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On the additive dilogarithm
Sinan Ünver

Let k be a field of characteristic zero, and let k[ε]n := k[ε]/(εn). We construct
an additive dilogarithm Li2,n : B2(k[ε]n)→ k⊕(n−1), where B2 is the Bloch group
which is crucial in studying weight two motivic cohomology. We use this con-
struction to show that the Bloch complex of k[ε]n has cohomology groups ex-
pressed in terms of the K-groups K( · )(k[ε]n) as expected. Finally we compare
this construction to the construction of the additive dilogarithm by Bloch and
Esnault defined on the complex TnQ(2)(k).

1. Introduction

1.1. For any scheme S one expects a category MS of motivic (perverse) sheaves
over S, which should be an abelian tensor category that satisfies all the formalism
of mixed sheaf theory [Beı̆linson 1987, 5.10]. The Tate sheaves ZM(n) should play
a special role. Namely, letting

H i (S,ZM(n)) := ExtiMS
(ZM(0),ZM(n)),

the Chern character map

K2n−i (S)
(n)
Q
→ H i (S,QM(n)) (1.1.1)

from the n-th graded piece of Quillen’s K-theory tensored with Q, defined as the
kn-eigenspace for the k-th Adams operator (Remark 3.1.2), to motivic cohomology
of weight n should be an isomorphism when S is regular (loc. cit.). Since MS is
to have realizations corresponding to various cohomology theories, the regulator
map

K2n−i (S)
(n)
Q
→ H i (S,QM(n))→ H i

∗
(S,Q∗(n)),

where ∗ is the relevant realization, gives arithmetically important information.
The complexes RHomZar(ZM(0),ZM(n)) of sheaves on the Zariski site should

have the property that H i (SZar,RHomZar(ZM(0),ZM(n)))= H i (S,ZM(n)). Hence
the motivic cohomology of S of weight n could be computed as the hypercoho-
mology of a complex of sheaves on SZar.

MSC2000: 11G55.
Keywords: polylogarithms, additive polylogarithms, mixed Tate motives, Hilbert’s 3rd problem.
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2 Sinan Ünver

Recently Voevodsky and others have made progress in motivic cohomology
[Mazza et al. 2006]. If S = Spec(k), where k is a field of characteristic zero,
Voevodsky constructs a triangulated category DMeff,−

Nis (k) [loc. cit., Chapter 14]
and a complex of sheaves Z(n) on the big Zariski site over k, which should be
isomorphic to the hypothetical RHomZar(ZM(0),ZM(n)) above, such that for any
smooth scheme X over k,

H i (XZar,Z(n))' Exti
DMeff,−

Nis
(M(X),Z(n))

(see [loc. cit., 14.16]), where M(X) is the motive of X [loc. cit., Definition 14.1].
Since Z(n) and Bloch’s complex of algebraic cycles of codimension n are iso-
morphic [loc. cit., Chapter 19], the Bloch–Grothendieck–Riemann–Roch theorem
[Bloch 1986] implies that the hypercohomology of Q(n) on XZar is expressed in
terms of the K-groups of X as above:

K2n−i (X)
(n)
Q
' H i (XZar,Q(n)). (1.1.2)

In order to study the motivic cohomology of S, it would be sufficient to restrict
to a subcategory of MS . Let MTMS denote the smallest full subcategory of MS that
contains the Tate motives and is closed under extensions. Then H i (S,QM(n)) '
ExtiMS

(QM(0),QM(n)) = ExtiMTMS
((QM(0),QM(n)). The category MTMS would

be simpler than MS . In fact for S=Spec(k), where k is a number field, Deligne and
Goncharov [2005] have constructed a candidate for MTMS as a tannakian category,
using DMeff,−

Nis .
It is natural to expect that MTMS can be constructed by using only the relative

cohomologies of hyperplane arrangements and in turn that motivic cohomology can
be computed using complexes of linear algebraic objects [Beı̆linson et al. 1990],
rather than all algebraic cycles. Special degenerate configurations of hyperplanes,
called the polylogarithmic configurations [Beı̆linson et al. 1990; Goncharov 1995],
act as building blocks for all configurations and thus play a special role in describ-
ing motivic cohomology.

Using the relations satisfied by the polylogarithmic configurations, Goncharov
defines a complex 0k(n)Q by

Bn(k)→Bn−1(k)⊗k×
Q
→Bn−2(k)⊗

∧2k×
Q
→· · ·→B2(k)⊗

∧n−2k×
Q
→
∧nk×

Q
,

which he conjectures can be used to compute the motivic cohomology of weight
n [Goncharov 1995, Conjectures A and 1.17].

If k = C, integration over the polylogarithmic configurations can be used to
define a map Q[P1(C)] → R, the single-valued real analytic version of the n-th
polylogarithmic function [Goncharov 1995, 1.0], which factors through the projec-
tion Q[P1(C)]→Bn(C) (loc. cit.) to give Ln :Bn(C)→R, the n-th polylogarithm
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that is expected to induce the regulator K2n−1(C)
(n)
Q
' H 1(Spec(C),QM(n))→

Bn(C)→ R [Goncharov 1995, page 224].
For a general field k, one cannot expect a polylogarithm on Bn(k). However,

through his interpretation of hyperbolic scissor congruence groups in terms of
mixed Tate motives, Goncharov expected that there should be an infinitesimal
polylogarithmic function that acts like a regulator map on K2n−1(k[ε]2, (ε))(n),
for any field k of characteristic 0 [Goncharov 1999, pages 616–617; 2004], where
k[ε]m := k[ε]/(εm). In our notation, assuming the existence of mixed Tate motives
and the complex 0n over the dual numbers, this translates to the existence of a map

Bn(k[ε]2)/Bn(k)→ k (1.1.3)

that, when composed with K2n−1(k[ε]2, (ε))(n)→Bn(k[ε]2)/Bn(k), gives an iso-
morphism. The map (1.1.3) is to be an analogue of both the volume map for
euclidean scissor congruence groups and of polylogarithms.

In this paper we are interested in this question for weight two. Next we give
details about this case.

1.2. Let A be an artinian local ring and I an ideal of A. In the rest of the paper,
when we refer to weight two (rational) motivic cohomology of A relative to I , what
we mean are the groups K3(A, I )(2)

Q
and K2(A, I )(2)

Q
and not to the Voevodsky

motivic cohomology groups in Section 1.1, which were there only to motivate the
main results of this paper. This common abuse of notions is partly justified by the
expected Chern character isomorphism (1.1.1), which is known to be true when A
is a field (1.1.2).

Let k be an algebraically closed field of characteristic 0, let S the semilocal ring
of rational functions on A1

k that are regular on {0, 1}, and let J the Jacobson radical
of S.

The first complex computing the weight two motivic cohomology is constructed
by Bloch as follows. Localizing A1

k away from 0 and 1 gives an exact sequence

0→ K3(k)(2)→ K2(S, J )
ϕ //

⊕
x∈k×\{1} k

×
→ K2(k)→ 0

(see [Lichtenbaum 1987, proof of 7.1; Bloch 1977]), where ϕ is the tame symbol
map. Let

B(k) := K2(S, J )/ im((1+ J )⊗ k×),

the part of K2(S, J ) that does not come from the products of weight 1 terms. Then
(
⊕

x∈k×\{1} k
×)/ϕ((1+ J )⊗ k×)= k×⊗ k×, and the sequence

0→ K3(k)
(2)
Q
→ B(k)Q→ (k×⊗ k×)Q→ K2(k)Q→ 0,

remains exact (same references).
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In complete analogy, Bloch and Esnault [2003] define a complex that computes
the motivic cohomology of k[t]2 relative to the ideal (t) as follows. Let R be the
local ring of A1

k at 0. Then localizing away from 0 on A1 gives the sequence

K2(k[t], (t2))→ K2(R, (t2))
ϕ //

⊕
x∈k× k×→ K1(k[t], (t2)).

Let C denote the subgroup generated by the symbols 〈a, b〉 ∈ K2(R, (t2)) with
a ∈ (t2) and b ∈ k, and put TB(k) := K2(R, (t2))/C. Then we have k× ⊗ k =
(
⊕

x∈k× k×)/ϕ(C) and an exact sequence

0→ K2(k[t], (t2))(2)→ TB(k)→ k×⊗ k→ K1(k[t], (t2))→ 0

[Bloch and Esnault 2003, Proposition 2.1 and Corollary 2.5]. Then we have

K2(k[t], (t2))
(2)
Q
' K3(k[t]2, (t))

(2)
Q

and K1(k[t], (t2))' K2(k[t]2, (t))

(loc. cit.). Therefore the complex TB(k)→ k×⊗ k (tensored with Q), really com-
putes the motivic cohomology of k[t]2 relative to (t). Moreover Bloch and Esnault
define a dilogarithm map on TB(k):

Theorem 1.2.1 [Bloch and Esnault 2003, Corollary 2.5]. Let m be the maximal
ideal of R. There is a well-defined map ρ : TB(k)→m3/m4 such that

ρ(〈a, b〉)=−a · db for 〈a, b〉 ∈ K2(R, (t2)) with a ∈m2 and b ∈ R,

and ρ induces an isomorphism K3(k[t], (t2))(2)→m3/m4 of abelian groups.

1.3. For k a field of characteristic zero there is another natural complex, which
is of more geometric origin and hence easier to relate to various definitions of cat-
egories of mixed Tate motives, that computes the weight two motivic cohomology
groups of k.

Suppose A is an artinian local ring with residue field k. The Bloch group B2(A)
(denoted by p(A) in [Suslin 1990]) is the free abelian group generated by the sym-
bols [x] such that x(1− x) ∈ A×, modulo the subgroup generated by elements of
the form

[x] − [y] + [y/x] − [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)],

for all x, y ∈ A× such that (1− x)(1− y)(1− x/y) ∈ A×. The map that sends [x]
to x ∧ (1− x) ∈

∧2
Z A× induces the two term complex γA(2) that sits in [1, 2]:

δA : B2(A)→
∧2

Z A×. (1.3.1)

The complex γk(2) can be thought of as a more explicit version of 0k(2). In fact,
there is a natural map γk(2)Q→ 0k(2)Q, which is expected to be an isomorphism
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[Goncharov 1995, Conjecture 1.20], and there is an exact sequence [Suslin 1990]

0→ K3(k)
(2)
Q
→ B2(k)Q→ (

∧2k×)Q→ K2(k)Q→ 0.

For n≥ 2, we are interested in the complex γk[ε]n (2)Q, where δk[ε]n will be denoted
by δn . We show that it has the expected cohomology:

Theorem 1.3.1. For k a field of characteristic 0, there is an exact sequence

0→ K3(k[ε]n)
(2)
Q

// B2(k[ε]n)Q
δn // (

∧2k[ε]×n )Q // K2(k[ε]n)Q→ 0.

For n = 2 this theorem gives a “yes” answer to [Goncharov 2004, Problem 2.3].
While proving the previous theorem we construct an additive dilogarithm map

on B2(k[ε]n):

Theorem 1.3.2. For every n ≥ 2, there is a natural map

Li2,n : B2(k[ε]n)→ k⊕(n−1)

that, when composed with K3(k[ε]n, (ε))(2) ↪→ B2(k[ε]n), induces an isomorphism
K3(k[ε]n, (ε))(2) ' k⊕(n−1) of abelian groups.

The advantage of defining a dilogarithm map on B2(k[ε]n) is that this group is
closely related to the linear algebra-geometric complexes of mixed Tate motives.
More precisely, Li2,n immediately gives an analogue of the volume map for a pair
of triangles over k[ε]n , as in [Beı̆linson et al. 1990]: All one needs to do is to take
the image of the pair of triangles in B2(k[ε]n) under the map in [loc. cit., Proposi-
tion 3.7] and then apply Li2,n . In this context Theorems 1.3.1 and 1.3.2 imply that
the class of a pair of triangles in A2(k[εn])/A2(k) (loc. cit.) is determined by its
image in

∧2k[εn]
×/
∧2k× and its image under Li2,n . This is a precise analogue of

Sydler’s theorem on Hilbert’s 3rd problem that the scissors congruence class of a
three-dimensional polyhedron is determined by its volume and its Dehn invariant
[Goncharov 1999, Section 2.7]. We do not, however, pursue this application here.

1.4. In order to compare γk[ε]n (2)Q with the complex of Bloch and Esnault, we
show that their argument extends to define a complex TnQ(2)(k) by

Tn B(k)→ k×⊗ (ε · k[ε]n)

(for n= 2 this is the complex in Section 1.2). Let γk[ε]n (2)Q= γk(2)Q⊕γk[ε]n (2)
◦

Q
,

and note that the cohomology groups of γk[ε]n (2)
◦

Q
and TnQ(2)(k) coincide. We

define a subcomplex γk[ε]n (2)
′

Q
of γk[ε]n (2)

◦

Q
that has the same cohomology groups,

and obtain a direct consequence of Theorems 1.2.1, 1.3.1, and 1.3.2:

Corollary 1.4.1. For k an algebraically closed field of characteristic 0, the com-
plexes TnQ(2)(k) and γk[ε]n (2)

′

Q
are isomorphic.
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1.5. The paper is organized as follows. In Section 2, we construct the additive
dilogarithm, Li2,n : B2(k[ε]n)→ k⊕(n−1). Two results in Section 2 are useful in
studying Li2,n . On the one hand, Li2,n is explicitly described in Proposition 2.2.3
and Definition 2.2.4. On the other hand, Li2,n has a conceptual description: The
image of an element in B2(k[ε]n) under Li2,n is obtained by lifting that element
to an arbitrary element in B2(k[ε]2n−1) then taking its image in

∧2k[ε]×2n−1 under
the map in (1.3.1), and finally choosing certain algebraic combinations of its coor-
dinates in

∧2k[ε]×2n−1 as in Propositions 2.1.2, 2.2.1 and 2.2.2. It is this flexibility
in the choice of the lifting that is used in the computations in Section 4.

In this paper, rather than working with K-theory we work with cyclic homology
most of the time. This is possible since K∗(k[ε]n) = K∗(k[ε]n, (ε))⊕ K∗(k) and
by the theorem of Goodwillie [1986], HC∗−1(k[ε]n, (ε)) ' K∗(k[ε]n, (ε)), where
HC denotes cyclic homology with respect to Q. Note that since we are working
with Q-coefficients, K-theory is nothing other than the primitive part of the rational
homology of GL [Loday 1992, Corollary 11.2.12].

In Sections 3.1 through 3.6 we make Goodwillie’s theorem explicit, follow-
ing [Loday 1992], by giving the description of a map from HC2(k[ε]n, (ε)) to
H3(GL(k[ε]n),Q). Then in Sections 3.7 and 3.8, Suslin and Guin’s stability the-
orem and a construction of Bloch, Suslin and Goncharov is used to construct a
map H3(GL(k[ε]n),Q) → ker(δn). More details about Section 3 are given in
Section 3.1. This explicit description will be needed in Section 4.

In Section 4, we prove Theorem 1.3.2. This is done by first using the description
of HC2(k[ε]n, (ε)) given in [Cathelineau 1990/91] in Section 4.1.1, then construct-
ing certain elements

αw ∈ HC2(k[ε]n, ε)(1) for n+ 1≤ w ≤ 2n− 1,

and chasing the images of these elements under the maps described in Sections 2
and 3. The proof also shows that {αw}n+1≤w≤2n−1 form a basis for HC2(k[ε]n, ε)(1).

In Section 5, using [Suslin 1990], [Guin 1989], and Section 4, we show that the
infinitesimal part of ker(δ) is canonically isomorphic to HC2(k[ε]n, (ε))(1). From
this Theorem 1.3.1 follows.

In Section 6, we first define a subcomplex γk[ε]n (2)
′

Q
of γk[ε]n (2)Q. Then we

extend the construction of Bloch and Esnault to higher moduli and finally prove
Corollary 1.4.1, which compares the two constructions.

Remarks. First, we mention the work of J. Park [2007], which gives an additive
Chow theoretic description of the additive dilogarithm of Bloch and Esnault, and
the work of K. Rülling [2007], which proves that the complex of additive Chow
groups with modulus (not necessarily of 2) has the expected cohomology groups
on the level of zero cycles.
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Second, there are many problems left unanswered in this note. The most im-
portant of these is the construction of additive polylogarithms for higher weights.
We have made this construction, but we have yet to prove that the complex has the
right cohomology groups. We will address in another paper the question of what
happens in characteristic p, and we will also compare our construction to the work
of Park and Rülling.

2. Additive dilogarithm

Notation 2.0.1. Let k be a field of characteristic zero. An abelian group A endowed
with a group homomorphism k×→Autab(A) is said to be a k×-abelian group; we
denote the action of λ ∈ k× on a ∈ A by λ× a. If f : A→ k is an additive map
that satisfies f (λ× a)= λw · f (a) for all λ ∈ k× and a ∈ A, then we say that f is
of k×-weight w.

If V is a k-module with a k×-action that is k-linear, that is, defined by a homo-
morphism k×→ Autk-mod(V ), then we let

V〈w〉 := {v ∈ V | λ× v = λw · v for all λ ∈ k×}

be the subspace of elements of V of weight w.
Define k[ε]m := k[ε]/(εm), Vm := k[ε]×m⊗Z Q and B2(k[ε]m) as in Section 1.3.
For an object A defined over k[ε]m , we denote by A◦ its infinitesimal part, for

example,

B2(k[ε]m)= B2(k)⊕ B2(k[ε]m)◦, k[ε]◦m = ε · k[ε]m, V ◦m = 1+ ε · k[ε]m .

When the context requires it we write (say) K∗(k[ε]m)◦ instead of K∗(k[ε]m, (ε)).
Finally, since in what follows the infinitesimal part A◦ of an object A is canonically
a direct summand of A, we never mention the natural maps A◦→ A and A→ A◦,
and take other liberties of this kind.

The exponential map gives an isomorphism k[ε]◦m ' V ◦m , which endows V ◦m with
a k-space structure. For λ ∈ k×, the k-algebra map that sends ε to λ · ε defines an
action of k× on k[ε]m and V ◦m . Denote the weight i subspace of V ◦m under this
action by Vm,〈i〉, that is,

Vm,〈i〉 = {v ∈ V ◦m | λ× v = λ
i
· v for all λ ∈ k×} = {exp(a · εi ) | a ∈ k}.

Then V ◦m=
⊕

1≤i≤m−1 Vm,〈i〉. To simplify the notation we also put Vm,〈0〉 :=k×⊗Q.
Let k[ε]××m ⊆ k[ε]m denote the set of exceptional units, that is, those a ∈ k[ε]×m

such that 1− a ∈ k[ε]×.
Let δ :Q[k[ε]××m ] →

∧2Vm be the map that sends x ∈ k[ε]××m to x ∧ (1− x). If
we want to emphasize that we are working over k[ε]m , we will use the notation δm
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instead of δ. The map on B2(k[ε]m) induced by δm is denoted by the same letter
(see (1.3.1)).

2.1. Construction of li2. In this section we collect the combinatorial arguments
in the construction of the additive dilogarithm over k[ε]n . The crucial step is the
statement that Sk(m, n)〈w〉 is one dimensional in Proposition 2.1.2. This implies
that if one thinks that the additive dilogarithm on k[ε]n should be constructed
by first lifting to k[ε]2n−1 and then using δ, then there is essentially one way to
define it. That this is the right definition is justified in the next section.

Definition 2.1.1. Let n,m ∈N such that 2≤ n≤m. Let αm,n :Q[k[ε]××m ]→
∧2Vm

denote the map that sends γ ∈ k[ε]××m to δ(γ)−δ(γ |n), where γ |n is the truncation
of γ to the sum of first n powers of ε, that is, if γ = a0+a1 · ε+· · ·+am−1 · ε

m−1

then γ |n = a0+ a1 · ε+ · · ·+ an−1 · ε
n−1.

Let V (m, n) denote ⊕
0<i≤n−1
n≤ j≤m−1

(Vm,〈i〉⊗ Vm,〈 j〉)⊆
∧2Vm,

which we also consider as a quotient of
∧2Vm via the direct sum decomposition∧2Vm =

⊕
0≤i< j<m

(Vm,〈i〉⊗ Vm,〈 j〉)⊕
( ⊕

0≤i<m

∧2Vm,〈i〉

)
. (2.1.1)

Finally denote by Vk(m, n) the quotient⊕
0<i≤n−1
n≤ j≤m−1

(Vm,〈i〉⊗k Vm,〈 j〉)

of V (m, n), by p(m, n) :
∧2Vm→ Vk(m, n) the canonical projection, by Sk(m, n)

the k×-abelian group Vk(m, n)/ im(p(m, n) ◦ αm,n) and by Sk(m, n)〈i〉 the image
of Vk(m, n)〈i〉 in Sk(m, n). This notation is justified by noting that Sk(m, n) has
a natural k-module structure induced from that of Vk(m, n) such that its weight i
subspace is equal to Sk(m, n)〈i〉 and Sk(m, n)=

⊕
0<i Sk(m, n)〈i〉.

For 0 < i < j < m, let pi, j :
∧2Vm → Vm,〈i〉 ⊗ Vm,〈 j〉 denote the projection

determined by the decomposition (2.1.1). Then li, j :
∧2Vm→k is defined by letting

(log⊗ log)(pi, j (α))= li, j (α) · (ε
i
⊗ ε j ) in k[ε]m ⊗k k[ε]m for any α ∈

∧2Vm .

Proposition 2.1.2. Let n,m, w ∈ N such that 2 ≤ n < w ≤ min(2n− 1,m). Then
Sk(m, n)〈w〉 is a one-dimensional k-module. The unique linear functional

li2,(m,n),w : Sk(m, n)〈w〉→ k
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such that li2,(m,n),w(exp(ε)⊗ exp(εw−1))= 1 is given by

li2,(m,n),w =
∑

1≤ j≤w−n

j · l j,w− j .

Proof. Let li2,(m,n),w denote the map from
∧2Vm to k given by the formula

li2,(m,n),w =
∑

1≤ j≤w−n

j · l j,w− j .

We would like to see that li2,(m,n),w ◦αm,n = 0. Fix

x := s+ s(1− s)a1ε+ · · ·+ s(1− s)am−1ε
m−1
∈ k[ε]××m .

Let Am := {1, . . . ,m − 1} and let (Am)
×α denote the cartesian product of Am

with itself α-times. Define p : (Am)
×α
→ k by p(i1, . . . , iα) := ai1 · ai2 · · · aiα , and

w : (Am)
×α
→ N by w(i1, . . . , iα) := i1+ i2+ · · · + iα. Note that even though p

depends on x , we suppress it from the notation. In order to simplify the notation
let A(α) := (Am)

×α and B(α) := (Am)
×α
\ (An)

×α.
If 1≤ α, β ≤ w, let

C(α, β) := {(a, b) | a ∈ A(α), b ∈ B(β), w(a)+w(b)= w}.

Let the permutation group Sα+β on α+β letters act on A(α)×A(β) by permuting
the coordinates. On C(α, β) ⊆ A(α)× A(β) consider the following equivalence
relation. If (a, b), (c, d) ∈ C(α, β), then (a, b) and (c, d) are equivalent if there
exists a permutation σ ∈ Sα+β such that (a, b)σ = (c, d). Denote the equivalence
class of (a, b) by [(a, b)] and the set of all equivalence classes by S(α, β). Let
p([a, b])= p(a) · p(b).

Assume from now on that α+β ≤w. Note that since w ≤ 2n− 1, any element
(a, b) ∈ C(α, β) has a unique coordinate that is greater than or equal to n. Denote
this coordinate by e(a, b). Denote by (a, b)0 the element of C(α, β) obtained by
interchanging the last coordinate of (a, b) with the coordinate containing e(a, b).

Then we define a map ι : C(α, β)→ C(β, α) as follows. Let (a, b) ∈ C(α, β).
Then ι(a, b) ∈C(β, α) is the element (a, b)0, where we think of both C(α, β) and
C(β, α) as subsets of A(α)× A(β) ' A(α + β) ' A(β)× A(α). This passes to
equivalence classes and gives a map S(α, β)→S(β, α) that we continue to denote
by ι. Note that ι2 = 1, and if G ∈ S(α, β), then p(ι(G))= p(G), and∑

(a,b)∈G

w(a)=
∑

(c,d)∈ι(G)

w(c).

Letting z = a1ε+ a2ε
2
+ · · ·+ am−1ε

m−1, we have

x = s(1+ (1− s)z) and 1− x = (1− s)(1− sz).
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Computing in k[ε]m , this gives

log(x/s)=−
m−1∑
`=1

(s−1)`z`

`
and log((1− x)/(1− s))=−

m−1∑
`=1

s`z`

`
.

Since zα =
∑

u∈A(α) p(u)ε
w(u), we have

log(x/s)=−
m−1∑
`=1

(s−1)`

`

∑
u∈A(`)

p(u)εw(u),

log((1− x)/(1− s))=−
m−1∑
`=1

s`

`

∑
u∈A(`)

p(u)εw(u).

Then li2,(m,n),w(αm,n(x)) is equal to∑
1≤α≤w
1≤β≤w

∑
a∈A(α)
b∈B(β)

w(a)+w(b)=w

w(a)·p(a)·p(b)
α ·β

· ((s− 1)α · sβ − sα · (s− 1)β)

=

∑
1≤α≤w
1≤β≤w

((s− 1)α · sβ − sα · (s− 1)β)
∑

G∈S(α,β)

(
p(G)
α ·β

) ∑
(a,b)∈G

w(a).

On the other hand∑
G∈S(α,β)

(
p(G)
α ·β

) ∑
(a,b)∈G

w(a)=
∑

G∈S(α,β)

(
p(ι(G))
α ·β

) ∑
(c,d)∈ι(G)

w(c)

=

∑
G∈S(β,α)

(
p(G)
β ·α

) ∑
(a,b)∈G

w(a).

Therefore li2,(m,n),w(αm,n(x))= 0, and we have a linear functional

li2,(m,n),w : Sk(m, n)〈w〉→ k.

By the definition of li2,(m,n),w it is clear that li2,(m,n),w(exp(ε)⊗ exp(εw−1))= 1.
To finish the proof we only need to show that the space of linear functionals on

Sk(m, n)〈w〉 is generated by li2,(m,n),w, or equivalently that if l is a linear combina-
tion of {l2,w−2, l3,w−3, . . . , lw−n,n} such that l(αm,n(x))= 0 for all x ∈ k[ε]××m , then
l is zero. So let l =

∑
2≤i≤w−n ci · li,w−i satisfy l(αm,n(x))= 0 for all x ∈ k[ε]××m .

Assume that l 6= 0 and let i0 be the smallest integer i such that ci 6= 0. For all
s ∈ k×× and a1, ai0−1, aw−i0 ∈ k, we have

l(αm,n(s+ s(1− s) · a1 · ε+ s(1− s) · ai0−1 · ε
i0−1
+ s(1− s) · aw−i0 · ε

w−i0))= 0.
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If we denote the left hand side of the above equation by l(s, a1, ai0−1, aw−i0), then

ci0 ·
1
2((s− 1)2s− s2(s− 1)) · (a1 · ai0−1 · aw−i0)

= l(s, a1, ai0−1, aw−i0)− l(s, a1, 0, aw−i0)= 0.

Therefore ci0 = 0, contradicting the assumption. �

2.2. Construction of Li. Using the construction in the previous section, we show
that li2,(2n−1,n),w descends to a function on B2(k[ε]n), as defined in Section 1.3.

Proposition 2.2.1. For n+ 1≤ w ≤ 2n− 1, the map

li2,(2n−1,n),w ◦δ :Q[k[ε]××2n−1] → k

factors through the canonical projection Q[k[ε]××2n−1] →Q[k[ε]××n ].

We denote the induced map from Q[k[ε]××n ] to k by Li2,n,w.

Proof. This follows from the fact that li2,(2n−1,n),w ◦α2n−1,n= 0 by the construction
in Proposition 2.1.2. �

Proposition 2.2.2. The map Li2,n,w :Q[k[ε]××n ]→ k factors through the canonical
projection Q[k[ε]××n ] → B2(k[ε]n).

We continue to denote the induced map by Li2,n,w.

Proof. We need to show that for x, y ∈ k[ε]××n such that x/y ∈ k[ε]××n ,

Li2,n,w([x] − [y] + [y/x] − [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)])= 0.

If x̃ and ỹ are arbitrary liftings of x and y to k[ε]××2n−1, then Proposition 2.2.1
implies that the left side of the last equation is equal to

(li2,(2n−1),w ◦δ)([x̃] − [ỹ] + [ỹ/x̃] − [(1− x̃−1)/(1− ỹ−1)] + [(1− x̃)/(1− ỹ)]).

The proposition then follows from the fact that

δ([x̃] − [ỹ] + [ỹ/x̃] − [(1− x̃−1)/(1− ỹ−1)] + [(1− x̃)/(1− ỹ)])= 0. �

If c= (c1, . . . , cr )∈Nr and x= s+s(1−s)a1ε+· · ·+s(1−s)an−1ε
n−1
∈ k[ε]××n

then
p(x; c) := ac1 · ac2 · · · acr and w(c) := c1+ · · ·+ cr .

Let C(α) := {1, 2, . . . , n− 1}×α.

Proposition 2.2.3. For n+ 1≤ w ≤ 2n− 1, we have

Li2,n,w([x])=
∑

1≤α,β≤w

(s−1)α ·sβ−sα ·(s−1)β

α ·β

∑
(a,b)∈C(α)×C(β)

w(a)≤w−n
w(a,b)=w

w(a) · p(x; (a, b)).
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Proof. Direct computation. �

Definition 2.2.4. Define the additive dilogarithm Li2,n : B2(k[ε]n)→ k⊕(n−1) by

Li2,n :=
⊕

n+1≤w≤2n−1

Li2,n,w .

3. The map from cyclic homology to the Bloch group

3.1. This section is based on Goodwillie’s theorem [1986] and the construction
of Bloch [1977], Suslin [1990] and Goncharov [1995] of a map from the K3 of a
field to its Bloch group. Our main reference for cyclic homology and Goodwillie’s
theorem is [Loday 1992]. Here all cyclic homology groups are relative to Q.

We will need the following to pass from cyclic homology to the rational homol-
ogy of GL.

Theorem 3.1.1 [Goodwillie 1986; Loday 1992, Theorem 11.3.1]. Let A be a
Q-algebra and I a nilpotent ideal in A. Then there is a canonical isomorphism

HCn−1(A, I )' Kn(A, I )Q for n ≥ 1.

Remark 3.1.2. This isomorphism is compatible with the λ-structures on both sides
by [Cathelineau 1990/91, Theorem 1]. Hence, if HC∗(A, I )(i−1) and K∗(A, I )(i)

Q

denote the ki -eigenspace for the k-th Adams operator (for any k), then the above
isomorphism induces an isomorphism HC∗−1(A, I )(i−1)

'K∗(A, I )(i)
Q

by [loc. cit.,
corollary in Section 1.3].

For a ring A, the Hurewicz map induces an isomorphism from ⊕n>0Kn(A)Q
to the primitive part Prim H∗(GL(A),Q) of the homology of GL [Loday 1992,
11.2.12 Corollary]. The map in Theorem 3.1.1 is constructed as the composition
of a map from cyclic homology to the primitive part of the homology of GL and
then using the inverse of the Hurewicz map. Since we will only need the map
from cyclic homology to the homology of GL, we next describe the steps in its
construction, following [Loday 1992].

In Section 3.2, cyclic homology of A is computed as the homology of the
Connes complex. This section also describes the natural map from the Connes
complex to the Chevalley–Eilenberg complex of the Lie algebra gl. This map
induces an isomorphism from cyclic homology to the primitive homology of gl.
In Section 3.3, homology of gl is replaced with the sum of the homology of its
nilpotent parts tσ (A, I ). In Section 3.4, homology of tσ (A, I ) is replaced with
that of the completion of its universal enveloping algebra, and in Section 3.5, the
latter is replaced with the homology of the group algebra of Tσ (A, I ), via Malčev
theory. We reach the group homology of GL(A) in Section 3.6.
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In Section 3.7, this construction in combination with Suslin and Guin’s stability
theorem [Suslin 1984; Guin 1989] induces a map

HCn−1(A, I )→ Hn(GLn(A),Q) (3.1.1)

when A is an artinian local algebra over Q and I is a proper ideal of A. We will
use this map for n = 3.

Finally we use a slight variation of the construction of Suslin and Goncharov in
Section 3.8 to get a map H3(GL3(A),Q)→ ker(δ).

The details can be found in [Loday 1992, Section 11.3] and the references
therein. The main result of this section is Proposition 3.8.9.

3.2. Map from cyclic homology to Lie algebra homology.

3.2.1. For any associative Q-algebra A, the Connes complex Cλ
∗
(A) is defined as

follows. Let Z/nZ act on A⊗n by

1× (a1⊗ a2⊗ · · ·⊗ an)= (−1)n−1a2⊗ a3⊗ · · ·⊗ an ⊗ a1,

and let Cλ
n−1(A) denote the coinvariants of A⊗n under this action. Define

b : Cλ
n (A)→ Cλ

n−1(A),

(a0, a1, . . . , an) 7→
∑

0≤i≤n−1

(−1)i (a0, . . . , ai · ai+1, . . . , an)

+ (−1)n(an · a0, a1, . . . , an−1).

Then Cλ
∗
(A) is the complex

· · ·
b // Cλ

n+1(A)
b // Cλ

n (A)
b // · · · // Cλ

0 (A) // 0,

and HC∗(A) = H∗(Cλ
∗
(A)) [Loday 1992, Theorem 2.1.5]: The cyclic homology

relative to Q can be computed as the homology of the Connes complex.

3.2.2. For g a Lie algebra over Q, the Chevalley–Eilenberg complex C∗(g,Q)

of g with coefficients in Q is defined by

· · ·
d //

∧ng
d //

∧n−1g // · · ·
d // g

d // Q // 0,

where d :
∧ng→

∧n−1g is given by

d(a1∧a2∧· · ·∧an)=
∑

1≤i< j≤n

(−1)i+ j−1
[ai , a j ]∧a1∧· · ·∧ âi∧· · ·∧ â j∧· · ·∧an.

The Lie algebra homology H∗(g,Q) of g with coefficients in Q is the homology
of the complex C∗(g,Q). The diagonal map g→ g⊕ g induces a map

1 : C∗(g,Q)→ C∗(g,Q)⊗C∗(g,Q),
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which makes (C∗(g,Q), d) a DG-coalgebra. Let Prim H∗(g,Q) denote the primi-
tive elements in H∗(g,Q), that is, those α such that 1(α)= 1⊗α+α⊗ 1.

Let gln(A) denote the Lie algebra of n × n matrices, and let gl(A) denote the
direct limit limn→∞ gln(A) with respect to the natural inclusions gln(A)⊆ glm(A)
for n ≤ m. Then gl(Q) acts on C∗(gl(A),Q) by

[h, g1 ∧ · · · ∧ gn] :=
∑

1≤i≤n

g1 ∧ · · · ∧ [h, gi ] ∧ · · · ∧ gn.

Let C∗(gl(A),Q)gl(Q) denote the complex of coinvariants with respect to this ac-
tion, and let H∗(gl(A),Q)gl(Q) and Prim H∗(gl(A),Q)gl(Q) denote respectively the
homology and the primitive part of the homology of the complex C∗(gl(A),Q)gl(Q).
Then the theorem of Loday, Quillen, and Tsygan says this:

Theorem 3.2.1 [Loday 1992, Theorem 10.2.4]. If A is an algebra over Q, then
there is a natural isomorphism

HC∗−1(A)' Prim H∗(gl(A),Q)gl(Q) ' Prim H∗(gl(A),Q).

Explicitly, the first isomorphism above is induced by the chain map that sends the
class of a1⊗ a2⊗ · · · ⊗ an in Cλ

n−1(A) to the class of a1e12 ∧ a2e23 ∧ · · · ∧ anen1

in Cn(gl(A),Q)gl(Q). Here ei j denotes the matrix whose only nonzero entry is the
one in the i-th row and the j-th column, which is 1.

