhaps the components X1(p, `2)an
≥ p−r should be

related (via π ) to the components X0(p`2)an
≥ p−r .

Lemma 3.2. If ` 6= p, then the map π restricts to

π : X1(p, `2)an
≥ p−r → X0(p`2)an

≥ p−r for all r < p/(1 + p).

In case `= p, the map π restricts to

X1(p, p2)an
≥ p−p2r → X0(p)an

≥ p−r for all r < 1/p(1 + p).

Proof. First suppose ` 6= p. Let U denote the entirety of the locus in X0(p`2)an
Qp

defined by v(E) ≤ r . First note that, since quotienting by a subgroup of order
prime to p does not change its measure of singularity, the map π restricts to a map

X1(p, `2)an
≥ p−r → U.

The inverse images of the two connected components of U under this map are
disjoint admissible opens that admissibly cover a connected space, and, by (3),
π−1(X0(p`2)an

≥ p−r) is nonempty, so this must be all of X1(p, `2)an
≥ p−r . The result

follows.
Now suppose that ` = p. Let U denote the entirety of the locus in X0(p)an

Qp

defined by v(E)≤ r . Once we verify that π restricts to

X1(p, p2)an
≥ p−p2r → U,

the argument may proceed exactly as above. We claim, moreover, that if (E, P,C)
is a point in X0(p, p2)an

≥ p−p2r , then v(E/C) = v(E)/p2. This would follow if
we knew that C met the canonical subgroup of E trivially (again by standard
facts about quotienting by canonical and noncanonical subgroups of order p, as
in [Buzzard 2003, Section 3]), so it suffices to prove that 〈P〉 is the canonical
subgroup of E .
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The natural map

X1(p, p2)→ X0(p), (E, P,C) 7→ (E, 〈P〉)

restricts to X1(p, p2)an
≥ p−r → X0(p)an

≥ p−r by the same connectivity argument used
in the ` 6= p case (since this map clearly doesn’t change v(E)). But it is well known
that the locus X0(p)an

≥ p−r consists of pairs (E,C) with C equal to the canonical
subgroup of E . �

We may pull back the Eisenstein family of Lemma 3.1 for ` 6= p through the
map π to arrive at an invertible function on X1(p, `2)an

≥ p−rn ×W0
n . By the previous

lemma, we may also pull back the family for ` = p through π to arrive at an
invertible function on X0(p, p2)an

≥ p−prn × W0
n . For any `, it follows from (3) that

the function π∗E`2 satisfies

π∗E`2(Tate(q), ζp, 〈q`2〉)=
E(q`2)

E((q`2)`
2
)

=
E(q`2)

E(q)
.

To arrive at the functions we need, we simply multiply π∗E`2 and2`2 (which is
constant in the weight). Of course, to do so we must first pull these functions back
so that they lie on a common curve. The natural (“smallest”) curve to use depends
on whether or not p = 2, since 2 already lies in the 01 part of the level of 2`2 . The
next proposition summarizes the properties of the resulting functions.

Proposition 3.3. Let p be and ` be primes. There exists an element H`2 of{
H 0(X1(4p, `2)an

≥1 × W0,O(π∗

164p −π∗

264p)) if p 6= 2,
H 0(X1(4, `2)an

≥1 × W0,O(π∗

164 −π∗

264)) if p = 2

whose q-expansion at{
(Tate(q), µ4p, 〈q`2〉)) if p 6= 2,
(Tate(q), µ4, 〈q`2〉)) if p = 2

is equal to
E(q`2)θ(q`2)

E(q)θ(q)
.

Moreover, there exists a sequence of rational numbers rn such that

1/(1 + p) > r1 ≥ r2 ≥ · · ·> 0

with ri < p2−i/q(1+ p) such that H`2 , when restricted to W0
n , analytically contin-

ues to the region 
X1(4p, `2)an

≥ p−rn × W0
n if p 6= 2, ` 6= p,

X1(4p, p2)an
≥ p−prn × W0

n if p 6= 2, `= p,
X1(4, `2)an

≥2−rn × W0
n if p = 2, ` 6= 2,

X1(4, 4)an
≥2−2rn × W0

n if p = `= 2.
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Finally, we wish to extend H`2 and E(q) to all of W. To do this, we simply pull
back through the natural map

W → W0, κ 7→ κ ◦ 〈 · 〉. (4)

When restricted to Wi , this map is simply the isomorphism κ 7→ κ/τ i .

Remark 3.4. We have chosen in the end to use 01-structure on the curves on
which the H`2 lie both to rigidify the associated moduli problems over Qp, as well
as because these are the curves that will actually turn up in the sequel. We note,
however, that the H`2 are invariant under all diamond automorphisms.

4. The spaces of forms

In this section we define spaces of overconvergent p-adic modular forms as well
as families thereof over admissible open subsets of W. Again, the motivating idea
behind these definitions is that we have reduced to weight 0 via division by the well-
understood forms Eλθ . By “well-understood” we essentially mean two things. The
first is that we understand their zeros once we eliminate part of the supersingular
locus (and thereby remove the zeros of the Eisenstein part). The second is that, by
the previous section, we know that there are modular functions with q-expansions

Eλ(q`2)θ(q`2)

Eλ(q)θ(q)

that interpolate rigid-analytically in λ, a fact that we will need to define Hecke
operators on families in the next section.

Before defining the spaces of forms, we need to make a couple of remarks about
diamond automorphisms. For a positive integer N and an element d ∈ (Z/NZ)×,
let 〈d〉 denote the usual diamond automorphism of X1(N ) given on (noncuspidal)
points by (E, P) 7→ (E, d P). Now suppose we are given a factorization N = N1 N2

into relatively prime factors, so the natural reduction map

(Z/NZ)×
∼ // (Z/N1Z)× × (Z/N2Z)×

is an isomorphism. For a ∈ (Z/N1Z)× and b ∈ (Z/N2Z)× we let (a, b)∈ (Z/NZ)×

denote the inverse image of the pair (a, b) under the this map. For a ∈ (Z/N1Z)×,
we define 〈a〉N1 := 〈(a, 1)〉, and we refer to these automorphisms as the diamond
automorphisms at N1. The diamond automorphisms at N2 are defined similarly,
and we have a factorization 〈d〉 = 〈d〉N1 ◦ 〈d〉N2 . Finally, we observe that the dia-
mond operators on X1(4N )an

K preserve the subspaces X1(4N )an
≥ p−r and the divisor

64N in the sense that 〈d〉
−1(X1(4N )an

≥ p−r) = X1(4N )an
≥ p−r and 〈d〉

∗64N = 64N ,
respectively.
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Convention 4.1. By the symbol O(6) for a Q-divisor 6 we shall always mean
O(b6c), where b6c is the divisor obtained by taking the floor of each coefficient
occurring in 6.

First we define the spaces of forms of fixed weight. Let N be a positive integer
and suppose that either p - 4N or that p = 2 and p - N .

Definition 4.2. Let κ ∈ Wi (K ) and pick n such that κ ∈ Wi
n . Then, for any

rational number r with 0 ≤ r ≤ rn , we define the space of p-adic half-integral
weight modular forms of weight κ , tame level 4N (or rather N if p = 2), and
growth condition p−r over K to be

M̃κ(4N , K , p−r ) :=

{
H 0(X1(4N p)an

≥ p−r ,O(64N p))
τ i

× {κ} if p 6= 2,
H 0(X1(4N )an

≥2−r ,O(64N ))
(−1/ · )i τ i

× {κ} if p = 2,

where ( · )τ
i
denotes the τ i eigenspace for the action of the diamond automorphisms

at p, and similarly for (−1/ · )iτ i if p = 2.

Remarks 4.3. • For p 6=2, we have chosen to remove p from the level and only
indicate the tame level in the notation because, as we will see, these spaces
contain forms of all p-power level. However, for p = 2, we have left the 4 in
as a reminder that the forms have at least a 4 in the level, as well as for some
uniformity in notation.

• Note that this space has been “tagged” with the weight κ because the actual
space has only a rather trivial dependence on κ (κ serves only to restrict the
admissible K and r and to determine i). The point is that, as we will see, the
Hecke action on this space is very sensitive to κ . The tag will generally be
ignored in what follows as the weight will be clear from the context.

• This space is endowed with a norm which is defined as in Section 2.2 and is
a Banach space over K with respect to this norm.

• We call the forms belonging to spaces with r > 0 overconvergent. The space
of all overconvergent forms (of this weight and level) is the inductive limit

M̃†
κ (4N , K )= lim

r→0
M̃κ(4N , K , p−r ).

• In case κ is the character associated to an integer λ ≥ 0, the space of forms
defined above would classically be thought of as having weight λ+ 1/2. Our
choice of p-adic weight character bookkeeping seems to be the most natural
one (the Shimura lifting has the effect of squaring the weight character, for
example).

• In case κ is the weight associated to an integer λ≥ 0, then the definition here
is somewhat less general than the definition of the space of forms of weight
λ+ 1/2 contained in [Ramsey 2006], due to the need to eliminate enough of
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the supersingular locus to get rid of the Eisenstein zeros. The two definitions
are (Hecke-equivariantly) isomorphic whenever they are both defined, as we
will see in Proposition 6.2.

• The tilde is an homage to the metaplectic literature and will be used hence-
forth on all half-integral weight objects in order to distinguish them from their
integral weight counterparts.

We now turn to the spaces of families of modular forms.

Definition 4.4. Let X be a connected affinoid subdomain of W. Then X ⊆ Wi for
some i since X is connected, and X ⊆ Wi

n for some n since X is affinoid. For any
rational number r with 0 ≤ r ≤ rn , we define the space of families of half-integral
weight modular forms of tame level 4N and growth condition p−r on X to be

M̃X (4N , K , p−r ) :=


H 0(X1(4N p)an

≥ p−r ,O(64N p))
τ i

⊗̂K O(X)
if p 6= 2,

H 0(X1(4N )an
≥2−r ,O(64N ))

(−1/ · )i τ i
⊗̂K O(X)

if p = 2.

Remarks 4.5.

• We endow M̃X (4N , K , p−r )with the completed tensor product norm obtained
from the norms defined in Section 2.2 and from the supremum norm on O(X).
The space M̃X (4N , K , p−r ) with this norm is a Banach module over the Ba-
nach algebra O(X).

• As in the case of fixed weight, the definition depends rather trivially on X ,
but the Hecke action will be very sensitive to X .

• In general, if X is an affinoid subdomain of W, we define M̃X to be the direct
sum of the spaces corresponding to the connected components of X . Also, just
as for particular weights, we can talk about the space of all overconvergent
families of forms on X , namely M̃†

X (4N , K )= limr→0 M̃X (4N , K , p−r ).

• Using a simple projector argument, one sees easily that we have a canonical
identification

H 0(X1(4N p)an
≥ p−r ,O(64N p))

τ i
⊗̂K O(X)

∼= (H 0(X1(4N p)an
≥ p−r ,O(64N p))⊗̂K O(X))τ

i
,

and similarly at level 4N if p = 2. This will prove useful in the next section.

For each X as above and each L-valued point κ ∈ X , evaluation at x induces a
specialization map M̃X (4N , K , p−r )→ M̃κ(4N , L , p−r ). In the next section we
will define a Hecke action on both of these spaces for which such specialization
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maps are equivariant and which recover the usual Hecke operators on the right side
above (in the sense that they are given by the usual formulas on q-expansions).

Each of the spaces of forms that we have defined has a cuspidal subspace consist-
ing of forms that “vanish at the cusps.” This notion is a little subtle in half-integral
weight because there are often cusps at which all forms are forced to vanish. To
explain this comment and motivate the subsequent definition of the space of cusp
forms, let us go back to the motivation behind our definitions of the spaces of
forms. If F is a form of half-integral weight in our setting, then FθE (where E
is an appropriate Eisenstein series) is what we would “classically” like to think
of as a half-integral weight form. Indeed, if F is classical (this notion is defined
in Section 6), then FθE can literally be identified with a classical holomorphic
modular form of half-integral weight over C. The condition div(F)≥ −64N p (we
are assuming p 6= 2 for the sake of this motivation) in our definition is exactly the
condition that FθE be holomorphic at all cusps. Likewise, the condition that this
inequality be strict at all cusps is the condition that FθE be cuspidal. But since
div(F) has integral coefficients, the nonstrict inequality implies the strict inequality
at all cusps where 64N p has nonintegral coefficients.

With this in mind, we are led to the following definition of cusp forms. For an
integer M , let C4M be the divisor on X1(4M)an

Qp
given by the sum of the cusps at

which 64M has integral coefficients. To define the cuspidal subspace of any of the
above spaces of forms, we replace the divisor 64N p (respectively 64N if p = 2) by
the divisor 64N p − C4N p (respectively 64N − C4N if p = 2). We will denote the
cuspidal subspaces by the letter S instead of M . Thus, for example, if κ ∈ Wi

n(K )
and 0 ≤ r ≤ rn , we define

S̃κ(4N , K , p−r )=


H 0(X1(4N p)an

≥ p−r ,O(64N p − C4N p))
τ i

× {κ}

if p 6= 2,
H 0(X1(4N )an

≥2−r ,O(64N − C4N ))
(−1/ · )i τ i

× {κ}

if p = 2.

Remarks 4.3 and 4.5 apply equally well to the corresponding spaces of cusp forms.

5. Hecke operators

Before we construct Hecke operators, we need to make some remarks on diamond
operators and nebentypus. Since the p-part of the nebentypus character is encoded
as part of the p-adic weight character, we need to separate out the tame part of the
diamond action. Fix a weight κ ∈ Wi (K ). To define the tame diamond operators
compatibly with the classical definitions and those in [Ramsey 2006], we must
twist (at least in the case p 6=2) those obtained via pullback from the automorphism
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〈 · 〉4N by (−1/ · )i . That is, for F ∈ M̃κ(4N , K , p−r ), we define

〈d〉4N ,κF =

(
−1
d

)i
〈d〉

∗

4N F if p 6= 2,

〈d〉N ,κF = 〈d〉
∗

N F if p = 2.

Without this twist in the p 6=2 case, the definition would not agree with the classical
one because of the particular nature of the automorphy factor of the form θ used
in the identification of our forms with classical forms. The same formulas define
operators 〈 · 〉4N , X and 〈 · 〉N , X on the space of families of modular forms over
X ⊆ Wi . For a more general X ⊆W, we break into the components in Wi for each
i and define 〈 · 〉4N , X and 〈 · 〉N , X component by component. For a character χ
modulo 4N (respectively modulo N if p = 2), we define the space of forms of
tame nebentypus χ to be the χ -eigenspace of M̃κ(4N , K , p−r ) for the operators
〈 · 〉4N , κ (respectively 〈 · 〉N , κ if p = 2). The same definition applies to families
of forms. These subspaces are denoted by appending a χ to the list of arguments
(for example, M̃κ(4N , K , p−r , χ)).