3.3. Volodin’s construction in the Lie algebra case. Assume that I is a nilpo-
tent ideal of A, and let HC∗(A, I ) denote the cyclic homology of A relative to I ,
the homology of the complex Cλ

∗
(A, I ) that is the kernel of the natural surjection

Cλ
∗
(A)→ Cλ

∗
(A/I ).

For any permutation σ ∈ Sn , let tσ (A, I ) denote the Lie subalgebra of gl(A)
given by tσ (A, I ) := {(ai j ) ∈ gl(A) : ai j ∈ I if σ( j) ≤ σ(i)}. Let x(A, I ) :=∑

σ C∗(tσ (A, I ),Q) denote the sum of the subcomplexes

C∗(tσ (A, I ),Q)⊆ C∗(gl(A),Q),

over all n and σ ∈ Sn , and let H∗(gl(A, I ),Q) denote the homology of x(A, I ).
Then the map in Theorem 3.2.1 induces an isomorphism

HC∗−1(A, I )' Prim H∗(gl(A, I ),Q)'
∑
σ

Prim H∗(tσ (A, I ),Q) (3.3.1)

[Loday 1992, Proposition 11.3.12].

3.4. From the Lie algebra to the universal enveloping algebra. For a Lie alge-
bra g over Q, let U(g) denote its universal enveloping algebra and Û(g) its com-
pletion with respect to its augmentation ideal. We will next express the homology
of g in terms of the homology of U(g).
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Let B be an associative algebra over Q endowed with an augmentation map
ε : B→Q. Let C∗(B,Q) denote the complex

· · ·
b // B⊗n b // B⊗(n−1) b // · · ·

b // Q // 0,

where b : B⊗n
→ B⊗(n−1) is the map that sends b1⊗ · · ·⊗ bn to

ε(b1) · b2⊗ · · ·⊗ bn +
∑

1≤i≤n−1

(−1)i b1⊗ · · ·⊗ bi · bi+1⊗ · · ·⊗ bn

+ (−1)nε(bn) · b1⊗ · · ·⊗ bn−1.

Let H∗(B,Q) denote the homology of this complex.
Then the natural maps

H∗(tσ (A, I ),Q)' H∗(U(tσ (A, I )),Q)' H∗(Û(tσ (A, I )),Q) (3.4.1)

are isomorphisms [Loday 1992, Theorem 3.3.2]. Here the first map is induced by
the chain map αas, where “as” stands for antisymmetrization, defined by

αas(t1 ∧ · · · ∧ tn)=
∑
τ∈Sn

sign(τ ) · tτ(1)⊗ · · ·⊗ tτ(n).

3.5. Malčev theory. For σ ∈ Sn , let Tσ (A, I )⊆ GLn(A) denote the group

{1+ (ai j ) ∈ GLn(A) | ai j ∈ I if σ( j)≤ σ(i)}.

For a discrete group G, denote by U (G) its group ring over Q, and by Û (G) its
completion with respect to the augmentation ideal.

Since Tσ (A, I ) is a unipotent group with Lie algebra tσ (A, I ), the natural maps

H∗(Û(tσ (A, I ),Q)= H∗(Û (Tσ (A, I ),Q)' H∗(U (Tσ (A, I )),Q). (3.5.1)

are isomorphisms [Loday 1992, Section 11.3.13].
Combining (3.3.1), (3.4.1) and (3.5.1) we get a map

HC∗−1(A, I )→
∑
σ

H∗(U (Tσ (A, I )),Q)→ H∗(U (GL(A)),Q). (3.5.2)

3.6. Group homology. Let G be any (discrete) group and C∗(G,Q) the complex

· · ·
d // Q[Gn+1

]
d // Q[Gn

]
d // · · ·

d // Q[G] // 0,

where Cn(G,Q)=Q[Gn+1
] and d is the map that sends (g0, g1, . . . , gn) to∑

0≤i≤n

(−1)i (g0, . . . , ĝi , . . . , gn).

Let G act on this complex by multiplication on the left, that is, g×(g0, . . . , gn) :=

(g · g0, . . . , g · gn), and let H∗(G,Q) := H∗(C∗(G,Q)G) where the subscript G
denotes the space of coinvariants.
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The natural map C∗(U (G),Q)→ C∗(G,Q) that sends g1⊗ g2⊗ · · ·⊗ gn to

(1, g1, g1 · g2, . . . , g1 · g2 · · · gn)

induces an isomorphism H∗(U (G),Q)→ H∗(G,Q) [Loday 1992, Appendix C.3].
Applying this to GL(A) and combining with (3.5.2) we obtain the map

HC∗−1(A, I )→ H∗(GL(A),Q). (3.6.1)

3.7. Suslin’s stability theorem. Suslin’s stability theorem [1990] was generalized
by Guin:

Theorem 3.7.1 [Guin 1989, Section 2]. For any 1 ≤ n and any artinian local
algebra A over Q, the map Hn(GLn(A),Q) → Hn(GL(A),Q) induced by the
inclusion GLn ↪→ GL is an isomorphism.

Therefore if A is an artinian local algebra over Q and I is a proper ideal, we have
a map ρ1 : HCn−1(A, I )→ Hn(GLn(A),Q).

3.8. Bloch–Suslin map. Let A be an artinian local algebra over Q with residue
field k. We now describe the Bloch–Suslin map [Goncharov 1995, Section 2.6]

ρ2 : H3(GL3(A),Q)→ ker(δA),

where δA : B2(A)Q→
∧2 A×

Q
is the differential in the Bloch complex.

Definition 3.8.1. Let V be a finite free module over A, and denote C̃m(V ) by the Q-
vector space with basis consisting of m-tuples (x0, . . . , xm−1) of elements of V that
are in general position, that is, for any I ⊆{0, 1, . . . ,m−1}with |I |≤ rank(V ), the
set {xi | i ∈ I } can be extended to a basis of V . Let Cm(V ) denote the coinvariants
of this space under the natural action of GL(V ). Finally, let C̃m(p) := C̃m(A⊕p)

and Cm(p) := Cm(A⊕p).

Remark 3.8.2. Let C̃m(P(V )) denote the Q-space with basis (v0, . . . , vm−1) of
m-tuples of points in P(V ) that are in general position, and define

d : C̃m+1(P(V ))→ C̃m(P(V )), (v0, . . . , vm) 7→
∑

0≤i≤m

(−1)i (v0, . . . , v̂i , . . . , vm).

Let Cm(P(V )) denote the space of coinvariants of C̃m(P(V )) under the natural
action of GL(V ). Then by identifying [x] with (0, x, 1,∞) ∈ C4(P(A⊕2)) and by
comparing the dilogarithm relation in the definition of B2(A) to d(0, x, y, 1,∞)
in C4(P(A⊕2)), we see that

B2(A)Q = C4(P(A⊕2))/d(C5(P(A⊕2))).

For (x1, . . . , x4) a quadruple of points in P1
A, we denote the corresponding element

in B2(A)Q by [x1, . . . , x4].
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Since A is a local ring, a subset of V is in general position if its reduction modulo
the maximal ideal is in general position in the k-space V ⊗A k.

Define two maps d, d ′ : C̃m+1(p)→ C̃m(p) by

d(x0, x1, . . . , xm)=
∑

0≤i≤m

(−1)i (x0, . . . , x̂i , . . . , xm),

d ′(x0, x1, . . . , xm)=
∑

1≤i≤m

(−1)i (x0, . . . , x̂i , . . . , xm).

Let ε : C̃1(p)→Q be the map that sends each term to the sum of its coefficients.

Lemma 3.8.3. The following complexes are acyclic.

· · ·
d // C̃2(p)

d // C̃1(p)
ε // Q // 0,

· · ·
d ′ // C̃2(p)

d ′ // C̃1(p) // 0.

Proof. Let
∑

j∈J a j · (x0( j), . . . , xm−1( j)) be an m-cycle in the first or the second
complex. Since the reductions modulo the maximal ideal {x0( j), . . . , xm−1( j)} are
in general position in k⊕p and k is an infinite field, we can choose α ∈ A such that
all {x0( j), . . . , xm−1( j), α} are in general position. Note that if Wi for 1≤ i ≤ r are
proper subspaces of a vector space W over an infinite field, then

⋃
1≤i≤r Wi 6=W .

If m ≥ 2 and d
∑

j∈J a j · (x0( j), . . . , xm−1( j))= 0, or if m = 1 and
∑

j∈J a j = 0,
we have

(−1)md
(∑

j∈J

a j · (x0( j), . . . , xm−1( j), α)
)
=

∑
j∈J

a j · (x0( j), . . . , xm−1( j)).

Similarly, if m ≥ 2 and d ′
∑

j∈J a j · (x0( j), . . . , xm−1( j)) = 0, or if m = 1, we
have

(−1)md ′
(∑

j∈J

a j · (x0( j), . . . , xm−1( j), α)
)
=

∑
j∈J

a j · (x0( j), . . . , xm−1( j)). �

Define maps λ : C̃m(p)→ C̃m(p) by

λ(x0, . . . , xm−1)=
∑

0≤i≤m−1

sign(σ (m)i )(xσ(m)i (0), . . . , xσ(m)i (m−1)),

where σ(m) := (0 1 · · · m− 1) is the standard m-cyclic permutation.
Then λ ◦ d = d ′ ◦ λ, and we have a double complex

· · ·
d // C̃3(3)

λ
��

d // C̃2(3)

λ
��

· · ·
d ′ // C̃3(3)

d ′ // C̃2(3).
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Definition 3.8.4. Let D̃ be the complex associated to the double complex above.
That is, D̃0 = C̃2(3) and D̃i = C̃i+2(3) ⊕ C̃i+1(3) and the maps are given by
(x, y)→ (d ′(x)+ λ(y),−d(y)).

Let ε : D̃0→Q be the map that sends each term to the sum of its coefficients. Then
by Lemma 3.8.3 the complex · · · // D̃1 // D̃0

ε // Q // 0 is acyclic.
If we endow D̃ with its natural GL3(A) action and Q with the trivial action, then

the complex above is an acyclic complex of GL3(A)-modules. Therefore we get a
canonical map

H3(GL3(A),Q)→ H3(D), (3.8.1)

where D := D̃GL3(A) is the complex of coinvariants of D̃.
Next we define a map from H3(D) to B2(A)Q. This will be a slight modification

of Goncharov’s map [1995, Section 2.6].
From the double complex above, we are interested in the part

C6(3)

λ
��

d // C5(3)

λ
��

d // C4(3)

λ
��

C6(3)
d ′ // C5(3)

d ′ // C4(3).

We define a map φ from this double complex to the double complex

0 //

��

0 //

��

0

��

0 // B2(A)Q //
∧2 A×

Q
.

In φ, the only nontrivial map

C5(3)
d ′ //

��

C4(3)

��

B2(A)Q
δ //

∧2 A×
Q

(3.8.2)

is a composition of the following two maps:
The first map is

C5(3)
d ′ //

−p
��

C4(3)

p
��

C4(2)
d // C3(2),

where p : Cm+1(3)→ Cm(2) sends (v0, v1, . . . , vm−1) to (ṽ1, . . . , ṽm−1). Here ṽi

denotes the image of vi in A⊕3/〈v0〉, and the term (ṽ1, . . . , ṽm−1) is identified with
an element of Cm(2) by choosing any isomorphism between A⊕3/〈v0〉 and A⊕2.
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The second map is
C4(2)

d //

α

��

C3(2)

β

��

B2(A)Q
δ //

∧2 A×
Q
,

(3.8.3)

where α is the map that sends (v0, v1, v2, v3) to [v0, v1, v2, v3]. Here vi denotes
the image of vi in P(A⊕2), and [v0, v1, v2, v3] denotes the image of (v0, v1, v2, v3)

under the map C4(P(A⊕2))→ B2(A)Q, as in Remark 3.8.2. And β is the map that
sends (v0, v1, v2) to (

v0∧v1
v1∧v2

)
∧

(v0 ∧ v2

v1 ∧ v2

)
.

The next three lemmas imply that the maps defined so far can be extended to a
map φ of the double complexes.

Lemma 3.8.5. The map C6(3)
d ′ // C5(3)

−p // C4(2)
α // B2(A)Q is zero.

Proof. This follows from that −p ◦d ′(v0, v1, v2, v3, v4, v5)= d(v1, v2, v3, v4, v5),
and that this maps to zero in B2(A)Q, by Remark 3.8.2. �

Lemma 3.8.6. The map C5(3)
λ // C5(3)

−p // C4(2)
α // B2(A)Q is zero.

Proof. (See [Goncharov 1995, Lemma 2.18].) Let (v0, . . . , c4) ∈ C5(3). Then
there is a conic Q passing through the images of the five points v0, v1, v2, v3, v4 in
the projective plane. Choosing any isomorphism, we identify Q with P1

A. Let the
images of vi be xi ∈ P1

A under this isomorphism. The composition of the maps in
the statement of the lemma then maps (v0, . . . , v4) in C5(3) to

−

∑
0≤i≤4

[xi , xi+1, . . . , xi+3]

in B2(A)Q, where the indices are modulo 5.

Claim 3.8.7. In B2(A)Q we have

[x1, x2, x3, x4] = sign(σ ) · [xσ(1), xσ(2), xσ(3), xσ(4)] for any σ ∈ S4.

Proof of the claim. Note that since we are working with Q-modules we have
[0, x, 1,∞]=−[0, x/(x−1), 1,∞] by [Suslin 1990, Lemmas 1.2 and 1.5]. Hence

[0, x, 1,∞] =−[x, 0, 1,∞] and [0, x, 1,∞] =−[0, 1/x, 1,∞]

[loc. cit., Lemma 1.2]. Hence [0, x, 1,∞] = −[0, 1, x,∞], and using again that
[0, x, 1,∞] =−[0, x/(x − 1), 1,∞], we have [0, x, 1,∞] =−[0, x,∞, 1].

Therefore the formula in the statement holds for the transpositions (1 2), (2 3),
and (3 4). Since these generate S4, the statement follows. �
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Finally by the claim,∑
0≤i≤4

[xi , xi+1, . . . , xi+3] =
∑

0≤i≤4

(−1)i [x0, . . . , x̂i , . . . , x4]

and the right side is zero in B2(A)Q by Remark 3.8.2. �

Lemma 3.8.8. The map C4(3)
λ // C4(3)

p // C3(2)
β //

∧2 A×
Q

is zero.

Proof. First note that β sends (v0, v1, v2) to(
v0∧v1
v1∧v2

)
∧

(
v0∧v2
v1∧v2

)
=

(
`(v0∧v1)
`(v1∧v2)

)
∧

(
`(v0∧v2)
`(v1∧v2)

)
,

where ` : detA(A⊕2) → A is any surjective A-linear map. Therefore since we
are looking at configurations in general position, the composition β ◦ p maps
(y0, y1, y2, y3) ∈ C4(3) to( y0∧y1∧y2

y0∧y2∧y3

)
∧

( y0∧y1∧y3
y0∧y2∧y3

)
.

This implies the statement by direct computation. �

Therefore φ is a map of double complexes that induces a map H3(D)→ ker(δ)
of the homology of the associated complexes. Combining this with the map

H3(GL3(A),Q)→ H3(D)

in (3.8.1), we obtain a map ρ2 : H3(GL3(A),Q)→ ker(δ).
Therefore applying Sections 3.1–3.7 to (A, I )= (k[ε]n, (ε)) proves this:

Proposition 3.8.9. The composition T := ρ2 ◦ ρ1 defines a natural map

T : HC2(k[ε]n, (ε))(1) ↪→ HC2(k[ε]n, (ε))→ B2(k[ε]n)Q,

whose image lies in ker(δn).

4. Nonvanishing of Li2,n on HC2(k[ε]n, (ε))
(1)

4.1. This section shows that Li2,n is the correct map, as we show that it does not
vanish on HC2(k[ε]n, (ε))(1). First we describe HC2(k[ε]n, (ε))(1) and define some
elements αw in it on which we will evaluate the additive dilogarithm.

4.1.1. Note that HC∗(k[ε]n, (ε)) is a k×-abelian group, where λ ∈ k× acts as the
map induced by the k-algebra automorphism of k[ε]n that sends ε to λ · ε. This
action is compatible with the decomposition (Remark 3.1.2) of

HC2(k[ε]n, (ε))= HC2(k[ε]n, (ε))(1)⊕HC2(k[ε]n, (ε))(2)
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[Cathelineau 1990/91, pages 593–594];

HC2(k[ε]n, (ε))(1) =
⊕

n+1≤w≤2n−1

HC2(k[ε]n, (ε))
(1)
〈w〉,

where each summand is isomorphic to k (loc. cit.); and

HC2(k[ε]n, (ε))(2) =
⊕

1≤w≤n−1

HC2(k[ε]n, (ε))
(2)
〈w〉,

where each summand is isomorphic to �2
k/Q (loc. cit.).

4.1.2. χ(n)= 0 if n is even and χ(n)= 1 if n is odd. For n+1≤w≤ 2n−1, let

αw :=
∑

0≤ j<(2n−1−w)/2

(εn−1− j , εw−n+ j , ε)+ 1
2 ·χ(w) · (ε

(w−1)/2, ε(w−1)/2, ε)

in Cλ
2 (k[ε]n). Since αw is a cycle, as can be checked by direct computation, with

k×-weight w, it defines an element αw ∈ HC2(k[ε]n, (ε))
(1)
〈w〉 by Section 4.1.1.

4.2. Computation of Li2,n on HC2. In this section, we compute Li2,n(T (αw))
(which is the same as Li2,n,w(T (αw))). This we will do in several steps.

4.2.1. From gl3(k[ε]n) to gl2(k[ε]n). Consider the 2-chain (εa, εb, ε)∈Cλ
2 (k[ε]n)

in the Connes complex, where a+ b ≥ n. By the map in Section 3.2, at the chain
complex level, (εa, εb, ε) goes to βa,b := ε

ae12∧ε
be23∧εe31∈C3(gl3(k[ε]n))gl3(Q).

Therefore we need to compute the image of

βw :=
∑

0≤ j<(2n−1−w)/2

βn−1− j,w−n+ j +
1
2χ(w)β(w−1)/2,(w−1)/2

in k. Let γa,b := ε
ae12 ∧ ε

be21 ∧ εe11, and

γw :=
∑

0≤ j<(2n−1−w)/2

γn−1− j,w−n+ j +
1
2χ(w)γ(w−1)/2,(w−1)/2.

We defined T as the composition

HC2(k[ε]n, (ε))(1)→ Prim H3(gl(k[ε]n),Q)gl(Q) ' Prim H3(gl(k[ε]n),Q)

→ H3(gl(k[ε]n),Q)→ H3(GL(k[ε]n),Q)→ ker(δ).

Let T ′ : Prim H3(gl(k[ε]n),Q)gl(Q)→ ker(δ) and T ′′ : H3(gl(k[ε]n),Q)→ ker(δ)
be the obvious compositions.

The following lemma enables us to work in the homology of gl2(k[ε]n) rather
than that of gl3(k[ε]n).

Lemma 4.2.1. We have (Li2,n,w ◦T ′)(βw)= (Li2,n,w ◦T ′)(γw).
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Proof. First note that

d(e13 ∧ ε
ae12 ∧ ε

be21 ∧ εe31)=−βa,b+ γa,b

− εae12 ∧ ε
be21 ∧ εe33− e13 ∧ ε

a+1e32 ∧ ε
be21,

that εae12∧ ε
be21∧ εe33 is a cycle; and that e13∧ ε

a+1e32∧ ε
be21 is a boundary in

C∗(gl(k[ε]n))gl(Q), since this element corresponds to the element (1, εa+1, εb) in
the Connes complex and d(1, εa+1, εb, 1)= (1, εa+1, εb).

Therefore since βw is a cycle, so is γw, and to prove the lemma it suffices to
show that (Li2,n,w ◦T ′)(εae12 ∧ ε

be21 ∧ εe33)= 0 for a+ b ≥ n.
Note that since

d(e12 ∧ ε
ae11 ∧ ε

be21 ∧ εe33)=−ε
ae12 ∧ ε

be21 ∧ εe33

+ εae11 ∧ ε
be11 ∧ εe33− ε

ae11 ∧ ε
be22 ∧ εe33,

it is sufficient to show the vanishing of both

(Li2,n,w ◦T ′)(εae11 ∧ ε
be11 ∧ εe33)= (Li2,n,w ◦T ′′)(εae11 ∧ ε

be11 ∧ εe33),

(Li2,n,w ◦T ′)(εae11 ∧ ε
be22 ∧ εe33)= (Li2,n,w ◦T ′′)(εae11 ∧ ε

be22 ∧ εe33).

The equalities above follow immediately from the fact that εae11 ∧ ε
be11 ∧ εe33

and εae11 ∧ ε
be22 ∧ εe33 are cycles not only in C∗(gl3(k[ε]n),Q)gl3(Q) but also in

C∗(gl3(k[ε]n),Q).
Propositions 2.2.1 and 2.2.2 give that Li2,n,w(x)= (li2,(2n−1,n),w ◦δ2n−1)(x̃) for

x ∈ B2(k[ε]n), where x̃ ∈ B2(k[ε]2n−1) is any lift of x .
Let α̃ ∈ {εae11∧ ε

be11∧ εe33, ε
ae11∧ ε

be22∧ εe33} ⊆ C3(gl(k[ε]2n−1),Q), and
let α the reduction of α̃ to C3(gl(k[ε]n),Q). Then

Li2,n,w(T ′′(α))= (li2,(2n−1,n),w ◦δ2n−1)(T ′′(α̃)).

Here T ′′ denotes the chain map, mapping C3(gl3(k[ε]2n−1),Q) to B2(k[ε]2n−1)Q
and C2(gl3(k[ε]2n−1),Q) to

∧2V2n−1, that induces T ′′. The map T ′′ depends on
certain choices (see the next paragraph).

Recall how T ′′(α̃) is defined in Section 3: Through the antisymmetrization
map αas (Section 3.4) and the exponential map [Loday 1992, Sections 3.5 and
11.3.13], we get a chain map C∗(gl3(k[ε]2n−1),Q)◦→C∗(Û (GL3(k[ε]2n−1)),Q).
In fact, it is immediately seen that the image of α̃ under these maps lies inside
the image of C∗(U (GL3(k[ε]2n−1)),Q) in C∗(Û (GL3(k[ε]2n−1)),Q). To get from
C∗(U (GL3(k[ε]2n−1)),Q) to C∗(GL3(k[ε]2n−1),Q)we pass via the map described
in Section 3.6. Bypassing the need for stabilization since we are already in GL3,
and using that D̃ is an acyclic complex of GL3(k[ε]2n−1) modules, we get a (non-
canonical) map from C∗(GL3(k[ε]2n−1),Q) to D̃. Finally taking GL3(k[ε]2n−1)
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coinvariants, we end up in the complex D, and using the map of double complexes
(induced by (3.8.2)), we pass from D to the complex

γk[ε]2n−1(2)Q : B2(k[ε]2n−1)Q
δ2n−1 //

∧2V2n−1.

Since T ′′ is a map of complexes, δ2n−1(T ′′(α̃)) = T ′′(d(α̃)) = 0, as d(α̃) = 0 in
C∗(gl3(k[ε]2n−1),Q). This implies that

Li2,n,w(T ′′(α))= li2,(2n−1,n),w(δ2n−1(T ′′(α̃)))= 0. �

The next lemma will help us to reduce the computation to gl2:

Lemma 4.2.2. The chain γw as defined above is a cycle in C3(gl2(k[ε]n),Q)gl2(Q)

and hence defines an element in H3(gl2(k[ε]n),Q)gl2(Q).

Proof. We already know that γw defines a cycle in C3(gl3(k[ε]n),Q)gl3(Q). Since
Ci (glm(k[ε]n),Q)glm(Q) = (

∧iglm(k[ε]n))glm(Q) (see Section 3.2.2) and

(
∧iglm(k[ε]n))glm(Q) = (

∧igli (k[ε]n))gli (Q) for m ≥ i

[Loday 1992, Corollary 9.2.8 and (10.2.10.1)], we have

d(γw)= 0 ∈ C2(gl3(k[ε]n),Q)gl3(Q) = C2(gl2(k[ε]n),Q)gl2(Q). �

4.2.2. From C∗(gl2(k[ε]2n−1),Q)gl2(Q) to C∗(gl2(k[ε]2n−1),Q). In order to con-
tinue with the computation of Li2,n,w(T ′(γw)), we need to compute the image of
γw in C3(gl2(k[ε]n,Q). This would be a very long computation, but in fact we will
see in this section that we can get away with much less. The following proposition
will be crucial.

Proposition 4.2.3. For any Q-algebra A, let gln(Q) act on gln(A) by its adjoint ac-
tion. Let C ′

∗
(gln(A),Q)gln(Q) be the subcomplex of C∗(gln(A),Q) on which gln(Q)

acts trivially. Then the canonical map

C ′
∗
(gln(A),Q)gln(Q)→ C∗(gln(A),Q)→ C∗(gln(A),Q)gln(Q)

is an isomorphism and there is a canonical direct sum of complexes

C∗(gln(A),Q)= C ′
∗
(gln(A),Q)gln(Q)⊕ L∗, (4.2.1)

with gln(Q)-action, such that L∗ is acyclic.

Proof. This is [Loday 1992, Proposition 10.1.8], taking g= gln(A) and h= gln(Q),
and noting the reductivity of gln(Q) [loc. cit., 10.2.9]. �

To continue, we need to compute the image γ′w of γw in H3(gl2(k[ε]n),Q).
Then we should lift γ′w to a chain γ̃′w in C ′3(gl2(k[ε]2n−1),Q)gl2(Q) and continue
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just as in the last part of the proof of Lemma 4.2.1. Namely,

Li2,n,w(T ′(γw))= Li2,n,w(T ′′(γ̃′w))= li2,(2n−1,n),w(δ2n−1(T ′′(γ̃′w)))

= li2,(2n−1,n),w(T ′′(d(γ̃′w))).

Let γ̃∗w be any chain in C3(gl2(k[ε]2n−1),Q) that has a cycle for its image in
C3(gl2(k[ε]n),Q)gl2(Q) (under the canonical maps) and that lifts γw. Then, by
Proposition 4.2.3, the first component γ̃∗(1)w of γ̃∗w under the decomposition in
(4.2.1) is a lift of the element γ′w. Therefore we can choose γ̃′w := γ̃

∗(1)
w , and

to continue we need to compute d(γ̃∗(1)w )= d(γ̃∗w)
(1).

For the rest of the computation, we will let γ̃∗w := γ̃w, where

γ̃w :=
∑

0≤ j<(2n−1−w)/2

γ̃n−1− j,w−n+ j +
1
2χ(w)γ̃(w−1)/2,(w−1)/2,

γ̃a,b := ε
ae12 ∧ ε

be21 ∧ εe11.

Combining the above we have

Li2,n,w(T ′(γw))= li2,(2n−1,n),w(T ′′(d(γ̃w)
(1))). (4.2.2)

Next we will compute d(γ̃a,b)
(1). For any Q-algebra A there is a canonical

isomorphism for i ≥ n given by

Cn(gli (A),Q)gli (Q) = (
∧ngli (A))gli (Q)→ (Q[Sn]⊗ A⊗n)Sn , (4.2.3)

where Sn acts on Q[Sn] by conjugation and on A⊗n by permuting the factors and
multiplying with sign [Loday 1992, 10.2.10.1].

Letting

0x,y := xe12 ∧ ye21+ xe21 ∧ ye12+
1
2 x(e22− e11)∧ y(e22− e11) for x, y ∈ A,

we see by direct computation that 0x,y ∈ C ′2(gl2(A),Q)gl2(Q).
Under the map (4.2.3),

0x,y 7→ (3 · τ)⊗ (x ⊗ y), x(e11− e22)∧ ye11 7→ (1 · τ)⊗ (x ⊗ y),

xe21 ∧ ye12 7→ (1 · τ)⊗ (x ⊗ y),

xe12 ∧ ye21 7→ (1 · τ)⊗ (x ⊗ y),

where S2 = {id, τ }. Therefore, using Proposition 4.2.3, we have

(x(e11− e22)∧ ye11)
(1)
= (xe21 ∧ ye12)

(1)
= (xe12 ∧ ye21)

(1)
=

1
30x,y .

Since d(γ̃a,b)= ε
a+b(e11− e22)∧ εe11− ε

be21∧ ε
a+1e12− ε

ae12∧ ε
b+1e21, we

have
d(γ̃a,b)

(1)
=

1
3(0εa+b,ε −0εb,εa+1 −0εa,εb+1). (4.2.4)
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4.2.3. Fixing a choice for T ′′. We need to fix a choice for the restriction of T ′′ to
C∗(gl2(k[ε]2n−1),Q). So, recalling the last part of the proof of Lemma 4.2.1, we
need to fix the map from C∗(GL2(k[ε]2n−1),Q)→ D̃ → D → γk[ε]2n−1(2)Q, in
degree 2.

Fixing v1, v2, v3 any three vectors in k[ε]⊕2
2n−1 in general position, we define a

map that sends (g1, g2, g3) ∈ C2(GL2(k[ε]2n−1),Q) to

(w, g1v1, g2v2, g3v3)− (w, g1v1, g2v2, g2v3)

− (w, g1v1, g1v2, g3v3)+ (w, g1v1, g1v2, g2v3)

in C̃4(k[ε]⊕3
2n−1)= C̃4(3)⊆ C̃4(3)⊕ C̃3(3), where we view

k[ε]⊕2
2n−1 = {(a1, a2, a3) ∈ k[ε]⊕3

2n−1 | a3 = 0},

and we let w= (0, 0, 1). It is seen without difficulty that this map can be extended
to a map of complexes C∗(GL2(k[ε]2n−1),Q)→ D̃.

Composing with the remaining map given in (3.8.2) this gives a map that sends
(g1, g2, g3) to

β((g1v1, g2v2, g3v3)−(g1v1, g2v2, g2v3)−(g1v1, g1v2, g3v3)+(g1v1, g1v2, g2v3))

in
∧2V2n−1, where β is the map in (3.8.3). From now on we fix v1 := (1, 1),

v2 := (0, 1) and v3 := (1, 0) and denote the resulting map by T ′′.

4.2.4. Computing li2,(2n−1,n),w(T ′′(0ε p,εq )). From (4.2.2) and (4.2.4) we realize
that we need to compute li2,(2n−1,n),w(T ′′(0ε p,εq )) for p+ q =w. We will do this
in a few steps.

Lemma 4.2.4. For i = 1, 2 and p+ q = w, with p, q ≥ 1, we have

li2,(2n−1,n),w(T ′′(ε pei i ∧ ε
qei i ))= 0.

Proof. The element ε pei i ∧ ε
qei i maps to

ε pei i ⊗ ε
qei i − ε

qei i ⊗ ε
pei i ∈ C2(U(gl2(k[ε]2n−1)),Q).

Since εx ei i = log(1− (1− exp(εx ei i ))) = −
∑

1≤k(1− exp(εx ei i ))
k/k for x ≥ 1,

we see that ε pei i ⊗ ε
qei i is a Q-linear combination of terms of the form

exp(εsei i )
u
⊗ exp(εt ei i )

v.

Let g1 := exp(εsei i )
u and g2 := exp(εt ei i )

v. Then g1 ⊗ g2 maps to (1, g1, g1g2),
which maps to

(v1, g1v2, g1g2v3)− (v1, g1v2, g1v3)− (v1, v2, g1g2v3)+ (v1, v2, g1v3). (4.2.5)

Since, depending on i , g1(v2)= v2 or g1(v3)= g1g2(v3)= v3, we see that the last
expression is 0. �



26 Sinan Ünver

Lemma 4.2.5. The value of li2,(2n−1,n),w on the image of the element ε pei j ⊗ε
qekl

in
∧2V2n−1, under the chain map that we fixed in Section 4.2.3, is 0 if p+ q 6= w

and p, q ≥ 1.

Proof. By Proposition 2.1.2 to compute the value of li2,(2n−1,n),w on the image of
ε pei j ⊗ ε

qekl in
∧2V2n−1, we first need to project that image to Sk(2n− 1, n)〈w〉.

But for λ ∈ Q, replacing ε with λε multiplies ε pei j ⊗ ε
qekl by λp+q , whereas the

projection of its image to Sk(2n − 1, n)〈w〉 gets multiplied by λw. Therefore this
projection is 0. Hence the statement in the lemma. �

Lemma 4.2.6. For p+ q = w with p, q ≥ 1, we have

li2,(2n−1,n),w(T ′′(ε pe22 ∧ ε
qe11))= li2,(2n−1,n),w((1+ εq)∧ (1+ ε p)).

Proof. The expression ε pe22 ∧ ε
qe11 maps to

ε pe22⊗ ε
qe11− ε

qe11⊗ ε
pe22. (4.2.6)

Both ε pei i ⊗ ε
qe j j and exp(ε pei i )⊗ exp(εqe j j )− exp(ε pei i )⊗1−1⊗ exp(εqe j j )

have the same k×-weight w component, and therefore by Lemma 4.2.5 have the
same image. Note that terms of the form 1⊗ g and g ⊗ 1 map to 0, because of
the computation in (4.2.5). Hence the left side of the expression in the lemma is
equal to the image of exp(ε pe22)⊗ exp(εqe11)− exp(εqe11)⊗ exp(ε pe22). Since
exp(εqe11)v2=v2, using the expression (4.2.5) we see that exp(εqe11)⊗exp(ε pe22)

maps to 0. Again using (4.2.5) and the definition of β and li2,(2n−1,n),w, we see
that exp(ε pe22)⊗ exp(εqe11) maps to li2,(2n−1,n),w((1+ εq)∧ (1+ ε p)). �

Lemma 4.2.7. For p+ q = w with p, q ≥ 1, we have

li2,(2n−1,n),w(T ′′(ε pe12 ∧ ε
qe21))= li2,(2n−1,n),w((1− ε p)∧ (1− εq)).

Proof. Exactly as in the proof of Lemma 4.2.6, we see that the left side of the
expression above is equal to the image of

exp(ε pe12)⊗ exp(εqe21)− exp(εqe21)⊗ exp(ε pe12).

As exp(εqe21)(v2)= v2, we see, using (4.2.5), that exp(εqe21)⊗ exp(ε pe12) maps
to 0. Finally using (4.2.5), and the definition of β and li2,(2n−1,n),w we see that
exp(ε pe12)⊗ exp(εqe21) maps to li2,(2n−1,n),w((1− ε p)∧ (1− εq)). �

Lemma 4.2.8. For p+ q = w with p, q ≥ 1,

li2,(2n−1,n),w(T ′′(0ε p,εq ))= 3 li2,(2n−1,n),w((1− ε p)∧ (1− εq)).

Proof. This follows from Lemmas 4.2.4, 4.2.6, and 4.2.7, together with the fact,
which is immediate from the definition of li2,(2n−1,n),w, that

li2,(2n−1,n),w((1− ε p)∧ (1− εq))= li2,(2n−1,n),w((1+ ε p)∧ (1+ εq)). �
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Let [| · |] denote the greatest integer function.

Theorem 4.2.9. With the notation as in Section 4.1.2,

Li2,n(T (αw))=
{
−([| 12(2n− 1−w)|] +w− n+ 1+ 1

2χ(w)) if w 6= 2n− 1,
−

1
2(2n− 1) if w = 2n− 1.

Proof. Since Li2,n(T (αw))= Li2,n,w(T ′(βw)), using Lemma 4.2.1, (4.2.2), (4.2.4)
we see that Li2,n(T (αw))= 1

2 li2,(2n−1,n),w ◦T ′′ evaluated on∑
0≤ j<(2n−1−w)/2

(0εw−1,ε −0εw−n+ j ,εn− j −0εn−1− j ,εw−n+ j+1)

+
1
2χ(w)(0εw−1,ε − 20ε(w−1)/2,ε(w+1)/2).

Using Lemma 4.2.8 and the definition of li2,(2n−1,n),w we see that if w 6= 2n−1,
then the contribution from j = 0 is −(w− n + 1); the contribution from each of
the terms where 0< j is −1; the last term contributes − 1

2χ(w).
In the case w = 2n − 1, there is only one contribution, coming from the last

term, and this is 1
2χ(2n− 1)(−1− 2(n− 1))=− 1

2(2n− 1). �

4.3. Proof of Theorem 1.3.2. In order to prove this, by Goodwillie’s theorem
(Theorem 3.1.1), Remark 3.1.2 and Sections 4.1.1 and 4.1.2, we need only show

Li2,n,w : (k ')HC2(k[ε]n, (ε))
(1)
〈w〉→ k

is an isomorphism. We know that this map is nonzero by Theorem 4.2.9, and
replacing ε by λε has the effect of multiplication by λw, using the vector space
structures on both sides [Hesselholt 2005, Proposition 8.1]. This immediately im-
plies the theorem when k is algebraically closed. In the general case, we just need
to use Theorem 1.3.2 for k, and the equivariance of Li2,n,w with respect to Gal(k/k)
and take galois invariants on both sides.

5. The complex γk[ε]n(2)Q

5.1. To compute the kernel of δn in Theorem 1.3.1, we will need the following
proposition. Following Suslin’s notation, let Tm(A)⊆GLm(A) denote the subgroup
of diagonal matrices.

Proposition 5.1.1. The map ρ2 : H3(GL3(k[ε]n),Q)→ ker(δn) from Section 3.8
has the property that

ρ2(H3(GL2(k[ε]n),Q)= ker(δn) and H3(T3(k[ε]n),Q)⊆ ker(ρ2).
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Proof. The first statement is proved in the case of fields in [Suslin 1990, Section
2]. The same proof works for k[ε]n , if in the first line of [Suslin 1990, page 222],
we use [Guin 1989, Theorem 2.2.2] to show that

H∗(T2(k[ε]n),Q)= H∗(UT2(k[ε]n),Q),

where UT2(A) denotes upper triangular matrices in GL2(A) (this is denoted by
B2(A) in [Suslin 1990]). We note that there is a slight difference between the
construction of our map ρ2 and the corresponding map of Suslin. Namely, Suslin
uses configurations in the projective space rather than the affine space, but the
resulting maps H3(GL3(k[ε]n),Q)→ ker(δn) are the same.

The proof of [Suslin 1990, Proposition 3.1] works for k[ε]n as well, proving the
second statement. �

Proposition 5.1.2. The map T :HC2(k[ε]n, (ε))(1)→ker(δn)
◦ (see Notation 2.0.1)

defined in Proposition 3.8.9 is surjective.

Proof. Because of Proposition 5.1.1, Theorem 3.1.1 and Remark 3.1.2, it suffices
to show that the image of K3(k[ε]n)

(2)
Q

in H3(GL3(k[ε]n),Q)◦/H3(T3(k[ε]n),Q)◦,
under the composition of the maps

K3(k[ε]n)
(2)
Q
→ K3(k[ε]n)Q→ H3(GL(k[ε]n),Q)' H3(GL3(k[ε]n),Q)

→ H3(GL3(k[ε]n),Q)◦/H3(T3(k[ε]n),Q)◦,

contains that of H3(GL2(k[ε]n),Q) in H3(GL3(k[ε]n),Q)◦/H3(T3(k[ε]n),Q)◦.
Let

∧
V denote the graded symmetric algebra over a graded vector space V .

By the Milnor–Moore theorem, H∗(GL(A),Q) '
∧
((K∗(A)Q)>0) [Loday 1992,

Corollary 11.2.12]; by the stability theorem,

H3(GL3(k[ε]n),Q)= H3(GL(k[ε]n),Q)

[Guin 1989, Section 2]. Combining these, we obtain

H3(GL3(k[ε]n),Q)=
∧3K1(k[ε]n)Q⊕(K1(k[ε]n)Q⊗K2(k[ε]n)Q)⊕K3(k[ε]n)Q.

The first two components of the decomposition lie inside

H1(GL1(k[ε]n),Q)⊗ H2(GL2(k[ε]n),Q)⊆ H3(T3(k[ε]n),Q),

(by the proof of [Suslin 1990, Lemma 4.2]; [Guin 1989]). Therefore it suffices to
prove that the image of K3(k[ε]n)

(2)
Q

under the canonical projection

H3(GL3(k[ε]n),Q)→ Prim H3(GL3(k[ε]n),Q)→ (Prim H3(GL3(k[ε]n),Q))◦

contains the image of H3(GL2(k[ε]n),Q).
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By the construction of ρ1 in Sections 3.2–3.7 and Remark 3.1.2, the last trans-
lates to showing that the image im(H3(gl2(k[ε]n),Q)) of H3(gl2(k[ε]n),Q) in

(Prim H3(gl3(k[ε]n),Q))◦ = HC2(k[ε]n)◦ = HC2(k[ε]n)◦(1)⊕HC2(k[ε]n)◦(2)

is contained in HC2(k[ε]n)◦(1).
First note that αw for n + 1 ≤ w ≤ 2n − 1 form a basis for HC2(k[ε]n)◦(1)

by Theorem 4.2.9 and Section 4.1.1. By Lemmas 4.2.1 and 4.2.2 and Proposi-
tion 4.2.3 and the discussion following it, the image of αw in H3(gl3(k[ε]n))◦ is
equal to that of an element γ′w ∈ H3(gl2(k[ε]n))◦. This implies immediately that
HC2(k[ε]n)◦(1) ⊆ im(H3(gl2(k[ε]n),Q)).

On the other hand [Loday 1992, Theorems 10.3.4 and 4.6.8] and [Loday and
Quillen 1984, Remark 6.10] imply that there is a natural map

(Prim H3(gl3(k[ε]n),Q))◦/ im(H3(gl2(k[ε]n),Q))→ HC2(k[ε]n)◦(2)

which induces an automorphism of HC2(k[ε]n)◦(2) when precomposed with

HC2(k[ε]n)◦(2)→ (Prim H3(gl3(k[ε]n),Q))◦/ im(H3(gl2(k[ε]n),Q)).

These imply that im(H3(gl2(k[ε]n),Q))= HC2(k[ε]n)◦(1). �

The corollary below computes the infinitesimal part of the first cohomology of
the complex γk[ε]n (2)Q. Note that H 1(γk[ε]n (2)Q)

◦
= ker(δn)

◦.

Corollary 5.1.3. The maps

T : HC2(k[ε]n, (ε))(1)→ ker(δn)
◦ and Li2,n : ker(δn)

◦
→ k⊕n−1

are isomorphisms.

Proof. This follows from the fact that T is surjective (Proposition 5.1.2) and that
Li2,n ◦T is an isomorphism (Theorem 1.3.2). �

Proposition 5.1.4. There are natural isomorphisms

H 2(γk[ε]n (2)Q)
◦
' HC1(k[ε]n)◦ = HC1(k[ε]n))◦(1) '

⊕
1≤i≤n−1

�1
k .

Proof. Note that by the definition of Milnor K-theory [Loday 1992, 11.1.16]

H 2(γk[ε]n (2)Q)= K M
2 (k[ε]n). (5.1.1)

Since
K M

2 (k[ε]n)= K2(k[ε]n) (5.1.2)

[Guin 1989, Section 4.2], we have, by [Loday 1992, Proposition 2.1.14],

K2(k[ε]n)◦ = HC1(k[ε]n)◦ =�1
k[ε]n/(�

1
k + d(k[ε]n))'

⊕
1≤i≤n−1

�1
k .
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Finally HC1(k[ε]n)=HC1(k[ε]n)(1) follows from [loc. cit., Theorem 4.6.7]. �

5.2. Proof of Theorem 1.3.1. Over k this is the main theorem in [Suslin 1990].
However, note that there the indecomposable quotient K3(k)ind,Q of K3(k)Q ap-
pears instead of K3(k)

(2)
Q

. To see that these two groups are canonically isomorphic,
see [Lichtenbaum 1987, page 207]. Therefore we only need to compute the co-
homology of the infinitesimal part of the complex γk[ε]n (2)Q. And this is done in
Corollary 5.1.3 and (5.1.1) and (5.1.2).

6. Comparison with the additive dilogarithm of Bloch and Esnault

In this section we compare the complex γk[ε]n (2)
◦

Q
to the complex TnQ(2)(k) of

Bloch and Esnault.

6.1. The reduced complex. To make the comparison we first define a subcomplex
of γk[ε]n (2)

◦

Q
: Define γk[ε]n (2)

′

Q
to be the subcomplex of γk[ε]n (2)

◦

Q
whose degree

2 term is
k×⊗ V ◦n ⊆ (

∧2Vn)
◦

and whose degree 1 term is the inverse image δ−1
n (k×⊗V ◦n )⊆ B2(k[ε]n)◦Q. Denote

this last group by B2(k[ε]n)′Q. Then we have

γk[ε]n (2)
′

Q : B2(k[ε]n)′Q→ k×⊗ V ◦n .

We need a lemma to compute the cohomology of this reduced complex.

Lemma 6.1.1. The natural map (k×)⊗(i−1)
⊗ k[ε]×n → K M

i (k[ε]n) is a surjection.

Proof. By the definition of Milnor K-theory, it is clear that it suffices to prove the
lemma for i = 2. In this case the lemma follows from the isomorphism

K2(k[ε]n)' K2(k)⊕
�1

k[ε]n

�1
k + d(k[ε]n)

,

[Graham 1973, Theorem 3] and the observation that k×⊗ k[ε]×n surjects onto the
expression on the right, under this isomorphism. Note that K M

2 (k[ε]n)= K2(k[ε]n)
[Guin 1989]. �

Proposition 6.1.2. The inclusion γk[ε]n (2)
′

Q
→ γk[ε]n (2)

◦

Q
is a quasiisomorphism.

Proof. The only thing that needs justification is the surjectivity of the induced
map on the degree 2 cohomology groups or equivalently the surjectivity of the
composition

k×
Q
⊗Q V ◦n → (

∧2Vn)
◦
→�1

k[ε]n/(�
1
k + d(k[ε]n)),

where the last map is the one in the proof of Proposition 5.1.4. But this is exactly
Lemma 6.1.1. �
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6.2. The construction of Bloch and Esnault with higher modulus. For the rest of
the section we assume that k is algebraically closed. In [2003], Bloch and Esnault
construct the additive weight 2 complex with modulus 2; their proof goes through
to give a construction for all moduli n ≥ 2. We describe the properties of this
complex below. The proofs and the details of the construction can be found in
[Bloch and Esnault 2003, Section 2].

Following their notation, we let R be the local ring of 0 in A1
k . The localization

(away from 0) sequence for the pair (k[t], (tn)) splits into the exact sequences

K2(k[t], (tn))→ K2(R, (tn))
∂ //

⊕
x∈k× K1(k)→ K1(k[t], (tn))→ 0

and
0→ K1(R, (tn))

∂ //
⊕

x∈k× K0(k)→ K0(k[t], (tn))→ 0,

since K0(R, (tn)) = 0 and the map K1(R, (tn))→
⊕

x∈k× K0(k) is injective, as
K1(R, (tn))= 1+ (tn) and the map is given by the divisor of the function [Licht-
enbaum 1987, Appendix]. This description also gives a canonical identification

K0(k[t], (tn))= (k[t]×n )
◦.

Using the product structure on K-theory, let

Tn B2(k) := (K2(R, (tn))/ im(K1(k) · K1(R, (tn)))Q,

and let Tn H 1
M(k, 2) be the image of K2(k[t], (tn))Q in Tn B2(k). Then the above

exact sequences give the exact sequence

0→ Tn H 1
M(k, 2)→ Tn B2(k)→ k×⊗ V ◦n → K1(k[t], (tn))Q→ 0. (6.2.1)

We let TnQ(2)(k) : Tn B2(k)→ k×⊗ V ◦n denote the middle part of this sequence.
This is the exact generalization to higher moduli of the complex considered by
Bloch and Esnault [2003] (the complex described in Section 1.2).

We will try to express the cohomology groups of TnQ(2)(k) in terms of the
groups K∗(k[t]n, (t))Q.

First note that the long exact sequence for the pair (k[t], (tn)), together with the
homotopy invariance of K-theory, gives canonical isomorphisms

K∗+1(k[t]n, (t))' K∗(k[t], (tn)),

and therefore there is a surjection( K3(k[t]n, (t))
K1(k)·K2(k[t]n, (t))

)
Q
'

( K2(k[t], (t))
K1(k)·K1(k[t], (t))

)
Q
→ Tn H 1

M(k, 2). (6.2.2)

Lemma 6.2.1. There is a canonical surjection K3(k[t]n, (t))
(2)
Q
→ Tn H 1

M(k, 2).
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Proof. By [Lichtenbaum 1987, page 191],

K3(k[t]n)Q = K3(k[t]n)
(2)
Q
⊕ K M

3 (k[t]n)Q,

and by Lemma 6.1.1, the image of K1(k)⊗ K2(k[t]n) in K3(k[t]n) is K M
3 (k[t]n).

Hence that (6.2.2) is a surjection proves the lemma. �

Let

ρ : Tn B2(k)=
( K2(R, (tn))

K1(k)·K1(R, (tn))

)
Q
→

( K2(k[t]2n−1, (tn))
K1(k)·K1(k[t]2n−1, (tn))

)
Q
=: N

denote the map induced by reduction modulo (t2n−1). We will prove that ρ behaves
like an additive dilogarithm in this setting.

Proposition 6.2.2. The composition K3(k[t]n, (t))
(2)
Q
→Tn H 1

M(k, 2)→ N induced
by the inclusion

K3(k[t]n, (t))
(2)
Q
→ K3(k[t]n, (t))Q,

(6.2.2), and ρ is an isomorphism.

Proof. This map is induced by the long exact sequence of the pair (k[t]2n−1, (tn)):

· · · → K3(k[t]n, (t))→ K2(k[t]2n−1, (tn))→ K2(k[t]2n−1, (t))→ · · · .

By Goodwillie’s theorem, Remark 3.1.2 and Section 4.1.1, the map

K3(k[t]2n−1, (t))
(2)
Q
→ K3(k[t]n, (t))

(2)
Q

is equivalent to a map k⊕(2n−2)
→ k⊕(n−1), where the k×-weights in the source

range in [2n, 4n−3], whereas in the target they range in [n, 2n−1]. Therefore this
last map is zero and hence K3(k[t]n, (t))

(2)
Q
→ K2(k[t]2n−1, (tn))Q is injective.

By [Stienstra 1981, Theorem 1.11], K2(k[t]2n−1, (tn))Q' k⊕(n−1)
⊕(�1

k)
⊕(n−1),

and K1(k)⊗ K1(k[t]2n−1, (tn))→ K2(k[t]2n−1, (tn))Q has image (�1
k)
⊕(n−1). �

Corollary 6.2.3. There are canonical isomorphisms

H 1(TnQ(2)(k))' K3(k[t]n, (t))
(2)
Q
' HC2(k[t]n, (t))(1),

H 2(TnQ(2)(k))' K2(k[t]n, (t))Q ' HC1(k[t]n, (t)).

Proof. The first isomorphism is an immediate consequence of Lemma 6.2.1 and
Proposition 6.2.2, and the second is a consequence of the isomorphism

K2(k[t]n, (t))' K1(k[t], (tn)),

which follows from the long exact sequence for (k[t], (tn)) and the homotopy in-
variance of K -theory. �
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Proof of Corollary 1.4.1. First we note that the degree 2 terms of TnQ(2)(k)
and γk[ε]n (2)

′

Q
are both equal to k× ⊗ V ◦n and that the cohomology groups of

the two complexes are canonically isomorphic (Theorem 1.3.1, Proposition 6.2.2,
and Corollary 6.2.3). In both cases the projection from k× ⊗ V ◦n to the degree 2
cohomology is induced by the composition

k×⊗ V ◦n → K M
2 (k[ε]n)→�1

k[ε]n/(�
1
k + d(k[ε]n))

(see the proof of Lemma 6.1.1). Therefore the images of Tn B2(k) and of B2(k[ε]n)′Q
in k×⊗ V ◦n are the same. The exact sequence (6.2.1) and Proposition 6.2.2 give a
splitting of Tn B2(k); and Theorems 1.3.1 and 1.3.2 give a splitting of B2(k[ε]n)′Q.
This proves the corollary. �

We would like to emphasize that the isomorphism given in the statement of the
corollary uses the additive dilogarithm in both constructions and thus should not
be considered as natural.
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Nichols algebras with standard braiding
Iván Ezequiel Angiono

The class of standard braided vector spaces, introduced by Andruskiewitsch and
the author in 2007 to understand the proof of a theorem of Heckenberger, is
slightly more general than the class of braided vector spaces of Cartan type.
In the present paper, we classify standard braided vector spaces with finite-
dimensional Nichols algebra. For any such braided vector space, we give a PBW
basis, a closed formula of the dimension and a presentation by generators and
relations of the associated Nichols algebra.
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Introduction

A breakthrough in the development of the theory of Hopf algebras occurred with
the discovery of quantized enveloping algebras [Drinfel’d 1987; Jimbo 1985]. This
special class of Hopf algebras has been intensively studied by many authors and
from many points of view. In particular, finite-dimensional analogues of quantized
enveloping algebras were introduced and investigated by Lusztig [1990a; 1990b].

About ten year ago, a classification program of pointed Hopf algebras was
launched by Andruskiewitsch and Schneider [1998] (see also [Andruskiewitsch
and Schneider 2002b]). The success of this program depends on finding solutions
to several questions, among them:
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Question 1 [Andruskiewitsch 2002, Question 5.9]. Given a braided vector space
of diagonal type V , such that the entries of its matrix are roots of unity, compute
the dimension of the associated Nichols algebra B(V ). If it is finite, give a nice
presentation of B(V ).

Partial answers to this question were given in [Andruskiewitsch and Schneider
2000; Heckenberger 2006b] for the class of braided vector spaces of Cartan type.
These answers were already crucial to proving a classification theorem for finite-
dimensional Hopf algebras whose group is abelian with prime divisors of the order
great than 7 [Andruskiewitsch and Schneider 2005]. Later, a complete answer to
the first part of Question 1 was given in [Heckenberger 2006a].

The notion of a standard braided vector space, a special kind of diagonal braided
vector space, was introduced in [Andruskiewitsch and Angiono 2008], and is re-
viewed in Definition 3.5 below. This class includes properly the class of braided
vector spaces of Cartan type.

The purpose of this paper is to develop from scratch the theory of standard
braided vector spaces. Here are our main contributions:

• We give a complete classification of standard braided vector spaces with finite-
dimensional Nichols algebras. As usual, we may assume the connectedness of
the corresponding braiding. It turns out that standard braided vector spaces are
of Cartan type when the associated Cartan matrix is of type C , D, E or F , see
Proposition 3.8. For types A, B, G there are standard braided vector spaces not
of Cartan type; these are listed in Propositions 3.9, 3.10 and 3.11. Those of type
A2 and B2 appeared already in [Graña 2000]. Our classification does not rely
on [Heckenberger 2006a], but we can identify our examples in the tables of that
reference.

• We describe a concrete PBW (Poincaré–Birkhoff–Witt) basis of the Nichols
algebra of a standard braided vector space as in the previous point; this follows
from the general theory of Kharchenko [1999] together with [Heckenberger
2006b, Theorem 1]. As an application, we give closed formulas for the di-
mension of these Nichols algebras.

• We present a concrete set of defining relations of the Nichols algebras of stan-
dard braided vector spaces as in the previous points. This is an answer to the
second part of Question 1 in the standard case. We note that this seems to be
new even for Cartan type, for some values of the roots of unity appearing in the
picture. Essentially, these relations are either quantum Serre relations or powers
of root vectors; but in some cases, there are some substitutes of the quantum
Serre relations due to the smallness of the intervening root vectors. Some of
these substitutes can be recognized already in the relations in [Andruskiewitsch
and Dăscălescu 2005].



Nichols algebras with standard braiding 37

Here is the plan of this article. We start by collecting necessary tools. Namely,
we recall the definition of Lyndon words and give some properties about them, such
as the Shirshov decomposition, in Section 1A. Next, in Section 1B, we discuss
the notions of hyperletter and hyperword, following [Kharchenko 1999] (where
they are called superletter and superword); these are certain iterations of braided
commutators applied to Lyndon words. In Section 1C, a PBW basis is given for
any quotient of the tensor algebra of a diagonal braided vector space V by a Hopf
ideal using these hyperwords. This applies in particular to Nichols algebras.

In Section 2, after some technical preparations, we present a transformation of a
braided graded Hopf algebra into another, with different space of degree one. This
generalizes an analogous transformation for Nichols algebras given in [Hecken-
berger 2006b, Proposition 1]; see Section 2C.

In Section 3 we classify standard braided vector spaces with finite-dimensional
Nichols algebra. In Section 3A, we prove that if the set of PBW generators is
finite, the associated generalized Cartan matrix is of finite type. So in Section
3B we obtain all the standard braidings associated to Nichols algebras of finite
dimension.

Section 4 is devoted to PBW bases of Nichols algebras of standard braided vector
spaces with finite Cartan matrix. In Section 4A we prove that there is exactly one
PBW generator whose degree corresponds to each positive root associated to the
finite Cartan matrix. We give a set of PBW generators in Section 4B, following a
nice presentation from [Lalonde and Ram 1995]. As a consequence, we compute
the dimension in Section 4C.

The main result of this paper is the explicit presentation by generators and re-
lations of Nichols algebras of standard braided vector spaces with finite Cartan
matrix, given in Section 5. It relies on the explicit PBW basis and transformation
described in Section 2C. Section 5A states some relations for Nichols algebras of
standard braidings and proves facts about the coproduct. Sections 5B–5D contain
the explicit presentation for types Aθ , Bθ and G2, respectively. For this, we estab-
lish relations among the elements of the PBW basis, inspired in [Andruskiewitsch
and Dăscălescu 2005] and [Graña 2000]. We finally prove the presentation in the
case of Cartan type in Section 5E. To our knowledge, this is the first self-contained
exposition of Nichols algebras of braided vector spaces of Cartan type.

Notation. We fix an algebraically closed field k of characteristic 0; all vector
spaces, Hopf algebras and tensor products are considered over k.

For each N > 0, GN denotes the set of primitive N -th roots of unity in k.
Given n ∈ N and q ∈ k, q /∈

⋃
0≤ j≤n Gj , we define(n

j

)
q
=

(n)q !
(k)q ! (n− k)q !

, where (n)q ! =
n∏

j=1

(k)q , and (k)q =
k−1∑
j=0

q j .
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We define

qh(t) :=
th
− 1

t − 1
∈ k[t], h ∈ N; q∞(t) :=

1
1− t

=

∞∑
s=0

t s
∈ k[[t]].

For each θ ∈ N and each n = (n1, . . . , nθ ) ∈ Zθ , we set xn
= xn1

1 · · · x
nθ
θ ∈

k[[x±1
1 , . . . , x±1

θ ]]. For each Zθ -graded vector spaces B, we denote by HB =∑
n∈ Zθ dim Bnxn the Hilbert series associated to B.
Let C =

⊕
n∈N0

Ci+ j be a N0-graded coalgebra, with projections πn : C→ Cn .
Given i, j ≥ 0, we denote by

1i, j := (πi ⊗πj ) ◦1 : Ci+ j → Ci ⊗C j ,

the (i, j)-th component of the comultiplication.

1. PBW bases

Let A be an algebra, P, S ⊂ A and h : S 7→N∪ {∞}. Let also < be a linear order
on S. Let us denote by B(P, S, <, h) the set{

p se1
1 . . . s

et
t : t ∈ N0, s1 > · · ·> st , si ∈ S, 0< ei < h(si ), p ∈ P

}
.

If B(P, S, <, h) is a linear basis of A, then we say that (P, S, <, h) is a set
of PBW generators with height h, and that B(P, S, <, h) is a PBW basis of A.
Occasionally, we shall simply say that S is a PBW basis of A.

In this section, following [Kharchenko 1999], we describe an appropriate PBW
basis of a braided graded Hopf algebra B=

⊕
n∈N Bn such that B1∼= V , where V

is a braided vector space of diagonal type. This applies in particular, to the Nichols
algebra B(V ). In Section 1A we recall the classical construction of Lyndon words.
Let V be a vector space together with a fixed basis. Then there is a basis of the
tensor algebra T (V ) by certain words satisfying a special condition, called Lyndon
words. Each Lyndon word has a canonical decomposition as a product of a pair of
smaller Lyndon words, called the Shirshov decomposition.

We briefly recall the notions of a braided vector space (V, c) of diagonal type
and of a Nichols algebra in Section 1B. In Section 1C we recall the definition of
the hyperletter [l]c, for any Lyndon word l; this is the braided commutator of the
hyperletters corresponding to the words in the Shirshov decomposition. Hyperlet-
ters are a set of generators for a PBW basis of T (V ) and their classes form a PBW
basis of B.

1A. Lyndon words. Let θ ∈N. Let X be a set with θ elements and fix an enumer-
ation x1, . . . , xθ of X ; this induces a total order on X . Let X be the corresponding
vocabulary (the set of words with letters in X ) and consider the lexicographical
order on X.
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Definition 1.1. An element u ∈ X, u 6= 1, is called a Lyndon word if u is smaller
than any of its proper ends; that is, if u = vw, v,w ∈X−{1}, then u <w. The set
of Lyndon words is denoted by L .

We shall need the following properties of Lyndon words.

(1) Let u∈X−X . Then u is Lyndon if and only if for any representation u=u1u2,
with u1, u2 ∈ X not empty, one has u1u2 = u < u2u1.

(2) Any Lyndon word begins by its smallest letter.

(3) If u1, u2 ∈ L , u1 < u2, then u1u2 ∈ L .

The basic Theorem about Lyndon words, due to Lyndon, says that any word
u ∈ X has a unique decomposition

u = l1l2 . . . lr , (1-1)

with li ∈ L , lr ≤· · ·≤ l1, as a product of nonincreasing Lyndon words. This is called
the Lyndon decomposition of u ∈X; the li ∈ L appearing in the decomposition (1-1)
are called the Lyndon letters of u.

The lexicographical order of X turns out to be the same as the lexicographical
order in the Lyndon letters. Namely, if v = l1 . . . lr is the Lyndon decomposition
of v, then u < v if and only if

(i) the Lyndon decomposition of u is u = l1 . . . li , for some 1≤ i < r , or

(ii) the Lyndon decomposition of u is u= l1 . . . li−1ll ′i+1 . . . l
′
s , for some 1≤ i < r ,

s ∈ N and l, l ′i+1, . . . , l
′
s in L , with l < li .

Here is another useful characterization of Lyndon words.

Lemma 1.2 [Kharchenko 1999, p. 6]. Let u ∈ X− X. Then u ∈ L if and only if
there exist u1, u2 ∈ L with u1 < u2 such that u = u1u2.

Definition 1.3. Let u ∈ L − X . A decomposition u = u1u2, with u1, u2 ∈ L such
that u2 is the smallest end among those proper nonempty ends of u is called the
Shirshov decomposition of u.

Let u, v, w∈ L be such that u=vw. Then u=vw is the Shirshov decomposition
of u if and only if either v ∈ X , or else if v = v1v2 is the Shirshov decomposition
of v, then w ≤ v2.

1B. Braided vector spaces of diagonal type and Nichols algebras. A braided vec-
tor space is a pair (V, c), where V is a vector space and c∈Aut(V⊗V ) is a solution
of the braid equation

(c⊗ id)(id⊗ c)(c⊗ id)= (id⊗ c)(c⊗ id)(id⊗ c).
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We extend the braiding to c : T (V )⊗T (V )→ T (V )⊗T (V ) in the usual way. If
x, y ∈ T (V ), the braided commutator is

[x, y]c :=multiplication ◦ (id− c) (x⊗ y) . (1-2)

Assume that dim V <∞ and pick a basis X = {x1, . . . , xθ } of V ; we may then
identify kX with T (V ). We consider the following gradings of the algebra T (V ):

(i) The usual N0-grading T (V )=
⊕

n≥0 T n(V ). If ` denotes the length of a word
in X, then T n(V )=

⊕
x∈X, `(x)=n kx .

(ii) Let e1, . . . , eθ be the canonical basis of Zθ . Then T (V ) is also Zθ -graded,
where the degree is determined by deg xi = ei , 1≤ i ≤ θ .

A braided vector space (V, c) is of diagonal type with respect to the basis
x1, . . . xθ if there exist qi j ∈ k× such that c(xi⊗x j )= qi j x j⊗xi , 1≤ i, j ≤ θ . Let
χ : Zθ ×Zθ→ k× be the bilinear form determined by χ(ei , ej )= qi j , 1≤ i, j ≤ θ .
Then

c(u⊗v)= χ(deg u, deg v)v⊗u (1-3)

for any u, v ∈X, where qu,v = χ(deg u, deg v)∈ k×. In this case, the braided com-
mutator satisfies a “braided” Jacobi identity as well as braided derivation properties,
namely[

[u, v]c , w
]

c =
[
u, [v,w]c

]
c−χ(α, β)v [u, w]c+χ(β, γ ) [u, w]c v, (1-4)

[u, v w]c = [u, v]cw+χ(α, β)v [u, w]c, (1-5)

[u v,w]c = χ(β, γ )[u, w]c v+ u [v,w]c, (1-6)

for any homogeneous u, v, w ∈ T (V ), of degrees α, β, γ ∈ Nθ , respectively.

We denote by H
HYD the category of Yetter–Drinfeld module over H , where H

is a Hopf algebra with bijective antipode. Any V ∈ H
HYD becomes a braided

vector space [Montgomery 1993]. If H is the group algebra of a finite abelian
group, then any V ∈ H

HYD is a braided vector space of diagonal type. Indeed,
V =

⊕
g∈0,χ∈0̂ V χ

g , where V χ
g = V χ

∩ Vg with Vg = {v ∈ V | δ(v) = g ⊗ v}
and V χ

= {v ∈ V | g · v = χ(g)v for all g ∈ 0}. The braiding is given by
c(x ⊗ y)= χ(g)y⊗ x , for all x ∈ Vg, g ∈ 0, y ∈ V χ , χ ∈ 0̂.

Reciprocally, any braided vector space of diagonal type can be realized as a
Yetter–Drinfeld module over the group algebra of an abelian group.

If V ∈ H
HYD, the tensor algebra T (V ) admits a unique structure of graded

braided Hopf algebra in H
HYD such that V ⊆ P(V ). Following [Andruskiewitsch

and Schneider 2002b], we consider the class S of all the homogeneous two-sided
ideals I ⊆ T (V ) such that

• I is generated by homogeneous elements of degree ≥ 2,
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• I is a Yetter–Drinfeld submodule of T (V ), and

• I is a Hopf ideal: 1(I )⊂ I⊗T (V )+ T (V )⊗ I .

The Nichols algebra B(V ) associated to V is the quotient of T (V ) by the max-
imal element I (V ) of S.

Let (V, c) be a braided vector space of diagonal type, and assume that qi j = qj i

for all i, j . Let 0 be the free abelian group of rank θ , with basis g1, . . . , gθ , and
define the characters χ1, . . . , χθ of 0 by

χj (gi )= qi j , 1≤ i, j ≤ θ.

Consider V as a Yetter–Drinfeld module over k0 by defining xi ∈ V χi
gi .

Proposition 1.4 [Lusztig 1993, Proposition 1.2.3; Andruskiewitsch and Schneider
2002b, Proposition 2.10]. Let a1, . . . , aθ ∈ k×. There is a unique bilinear form
( | ) : T (V )× T (V )→ k such that (1|1)= 1,

(xi |x j )= δi j ai for all i, j, (1-7)

(x |yy′)= (x(1)|y)(x(2)|y′) for all x, y, y′ ∈ T (V ) (1-8)

(xx ′|y)= (x |y(1))(x ′|y(2)) for all x, x ′, y ∈ T (V ). (1-9)

This form is symmetric and also satisfies

(x |y)= 0 for all x ∈ T (V )g, y ∈ T (V )h, g, h ∈ 0, g 6= h. (1-10)

The quotient T (V )/I (V ), where

I (V ) := {x ∈ T (V ) : (x |y)= 0 for all y ∈ T (V )}

is the radical of the form, is canonically isomorphic to the Nichols algebra of V .
Thus, ( | ) induces a nondegenerate bilinear form on B(V ) denoted by the same
name. �

If (V, c) is of diagonal type, the ideal I (V ) is Zθ -homogeneous, since it is the
radical of a bilinear form in which the different Zθ -homogeneous components are
orthogonal; see [Andruskiewitsch and Schneider 2004, Proposition 2.10]. Hence
B(V ) is Zθ -graded. The following statement, that we include for later reference,
is well-known.

Lemma 1.5. Let V be a braided vector space of diagonal type, and consider its
Nichols algebra B(V ).

(a) If qi i is a root of unity of order N > 1, then x N
i = 0.

(b) If i 6= j , then (adc xi )
r (x j )= 0 if and only if

(r)qi i !

∏
0≤k≤r−1

(1− qk
ii qi j qj i )= 0.
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(c) If i 6= j and qi j qj i = qr
ii , for some r ≤ 0, then (adc xi )

1−r (x j )= 0. �

1C. PBW basis of a quotient of the tensor algebra by a Hopf ideal. Let (V, c)
be a braided vector space with a basis X = {x1, . . . , xθ }; identify T (V ) with kX.
There is an important graded endomorphism []]c of kX given by

[u]c :=


u if u = 1 or u ∈ X;[
[v]c, [w]c

]
c if u ∈ L , `(u) > 1

and u = vw is the Shirshov decomposition;
[u1]c . . . [ut ]c if u ∈ X− L with Lyndon decomposition u = u1 . . . ut .

Now assume that (V, c) is of diagonal type with respect to the basis x1, . . . , xθ ,
with matrix (qi j ).

Definition 1.6. The hyperletter corresponding to l ∈ L is the element [l]c. A
hyperword is a word in hyperletters, and a monotone hyperword is a hyperword of
the form W = [u1]

k1
c . . . [um]

km
c , where u1 > · · ·> um .

Remark 1.7. If u ∈ L , then [u]c is a homogeneous polynomial with coefficients
in Z

[
qi j
]

and [u]c ∈ u+ kX
`(u)
>u .

The hyperletters inherit the order from the Lyndon words; this induces in turn an
ordering in the hyperwords (the lexicographical order on the hyperletters). Now,
given monotone hyperwords W, V , it can be shown that

W = [w1]c . . . [wm]c > V = [v1]c . . . [vt ]c,

where w1 ≥ · · · ≥ wr , v1 ≥ · · · ≥ vs , if and only if

w = w1 . . . wm > v = v1 . . . vt .

Furthermore, the principal word of the polynomial W , when decomposed as sum
of monomials, is w with coefficient 1.

Theorem 1.8 [Rosso 1999]. Let m, n ∈ L , with m< n. Then the braided commuta-
tor [[m]c, [n]c]c is a Z[qi j ]-linear combination of monotone hyperwords [l1]c, . . . ,

[lr ]c, li ∈ L , such that

• the hyperletters of those hyperwords satisfy n > li ≥ mn,

• [mn]c appears in the expansion with a nonzero coefficient, and

• any hyperword appearing in this decomposition satisfies

deg(l1 . . . lr )= deg(mn). �

A crucial result of Rosso describes the behavior of the coproduct of T (V ) in the
basis of hyperwords.
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Lemma 1.9 [Rosso 1999]. Let u ∈ X, and u = u1 . . . urv
m, v, ui ∈ L , v < ur ≤

· · · ≤ u1 the Lyndon decomposition of u. Then

1([u]c)= 1⊗[u]c+
m∑

i=0

(
m
i

)
qv,v

[u1]c . . . [ur ]c[v]
i
c⊗[v]

m−i
c

+

∑
l1≥···≥lp>v, li∈L

0≤ j≤m

x ( j)
l1,...,lp

⊗[l1]c . . . [lp]c[v]
j
c ,

where each x ( j)
l1,...,lp

is Zθ -homogeneous and

deg(x ( j)
l1,...,lp

)+ deg(l1 . . . lpv
j )= deg(u). �

As in [Ufer 2004], we consider another order in X; it is implicit in [Kharchenko
1999].

Definition 1.10. Let u, v ∈ X. We say that u � v if and only if either `(u) < `(v),
or else `(u)= `(v) and u>v (lexicographical order). This� is a total order, called
the deg-lex order.

Note that the empty word 1 is the maximal element for �. Also, this order is
invariant by right and left multiplication.