Let X and Y be rigid spaces equipped with a pair of maps π1, π2 : X → Y, and
let D be a Q-divisor on Y such that π∗

1 D − π∗

2 D has integral coefficients. Let
Z ⊆ X be an admissible affinoid open, and let H ∈ H 0(Z,O(π∗

1 D − π∗

2 D)). Let
U,V ⊆ Y be admissible affinoid opens such that π−1

1 (V)∩ Z ⊆ π−1
2 (U)∩ Z, and

suppose that π1 : π−1
1 (V)∩ Z → V is finite and flat. Then there is a well-defined

map H 0(U,O(D))→ H 0(V,O(D)) given by the composition

H 0(U,O(D))
π∗

2 // H 0(π−1
2 (U)∩ Z,O(π∗

2 D))
res // H 0(π−1

1 (V)∩ Z,O(π∗

2 D))

·H
��

H 0(V,O(D)) H 0(π−1
1 (V)∩ Z,O(π∗

1 D))
π1∗oo

in which π1∗ is the trace map corresponding to the finite and flat map π1.

5.1. Hecke operators for a fixed weight. Let N be as above, let ` be any prime
number, and let

π1, π2 :

{
X1(4N p, `2)an

K → X1(4N p)an
K if p 6= 2,

X1(4N , `2)an
K → X1(4N )an

K if p = 2

be the maps defined on noncuspidal points of the underlying moduli problem by

π1 : (E, P,C) 7→ (E, P) and π2 : (E, P,C) 7→ (E/C, P/C).

Suppose that ` 6= p. Then{
π−1

1 (X1(4N p)an
≥ p−r)= π−1

2 (X1(4N p)an
≥ p−r) if p 6= 2,

π−1
1 (X1(4N )an

≥2−r)= π−1
2 (X1(4N )an

≥2−r) if p = 2
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for any r < p/(1 + p), since quotienting an elliptic curve by a subgroup of order
prime to p does not change its measure of singularity. Fix a weight κ ∈ Wi (K ),
and let H`2(κ) denote the specialization of H`2 to κ ∈ W (which, recall, is defined
to be the specialization of H`2 to κ/τ i

∈W0). Pick n such that κ ∈Wi
n , and suppose

0 ≤ r ≤ rn . Apply the general construction above with the following table:

p 6= 2 p = 2

X X1(4N p, `2)an
K X1(4N , `2)an

K
Y X1(4N p)an

K X1(4N )an
K

Z X1(4N p, `2)an
≥ p−r X1(4N , `2)an

≥2−r

D 64N p 64N

H H`2(κ) H`2(κ)

U = V X1(4N p)an
≥ p−r X1(4N )an

≥2−r

Then we arrive at an endomorphism of the K -vector space{
H 0(X1(4N p)an

≥ p−r ,O(64N p)) if p 6= 2,
H 0(X1(4N )an

≥2−r ,O(64N )) if p = 2.

We may easily check that, since the diamond operators act trivially on H`2 (see
Remark 3.4), this endomorphism commutes with the action of the diamond oper-
ators, and therefore induces an endomorphism of M̃κ(4N , K , p−r ). We define T`2

(or U`2 if ` | 4N ) to be the quotient of this endomorphism by `2.
Now suppose that `= p. Note that{

π−1
1 (X1(4N p)an

≥ p−p2r)⊆ π−1
2 (X1(4N p)an

≥ p−r) if p 6= 2,
π−1

1 (X1(4N )an
≥2−22r)⊆ π−1

2 (X1(4N )an
≥2−r) if p = 2

for any r < 1/p(1+ p). This follows from repeated application of the observation
(made, for example, in [Buzzard 2003, Theorem 3.3(v)]) that if v(E) < p/(1+ p)
and C is a subgroup of order p other than the canonical subgroup, then v(E/C)=
v(E)/p and the canonical subgroup of E/C is E[p]/C .

If κ ∈Wi
n and r is chosen so that 0 ≤ r ≤ rn , then we may apply the construction

above with the table

p 6= 2 p = 2

X X1(4N p, p2)an
K X1(4N , 4)an

K
Y X1(4N p)an

K X1(4N )an
K

Z X1(4N p, p2)an
≥ p−pr X1(4N , 4)an

≥2−2r

D 64N p 64N

H Hp2(κ) H4(κ)

U X1(4N p)an
≥ p−r X1(4N )an

≥2−r

V X1(4N p)an
≥ p−pr X1(4N )an

≥2−2r
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to arrive at a linear map{
H 0(X1(4N p)an

≥ p−r ,O(64N p))→ H 0(X1(4N p)an
≥ p−pr ,O(64N p)) if p 6= 2,

H 0(X1(4N )an
≥2−r ,O(64N ))→ H 0(X1(4N )an

≥2−2r ,O(64N )) if p = 2.

This map commutes with the diamond operators and restricts to a map

M̃κ(4N , K , p−r )→ M̃κ(4N , K , p−pr ).

When composed with the natural restriction map

M̃κ(4N , K , p−pr )→ M̃κ(4N , K , p−r ) (5)

and divided by p2, we arrive at an endomorphism of M̃κ(4N , K , p−r ), which we
denote by Up2 .

Proposition 5.1. The Hecke operators defined above are continuous.

Proof. Each of the spaces arising in the construction is a Banach space over K , so
it suffices to show that each of the constituent maps of which our Hecke operators
are the composition has finite norm. By Lemma 2.5 we may ignore the residue
disks around the cusps when computing norms, thereby reducing ourselves to the
supremum norm on functions. It follows easily that the pullback, restriction, and
trace maps have norm not exceeding 1 and that multiplication by H has norm not
exceeding the supremum norm of H on the complement of the residue disks around
the cusps. The latter is finite since this complement is affinoid. �

Remarks 5.2. • In the overconvergent case, that is, when we have r > 0, the
restriction map (5) is compact; see [Coleman 1997, Proposition A5.2]. It
follows that Up2 is compact since it is the composition of a continuous map
with a compact map.

• The Hecke operators T`2 and U`2 preserve the space of cusp forms, as can be
seen by simply constructing them directly on this space in the same manner as
above. The operator Up2 is compact on a space of overconvergent cusp forms.

5.2. Hecke operators in families. Let X ⊆ W be a connected admissible affinoid
open. We wish to define endomorphisms of M̃X (4N , K , p−r ) that interpolate the
endomorphisms T`2 and U`2 constructed above for fixed weights κ ∈ X .

Suppose that ` 6= p, and adopt the table

p 6= 2 p = 2

U = V X1(4N p)an
≥ p−r X1(4N )an

≥2−r

Z X1(4N p, `2)an
≥ p−r X1(4N , `2)an

≥2−r

6 64N p 64N
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For more compact notation, let us for the rest of this section define

M = H 0(U,O(6)), P = H 0(π−1
1 (V)∩ Z,O(π∗

16−π∗

26)),

N = H 0(π−1
2 (U)∩ Z,O(π∗

26)), Q = H 0(π−1
1 (V)∩ Z,O(π∗

16)).

L = H 0(π−1
1 (V)∩ Z,O(π∗

26)),

The Hecke operator T`2 (or U`2 if ` | 4N ) at a fixed weight was constructed in the
previous section by first taking the composition of the following continuous maps:
a pullback M → N , a restriction N → L , multiplication by an element of H ∈ P
to arrive at an element of Q, and a trace Q → M . The construction was completed
by restricting to an eigenspace of the diamond operators at p and dividing by `2.

The module of families of forms on X is an eigenspace of M⊗̂K O(X) (by the
final remark in Remarks 4.5). To define T`2 (or U`2) we begin as in the fixed
weight case by defining an endomorphism of M⊗̂K O(X) and then observing that
it commutes with the diamond automorphisms and therefore restricts to an operator
on families of modular forms. To define this endomorphism, we modify the above
sequence of maps by first applying ⊗̂K O(X) to all of the spaces and taking the
unique continuous O(X)-linear extension of each map, with the exception of the
multiplication step, where we opt instead to multiply by H`2 |X ∈ P⊗̂K O(X). In so
doing, we arrive at an O(X)-linear endomorphism of M⊗̂K O(X) that is easily seen
to commute with the diamond automorphisms, thereby inducing an endomorphism
of the module M̃X (4N , K , p−r ).

Lemma 5.3. The Hecke operators defined above for families are continuous.

Proof. By definition, each map arising in the construction is continuous except
perhaps for the multiplication map. The proof of the continuity of this map requires
several simple facts about completed tensor products, all of which can be found in
[Bosch et al. 1984, Section 2.1.7].

It follows trivially from Lemma 2.5 that the multiplication map L × P → Q
is a bounded K -bilinear map and therefore extends uniquely to a bounded K -
linear map L⊗̂K P → Q. Extending scalars to O(X) and completing, we arrive
at a bounded O(X)-linear map (L⊗̂K P)⊗̂K O(X)→ Q⊗̂K O(X). There is an iso-
metric isomorphism (L⊗̂K P)⊗̂K O(X) ∼= (L⊗̂K O(X))⊗̂O(X)(P⊗̂K O(X)), so we
conclude that the O(X)-bilinear multiplication map

(L⊗̂K O(X))⊗̂O(X)(P⊗̂K O(X))→ Q⊗̂K O(X)

is bounded. In particular, multiplication by H ∈ P⊗̂K O(X) is a bounded (and
hence continuous) map · H : L⊗̂K O(X)→ Q⊗̂K O(X), as desired. �

Remarks 5.4. • The construction of a continuous endomorphism Up2 is entirely
analogous, and once again we find that Up2 is compact in the overconvergent
case, that is, whenever r > 0.
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• The endomorphisms T`2 and U`2 can be extended to M̃X (4N , K , p−r ) for
general admissible affinoid opens X in the usual manner, working component
by component.

• All of the Hecke operators defined on families preserve the cuspidal sub-
spaces, as a direct construction on these spaces demonstrates. Again, the
operator Up2 is compact on a module of overconvergent cusp forms.

Effect on q-expansions. In this section we will work out the effect of the Hecke
operators that we have defined on q-expansions. As in [Ramsey 2006], we must
adjust the naive q-expansions obtained by literally evaluating our forms on Tate
curves with level structure to get at the classical q-expansions. In particular, by the
q-expansion of a form F ∈ M̃κ(4N , K , p−r ) at the cusp associated to (Tate(q), ζ ),
where ζ is a primitive 4N p-th root of unity if p 6= 2 and a primitive 4N -th root
of unity if p = 2, we mean F(Tate(q), ζ )θ(q)Eκ(q). Similarly, for a family
F ∈ MX (4N , K , p−r ) the corresponding q-expansion is F(Tate(q), ζ )θ(q)E(q)|X

and has coefficients in the ring of analytic functions on X .

Proposition 5.5. Let F be an element of M̃κ(4N , K , p−r ) or M̃X (4N , K , p−r ),
and let

∑
anqn be the q-expansion of F at (Tate(q), ζ ). Then the corresponding

q-expansion of Up2 F is
∑

ap2nqn .

Proof. We prove the theorem for Up2 acting on M̃κ(4N , K , p−r ). To obtain the
result for families, one could either proceed in the same manner or deduce the result
for families over X from the result for fixed weight by specializing to weights in X .
Let F ∈ M̃κ(4N , K , p−r ), and suppose that F(Tate(q), ζ )θ(q)Eκ(q) =

∑
anqn .

The expansion we seek is (1/p2)π1∗(π
∗

2 F · Hp2(κ))(Tate(q), ζ ) · θ(q)Eκ(q). The
cyclic subgroups of order p2 that intersect the subgroup generated by ζ trivially
are exactly those of the form 〈ζ i

p2qp2〉 for 0 ≤ i ≤ p2
− 1. Thus we have

π1∗(π
∗

2 F · Hp2(κ))(Tate(q), ζ )

=

p2
−1∑

i=0

(π∗

2 F · Hp2(κ))(Tate(q), ζ, 〈ζ i
p2qp2〉)

=

p2
−1∑

i=0

F(Tate(q)/〈ζ i
p2qp2〉, ζ/〈ζ i

p2qp2〉)Hp2(κ)(Tate(q), ζ, 〈ζ i
p2qp2〉)

=

p2
−1∑

i=0

F(Tate(ζ i
p2qp2), ζ )Hp2(κ)(Tate(q), ζ, 〈ζ i

p2qp2〉)

=

p2
−1∑

i=0

∑
an(ζ

i
p2qp2)n

θ(ζ i
p2qp2)Eκ(ζ i

p2qp2)

θ(ζ i
p2qp2)Eκ(ζ i

p2qp2)

θ(q)Eκ(q)
= p2

∑
ap2nqn

θ(q)Eκ(q)
. �
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The same analysis also proves the following.

Proposition 5.6. Suppose `|4N. Let F be an element of M̃κ(4N , K , p−r ) or
M̃X (4N , K , p−r ), and let

∑
anqn be the q-expansion of F at (Tate(q), ζ ). Then

the corresponding q-expansion of U`2 F is then
∑

a`2nqn .

To work out the effect of T`2 for ` - 4N p on q-expansions, we will need several
more q-expansions of 2`2 and E`2 . For the former, see [Ramsey 2006]. The latter
will follow from the following lemma. For x ∈ Z×

p , we denote by [x] the analytic
function on W defined by [x](κ)= κ(x).

Lemma 5.7. For ` 6= p, we have

E`(Tate(q), µp + 〈q`〉)= [〈`〉]
E(q)
E(q`)

and E`(Tate(q), µp`)=
E(q)
E(q`)

.

Proof. The second equality is how we chose to characterize E` in the first place.
We will use it to give an alternative characterization, which we will in turn use to
prove the first equality.

By definition, E` and the coefficients of E(q) are pulled back from their re-
strictions to W0 through the map (4). Clearly [〈`〉] is the pullback of [`] through
this map, so it suffices to prove that E`(Tate(q), µp + 〈q`〉) = [`](E(q)/E(q`)),
where the coefficients are now thought of as functions only on W0. Moreover,
it suffices to prove the equality after specialization to integers λ ≥ 2 divisible
by ϕ(q), as such integers are Zariski-dense in W0. Let Eλ(τ ) denote the classical
analytic p-deprived Eisenstein series of weight λ and level p (normalized to have
q-expansion Eλ(q)). Then

Ean
` (λ) := Eλ(τ )/Eλ(`τ )

is a meromorphic function on X0(p`)an
C

with rational q-expansion coefficients, and
by GAGA and the q-expansion principle, it yields a rational function on the alge-
braic curve X0(p`)Qp . By comparing q-expansions it is evident that the restriction
of this function to the region X0(p`)an

≥1 is equal to the specialization, E`(λ), of E`
to λ ∈ W0.

It follows that E`(λ)(Tate(q), µp+〈q`〉)=Ean
` (λ)(Tate(q), µp+〈q`〉). The right

side can be computed using the usual yoga where one pretends to specialize q to
e2π iτ and then computes with analytic transformation formulas (see [Ramsey 2006,
Section 5] for a rigorous explanation of this yoga). So specializing, we get

Ean
` (λ)(Tate(q), µp + 〈q`〉)(τ )= Ean

` (λ)(C/〈1, τ 〉, 〈1/p〉 + 〈τ/`〉).

Choosing a matrix

γ =

(
a b
c d

)
∈ SL2(Z) such that p |c and `|d ,
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we arrive at an isomorphism

(C/〈1, τ 〉, 〈1/p〉 + 〈τ/`〉)
∼
→ (C/〈1, γτ 〉, 〈1/p`〉), z 7→

z
cτ+d

.

Thus

Ean
` (λ)(C/〈1, τ 〉, 〈1/p〉 + 〈τ/`〉)= Ean

` (λ)(C/〈1, γτ 〉, 〈1/p`〉)=
Eλ(γτ)
Eλ(`γτ)

.

Now `γτ = ((a`)(τ/`)+ b)/(c(τ/`)+ d/`), so we have

Eλ(γτ)
Eλ(`γτ)

=
(cτ+d)λEλ(τ )

((cτ+d)/`)λEλ(τ/`)
= `λ

Eλ(τ )
Eλ(τ/`)

.

The result follows. �

Proposition 5.8. Let F ∈ M̃κ(4N , K , p−r , χ) with κ ∈ Wi , and let
∑

anqn be the
q-expansion of F at (Tate(q), ζ ). Then the corresponding q-expansion of T`2 F is∑

bnqn , where

bn = a`2n + κ(`)χ(`)`−1
(
(−1)i n
`

)
an + κ(`)2χ(`)2`−1an/`2 .

Let F ∈ M̃X (4N , K , p−r , χ) with X a connected affinoid in Wi , and let the
q-expansion of F be

∑
anqn as above. Then the corresponding q-expansion of

T`2 F is
∑

bnqn , where

bn = a`2n + [`]χ(`)`−1
(
(−1)i n
`

)
an + [`]2χ(`)2`−1an/`2 .

Proof. We prove the first assertion. The second may either be proved directly in
the same manner or simply deduced from the first via specialization to individual
weights in X . Let κ ∈ W(K ), let F ∈ M̃κ(4N , K , p−r , χ), and let

F(Tate(q), ζ )θ(q)Eκ(q)=
∑

anqn

be the q-expansion of F at (Tate(q), ζ ). The corresponding q-expansion of T`2 F
is

1
`2 π1∗(π

∗

2 F · H`2(κ)) · θ(q)Eκ(q). (6)

The cyclic subgroups of Tate(q) of order `2 are the subgroups

µ`2, 〈ζ i
`2q`2〉0≤i≤`2−1, and 〈ζ

j
`2q`〉1≤ j≤`−1.

We examine separately the contribution of each of these types of subgroups to
π1∗(π

∗

2 F · H`2(κ)).



The half-integral weight eigencurve 779

First, we have

F(Tate(q)/µ`2, ζ/µ`2)H`2(κ)(Tate(q), ζ, µ`2)

= F(Tate(q`
2
), ζ `

2
)2`2(Tate(q), ζ4, µ`2)π∗E`2(κ)(Tate(q), ζp, µ`2)

= F(Tate(q`
2
), ζ `

2
)2`2(Tate(q), ζ4, µ`2)

× E`2(κ)(Tate(q)/µ`2, (µp + Tate(q)[`2
])/µ`2)

= F(Tate(q`
2
), ζ `

2
)2`2(Tate(q), ζ4, µ`2)E`2(κ)(Tate(q`

2
), µp + 〈q〉).

From the definition (2) and Lemma 5.7, we have

E`2(Tate(q`
2
), µp + 〈q〉)

= E`(Tate(q`
2
), µp + 〈q`〉)E`(Tate(q`

2
)/〈q`〉, (µp + 〈q〉)/〈q`〉)

= E`(Tate(q`
2
), µp + 〈q`〉)E`(Tate(q`), µp + 〈q〉)

= [〈`〉]
E(q`

2
)

E(q`)
· [〈`〉]

E(q`)
(q)

= [〈`〉]2 E(q`
2
)

E(q)
.

When specialized to κ , this becomes κ(〈`〉)2 Eκ(q`
2
)/Eκ(q). Referring to [Ramsey

2006], we find

2`2(Tate(q), ζ4, µ`2)= `θ(q`
2
)/θ(q).

Thus the contribution of this first subgroup is

χ(`2)τ (`2)i
∑

anq`
2n

θ(q`2
)Eκ(q`

2
)

`
θ(q`

2
)

θ(q)
κ(〈`〉)2

Eκ(q`
2
)

Eκ(q)
= (κ(〈`〉)χ(`)τ (`)i )2

`
∑

anq`
2n

θ(q)Eκ(q)
.

The subgroups 〈ζ a
`2q`2〉 contribute

`2
−1∑

a=0

F(Tate(q)/〈ζ a
`2q`2〉, ζ/〈ζ a

`2q`2〉)H`2(κ)(Tate(q), ζ, 〈ζ a
`2q`2〉)

=

`2
−1∑

a=0

F(Tate(ζ a
`2q`2), ζ )2`2(Tate(q), ζ4, 〈ζ

a
`2q`2〉)

×π∗E`2(κ)(Tate(q), ζp, 〈ζ
a
`2q`2〉)

=

`2
−1∑

a=0

F(Tate(ζ a
`2q`2), ζ )2`2(Tate(q), ζ4, 〈ζ

a
`2q`2〉)

× E`2(κ)(Tate(q)/〈ζ a
`2q`2〉, (µp + Tate(q)[`2

])/〈ζ a
`2q`2〉)

=

`2
−1∑

a=0

F(Tate(ζ a
`2q`2), ζ )2`2(Tate(q), ζ4, 〈ζ

a
`2q`2〉)

× E`2(κ)(Tate(ζ a
`2q`2), µp`2).
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By (2) we have

E`2(Tate(ζ a
`2q`2), µp`2)= E`(Tate(ζ a

`2q`2), µp`)E`(Tate(ζ a
`2q`2)/µ`, µp`2/µ`)

= E`(Tate(ζ a
`2q`2), µp`)E`(Tate(ζ a

` q`), µp`)

=
E(ζ a

`2q`2)

E(ζ a
` q`)

E(ζ a
` q`)

E(q)
=

E(ζ a
`2q`2)

E(q)
.

Referring to [Ramsey 2006], we find 2`2(Tate(q), ζ4, 〈ζ
a
`2q`2〉) = θ(ζ a

`2q`2)/θ(q).
Thus the total contribution of this collection of subgroups is

`2
−1∑

a=0

∑
an(ζ

a
`2q`2)n

θ(ζ a
`2q`2)Eκ(ζ a

`2q`2)

θ(ζ a
`2q`2)

θ(q)

Eκ(ζ a
`2q`2)

Eκ(q)
= `2

∑
a`2nqn

θ(q)Eκ(q)
.

The subgroups 〈ζ b
`2q`〉 contribute

`−1∑
b=1

F(Tate(q)/〈ζ b
`2q`〉, ζ/〈ζ b

`2q`〉)H`2(κ)(Tate(q), ζ, 〈ζ b
`2q`〉)

=

`−1∑
b=1

F(Tate(ζ b
` q), ζ `)2`2(Tate(q), ζ4, 〈ζ

b
`2q`〉)

×π∗E`2(κ)(Tate(q), ζp, 〈ζ
b
`2q`〉)

=

`−1∑
b=1

F(Tate(ζ b
` q), ζ `)2`2(Tate(q), ζ4, 〈ζ

b
`2q`〉)

× E`2(κ)(Tate(q)/〈ζ b
`2q`〉, (µp + Tate(q)[`2

])/〈ζ b
`2q`〉)

=

`−1∑
b=1

F(Tate(ζ b
` q), ζ `)2`2(Tate(q), ζ4, 〈ζ

b
`2q`〉)

× E`2(κ)(Tate(ζ b
` q), µp + 〈q`〉).

By (2) and Lemma 5.7 we have

E`2(Tate(ζ b
` q), µp + 〈q`〉)

= E`(Tate(ζ b
` q), µp + 〈q〉)E`(Tate(ζ b

` q)/µ`, (µp + 〈q`〉)/µ`)

= E`(Tate(ζ b
` q), µp`)E`(Tate(q`), µp + 〈q〉)

=
E(ζ b

` q)
E(q`)

· [〈`〉]
E(q`)
E(q)

= [〈`〉]
E(ζ b

` q)
E(q)

.

When specialized to κ , this becomes κ(〈`〉)Eκ(ζ b
` q)/Eκ(q). Referring to [Ramsey

2006] we find

2`2(Tate(q), ζ4, 〈ζ
b
` q〉)=

(
−1
`

)
g`(ζ

b
` )
θ(ζ b

` q)
θ(q)

, where g`(ζ )=

`−1∑
m=1

(m
`

)
ζm
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is the Gauss sum associated to the `-th root of unity ζ . Thus the total contribution
of this third collection of subgroups is

`−1∑
b=1

χ(`)(−1/`)iτ(`)i
∑

an(ζ
b
` q)n

θ(ζ b
` q)Eκ(ζ b

` q)

(
−1
`

)
g`(ζ

b
` )
θ(ζ b

` q)
θ(q)

κ(〈`〉)
Eκ(ζ b

` q)
Eκ(q)

=κ(〈`〉)χ(`)
(
−1
`

)i+1
τ(`)i

g`(ζ`)

θ(q)Eκ(q)

∑
n

an

(`−1∑
b=1

ζ bn
`

(b
`

))
qn

=κ(〈`〉)χ(`)
(
−1
`

)i+1
τ(`)i

g`(ζ`)

θ(q)Eκ(q)

∑
n

an

(n
`

)
g`(ζ`)qn

=κ(〈`〉)χ(`)
(
−1
`

)i
τ(`)i

`
∑ (n

`

)
anqn

θ(q)Eκ(q)
.

Adding all this up and plugging into (6), we see that the q-expansion of T`2 F is∑
bnqn , where

bn = a`2n + κ(〈`〉)`−1χ(`)
(
−1
`

)i
τ(`)i

(n
`

)
an + κ(〈`〉)2`−1χ(`)2τ(`)2i an/`2

= a`2n + κ(`)`−1χ(`)
(
(−1)i n
`

)
an + κ(`)2`−1χ(`)2an/`2 . �

6. Classical weights and classical forms

In this section we define classical subspaces of our spaces of modular forms and
prove the following analog of Coleman’s theorem on overconvergent forms of low
slope. Throughout this section k will denote an odd positive integer and we set
λ= (k − 1)/2.

Theorem 6.1. Let m be a positive integer, let ψ : (Z/qpm−1Z)× → K × be a
character, and define κ(x) = xλψ(x). If F ∈ M̃†

κ (4N , K ) satisfies Up2 F = αF
with v(α) < 2λ− 1, then F is classical.

Our proof follows the approach of Kassaei [2006], which is modular in nature and
builds the classical form by analytic continuation and gluing. The term “analytic
continuation” has little meaning here since we have only defined our modular forms
over restricted regions on the modular curve, owing to the need to avoid Eisenstein
zeros. To get around this difficulty, we must invoke the formalism of [Ramsey
2006] for p-adic modular forms of classical half-integral weight.

Let N be a positive integer. In [Ramsey 2006] we defined the space of modular
forms of weight k/2 and level 4N over a Z[1/4N ]-algebra R to be the R-module

M̃ ′

k/2(4N , R) := H 0(X1(4N )R,O(k64N )).
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Note that this space was denoted Mk/2(4N , R) and k64N was denoted 64N ,k .
Roughly speaking, in this space of forms we have divided by θ k to reduce to weight
zero instead of Eλθ . Let r ∈ [0, 1] ∩ Q, and define

M̃ ′

k/2(4N pm, K , p−r )= H 0(X1(4N pm)an
≥ p−r ,O(k64N pm )).

It is an easy matter to check that the construction of the Hecke operators T`2 and Up2

in Section 5 (using H = 2k
`2) adapts to this space of forms and furnishes us with

Hecke operators having the expected effect on q-expansions. We will briefly review
the construction of Up2 in this context later in this section.

The next proposition relates these spaces of p-adic modular forms to the ones
defined in this paper, and will ensure that the latter spaces (and consequently the
eigencurve defined later in this paper) see the classical half-integral weight modular
forms of arbitrary p-power level. Note that this identification requires knowledge
of the action of the diamond operators at p because this data is part of the p-adic
weight character.

Proposition 6.2. Let m be a positive integer, let ψ : (Z/qpm−1Z)× → K × be a
character, and define κ(x)= xλψ(x). Then, for 0 ≤ r ≤ rm , the space

M̃ ′(4N pm+1/q, K , p−r )〈 · 〉
∗

qpm−1=ψ
=

{
M̃ ′

k/2(4N pm, K , p−r )〈 · 〉
∗

pm =ψ if p 6= 2
M̃ ′

k/2(2
m+1 N , K , p−r )〈 · 〉

∗

2m+1=ψ if p = 2

is isomorphic to M̃κ(4N , K , p−r ) in a manner compatible with the action of the
Hecke operators and tame diamond operators.

Proof. Let i be such that κ ∈ Wi . The complex-analytic modular forms θ k−1 and
Eκτ−i are each of weight λ. If p 6= 2, then θ k−1 is invariant under the 〈d〉

∗

qpm−1

while if p = 2 it has eigencharacter (−1/ · )i . In both cases, Eκτ−i has eigenchar-
acter ψτ−i for this action. Standard arguments using GAGA and the q-expansion
principle show that the ratio θ k−1/Eκτ−i furnishes an algebraic rational function
on X1(4N pm+1/q)K . Passing to the p-adic analytification and then restricting to
X1(4N pm+1/q)an

≥ p−r shows this function has divisor (k−1)64N pm+1/q, since Eκτ−i

is invertible in this region for r as in the statement of the proposition (because
κ ∈ Wm).

Suppose F ′
∈ M̃ ′

k/2(4N pm+1/q, K , p−r ) is a form with eigencharacter ψ for
〈 · 〉

∗

qpm−1 , and let

F = F ′
·
θ k−1

Eκτ−i
.
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Then, for d ∈ (Z/qpm−1Z)× we have 〈d〉
∗

qpm−1 F = τ(d)i (−1/ · )i F . In particular,
F is fixed by 〈d〉

∗
pm with d ≡ 1 (mod q). Consider now the map

X1(4N pm+1/q)an
≥ p−r/{〈d〉qpm−1 | d ≡ 1(modq)}

−→

{
X1(4N p)an

≥ p−r if p 6= 2,
X1(4N )an

≥2−r if p = 2
(7)

induced by (E, P) 7→ (E, a P), where the integer a is chosen so that

a ≡ pm−1(mod pm) and a ≡ 1(mod4N ) if p 6= 2,

a ≡ 2m−1(mod2m+1) and a ≡ 1(mod N ) if p = 2.