Let now I be a proper ideal of T (V ), and set R = T (V )/I . Let π : T (V )→ R
be the canonical projection. Consider the subset of X given by

G I := {u ∈ X : u /∈ kX�u + I } .

(a) If u ∈ G I and u = vw, then v,w ∈ G I .

(b) Any word u ∈ G I factorizes uniquely as a nonincreasing product of Lyndon
words in G I .

Proposition 1.11 ([Kharchenko 1999]; see also [Rosso 1999]). The set π(G I ) is a
basis of R. �

In what follows, I is a Hopf ideal. We seek to find a PBW basis by hyperwords
of the quotient R of T (V ). For this, we look at the set

SI := G I ∩ L . (1-11)

We then define the function h I : SI → {2, 3, . . . } ∪ {∞} by

h I (u) :=min
{
t ∈ N : ut

∈ kX�ut + I
}
. (1-12)

The next result plays a fundamental role in this paper.
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Theorem 1.12 [Kharchenko 1999]. Keep the notation above. Then

B ′I := B ({1+ I } , [SI ]c+ I, <, h I )

is a PBW basis of H = T (V )/I . �

The next three results are consequences of Theorem 1.12; see [Kharchenko
1999] for their proofs.

Corollary 1.13. A word u belongs to G I if and only if the corresponding hyperlet-
ter [u]c is not a linear combination, modulo I , of hyperwords [w]c, w � u, where
all the hyperwords have their hyperletters in SI . �

Proposition 1.14. In the conditions of the Theorem 1.12, if v ∈ SI is such that
h I (v) <∞, then qv,v is a root of unity. In this case, if t is the order of qv,v, then
h I (v)= t . �

Corollary 1.15. If h I (v) := h <∞, then [v]h is a linear combination of hyper-
words [w]c, w � vh . �

2. Transformations of braided graded Hopf algebras

In Section 2C, we shall introduce a transformation over certain graded braided Hopf
algebras, generalizing [Heckenberger 2006b, Proposition 1]. It is an instrumental
step in the proof of Theorem 5.25, one of the main results of this article.

2A. Preliminaries on braided graded Hopf algebras. Let H be the group algebra
of an abelian group 0. Let V ∈ H

HYD with a basis X = {x1, . . . , xθ } such that
xi ∈ V χi

gi , 1≤ i ≤ θ . Let qi j = χj (gi ), so that c(xi⊗x j )= qi j x j⊗xi , 1≤ i, j ≤ θ .

We fix an ideal I in the class S; we assume that I is Zθ -homogeneous. Let
B := T (V )/I : this is a braided graded Hopf algebra, B0

= k1 and B1
= V . By

definition of I (V ), there exists a canonical epimorphism of braided graded Hopf
algebras π :B→B(V ). Let σi :B→B be the algebra automorphism given by
the action of gi .

For the proof of the next result, see [Andruskiewitsch and Schneider 2002b,
2.8], for example.

Proposition 2.1. (1) For each 1 ≤ i ≤ θ , there exists a uniquely determined
(id, σi )-derivation Di :B→B with Di (x j )= δi, j for all j .

(2) I = I (V ) if and only if
⋂θ

i=1 ker Di = k1. �

These operators are defined for each x ∈Bk , k ≥ 1 by the formula

1n−1,1(x)=
θ∑

i=1

Di (x)⊗xi .
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Analogously, we can define operators Fi :B→B by Fi (1)= 0 and

11,n−1(x)=
θ∑

i=1

xi⊗Fi (x) for all x ∈
⊕
k>0

Bk .

Let χ be as in Section 1B. Consider the action F of kZθ on B given by

ei F b = χ(u, ei )b, b homogeneous of degree u ∈ Zθ . (2-1)

Such operators Fi satisfy Fi (x j )= δi, j for all j , and

Fi (b1b2)= Fi (b1)b2+ (ei F b1)Fi (b2), b1, b2 ∈B.

Let z(i j)
r := (adc xi )

r (x j ), i, j ∈ {1, . . . , θ} , i 6= j and r ∈ N0.

Remark 2.2. The operators Di , Fi satisfy

Di (xn
i )= (n)qi i x

n−1
i , (2-2)

Di
(
(adc xi )

r (x j1 . . . x js )
)
= 0 for r, s ≥ 0, jk 6= i, (2-3)

Dj (z(i j)
r )=

r−1∏
k=0
(1− qk

ii qi j qj i )xr
i for r ≥ 0, (2-4)

Fi (z(i j)
m )= (m)qi i (1− qm−1

i i qi j qj i )z
(i j)
m−1, (2-5)

Fj (z(i j)
m )= 0, m ≥ 1. (2-6)

The proof of the first three identities is as in [Andruskiewitsch and Schneider 2004,
Lemma 3.7]; the proof of the last two is by induction on m.

For each pair 1≤ i, j ≤ θ, i 6= j , we define

Mi, j (B) :=
{
(adc xi )

m(x j ) : m ∈ N
}
; (2-7)

mi j :=min
{
m ∈ N0 : (m+ 1)qi i (1− qm

ii qi j qj i )= 0
}
. (2-8)

Then either qmi j
i i qi j qj i = 1, or qmi j+1

i i = 1, if qm
ii qi j qj i 6= 1 for all m= 0, 1, . . . ,mi j ,

or such mi j does not exist, in which case we consider mi j =∞.

If B=B(V ), we write simply Mi, j=Mi, j (B(V )). Note that (adc xi )
mi j+1x j=0

and (adc xi )
mi j x j 6= 0, by Lemma 1.5, so∣∣Mi, j

∣∣= mi j + 1.

By Theorem 1.12, the braided graded Hopf algebra B has a PBW basis con-
sisting of homogeneous elements (with respect to the Zθ -grading). As in [Hecken-
berger 2006b], we can even assume that

~ The height of a PBW generator [u] , deg(u) = d , is finite if and only if 2 ≤
ord(qu,u) <∞, and in such case, h I (V )(u)= ord(qu,u).
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This is possible because if the height of [u], deg(u) = d , is finite, then 2 ≤
ord(qu,u) = m < ∞, by Proposition 1.14. And if 2 ≤ ord(qu,u) = m < ∞, but
h I (V )(u) is infinite, we can add [u]m to the PBW basis: in this case, h I (V )(u) =
ord(qu,u), and qum ,um = qm2

u,u = 1.
Let 1+(B) ⊆ Nn be the set of degrees of the generators of the PBW ba-

sis, counted with their multiplicities and let also 1(B) = 1+(B) ∪
(
−1+(B)

)
:

1+(B) is independent of the choice of the PBW basis with the property ~ (see
[Andruskiewitsch and Angiono 2008, Lemma 2.18] for a proof of this statement).

In what follows, we write

qα := χ(α, α), Nα := ord qα, α ∈1+(B).

2B. Auxiliary results. Let I be Zθ -homogeneous ideal in S and B= T (V )/I as
in Section 2A. We shall use repeatedly the following fact.

In what follows, we use the convention ord 1= 1.

Remark 2.3. If x N
i = 0 in B with N minimal (this is called the order of nilpotency

of xi ), then qi i is a root of 1 of order N . Hence (adc xi )
N x j = 0.

The following result extends (18) in the proof of [Heckenberger 2006b, Propo-
sition 1].

Lemma 2.4. For i∈{1, . . . , θ}, let Ki be the subalgebra generated by
⋃

j 6=i Mi, j (B)

and denote by ni the order of qi i . Then there are isomorphisms of graded vector
spaces

• ker(Di )∼= Ki ⊗ k
[
xni

i

]
, if 1< ord qi i <∞ but xi is not nilpotent, or

• ker(Di )∼= Ki , if ord qi i is the order of nilpotency of xi or qi i = 1.

Moreover,
B∼= Ki ⊗ k[xi ]. (2-9)

Proof. We assume for simplicity i = 1 and consider the PBW basis obtained in the
Theorem 1.12. Now x1 ∈ SI , and it is the least element of SI , so each element of
B ′I is of the form [u1]

s1 . . . [uk]
sk x s

1, with uk < · · · < u1, ui ∈ SI \ {x1} , 0 < si <

h I (ui ), 0≤ s < h I (x1). Call S′ = SI \ {x1}, and

B2 := B
(
1+ I, [S′]c+ I, <, h I |S′

)
,

that is, the PBW set generated by [S′]c + I , whose height is the restriction of the
height of the PBW basis corresponding to S′. We have

B∼= kB2⊗ k [x1] .

By (2-3), any (adc x1)
r (x j ) ∈ ker(D1); as D1 is a skew-derivation, we have

K1 ⊆ ker(D1).
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Also, adc x1 is a (σ1, id)-derivation of B. This derivation restricts to an endo-
morphism of the algebra K1, because if we apply adc x1 to the generators of K1,
we obtain another generators (or 0).

We shall prove by induction on the length of u that [u]c∈K1 for each u∈ L\{x1}.
If u = x j , j > 1, then [u]c = x j ∈ K1. Now let u ∈ L \ {x1} be of length greater
than 1, and (v,w) its Lyndon decomposition. Then:

• If v 6= x1, then [v]c, [w]c ∈ K1 by induction hypothesis, so

[u]c = [v]c[w]c−χ(deg v, degw)[w]c[v]c ∈ K1,

because K1 is a subalgebra.

• If v = x1, then [u]c = adc x1([w]c) ⊂ adc x1(K1) ⊆ K1, because by induction
hypothesis [w]c ∈ K1.

Then we prove that [L]c \ {x1} ⊆K1, and B2 is generated by [L]c \ {x1}; that is,
kB2 ⊆ K1, and D1(B2)= 0.

If u ∈ ker(D1), we can write [u]c =
∑

w∈B ′I
αw[w]c. If w does not end with x1,

then w ∈ B2, and D1([w]c) = 0. But if w = uwx tw
1 , [uw]c ∈ B2, 0 < tw < h I (x1),

we have
D1 ([w]c)= (tw)q−1

11
[uw]cx tw−1

1 ,

where (tw)q−1
11
6= 0 if ni does not divide tw. Then

0= D1([u]c)=
∑

w∈B ′I /tw>0

αw(tw)q−1
11
[uw]cx tw−1

1 ,

But [uw]cx tw−1
1 ∈ B2, and B2 is a basis, so αw = 0 for each w such that ni does

not divide tw. Then ker(D1) = K1k[x
ni
i ], so ker(D1) ' K1 ⊗ k[xni

i ] as k-vector
spaces. This fact and the first part conclude the proof. �

2C. Transformations of certain braided graded Hopf algebras. Let I be Zθ -
homogeneous ideal in S and B = T (V )/I as in the previous subsections. We
fix i ∈ {1, . . . , θ}.

Remark 2.5. ord qi i =min{k ∈ N : Fk
i = 0}, if qi i 6= 1.

Proof. If k ∈ N, then Fi (xk
i )= (k)qi i x

k−1
i , and for all k ∈ N,

Fk
i (x

k
i )= (k)q−1

i i
!.

That is, if Fk
i = 0, then (k)q−1

i i
! = 0. Hence ord qi i ≤ min{k ∈ N : Fk

i = 0}.

Reciprocally, if qi i is a root of unity of order k, then Fk
i (x

t
i )= 0 for all t ≥ k by the

previous claim, and Fk
i (x

t
i )= 0 for all t < k by degree arguments. Since Fi (x j )= 0

for j 6= i , Fk
i = 0. �
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We now extend some considerations in [Heckenberger 2006b, p. 180]. We con-
sider the Hopf algebra defined by

Hi :=


k〈y, ei , e−1

i |ei y− q−1
i i yei , yNi 〉 where Ni is the order of nilpotency

of xi in B, if xi is nilpotent,
k〈y, ei , e−1

i |ei y− q−1
i i yei 〉 if xi is not nilpotent,

together with 1(ei )= ei ⊗ ei , 1(y)= ei ⊗ y+ y⊗ 1.
Notice that 1 is well-defined by Remark 2.3. We also consider the action F of

Hi on B given by

ei F b = χ(u, ei )b, y F b = Fi (b),

if b is homogeneous of degree u∈Nθ , extending the previous one defined in (2-1).
The action is well-defined by Remark 2.3 and because

(ei y) F b = ei F (Fi (b))= q−1
i i Fi (ei F b)= (q−1

i i yei ) F b for b ∈B.

It is easy to see that B is an Hi -module algebra; hence we can form

Ai :=B# Hi .

Also, if we denote explicitly by · the multiplication in Ai , we have

(1#y) · (b#1)= (ei F b#1) · (1#y)+ Fi (b)#1 for all b ∈B. (2-10)

As in [Heckenberger 2006b], Ai is a left Yetter–Drinfeld module over k0, where
the action and the coaction are given by

gk ·x j #1= qk j x j #1, gk ·1#y = q−1
ki 1#y, gk ·1#ei = 1#ei ,

δ(x j #1)= gj⊗x j #1, δ(1#y)= g−1
i ⊗1#y, δ(1#ei )= 1⊗1#ei ,

for each pair k, j ∈ {1, . . . , θ}. Also, Ai is a k0-module algebra.

We now prove a generalization of [Heckenberger 2006b, Proposition 1] in the
more general context of our braided Hopf algebras B. Although the general strat-
egy of the proof is similar as in loc. cit., many points need slightly different
argumentations here.

Theorem 2.6. Keep the notation above. Assume that Mi, j (B) is finite and∣∣Mi, j (B)
∣∣= mi j + 1, j ∈ {1, . . . , θ} , j 6= i. (2-11)

(1) Let Vi be the vector subspace of Ai generated by{
(adc xi )

mi j (x j )#1 : j 6= i
}
∪ {1#y} .
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The subalgebra si (B) of Ai generated by Vi is a graded algebra such that
si (B)

1 ∼= Vi . There exist skew derivations Yi : si (B)→ si (B) such that, for
all b1, b2 ∈ si (B), and l, j ∈ {1, . . . , θ} , j 6= i ,

Yj (b1b2)= b1Yj (b2)+ Yj (b2)
(
g−mi j

i g−1
j · b2

)
, (2-12)

Yi (b1b2)= b1Yi (b2)+ Yi (b1)
(
g−1

i · b1
)
, (2-13)

Yl((adc xi )
mi j (x j )#1)= δl j , Yl(1#y)= δli . (2-14)

(2) Set Ni := {n ∈ N : nei ∈1(B)} (by the previous remarks, Ni = {1} or Ni =

{1, hi }). The Hilbert series of si (B) satisfies

Hsi (B) =

( ∏
α∈1+(B)\Ni ei

qhα (X
si (α))

)( ∏
s∈Ni

qhsei
(x s

i )

)
. (2-15)

Therefore, if si (B) is a graded braided Hopf algebra,

1+(si (B))=
{
si
(
1+ (B)

)
\−Ni ei

}
∪ Ni ei .

(3) If B=B(V ), the algebra si (B) is isomorphic to the Nichols algebra B(Vi ).

Proof. (i) Note that Vi is a Yetter–Drinfeld submodule over k0 of Ai . Now,
Ai ∼= B ⊗ Hi as graded vector spaces. Let Ki be the subalgebra generated by⋃

j 6=i Mi, j (B), as in Lemma 2.4. Then si (B) ⊆ Ki ⊗ k[y], since Fi is a skew-
derivation and Fi

(
z(i j)

k

)
= (k)qi i (1− qk−1

i i qi j qj i )z
(i j)
k−1, by (2-5). From (2-10),

(1#y) ·
(
z(i j)

mi j
#1
)
=
(
z(i j)

mi j
#1
)
· (1#y)+ Fi

(
z(i j)

mi j

)
#1.

Also, since mi j+1=
∣∣Mi, j (B)

∣∣, we have (mi j )qi i (1−qmi j−1
i i qi j qj i ) 6=0, so z(i j)

mi j−1#1
lies in si (B), and by induction each z(i j)

k #1, for k = 0, . . . ,mi j − 1, is an element
of si (B). Then Ki ⊗ k[y] ⊆ si (B), and therefore

si (B)= Ki ⊗ k[y]. (2-16)

Thus, si (B) is a graded algebra in k0
k0YD with si (B)

1
= Vi . We have to find the

skew derivations Yl ∈ End(si (B)), l = 1, . . . , θ . Set Yi := g−1
i ◦ ad(xi #1)|si (B).

Then, for each b ∈ Ki and each j 6= i ,

ad(xi #1)(b#1)= (adc xi )(b)#1,

ad(xi #1)
(
(adc xi )

mi j (x j )#1
)
= (adc xi )

mi j+1(x j )#1= 0.

Also,

Yi (1#y)= g−1
i ·

(
(xi #1) · (1#y)− (gi · (1#y)) · (xi #1)

)
= g−1

i ·
(
xi #y+ 1− qi i (q−1

i i xi #y)
)
= 1.

Thus Yi ∈ End(si (B)) satisfies (2-14).
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Therefore, ad(xi #1)(b1b2) = ad(xi #1)(b1)b2+ (gi · b1) ad(xi #1)(b2), for each
pair b1, b2 ∈ si (B), so we conclude that ad(xi #1)(si (B)) ⊆ si (B), and Yi ∈

End(si (B)) satisfies (2-13).
Before proving that Yi satisfies (2-12), we need to establish some preliminary

facts. Let us fix j 6= i , and let z(i j)
k = (adc xi )

k(x j ) as before. We define inductively

ẑ(i j)
0 := Dj , ẑ(i j)

k+1 := Di ẑ
(i j)
k − qk

ii qi j ẑ
(i j)
k+1 Di ∈ End(B).

We calculate

λi j := ẑ(i j)
mi j

(
z(i j)

mi j

)
=

mi j∑
s=0

as Dmi j−s
i Dj Ds

i
(
z(i j)

mi j

)
= (Di )

mi j (Dj )
(
z(i j)

mi j

)
= αmi j (mi j )qi i! ∈ k×,

where as = (−1)k
(m

k

)
qi i

qk(k−1)/2
i i qk

i j .
Note that (Di )

mi j+1 Dj (b)= 0 for all b ∈ Mi,k, k 6= i, j , and that

(Di )
mi j+1 Dj (z(i j)

r )= (Di )
mi j+1 (q−r

ji αr xr
i
)
= 0 for all r ≤ mi j ,

so (Di )
mi j+1 Dj (Ki ) = 0. This implies that ẑ(i j)

mi j (b) ∈ Ki , for each b ∈ Ki . Now
define Yj ∈ End(si (B)) by

Yj (b#ym) := qmmi j
i i qm

ji λ
−1
i j ẑ(i j)

mi j
(b)#ym for b ∈ Ki , m ∈ N.

We have Yj (1# y) = 0, and moreover Yj ((adc xi )
mil (xl)#1) = 0 if l 6= i, j . By the

choice of λi j , Yj ((adc xi )
mi j (x j )#1)= 1.

Now, using that Dk(gl ·b)= qkl gl ·(Dk(b)) for each b ∈B and k, l ∈ {1, . . . , θ},
we prove inductively that for b1, b2 ∈ Ki ,

ẑ(i j)
k (b1b2)= b1 ẑ(i j)

k (b2)+ ẑ(i j)
k (b1)(gk

i gj · b2).

Hence,

Yj (b1#1 · b2#1)= Yj (b1b2#1)= λ−1
i j ẑmi j (b1b2)#1

= b2#1 · Yj (b2#1)+ Yj (b1#1) ·
(
gmi j

i gj · (b2#1)
)
.

By induction on the degree we prove that Fi commutes with Di , Dj , so

ẑ(i j)
mi j
(Fi (b))= Fi

(
ẑ(i j)

mi j
(b)
)

for all b ∈B.

Consider b ∈ Ki ⊆ ker(Di ),

Yj (b#1 · 1#y)= Yj (b#y)= qmi j
i i qj i ẑ(i j)

mi j
(b)#y

= b#1 · Yj (1#y)+ Yj (b#1) ·
(
gmi j

i gj · (1#y)
)
,
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where we use that Yj (1#y)= 0. Since,

b1#1 · b2#yt
= b1#1 · b2#1 · (1#y)t ,

(2-12) is valid for products of this form. To prove it in the general case, note that

(b1#yt) · (b2#ys)= (b1#1) · (1#y)t · (b2#ys).

At this point, we have to prove (2-12) for b ∈ Ki ker(Di ), s ∈ N:

Yj (1#y · b#ys)

= Yj
(
Fi (b)#ys

+ (ei F b#y) · 1#y
)

= qmi j s
ii qs

jiλ
−1
i j ẑ(i j)

mi j
(Fi (b))#ys

+ qmi j (s+1)
i i qs+1

j i λ−1
i j · ẑ

(i j)
mi j
(ei F b)#ys+1

= Fi
(
qmi j (s+1)

i i qs+1
j i λ−1

i j ẑ(i j)
mi j
(b)
)
#ys
+ qmi j

i i qj i
(
ei F

(
qmi j s

ii qs
jiλ
−1
i j ẑ(i j)

mi j
(b)
)
#ys)

= (1#y) · Yj (b#ys)

= 1#y · Yj
(
b#ys)

+ Yj (1#y) ·
(
gmi j

i gj · b#ys),
where we use that ẑ(i j)

mi j (ei F b)= qmi j
i i qj i ei F (ẑ

(i j)
mi j (b)).

(ii) The algebra Hi is Zθ -graded, with

deg y =−ei , deg e±1
i = 0.

Since B and Hi are graded and (2-10) holds, the algebra Ai is Zθ -graded.
Consider the abstract basis {u j }j∈{1,...,θ} of Vi . With the grading deg u j = ej ,

the algebra B(Vi ) is Zθ -graded. Consider also the algebra homomorphism � :

T (Vi )→ si (B) given by

�(u j ) :=

{
(adc xi )

mi j (x j ) if j 6= i,
y if j = i.

By part (i) of the theorem, � is an epimorphism, so it induces an isomorphism
between si (B)

′
:= T (Vi )/ ker� and si (B), which we also denote by �. We have

deg�(u j )= deg
(
(adc xi )

mi j (x j )
)
= ej +mi j ei = si (deg uj ) if j 6= i,

deg�(ui )= deg(y)=−ei = si (deg ui ).

Since � is an algebra homomorphism, we have deg(�(u)) = si (deg(u)) for all
u∈ si (B)

′. Since s2
i = id, si (deg(�(u)))= deg(u) for all u∈ si (B)

′, and Hsi (B)′ =

si (Hsi (B)).
From this point on, the proof goes exactly as in [Andruskiewitsch and Angiono

2008, Theorem 3.2].
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(iii) This is Proposition 1 in [Heckenberger 2006b]. �

By Theorem 2.6, the initial braided vector space with matrix (qk j )1≤k, j≤θ is
transformed into another braided vector space of diagonal type Vi , with matrix
(q̃k j )1≤k, j≤θ , where q̃jk = qmi j mik

i i qmi j
ik qmik

j i qjk for j, k ∈ {1, . . . , θ}.
If j 6= i , then m̃i j =min

{
m ∈ N : (m+ 1)q̃i i

(
q̃m

ii q̃i j q̃j i = 0
)}
= mi j .

For later use in Section 5, we recall a result from [Andruskiewitsch et al. 2008],
adapted to diagonal braided vector spaces.

Lemma 2.7 [Andruskiewitsch et al. 2008, Lemma 2.8(ii)]. Let V be a diagonal
braided vector space and I a Zθ -homogeneous ideal of T (V ). Set B := T (V )/I
and assume that for all i ∈ {1, . . . , θ} there exist (id, σi )-derivations Di :B→B

with Di (x j )= δi, j for all j . Then I ⊆ I (V ). �

That is, the canonical surjective algebra morphisms from T (V ) onto B and
B(V ) induce a surjective algebra morphism B→B(V ).

3. Standard braidings

Heckenberger [2006a] has classified diagonal braidings whose set of PBW genera-
tors is finite. Standard braidings form an special subclass, which includes properly
braidings of Cartan type.

We first recall the definition of a standard braiding from [Andruskiewitsch and
Angiono 2008], and the notion of a Weyl groupoid, introduced in [Heckenberger
2006b]. Then we present the classification of standard braidings, and compare
them with [Heckenberger 2006a].

Like Heckenberger, we use the generalized Dynkin diagram associated to a
braided vector space of diagonal type, with matrix (qi j )1≤i, j≤θ : this is a graph
with θ vertices, each labeled with the corresponding qi i , and an edge between two
vertices i, j labeled with qi j qj i if this scalar is different from 1. So two braided
vector spaces of diagonal type have the same generalized Dynkin diagram if and
only if they are twist equivalent. We shall assume that the generalized Dynkin
diagram is connected, by [Andruskiewitsch and Schneider 2000, Lemma 4.2].

Summarizing, the main result of this section says:

Theorem 3.1. Any standard braiding is twist equivalent with one or more of

• a braiding of Cartan type,

• a braiding of type Aθ listed in Proposition 3.9,

• a braiding of type Bθ listed in Proposition 3.10, or

• a braiding of type G2 listed in Proposition 3.11.
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The generalized Dynkin diagrams appearing in Propositions 3.9 and 3.10 cor-
respond to rows 1, 2, 3, 4, 5, 6 in [Heckenberger 2006a, Table C]. The generalized
Dynkin diagrams in Proposition 3.11 are (T8) in [Heckenberger 2008, Section 3].
However, our classification does not rely on Heckenberger’s papers.

3A. The Weyl groupoid and standard braidings. Let E = (e1, . . . , eθ ) be the
canonical basis of Zθ . Consider an arbitrary matrix (qi j )1≤i, j≤θ ∈ (k

×)θ×θ , and
fix once and for all the bilinear form χ : Zθ ×Zθ → k× determined by

χ(ei , ej )= qi j , 1≤ i, j ≤ θ. (3-1)

If F = (f1, . . . , fθ ) is another ordered basis of Zθ , then we set q̃i j = χ(fi , fj ),
1≤ i, j ≤ θ . We call (q̃i j ) the braiding matrix with respect to the basis F . Fix
i ∈ {1, . . . , θ}. If 1≤ i, j ≤ θ , we consider the set

M̃i j := {m ∈ N0 : (m+ 1)q̃i i (q̃
m
ii q̃i j q̃j i − 1)= 0}.

If this set is nonempty, its minimal element is denoted m̃i j (which of course
depends on the basis F). Define also m̃i i = 2. Let si,F ∈ GL(Zθ ) be the pseudo-
reflection given by si,F (fj ) := fj + m̃i j fi , for j ∈ {1, . . . , θ}.

Let G be a group acting on a set X . We define the transformation groupoid as
G×X with the operation given by (g, x)(h, y)= (gh, y) if x = h(y), but undefined
otherwise.

Definition 3.2. Consider the set X of all ordered bases of Zθ , and the canonical
action of GL(Zθ ) over X. The Weyl groupoid W (χ) of the bilinear form χ is
the smallest subgroupoid of the transformation groupoid GL(Zθ )×X that satisfies
following properties:

• (id, E) ∈W (χ),

• if (id, F) ∈W (χ) and si,F is defined, then (si,F , F) ∈W (χ).

Let P(χ) = {F : (id, F) ∈ W (χ)} be the set of points of the groupoid W (χ).
The set

1(χ)=
⋃

F∈P(χ)

F. (3-2)

is called the generalized root system1 associated to χ .

We record for later use the following evident facts.

Remark 3.3. Take i ∈ {1, . . . , θ} such that si,E is defined. Set F = si,E(E) and let
(q̃i j ) be the braiding matrix with respect to the basis F . Assume that

1Following the traditional notation in the theory of Lie algebras, we should speak about systems
of real roots, since in the case of braidings of symmetrizable Cartan type one would get just the real
roots. But we prefer to follow the denomination in [Andruskiewitsch and Angiono 2008]
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• qi i =−1 (so mik = 0 if qikqki = 1 or mik = 1, for each k 6= i);

• there exists j 6= i such that qj j qj i qi j = 1 (that is, mi j = m j i = 1).

Then q̃j j =−1.

Proof. Simply, q̃j j = qi i qi j qj i qj j = qi i =−1. �

Remark 3.4. If the mi j satisfy qmi j
i i qi j qj i = 1 for all j 6= i , the braiding of Vi is

twist equivalent with the corresponding to V .

Define α : W (χ)→ GL(θ,Z) by α(s, F) = s if (s, F) ∈ W (χ), and denote by
W0(χ) the subgroup generated by the image of α.

Definition 3.5. [Andruskiewitsch and Angiono 2008] We say that χ is standard
if for any F ∈ P(χ), the integers mr j are defined, for all 1 ≤ r, j ≤ θ , and the
integers mr j for the bases si,F (F) coincide with those for F for all i, r, j . Clearly
it is enough to assume this for the canonical basis E .

We now assume that χ is standard. We set C := (ai j )∈Zθ×θ , where ai j =−mi j ;
this is a generalized Cartan matrix.

Proposition 3.6 [Andruskiewitsch and Angiono 2008]. W0(χ)=〈si,E : 1≤ i ≤ θ〉.
Furthermore W0(χ) acts freely and transitively on P(χ). �

Hence, W0(χ) is a Coxeter group, and W0(χ) and P(χ) have the same cardi-
nality.

Lemma 3.7 [Andruskiewitsch and Angiono 2008]. The following are equivalent:

(1) The groupoid W (χ) is finite.

(2) The set P(χ) is finite.

(3) The generalized root system 1(χ) is finite.

(4) The group W0(χ) is finite.

(5) The Cartan matrix C is symmetrizable and of finite type. �

We shall prove in Theorem 4.1, that if 1(χ) is finite, the matrix C is sym-
metrizable, hence of finite type. Thus B(V ) is of finite dimension if and only if
the Cartan matrix C is of finite type.

3B. Classification of standard braidings. We now classify standard braidings such
that the Cartan matrix is of finite type. We begin with types Cθ , Dθ , El (l= 6, 7, 8)
and F4: these standard braidings are necessarily of Cartan type.

Proposition 3.8. Let V be a braided vector space of standard type, set θ = dim V ,
and let C = (ai j )i, j∈{1,...,θ} be the corresponding Cartan matrix, of type Cθ , Dθ ,
El (l = 6, 7, 8) or F4. Then V is of Cartan type (associated to the corresponding
matrix of finite type).
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Proof. Let V be standard of type Cθ , θ ≥ 3.

◦
1

◦
2

◦
3
· · ·

◦
θ−2

◦
θ−1 ◦

θks (3-3)

Note that qθ−1,θ−1 6= −1 by Remark 3.3 and the assumption mθ−1,θ = 2. Since
mθ−1,θ−2 = 1, qθ−1,θ−1qθ−1,θ−2qθ−2,θ−1 = 1. Using Remark 3.3 when i = θ −
2, j = θ − 1, since q̃θ−1,θ−1 6= −1 when we transform by sθ−2 (since the new
braided vector space is also standard), we have qθ−2,θ−2 6= −1, so

qθ−2,θ−2qθ−2,θ−1qθ−1,θ−2 = qθ−2,θ−2qθ−2,θ−3qθ−3,θ−2 = 1,

and qθ−1,θ−1 = qθ−2,θ−2. Inductively,

qkkqk,k−1qk−1,k = qkkqk,k+1qk+1,k = q11q12q21 = 1, k = 2, . . . , θ − 1

and q11 = q22 = . . . = qθ−1,θ−1. So we look at qθθ : since mθ,θ−1 = 1, we have
qθθ =−1 or qθθqθ,θ−1qθ−1,θ = 1. If qθθ =−1, transforming by sθ , we have

q̃θ−1,θ−1 =−q−1, q̃θ−1,θ q̃θ,θ−1 = q2,

and q2
=−1 since mθ−1,θ−2 = 1. Then

qθθqθ,θ−1qθ−1,θ = 1, qθθ = q2,

and the braiding is of Cartan type in both cases.

Let V be standard of type Dθ , θ ≥ 4.
We prove the statement by induction on θ . Let V be standard of type D4, and

suppose that q22 =−1. Let (q̃i j ) the braiding matrix with respect to F = s2,E(E).
We calculate for each pair j 6= k ∈ {1, 3, 4}:

q̃jk q̃k j =
(
(−1)q2kqj2qjk

) (
(−1)q2 j qk2qk j

)
= (q2kqk2)

(
q2 j qj2

)
,

where we use that qjkqk j = 1. Since also q̃jk q̃k j = 1, we have q2kqk2 = (q2 j qj2)
−1

for j 6= k, so q2kqk2=−1, k= 1, 3, 4, since q2kqk2 6= 1. In this case, the braiding is
of Cartan type, with q =−1. Suppose then q22 6= −1. From the fact that m2 j = 1,
we have

q22q2 j qj2 = 1, j = 1, 3, 4.

For each j , applying Remark 3.3, we see that qj j 6= −1 (since q̃22 6= −1), so
qj j q2 j qj2 = 1, for j = 1, 3, 4, and the braiding is of Cartan type.

◦
1

◦
2

◦
3
· · ·

◦
θ−2 ◦

θ

◦θ−1

(3-4)
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We now suppose the statement valid for θ . Let V be a standard braided vector
space of type Dθ+1. The subspace generated by x2, . . . , xθ+1 is a standard braided
vector space associated to the matrix (qi j )i, j=2,...,θ+1, of type Dθ , so it is of Cartan
type. To finish, apply Remark 3.3 with i = 1, j = 2, to conclude that V is of Cartan
type with q = −1, or, if q22 6= −1, we have q11 6= −1 and q11q12q21 = 1, and in
this case it is of Cartan type too (because also q1kqk1 = 1 when k > 2).

Let V be standard of type E6. Note that 1, 2, 3, 4, 5 determine a braided vector
subspace, which is standard of type D5, hence of Cartan type. To prove that
q66q65q56 = 1, we use Remark 3.3 as above.

◦
1

◦
2

◦
3

◦
5

◦
6

◦4

(3-5)

If V is standard of type E7 or E8, we proceed similarly by reduction to E6 or E7,
respectively.

◦
1

◦
2

◦
3

◦
4

◦
6 ◦

7

◦5

(3-6)

◦
1

◦
2

◦
3

◦
4

◦
5 ◦

7
◦

8

◦6

(3-7)

Let V be standard of type F4. Vertices 2, 3, 4 determine a braided subspace, which
is standard of type C3, so the qi j satisfy the corresponding relations. Let (q̃i j ) the
braiding matrix with respect to F = s2,E(E). Since q̃13q̃31 = 1 and q22q23q32 = 1,
we have q22q12q21 = 1.

◦
1

◦
2 +3 ◦3

◦
4 (3-8)

Now, if we suppose q11=−1, applying Remark 3.3 we have q22=−1= q21q12,
and the corresponding vector space is of Cartan type F4, associated to q ∈ G4.
If q11 6= −1, then q11q12q21 = 1, and the space it again is of Cartan type. �

To finish the classification of standard braidings, we describe the standard braid-
ings that are not of Cartan type. They are associated to Cartan matrices of type
Aθ , Bθ or G2.
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We use a notation similar to the one in [Heckenberger 2006a] for a special
kind of braiding of type Aθ (here we emphasize the positions where qi i = −1,
which we use to compute the dimension of the corresponding Nichols algebra);
C(θ, q; i1, . . . , i j ) corresponds to the generalized Dynkin diagram

◦
1

◦
2

◦
3
· · ·

◦
θ−1 ◦

θ (3-9)

where the following equations hold:

• q = qθ−1,θqθ,θ−1q2
θθ ,

• (qθθ + 1)(qθθqθ−1,θqθ,θ−1− 1)= (q11+ 1)(q11q12q21− 1)= 0;

• −qi i = qi−1,i qi,i−1qi+1,i qi,i+1 = 1 if i ∈ {i1, . . . , i j }.

• qi i qi−1,i qi,i−1 = qi i qi+1,i qi,i+1 = 1, otherwise.

Then qi i =−1 if and only if qi−1,i qi,i−1 = (qi+1,i qi,i+1)
−1.

Proposition 3.9. Let V be a braided vector space of diagonal type. Then V is
standard of type Aθ if and only if its generalized Dynkin diagram is of the form

C(θ, q; i1, . . . , i j ). (3-10)

This braiding is of Cartan type if and only if j = 0, or j = n with q =−1.