The construction of the canonical subgroup of order qpm−1 (defined because r ≤

rm < p2−m/q(1+ p)) ensures that this map is an isomorphism. For p 6= 2, this map
pulls the divisor 64N p back to 64N pm , so we conclude that F descends to a section
of O(64N p) on X1(4N p)an

≥ p−r and that this section satisfies 〈d〉
∗
p F = τ(d)i F for

all d ∈ (Z/qZ)×. For p = 2, this map pulls the divisor 64N back to 62m+1 N ,
so F descends to a section of O(64N ) on X1(4N )an

≥2−r , and this section satisfies
〈d〉

∗

4 F = τ(d)i (−1/d)i F for all d ∈ (Z/qZ)×. Thus we may regard F as an element
of M̃κ(4N , K , p−r ). Conversely, for F ∈ M̃κ(4N , K , p−r ), it is easy to see that

F ·
Eκτ−i

θ k−1 ∈ M̃ ′

k/2(4N pm+1/q, K , p−r )〈 · 〉qpm−1=ψ

(where F is implicitly pulled back via the above map (7)) and that this furnishes
an inverse to the above map F ′

7→ F . That these maps are equivariant with respect
to the Hecke action is a formal manipulation with the setup in Section 5 used to
define the action on both sides. That it is equivariant with respect to tame diamond
operators is trivial, but relies essentially on the “twisted” convention for this action
on M̃κ(4N , K , p−r ) (for p 6= 2). �

In general, if U is a connected admissible open in X1(4N pm+1/q)an
K contain-

ing X1(4N pm+1/q)an
≥ p−r and if F ∈ M̃κ(4N , K , p−r ) (with κ as in the previous

proposition), we will say that F analytically continues to U if the corresponding
form F ′

∈ M̃ ′

k/2(4N pm+1/q, K , p−r ) analytically continues to an element of

H 0(U,O(k64N pm+1/q)). (8)

Note that, in case U is preserved by the diamond operators at p, this analytic
continuation automatically lies in the ψ-eigenspace of (8) since G − 〈d〉

∗

qpm−1 G
vanishes on the nonempty admissible open X1(4N pm+1/q)an

≥ p−r for all d , and
hence must vanish on all of U. In particular, in case U = X1(4N pm+1/q)an

K we
make the following definition.
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Definition 6.3. Let κ(x) = xλψ(x) be as in Proposition 6.2. We say an element
F ∈ M̃κ(4N , K )† is classical if it analytically continues in the sense described
above to all of X1(4N pm+1/q)an

K , that is, if it is in the image of the (injective) map

H 0(X1(4N pm+1/q)an
K ,O(k64N p))

〈 · 〉pm=ψ

→ M̃ ′

k/2(4N pm+1/q, K , p−rm )〈 · 〉pm=ψ ∼= M̃κ(4N , K , p−rm )

↪→ M̃κ(4N , K )†.

The analytic continuation used to prove Theorem 6.1 will proceed in three steps.
All of them involve the construction of the operator Up2 on

M̃ ′

k/2(4N pm+1/q, K , p−r ),

which goes as follows. Let

π1, π2 : X1(4N pm+1/q, p2)an
K → X1(4N pm+1/q)an

K

be the usual pair of maps, and let 2p2 denote the rational function on X1(4, p2)Q

from Section 3. For any pair of admissible open U and V in X1(4N pm+1/q)an
K with

π−1
1 V ⊆ π−1

2 U, we have the map

H 0(U,O(k64N pm+1/q))→ H 0(V,O(k64N pm+1/q))

F 7→
1
p2π1∗(π

∗

2 F ·2k
p2).

Note that there is no need to introduce the space Z as in Section 5 since our
“twisting” section2k

p2 is defined on all of X1(4N pm+1/q, p2)an
K . Also, recall from

Section 5 that if 0 ≤ r < 1/p(1 + p), we have

π−1
1 (X1(4N pm+1/q)an

≥ p−p2r)⊆ π−1
2 (X1(4N pm+1/q)an

≥ p−r).

Thus if F ∈ M̃ ′

k/2(4N pm+1/q, K , p−r ) with r < 1/p(1+ p) then Up2 F analytically
continues to X1(4N pm+1/q)an

≥ p−p2r . From this simple observation we get the first
and easiest analytic continuation result.

Proposition 6.4. Let r > 0, and let F ∈ M̃ ′

k/2(4N pm+1/q, K , p−r ). Suppose that
there exists a polynomial P(T ) ∈ K [T ] with P(0) 6= 0 such that P(Up2)F ana-
lytically continues to X1(4N pm+1/q)an

≥ p−1/(1+p). Then F analytically continues to
this region as well.

Proof. Write P(T )= P0(T )+ a with P0(0)= 0 and a 6= 0. Then

F =
1
a
(P(Up2)F − P0(Up2)F).

If we have 0 < r < 1/p(1 + p), then the right side analytically continues to
X1(4N pm+1/q)an

≥ p−p2r and hence so does F . Since r > 0, we may repeat this
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process until we have analytically continued F to X1(4N pm+1/q)an
≥ p−s for some

s ≥ 1/p(1 + p). Now restrict F to X1(4N pm+1/q)an
≥ p−1/p2(1+p) and apply the

process once more to get the desired result. �

The second analytic continuation step requires that we introduce some admis-
sible opens in X1(4N pm+1/q)an

Qp
defined in [Buzzard 2003]. Use of the letter W

in this part of the argument is intended to keep the notation parallel to that of
[Buzzard 2003] and should not be confused with weight space. If p 6= 2, we let
W0 ⊆ X1(4N , p)an

Qp
denote the admissible open subspace whose points reduce to

the irreducible component on the special fiber of X1(4N , p) in characteristic p that
contains the cusp associated to the datum (Tate(q), P, µp) for some (equivalently,
any) point of order 4N on Tate(q). Alternatively, W0 can be characterized as the
complement of the connected component of the ordinary locus in X1(4N , p)an

Qp

containing the cusp associated to (Tate(q), P, 〈qp〉) for some (equivalently, any)
choice of P . If p = 2, we let W0 ⊆ X1(N , 2)an

Qp
denote the admissible open

subspace whose points reduce to the irreducible component on the special fiber
of X1(N , 2) in characteristic 2 that contains the cusp associated to the datum
(Tate(q), P, µ2) for some (equivalently, any) point of order N on Tate(q). Al-
ternatively, W0 can be characterized as the complement of the connected com-
ponent of the ordinary locus in X1(N , 2)an

Qp
containing the cusp associated to

(Tate(q), P, 〈q2〉) for some (equivalently, any) choice of P . In particular, W0 al-
ways contains the entire supersingular locus. The reader concerned about problems
with small N in these descriptions should focus on the “alternative” versions and
the remarks in Section 2.1 about adding level structure and taking invariants.

Buzzard [2003] introduces a map v′
: W0 → Q defined as follows. If x ∈ W0 is

a cusp, then set v′(x)= 0. Otherwise, x ∈ W0 corresponds to a triple (E/L , P,C)
with E/L an elliptic curve, P a point of order 4N (N if p = 2) on E , and C ⊂ E a
cyclic subgroup of order p. If E has bad or ordinary reduction, then set v′(x)= 0.
Otherwise, if 0<v(E)< p/(1+ p), then E has a canonical subgroup H of order p,
and we define

v′(x)=

{
v(E) if H = C,
1 − v(E/C) if H 6= C.

Finally, if v(E) ≥ p/(1 + p) we define v′(x) = p/(1 + p). Note that v′ does not
depend on the point P . For a nonnegative integer n, we let Vn denote the region
in W0 defined by the inequality v′

≤ 1−1/pn−1(1+ p). Buzzard proves that Vn is
an admissible affinoid open in W0 for each n, and that W0 is admissibly covered
by the Vn .

Let

f : X1(4N pm+1/q)an
Qp

→

{
X1(4N , p)an

Qp
if p 6= 2,

X1(N , 2)an
Qp

if p = 2
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denote the map characterized by

(E, P) 7→

{
(E/〈4N pP〉, pm P/〈4N pP〉, 〈4N P/〈4N pP〉〉 if p 6= 2,
(E/〈2N P〉, 2m+1 P/〈2N P〉, 〈N P/〈2N P〉〉) if p = 2

on noncuspidal points. Define W1 = f −1(W0) and Zn = f −1(Vn) for n ≥ 0. It
follows from the above that W1 is an admissible open in X1(4N pm+1/q)an

K and
that W1 is admissibly covered by the admissible opens Zn . The latter are affinoid
since f is finite.

Lemma 6.5. The inclusion π−1
1 (Zn+2)⊆ π−1

2 (Zn) holds for all n ≥ 0.

Proof. Since the maps π1 and π2 are finite, the stated inclusion is between affinoids
and can be checked on noncuspidal points. Then the assertion follows immediately
from two applications of [Buzzard 2003, Lemma 4.2(2)]. �

We can now state and prove the second analytic continuation result.

Proposition 6.6. Let r > 0, and let F ∈ M̃ ′

k/2(4N pm+1/q, K , p−r ). Suppose that
there exists a polynomial P(T ) ∈ K [T ] with P(0) 6= 0 such that P(Up2)F extends
to W1. Then F extends to this region as well.

Proof. Note that
X1(4N pm+1/q)an

≥ p−1/(1+p) = Z0 ⊆ W1

so that by Proposition 6.4, F extends to Z0. Now we proceed inductively to ex-
tend F to each Zn . Let P(T )= P0(T )+ a with P0(0)= 0 and a 6= 0. Then

F =
1
a
(P(Up2)F − P0(Up2)F).

Suppose F extends to Zn for some n ≥ 0. By hypothesis, P(Up2)F extends to all
of W1, and by the construction of Up2 and Lemma 6.5, P0(Up2)F extends to Zn+2,
and hence so does F . Thus by induction F extends to Zn for all n, and since W1

is admissibly covered by the Zn , F extends to W1. �

If p 6= 2 and m = 1 (that is, if there is only one p in the level), then this is
the end of the second analytic continuation step. In all other cases, techniques in
[Buzzard 2003] allow us to analytically continue to more connected components
of the ordinary locus. Define

m = ordp(qpm−1)=

{
m if p 6= 2,
m + 1 if p = 2.

We now follow Buzzard: For 0 ≤ r ≤ m let Ur denote the admissible open in
X1(4N pm+1/q)an

K whose noncuspidal points parameterize pairs (E, P) that are
either supersingular or satisfy

Hpm−r (E)=

{
Hpm−r (E)= 〈4N pr P〉 if p 6= 2,
H2m+1−r (E)= 〈N2r P〉 if p = 2.
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We have
W1 = U0 ⊆ U1 ⊆ · · · ⊆ Um = X1(4N pm+1/q)an

K .

The last goal of the second step is to analytically continue eigenforms to Um−1.

Lemma 6.7. For 0 ≤ r ≤ m − 2, we have π−1
1 (Ur+1)⊆ π−1

2 (Ur ).

Proof. As usual, it suffices to check this on noncuspidal points. Moreover, it
suffices to check it on ordinary points, since the entire supersingular locus is
contained in each Ur . For brevity we will assume p 6= 2. The case p = 2
is proved in exactly the same manner. Let (E, P,C) ∈ π−1

1 (Ur+1) be such a
point. Then Hpm−r−1(E) = 〈4N pr+1 P〉, and since r + 1 < m, we conclude that
Hpm−r−1(E)∩C = 0. Now [Buzzard 2003, Proposition 3.5] implies that Hpr (E/C)
is indeed generated by the image of 4N pr P in E/C , so (E, P,C) ∈ π−1

2 (Ur ). �

Proposition 6.8. Let r > 0, and let F ∈ M̃ ′

k/2(4N pm+1/q, K , p−r ). Suppose that
there exists a polynomial P(T ) ∈ K [T ] with P(0) 6= 0 such that P(Up2)F extends
to Um−1. Then F extends to this region as well.

Proof. Since U0 =W1, Proposition 6.6 ensures that F analytically continues to U0.
Now we proceed inductively to extend F to each Ur for 0 ≤ r ≤ m − 1. Let
P(T )= P0(T )+ a with P0(0)= 0 and a 6= 0. Then

F =
1
a
(P(Up2)F − P0(Up2)F).

Suppose F extends to Ur for some 0 ≤ r ≤ m−2. By hypothesis, P(Up2)F extends
to all of Um−1, and by the construction of Up2 and Lemma 6.7, P0(Up2)F extends to
Ur+1, and hence so does F . Proceeding inductively, we see that F can be extended
all the way to Um−1. �

The third and most difficult analytic continuation step is to continue to the rest
of the curve X1(4N pm+1/q)an

K . If p 6= 2, we let V0 denote the admissible open
in X1(4N , p)an

K whose points reduce to the irreducible component on the special
fiber in characteristic p that contains the cusp associated to (Tate(q), P, 〈qp〉) for
some (equivalently, any) choice of P . On the other hand, if p = 2, we let V0

denote the admissible open in X1(N , 2)an
K whose points reduce to the irreducible

component on the special fiber in characteristic 2 that contains the cusp associated
to (Tate(q), P, 〈q2〉) for some (equivalently, any) choice of P . Let V denote the
preimage of V0 under the finite map

g : X1(4N pm+1/q)an
Qp

→

{
X1(4N , p)an

Qp
if p 6= 2,

X1(N , 2)an
Qp

if p = 2,

(E, P) 7→

{
(E, pm P, 〈4N pm−1 P〉) if p 6= 2,
(E, 2m+1 P, 〈2m N P〉) if p = 2.
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Note that the preimage under g of the locus that reduces to the other component
of X1(4N , p)Fp (or X1(N , 2)F2 if p = 2) is Um−1, so in particular {Um−1,V} is an
admissible cover of X1(4N pm+1/q)an

Qp
and Um−1 ∩ V is the supersingular locus.

For any subinterval I ⊆ (p−p/(1+p), 1], let VI (respectively Um−1 I ) denote the
admissible open in V (respectively Um−1) defined by the condition p−v(E)

∈ I .
Note that the complement of Um−1 in X1(4N pm+1/q)an

K is V[1, 1]. Given a Up2-
eigenform of suitably low slope, we will define a function on V[1, 1] and use the
gluing techniques of [Kassaei 2006] to glue it to the analytic continuation of our
eigenform to Um−1 guaranteed by Proposition 6.6. These techniques rely heavily
on the norms introduced in Section 2.2. The use of Lemma 2.5 to reduce these
norms to the supremum norm on the complement of the residue disks around the
cusps will be implicit in many of the estimates that follow.

Over V(p−1/p(1+p), 1] we have a section h to π1 given on noncuspidal points
by

h : V(p−1/p(1+p), 1] → X1(4N pm+1/q, p2)an
K

(E, P) 7→ (E, P, Hp2).

By standard results on quotienting by the canonical subgroup [Buzzard 2003, The-
orem 3.3], the composition π2 ◦ h restricts to a map

Q : V(p−r , 1] → V(p−p2r , 1] (9)

for any 0 ≤ r ≤ 1/p(1 + p). Note that since Q preserves the property of having
ordinary or supersingular reduction, Q restricts to a map V(p−r , 1)→V(p−p2r , 1).
Define a meromorphic function ϑ on V(p−1/p(1+p), 1] by ϑ= h∗2p2 , and note that

div(ϑ)= h∗(π∗

264N pm+1/q −π∗

164N pm+1/q)

= Q∗64N pm+1/q −64N pm+1/q.
(10)

Let F ∈ H 0(Um−1,O(k64N pm+1/q)) and suppose that

Up2 F = αF + H

on Um−1 for some classical form H and some α 6=0. Note that this condition makes
sense because π−1

1 (Um−1)⊆π
−1
2 (Um−1) by Lemma 6.7. For a pair (E, P)∈Um−1

corresponding to a noncuspidal point, we have

F(E, P)=
1
αp2

∑
C

F(E/C, P/C)2k
p2(E, P,C)− 1

α
H(E, P), (11)

where the sum is over the cyclic subgroups of order p2 having trivial intersec-
tion with the group generated by P . Suppose that (E, P) corresponds to a point
in V(p−1/p(1+p), 1). Then the subgroup generated by P has trivial intersection
with the canonical subgroup Hp2 , and thus the canonical subgroup is among the
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subgroups occurring in the sum above. One can check using [Buzzard 2003, The-
orem 3.3] that (E/Hp2, P/Hp2) corresponds to a point of V(p−p/(1+p), 1), while
if C 6= Hp2 is a cyclic subgroup of order p2 with trivial intersection with 〈P〉,
then (E/C, P/C) corresponds to a point of Um−1(p−1/p(1+p), 1]. Define F1 on
V(p−1/p(1+p), 1) by

F1 = F −
1
αp2ϑ

k Q∗(F |V(p−p/(1+p),1)).

Lemma 6.9. The function F1 on V(p−1/p(1+p), 1) extends to an element of

H 0(V(p−1/p(1+p), 1],O(k64N pm+1/q)).

Proof. Equation (11) and the comments that follow it show how to define the
extension F̃1 of F1, at least on noncuspidal points. For a pair (E, P) corresponding
to a noncuspidal point of V(p−1/p(1+p), 1], we would like

F̃1(E, P)=
1
αp2

∑
C

F(E/C, P/C)2k
p2(E, P,C)− 1

α
H(E, P),

where the sum is over the cyclic subgroups of order p2 of E not meeting 〈P〉 and
not equal to Hp2(E). We can formalize this as follows.

The canonical subgroup of order p2 furnishes a section to the finite map

π−1
1 (V(p−1/p(1+p), 1])

π1
−→ V(p−1/p(1+p), 1],

and section is an isomorphism onto a connected component of

π−1
1 (V(p−1/p(1+p), 1]).

Let Z denote the complement of this connected component. Then π1 restricts to a
finite and flat map Z → V(p−1/p(1+p), 1]. Note that

Z = π−1
1 (V(p−1/p(1+p), 1])∩ Z ⊆ π−1

2 (Um−1(p−1/p(1+p), 1])∩ Z,

as can be checked on noncuspidal points (see the comments following Equation
(11)). Now we may apply the general construction of Section 5 with this Z and
define

F̃1 =
1
αp2π1∗(π

∗

2 F ·2k
p2)−

1
α

H.

Then F̃1 ∈ H 0(V(p−1/p(1+p), 1],O(k64N pm+1/q)), and Equation (11) shows that
F̃1 extends F1. �

For n ≥ 1, we define inductively an element Fn of

H 0(V(p−1/p2n−1(1+p), 1],O(k64N pm+1/q)),
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where F1 is as above and for n ≥ 1, we set

Fn+1 = F1 +
1
αp2ϑ

k Q∗(Fn|V(p−1/p2n+1(1+p),1]
).

Note that (9) and (10) show that the Fn do indeed lie in the spaces indicated. Our
goal is to show that the sequence {Fn}, when restricted to V[1, 1], converges to an
element of G of H 0(V[1, 1],O(k64N pm+1/q)) that glues to F in the sense that there
exists a global section of O(k64N pm+1/q) that restricts to F and G on Um−1 and
V[1, 1], respectively. To do this we will use Kassaei’s gluing lemma [2006]. The
following lemmas furnish some necessary norm estimates.

Lemma 6.10. The function 2p2 on Y1(4, p2)Qp is integral. That is, it extends to a
regular function on the fine moduli scheme Y1(4, p2)Zp .

Proof. Each 01(4) ∩ 00(p2) structure on the elliptic curve Tate(q)/Qp((q)) lifts
trivially to one over the Tate curve thought of as over Zp((q)). Since the Tate curve
is ordinary, such a structure specializes to a unique component of the special fiber
Y1(4, p2)Fp . Since Y1(4, p2)Zp is Cohen–Macaulay, the usual argument used to
prove the q-expansion principal (as in the proof of [Katz 1973, Corollary 1.6.2])
shows that 2p2 is integral as long as it has integral q-expansion associated to a
level structure specializing to each component of the special fiber. In fact, all
q-expansions of 2p2 are computed explicitly in [Ramsey 2006, Section 5], and all
are integral. �

Lemma 6.11. Let R be an Fp-algebra, let E be an elliptic curve over R, and
let E (p) denote the base change of E via the absolute Frobenius morphism on
Spec(R). Let Fr : E → E (p) denote the relative Frobenius morphism. Then for any
point P of order 4 on E , we have 2p2(E, P, ker(Fr2))= 0.

Proof. In characteristic p, the forgetful map Y1(4, p2)Fp → Y1(4)Fp has a section
given on noncuspidal points by s : (E, P) 7→ (E, P, ker(Fr2)). By Lemma 6.10,
we may pull back (the reduction of) 2p2 through this section to arrive at a regular
function on the smooth curve Y1(4)Fp .

The q-expansion of s∗2p2 at the cusp associated to (Tate(q), ζ4) is

s∗2p2(Tate(q), ζ4)=2p2(Tate(q), ζ4, (ker(Fr2))).

Recall that the map Tate(q)→Tate(q p) given by quotienting byµp is a lifting of Fr
to characteristic zero (more specifically, to the ring Z((q))). Thus the q-expansion
we seek is the reduction of

2p2(Tate(q), ζ4, µp2)= p
∑

n∈Z q p2n2∑
n∈Z qn2
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modulo p, which is clearly zero. See [Ramsey 2006, Section 5] for the computation
of the above q-expansion in characteristic zero. It follows from the q-expansion
principle that s∗2p2 = 0, which implies our claim. �

Lemma 6.12. Let 0 ≤ r < 1/p(1 + p). Then the section ϑ of

O(64N pm+1/q − Q∗64N pm+1/q)

satisfies ‖ϑ‖V[p−r ,1] ≤ p pr−1.

Proof. By Lemma 2.5, we may, in computing the norm, ignore points reducing to
cusps. Let x ∈V[p−r , 1] be outside of this collection of points, so x corresponds to
a pair (E, P) with good reduction. Let Hpi denote the canonical subgroup of E of
order pi (for whichever i this is defined). Let E be a smooth model of E over OL ,
and let P and Hp2 be the extensions of P and Hp2 to E, respectively (these E and
H should not be confused with the functions by the same name from Section 3).

By [Goren and Kassaei 2006, Theorem 3.10], Hp reduces modulo p/pv(E) to
ker(Fr). Applying this to E/Hp, we see that Hp2/Hp reduces modulo p/pv(E/Hp)

to ker(Fr) on the corresponding reduction of E/Hp. Then from [Buzzard 2003,
Theorem 3.3], we know that v(E/Hp) = pv(E), so p1−v(E/Hp) | p1−v(E) and we
may combine these statements to conclude that Hp2 reduces modulo p1−pv(E) to
ker(Fr2) on the reduction of E .

Combining this with the integrality of 2p2 (from Lemma 6.10), we have

h(x)=2p2(E, P, Hp2)≡2p2(E, P, ker(Fr2)) (mod p1−pv(E)).

This is zero by Lemma 6.11, so |h(x)| ≤ |p1−pv(E)
| = p pv(E)−1

≤ p pr−1. �

Proposition 6.13. Let F ∈ H 0(Um−1,O(k64N pm+1/q)). Suppose Up2 F − αF is
classical for some α ∈ K with v(α) < 2λ− 1. Then F is classical as well.

Proof. Define Fn as above. We first show that the sequence Fn|V[1,1] converges.
Note that over V[1, 1] we have

Fn+2 − Fn+1 =

(
F1 +

1
αp2ϑ

k Q∗Fn+1

)
−

(
F1 +

1
αp2ϑ

k Q∗Fn

)
=

1
αp2ϑ

k Q∗(Fn+1 − Fn).

By Lemma 6.12 (with r = 0), we have

‖Fn+2 − Fn+1‖V[1,1] ≤
p2−k

|α|
‖Fn+1 − Fn‖V[1,1].

The hypothesis on α ensures that (p2−k/|α|)n → 0 as n → ∞ and hence that
the sequence has successive differences that tend to zero. Since, by Lemma 2.1,
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H 0(V[1, 1],O(k64N pm+1/q)) is a Banach algebra with respect to ‖ · ‖V[1,1], it fol-
lows that the sequence converges. Set

G = lim
n→∞

Fn|V[1,1].

Next we apply Kassaei’s gluing lemma [Kassaei 2006, Lemma 2.3] to glue G
to F as sections of the line bundle O(bk64N pm+1/qc). So that we are gluing over
an affinoid as required in the hypotheses of the gluing lemma, we first restrict F
to V[p−1/p(1+p), 1) and glue G to this restriction to get a section over the smooth
affinoid V[p−1/p(1+p), 1]. Since the pair {V[p−1/p(1+p), 1],Um−1} is an admissible
cover of X1(4N pm+1/q)an

K , this section glues to F to give a global section.
The “auxiliary” approximating sections that are required in the hypotheses of

this lemma (denoted Fn in [Kassaei 2006]) are the Fn introduced above. So that
the Fn live on affinoids (as in the hypotheses of the gluing lemma), we simply
restrict Fn to V[p−1/p2n(1+p), 1]. The two conditions to be verified are

‖Fn − F‖
V[p−1/p2n (1+p),1) → 0 and ‖Fn − G‖V[1,1] → 0.

The second of these is simply the definition of G. As for the first, it is not even
clear that the indicated norms are finite (since the norms are over non-affinoids). To
see that these norms are finite and that the ensuing estimates make sense, we must
show that F has finite norm over V[p−1/p2(1+p), 1). It suffices to show that the
norms of F over the affinoids Vn = V[p−1/p2n(1+p), p−1/p2n+2(1+p)

] are uniformly
bounded for n ≥ 1. The key is that the map Q restricts to a map Q : Vn → Vn+1

for each n ≥ 1. Since F1 extends to the affinoid V[p−1/p2(1+p), 1], its norms over
the Vn are certainly uniformly bounded, say, by M . We have

‖F‖Vn ≤ max
(
‖F1‖Vn ,

∥∥∥ 1
αp2ϑ

k Q∗F
∥∥∥

Vn

)
≤ max

(
M, p2

|α|
‖ϑk

‖Vn‖Q∗F‖Vn

)
≤ max

(
M,

p2

|α|

(
p1/(p2n−1(1+p))−1)k

‖Q∗F‖Vn

)
≤ max

(
M, p2−k

|α|
pk/(p2n−1(1+p))

‖F‖Vn−1

)
.

Iterating this, we see that ‖F‖Vn does not exceed the maximum of

max
0≤m≤n−2

(
M

( p2−k

|α|

)m
p

k
1+p (1/p2n−1

+···+1/p2(n−m)+1)
)

and ( p2−k

|α|

)n−1
p

k
1+p (1/p2n−1

+···+1/p3)
‖F‖V1 .
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The sums in the exponents of are geometric and do not exceed 1/(p3
− p). More-

over, the hypothesis on α ensures that p2−k/|α|< 1. Thus we have

‖F‖Vn ≤ max
(

Mp
k

1+p
1

p3−p , p
k

1+p
1

p3−p ‖F‖V1

)
,

which is independent of n, as desired. This ensures that all of the norms encoun-
tered below are indeed finite.

From the definition of the Fn , we have

Fn+1 − F = F1 +
1
αp2ϑ

k Q∗Fn − F

= F −
1
αp2ϑ

k Q∗F +
1
αp2ϑ

k Q∗Fn − F =
1
αp2ϑ

k Q∗(Fn − F).

Taking supremum norms over the appropriate admissible opens, we see

‖Fn+1 − F‖
V[p−1/(p2n+2(1+p)),1)

≤
p2

|α|
‖ϑ‖

k
V[p−1/(p2n+2(1+p)),1)

‖Q∗(Fn − F)‖
V[p−1/(p2n+2(1+p)),1)

≤
p2

|α|

(
p1/(p2n+1(1+p))−1)k

‖Fn − F‖
V[p−1/(p2n (1+p),1))

=
p2−k

|α|
pk/(p2n+1(1+p))

‖Fn − F‖
V[p−1/(p2n (1+p)),1).

Iterating this we find that

‖Fn − F‖
V[p−1/(p2n (1+p)),1)

≤

( p2−k

|α|

)n−1
p

k
1+p (1/p3

+1/p5
+···+1/p2n−1)

‖F1 − F‖
V[p−1/p2(1+p),1).

Again the sum in the exponent is less than 1/(p3
− p) for all n, so the hypothesis

on α ensures that the above norm tends to zero as n → ∞, as desired �

We are now ready to prove the main result of this section, which is a mild
generalization of Theorem 6.1.

Theorem 6.14. Let m be a positive integer, let ψ : (Z/qpm−1Z)× → K × be a
character, and define κ(x)= xλψ(x). Let P(T )∈ K [T ] be a monic polynomial all
roots of which have valuation less than 2λ− 1. If F ∈ M̃†

κ (4N , K ) and P(Up2)F
is classical, then F is classical as well.

Proof. Pick r in 0 < r < rm such that F ∈ M̃κ(4N , K , p−r ), and let F ′
∈

M̃k/2(4N pm+1/q, K , p−r ) be the form corresponding to F under the isomorphism
of Proposition 6.2. We must show that F ′ is classical in the sense that it ana-
lytically continues to all of X1(4N pm+1/q)an

K . Note that P(0) 6= 0 for such a
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polynomial, so by Proposition 6.8, F ′ analytically continues to an element of
H 0(Um−1,O(k64N pm+1/q)). Now we proceed by induction on the degree d of
P . The case d = 1 is Proposition 6.13. Suppose the result holds for some degree
d ≥ 1, and let P(T ) be a polynomial of degree d + 1 as above. We may pass to
a finite extension and write P(T ) = (T − α1) · · · (T − αd+1). The condition that
P(Up2)F ′ is classical implies by the inductive hypothesis that (Up2 − αd+1)F ′ is
classical. This implies that F ′ is classical by the case d = 1. �

Remark 6.15. The results of this section likely also follow from the very general
classicality machinery developed in [Kassaei 2005], though we have not checked
the details.