Proof. Let V be a braided vector space of standard Aθ type. For each vertex i , with
1 < i < θ , we have qi i = −1 or qi i qi,i−1qi−1,i = qi i qi,i+1qi+1,i = 1, and similar
formulas hold for i = 1, θ . So suppose that 1< i < θ and qi i =−1. We transform
by si and obtain

q̃i−1,i+1 =−qi,i+1qi−1,i qi−1,i+1, q̃i+1,i−1 =−qi,i−1qi+1,i qi+1,i−1,

and using that mi−1,i+1 = m̃i−1,i+1 = 0, we have

qi−1,i+1qi+1,i−1 = 1, q̃i−1,i+1q̃i+1,i−1 = 1,

so we deduce that qi,i+1qi+1,i = (qi,i−1qi−1,i )
−1. Then the corresponding matrix

(qi j ) is of the form (3-10).
Now consider V of the form (3-10). Assume qi i = q±1; if we transform by

si , the braided vector space Vi is twist equivalent with V by Remark 3.4. Thus,
m̃i j = mi j .

Assume qi i =−1. We transform by si and calculate

q̃j j = (−1)m
2
i j (qi j qj i )

mi j qj j =


qj j if | j − i |> 1,
(−1)q∓1q±1

=−1 if j = i ± 1, qj j = q±1,

(−1)q±1(−1)= q±1 if j = i ± 1, qj j =−1.
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Also, q̃i j q̃j i = qi j qj i if | j − i |> 1 and q̃i j q̃j i = q−1
i j q−1

j i if | j − i | = 1; moreover

q̃k j q̃jk = (qikqki )
mi j (qi j qj i )

mik qk j qjk =

{
qk j qjk if | j − i | or |k− i |> 1,
1 if j = i − 1, k = i + 1.

Then Vi has a braiding of the above form too, and (−mi j ) corresponds to the
finite Cartan matrix of type Aθ , so it is a standard braiding of type Aθ . Thus this
is the complete family of standard braidings of type Aθ . �

Proposition 3.10. Let V a diagonal braided vector space. Then V is standard of
type Bθ if and only if its generalized Dynkin diagram is of one of these forms:

(a) e eζ q−1 q
with ζ ∈ G3, q 6= ζ (θ = 2);

(b)
�� �
C(θ−1,q2

;i1, . . . , i j ) eq−2 q
with q 6= 0,−1, 0≤ j ≤ θ − 1;

(c)
�� �
C(θ−1,−ζ−1

;i1, . . . , i j ) e−ζ ζ
with ζ ∈ G3, 0≤ j ≤ θ − 1.

This braiding is of Cartan type if and only if it is as in (b) and j = 0.

Proof. First we analyze the case θ = 2. Let V a standard braided vector space of
type B2. There are several possibilities:

• q2
11q12q21 = q22q21q12 = 1: this braiding is of Cartan type, with q = q11. Note

that q 6= −1. This braiding has the form (b) with θ = 2, j = 0.

• q2
11q12q21 = 1, q22 =−1. We transform by s2, obtaining

q̃11 =−q−1
11 , q̃12q̃21 = q−1

12 q−1
21 .

Thus q̃2
11q̃12q̃21 = 1. It has the form (b) with j = 1.

• q11 ∈ G3, q22q21q12 = 1. We transform by s1, obtaining

q̃22 = q11q12q21, q̃12q̃21 = q2
11q−1

12 q−1
21 .

So q̃22q̃21q̃12 = 1, which is the case (a).

• q11 ∈ G3, q22 =−1: we transform by s1, obtaining

q̃22 =−q2
12q2

21q11, q̃12q̃21 = q2
11q−1

12 q−1
21 .

If we transform by s2,

q̃11 =−q12q21q11, q̃12q̃21 = q−1
12 q−1

21 .

So q12q21 = ±q11, and we discard the case q12q21 = q11 because it has been
considered before. The braiding has the form (c) with j = 0, and is standard.
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Conversely, all braidings (a), (b) and (c) are standard of type B2.
Now let V be of type Bθ , with θ ≥3. The first θ−1 vertices determine a braiding

of standard type Aθ−1, and the last two determine a braiding of standard type B2;
so we have to glue the possible such braidings. The possible cases are the two
presented in Proposition 3.10, plus�� �
C(θ−2,q;i1,...,i j ) e eq−1 q q−1 ζ .

But if we transform by sθ , we obtain

q̃θ−1,θ−1 = ζq−1, q̃θ−1,θ−2q̃θ−2,θ−1 = q−1,

so 1= q̃θ−1,θ−1q̃θ−1,θ−2q̃θ−2,θ−1 and we obtain q=±ζ−1, or q̃θ−1,θ−1=−1. Then
q =−ζ−1 or q =−1, so it is of some of the above forms.

To prove that (b) and (c) are standard braidings, we use the following fact: if
mi j = 0 (that is, qi j qj i = 1) and we transform by si , then

q̃j j = qj j and q̃jk q̃jk = qjkqk j for k 6= i.

In this case, mi j = 0 if |i− j |> 1; if, on the contrary, j = i±1, we use the fact that
the subdiagram determined by these two vertices is standard of type B2 or type A2.
So this is the complete family of all twist equivalence classes of standard braidings
of type Bθ . �

Proposition 3.11. Let V a braided vector space of diagonal type. Then V is
standard of type G2 if and only if its generalized Dynkin diagram is one of the
following:

(a) e eq q−3 q3
with ord q ≥ 4;

(b) e eζ 2
ζ ζ−1

or e eζ 2
ζ 3 −1 or e eζ ζ 5 −1 with ζ ∈ G8.

This braiding is of Cartan type if and only if it is as in (a).

Proof. Let V be a standard braiding of type G2. There are four possible cases:

• q3
11q12q21 = 1, q22q21q12 = 1: this braiding is of Cartan type, as in (a), with

q = q11. If q is a root of unity, then ord q ≥ 4 because m12 = 3.

• q3
11q12q21 = 1, q22 =−1: we transform by s2, obtaining

q̃11 =−q−2
11 , q̃12q̃21 = q−1

12 q−1
21 .

If 1= q̃3
11q̃12q̃21 =−q−3

11 , then q12q21 =−1, and the braiding is of Cartan type
with q11 ∈ G6. If not, 1 = q̃4

11 = q−8
11 and ord q̃11 = 4, so ord q11 = 8. Then we

can express the braiding in the form of the third diagram in (b).
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• q11 ∈ G4, q22q21q12 = 1: we transform by s1, obtaining

q̃22 = q11q2
12q2

21, q̃12q̃21 =−q−1
12 q−1

21 .

If 1 = q̃22q̃21q̃12 = −q11q12q21, we have q3
11q12q21 = 1 because q2

11 = −1, and
this is a braiding of Cartan type. So consider now the case−1= q̃22=q11q2

12q2
21,

from which q2
22 = q−1

11 and q22 ∈ G8. Then we obtain a braiding of the form of
the first diagram in (b).

• q11 ∈ G4, q22 =−1: we transform by s2, obtaining

q̃11 =−q12q21q11, q̃12q̃21 = q−1
12 q−1

21 .

If q̃11 ∈G4, then (q12q21)
4
= 1. Moreover q12q21 6= 1 and q12q21 6= q−1

11 because
m12 = 3. So q12q21 = −1 or q12q21 = q11 = q−3

11 ; but these cases have been
considered already. There remains to analyze the case

1= q̃3
11q̃12q̃21 = q11q2

12q2
21,

which we can express in the form of the second diagram in (b), for some ζ ∈G8.

A simple calculation proves that these braidings are of standard type, so they are
all the standard braidings of type G2. �

4. Nichols algebras of standard braided vector spaces

In this section we study Nichols algebras associated to standard braidings. We
assume that the Dynkin diagram is connected, as in Section 3. In Section 4A
we prove that the set 1+(B(V )) is in bijection with 1+C , the set of positive roots
associated with the finite Cartan matrix C .

We describe an explicit set of generators in Section 4B, following [Lalonde
and Ram 1995]. We adapt their proof since they work on enveloping algebras of
simple Lie algebras. In Section 4C, we calculate the dimension of Nichols algebra
associated to a standard braided vector space, type by type.

4A. PBW bases of Nichols algebras. We start with a result analogous to [Hecken-
berger 2006b, Theorem 1], but for braidings of standard type.

Theorem 4.1. Let V be a braided vector space of standard type with Cartan matrix
C. Then the set 1(B(V )) is finite if and only if the Cartan matrix C is symmetriz-
able and of finite type.

Proof. Since we assume V of standard type, 1(B(V )) coincides with the set of
real roots corresponding to the matrix C by [Heckenberger 2006b, Proposition 1],
where we identify corresponding simple roots. Hence, if C is not symmetrizable
or not of finite type, the set of real roots is infinite by the classification of finite
Coxeter groups, and hence 1(B(V )) is infinite.
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Conversely, let C be symmetrizable and of finite type. Then the set of real roots
is finite. Take α ∈1(B(V )) and let k ∈ N, i1, . . . , ik ∈ {1, . . . , θ} be a sequence
of integers such that si1 · · · sik is a longest element in W0(χ). Since all roots are
positive or negative, there exists l ∈ {1, . . . , k} such that β = sil+1 · · · sik (α) is
positive and sil (β) is negative. But then β = αil , and α = sik · · · sil+1(αil ) is a real
root. Thus 1(B(V )) is finite. �

Corollary 4.2. Let V be a braided vector space of standard type, set θ = dim V ,
and let C= (ai j )i, j∈{1,...,θ} be the corresponding generalized Cartan matrix of finite
type.

(a) φ(1C)=1(B(V )), where as before φ : Zπ→ Zθ is the Z-linear map deter-
mined by φ(αi ) := ei .

(b) The multiplicity of each root in 1(B(V )) is one.

Proof. Statement (a) follows from the proof of Theorem 4.1.
Using this condition, since each root is of the form β =w(αi ) for some w ∈W

and i ∈ {1, . . . , θ}, we conclude by applying a certain sequence of transformations
si that this is the degree corresponding to a generator of the corresponding Nichols
algebra, so the multiplicity (which is invariant under these transformations) is 1. �

4B. Explicit generators for a PBW basis. In view of Corollary 4.2, we restrict
our attention to finding one Lyndon word for each positive root of the root system
associated with the corresponding finite Cartan matrix.

Proposition 4.3 [Lalonde and Ram 1995, Proposition 2.9]. Let l be an element of
SI . Then l is of the form l = l1 . . . lka, for some k ∈ N0, where

• li ∈ SI for each i = 1, . . . , k;

• li is a beginning of li−1 for each i > 1; and

• a is a letter.

Also, if l = uv is the Shirshov decomposition, then u, v ∈ SI . �

In what follows, we describe a set of Lyndon words for each Cartan matrix of finite
type C .

Consider α =
∑θ

j=1 ajαj ∈ 1
+ and let lα ∈ SI be such that deg lα = α. Let

lα= lβ1 . . . lβk xs be a decomposition as above, where s∈{1, . . . , θ} and deg lβj =βj .
Since each lβj is a beginning of lβj−1 , all the words begin with the same letter x ′,
which satisfies x ′ < xs because l is a Lyndon word. Therefore x ′ is the least letter
of l, so

x ′ = xi , i =min{ j : aj 6= 0} H⇒ α =

θ∑
j=i

ajαj .
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Then k ≤ ai ≤ 3, for the order given in (3-9), (3-4), (3-5), (3-6), (3-7), (3-8) (the
value ai = 3 appears only when C is of type G2).

Now, each lβj lies in SI , so βj ∈ 1
+; i.e., it corresponds to a term of the PBW

basis. Also
∑k

j=1 βj +αs = α. If k = 2, we have β1−β2 =
∑θ

j=1 bjαj and bj ≥ 0,
because β2 is a beginning of β1 (an analogous claim is valid when the matrix is of
type G2 and k = 3). With these rules we define inductively Lyndon words for a
PBW basis corresponding with a standard braiding for a fixed order on the letters.
This is done as in [Lalonde and Ram 1995], but taking care that in that reference
Serre relations are used; here we have quantum Serre relations, and some quantum
binomial coefficients may be zero.

Type Aθ : In this case, the roots are of the form

ui, j :=

j∑
k=i

αk, 1≤ i ≤ j ≤ θ.

By induction on s = j − i , we have

lui, j = xi xi+1 . . . x j .

This is because when s = 0 we have i = j , and the unique possibility is lui,i = xi .
If we remove the last letter (when j − i > 0), we must obtain a Lyndon word, so
the last letter must be x j .

Type Bθ : For convenience, we use the following vertex numbering:

◦
1 ks ◦

2
◦

3
· · ·

◦
θ−1 ◦

θ . (4-1)

The roots are of the form ui, j :=
∑ j

k=i αk , or

vi, j := 2
i∑

k=1

αk +

j∑
k=i+1

αk .

In the first case we have lui, j = xi xi+1 . . . x j , as above. In the second case, if
j = i + 1, we must have xi+1 as the last letter to obtain a decomposition in two
words x1 · · · xi ; if j > i + 1, the last letter must be x j , so we obtain

lvi, j = x1x2 . . . xi x1x2 . . . x j .

Type Cθ : The roots are of the form ui, j :=
∑ j

k=i αk , or

wi, j :=

j−1∑
k=i

αk + 2
θ−1∑
k= j

αk +αθ , i ≤ j < θ.
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As before, lui, j = xi xi+1 . . . x j . Now, if i < j , the least letter xi has degree 1, so if
we remove the last letter, we obtain a Lyndon word; that is, wi, j − xs is a root, and
then xs = x j , so

lwi, j = xi xi+1 . . . xθ−1xθ xθ−1 . . . x j .

When i= j , ai =2, so there are one or two Lyndon words βj as before. Since w−xs

is not a root, for s = i + 1, . . . , θ , and i < s, there are two Lyndon words β1 ≥ β2,
and β1+β2= 2

∑θ−1
k=i αk . The only possibility is β1=β2= xi xi+1 . . . xθ−1; that is,

lwi,i = xi xi+1 . . . xθ−1xi xi+1 . . . xθ−1xθ .

Type Dθ : the roots are of the form ui, j :=
∑ j

k=i αk, 1≤ i ≤ j ≤ θ , or

zi, j :=

j−1∑
k=i

αk + 2
θ−2∑
k= j

αk +αθ−1+αθ , i < j ≤ θ − 2,

z̄i :=

θ−2∑
k=i

αk +αθ , 1≤ i ≤ θ − 2.

As above, lui, j = xi xi+1 . . . x j if j ≤ n−1. When the roots are of type z̄i , we have
s= θ , since z̄i−xs must be a root (if xs is the last letter); thus lz̄i = xi xi+1 . . . xθ−2xθ
is the unique possibility.

Now, when α = ui,θ , the last letter is xθ−1 or xθ : if it is xθ , we have lui,θ =

xi xi+1 . . . xθ−1xθ . Since mθ−1,θ = 0, we have xθ−1xθ = qθ−1,θ xθ xθ−1, so

xi xi+1 . . . xθ−1xθ ≡ xi xi+1 . . . xθ−2xθ xθ−1 mod I,

and then xi xi+1 . . . xθ−1xθ /∈ SI . So, lui,θ = xi . . . xθ−2xθ xθ−1.
In the last case, note that if j = n − 2, the unique possibility is βt as before,

because the least letter xi has degree 1 and xs = xθ−2 (since α−αs is a root). Hence
lzi,θ−2 = xi . . . xθ−2xθ xθ−1xθ−2, and inductively,

lzi, j = xi . . . xθ−2xθ xθ−1xθ−2 . . . x j .

Type E6: Let α =
∑6

j=1 ajαj . If a6 = 0, α corresponds to the Dynkin subdiagram
of type D5 determined by 1, 2, 3, 4, 5, and we obtain lα as above. If a1 = 0 then α
corresponds to the Dynkin subdiagram of type D5 determined by 2, 3, 4, 5, 6; the
numbering is different from the one given in (3-4). Anyway, the roots are defined
in a similar way, and we obtain the same list as in [Lalonde and Ram 1995, Fig.1].
If a4 = 0, then α corresponds to the Dynkin subdiagram of type A5 determined by
1, 2, 3, 5, 6.

So we restrict our attention to the case ai 6= 0, i = 1, 2, 3, 4, 5, 6. We consider
each case in turn:
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• α=α1+α2+α3+α4+α5+α6: since a1=1, α−αs=β1 is a root, where αs is the
last letter. Then s = 2 or s = 6. In the second case, lβ1 = x1x2x3x4x5, but using
that x2x3= q23x3x2, we have x1x2x3x4x5 /∈ SI . So s= 2, and lα= x1x3x4x5x6x2.

• α = α1+ α2+ α3+ 2α4+ α5+ α6: from a1 = 1, we note that α− αs = β1 is a
root. Then s = 4, and lα = x1x3x4x5x6x2x4.

• α = α1 + α2 + 2α3 + 2α4 + α5 + α6: since a1 = 1, α − αs = β1 is a root. So
s = 3, and lα = x1x3x4x5x6x2x4x3.

• α = α1 + α2 + α3 + 2α4 + 2α5 + α6: since a1 = 1, α− αs = β1 is a root. The
only possibility is s = 5, and lα = x1x3x4x5x6x2x4x5.

• α= α1+α2+2α3+2α4+2α5+α6: as above a1 = 1, and α−αs = β1 is a root.
So s = 3, and lα = x1x3x4x5x6x2x4x5x3.

• α = α1+α2+ 2α3+ 3α4+ 2α5+α6: since a1 = 1, α−αs = β1 is a root. Then
s = 4 and lα = x1x3x4x5x6x2x4x5x3x4.

• α = α1+ 2α2+ 2α3+ 3α4+ 2α5+ α6: since a1 = 1, α− αs = β1 is a root. So
s = 2, and lα = x1x3x4x5x6x2x4x5x3x4.

Type E7: If α =
∑7

j=1 ajαj and a7 = 0, the root corresponds to the subdiagram
of type D6 determined by 1, 2, 3, 4, 5, 6, and we obtain lα as above. If a1 = 0, it
corresponds to the subdiagram of type E6 determined by 2, 3, 4, 5, 6, 7. If a5 = 0,
then α corresponds to the subdiagram of type A6 determined by 1, 2, 3, 4, 6, 7.

As above, consider each case where ai 6= 0, i = 1, 2, 3, 4, 5, 6, 7:

• α = α1+α2+α3+α4+α5+α6+α7: since a1 = 1, α−αs = β1 is a root, if αs

is the last letter. Then s = 2 or s = 7. In the second case, lβ1 = x1x2x3x4x5x6,
but from x2x3 = q23x3x2, we have x1x2x3x4x5x6x7 /∈ SI . So s = 2, and lα =
x1x3x4x5x6x7x2.

• α= α1+α2+α3+2α4+α5+α6+α7: now s = 4, 7. We discard the case s = 7
since m47 = 0; for the case s = 4 we have lα = x1x3x4x5x6x7x2x4.

• α= α1+α2+2α3+2α4+α5+α6+α7: as above, s = 3, 7, but we discard s = 7
since m37 = 0, so lα = x1x3x4x5x6x7x2x4x3.

• α = α1+α2+α3+2α4+2α5+α6+α7: now s = 5, 7, and we discard the case
s = 7 because m57 = 0, so lα = x1x3x4x5x6x7x2x4x5.

• α= α1+α2+2α3+2α4+2α5+α6+α7: now s = 3, 7, and as above we discard
the case s = 7, so lα = x1x3x4x5x6x7x2x4x5x3.

• α = α1 + α2 + 2α3 + 3α4 + 2α5 + α6 + α7: now s = 4, and therefore we have
lα = x1x3x4x5x6x7x2x4x5x3x4.

• α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 + α7: now s = 2, as above, and lα =
x1x3x4x5x6x7x2x4x5x3x4x2.
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• α = α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + α7: as above, the unique possibility is
s = 6, so lα = x1x3x4x5x6x7x2x4x5x6.

• α= α1+α2+2α3+2α4+2α5+2α6+α7: s = 3, lα = x1x3x4x5x6x7x2x4x5x6x3.

• α=α1+α2+2α3+3α4+2α5+2α6+α7: s=4, lα= x1x3x4x5x6x7x2x4x5x6x3x4.

• α = α1+ 2α2+ 2α3+ 3α4+ 2α5+ 2α6+ α7: s = 2, and in this case we obtain
lα = x1x3x4x5x6x7x2x4x5x6x3x4x2.

• α = α1 + α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7: s = 5, and in this case we obtain
lα = x1x3x4x5x6x7x2x4x5x6x3x4x5.

• α = α1 + 2α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7: as above, s = 2, and we get
lα = x1x3x4x5x6x7x2x4x5x6x3x4x5x2.

• α = α1+ 2α2+ 2α3+ 4α4+ 3α5+ 2α6+ α7: s = 4, and in this case we obtain
lα = x1x3x4x5x6x7x2x4x5x6x3x4x5x2x4.

• α = α1+ 2α2+ 3α3+ 4α4+ 3α5+ 2α6+ α7: s = 3, and in this case we obtain
lα = x1x3x4x5x6x7x2x4x5x6x3x4x5x2x4x3.

• α = 2α1+ 2α2+ 3α3+ 4α4+ 3α5+ 2α6+α7: now there are one or two words
βj . Since α−αs ∈1

+ if and only if s = 1 and x1 is not the last letter (because
it is the least letter), there are two words βj . So looking at the roots we obtain
s = 7, and lα = (x1x3x4x5x6x2x4x5x3x4x2)(x1x3x4x5x6)x7

Type E8: Consider α =
∑8

j=1 ajαj ; if a8 = 0, the root corresponds to the sub-
diagram of type D7 determined by 1, 2, 3, 4, 5, 6, 7, and we obtain lα as in that
case. If a1 = 0, it corresponds to the subdiagram of type E7 determined by
2, 3, 4, 5, 6, 7, 8. If a6 = 0, then α corresponds to a subdiagram of type A7 de-
termined by 1, 2, 3, 4, 5, 7, 8.

So, we consider the case ai 6= 0, i = 1, 2, 3, 4, 5, 6, 7, 8, and solve it case by
case in a similar way as for E7, by induction on the height.

Type F4: Now α =
∑4

j=1 ajαj . If a4 = 0, then it corresponds to the subdiagram of
type B3 determined by 1, 2, 3, so we obtain lα as before. If a1 = 0, α corresponds
to the subdiagram of type C3 determined by 2, 3, 4.

So consider the case ai 6= 0, i = 1, 2, 3, 4:

• α = α1 + α2 + α3 + α4: a1 = 1, so α − αs = β1 is a root, where αs is the last
letter. Then s = 4, and lα = x1x2x3x4.

• α = α1+α2+ 2α3+α4: a1 = 1, so α−αs = β1 is a root. Now s = 3 or s = 4.
If s = 4, then lα = x1x2x2

3 x4. But m34 = 2, so

x2
3 x4 ≡ q34(1+ q33)x3x4x3− q33q34x4x2

3 mod I,

and x1x2x2
3 x4 /∈ SI , a contradiction. So s = 3, and we have lα = x1x2x3x4x3.
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• α = α1+ 2α2+ 2α3+ α4: a1 = 1, and as above, s = 2 or s = 4: if s = 4, then
lα = x1x2x2

3 x2x4, but it is not an element of SI , because x2x4≡ q24x2x4 mod I .
Then s = 2, and lα = x1x2x3x4x3x2.

• α = α1+ 2α2+ 3α3+α4: a1 = 1, so s = 3, and we have lα = x1x2x3x4x3x2x3.

• α = α1+α2+ 2α3+ 2α4: a1 = 1, so s = 4, and lα = x1x2x3x4x3x4.

• α = α1+ 2α2+ 2α3+ 2α4: a1 = 1, so s = 2 or s = 4, but we discard the case
s = 4 since x2x4 ≡ q24x2x4 mod I . So, lα = x1x2x3x4x3x4x2.

• α = α1+ 2α2+ 3α3+ 2α4: a1 = 1, so s = 3, and lα = x1x2x3x4x3x4x2x3.

• α = α1+ 2α2+ 4α3+ 2α4: a1 = 1, so s = 3, and lα = x1x2x3x4x3x4x2x2
3 .

• α = α1+ 3α2+ 4α3+ 2α4: a1 = 1, so s = 2, and lα = x1x2x3x4x3x4x2x2
3 x2.

• α= 2α1+3α2+4α3+2α4: a1= 2, and there are one or two Lyndon words βj . If
there is only one, β1=α−αs ∈1

+. The only possibility is s=1, but it contradicts
that lα is a Lyndon word. Hence there exist β1, β2∈1

+ such that β1+β2=α−αs ,
and β2 is a beginning of β1. So s = 2 and β1 = β2 = α1+ α2+ 2α3+ α4, i.e.,
lα = x1x2x3x4x3x1x2x3x4x3x2.

Type G2: the roots are α1, α2, α1+α2, 2α1+α2, 3α1+α2, 3α1+ 2α2:

lα1 = x1, lα2 = x2, lmα1+α2 = xm
1 x2, m = 1, 2, 3.

If α= 3α1+2α2, the last letter is x2. If we suppose β1= 3α1+α2, then lα = x3
1 x2

2 ,
but

(ad x2)
2x1 = x2

2 x1− q21(1+ q22)x2x1x2+ q22q21x1x2
2 ≡ 0 mod I,

so we have

x3
1 x2

2 ≡ (q
−1
22 + 1)x2

1 x2x1x2− q−1
22 q−1

21 x2
1 x2

2 x1 mod I,

and then lα = x3
1 x2

2 /∈ SI because q−1
22 q−1

21 6= 0, so there are at least two words βj .
Analogously, if we suppose that there are three words βj , we obtain lβ1 = lβ2 =

x1 > lβ3 = x1x2 since β1 ≥ β2 ≥ β3 and β1 + β2 + β3 = 3α1 + α2; moreover
lα = x3

1 x2
2 /∈ SI . So there are two Lyndon words of degree β1 ≥ β2, and the unique

possibility is β1 = 2α1+α2, β2 = α1; that is, lα = x2
1 x2x1x2.

4C. Dimensions of Nichols algebras of standard braidings. We begin with the
standard braidings of types Cθ , Dθ , E6, E7, E8, F4, which are of Cartan type.

Proposition 4.4. Let V a braided vector space of Cartan type, with q44 ∈GN if V
is of type F4 and q11 ∈GN otherwise, in each case for some N ∈N. The dimension
of the associated Nichols algebra B(V ) is as follows:

Type Cθ : dim B(V )=
{

N θ2
for N odd,

N θ2
/2θ for N even;
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Type F4: dim B(V )=
{

N 24 for N odd,
N 24/212 for N even;

Types Dθ , E6, E7, E8: dim B(V )= N |1
+
|.

The last case corresponds to simply laced Dynkin diagrams.

Proof. If N is odd, then ord q2
=ord q=N , but if N is even, we have ord q2

=N/2.
Since the braiding is of Cartan type,

qsi (α) = χ (si (α), si (α))= χ̃(α, α)= χ(α, α)= qα.

Using this, we just have to determine how many roots there are in the orbit of each
simply root.

When V is of type Cθ , we have qi i = q , except for qθθ = q2. The roots in the
orbit of αθ by the action of the Weyl group are qwi i for 1 ≤ i < θ , and the others
are in the orbit of αj , for some j < θ . Hence there are θ roots such that qα = q2,
and qα = q for the rest.

When V is of type F4, we have q11 = q22 = q2 and q33 = q44 = q . There are
exactly 12 roots in the union of orbits corresponding to α1 and α2, and the other
12 are in the union of orbits corresponding to α3 and α4. So∣∣{α ∈1+ : qα = q}

∣∣= ∣∣{α ∈1+ : qα = q2
}
∣∣= 12.

When V is of type D or E , all the qα equal q because qi i = q , for all 1≤ i ≤ θ .
The formula for the dimension follows from Theorem 2.6(ii) and Corollary 4.2.

�

Now we treat the types Aθ , Bθ and G2.

Proposition 4.5. Let V be a standard braided vector space of type Aθ as in Propo-
sition 3.9. The associated Nichols algebra B(V ) is of finite dimension if and only
if q is a root of unity of order N ≥ 2. In this case,

dim B(V )= 2

(θ+1
2

)
−
(t

2

)
−
(θ+1−t

2

)
N

(t
2

)
+
(θ+1−t

2

)
, (4-2)

where t = θ + 1−
∑ j

k=1(−1) j−kik .

Proof. First, q is a root of unity of order N ≥ 2 because the height of each PBW
generator is finite. To calculate the dimension, recall that from Corollary 4.2, we
have to determine qα for α ∈1C . As before, ui j =

∑ j
k=i ek, i ≤ j , and we have

1(B(V ))= {ui j : 1≤ i ≤ j ≤ θ}.

If 1≤ i ≤ j ≤ θ , we define

κi j := card
{
k ∈ {i, . . . , j} : qkk =−1

}
.
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We prove by induction on j − i that

• if κi j is odd, then qui j =−1;

• if κi j is even, then qui j = q−1
j, j+1q−1

j+1, j .

Here qθ,θ+1qθ+1,θ = q−2
θθ q−1

θ,θ−1q−1
θ−1,θ .

If j − i = 0, then qui i = qi i ; in this case, κi i = 1 if qi i = −1 or κi i = 0 if
qi i = (qi,i+1qi+1,i )

−1
6= −1. Now assume this is valid for a certain j , and calculate

it for j + 1:

qui, j+1 =χ(ui j + ej+1,ui j + ej+1)= qui jχ(ui j , ej+1)χ(ej+1,ui j )qj+1, j+1

= qui j qj, j+1qj+1, j qj+1, j+1

=


qui j if qj+1, j+1 6= −1 (κi, j+1 = κi j ),

(−1)qq−1
=−1 if qj+1, j+1 =−1, κi j even,

(−1)q(−1)= q if qj+1, j+1 =−1, κi j odd.

This proves the inductive step; to calculate the dimension of B(V ) we have to
calculate the number of ui j such that

qui j = q−1
i,i+1q−1

i+1,i = q±1,

that is, card{κi j : i ≤ j, κi j even}.
We consider an 1× (θ + 1) board, numbered from 1 to θ + 1, and recursively

paint its squares white or black: square θ + 1 is white, and square i has the same
color as square i + 1 if and only if qi i 6= −1. The possible colorings of this board
are in bijective correspondence with the choices of 1 ≤ i1 < · · · < i j ≤ θ for all j
(the positions where we put a −1 in the corresponding qi i of the braiding), and the
number of white squares is

t = 1+ (θ − i j )+ (i j−1− i j−2)+ · · · = θ + 1−
j∑

k=1

(−1) j−kik

Thus card{κi j : i ≤ j, κi j even} is the number of pairs (a, b) (where a = i and
b= j + 1) such that 1≤ a < b ≤ θ + 1 and the squares in positions a and b are of
the same color; this number is

(t
2

)
+
(θ+1−t

2

)
. This yields (4-2). �

Proposition 4.6. Let V be a standard braided vector space of type Bθ as in Propo-
sition 3.10. If the braiding is as in cases (a) or (b) of that proposition, the associ-
ated Nichols algebra B(V ) has finite dimension if and only if q is a root of unity
of order N ≥ 2 in case (a), or N > 2 in case (b).

When finite, the dimension of B(V ) is as follows, where t=θ−
∑ j

k=1(−1) j−kik :
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• If the braiding is as in (a) of Proposition 3.10,

dim B(V )=


33 N 2 if 3 does not divide N ,
32 N 2 if 3 divides both N and ord(ζ−1q),
3N 2 if 3 divides N but not ord(ζ−1q).

• If the braiding is as in (b), then 0≤ j ≤ d − 1 and

dim B(V )=

{
22t (θ−t)+θkθ

2
−2tθ+2t2

if N = 2k,
2(2t+1)(θ−t)+1 N θ2

−2tθ+2t2
if N is odd.

• If the braiding is as in (c), then

dim B(V )= 2θ(θ−1)3θ
2
−2tθ+2t2

.

Proof. It is clear that q should be a root of unity if dim B(V ) is finite.
We now calculate dim B(V ). From Corollary 4.2, we have to determine the qα

for α ∈1C , and multiply their orders. As before, ui j =
∑ j

k=i ek for 1≤ i ≤ j ≤ θ
and vi j = 2

∑i
k=1 ek +

∑ j
k=i+1 ek = 2e1,i + ei+1, j for 1≤ i < j ; hence

1(B(V )) = {ui j : 1≤ i ≤ j ≤ θ} ∪ {vi j : 1≤ i < j ≤ θ}.

We calculate qui j , 1 < i ≤ j ≤ θ as above, because they correspond to a braiding
of standard Aθ−1 type. We also calculate

qvi j = χ(vi j , vi j )= χ(u1i ,u1i )
4χ(u1i ,ui+1, j )

2χ(ui+1, j ,u1i )
2qui+1, j

= q4
11q2

12q2
21

( i∏
k=2

q2
kkqk−1,kqk−1,kqk+1,kqk+1,k

)2

qui+1, j = qui+1, j ,

where we have used the equalities qi j qj i = 1 if |i − j | > 1, q4
11q2

12q2
21 = 1, and

q2
kkqk−1,kqk−1,kqk+1,kqk+1,k = 1 if 2 ≤ k ≤ θ − 1. To calculate the other qα’s, we

analyze each case:

(a) Note that qe1=ζ, qe1+e2=ζ, q2e1+e2=ζq−1, qe2=q . Setting N ′=ord(ζ−1q),
we have N ′ = 3N if 3 does not divide N ; N ′ = N if 3 divides both N and N ′; and
N ′ = N/3 if 3 divides N but not N ′ (since q = ζρ, with ρ ∈ GN ′).

(b) We have qu1k = q−1qu2k . This equals q2q−1
= q if κ2k is even, and −q−1 if

κ2k is odd; moreover q11 = q . Also, κ2k is even if and only if j ∈ {i j + 1, θ}, or
i ∈ {i j−2+ 1, i j−1}, and so on. Then, with

t = (θ − i j )+ (i j−1− i j−2)+ · · · = θ −

j∑
k=1

(−1) j−kik

as in the statement of the proposition, there are t numbers such that κi,θ−1 is even.
There are 2

((t
2

)
+
(θ−t

2

))
roots such that qα = q2, 2

((θ
2

)
−
(t

2

)
−
(θ−t

2

))
roots such
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that qα =−1, t+1 roots such that qα = q and θ−1− t roots such that qα =−q−1.
If N = 2k, then ord(−q−1)= 2k and ord(q2)= k, so

dim B(V )= 2(θ−1)θ−t (t−1)−(θ−t)(θ−t−1)kt (t−1)+(θ−t)(θ−t−1)(2k)θ

= 22t (θ−t)+θkθ
2
−2tθ+2t2

.

If N is odd, then ord(−q−1)= 2N and ord(q2)= N , so

dim B(V )= 2θ(θ−1)−t (t−1)−(θ−t)(θ−1−t)N t (t−1)+(θ−t)(θ−1−t)+t+1

(2N )θ−1−t
= 2(2t+1)(θ−t)+1 N θ2

−2tθ+2t2
.

(c) In a similar way, we have qu1i = (−ζ
2)qu2i , which equals (−ζ 2)2= ζ if κ2i is

even, and (−1)(−ζ 2)= ζ 2 if κ2i is odd; moreover q11= ζ . There are 2
((t

2

)
+
(θ−t

2

))
roots such that qα =−ζ 2, 2

((θ
2

)
−
(t

2

)
−
(θ−t

2

))
roots such that qα =−1, t+1 roots

such that qα = ζ and θ − 1− t roots such that qα = ζ 2. Since ord ζ = ord ζ 2
= 3

and ord(−ζ 2)= 6, we have

dim B(V )= 2θ(θ−1)−t (t−1)−(θ−t)(θ−1−t)6t (t−1)+(θ−t)(θ−1−t)3θ

= 2θ(θ−1)3θ
2
−2tθ+2t2

. �

Proposition 4.7. Let V be a standard braided vector space of type G2 as in Propo-
sition 3.11. If the braiding is as in case (a) of that proposition, the associated
Nichols algebra B(V ) is of finite dimension if and only if q is a root of unity of
order N ≥ 4.

When finite, the dimension of B(V ) is as follows:

• In case (a) of Proposition 3.11,

dim B(V )=
{

N 6 if 3 does not divide N ,
N 6/27 if 3 divides N .

• In case (b), dim B(V )= 212.