7. The half-integral weight eigencurve

To construct our eigencurve, we will use the axiomatic version of Coleman and
Mazur’s Hecke algebra construction, as set up in [Buzzard 2007]. We briefly recall
some relevant details.

Let us for the moment allow W to be any reduced rigid space over K . Let T
be a set with a distinguished element φ. Suppose that, for each admissible affinoid
open X ⊆ W, we are given a Banach module MX over O(X) satisfying a certain
technical hypothesis (called (Pr) in [Buzzard 2007]), and we are also given a map

T → EndO(X)(MX ), t 7→ tX

whose image consists of commuting endomorphisms and such that φX is compact
for each X . Assume that, for admissible affinoids X1 ⊆ X2 ⊆ W, we are given a
continuous injective O(X1)-linear map

α12 : MX1 → MX2⊗̂O(X2)O(X1)

that is a “link” in the sense of [Buzzard 2007] and such that (tX2⊗̂1)◦α12 =α12◦tX1 .
Assume moreover that, if X1 ⊆ X2 ⊆ X3 ⊆ W are admissible affinoids, then α13 =

α23 ◦ α12 with the obvious notation. Note that the link condition ensures that the
characteristic power series PX (T ) of φX acting on MX is independent of X in the
sense that the image of PX2(T ) under the natural map O(X2)[[T ]] → O(X1)[[T ]] is
PX1(T ); see [Buzzard 2007].

Out of this data, Buzzard constructs rigid analytic spaces D and Z , called the
eigenvariety and spectral variety, respectively, equipped with canonical maps

D → Z → W. (12)

The points of D parameterize systems of eigenvalues of T acting on the {MX }

for which the eigenvalue of φ is nonzero, in a sense that will be made precise in
Lemma 7.3, while the image of such a point in Z simply records the inverse of the
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φ eigenvalue and a point of W. If W is equidimensional of dimension d, then the
same is true of both of the spaces D and Z .

As the details of this construction will be required in the next section, we recall
them here. The following is the deepest part of the construction.

Theorem 7.1 [Buzzard 2007, Theorem 4.6]. Let R be a reduced affinoid algebra
over K , let P(T ) be a Fredholm series over R, and let Z ⊂ Sp(R)×A1 denote the
hypersurface cut out by P(T ) equipped with the projection π : Z → Sp(R). Define
C(Z) to be the collection of admissible affinoid opens Y in Z such that

• Y ′
= π(Y ) is an admissible affinoid open in Sp(R),

• π : Y → Y ′ is finite, and

• there exists e ∈ O(π−1(Y ′)) such that e2
= e and Y is the zero locus of e.

Then C(Z) is an admissible cover of Z.

We will generally take Y ′ to be connected in what follows. This is not a serious
restriction, since Y is the disjoint union of the parts lying over the various connected
components of Y ′. We also remark that the third of the above conditions follows
from the first two (this is observed in [Buzzard 2007], where references to the proof
are supplied).

To construct D, first fix an admissible affinoid open X ⊆ W. Let Z X denote
the zero locus of PX (T ) = det(1 − φX T | MX ) in X × A1, and let π : Z X → X
denote the projection onto the first factor. Let Y ∈ C(Z X ), let Y ′

= π(Y ) as above,
and assume that Y ′ is connected. We wish to associate to Y a polynomial factor of
PY ′(T )= det(1 − (φX ⊗̂1)T | MX ⊗̂O(X)O(Y ′)). Since the algebra O(Y ) is a finite
and locally free module over O(Y ′), we may consider the characteristic polynomial
Q′ of T ∈ O(Y ). Since T is a root of its characteristic polynomial, we have a map

O(Y ′)[T ]/(Q′(T ))→ O(Y ). (13)

It is shown in [Buzzard 2007, Section 5] that this map is surjective and therefore
an isomorphism since both sides are locally free of the same rank.

Now since the natural map O(Y ′)[T ]/(Q′(T )) → O(Y ′){{T }}/(Q′(T )) is an
isomorphism, it follows that Q′(T ) divides PY ′(T ) in O(Y ′){{T }}. If a0 is the
constant term of Q′(T ), then this divisibility implies that a0 is a unit. We set
Q(T )= a−1

0 Q′(T ). The spectral theory of compact operators on Banach modules
(see [Buzzard 2007, Theorem 3.3]) furnishes a unique decomposition

MX ⊗̂O(X)O(Y ′)∼= N ⊕ F

into closed φ-invariant O(Y ′)-submodules such that Q∗(φ) is zero on N and in-
vertible on F . Moreover, N is projective of rank equal to the degree of Q, and the
characteristic power series of φ on N is Q(T ). The projector MX ⊗̂O(X)O(Y ′)→ N
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is in the closure of O(Y ′)[φ], so N is stable under all of the endomorphisms as-
sociated to elements of T. Let T(Y ) denote the O(Y ′)-subalgebra of EndO(Y ′)(N )
generated by these endomorphisms. Then T(Y ) is finite over O(Y ′) and hence
affinoid, so we may set DY = Sp(T(Y )). Because the leading coefficient of Q
(that is, the constant term of Q∗) is a unit, there is an isomorphism

O(Y ′)[T ]/(Q(T ))→ O(Y ′)[S]/(Q∗(S)), T 7→ S−1.

Thus we obtain a canonical map DY → Y , namely, the one corresponding to the
map

O(Y )∼= O(Y ′)[T ]/(Q(T ))∼= O(Y ′)[S]/(Q∗(S))
S 7→φ // T(Y )

of affinoid algebras.
For general Y ∈ C(Z X ), we define DY to be the disjoint union of the affinoids

defined above from the various connected components of Y ′. We then glue the
affinoids DY for Y ∈ C(Z X ) to obtain a rigid space DX equipped with maps

DX → Z X → X.

Finally, we vary X and glue the desired spaces and maps above to obtain the spaces
and maps in (12). This final step is where the links αi j above come into play. See
[Buzzard 2007] for details.

Definition 7.2. Let L be a complete extension of K . An L-valued system of eigen-
values of T acting on {MX }X is a pair (κ, γ) consisting of a map of sets γ : T → L
and a point κ ∈ W(L) such that there exists an affinoid X ⊆ W containing κ and a
nonzero element m ∈ MX ⊗̂O(X),κL such that (tX ⊗̂1)m = γ(t)m for all t ∈ T. Such
a system of eigenvalues is called φ-finite if γ(φ) 6= 0.

Let x be an L-valued point of D. Then x lies over a point in κx ∈ W(L) that lies
in X for some affinoid X , and x moreover lies in DY (L) for some Y ∈C(Z X ). Thus
to x and the choice of X and Y corresponds a map T(Y )→ L , and in particular a
map of sets λx : T → L . Buzzard [2007] proves the following characterization of
the points of D.

Lemma 7.3. The correspondence x 7→ (κx , λx) is a well-defined bijective corre-
spondence between L-valued points of D and φ-finite L-valued systems of eigen-
values of T acting on the {MX }.

In our case, we let W be weight space over Qp as in Section 2.3, and let T be
the set of symbols{

{T`2}`-4N p ∪ {U`2}`|4N p ∪ {〈d〉4N }d∈(Z/4NZ)× if p 6= 2,
{T`2}`-4N ∪ {U`2}`|4N ∪ {〈d〉N }d∈(Z/NZ)× if p = 2.
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For an admissible affinoid open X ⊆W, we let MX = M̃X (4N ,Qp, p−rn ), where n
is the smallest positive integer such that X ⊆Wn . This module is a direct summand
of the Qp-Banach space{

H 0(X1(4N p)an
≥ p−rn ,O(64N p))⊗̂QpO(X) if p 6= 2,

H 0(X1(4N )an
≥2−rn ,O(64N ))⊗̂QpO(X) if p = 2

and therefore satisfies property (Pr) since this latter space is potentially orthonor-
malizable in the terminology of [Buzzard 2007] by the discussion in [Serre 1962,
Section 1]. We take the map T → EndO(X)(MX ) to be the one sending each symbol
to the endomorphism by that name defined in Section 5.

Let X1 ⊆ X2 ⊆ W be admissible affinoids, and let ni be the smallest positive
integer with X i ⊆ Wni . Then n1 ≤ n2 so that rn2 ≤ rn1 , and we have an inclusion

M̃X1(4N ,Qp, p−rn1 )→ M̃X1(4N ,Qp, p−rn2 )

given by restriction. We define the required continuous injection α12 via the dia-
gram

M̃X1(4N ,Qp, p−rn1 ) //

α12 **VVVVVVVVVVVVVVVVVV
M̃X1(4N ,Qp, p−rn2 )

M̃X2(4N ,Qp, p−rn2 )⊗̂O(X2)O(X1)

∼

OO

and note that the required compatibility condition is satisfied. To see that these
maps are links, choose numbers rn1 = s0 ≥ s1 > s2 > · · ·> sk−1 ≥ sk = rn2 with the
property that p2si+1 > si for all i . Then the map α12 factors as the composition of
the maps

M̃X1(4N ,Qp, p−si )→ M̃X1(4N ,Qp, p−si+1)

for 0 ≤ i ≤ k − 2 and the map

M̃X1(4N ,Qp, p−sk−1)→ M̃X2(4N ,Qp, p−sk )⊗̂O(X2)O(X1).

The construction of Up2 shows easily that each of these maps is a primitive link.
The result is that we obtain rigid analytic spaces D̃ and Z̃ , which we call the half-

integral weight eigencurve and the half-integral weight spectral curve, respectively.
We also obtain canonical maps D̃ → Z̃ → W. As usual, the tilde distinguishes
these spaces from their integral weight counterparts first constructed in level 1 by
Coleman and Mazur and later constructed for general level by Buzzard [2007].

If instead of using the full spaces of forms we use only the cuspidal subspaces
everywhere, then we obtain cuspidal versions of all of the above spaces, which we
will delineate with a superscript 0. Thus we have D̃0 and Z̃0 with the usual maps,
and the points of these spaces parameterize systems of eigenvalues of the Hecke
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operators acting on the spaces of cusp forms by Lemma 7.3. We remark that there
is a commutative diagram

D̃0 //

��

D̃

��
Z̃0

##GGG
GGG

G
// Z̃

{{xxx
xx

xx

W

where the horizontal maps are injections that identify the cuspidal spaces on the
left with unions of irreducible components of the spaces on the right. Proving
this is an exercise in the linear algebra that goes into the construction of these
eigenvarieties and basic facts about irreducible components of rigid spaces found
in [Conrad 1999], and is left to the reader.

For κ ∈W(K ), let D̃κ and D̃0
κ denote the fibers D̃ and D̃0 over κ . The following

theorem summarizes the basic properties of these eigencurves.

Theorem 7.4. Let κ ∈ W(K ). For a complete extension L/K , the correspondence
x 7→ λx is a bijection between the L-valued points of the fiber D̃κ(L) and the set
of finite-slope systems of eigenvalues of the Hecke operators and tame diamond
operators occurring on the space M̃†

κ (4N , L) of overconvergent forms of weight κ
defined over L. The same statement holds with D̃ replaced by D̃0 and M̃†

κ (4N , L)
replaced by S̃†

κ(4N , L).

Proof. We prove the statement for the full space of forms. The proof for cuspidal
forms is identical. Fix κ ∈ W(K ). Once we establish that the L-valued systems of
eigenvalues of the form (κ, γ) occurring on the {MX }X as defined above are exactly
the systems of eigenvalues of the Hecke and tame diamond operators that occur on
M̃†
κ (4N , L), the result is simply Lemma 7.3 “collated by weight.” To see this one

simply notes that, for any f ∈ M̃†
κ (4N , L), we have both f ∈ M̃κ(4N , L , p−rn )

and κ ∈ Wn for n sufficiently large. In particular, if f is a nonzero eigenform for
the Hecke and tame diamond operators, then the system of eigenvalues associated
to f occurs in the module MWn for n sufficiently large. �

We remark that the classicality result of Section 6 has the expected consequence
that the collection of points of D̃ corresponding to systems of eigenvalues occurring
on classical forms is Zariski-dense in D̃. This result is contained in [Ramsey 2007].

Appendix: Properties of the stack X1(M p, p2) over Z( p)

by Brian Conrad

In this appendix, we establish some geometric properties concerning the cuspidal
locus in compactified moduli spaces for level structures on elliptic curves. We are
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especially interested in the case of nonétale p-level structures in characteristic p,
so it is not sufficient to cite the work in [Deligne and Rapoport 1973] (which
requires étale level structures in the treatment of moduli problems for generalized
elliptic curves) or [Katz and Mazur 1985] (which works with Drinfeld structures
over arbitrary base schemes but avoids nonsmooth generalized elliptic curves).
The viewpoints of these works were synthesized in the study of moduli stacks for
Drinfeld structures on generalized elliptic curves in [Conrad 2007], and we will
use that reference — abbreviated as [C] — as our foundation in what follows.

Motivated by needs in the main text, for a prime p and an integer M ≥ 4 not
divisible by p, we consider the moduli stack X1(Mpr , pe) over Z(p) that classifies
triples (E, P,C), where E is a generalized elliptic curve over a Z(p)-scheme S,
P ∈ E sm(S) is a Drinfeld Z/Mpr Z-structure on E sm, and C ⊆ E sm is a cyclic
subgroup with order pe such that some reasonable ampleness and compatibility
properties for P and C are satisfied. (See Definition A.1 for a precise formulation
of these additional properties.) The relevant case for applications to p-adic modular
forms with half-integer weight is e = 2, but unfortunately such moduli stacks were
only considered in [C] when either r ≥e or r =0. (This is sufficient for applications
to Hecke operators, and avoids some complications.) We now need to allow 1 ≤

r < e, and the purpose of this appendix is to explain how to include such r and to
record some consequences concerning the cusps in these cases. The consequence
relevant in the main text is Theorem A.11. To carry out the proofs in this appendix
we simply have to adapt some proofs in [C] rather than develop any essentially new
ideas. For the convenience of the reader we will usually use [C] as a reference,
though it must be stressed that many of the key notions were first introduced in
the earlier works [Deligne and Rapoport 1973] and [Katz and Mazur 1985]. In
the context of subgroups of the smooth locus on a generalized elliptic curve, we
will refer to a Drinfeld Z/NZ-structure (respectively a Drinfeld Z/NZ-basis) as a
Z/NZ-structure (respectively Z/NZ-basis) unless some confusion is possible.

A.1. Definitions. See [C, Section 2.1] for the definitions of a generalized elliptic
curve f : E → S over a scheme S and of the closed subscheme S∞

⊆ S that is the
“locus of degenerate fibers” for such an object. (It would be more accurate to write
S∞, f , but the abuse of notation should not cause confusion.) Roughly speaking,
E → S is a proper flat family of geometrically connected and semistable curves
of arithmetic genus 1 that are either smooth or are so-called Néron polygons, and
the relative smooth locus E sm is endowed with a commutative S-group structure
that extends (necessarily uniquely) to an action on E such that whenever Es is a
polygon, the action of E sm

s on Es is via rotations of the polygon. Also, S∞ is a
scheme structure on the set of s ∈ S such that Es is not smooth. The definition
of the degeneracy locus S∞ (given in [C, 2.1.8]) makes sense for any proper flat
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and finitely presented map C → S with fibers of pure dimension 1. If S′ is any
S-scheme, then there is an inclusion S′

×S S∞
⊆ S′∞ as closed subschemes of S′

(with S′∞ corresponding to the S′-curve C ×S S′), but this inclusion can fail to be
an equality even when each geometric fiber Cs is smooth of genus 1 or a Néron
polygon [C, Example 2.1.11]. Fortunately, if C admits a structure of generalized
elliptic curve over S, then this inclusion is always an equality [C, 2.1.12], so the
degeneracy locus makes sense on moduli stacks for generalized elliptic curves
(where it defines the cusps).

We wish to study moduli spaces for generalized elliptic curves E/S equipped
with certain ample level structures defined by subgroups of E sm. Of particular
interest are those subgroup schemes G ⊆ E sm that are not only finite locally free
over the base with some constant order n but are even cyclic in the sense that
fppf-locally on the base we can write G = 〈P〉 :=

∑
j∈Z/nZ[ j P] in E sm as Cartier

divisors for some n-torsion point P of E sm. By [C, 2.3.5], if P and P ′ are two
such points for the same G, then for any d |n the points (n/d)P and (n/d)P ′ are
Z/(n/d)Z-generators of the same S-subgroup of G, so by descent this naturally
defines a cyclic S-subgroup Gd ⊆ G of order d even if P does not exist over the
given base scheme S. We call Gd the standard cyclic subgroup of G with order d .
For example, if d = d ′d ′′ with d ′, d ′′

≥ 1 and gcd(d ′, d ′′)= 1, then Gd ′ ×Gd ′′ ' Gd

via the group law on G.

Definition A.1. Let N , n ≥ 1 be integers.
A 01(N )-structure on a generalized elliptic curve E/S is an S-ample Z/NZ-

structure on E sm, which is to say an N -torsion point P ∈ E sm(S) such that the
relative effective Cartier divisor D =

∑
j∈Z/NZ[ j P] on E sm is an S-subgroup and

Ds is ample on Es for all s ∈ S.
A 01(N , n)-structure on E/S is a pair (P,C), where P is a Z/NZ-structure

on E sm and C ⊆ E sm is a cyclic S-subgroup with order n such that the relative
effective Cartier divisor D =

∑
j∈Z/NZ( j P + C) on E is S-ample and there is an

equality of closed subschemes∑
j∈Z/pep Z

( j (N/pep)P + C pep )= E sm
[pep ] (1)

for all primes p | gcd(N , n), with ep = ordp(gcd(N , n))≥ 1.

Example A.2. Obviously a 01(N , 1)-structure is the same as a 01(N )-structure. If
N = 1, then we refer to 01(1)-structures as 0(1)-structures, and such a structure on
a generalized elliptic curve E/S must be the identity section. Thus, by the ample-
ness requirement, the geometric fibers Es must be irreducible. Hence, the moduli
stack M0(1) of 0(1)-structures on generalized elliptic curves classifies generalized
elliptic curves with geometrically irreducible fibers.
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In [C, 2.4.3], the notion of 01(N , n)-structure is defined as above, but with
the additional requirement that ordp(n) ≤ ordp(N ) for all primes p such that
p | gcd(N , n). This requirement always holds when n = 1, and whenever it holds,
the standard subgroup C pep in (1) is the p-part of C , but it turns out to be unneces-
sary for the proofs of the basic properties of 01(N , n)-structures and their moduli,
as we shall explain in Section A.2. For example, the proof of [C, 2.4.4] carries over
to show that we can replace (1) with the requirement that

∑
j∈Z/dZ( j (N/d)P +

Cd) = E sm
[d] in E for d = gcd(N , n). Another basic property that carries over

to the general case is that if (P,C) is a 01(N , n)-structure on E , then the relative
effective Cartier divisor

∑
j∈Z/NZ( j P + C) on E sm is an S-subgroup; the proof

is given in [C, 2.4.5] under the assumption ordp(n) ≤ ordp(N ) for every prime
p | gcd(N , n), but the argument works in general once it is observed that after
making an fppf base change to acquire a Z/nZ-generator Q of C we can use sym-
metry in P and Q in the rest of the argument so as to reduce to the case considered
in [Conrad 2007].

A.2. Moduli stacks. As in [C, 2.4.6], for N , n ≥ 1 we define the moduli stack
M01(N ,n) in order to classify 01(N , n)-structures on generalized elliptic curves over
arbitrary schemes, and we let M01(N ,n)

∞ ↪→ M01(N ,n) denote the closed substack
given by the degeneracy locus for the universal generalized elliptic curve. The ar-
guments in [C, Sections 3.1 and 3.2] carry over verbatim (that is, without using the
condition ordp(n) ≤ ordp(N ) for all primes p | gcd(N , n)) to prove the following
result.

Theorem A.3. The stack M01(N ,n) is an Artin stack that is proper over Z. It
is smooth over Z[1/Nn], and it is Deligne–Mumford away from the open and
closed substack in M01(N ,n)

∞ classifying degenerate triples (E, P,C) in positive
characteristics p such that the p-part of each geometric fiber of C is nonétale and
disconnected.

The proof of [C, 3.3.4] does not use the condition ordp(n) ≤ ordp(N ) for all
primes p | gcd(N , n) (although this condition is mentioned in the proof), so that
argument gives this:

Lemma A.4. The open substack M0
01(N ,n)=M01(N ,n)−M01(N ,n)

∞ classifying elliptic
curves endowed with a 01(N , n)-structure is regular and Z-flat with pure relative
dimension 1.

We are interested in the structure of M01(N ,n) around its cuspidal substack, and
especially in determining whether it is regular or a scheme near such points. Our
analysis of M01(N ,n)

∞ rests on the following theorem.

Theorem A.5. The map M01(N ,n) → Spec(Z) is flat and Cohen–Macaulay with
pure relative dimension 1.
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Proof. By Lemma A.4, we just have to work along the cusps. Also, it suffices to
check the result after localization at each prime p, and if either p - gcd(N , n) or
1 ≤ ordp(n) ≤ ordp(N ) then [C, 3.3.1] gives the result over Z(p). It thus remains
to study the cusps in positive characteristic p when 1 ≤ ordp(N ) < ordp(n). As
in the cases treated in [Conrad 2007], the key is to study the deformation theory
of a related level structure on generalized elliptic curves, the so-called 0̃1(N , n)-
structure: this is a pair (P, Q), where P is a Z/NZ-structure on the smooth locus
and Q is a Z/nZ-structure on the smooth locus such that (P, 〈Q〉) is a 01(N , n)-
structure. The same definition is given in [C, 3.3.2] with the unnecessary restriction
ordp(n)≤ordp(N ) for all primes p | gcd(N , n), and the argument that immediately
follows that definition works without such a restriction to show that the moduli
stack M0̃1(N ,n) of 0̃1(N , n)-structures is a Deligne–Mumford stack over Z that is
a finite flat cover of the proper Artin stack M01(N ,n).

By the Deligne–Mumford property, any 0̃1(N , n)-structure x0 = (E0, P0, Q0)

over an algebraically closed field k admits a universal deformation ring. Since
M0̃1(N ,n) is a finite flat cover of M01(N ,n), as in the proof of [C, 3.3.1], it suffices
to assume char(k) = p > 0 and to exhibit the deformation ring at x0 as a finite
flat extension of W (k)[[x]] when E0 is a standard polygon, n = pe, and N = Mpr

with p - M and e, r ≥ 1. The case e ≤ r is settled in [Conrad 2007], and we will
adapt that argument to handle the case 1 ≤ r < e. By the ampleness condition, at
least one of M P0 or Q0 generates the p-part of the component group of E sm

0 , and
moreover {M P0, pe−r Q0} is a Drinfeld Z/pr Z-basis of E sm

0 [pr
]. We shall break

up the problem into three cases, and it is only in Case 3 that we will meet a situation
essentially different from that encountered in Conrad’s proof for 1 ≤ e ≤ r .

CASE 1: We first assume that M P0 generates the p-part of the component group,
so by the Drinfeld Z/pr Z-basis hypothesis, this point is a basis of E sm

0 (k)[p∞
] over

Z/pr Z (as we are in characteristic p and E0 is a polygon). Hence, Q0 = j M P0

for a unique j ∈ Z/pr Z (so pe−r Q0 = pe−r j M P0). Since n is a p-power, it also
follows that 〈P0〉 is ample. In particular, (E0, P0) is a 01(N )-structure. Thus,
the formation of an infinitesimal deformation (E, P, Q) of (E0, P0, Q0) can be
given in three steps: first give an infinitesimal deformation (E, P) of (E0, P0) as a
01(N )-structure, then give a Drinfeld Z/pr Z-basis (M P, Q′) of E sm

[pr
] with Q′

deforming pe−r Q0, and finally specify a pe−r -th root Q of Q′ lifting Q0 = j M P0.
The one aspect of this description that merits some explanation is to justify that
such a pe−r -th root Q of Q′ must be a Z/peZ-structure on E sm. The point Q is
clearly killed by pe, so the Cartier divisor D =

∑
j∈Z/peZ[ j Q] in E sm makes sense,

and we have to check that it is automatically a subgroup scheme.
For any t ≥ 0, the identification (E sm

0 )0[pt
] = µpt uniquely lifts to an isomor-

phism (E sm)0[pt
] 'µpt . In particular, if pν is the order of the p-part of the cyclic
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component group of E sm
0 (with ν ≥ r ), then E sm

[pe
] is an extension of Z/p j Z

by µpe , where j = min(ν, e). The image of 〈Q0〉 in the component group can be
uniquely identified with Z/pi Z (for some i ≤ j) such that Q0 7→ 1, and this Z/pi Z

has preimage G in E sm
[pe

] that is a pe-torsion commutative extension of Z/pi Z

by µpe with 0 ≤ i ≤ e. Since Q is a point of G over the (artinian local) base, it
follows from [C, 2.3.3] that Q is a Z/peZ-structure on E sm if and only if the point
pi Q in µpe−i is a Z/pe−i Z-generator of µpe−i . The case i = e is therefore settled,
so we can assume i < e (that is, 〈Q0〉 is not étale, or equivalently pe−1 Q0 = 0).
By hypothesis, pe−r Q = Q′ is a Z/pr Z-structure on E sm with 1 ≤ r < e, so
pe−1 Q = pr−1 Q′ is a Z/pZ-structure on E sm. This Z/pZ-structure must generate
the subgroup µp ⊆ E sm

[pe
] since pe−1 Q lies in (E sm)0 (as pe−1 Q0 = 0). Hence,

Q′′
= pi Q is a point of µpe−i such that pe−i−1 Q′′ is a Z/pZ-generator of µp.

Since Z/mZ-generators of µm are simply roots of the cyclotomic polynomial 8m

[C, 1.12.9], our problem is reduced to the assertion that if s is a positive integer
(such as e − i), then an element ζ in a ring is a root of the cyclotomic polynomial
8ps if ζ ps−1

is a root of 8p. This assertion is obvious since 8ps (T )=8p(T ps−1
),

and so our description of the infinitesimal deformation theory of (E0, P0, Q0) is
justified.

The torsion subgroup E sm
[pr

] is uniquely an extension of Z/pr Z by µpr de-
forming the canonical such description for E sm

0 [pr
], so the condition on Q′ is

that it has the form ζ + pe−r j M P for a point ζ of the scheme of generators µ×

pr

of µpr = (E sm)0[pr
]. Thus, to give Q is to specify a pe−r -th root of ζ in E sm

deforming the identity, which is to say a point of µ×

pe . It is shown in the proof
of [C, 3.3.1] that the universal deformation ring A for (E0, P0) is finite flat over
W (k)[[x]], and the specification of ζ amounts to giving a root of the cyclotomic
polynomial 8pe , so the case when M P0 generates the p-part of the component
group of E sm

0 is settled (with deformation ring A[T ]/(8pe(T ))).

CASE 2: Next assume that Q0 generates the p-part of the component group and
that 〈Q0〉 is étale (that is, Q0 ∈ E sm

0 (k) has order pe). The point Q0 must generate
E sm

0 (k)[p∞
] over Z/peZ, and the étale hypothesis ensures that Q0 is a Z/peZ-

basis of E sm
0 (k)[p∞

]. Thus, M P0 = pe−r j Q0 for some (unique) j ∈ Z/pr Z. By
replacing P with P − M−1 pe−r j Q for any infinitesimal deformation (E, P, Q) of
(E0, P0, Q0), we can assume that the p-part of P0 vanishes. The p-part of P must
therefore be a point of µ×

pr . The Z/MZ-part of P together with Q constitutes a
01(Mpe)-structure on E (in particular, the ampleness condition holds), and this is
an étale level structure since the cyclic subgroup 〈Q0〉 in E sm

0 is étale. Hence, the
infinitesimal deformation functor of (E0, P0, Q0) is pro-represented by µ×

pr over
the deformation ring of an étale 01(Mpe)-structure. For any R ≥ 1, deformation
rings for étale 01(R)-structures on polygons over k have the form W (k)[[x]] (as
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is explained near the end of the proof of [C, 3.3.1], using [C, II, 1.17]), so not
only are we done but in this case the deformation ring for (E0, P0, Q0) is the ring
W (k)[[x]][T ]/(8pr (T )) that is visibly regular.