Proof. For (a) note that q is a root of unity because x1 has finite height, and qα = q
if α ∈ {e1, e1+ e2, 2e1+ e2}, while qα = q3 if α ∈ {e2, 3e1+ e2, 3e1+ 2e2}.

Case (b) can be checked as follows:

type qx2 qx1x2 qx3
1 x2

2
qx2

1 x2
qx3

1 x2
qx1 dim B(V )

e eζ 2
ζ ζ−1

8 4 2 8 2 4 212

e eζ 2
ζ 3 −1 2 8 2 4 8 4 212

e eζ ζ 5 −1 2 4 8 4 2 8 212

This completes the proof. �
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5. Presentation by generators and relations of Nichols algebras of standard
braided vector spaces

In this section we give presentations for the Nichols algebras of standard braided
vector spaces. We start with some technical results about relations and PBW bases
in Section 5A; also we calculate the coproduct of some hyperwords in T (V ). In
Sections 5B, 5C and 5D we express the braided commutator of two PBW generators
as a combination of elements of the PBW basis under some assumptions. Then we
obtain the desired presentation with a proof similar to the ones in [Andruskiewitsch
and Dăscălescu 2005] and [Andruskiewitsch and Schneider 2002b]. In Section 5E
we solve the problem when the braiding is of Cartan type using the transformation
in Section 2C.

For rank two, a set of (not necessarily minimal) relations is given in Theorem 4
of [Heckenberger 2007].

5A. Some general relations. Let V be a standard braided vector space with con-
nected Dynkin diagram and let C be the corresponding Cartan matrix. In what
follows we assume that C is symmetrizable and of finite type. Let x1, . . . , xθ be
an ordered basis of V and {xα : α ∈ 1+(B(V ))} a set of PBW generators as in
the previous section. Here xα ∈ B(V ) is, by abuse of notation, the image by the
canonical projection of xα ∈ T (V ), the hyperword corresponding to a Lyndon word
lα. As before, we write

qα := χ(α, α) and Nα := ord qα for α ∈1+(B(V )).

Each xα is homogeneous and has the same degree as lα. Also,

xα ∈ T (V )χαgα , (5-1)

where gα = gb1
1 . . . gbθ

θ and χα = χ
b1
1 . . . χbθ

θ if α = b1e1+ · · ·+ bθeθ .

Proposition 5.1. If the matrix of the braiding is symmetric, the PBW basis is or-
thogonal with respect to the bilinear form in Proposition 1.4.

Proof. We must prove that (u|v) = 0, where u 6= v are ordered products of PBW
generators (we also allow powers greater than the corresponding heights). We
argue by induction on k := max{`(u), `(v)}. If k = 1, then v is some x j and u is
either 1 or xi ; since (xi |x j ) = δi j for all i, j ∈ {1, . . . , θ}, the proposition holds in
this case.

Suppose the statement is valid when the length of both words is less than k, and
let u, v ∈ BI (V ) be distinct hyperwords such that one (or both) has length k. If both
are hyperletters, they have different degrees α 6= β ∈ Zθ , so u = xα, v = xβ , and
(xα|xβ)= 0, since the homogeneous components are orthogonal for ( | ).



72 Iván Ezequiel Angiono

Suppose that u= xα and v= xh1
β1
. . . xhm

βm
, for some xβ1> · · ·> xβm . If u and v have

different Zθ -degrees, they are orthogonal. Hence we assume that α=
∑m

j=1 hmβm .
By [Bourbaki 1968, VI, Proposition 19], we can reorder the βi ’s, using hi copies of
βi , in such a way that each partial sum is a root. By [Rosso 1999, Proposition 21],
the order induced by the Lyndon words lα is convex (the order on Lyndon words
used there is the same as ours). Therefore βm < α. Using Lemma 1.9 and (1-8),

(u|v)= (xα|w)(1|xβm )+ (1|w)(xαn |xβm )+
∑

l1≥···≥lp>α
li∈L

(xl1,...,lp |w)([l1]c · · · [lp]c|xβm ),

where v = wxβn . Note that (1|xβm ) = (1|w) = 0. Also, [l1]c · · · [lp]c is a linear
combination of greater hyperwords of the same degree and an element of I (V ).
From the inductive hypothesis and the fact that I (V ) is the radical of the bilinear
form, we see that ([l1]c · · · [lp]c|xβm )= 0.

Now consider
u = x j1

α1
. . . x jn

αn
with xα1 > . . . > xαn ,

v = xh1
β1
. . . xhm

βm
with xβ1 > · · ·> xβm .

Since the bilinear form is symmetric, we may as well assume that xαn ≤ xβm . Using
Lemma 1.9 and (1-8), we obtain

(u|v)= (w|1)(xαn |v)+

hm∑
i=0

(
hm

i

)
qβm

(w|xh1
β1
. . . xhm−1

βm−1
x i
βm
)(xαn |x

hm−i
βm

)

+

∑
l1≥···≥lp>l,li∈L

0≤ j≤m

(w|x ( j)
l1,...,lp

)(xαn |[l1]c . . . [lp]c
[
xβm

] j
c ),

wherew= xh1
α1
. . . xhm−1

αm
. Note that in the first summand, (w|1)=0. In the last sum,

(xαn |[l1]c . . . [lp]c[xβm ]
j
c ) vanishes, because by earlier results [l1]c . . . [lp]c[xβm ]

j
c is

a combination of hyperwords of the PBW basis greater or equal than it and an
element of I (V ), then we use induction hypothesis and the fact that I (V ) is the
radical of this bilinear form. Since xαn , xhm−i

βm
are different elements of the PBW

basis for hm − i 6= 1, we have

(u|v)= (hm)qβm
(w|xh1

β1
. . . xhm−1

βm−1
xhm−1
βm

)(xαn |xβm ).

This is clearly zero if αn 6= βm . To see that it is zero also if αn = βm , note that in
that case w and xh1

β1
. . . xhm−1

βm−1
xhm−1
βm

are different products of PBW generators, and
use the induction hypothesis. �

Corollary 5.2. If α ∈1+(B(V )), then x Nα
α = 0.
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Proof. Let (qi j ) be symmetric. If u = x j1
α1 . . . x

jn
αn , xα1 > · · ·> xαn , then

(u|u)=
n∏

i=1

( ji )qαi
! (xαi |xαi )

ji , (5-2)

where (xα|xα) 6= 0 for all α ∈1+(B(V )).
If we consider u= x Nα

α , we have (u|v)=0 for each v in the PBW basis (because v
is an ordered product of xβ’s different from u), and (u|u)= 0 since qα ∈GNα . Also,
(I (V )|x Nα

α )= 0, because it is the radical of this bilinear form, so (T (V )|x Nα
α )= 0,

and then x Nα
α ∈ I (V ). That is, we have x Nα

α = 0 in B(V ).
For the general case, recall that a diagonal braiding is twist equivalent to a braid-

ing with a symmetric matrix [Andruskiewitsch and Schneider 2002a, Theorem
4.5]. Also, there exists a linear isomorphism between the corresponding Nichols
algebras. The corresponding xα are related by a nonzero scalar, because they are
an iteration of braided commutators between the hyperwords. �

In what follows, J denotes the family of Zθ -graded (hence N-graded) ideals
of T (V ) that are generated by their components of degree > 1. For each I ∈ J,
B= T (V )/I is a Zθ -graded algebra such that B0

= k1 and B1
' V .

We shall need some technical results about graded algebras between T (V ) and
B(V ). We start with three lemmas dealing with the presence of some important
roots in1(B). Remember that a Lyndon word is a PBW generator in B= T (V )/I
if it is not a linear combination of greater words modulo I in T (V ). We shall
relate the absence of some roots in 1(B) (meaning that the Lyndon words of such
degrees are linear combinations of greater words modulo I ) with the validity of
certain relations in B.

Lemma 5.3. Let i, j ∈ {1, . . . , θ} be distinct, and consider I ∈ J, B = T (V )/I .
Let Dk , k = 1, . . . , θ , be skew derivations of B as in Proposition 2.1, and assume
that x N

i = 0 if qn
ii qi j qj i 6= 1 for all n ∈ N0 (where N = ord qi i ).

There exists m ∈N such that xm
i x j is a linear combination of greater hyperwords

(for a fixed order such that xi < x j ) modulo I if and only if , in B.

(adc xi )
mi j+1x j = 0. (5-3)

Proof. If (adc xi )
m x j = 0, there exist ak ∈ k such that

0= [xm
i x j ]c = (adc xi )

m x j = xm
i x j +

m−1∑
k=0

ak xk
i x j xm−k

i .

Conversely, suppose there exists m ∈ N such that xm
i x j is a linear combination

of greater hyperwords modulo I . Let

n =min{m ∈ N : xm
i x j is a linear combination of greater hyperwords}.
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If xn
i = 0, then qi i is a root of unity. In this case, if N is the order of qi i , then

x N
i = 0 and x N−1

i 6= 0. Also,

(adc xi )
N x j = x N

i x j +

N−1∑
s=1

(
N
s

)
qi i

+ x j x N
i = 0,

because
(N

s

)
qi i
= 0 for 0< s < N . Hence, we can assume xn

i 6= 0 and (n)qi i! 6= 0.

Note that [xn−k
i x j xk

i ]c = [x
n−k
i x j ]cxk

i . Since B is graded, xn
i x j is a linear com-

bination of terms xn−k
i x j xk

i , 0≤ k < n. Hence there exist αk ∈ k such that

[xn
i x j ]c =

n∑
k=1

αk[xn−k
i x j ]cxk

i .

Applying Di we obtain

0= Di
(
[xn

i x j ]c
)
=

n∑
k=1

αk Di
(
[xn−k

i x j ]cxk
i
)
=

n∑
k=1

αk(k)qi i [x
n−k
i x j ]cxk

i .

By the hypothesis about n, α1 = 0. Since (n)qi i! 6= 0, applying Di several times we
conclude that αk = 0 for k = 2, . . . , n. Hence [xn

i x j ]c = 0. �

Recall that (5-3) holds in B(V ), for 1≤ i 6= j ≤ θ .

The second lemma is related to Dynkin diagrams of a standard braiding which
have two consecutive simple edges.

Lemma 5.4. Let I ∈ J and B= T (V )/I . Assume that

• there exist skew derivations Dk in B as in Proposition 2.1;

• there exist different j, k, l ∈ {1, . . . , θ} such that mk j = mkl = 1, m jl = 0;

• (ad xk)
2x j = (ad xk)

2xl = (ad x j )xl = 0 hold in B;

• x2
k = 0 if qkkqk j qjk 6= 1 or qkkqklqlk 6= 1.

(1) If we order the letters x1, . . . , xθ such that x j < xk < xl , then x j xk xl xk is a
linear combination of greater words modulo I if and only if , in B,[

(ad x j )(ad xk)xl, xk
]

c = 0. (5-4)

(2) If V is standard and qkk 6= −1, then (5-4) holds in B.

(3) If V is standard and dim B(V ) <∞, then (5-4) holds in B=B(V ).

Proof. (1) (⇐) If (5-4) holds, then x j xk xl xk is a linear combination of greater
words, by Remark 1.7, and

[x j xk xl xk]c =
[
[x j xk xl]c, xk

]
c =

[
(ad x j )(ad xk)xl, xk

]
c .
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(⇒) If x j xk xl xk is a linear combination of greater words, then the hyperword[
x j xk xl xk

]
c is a linear combination of hyperwords corresponding to words greater

than x j xk xl xk (of the same degree, because B is homogeneous); this follows from
Remark 1.7. Since (ad xk)

2x j = (ad xk)
2xl = (ad x j )xl = 0, we do not consider

hyperwords with x j x2
k , x2

k xl and x j xl as factors of the corresponding words. Then
[x j xk xl xk]c is a linear combination of

[xk xl xk x j ]c = [xk xl]cxk x j , [xl xk x j xk]c = xl xk[x j xk]c,

[xk x j xk xl]c = xk[x j xk xl]c, [xl x2
k x j ]c = xl x2

k x j .

Since Dj ([x j xk xl xk]c) = Dj (xk[x j xk xl]c) = Dj (xl xk[x j xk]c) = 0, in that linear
combination there are no hyperwords ending in x j ; indeed,

Dj ([xk xl]cxk x j )= [xk xl]cxk, Dj (xl x2
k x j )= xl x2

k ,

and [xk xl]cxk , xl x2
k are linearly independent. Therefore, there exist α, β ∈ k such

that
[x j xk xl xk]c = αxl xk[x j xk]c+βxk[x j xk xl]c.

Applying Dl , we have

0=αqk j qkk xl[x j xk]c+α(1− qk j qjk)xl xk x j +βqkkqk j qkl[x j xk xl]c.

Now xl[x j xk]c, xl xk x j and [x j xk xl]c are linearly independent by Lemma 2.7, so
α = β = 0.

(2) We assume that some quantum Serre relations hold in B; using them we get

x j xk xl xk = q−1
kl (1+ qkk)

−1x j x2
k xl + qkkqk j (1+ qkk)

−1x j xl x2
k

= q−1
kk q−1

k j q−1
kl xk x j xk xl + q−1

kk q−1
k j q−1

kl (1+ qkk)
−1x2

k x j xl

+ qkkqklqjk(1+ qkk)
−1xl x j x2

k .

It follows that xk x j xk xl /∈G I for an order such that x j < xk < xl . Also, x j xl x2
k /∈G I ,

since (adc x j )xl = 0 and (5-4) is valid by part (1).

(3) If V is a standard braided vector space satisfying the conditions of the lemma,
consider Vk as the braided vector space obtained transforming by sk . Then m̃ jl = 0.
Therefore ej + el /∈ 1

+(B(Vk)), so sk(ej + el) = 2ek + ej + el /∈ 1
+(B(V )). It

follows that x j xk xl xk is a linear combination of greater words, since it is a Lyndon
word when we consider an order such that x j < xk < xl . �

We now prove two relations involving the double edge in the Dynkin diagram
of a standard braiding of type Bθ .

Lemma 5.5. Let I ∈ J and B= T (V )/I . Assume that

• there exist j 6= k ∈ {1, . . . , θ} such that mk j = 2,m jk = 1;
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• there exist skew derivations as in Proposition 2.1;

• the following relations hold in B:

( ad xk)
3x j = (ad x j )

2xk = 0; (5-5)

x3
k = x2

j = 0 if q3
kk = q2

j j = 1.

(1) If we order the letters x1, . . . , xθ such that xk < x j , then x2
k x j xk x j is a linear

combination of greater words modulo I if and only if , in B,[
(ad xk)

2x j , (ad xk)x j
]

c = 0. (5-6)

(2) If V is standard, qj j 6= −1 and q2
kkqk j qjk = 1, then (5-6) holds in B.

(3) If V is standard and dim B(V ) <∞, then (5-6) holds in B=B(V ).

Proof. (1) (⇐) If (5-6) holds in B, then x2
k x j xk x j is a linear combination of greater

words. This follows from Remark 1.7, and

[x2
k x j xk x j ]c =

[
[x2

k x j ]c, [xk x j ]c
]

c =
[
(ad xk)

2x j , (ad xk)x j
]

c .

(⇒) If x2
k x j xk x j is a linear combination of greater words, then [x2

k x j xk x j ]c is a
linear combination of hyperwords corresponding to words greater than x2

k x j xk x j

(of the same degree, because B is homogeneous).
First, there are no hyperwords whose corresponding words have factors x3

k x j or
xk x2

j , by (5-5). Since [x2
k x j xk x j ]c ∈ ker Dk and

Dk(x j [x2
k x j ]cxk)= x j [x2

k x j ]c,

Dk([xk x j ]
2
c xk)= [xk x j ]

2
c,

Dk(x j [xk x j ]cx2
k )= (1+ qkk)x j [xk x j ]cxk,

in that linear combination there are no hyperwords ending in xk , except x2
j x3

k if
qkk ∈G3. We consider qj j 6= −1 if qkk ∈G3, since otherwise x2

j x3
k = 0 by assump-

tion. Then there exist α, α′ ∈ k such that

[x2
k x j xk x j ]c = α[xk x j x2

k x j ]c+α
′x2

j x3
k = α[xk x j ]c[x2

k x j ]c+α
′x2

j x3
k .

We prove by direct calculation that Dj ([x2
k x j xk x j ]c) = 0. Applying Dj to the

previous equality,

0=α′(1+ qj j )x j x3
k +χ(ek + ej , 2ek + ej )α(ad xk)

2(x j )xk

+ (1− qk j qjk)(1− qkkqk j qjk)α(ad xk)(x j )x2
k ,

where we use that (ad xk)
3(x j )= 0 and

xk(ad xk)
m(x j )= (ad xk)

m+1(x j )+ qm
kkqk j (ad xk)

m(x j )xk .
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Since (1− qk j qjk)(1− qkkqk j qjk) 6= 0 and (ad xk)
2(x j )xk , (ad xk)(x j )x2

k , x j x3
k are

linearly independent, it follows that α = α′ = 0.

(2) Using (ad x j )
2xk = 0 in the first equality and (ad xk)

3x j = 0 in the last expres-
sion,

x2
k x j xk x j = (1+ qj j )

−1q−1
jk x2

k x2
j xk + (1+ qj j )

−1qjkqj j x3
k x2

j

∈ (3)qkk (1+ qj j )
−1qk j qjkqj j x2

k x j xk x j + kX>x2
k x j xk x j

.

Suppose that (3)qkk (1 + qj j )
−1qk j qjkqj j = 1; that is, (3)qkk = (1 + qj j ). Then

qj j = qkk + q2
kk , so

1= qj j qk j qjk = qkkqk j qjk + q2
kkqk j qjk = qkkqk j qjk + 1,

which is a contradiction since qkkqk j qjk ∈ k×. It follows that x2
k x j xk x j is a linear

combination of greater words, so (5-6) follows by previous item.

(3) If V is a standard braided vector space, and we consider Vj as the braided vector
space obtained transforming by sj , then m̃k j = 2. Therefore, 3ek+ej /∈1

+(B(Vk)),
so sj (3ek+ej )=3ek+2ej /∈1

+(B(V )). Since x2
k x j xk x j is a Lyndon word of degree

3ek + 2ej if xk < x j , then it is a linear combination of greater words. �

Lemma 5.6. Let I ∈ J and B= T (V )/I . Assume that

• there exist different j, k, l ∈ {1, . . . , θ} such that mk j = 2, m jk =m jl =ml j = 1,
mkl = 0;

• there exist skew derivations in B as in Proposition 2.1;

• the following relations hold in B: (5-4), (5-6),

( ad xk)
3x j = (ad x j )

2xk = (ad x j )
2xl = (ad xk)xl = 0,

x3
k = x2

j = 0 if q3
kk = q2

j j = 1.
(5-7)

(1) If we order the letters x1, . . . , xθ so that xk < x j < xl , then x2
k x j xl xk x j is a

linear combination of greater words modulo I if and only if , in B,[
(ad xk)

2(ad x j )xl, (ad xk)x j
]

c = 0. (5-8)

(2) If V is a standard braided vector space and qkk /∈ G3, qj j 6= −1, then (5-8)
holds in B.

(3) If V is standard and dim B(V ) <∞, then (5-8) holds in B(V ).

Proof. (1) (⇐) As in the last two lemmas, if (5-8) is valid, then x2
k x j xl xk x j is a

linear combination of greater words, by Remark 1.7, and

[x2
k x j xl xk x j ]c =

[
(ad xk)

2(ad x j )xl, (ad xk)x j
]

c .
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(⇒) Suppose that x2
k x j xl xk x j is a linear combination of greater words. Then

[x2
k x j xl xk x j ]c is a linear combination of hyperwords corresponding to words greater

than x2
k x j xl xk x j (of the same degree, because B is homogeneous). We discard

those words which have xk xl , x3
k x j , xk x2

j , x2
j xl , xk x j xl x j and x2

k x j xk x j , in view of
our hypotheses about B.

Since Dk([x2
k x j xl xk x j ]c) = 0, the coefficients of hyperwords corresponding to

words ending in xk are 0, as in Lemma 5.5, except for [x j xl]cx j x3
k , xl x2

j x3
k , if

qkk ∈ G3. Thus

[x2
k x j xl xk x j ]c = α[xk x j ]c[x2

k x j xl]c+β[xk x j xl]c[x2
k x j ]c

+ γ xl[xk x j ]c[x2
k x j ]c+µ[x j xl]cx j x3

k + νxl x2
j x3

k .

By direct calculation, Dj ([x2
k x j xl xk x j ]c)= Dj ([x2

k x j xl]c)= Dj ([xk x j xl]c)= 0, so
applying Dj to the previous equality we get

0= αq2
jkqj j qjl x j [x2

k x j xl]c+β(1− qkkqk j qjk)(1− q2
kkqk j qjk)[xk x j xl]cx2

k

+ γ (1− qkkqk j qjk)(1− q2
kkqk j qjk)xl[xk x j ]cx2

k + γ q2
jkqj j xl x j [x2

k x j ]c

+µ[x j xl]cx3
k + ν(1+ qj j )xl x j x3

k ,

Note that ν = 0 if qj j 6= −1; otherwise, x2
j = 0 by hypothesis, so we can discard

this last summand. The other hyperwords appearing in this expression are linearly
independent, since the corresponding words are linearly independent by Lemma
2.7. Thus α = β = γ = µ= 0.

(2) If qkk /∈ G3 and qj j 6= −1, then x2
k x j xl xk x j is a linear combination of greater

words, as can be seen using the quantum Serre relations in a way similar to that in
Lemma 5.6. Now apply part (1).

(3) If V is a standard braided vector space, consider Vk as the braided vector space
obtained transforming by sk . Then m̃k j = 2. Therefore, ek+2ej +el /∈1

+(B(Vk))

by Lemma 5.5, so sk(ek+2ej+el)= 3ek+2ej+el /∈1
+(B(V )). Since x2

k x j xl xk x j

is a Lyndon word, it follows that it is a linear combination of greater words, and
we apply (1). �

We now give explicit formulas for the comultiplication of these hyperwords.

Lemma 5.7. Consider the structure of graded braided Hopf algebra of T (V ) (see
Section 2A). For all k 6= j ,

1((ad xk)
mk j+1x j )= (ad xk)

mk j+1x j ⊗ 1 + 1⊗ (ad xk)
mk j+1x j

+

∏
1≤t≤mk j

(1− q t
kkqk j qjk)x

mi j+1
k ⊗ x j . (5-9)

Proof. We have Fk((ad xk)
mk j+1x j ) = 0 by the definition of mk j and (2-5). Also,

Fl((ad xk)
mk j+1x j ) for l 6= k by (2-6) and the properties of Fl , so
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11,mk j ((ad xk)
mk j+1x j )=

θ∑
l=1

xl ⊗ Fl((ad xk)
mk j+1x j )= 0.

Now Dk([x i
k x j ]cx s−i

k )= 0 from (2-3), and from (2-4)

Dj ([x i
k x j ]cx s−i

k )=
∏

1≤t≤mk j

(1− q t
kkqk j qjk)x

mi j+1
k ,

so we deduce that

1mk j ,1((ad xk)
mk j+1x j )=

∏
1≤t≤mk j

(1− q t
kkqk j qjk)x

mi j+1
k ⊗x j .

Since hyperwords form a basis of T (V ), we can write, for each 1< s < mk j ,

1mk j+1−s,s((ad xk)
mk j+1x j )

=

mk j+1−s∑
t=0

εst [x t
k x j ]cxmk j+1−s−t

k ⊗ x s
k +

s∑
p=0

ρspxmk j+1−s
k ⊗[x s−p

k x j ]cx p
k ,

for some εst , ρsp ∈ k. Then, for each 0≤ t ≤ mk j + 1− s,

0=
(
(ad xk)

mk j+1x j
∣∣ [x t

k x j ]cxmk j+1−t
k x s

k
)

=
(
((ad xk)

mk j+1x j )(1)
∣∣ [x t

k x j ]cxmk j+1−t−s
k

)(
((ad xk)

mk j+1x j )(2)
∣∣ x s

k
)

= εst
(
[x t

k x j ]cxmk j+1−t−s
k

∣∣ [x t
k x j ]cxmk j+1−t−s

k

)
(x s

k |x
s
k)

= εst(mk j + 1− s− t)qkk! (s)qkk!
(
[x t

k x j ]c
∣∣ [x t

k x j ]c
)
,

where we have used that (ad xk)
mk j+1x j ∈ I (V ) for the first equality, (1-8) for the

second, (1-10) and the orthogonality between increasing products of hyperwords
for the third, and (5-2) for the last. Since

(mk j + 1− s− t)qkk! (s)qkk! ([x
t
k x j ]c|[x t

k x j ]c) 6= 0,

we conclude that εst = 0 for all 0≤ t ≤ mk j + 1− s. In a similar way, ρsp = 0 for
all 0≤ p ≤ s, so we obtain (5-9). �

Lemma 5.8. Let B be a braided graded Hopf algebra provided with an inclusion
of braided vector spaces V ↪→ P(B). Assume that

• there exist 1≤ j 6= k 6= l ≤ θ such that mk j = mkl = 1, m jl = 0;

• (ad xk)
2x j = (ad xk)

2xl = (ad x j )xl = 0 in B;

• x2
k = 0 if qkkqk j qjk 6= 1 or qkkqklqlk 6= 1.

Then u := [(ad x j )(ad xk)xl, xk]c ∈ P(B).
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Proof. From (2-3), Dj (u)= 0. Also, Dk((ad x j )(ad xk)xl)= 0, so

Dk(u)= (1− q2
kkqjkqk j qklqlk)(ad x j )(ad xk)xl = 0.

From (2-4) and the properties of Dl we have

Dl(u)= qlk(1− qklqlk)[x j xk]cxk − qjkqkkqlk(1− qklqlk)xk[x j xk]c

= qlk(1− qlkqkl)
[
[x j xk]c, xk

]
c = 0.

Then 131(u) = 0. From (2-6) and the properties of Fk and Fl , we have Fk(u) =
Fl(u)= 0. Using (2-5), we have

Fj (u)= (1− qjkqk j )[xk xl]cxk − qjkqkkqlkqk j (1− qjkqk j )xk[xk xl]c

= (1− qlkqkl)(1− qk j qjkq2
kkqlkqjk)[xk xl]cxk = 0.

Thus 113(u)= 0 as well.
Also, we have

1(u)=1
(
(ad x j )(ad xk)xl

)
1(xk)− qek+ej+ej ,ej1(xk)1

(
(ad x j )(ad xk)xl

)
,

and looking at the terms in B2
⊗B2,

12,2(u)= (1− qlkqkl)[x j xk]c⊗
(
xl xk − qk j qjkq2

kkqlk xk xl
)

+ (1− qk j qjk)qlkqkk
(
x j xk − qjk xk x j

)
⊗[xk xl]c

=
(
1− qk j qjk − (1− qlkqkl) qkkqjkqk j

)
qlkqkk[x j xk]c⊗[xk xl]c.

Now a calculation shows that u ∈ P(B):

1− qk j qjk − (1− qlkqkl)qkkqjkqk j = 1− qk j qjk − qkkqjkqk j + q−1
kk

= q−1
kk (1+ qkk)(1− qkkqk j qjk)= 0. �

Lemma 5.9. Let B be a braided graded Hopf algebra provided with an inclusion
of braided vector spaces V ↪→ P(B). Assume that

• there exist 1≤ k 6= j ≤ θ such that mk j = 2,m jk = 1;

• (ad xs)
mst+1xt = 0, for all 1≤ s 6= t ≤ θ in B;

• xmst+1
s = 0 for each s such that qmst

ss qstqts 6= 1, for some t 6= s.

(a) If v :=
[
(ad xk)

2x j , (ad xk)x j
]

c, there exists b ∈ k such that

1(v)= v⊗ 1+ 1⊗ v+ b(1− q2
kkq2

k j q
2
jkqj j )x3

k ⊗ x2
j . (5-10)

(b) Assume there exist l 6= j, k such that m jl = ml j = 1, mkl = mlk = 0, and that
(5-4) is valid in B. Set

w :=
[
(ad xk)

2(ad x j )xl, (ad xk)x j
]

c .
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Then there exist constants b1, b2 ∈ k such that

1(w)=w⊗1+1⊗w+b1v⊗ xl +b2(1−q2
kkqk j qjk)x3

k ⊗
(
(ad x j )xl

)
x j . (5-11)

Proof. (a) Fj (v) = 0 since v is a braided commutator of two elements in ker Fj .
Using (1-4) we have [(ad xk)

2x j , x j ]c = qk j (qj j − qkk)[xk x j ]
2
c , so we calculate

Fk(v)= (1+qkk)(1−qkkqk j qjk)[xk x j ]
2
c−q2

kkq2
k j qjkqj j (1−qk j qjk)x j [x2

k x j ]c

+q2
kkqjk(1−qk j qjk)[x2

k x j ]cx j−q3
kkq2

k j q
2
jkqj j (1+qkk)(1−qkkqk j qjk)[xk x j ]

2
c

= q2
kkqjkqk j (1−qk j qjk)(qj j−qkk)

+(1+qkk)(1−qkkqk j qjk)(1−q3
kkq2

k j q
2
jkqj j )[xk x j ]

2
c,

which vanishes since the coefficient of [xk x j ]
2
c is zero for each possible braiding.

Thus
11,4(v)= xk ⊗ Fk(v)= 0.

Also, Dk(v)= 0, and a calculation gives

Dj (v)= (1− qk j qjk)
(
[x2

k x j ]xk + (1− qkkqk j qjk)qjkqj j x2
k [xk x j ]c

− q2
kkq2

k j qjkqj j (1− qkkqk j qjk)[xk x j ]cx2
k − q2

kkq2
k j q

3
jkq2

j j xk[x2
k x j ]

)
=
(
1+ (1+ qkk)(1− qkkqk j qjk)qkkqk j qjkqj j − q4

kkq3
k j q

3
jkq2

j j
)

(1− qk j qjk)[x2
k x j ]xk,

where we have reordered the hyperwords and used that (ad xk)
3x j = 0; also,

1+ (1+ qkk)(1− qkkqk j qjk)qkkqk j qjkqj j − q4
kkq3

k j q
3
jkq2

j j = 0, (5-12)

by calculation for each possible braiding. Thus

14,1(v)= Dj (v)⊗ x j = 0.

To finish, we use the fact that 1(v) equals

1((adc xk)
2x j )1((adc xk)x j )−χ(2ek + ej , ek + ej )1((adc xk)x j )1((adc xk)

2x j ).

Looking at the terms in B3
⊗B2 and B2

⊗B3, and using the definition of the
braided commutator, we obtain

132(v)

= (1− q4
kkq3

k j q
3
jkq2

j j )[x
2
k x j ]c⊗[xk x j ]c

+ (1+qkk)(1−qkkqk j qjk)qkkqk j qjkqj j
(
xk[xk x j ]c−qkkqk j [xk x j ]cxk

)
⊗[xk x j ]c

+ (1− qk j qjk)
2(1− q2

kkqk j qjk)(1− q2
kkq2

k j q
2
jkqj j )x3

k ⊗ x2
j

=
(
1+ (1+ qkk)(1− qkkqk j qjk)qkkqk j qjkqj j − q4

kkq3
k j q

3
jkq2

j j
)
[x2

k x j ]c⊗[xk x j ]c

+ b1(1− q2
kkq2

k j q
2
jkqj j )x3

k ⊗ x2
j .
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Also,

123(v)= (1− qkkqk j qjk)(1− qk j qjk)x2
k

⊗
(
(1+ qkk)qkkqjk[xk x j ]cx j − (1+ qkk)q2

kkq2
k j q

2
jkqj j x j [xk x j ]c

+ x j [xk x j ]c− q4
kkq2

k j q
3
jkqj j [xk x j ]cx j

)
=
(
1− q4

kkq3
k j q

3
jkq2

j j + (1+ qkk)(1− qkkqk j qjk)qkkqk j qjkqj j
)

(1− qkkqk j qjk)(1− qk j qjk)x2
k ⊗ x j [xk x j ]c.

Using (5-12), we obtain (5-10).

(b) We set y = (ad xk)
2(ad x j )xl and z = (ad xk)x j . Note that 1(w)=1(y)1(z)−

χ(2ek + ej + el, ek + ej )1(z)1(y) and that

1(y)= y⊗ 1+ (1− qjlql j )(ad xk)
2x j ⊗ xl

+ (1− qk j qjk)(1− qkkqk j qjk)x2
k ⊗ (ad x j )xl

+ (1+ qkk)(1− qkkqk j qjk)xk ⊗ (ad xk)(ad x j )xl + 1⊗ y,

1(z)= z⊗ 1+ (1− qk j qjk)xk ⊗ x j + 1⊗ z.

From (2-3) we have Dk(w)= 0, and from (2-4),

Dl(w)= (1− ql j qjl)qlkql j
[
(ad xk)

2x j , (ad xk)x j
]

c ,

Dj (w)=−(1− qk j qjk)q−2
kk q−1

k j q−1
kl (ad xk)

3(ad x j )xl

=−(1− qk j qjk)q−2
kk q−1

k j q−1
kl [(ad xk)

3x j , xl]c = 0,

where in the last equality we used (1-4) and the vanishing of [xk, xl]c = 0. It
follows that

151(w)= (1− ql j qjl)qlkql j
[
(ad xk)

2x j , (ad xk)x j
]

c⊗ xl .

Also, Fj (z) = Fj (y) = Fl(z) = Fl(y) = 0 by (2-6) and the properties of these
skew derivations, so Fj (w)= Fl(w)= 0. We now calculate

Fk(w)

= (1+ qkk)(1− qkkqk j qjk)[xk x j xl]c[xk x j ]c+ q2
kkqjkqlk(1− qk j qjk)[x2

k x j xl]cx j

−χ(2ek + ej + el, ek + ej )(
(1−qk j qjk)x j [x2

k x j xl]c+(1+qkk)(1−qkkqk j qjk)qkkqjk[xk x j xl]c[xk x j ]c
)

= q2
kkqjkqlk(1− qk j qjk)

[
[x2

k x j xl]c, x j
]

c

− (1+ qkk)(1− qkkqk j qjk)q3
kkq2

k j q
2
jkqj j ql j qlk

[
[xk x j ]c, [xk x j xl]c

]
c

= q2
kkqk j qjkqj j ql j qlk(

1− qk j qjk − (1+ qkk)(1− qkkqk j qjk)qkkqk j qjk
)[
[xk x j ]c, [xk x j xl]c

]
c

= 0,
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where we used (1-4) and (5-4) in the third equality, and we calculate that

1− qk j qjk − (1+ qkk)(1− qkkqk j qjk)qkkqk j qjk = 0 (5-13)

for each possible standard braiding. It follows that 115(w)= 0.
We find each of the other terms of 1(w) by direct calculation. First,

142(w)

=
(
1−χ(2ek + ej + el, ek + ej )χ(ek + ej , 2ek + ej + el)

)
y⊗ z

+ (1− qk j qjk)(1− ql j qjl)(
qlk[x2

k x j ]cxk ⊗ xl x j −χ(2ek + ej + el, ek + ej )q2
jkqj j xk[x2

k x j ]c⊗ x j xl
)

+ (1− qk j qjk)(1− qkkqk j qjk)(
χ(ej + el, ek + ej )x2

k z−χ(2ek + ej + el, ek + ej )zx2
k
)
⊗[x j xl]c

= (1− qk j qjk)qlk
(
1− qjkqk j + (1+ qkk)(1− qkkqk j qjk)qkkqk j qjk

)
[x2

k x j ]cxk ⊗[x j xl]c,

which is seen to equal 0. In a similar way we calculate

133(w)

= (1−ql j qjl)[x2
k x j ]⊗

(
xl z−χ(2ek+ej+el, ek+ej )χ(ek+ej , ek+ej+el)zxl

)
+ (1+qkk)(1−qkkqk j qjk)χ(ek+ej+el, ek+ej )(xkz−qkkqk j zxk)⊗[xk x j xl]c

+ (1−qkkqk j qjk)(1−qk j qjk)
2x3

k

⊗
(
χ(ej+el, ek)[x j xl]cx j−χ(2ek+ej+el, ek+ej )χ(ej , 2ek)x j [x j xl]c

)
=
(
(1+qkk)(1−qkkqk j qjk)−qkkqk j qjkqj j (1−ql j qjl)

)
χ(ek+ej+el, ek+ej )[x2

k x j ]c⊗[xk x j xl]c

+ (1−qkkqk j qjk)(1−qk j qjk)
2(1−q2

kkqk j qjk)x3
k⊗[x j xl]cx j ,

and the coefficient of [x2
k x j ]c⊗[xk x j xl]c is zero (we calculate it for each possible

standard braiding). Finally,

124(w)

= (1−qkkqk j qjk)(1−qk j qjk)x2
k

⊗
(
(1+qkk)χ(ek+ej+el, ek)[xk x j xl]cx j

−(1+qkk)χ(2ek+ej+el, ek+ej )qjk x j [xk x j xl]c

−χ(2ek+ej+el, ek+ej )χ(ek+ej , 2ek)
[
[xk x j ]c, [x j xl]c

]
c

)
= (1−qkkqk j qjk)(1−qk j qjk)χ(ej+el, ek+ej )qk j(

qkk(1−qkkqk j qjk)−qj j (1−qjlql j )
)
x2

k⊗x j [xk x j xl]c

= 0.

From these calculations, we obtain (5-11). �
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5B. Presentation when the type is Aθ . We now assume V is a standard braided
vector space of type Aθ and B a Zθ -graded algebra, provided with an inclusion
of vector spaces V ↪→ B1

=
⊕

1≤ j≤θ Bej . We can extend the braiding to B by
setting

c(u⊗ v)= χ(α, β)v⊗ u, u ∈Bα, v ∈Bβ, α, β ∈ Nθ .

We assume that on B we have

x2
i = 0 if qi i =−1,

adc xi (x j )= 0 if | j − i |> 1,

(adc xi )
2(x j )c = 0 if | j − i | = 1,[

(adc xi )(adc xi+1)xi+2, xi+1
]

c = 0 2≤ i ≤ θ − 1.

Using the same notation as in Section 4B,

xei = xi , xui, j := [xi , xui+1, j ]c (i < j).

Lemma 5.10. Let 1≤ i ≤ j < p ≤ r ≤ θ . The following relations hold in B:

[xui j , xupr ]c = 0, p− j ≥ 2; (5-14)

[xui j , xuj+1,r ]c = xuir . (5-15)

Proof. Note that xupr belongs to the subalgebra generated by x p, . . . , xr , and
[xui j , xs]c = 0, for each p ≤ s ≤ r . Equation (5-14) follows from this.

We prove (5-15) by induction on j − i : if i = j , it is exactly the definition of
xuir . To prove the inductive step, we use the inductive hypothesis, (5-14) and (1-4)
(the braided Jacobi identity) to obtain

[xui, j+1, xuj+2,r ]c =
[
[xui j , xi+1]c, xuj+2,r

]
c =

[
xui j , [xi+1, xuj+2,r ]c

]
c

= [xui j , xuj+1,r ]c = xuir ,

and (5-15) is also proved. �

Lemma 5.11. If i < p ≤ r < j , the following relation holds in B:

[xui j , xupr ]c = 0. (5-16)

Proof. When p = r = j − 1 and i = j − 2, note that this is exactly[
(adc xi )(adc xi+1)xi+2, xi+1

]
c = 0.

Then, by (1-4),

[xui−1, j , x j−1]c = [[xi−1, xui, j ]c, x j−1]c = [xi−1, [xui, j , x j−1]c]c.

We assume that j − i > 2, so [xi−1, x j−1]c = 0 by the hypothesis on B. Now we
prove the case p = r = j − 1 by induction on p− i .
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Using (1-4) and (5-15), we also have

[xui, j+1, x p]c =
[
[xui, j , x j+1]c, x p

]
c =

[
xui, j , [x j+1, x p]c

]
c

+qj+1,p[xui, j , x j−1]cx j+1−χ(ui, j , ej+1)x j+1[xui, j , x j−1]c,

so using that [x j+1, x p]c = 0 if j > p, by induction on j − p we prove (5-16) for
the case p = r .

For the general case, we use (1-4) one more time as follows

[xui, j , xup,r+1]c =
[
xui, j , [xupr , xr+1]c

]
c =

[
[xui, j , xupr ]c, xr+1

]
c

−χ(upr , er+1)[xui j , xr+1]cxupr +χ(ui j ,upr )xupr [xui j , xr+1]c,

and we prove (5-16) by induction on r − p. �

Lemma 5.12. The following relations hold in B:

[xui j , xui p ]c = 0 if i ≤ j < p, (5-17)

[xui j , xupj ]c = 0 if i < p ≤ j. (5-18)

Proof. To prove (5-17), note that if i = j = p− 1, we have

[xui i , xui,i+1]c =
[
xi , [xi , xi+1]c

]
c = (ad xi )

2xi+1 = 0.

Since [xi , xui+2,p ]c= 0 for each p> i+1 by (5-14), we use (1-4), the previous case
and (5-15) to obtain

[xui i , xui p ]c =
[
xui i , [xui,i+1, xui+2,p ]c

]
c = 0.

Now, if i < j < p, from (5-14) and the relations between the qst we obtain

[xui+1, j , xui p ]c =−χ(ui p,ui+1, j )[xui p , xui+1, j ]c = 0.

Using (1-4) and the previous case we conclude

[xui j , xui p ]c =
[
[xui i , xui+1, j ]c, xui p

]
c = 0.

The proof of (5-18) is analogous. �

Lemma 5.13. If i < p ≤ r < j , the following relation holds in B:

[xuir , xupj ]c = χ(uir ,upr )(1− qr,r+1qr+1,r )xupr xui j . (5-19)

Proof. We calculate

[xuir , xupj ]c =
[
xuir , [xupr , xur+1, j ]c

]
c

= χ(uir ,upr )xupr xui j −χ(upr ,ur+1, j )xui j xupr

=
(
χ(uir ,upr )−χ(ui j ,upr )χ(upr ,ur+1, j )

)
xupr xui j

= χ(uir ,upr )
(
1−χ(upr ,ur+1, j )χ(ur+1, j ,upr )

)
xupr xui j ,
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where we have used (5-15) in the first equality, (1-4) in the second, (5-18) in the
third and the relation between the qi j in the last. �

We now prove the main theorem of this subsection, namely, the presentation by
generators and relations of the Nichols algebra associated to V .

Theorem 5.14. Let V be a standard braided vector space of type Aθ , where θ =
dim V , and let C = (ai j )i, j∈{1,...,θ} be the corresponding Cartan matrix of type Aθ .

The Nichols algebra B(V ) is presented by the generators xi , 1≤ i ≤ θ , and the
relations

x Nα
α = 0, α ∈1+;

adc(xi )
1−ai j (x j )= 0, i 6= j;[

(ad x j−1)(ad x j )x j+1, x j
]

c = 0, 1< j < θ, qj j =−1.

The following elements constitute a basis of B(V ):

xh1
β1

xh2
β2
. . . xh P

βP
, where 0≤ h j< Nβj where βj ∈ SI , for 1≤ j ≤ P. (5-20)

Proof. From Corollary 4.2 and the definitions of the xα, we know that the last
statement about the PBW basis is true.

Let B be the algebra presented by generators x1, . . . , xθ and the relations in
the statement of the theorem. From Lemmas 5.3, 5.4 and Corollary 5.2 we have
a canonical epimorphism φ : B→ B(V ). The last relation also holds in B for
qj j 6= 1, by Lemma 5.4(2).

The rest is similar to the proofs of [Andruskiewitsch and Dăscălescu 2005,
Lemma 3.7] and [Andruskiewitsch and Schneider 2002b, Lemma 6.12]. Consider
the subspace I of B generated by the elements in (5-20). Using Lemmas 5.10,
5.11, 5.12 and 5.13 we prove that I is an ideal. But 1 ∈ I, so I=B.

The images under φ of the elements in (5-20) form a basis of B(V ), so φ is an
isomorphism. �

The presentation and dimension of B(V ) agree with the results presented in [An-
druskiewitsch and Dăscălescu 2005] and [Andruskiewitsch and Schneider 2002b].

5C. Presentation when the type is Bθ . We now assume V is a standard braided
vector space of type Bθ and B is a Zθ -graded algebra, provided with an inclusion
of vector spaces V ↪→B1

=
⊕

1≤ j≤θ Bej . Then we can extend the braiding to B.
We assume the following relations in B:

x2
i = 0 if qi i =−1,

x3
1 = 0 if q11 ∈ G3,

(adc xi )x j = 0 if | j − i |> 1,

(adc xi )
2x j = 0 if | j − i | = 1 and i 6= 1,
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(adc xi )(adc xi+1)xi+2, xi+1

]
c = 0 if 2≤ i ≤ θ,

(adc x1)
3x2 = 0,[

(adc x1)
2x2, (adc x1)x2

]
c = 0,[

(ad x1)
2(ad x2)x3, (ad x1)x2

]
c = 0.

Using the same notation as in Section 4B,

xvi j = [xu1i , xu1 j ]c, 1≤ i < j ≤ θ.

From the proof of the relations corresponding the Aθ case, we know that (5-14),
(5-15), (5-16), (5-18) and (5-19) hold for i ≥ 1, but for relation (5-17) we must
assume i > 1.

Lemma 5.15. Suppose 1≤ s< t and 1< k ≤ j . The following relations hold in B:

[xvst , xuk j ]c



= 0 if t + 1< k,
= xvs j if t + 1= k < j,
= 0 if s+ 1< k ≤ j ≤ t,
= χ(vst ,ukt)(1− qt,t+1qt+1,t)xukt xvs j if s+ 1< k ≤ t < j,
= χ(u1t ,us+1, j )xvj t if s+ 1= k ≤ j < t,
= (χ(u1t ,us+1,t)−χ(u1s,u1t))x2

u1t
if s+ 1= k, j = t,

∈ kxvt j + kxu1 j xu1t + kxus+1, j xvs j if s+ 1= k ≤ t < j,
= γ

k j
st xuks xvj t if k ≤ s < j ≤ t,

∈ kxuks xvt j + kxuks xu1 j xu1t + kxukt xvs j if k ≤ s < t < j,
= 0 if k ≤ j ≤ s,

where γ k j
st = χ(u1t ,uk j )χ(u1s,uks)(1− qs,s+1qs+1,s).

Proof. The first, third and last equalities follow from the vanishing of [xu1s , xuk j ]c

and [xu1t , xuk j ]c = 0, using (5-14), (5-16), (5-17) or (5-18) as the case maybe,
together with (1-4).

For the second case, we use that [xu1s , xut+1, j ]c = 0, (5-15) and (1-4) to obtain

xvs j =[xu1s , xu1 j ]c=
[
xu1s , [xu1t , xut+1, j ]c

]
c=

[
[xu1s , xu1t ]c, xut+1, j

]
c=[xvst , xut+1, j ]c.

For the fourth, we use (1-4) and the third case to calculate

[xvst , xuk j ]c = [xvst , [xukt , xut+1, j ]c]c

=χ(vst ,ukt)xukt xvs j −χ(ukt ,ut+1, j )xvs j xukt

=χ(vst ,ukt)(1−χ(ukt ,ut+1, j )χ(ut+1, j ,ukt))xukt xvs j .
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For the fifth, note that χ(u1t ,us+1, j )
−1
=χ(us+1, j ,u1t). Then use (5-15), (5-16)

and (1-4) to prove that

[xvst , xus+1, j ]c =
[
[xu1s , xu1t ]c, xus+1, j

]
c

= χ(u1t ,us+1, j )xu1 j xu1t −χ(u1s,u1t)xu1t xu1s

= χ(u1t ,us+1, j )(xu1 j xu1t −χ(u1 j ,u1t)xu1t xu1s ).

The sixth case is similar.
For the seventh case, we use (1-4), (1-5) and the previous case to calculate

[xvst , xus+1, j ]c =
[
xvst , [xus+1,t , xut+1, j ]c

]
c

= (χ(u1t ,us+1,t)−χ(u1s,u1t))[x2
u1t
, xut+1, j ]

+χ(vst ,us+1,t)xus+1,t xvs j −χ(us+1,t ,ut+1, j )xvs j xus+1,t

= (χ(u1t ,us+1,t)−χ(u1s,u1t))((xvt j +χ(u1t ,u1 j )xu1 j xu1t )

+χ(u1t ,ut+1, j )xu1 j xu1t )−χ(us+1,t ,ut+1, j )xvt j

+ (χ(vst ,us+1,t)−χ(us+1,t ,ut+1, j )χ(vs j ,us+1,t))xus+1,t xvs j .

We use the previous cases, (5-16) and (5-19) to calculate for the eighth case

[xvst , xuk j ]c = [[xu1s , xu1t ]c, xuk j ]c

= χ(u1t ,uk j )(χ(u1s,uks)(1− qs,s+1qs+1,s)xuks xu1 j )xu1t

−χ(u1s,u1t)xu1t (χ(u1s,uks)(1− qs,s+1qs+1,s)xuks xu1 j )

= γ
k j
st xuks (xu1 j xu1t −χ(u1 j ,u1t)xu1t xu1 j ).

To conclude, we prove the ninth case in a similar way:

[xvst , xuk j ]c = [xvst , [xukt , xut+1, j ]c]c

= γ kt
st (1− qv1t )[xuks x2

u1t
, xut+1, j ]

+χ(vst ,uk,t)xukt xvs j −χ(ukt ,ut+1, j )xvs j xukt . �

We consider the remaining commutator
[
xvst , xujk

]
c: when j = 1.

Lemma 5.16. Let s < t in {1, . . . , θ}. The following relations hold in B:

[xvst , xu1k ]c = 0 if s < k ≤ t, (5-21)

[xu1s , xvst ]c = 0. (5-22)

Proof. By assumption we have

[xv12, xu12]c =
[
(adc x1)

2x2, (adc x1)x2
]

c = 0,

[xv13, xu12]c =
[
(adc x1)

2(adc x2)x3, (adc x1)x2
]

c = 0.
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For t ≥ 4, [xu4t , xu12]c = 0 by (5-14), and using (1-4),

[xv1t , xu12]c =
[
[xv13, xu4t ]c, xu12

]
c = 0.

For each k ≤ t we have [xu1t , xu3k ]c = [x1, xu3k ]c = 0, so [xv1t , xu3k ]c = 0. Using
(1-4) and (5-15) we have

[xv1t , xu1k ]c =
[
xv1t , [xu12, xu3k ]c

]
c = 0.

Now consider 2 ≤ s ≤ k. Since [xv1t , xu1k ]c = [xu2s , xu1k ]c = 0 by previous
results and (5-16), we conclude from (1-5) and Lemma 5.15 that (5-21) is valid in
the general case.

To prove (5-22), we have for s = 1, t = 2

[xu11, xv12]c = [x1, xv12]c = (adc x1)
3x2 = 0.

Using that [x1, xu3t ]c = 0 if t ≥ 3 and (1-4), we deduce that

[xu11, xv1t ]c =
[
x1, [xv12, xu3t ]c

]
c = 0.

If 1< s < t we have, by the previous case,

[xu1s , xv1t ]c =−χ(xu1s , xv1t )[xv1t , xu1s ]c = 0.

By (5-18), [xu1s , xu2s ]c = 0. Also, [xv1t , xu2s ]c = χ(u1t ,u2s)xvst , by Lemma 5.15.
Equation (5-22) follows by (1-4) and the last three equalities. �

Lemma 5.17. Let s < k < t . The following relations hold in B:

[xvsk , xu1t ]c = χ(vsk,u1k)(1− qk,k+1qk+1,k)xu1k xvst , (5-23)

[xu1s , xvkt ]c = χ(u1s,u1k)(1+ qu1k )(1− qk,k+1qk+1,k)xu1k xvst . (5-24)

Proof. The proof follows by (1-4), the second case of Lemma 5.15 and (5-22):

[xvsk , xu1t ]c =
[
xvsk , [xu1k , xuk+1,t ]c

]
c

= χ(vsk,u1k)xu1k xvst −χ(u1k,uk+1,t)xvst xu1k

= χ(vsk,u1k)
(
1−χ(u1k,uk+1,t)χ(uk+1,t ,u1k)

)
xu1k xvst ,

[xu1s , xvkt ]c =
[
xu1s , [xu1k , xu1t ]c

]
c

= [xvsk , xu1t ]c+χ(u1s,u1k)xu1k xvst −χ(u1k,u1t)xvst xu1k

= χ(u1s,u1k)(qu1k (1− qk,k+1qk+1,k)+ 1− qk,k+1qk+1,k)xu1k xvst . �

We next deal with the expression of the commutator of two words of type xvst .
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Lemma 5.18. Let s < t and s ≤ k < j , with k 6= s or j 6= t . The following relations
hold in B:

[xvst , xvk j ]c



= 0 if k < j ≤ t,
= 0 if k = s, t < j,
= χ(vst , vkt)(1− qt,t+1qt+1,t)xvkt xvs j if k < t < j,
= χ(vst ,u1t)

2(1− qt,t+1qt+1,t)

(1− qu1t qt,t+1qt+1,t)x2
u1t

xvs j if k = t < j,
∈ kxvt j xvsk + kxvtk xvs j + kxu1k xu1t xvs j if t < k < j.

Proof. The first and second equalities follow from (1-4) and (5-21), (5-22), respec-
tively. For the third, we use the previous one and (1-4):

[xvst , xvk j ]c

=
[
xvst , [xu1k , xu1 j ]c

]
c

= χ(vst ,u1k)xu1k

(
χ(vst ,u1t)(1− qt,t+1qt+1,t)xu1t xvs j

)
−χ(u1k,u1 j )

(
χ(vst ,u1t)(1− qt,t+1qt+1,t)xu1t xvs j

)
xu1k

= (1− qt,t+1qt+1,t)
(
χ(vst ,u1k)χ(vst ,u1t)xu1k xu1t xvs j

−χ(u1k,u1 j )χ(vst ,u1t)χ(vs j ,u1k)xu1t xu1k xvs j

)
= χ(vst ,u1k)χ(vst ,u1t)(1− qt,t+1qt+1,t)

(
xu1k xu1k −χ(u1k,u1t)xu1k xu1k

)
xvs j .

The fourth case is similar to the previous one.
To prove the last case we use (1-4) and Lemma 5.17:

[xvst , xvk j ]c =
[
xvst , [xu1k , xu1 j ]c

]
c

= [χ(vst ,u1t)(1− qt,t+1qt+1,t)xu1t xvsk , xu1 j ]c

+χ(vst ,u1k)xu1k (χ(vst ,u1t)(1− qt,t+1qt+1,t)xu1t xvs j )

−χ(u1k,u1 j )(χ(vst ,u1t)(1− qt,t+1qt+1,t)xu1t xvs j )xu1k .

The proof is finished using (1-5) and the previous identities. �

Theorem 5.19. Let V be a standard braided vector space of type Bθ , where θ =
dim V , and let C = (ai j )i, j∈{1,...,θ} be the corresponding Cartan matrix of type Bθ .

The Nichols algebra B(V ) is presented by the generators xi , 1≤ i ≤ θ , and the
relations

x Nα
α = 0, α ∈1+;

adc(xi )
1−ai j (x j )= 0, i 6= j;[

(ad x j−1)(ad x j )x j+1, x j
]

c = 0, 1< j < θ, qj j =−1;[
(ad x1)

2x2, (ad x1)x2
]

c = 0, q11 ∈ G3 or q22 =−1;[
(ad x1)

2(ad x2)x3, (ad x1)x2
]

c = 0, q11 ∈ G3 or q22 =−1.
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The following elements constitute a basis of B(V ):

xh1
β1

xh2
β2
. . . xh P

βP
, where 0≤ h j< Nβj−1 if βj ∈ SI , for 1≤ j ≤ P. (5-25)

Proof. The proof is analogous to that of Theorem 5.14, since by the previous
lemmas we can express the commutator of two generators xα < xβ as a linear
combination of monotone hyperwords whose greater hyperletter is great or equal
to xβ . �

5D. Presentation when the type is G2. We now consider standard braidings of
type G2, with m12 = 3,m21 = 1.

Lemma 5.20. Let B := T (V )/I , for some I ∈S, and suppose that

xord q11
1 = 0, xord q22

2 = 0, (ad x1)
4x2 = (ad x2)

2x1 = 0 (5-26)

in B. Then

(a) [x3
1 x2x1x2]c = 0 in B ⇐⇒ 4e1+ 2e2 /∈1

+(B).

Assume further that the equivalent conditions in (a) hold. Then

(b)
[
(ad x1)

3x2, (ad x1)
2x2
]

c = 0 in B ⇐⇒ 5e1+ 2e2 /∈1
+(B) and

(c)
[
[x2

1 x2x1x2]c, [x1x2]c
]

c = 0 in B ⇐⇒ 4e1+ 3e2 /∈1
+(B).

Assume also that the equivalent conditions in (b) and those in (c) hold. Then

(d)
[
[x2

1 x2]c, [x2
1 x2x1x2]c

]
c = 0 in B ⇐⇒ 5e1+ 3e2 /∈1

+(B).

In particular, all these relations hold when V is a standard braiding and B =

B(V ) is finite-dimensional.

Proof. Take the ordering x1 < x2, and consider a PBW basis as in Theorem 1.12.
Define γk :=

∏
0≤ j≤k−1(1− q j

11q12q21).

(a) If [x3
1 x2x1x2]c = 0, then 4e1+2e2 /∈1

+(B) since there are no possible Lyndon
words in SI : x3

1 x2x1x2 is the unique Lyndon word such that x3
1 x2 and x1x2

2 are not
factors, and it is not in SI by assumption.

Conversely, if 4e1+ 2e2 /∈ 1
+(B), then [x3

1 x2x1x2]c is a linear combination of
greater hyperwords, and [x1x2x3

1 x2]c and [x2
1 x2

1 x2] are the only greater hyperwords
that are not in SI and do not end in x1 (we discard words ending in x1 since
[x3

1 x2x1x2]c is in ker D1). Taking their Shirshov decomposition, we see that there
exist α, β ∈ k such that

[x3
1 x2x1x2]c−α[x1x2]c[x3

1 x2]c−β[x2
1 x2]

2
c = 0. (5-27)

Note that [x3
1 x2x1x2]c = ad x1([x2

1 x2x1x2]c), so by direct calculation,

D2([x2
1 x2x1x2]c)= 0.
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Apply D2 to both sides of equality (5-27) and express the result as a linear combi-
nation of [x3

1 x2]cx1, [x2
1 x2]cx2

1 and [x1x2]cx3
1 . The coefficient of [x1x2]cx3

1 is

α(1− q12q21)(1− q11q12q21),

so α = 0. Note also that D2
1 D2

(
[x 13x2x1x2]c

)
= 0; but

D2
1 D2

(
[x2

1 x2]
2
c
)
= (1− q12q21)(1− q11q12q21)(1+ q11)(q2e1+e2 + 1)[x2

1 x2]c.

Looking at the proof of Proposition 4.7, we see that q2e1+e2 6= −1, so β = 0.

(b) Assuming (5-26) and the condition in (a), the only possible Lyndon word of
degree 5e1+ 2ej is x3

1 x2x2
1 x2, and

[x2
1 x2x1x2x1x2]c =

[
(ad x1)

3x2, (ad x1)
2x2
]

c .

Then we proceed as before. One implication is clear. For the other, if 5e1+ 2ej /∈

1+(B), there exists α ∈ k such that[
(ad x1)

3x2, (ad x1)
2x2
]

c = α(ad x1)
2x2(ad x1)

3x2.

Now we apply D2 and express the equality as a linear combination of (ad x1)
3x2x2

1
and (ad x1)

2x2x3
1 (using the hypothesis that (ad x1)

4x2 = 0); the coefficient of
(ad x1)

2x2x3
1 is αγ3, so α = 0.

(c) The proof is similar. Since we are considering Lyndon words not having x3
1 x2 or

x1x2
2 as a factor, the only possible Lyndon word of degree 4e1+3ej is x2

1 x2x1x2x1x2,
and

[x2
1 x2x1x2x1x2]c =

[
[x2

1 x2x1x2]c, [x1x2]c
]

c .

If 4e1+ 3ej /∈1
+(B), there exist αi ∈ k such that[

x2
1 x2(x1x2)

2]
c

= α1[x1x2]c[x2
1 x2x1x2]c+α2[x1x2]

2
c[x

2
1 x2]c+α3x2[x2

1 x2]
2
c+α4x2[x1x2]c[x3

1 x2]c,

since, as above, we are discarding words greater than x2
1 x2x1x2x1x2 ending in x1;

we also discard words with factors x4
1 x2, x1x2

2 , x3
1 x2x2

1 x2, by the assumption on B.
We apply D2 to this equality. Using the definition of the braided commutator, we
express the hyperletter just considered as a linear combination of elements of the
PBW basis, having degree 4e1+ 2e2.

The coefficient of x2[x1x2]cx3
1 is α4γ3 since this PBW generator appears only

in the expression of D2(x2[x1x2]c[x3
1 x2]c). Thus α4 = 0.

Using this fact, we see that the coefficient of x2[x3
1 x2]cx1 is

α3γ2(1+ q11)q2
11q12q2

21q22,

since this term appears only in the expression of Dj (x2[x2
1 x2]

2
c). Thus α3 = 0.
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Next, the coefficient of [x1x2]
2
c x2

1 is α2γ2, so α2 = 0. Now we calculate the
coefficient of [x2

1 x2]
2
c :

α1γ2
(
χ(e1, 5e1+ e2)−χ(2e1+ e2, e1+ e2)

)
= α1γ2q11q12

(
q3

11− q22q12q21
)
.

Since q3
11 6= q22q12q21 for each standard braiding, we conclude that α1 = 0.

(d) If the conditions in (b) and (c) hold, the only possible Lyndon word of degree
5e1+ 3e2 not having x4

1 x2 or x1x2
2 as factors is x2

1 x2x2
1 x2x1x2, and

[x2
1 x2x2

1 x2x1x2]c =
[
[x2

1 x2]c, [x2
1 x2x1x2]c

]
c .

This hyperword is not in SI if and only if there exist νi ∈ k such that

[x2
1 x2x2

1 x2x1x2]c = ν1[x2
1 x2x1x2]c[x2

1 x2]c+ ν2[x1x2]c[x2
1 x2]

2
c

+ ν3[x1x2]
2
c[x

3
1 x2]c+ ν4x2[x2

1 x2]c[x3
1 x2]c. (5-28)

Apply D2 and note that D2([x2
1 x2x2

1 x2x1x2]c) = 0 under the hypotheses on B.
Then express the resulting sum as a linear combination of elements of the PBW
basis, which have degree 5e1+ 2e2.

The hyperword x2[x2
1 x2]x3

1 appears only for D2(x2[x2
1 x2]c[x3

1 x2]c), and its co-
efficient is ν4γ3, and since γ3 6= 0 we conclude that ν4 = 0.

Analogously, [x1x2]
2
c x3

1 appears only for [x1x2]
2
c[x

3
1 x2]c (due to ν4 = 0). Its

coefficient is ν3γ3, so ν3 = 0.
Note that D2

1 D2([x2
1 x2x1x2]c) = 0. We apply D2

1 D2 to the expression (5-28),
and obtain

0= ν1γ2(1+ q11)[x2
1 x2x1x2]c+ ν2γ2(1+ q11)(1+ q2e1+e2)[x1x2]c[x2

1 x2]c.

The terms [x2
1 x2x1x2]c and [x1x2]c[x2

1 x2]c are linearly independent, since they are
linearly independent in B(V ), and we have a surjection B→B(V ). Then

ν1γ2(1+ q11)= ν2γ2(1+ q11)(1+ q2e1+e2)= 0.

But for standard braidings of type G2 we note that q11, q2e1+e2 6= −1 and γ2 6= 0,
so ν1 = ν2 = 0.

The last statement is true since

1+(B(V ))= {e1, e1+ e2, 2e1+ e2, 3e1+ e2, 3e1+ 2e2, e2},

if the braiding is standard of type G2. �

Remark 5.21. Let V be a standard braided vector space of type G2 and let B

be a braided graded Hopf algebra satisfying the hypotheses of Lemma 5.20. In a
similar way to Lemma 5.5, if q11 /∈G4 and q22 6=−1, then 5e1+2e2, 4e1+2e24e1+

3e2, 5e1+ 3e2 /∈1
+(B).
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This follows because x3
1 x2x2

1 x2, x2
1 x2x1x2x1x2, x2

1 x2x2
1 x2x1x2 /∈ SI , using the

quantum Serre relations as in the lemma cited.

Theorem 5.22. Let V be a standard braided vector space of type G2. The Nichols
algebra B(V ) is presented by the generators x1, x2 and the relations

adc(x1)
4(x2)= adc(x2)

2(x1)= 0, x Nα
α = 0, α ∈1+, (5-29)

and, if q11 ∈ G4 or q22 =−1,[
(ad x1)

3x2, (ad x1)
2x2
]

c = 0, (5-30)[
x1, [x2

1 x2x1x2]c
]

c = 0, (5-31)[
[x2

1 x2x1x2]c, [x1x2]c
]

c = 0, (5-32)[
[x2

1 x2]c, [x2
1 x2x1x2]c

]
c = 0. (5-33)

The following elements constitute a basis of B(V ):

x
he2
2 [x1x2]

he1+e2
c [x2

1 x2x1x2]
h3e1+2e2
c [x2

1 x2]
h2e1+e2
c [x3

1 x2]
h3e1+e2
c x

he1
1 , 0≤ hα ≤ Nα−1.

(5-34)

Proof. The statement about the PBW basis follows from Corollary 4.2 and the
definitions of the xα.

Let B be the algebra presented by the generators x1, x2 and the relations (5-29)–
(5-33). From Lemma 5.20 and Corollary 5.2, we have a canonical epimorphism of
algebras φ :B→B(V ).

Consider the subspace I of B generated by the elements in (5-34). We prove by
induction on the sum S of the hα’s of a such product M that x1 M ∈ I; moreover,
we prove that it is a linear combination of products whose first hyperletter is less
than or equal to the first hyperletter of M . If S = 0, we have M = 1.

• If M = x N1
1 , then x1 M = x N1+1

1 , which is zero if N1 = ord x1− 1.

• If M = [x3
1 x2]c M ′, then we use that x1[x3

1 x2]c = q3
11q12[x3

1 x2]cx1 to prove that
x1 M lies in I and either is zero or begins with [x3

1 x2]c.

• If M = [x2
1 x2]c M ′, we have

x1[x2
1 x2]c = [x3

1 x2]c+ q2
11q12[x2

1 x2]cx1.

We use the inductive step and relation (5-30) to prove that x1 M lies in I and
is either zero or a linear combination of hyperwords starting with a hyperletter
less than or equal to [x2

1 x2]c.

• If M = [x2
1 x2x1x2]c M ′, we deduce from (5-31) that

x1[x2
1 x2x1x2]c = χ(e1, 3e1+ 2e2)[x2

1 x2x1x2]cx1;
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using also (5-32) and (5-33), we prove that x1 M lies in I and is either zero or
a linear combination of hyperwords that starting with a hyperletter less than or
equal to [x2

1 x2x1x2]c.

• If M = [x1x2]c M ′, observe that

x1[x1x2]c = [x2
1 x2]c+ q11q12[x1x2]cx1.

Using the inductive step together with (5-31), (5-32), and the equality

[x2
1 x2]c[x1x2]c =

[
[x2

1 x2]c, [x1x2]c
]

c+χ(2e1+ e2, e1+ e2)[x1x2]c[x2
1 x2]c,

by the definition of braided commutator, we prove that x1 M lies in I and is
either zero or a linear combination of hyperwords starting with a hyperletter
less than or equal to [x1x2]c.

• If M= x2 M ′, we use the equalities x1x2=[x1x2]c+q12x2x1 and [[x1x2]c, x2]c=

0 to prove that x1 M lies in I and is either zero or a linear combination of
hyperwords.

Now, x2 M is a product of nonincreasing hyperwords or is zero, for each element
in (5-34), so I is an ideal of B containing 1; hence I=B. Since the elements in
(5-34) are a basis of B(V ), the map φ is an isomorphism. �

5E. Presentation when the braiding is of Cartan type. In this subsection, we
present the Nichols algebra of a diagonal braiding vector space of Cartan type with
matrix (qi j ), by generators and relations. This was established in [Andruskiewitsch
and Schneider 2002a, Theorem 4.5] assuming that qi i has odd order and that order
is not divisible by 3 if i belongs to a component of type G2. The proof in loc. cit.
combines a reduction to symmetric (qi j ) by twisting, with results from [Andersen
et al. 1994] and [De Concini and Procesi 1993]. We also note that some particular
instances were already proved earlier in this section.

Fix a standard braided vector space V with connected Dynkin diagram and an
i ∈ {1, . . . , θ}. Suppose that B is a quotient by an ideal I ∈ S of T (V ). Assume
moreover that V is not of type G2 and that

(5-3) holds in B if 1≤ i 6= j ≤ θ; (5-35)

(5-4) holds in B if mk j = mkl = 1 and m jl = 0; (5-36)

(5-6) holds in B if mk j = 2 and m jk = 1; (5-37)

(5-8) holds in B if mk j = 2, m jk = m jl = 1 and mkl = 0. (5-38)

Note that if (5-3) holds in an algebra with derivations Dk , then (2-11) holds also,
by Lemma 2.7. By Theorem 2.6, we have an algebra si (B) provided with skew
derivations Di . We set x̃k = (adc xi )

mik (xk)#1 ∈ si (B), for k 6= i , and x̃i = 1# y.
The elements generate si (B)

1 as a vector space.
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Lemma 5.23. Conditions (5-35)–(5-38) are satisfied with si (B) in lieu of B.

Proof of (5-35). Each mek + ej , 0 ≤ m ≤ mk j is an element of 1(B(Vi )), so
si (mek + ej ) ∈1(B(V )). Since we have a surjective morphism of braided graded
Hopf algebras B→B(V ), we have 1(B(V ))⊆1(B).

From Lemma 5.3, (adc x̃k)
m x̃ j = 0 if and only if x̃m

k x̃ j is a linear combination of
greater words, for an order in which x̃k < x̃ j (since we are considering the Cartan
case, the condition about the ordering of the x̃ j is satisfied). Note that x̃m

k x̃ j is the
unique Lyndon word of degree mek+ ej . Then, by the relation (2-15) between the
Hilbert series of B and si (B), the validity of (5-3) for si (B) is equivalent to the
condition

si ((mk j + 1)ek + ej ) /∈1
+(B).

(a) When k = i 6= j , this says that −ei + ej /∈1
+(B), so (5-3) holds.

(b) To prove (5-3) for si (B) when j = i , we show case by case that

(mki + 1)ek + ((mki + 1)mik − 1)ei /∈1
+(B).

• If mki = mik = 0, we have ek − ei /∈1
+(B).

• If mki = mik = 1, then 2ek + ei /∈1
+(B), because (ad xk)

2xi = 0.

• If mki = 1 and mik = 2, then 2ek + 3ei /∈ 1
+(B), since we can apply Lemma

5.5 to B, which satisfies (5-6) by assumption.

• If mki = 2 and mik = 1, then 3ek + 2ei /∈1
+(B), as before.

Thus (5-3) holds for each k 6= i .

(c) Now consider θ ≥ 3 and k, j 6= i .

• If mik =mi j = 0, then si (mek+ ej )=mek+ ej , and (mk j +1)ek+ ej /∈1
+(B),

since the quantum Serre relation holds in B.

• If mik = 1 and mi j = 0, then si (mek + ej ) = mei + mek + ej . If we assume
x j < xi < xk and look at the possible Lyndon words in SI , from (5-3), these
words have no factors x2

i xk, x j xi , so the only possibility is x j (xk xi )
m .

– If mk j = 0, then x j xk xi = qjk xk x j xi , so x j xk xi /∈ SI .
– If mk j = 1, then x j xk xl xk /∈ SI when mki = 1, since (5-4) is valid in B;

while if mki = 2 we have qkk 6= −1 and

x j (xk xi )
2
= (1+ qkk)

−1q−1
ki x j x2

k x2
i + (1+ qkk)

−1qki q2
kk x j xi x2

k xi

= q−1
ki q−1

k j q−2
kk xk x j xk x2

i + (1+ qkk)
−1q−1

ki q−2
k j q−2

kk x2
k x j x2

i

+ (1+ qkk)
−1qki q2

kkqj i xi x j x2
k xi .