CASE 3: Finally, assume Q0 generates the p-part of the component group but
that 〈Q0〉 is not étale (that is, Q0 ∈ E sm

0 (k) has order strictly less than pe), and
so pe−r Q0 ∈ E sm

0 (k) has order strictly dividing pr . Since {M P0, pe−r Q0} is
a Drinfeld Z/pr Z-basis of E sm

0 [pr
], the point M P0 must be a Z/pr Z-basis for

E sm
0 (k)[pr

]. Hence, if we write P0 = P ′

0 + P ′′

0 corresponding to the decomposition
Z/NZ = (Z/MZ)× (Z/pr Z), then P ′′

0 has order exactly pr in E sm
0 (k). We use

P ′′

0 to identify E sm
0 (k)[pr

] with Z/pr Z. It follows that if we make the analogous
canonical decomposition P = P ′

+ P ′′ for an infinitesimal deformation (E, P, Q)
of (E0, P0, Q0), then the p-part P ′′ deforms P ′′

0 and generates an étale subgroup
of E sm with order pr . Thus, P ′ and Q together constitute a (nonétale) 01(Mpe)-
structure on E (in particular, the ampleness condition holds), and the data of P ′′

amounts to a section over 1 ∈ Z/pr Z with respect to the unique quotient map
E sm

[pr
] � Z/pr Z lifting the quotient map E sm

0 [pr
] � Z/pr Z defined by P ′′

0 .
Since the specification of a Z/NZ-structure on E sm is the “same” as the specifi-
cation of a pair consisting of Z/MZ-structure and a Z/pr Z-structure [C, 1.7.3],
we conclude that the universal deformation ring of (E0, P0, Q0) classifies the fiber
over 1 ∈ Z/pr Z in the connected-étale sequence for the pr -torsion in infinitesimal
deformations of the underlying 01(Mpe)-structure (E0, P ′

0, Q0). Universal defor-
mation rings for 01(Mpe)-structures over k are finite flat over W (k)[[x]] (by the
proof of [C, 3.3.1]), so we are therefore done. �

Corollary A.6. The closed substack M01(N ,n)
∞ ↪→ M01(N ,n) is a relative effective

Cartier divisor over Z, and it has a reduced generic fiber over Q.

Proof. The reducedness over Q is shown in [C, 4.3.2], and the proof works without
restriction on gcd(N , n). Likewise, the proof that M01(N ,n)

∞ is a Z-flat Cartier divi-
sor is part of [C, 4.1.1(1)] in case ordp(n)≤ ordp(N ) for all primes p | gcd(N , n),
but by using the above proof of Theorem A.5, we see that the method of proof
works in general. �

Using Lemma A.4, Theorem A.5, and Corollary A.6, Serre’s normality criterion
can be used to prove normality for M01(N ,n) in general. (This is proved in [C,
4.1.4] subject to the restrictions on gcd(N , n) in the definition therein of 01(N , n)-
structures, but the argument works in general by using the results that are stated
above without any such restriction on gcd(N , n).) However, the proof of regularity
encounters complications at points of a certain locus of cusps in bad characteristics.
This problematic locus is defined as follows.
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Definition A.7. Let Z01(N ,n) ↪→ M∞

01(N ,n) be the 0-dimensional closed substack
with reduced structure that consists of geometric points (E0, P0,C0) in charac-
teristics p | gcd(N , n) such that 1 ≤ ordp(N ) < ordp(n), C0 is not étale, and
(N/pordp(N ))P0 does not generate the p-part of the component group of E sm

0 .

Note that if ordp(n) ≤ ordp(N ) for all primes p | gcd(N , n) (the situation con-
sidered in [Conrad 2007]), then Z01(N ,n) is empty; this includes the case of 01(N )-
structures for any N (take n = 1). In all other cases, it is nonempty. The geometric
points of Z01(N ,n) correspond to precisely the points in Case 3 in the proof of
Theorem A.5. The method in [Conrad 2007] for analyzing regularity along the
cusps assumes Z01(N ,n) is empty, and by combining it with the modified arguments
in the proof of Theorem A.5 (especially the regularity observation in Case 2) we
obtain the following consequence.

Theorem A.8. Outside the closed substack Z01(N ,n)⊆M01(N ,n)
∞ , the stack M01(N ,n)

is regular.

A.3. Applications. Before we apply our results, we record a useful lemma.

Lemma A.9. Let S be a scheme, and let X be an Artin stack over S. Assume X is
S-separated. The locus of geometric points of X with trivial automorphism group
scheme is an open substack U ⊆ X that is an algebraic space. This algebraic space
is a scheme if X is quasifinite over a separated S-scheme.

Proof. The first part is [C, 2.2.5(2)], and the second part follows from the general
fact that an algebraic space that is quasifinite and separated over a scheme is a
scheme [C, Theorem A.2]. �

In the setting of Lemma A.9, if X is quasifinite over a separated S-scheme,
then we call U the maximal open subscheme of X. The case of interest to us is
X = M01(N ,n)/S over any scheme S. This is quasifinite over the S-proper stack
M0(1)/S via fibral contraction away from the identity component, and M0(1)/S is
quasifinite over P1

S via the j-invariant, so X is quasifinite over the separated S-
scheme P1

S .
We wish to prove results concerning when certain components of M∞

01(N ,n) lie
in the maximal open subscheme of M01(N ,n). So we first record a general lemma.

Lemma A.10. Let Y be an irreducible Artin stack over Fp, and let C be a finite
locally free commutative Y-group that is cyclic with order pe. If C has a multi-
plicative geometric fiber over Y, then all of its geometric fibers are connected.

The abstract notion of cyclicity (with no ambient smooth curve group) is devel-
oped in [C, 1.5, 1.9, 1.10] over arbitrary base schemes, and the theory carries over
when the base is an Artin stack. We will only need the lemma for situations that
arise within torsion on generalized elliptic curves (over Artin stacks).



806 Appendix by Brian Conrad

Proof. We can assume e ≥ 1, and we may replace C with its standard subgroup
Cp of order p because it is obvious by group theory that a cyclic group scheme C
of p-power order over an algebraically closed field of characteristic p is étale if
and only if its standard subgroup of order p is étale. Hence, we can assume that C

has order p. Our problem is therefore to rule out the existence of étale fibers. By
openness of the locus of étale fibers and irreducibility of Y, if there is an étale fiber,
then there is a Zariski-dense open U ⊆ Y over which C has étale fibers. In partic-
ular, there is some geometric point u of U that specializes to the geometric point
y ∈ Y where we assume the fiber is multiplicative, so after pullback to a suitable
valuation ring, we get an étale group of order p in characteristic p specializing to a
multiplicative one. Passing to Cartier duals gives a multiplicative group of order p
having an étale specialization, and this is impossible since multiplicative groups of
order p in characteristic p are not étale. �

Theorem A.11. Let p be a prime, and choose a positive integer M not divisible
by p such that M > 2. Also fix integers e, r ≥ 0. If e = 0 or r = 0, then assume
M 6= 4. Let x0 = (E0, P0,C0) be a geometric point on the special fiber of the
cuspidal substack in the proper Artin stack X = M01(Mpr ,pe)/Z(p) over Z(p), and
assume that C0 is étale.

Let Y be the irreducible component of x0 in XFp . For every geometric cusp
x1 = (E1, P1,C1) on Y, the group C1 is étale and x1 lies in the maximal open
subscheme of X. Moreover, if x ∈ XQ is a cusp specializing into Y, then the Zariski
closure D of x in X lies in the maximal open subscheme and D is Cartier in X.

The case e =2 is required in the main text. It is necessary to avoid the cases M ≤

2 and (M, r)= (4, 0) because in these cases there are cusps x0 in characteristic p
as in the theorem such that x0 admits nontrivial automorphisms (and so x0 cannot
lie in the maximal open subscheme of X).

Proof. We first check that the étale assumption at x0 is inherited by all geometric
cusps x1 ∈ Y. Let (E,P,C) be the pullback to Y of the universal family over X.
The group C is cyclic of order pe with e ≥0, so applying Lemma A.10 to its Cartier
dual gives the result (since at a cusp a connected subgroup of p-power order must
be multiplicative).

Now we can rename x1 as x0 without loss of generality, so we have to check
that x0 lies in the maximal open subscheme of X and that if x ∈ XQ is a geometric
cusp specializing to x0, then the Zariski closure of x in X is Cartier. But the étale
hypothesis on C0 ensures that x0 is not in the closed substack Z01(Mpr ,pe)/Z(p) , so
by Theorem A.8 the stack X is regular at x0. Hence, since X is Z(p)-flat with pure
relative dimension 1 (by Theorem A.5), the desired properties of D at the end of the
theorem hold once we know that x0 is in the maximal open subscheme of X, which
is to say that its automorphism group scheme G is trivial. To verify this triviality we
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will make essential use of the property that C0 is étale. Let k be the algebraically
closed field over which x0 lives. Since E0 is d-gon over k for some d ≥ 1, G is
a closed subgroup of the automorphism group µd o 〈inv〉 of the d-gon. Since C0

is étale with order pe in characteristic p, it follows that C0 maps isomorphically
into the p-part of the component group of E sm

0 = Gm × (Z/dZ). (In particular,
pe

|d.) If R is an artinian local k-algebra with residue field k, any choice of gen-
erator Q0 of C0 must be carried to another generator of C0 by any g ∈ G(R) since
C0(R)→ C0(k) is a bijection. But µd(R) acts on (E0)R in a manner that preserves
the components of the smooth locus, and C0 meets each component of E sm

0 in at
most one point. Hence, G∩µd acts as automorphisms of the 01(Mpe)-structure on
E0 defined by pr P0 and Q0. Since Mpe > 2 and Mpe

6= 4 (due to the cases we are
avoiding), such an ample level structure on a d-gon has trivial automorphism group
scheme. This shows that G∩µd is trivial, so G injects into the group Z/2Z of auto-
morphisms of the identity component Gm of E sm

0 . Hence, the contraction operation
on E0 away from 〈P0〉 is faithful on G since contraction does not affect the identity
component. It follows that G is a subgroup of the automorphism group of the
01(Mpr )-structure obtained by contraction away from 〈P0〉. But Mpr

6∈ {1, 2, 4}

since we assume M > 2 and (M, r) 6= (4, 0), so 01(Mpr )-structures on polygons
have trivial automorphism functor. Thus, G = {1} as desired. �

Over the base Z(p), the results of [C, Sections 3 and 4] concerning the properties
of the stack X1(N , n) carry over if p - n. In effect, the hypothesis on ordp(n)
imposed in [Conrad 2007] only intervenes in the proofs when n is not invertible
on the base.

Acknowledgments

The author thanks Brian Conrad for writing the appendix, as well as for numerous
helpful discussions and suggestions about the technical issues in Section 2. The
author thanks the referee for several suggestions on the manuscript and for directing
him to some good references to help deal with the case p = 2.

References

[Bosch and Lütkebohmert 1993] S. Bosch and W. Lütkebohmert, “Formal and rigid geometry, I:
Rigid spaces”, Math. Ann. 295:2 (1993), 291–317. MR 94a:11090 Zbl 0808.14017

[Bosch et al. 1984] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis: A system-
atic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften 261,
Springer, Berlin, 1984. MR 86b:32031 Zbl 0539.14017

[Buzzard 2003] K. Buzzard, “Analytic continuation of overconvergent eigenforms”, J. Amer. Math.
Soc. 16:1 (2003), 29–55. MR 2004c:11063 Zbl 1076.11029

[Buzzard 2007] K. Buzzard, “Eigenvarieties”, pp. 59–120 in L-functions and Galois representations
(Durham, 2004), edited by D. Burns et al., London Math. Soc. Lecture Note Ser. 320, Cambridge
Univ. Press, 2007. MR 2392353 Zbl 05282812



808 Nick Ramsey

[Coleman 1997] R. F. Coleman, “p-adic Banach spaces and families of modular forms”, Invent.
Math. 127:3 (1997), 417–479. MR 98b:11047 Zbl 0918.11026

[Coleman and Mazur 1998] R. Coleman and B. Mazur, “The eigencurve”, pp. 1–113 in Galois
representations in arithmetic algebraic geometry (Durham, 1996), edited by A. J. Scholl and R. L.
Taylor, London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, 1998. MR 2000m:11039
Zbl 0932.11030

[Conrad 1999] B. Conrad, “Irreducible components of rigid spaces”, Ann. Inst. Fourier (Grenoble)
49:2 (1999), 473–541. MR 2001c:14045 Zbl 0928.32011

[Conrad 2007] B. Conrad, “Arithmetic moduli of generalized elliptic curves”, J. Inst. Math. Jussieu
6:2 (2007), 209–278. MR 2008e:11073 Zbl 1140.14018

[Deligne and Rapoport 1973] P. Deligne and M. Rapoport, “Les schémas de modules de courbes
elliptiques”, pp. 143–316 in Modular functions of one variable, II (Antwerp, 1972), edited by
P. Deligne and W. Kuyk, Lecture Notes in Math. 349, Springer, Berlin, 1973. MR 49 #2762
Zbl 0281.14010

[Goren and Kassaei 2006] E. Z. Goren and P. L. Kassaei, “The canonical subgroup: A “subgroup-
free” approach”, Comment. Math. Helv. 81:3 (2006), 617–641. MR 2007c:11066 Zbl 1122.11037

[de Jong 1995] A. J. de Jong, “Crystalline Dieudonné module theory via formal and rigid geometry”,
Inst. Hautes Études Sci. Publ. Math. 82 (1995), 5–96 (1996). MR 97f:14047 Zbl 0864.14009

[Kassaei 2005] P. L. Kassaei, “Overconvergence, analytic continuation, and classicality: The case
of curves”, 2005, Available at http://www.mth.kcl.ac.uk/~kassaei/research/files/OSLB.pdf. To
appear in J. Reine Angew. Math.

[Kassaei 2006] P. L. Kassaei, “A gluing lemma and overconvergent modular forms”, Duke Math. J.
132:3 (2006), 509–529. MR 2007c:11056 Zbl 1112.11020

[Katz 1973] N. M. Katz, “p-adic properties of modular schemes and modular forms”, pp. 69–190 in
Modular functions of one variable, III (Antwerp, 1972), edited by P. Deligne and W. Kuyk, Lecture
Notes in Mathematics 350, Springer, Berlin, 1973. MR 56 #5434 Zbl 0271.10033

[Katz and Mazur 1985] N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of
Mathematics Studies 108, Princeton University Press, 1985. MR 86i:11024 Zbl 0576.14026

[Ramsey 2006] N. Ramsey, “Geometric and p-adic modular forms of half-integral weight”, Ann.
Inst. Fourier (Grenoble) 56:3 (2006), 599–624. MR 2007c:11057

[Ramsey 2007] N. Ramsey, “The overconvergent Shimura lifting”, preprint, 2007, Available at
http://tinyurl.com/5fg4ru.

[Serre 1962] J.-P. Serre, “Endomorphismes complètement continus des espaces de Banach p-
adiques”, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 69–85. MR 26 #1733

[Shimura 1973] G. Shimura, “On modular forms of half integral weight”, Ann. of Math. (2) 97
(1973), 440–481. MR 48 #10989 Zbl 0266.10022

Communicated by Brian Conrad
Received 2007-09-25 Revised 2008-07-03 Accepted 2008-08-22

naramsey@umich.edu Department of Mathematics, University of Michigan,
2074 East Hall, 530 Church Street,
Ann Arbor, MI 48109-1043, United States

conrad@math.stanford.edu Department of Mathematics, Stanford University,
Building 380, Sloan Hall, Stanford, CA 94305, United States
http://math.stanford.edu/~conrad/