In both cases, x j (xk xi )
2 /∈ SI .
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– If mk j = 2, then mki = m jk = 1 and qkk 6= −1. The proof is similar to the
previous case.

• If mik = 2,mi j = 0, then si (mek + ej ) = 2mei + mek + ej and mk j = 0, 1.
When mk j = 0, the proof is clear as above. When mk j = 1, for j < k < i and
considering only the quantum Serre relations, the only possible Lyndon word is
x j (xk x2

i )
2. But since

[
[x2

i xk]c, [xi xk]c
]

c = 0, we deduce that such a word is not
in SI .

• If mik =0,mi j =1, then si (mek+ej )= ei+mek+ej . If k< i < j , note that from
xk xi , xmk j+1

k x j /∈ SI , there are no Lyndon words of degree ei + (mk j + 1)ek + ej

in SI .

• If mik=0,mi j =2, then si (mek+ej )=2ei+mek+ej , and the proof is analogous
to the previous case.

• If mik = mi j = 1, then mk j = 0, and si (ek + ej )= 2ei + ek + ej , which is not in
1+(B) from Lemma 5.4.

• If mik = 2,mi j = 1 (it is analogous to mik = 1,mi j = 2), then mk j = 0 and
si (ek+ ej )= 3ei + ek+ ej . In this way we get qi i 6= −1, and if xk < xi < x j the
unique Lyndon word without x2

i x j or xk x3
i as factors is

xk x2
i x j xi = (1+ qi i )

−1q−1
i j xk x3

i x j + (1+ qi i )
−1q2

i i qi j xk xi x j x2
i

∈ k(xi xk x2
i x j )+ k(x2

i xk xi x j )+ k(x3
i xk x j )+ k(xk xi x j x2

i ),

using the quantum Serre relations; hence there are no Lyndon words of degree
3ei + ek + ej in SI .

So, (5-3) holds, for each k, j 6= i, k 6= j . �

Proof of (5-36). Assume mk j = mkl = 1. We prove case by case that

si (2ek + ej + el) /∈1
+(B).

• If mi j =mik =mil = 0, then si (2ek+ej +el)= 2ek+ej +el , so it follows from
Lemma 5.4, because 2ek + ej + el /∈1

+(B).

• If mi j 6= 0 (analogously, if mil 6= 0), then mik = mil = 0, because there are no
cycles in the Dynkin diagram. Then si (2ek+ ej + el)= 2ek+ ej + el +mi j ei . If
we consider xk < xl < x j < xi , using the equalities xk xi =qki xi xk , x j xl =qjl xl x j

and xl xi = qli xi xl , and also that x2
k xl, x2

k x j /∈ SI , we conclude that no possible
Lyndon words of degree 2ek + ej + el +mi j ei can be an element of SI , except
xk xl xk x j x

mi j
i ; but this, too, is not an element of SI , because xk xl xk x j /∈ SI . Hence

2ek + ej + el +mi j ei /∈1
+(B).

• If mik = 1, and therefore mi j =mil = 0, then si (2ek+ ej + el)= 2ek+ ej + el+

2mikei . If we consider xl < xi < xk < x j , using the equalities x j xi = qj i xi x j ,
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x j xl = qjl xl x j and xl xi = qli xi xl , and also that x2
k xl, x2

k x j /∈ SI , we discard
as before all possible Lyndon words of degree 2ek + ej + el + 2mikei , except
xl xk x j xk x2mi j

i ; but this is not an element of SI , because xk xl xk x j /∈ SI . Thus
2ek + ej + el + 2mi j ei /∈1

+(B).

• If i = j (analogously, if i = l), then sj (2ek+ej +el)= 2ek+ej +el /∈1
+(B) if

m jk = 1 by Lemma 5.4, or sj (2ek+ej+el)= 2ek+3ej+el /∈1
+(B) if m jk = 2

by Lemma 5.5.

• If i = k, then sk(2ek + ej + el)= ej + el /∈1
+(B), since m jl = 0.

Also, if u∈ {ek+ej , ek+el, ek, ej , el}, then u∈1(B(Vi )), so si (u)∈1(B(V )).
The canonical surjective algebra morphisms from T (V ) to B and B(V ) induce a
surjective algebra morphism B→B(V ), so1(B(V ))⊆1(B); in particular, each
si (u) lies in 1(B).

Consider a basis as in Proposition 1.11 for an order such that x j < xk < xl . From
Lemma 2.7, x j xk , xk xl , x j xk xl are elements of this basis, since they are not linear
combinations of greater words modulo Ii , the ideal of T (Vi ) such that si (B) =

T (Vi )/Ii . In the same way, (xk xl)(x j xk), xl xk(x j xk), (xk xl)xk x j , xk(x j xk xl), xl x2
k x j

(if x2
k 6= 0) are elements of this basis, where the parenthesis indicates the Lyndon

decomposition as nonincreasing products of Lyndon words. Also, x j xl , x j x2
k , x2

k xl

are not in this basis, by (5-3). By the relation (2-15) between Hilbert series and
the fact that 2ek + ej + el /∈ si

(
1+(B)

)
, we note that x j xk xl xk is not an element

of the basis. Thus this word is a linear combination of greater words. By Lemma
5.4, this implies that (5-4) holds in si (B). �

Proof of (5-37). As before, we prove first that si (3ek+2ej ) /∈1
+(B) case by case:

• If mik = mi j = 0, then si (3ek + 2ej )= 3ek + 2ej /∈1
+(B) by assumption.

• If mik = 0,mi j = 1, then si (3ek+2ej )= 2ei+3ek+2ej . If we consider an order
such that xk < xi < x j , a Lyndon word of degree 2ei+3ek+2ej in SI begins with
xk , and xk xi is not a factor, because xk xi = qki xi x j . Thus the possible Lyndon
words with these conditions are x2

k x j xi xk x j xi and x2
k x j xk x j x2

i ; the first is not in
SI because from (5-4) for j, k, i we can express x j xi xk x j as a linear combination
of greater words, and the second is not in SI because x2

k x j xk x j /∈ SI .

• If mik = 1,mi j = 0, then si (3ek + 2ej ) = 3ei + 3ek + 2ej . If we consider an
order such that x j < xi < xk , a Lyndon word of degree 3ei + 3ek + 2ej in SI

begins with x j , and x j xi is not a factor. Using that also x2
i xk, x2

j xk /∈ SI , the
possible Lyndon word under these conditions is x j xk xi x j xk xi xk xi . But from the
condition on the mrs , we are in cases Cθ or F4, and we use that (ad xi )

2xk = 0,
qi i 6= −1 to replace xi xk xi by a linear combination of x2

i xk and xk x2
i , and also

use x j xi = qj i xi x j , so we conclude that x j xk xi x j xk xi xk xi /∈ SI .

• If i = j , then sj (3ek + 2ej )= 3ek + ej /∈1
+(B), since mk j = 2.
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• If i = k, then sk(3ek + 2ej )= ek + 2ej /∈1
+(B), since m jk = 1.

If v ∈ {ek+ej , 2ek+ej , ek, ej }, then v ∈1(B(Vi )), so si (v) ∈1(B(V )). Since
1(B(V ))⊆1(B); in particular, each v lies in si (1(B)).

As in (a), consider a basis as in Proposition 1.11 for an order such that xk< x j . In
a similar way, xk x j , x2

k x j are elements of this basis, but x3
k x j and xk x2

j are not in this
basis by (5-3). By Lemma 2.7, (xk x j )(x2

k x j ), x j (x2
k x j )xk , (xk x j )

2xk , x j (xk x j )x2
k ,

x2
j x3

k (the last if x2
j , x3

k 6= 0) are not linear combinations of greater words modulo
Ii , so they are elements of the chosen basis. By the relation (2-15) between Hilbert
series and the fact that 3ek + 2ej /∈ si

(
1+(B)

)
, the Lyndon word x2

k x j xk x j is not
an element of the basis. Thus this word is a linear combination of greater words,
and by Lemma 5.5, this implies that (5-6) holds in si (B). �

Proof of (5-38). We prove case by case that

si (3ek + 2ej + el) /∈1
+(B).

• If mik =mi j =mil = 0, then si (3ek + 2ej + el)= 3ek + 2ej + el , and this is not
in 1+(B) by Lemma 5.6.

• If i 6= j, k, l and mik 6= 0, the only possibility is mik =mki = 1, so V is of type
F4. Thus si (3ek+2ej+el)= 3ei+3ek+2ej+el . For the order xl < x j < xk < xi ,
the only possible Lyndon word without the factors xl x2

j , xl xk , xl xi , x2
j xk , x j xi ,

xk x2
i , x2

k xi is xl x j xk xi x j xk xi xk xi . Using the quantum Serre relations and the
fact that qi i = qkk 6= −1, we see that this Lyndon word is not in SI . Thus
3ei + 3ek + 2ej + el /∈1

+(B).

• i 6= j, k, l and mi j 6= 0: there are no standard braided vector spaces with these
values.

• If i 6= j, k, l and mil 6= 0, the unique possibility is mil = mli = 1. In this case
si (3ek + 2ej + el) = 3ek + 2ej + el + ei . If we consider xk < x j < xl < xi , the
only possible Lyndon word of this degree without the factors xk xl , xk xi , x j xi ,
x3

k x j , xk x2
j is x2

k x j xl xi xk xi . But by assumption,[
[x2

k x j xl]c, [xk x j ]c
]

c =
[
xi , [xk x j ]c

]
c = 0,

so [x2
k x j xl xi xk xi ]c =

[
[x2

k x j xl xi ]c, [xk x j ]c
]

c = 0, and x2
k x j xl xi xk xi /∈ SI .

• If i = k, then si (3ei + 2ej + el)= ei + 2ej + el /∈1
+(B), by Lemma 5.4.

• If i = j , then si (3ek + 2ei + el)= 3ek + 2ei + el /∈1
+(B), by Lemma 5.6.

• If i = k, then si (3ek + 2ej + ei )= ek + 2ej + ei /∈1
+(B), as before.

Now, if w∈ {ek, ej , el, ek+ej , ek+ej+el, 2ek+ej , 2ek+ej+el, 2ek+2ej+el},
then w ∈1(B(Vi )), so si (w) ∈1(B(V )), hence si (w) ∈1(B).
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Consider a basis as in Proposition 1.11 for an order such that xk < x j < xl .
Then x j xk and xk xl are elements of this basis. We know that xk xl , x3

k x j , xk x2
j ,

xk x j xl xk , x2
k x j xk x j are not elements of the basis, since (5-3), (5-4) and (5-6) hold

in B. By Lemma 2.7, the relation (2-15) between Hilbert series and the fact that
3ek + 2ej + el /∈ si (1

+(B)), the Lyndon word x2
k x j xl xk x j is not an element of the

basis. Thus this word is a linear combination of greater words. By Lemma 5.6,
this implies that (5-8) holds in si (B). �

This concludes the proof of Lemma 5.23. Note also that si (B) is of the same
type as B.

Let V be of a type different from G2. We define the algebra B̂(V ) :=T (V )/I(V ),
where I(V ) is the two-sided ideal of T (V ) generated by

• (adc xk)
mk j+1x j , k 6= j ;

•

[
(adc x j )(adc xk)xl, xk

]
c, l 6= k 6= j , qkk =−1, mk j = mkl = 1;

•

[
(adc xk)

2x j , (adc xk)x j
]

c, k 6= j , qkk ∈ G3 or qj j =−1, mk j = 2,m jk = 1;

•

[
(adc xk)

2(adc x j )xl, (adc xk)x j
]

c, k 6= j 6= l, qkk ∈ G3 or qj j = −1, mk j = 2,
m jk = m jl = 1.

(Compare with the definitions in Section 4 of [Andruskiewitsch and Schneider
2002a].) Since V is of Cartan type, I(V ) is a Hopf ideal, by Lemmas 5.7–5.9.
Since I(V ) also is Zθ -homogeneous, we have I(V ) ∈S.

By Lemmas 5.4–5.6, the canonical epimorphism T (V ) → B(V ) induces an
epimorphism of braided graded Hopf algebras

πV : B̂(V )→B(V ). (5-39)

Also, B̂(V ) satisfies the conditions in Theorem 2.6 for each i ∈ {1, . . . , θ}, so
we can transform it.

Lemma 5.24. With the notation above, si (B̂(V ))∼= B̂(Vi ).

Proof. By Lemma 5.23, the relations defining I(Vi ) are satisfied in si (B̂(V )).
Thus the canonical projections from T (Vi ) onto B̂(Vi ) and si (B̂(V )) induce a
surjective algebra map B̂(Vi ) → si (B̂(V )). Conversely, each relation defining
I(V ) is satisfied in si (B̂(Vi )), so we have the following situation:

B̂(V ) // //

(((h(h(h(h(h(h(h(h
si (B̂(Vi ))

B̂(Vi )
// //

666v6v6v6v6v6v6v6v

si (B̂(V )).
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From the relation (2-15) between Hilbert series, we have, for each u ∈ Nθ ,

dim si (B̂(V ))u =
∑

k∈N:u−kei∈Nθ

si (u−kei )∈Nθ

dim B̂(V )si (u−kei ),

and a analogous relation for dim si (B̂(Vi ))
u. But in view of the previous surjections

we have

dim si (B̂(V ))u ≤ dim B̂(Vi )
u, dim si (B̂(Vi ))

u
≤ dim B̂(V )u,

for each u ∈Nθ . Since s2
i = id, each of these inequalities is in fact an equality, and

si (B̂(V ))= B̂(Vi ). �

We are now able to prove one of the main results of this paper.

Theorem 5.25. Let V be a braided vector space of Cartan type, of dimension θ ,
and C = (ai j )i, j∈{1,...,θ} the corresponding finite Cartan matrix, where ai j :=−mi j .

The Nichols algebra B(V ) is presented by the generators xi , for 1≤ i ≤ θ , and
the relations

x Nα
α = 0, α ∈1+, (5-40)

adc(xk)
1−ak j (x j )= 0, k 6= j. (5-41)

If there exist j 6= k 6= l such that mk j = mkl = 1, qkk =−1, then[
(ad xk)x j , (ad xk)xl

]
c = 0. (5-42)

If there exist k 6= j such that mk j = 2,m jk = 1, qkk ∈ G3 or qj j =−1, then[
(ad xk)

2x j , (ad xk)x j
]

c = 0. (5-43)

If there exist k 6= j 6= l such that mk j = 2,m jk = m jl = 1, qkk ∈ G3 or qj j = −1,
then [

(ad xk)
2(ad x j )xl, (ad xk)x j

]
c = 0. (5-44)

If θ = 2, V if of type G2, and q11 ∈ G4 or q22 =−1, then[
(ad x1)

3x2, (ad x1)
2x2
]

c = 0, (5-45)[
x1,
[
x2

1 x2x1x2
]

c

]
c = 0, (5-46)[[

x2
1 x2x1x2

]
c , [x1x2]c

]
c = 0, (5-47)[[

x2
1 x2
]

c ,
[
x2

1 x2x1x2
]

c

]
c = 0. (5-48)

The following elements constitute a basis of B(V ):

xh1
β1

xh2
β2
. . . xh P

βP
, where 0≤ h j ≤ Nβj − 1, if βj ∈ SI , for 1≤ j ≤ P.
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Proof. We may assume that C is connected. For V of type G2, the result was
proved in Theorem 5.22. So we can assume mk j 6= 3, k 6= j .

The statement about the PBW basis was proved in Corollary 4.2; see the defi-
nition of the xα in Section 4B.

Consider the images of the xα in B̂(V ); they correspond in B(V ) with the xα,
and are PBW generators for a basis constructed as in Theorem 1.12, considering
the same order in the letters. As we observed in (5-39), there exists a surjective
morphism of braided Hopf algebras B̂(V )→B(V ), so

1(B(V ))⊆1(B̂(V )).

Also, B̂(V ) satisfies the conditions in Theorem 2.6 for each i ∈{1, . . . , θ}, so we
can transform it. By Lemma 5.24, the new algebra is B̂(Vi ), so we can continue.
Consider the sets

1̂ :=
⋃
{1(si1 . . . sik B̂) : k ∈ N, 1≤ i1, . . . , ik ≤ θ}, 1̂+ :=1∩Nθ

;

1̂ is invariant by the si . Also, 1(B(V ))⊆1, and

1(si1 . . . sik B̂(V ))= si1 . . . sik1(B̂(V )).

Consider α ∈ 1̂+ \ 1+(B(V )). Suppose that α is not of the form mαi for
m ∈ N and i ∈ {1, . . . , θ}, and that it is of minimal height among such roots. For
each si , since α is not a multiple of αi , we have si (α) ∈ 1

+
\1+ (B(V )); hence

deg si (α)− degα ≥ 0. But α =
∑θ

i=1 bi ei , so
∑θ

i=1 bi ai j ≤ 0, and since bi ≥ 0,
we have

∑θ
i, j=1 bi ai j bj ≤ 0. This contradicts the fact that (ai j ) is definite positive,

and (bi )≥ 0, (bi ) 6= 0.
Also, mei ∈1

+(B̂)⇐⇒ m = Nei or m = 1, since x
Nei
i 6= 0. Hence

1(B̂(V ))=1(B(V ))∪ {Nαα : α ∈1(B(V ))}.

This follows since by Corollary 4.2 each α ∈1+(B(V )) is of the form

α = si1 · · · sim (ej ), i1, . . . , im, j ∈ {1, . . . , θ} .

Now, Nej ej ∈1(B̂(V )), so

Nαα = Nejα = si1 . . . sim (Nej ej ) ∈1(B̂(V )).

Also, each degree Nαα has multiplicity one in 1(B̂(V )).
Suppose there exist Lyndon words of degree Nαα, and consider one such word

u of minimal height. Let u = vw be a Shirshov decomposition thereof, and put

β := deg v, γ := degw ∈1+(B̂(V )).
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By the preceding assumption, β, γ ∈1+(B(V )). Write

α =
θ∑

k=1
akek, β =

θ∑
k=1

bkek, γ =
θ∑

k=1
ckek,

so Nαak = bk+ck , for each k ∈ {1, . . . , θ}. We can assume, by taking a subdiagram
if necessary, that a1, aθ 6= 0.

Now, if V is of type F4 and β = 2e1 + 3e2 + 4e3 + 3e4, then c1 = 0, a1 = 1,
Nα = 2, or a1 = c1 = 1, Nα = 3, since α, γ 6= β.

• If Nα = 3, then 3a2 = 3+ c2. Hence c2 = 0, so c3 = c4 = 0, or c2 = 3, and
c3 = 4, c4 = 2. But in both cases we have a contradiction to α ∈ N4.

• If Nα = 2, c1 = 0, then c2 and c4 are odd, and c3 is even and nonzero. The only
possibility is γ = e2+2e3+ e4, so α = e1+2e2+3e3+2e4. But qα = q 6= −1,
so Nα 6= 2, which is a contradiction.

Thus we can assume b1, c1 ≤ 1 or bθ , cθ ≤ 1, so a1 = b1 = c1 = 1 or aθ = bθ =
cθ = 1; in both cases, Nα = 2. For each possible β with b1 6= 0 (by the assumption
that a1 6= 0, we have b1 6= 0 or c1 6= 0), we look for γ such that β + γ has even
coordinates. In types A, D and E there are no such pairs of roots. As for the other
types:

• Bθ : β = viθ , γ = ui+1,θ . Then α = u1θ , but qα = q11 6= −1, which is a
contradiction.

• Cθ : β=w11, γ = eθ . Then α=u1θ , but qα=qθθ 6=−1, which is a contradiction.

• F4: β = e1+ e2+ 2e3+ 2e4, γ = e1+ e2, or β = e1+ 2e2+ 2e3+ 2e4, γ = e1.
In both cases, α = e1+ e2+ e3+ e4, but qα = q 6= −1, which is a contradiction.

Thus each root Nαα corresponds to x Nα
α , and each xα has infinite height, as

before. The elements

xh1
β1

xh2
β2
. . . xh P

βP
, where 0≤ h j <∞, if βj ∈ SI , for 1≤ j ≤ P,

form a basis of B̂(V ) as a vector space.
Now let Ī (V ) be the ideal of T (V ) generated by the relations (5-41)–(5-44) and

(5-40). We have I(V )⊆ Ī (V )⊆ I (V ), so the corresponding projections induce a
surjective morphism of algebras φ :B→B(V ), where B := T (V )/ Ī (V ):

T (V )

����

// // B̂(V )

{{{{vvv
vv

vv
vv

����
B(V ) B

φ
oooo
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Also, the elements

xh1
β1

xh2
β2
. . . xh P

βP
, where 0≤ h j < Nβj , if βj ∈ SI , for 1≤ j ≤ P,

generate B as a vector space, because they correspond to images of generators of
B̂(V ) and are nonzero (as before, each nonincreasing product of hyperwords such
that h j ≥ Nβj is zero in B). But φ is surjective, and the corresponding images of
these elements form a basis of B(V ), so φ is an isomorphism. �
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Frobenius splittings of toric varieties
Sam Payne

We discuss a characteristic free version of Frobenius splittings for toric varieties
and give a polyhedral criterion for a toric variety to be diagonally split. We apply
this criterion to show that section rings of nef line bundles on diagonally split
toric varieties are normally presented and Koszul, and that Schubert varieties are
not diagonally split in general.

1. Introduction

Fix an integer q greater than one. Let T = Spec Z[M] be the torus with character
lattice M , and let N be the dual lattice. Let 6 be a complete fan in NR, with
X = X (6) the associated toric variety over Z. Multiplication by q preserves the
fan and maps the lattice N into itself, and therefore gives an endomorphism

F : X→ X.

Each T -orbit in X is a torus that is preserved by F , which acts by taking a point
t to t q . For example, if X is projective space, then F is given in homogeneous
coordinates by

[x0 : · · · : xn] 7→ [x
q
0 : · · · : x

q
n ].

If q is prime and k is the field with q elements, then the restriction of F to the
variety Xk is the absolute Frobenius morphism. Pulling back functions by F gives
a natural inclusion of OX -algebras F∗ : OX ↪→ F∗OX .

Definition 1.1. A splitting of X is an OX -module map π : F∗OX → OX such that
the composition π ◦ F∗ is the identity on OX .

Standard results from the theory of Frobenius splittings generalize in a straightfor-
ward way to these splittings of toric varieties. See Section 2 for details.

If Y is a subvariety of X cut out by an ideal sheaf IY and π(F∗ IY ) is contained
in IY then we say that π is compatible with Y . If Y is a toric variety embedded
equivariantly in X , the closure of a subtorus of an orbit in X , then a splitting
compatible with Y induces a splitting of Y . We say that X is diagonally split if
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there is a splitting of X×X that is compatible with the diagonal, for some q. Such
splittings are of particular interest; by classic arguments of Mehta, Ramanan and
Ramanathan, if X is diagonally split then every ample line bundle on X is very
ample and defines a projectively normal embedding.

Our main result is a polyhedral criterion for a toric variety to be diagonally split.
Let vρ denote the primitive generator of a ray, or one-dimensional cone, in 6. Let
MR = M ⊗Z R, and let the diagonal splitting polytope FX be defined by

FX = {u ∈ MR | −1≤ 〈u, vρ〉 ≤ 1 for all ρ ∈6}.

We write 1
q M for the subgroup of MR consisting of fractional lattice points u such

that qu is in M .

Theorem 1.2. The toric variety X is diagonally split if and only if the interior of
FX contains representatives of every equivalence class in 1

q M/M.

While the existence of a compatible splitting of the diagonal in X × X implies
that section rings of ample line bundles on X are generated in degree one, com-
patible splittings of large semidiagonals in products of multiple copies of X give
further information on these section rings. For example, if the union of 1× X and
X×1 is compatibly split in X× X× X , where 1 is the diagonal in X× X , then it
follows from standard arguments that the section ring of each ample line bundle on
X is normally presented, that is, generated in degree one with relations generated
in degree two. For fixed n greater than one, let 1i be the large semidiagonal

1i = X i−1
×1× Xn−i−1,

for 1≤ i < n.

Theorem 1.3. Let X be a diagonally split toric variety. Then 11 ∪ · · · ∪1n−1 is
compatibly split in Xn .

In particular, if X is diagonally split then the union of 1× X and X ×1 is com-
patibly split in X × X × X , so the section ring of any ample line bundle on X is
normally presented. Analogous results hold for any finite collection of nef line
bundles on X , as we now discuss.

For line bundles L1, . . . , Lr on X , let R(L1, . . . , Lr ) be the section ring

R(L1, . . . , Lr )=
⊕

(α1,...,αr )∈Nr

H 0(X, Lα1
1 ⊗ · · ·⊗ Lαr

r ).

We consider R(L1, . . . , Lr ) as a graded ring, where the degree of

H 0(X, Lα1
1 ⊗ · · ·⊗ Lαr

r )

is α1+ · · · + αr . In particular, the degree zero part of R(L1, . . . , Lr ) is Z. Recall
that a graded ring R is Koszul if the ideal generated by elements of positive degree
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has a linear resolution as an R-module. See [Polishchuk and Positselski 2005] for
background on Koszul rings and further details.

Theorem 1.4. Let X be a complete, diagonally split toric variety, and let

L1, . . . , Lr

be nef line bundles on X. Then the section ring R(L1, . . . , Lr ) is normally pre-
sented and Koszul.

In particular, if X is diagonally split then the section ring of any ample line bundle
on X is normally presented and Koszul. Well-known open problems ask whether
every ample line bundle on a smooth projective toric variety gives a projectively
normal embedding [Oda 1997] and, if so, whether its section ring is normally
presented [Sturmfels 1996, Conjecture 13.19]. When the section ring is normally
presented, it is natural to ask whether it is also Koszul. Addressing these questions
and their analogues for singular toric varieties in as many cases as possible is one
of the main motivations behind this work.

Remark 1.5. The section ring R(L1, . . . , Lr ) associated to a finite collection of
line bundles is canonically identified with the section ring of the line bundle O(1)
on the projectivized vector bundle P(L1⊕· · ·⊕Lr ), which is also a toric variety. If
L1, . . . , Lr are nef and correspond to polytopes P1, . . . , Pr , then the Cayley sum
is the polytope associated to O(1). Cayley sums have also appeared prominently in
recent work related to boundedness questions in toric mirror symmetry [Batyrev
and Nill 2008; 2007; Haase et al. 2008].

Remark 1.6. Frobenius morphisms and their lifts to characteristic zero have been
used powerfully in several other contexts related to the geometry of toric varieties,
including by Buch, Lauritzen, Mehta and Thomsen [1997] to prove Bott vanishing
and degeneration of the Hodge to de Rham spectral sequence, by Totaro [199?] to
give a splitting of the weight filtration on Borel–Moore homology, by Smith [2000]
to prove global F-regularity, by Brylinski and Zhang [2003] to prove degeneration
of a spectral sequence computing equivariant cohomology with rational coeffi-
cients, and by Fujino [2007] to prove vanishing theorems for vector bundles and
reflexive sheaves. Frobenius splittings have also played a role in unsuccessful
attempts to show that section rings of ample line bundles on smooth toric varieties
are normally presented [Bøgvad 1995]. We hope that this work will help revive the
insight of Bøgvad and others into the potential usefulness of Frobenius splittings
as a tool for understanding ample line bundles on toric varieties.

We conclude the introduction with an example illustrating Theorem 1.2 for
Hirzebruch surfaces. As mentioned earlier, the proofs that section rings of ample
line bundles on Schubert varieties are normally presented and Koszul via Frobenius
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splittings involved compatible splittings of semidiagonals in (G/B)n . It has been
an open question for over twenty years whether Schubert varieties themselves are
diagonally split (see [Ramanathan 1987, Remark 3.6] and [Brion and Kumar 2005,
p. 81]). The following example gives a negative answer: the Hirzebruch surface
F3 is a Schubert variety in the G2-flag variety, and F3 is not diagonally split.

Remark 1.7. To see that F3 occurs as a Schubert variety in the G2-flag variety,
first note that for any G, G/B is a P1-bundle over G/P , where P is a minimal
parabolic subgroup. If w = s1s2 is an element of length two in the Weyl group of
G, and P is the minimal parabolic corresponding to s1, then Xw is a P1-bundle
over its image, which is a rational curve in G/P . In particular, Xw is a Hirzebruch
surface. Then Xs1 is a rational curve in Xw with self-intersection 〈α2, α

∨

1 〉, where
αi is the simple root corresponding to si , and α∨i = 2αi/〈αi , αi 〉. See [Kempf 1976,
Section 2] for details. For G2, we can choose coordinates identifying the root lattice
with the sublattice of Z3 consisting of those (a1, a2, a3) such that a1+a2+a3= 0,
with simple roots α1 = (1,−1, 0) and α2 = (−1, 2,−1). Then Xs1 is a curve of
self-intersection−3 in Xw, and hence Xw is isomorphic to F3. See also [Anderson
2007] for a detailed study of the G2-flag variety and its Schubert varieties.

Example 1.8. Let a be a nonnegative integer, and let 6 be the complete fan in
R2 whose rays are spanned by (1, 0), (0, 1), (0,−1), and (−1, a). Then X (6) is
isomorphic to the Hirzebruch surface Fa , the projectivization of the vector bundle
OP1 ⊕ OP1(a) [Fulton 1993, pp. 7–8]. Let q ≥ 2 be an integer. By Theorem 1.2,
X is diagonally split if and only if the fractional lattice points in the interior of
FX represent every equivalence class in 1

q Z2/Z2. The polytopes FX for different
values of a are shown below.

a = 0 a  = 1

If a is equal to 0 or 1, the interior of FX contains the half open unit square
[0, 1)×[0, 1), which contains representatives of every equivalence class in 1

q Z2/Z2.
Therefore, F0 and F1 are diagonally split for all q.

If a = 2, then FX is the parallelogram with vertices (±1, 0), ±(1, 1). For
0 ≤ m < q, the interior of this intersection contains the fractional lattice points
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(m/q, n/q) for (m−q)/2< n< (m+q)/2. If q is odd, then these represent every
equivalence class in 1

q Z2/Z2. In particular, F2 is diagonally split for q odd.
If a is greater than two, then FX is the parallelogram with vertices (±1, 0),
±(1, 2/a). The only points in the interior of this intersection whose first coordinate
is integral, are of the form (0, y) for−1/a< y<1/a. In particular, the equivalence
class of (0, bq/2c/q) in 1

q Z2/Z2 is not represented by any point in the interior of
this intersection. Therefore, Fa is not diagonally split for a greater than two.

a = 2 a > 2

(0, 1/a)

2. Preliminaries

Frobenius splittings were introduced and developed by Mehta, Ramanathan, and
their collaborators in the 1980s. The original paper of Mehta and Ramanathan is
exceedingly well written and remains an excellent first introduction to the subject
[1985]. Frobenius splittings were rapidly applied to give elegant unified proofs that
all ample line bundles on generalized Schubert varieties of all types are very ample
and give projectively normal embeddings whose images are cut out by quadrics
[Ramanan and Ramanathan 1985; Ramanathan 1987]. Inamdar and Mehta [1994],
and independently Bezrukavnikov [1995], later showed that the homogeneous co-
ordinate rings of these embeddings are Koszul. In characteristic zero, these results
are deduced from the positive characteristic case using general semicontinuity the-
orems. See the recent book of Brion and Kumar [2005] for a unified exposition
of these results, along with further details, references, and applications. On toric
varieties, the Frobenius endomorphisms lift to endomorphisms over Z, and it seems
easiest and most natural to work independently of the characteristic using these
lifted endomorphisms. One feature of this approach is that we can prove results
about section rings of toric varieties over Z, or an arbitrary field, by producing a
splitting of the diagonal in X × X for a single q .

We begin by considering the structure of F∗OX as an OX -module. As a sheaf of
groups, F∗OX evaluated on the invariant affine open set Uσ associated to a cone
σ ∈6 is the coordinate ring Z[Uσ ], which is usually identified with the semigroup
ring Z[σ∨ ∩M]. However, the module structure on F∗Z[Uσ ] is different from the
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action of Z[Uσ ] on itself. For this reason, we identify F∗Z[Uσ ] with the semigroup
ring of fractional lattice points

F∗Z[Uσ ] = Z[σ∨ ∩ 1
q M],

taking a monomial xu
∈ Z[Uσ ] to xu/q . The action of Z[Uσ ] on F∗Z[Uσ ] is then

induced by the natural action of M on 1
q M , so

xu
· xu′
= xu+u′,

for u ∈ M and u′ ∈ 1
q M . If Y is a toric variety embedded equivariantly in X , then

a splitting π is compatible with Y if and only if the induced map

Z[Uσ ]
∼
−→ Z[σ∨ ∩ 1

q M]
π
−→ Z[Uσ ]

maps IY (Uσ ) into IY (Uσ ) for every σ ∈6.
We now summarize some basic properties of compatible splittings and their

applications to section rings of ample line bundles. Let X be a complete toric
variety, and let L be a line bundle on X . A splitting π of X makes OX a direct
summand of F∗OX and hence L a direct summand of L⊗ F∗OX . By the projection
formula, L⊗F∗OX is isomorphic to F∗(F∗L), and we claim that F∗L is isomorphic
to Lq . To see this, note that there is a T -invariant Cartier divisor D such that L is
isomorphic to O(D) [Fulton 1993, Section 3.4]. The restriction of D to an invariant
affine open Uσ is the divisor of a rational function xu for some u ∈ M , and hence
the restriction of F∗D to Uσ is the divisor of xqu . It follows that F∗L is isomorphic
to Lq , as claimed. Now, since cohomology commutes with direct sums, π induces
a split injection

H i (X, L) ↪→ H i (X, Lq),

for every i . Iterating this argument gives split injections of H i (X, L) in H i (X, Lqr
)

for all positive integers r . In particular, if H i (X, Lqr
) vanishes for some r , as is

the case when L is ample, then H i (X, L) vanishes as well.
The proofs of the following five propositions are essentially identical to the stan-

dard proofs of the analogous results for Frobenius splittings, and are omitted. See
[Brion and Kumar 2005]; Proposition 1.2.1, Theorem 1.2.8, and Exercises 1.5.E.1,
1.5.E.2, and 1.5.E.3, respectively, for the case where the line bundles in question
are ample. The extensions to nef bundles can be deduced following the arguments
in [Inamdar 1994], using the fact that any nef line bundle on X is the pullback
of an ample line bundle on some toric variety X ′ under a proper birational toric
morphism f : X→ X ′.

Proposition 2.1. Let Y and Y ′ be toric varieties equivariantly embedded in X. If
Y ∪ Y ′ is split compatibly in X then Y , Y ′, and Y ∩ Y ′ are split compatibly in X.
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Proposition 2.2. Let Y be a compatibly split subvariety of X. If L is a nef line
bundle on X then the restriction map

H 0(X, L)→ H 0(Y, L)

is surjective and H 1(X, IY ⊗ L)= 0.

Proposition 2.3. Let L1, . . . , Lr be nef line bundles on X. If the diagonal is com-
patibly split in X × X then the section ring R(L1, . . . , Lr ) is normally generated.

Proposition 2.4. Let L1, . . . , Lr be nef line bundles on X. If the union of 1× X
and X ×1 is compatibly split in X × X × X then the section ring R(L1, . . . , Lr )

is normally presented.

Proposition 2.5. Let L1, . . . , Lr be nef line bundles on X. If 11 ∪ · · · ∪1n−1 is
compatibly split in Xn for every n then the section ring R(L1, . . . , Lr ) is normally
presented and Koszul.

3. Canonical splittings

Every toric variety has a splitting, and among all splittings of X there is a unique
one that extends to every toric compactification X ′ ⊃ X and lifts to every proper
birational toric modification X ′′ → X ′ of such a compactification. If q is prime
and k is the field with q elements, then the restriction of this splitting to Xk is
the unique Frobenius splitting that is canonical in the sense of Mathieu [Brion and
Kumar 2005, Chapter 4]. We now describe this canonical splitting, starting with
its restriction to the dense torus T .

Let π0 be the map of Z[T ]-modules from F∗Z[T ] to Z[T ] given by

π0(xu)=

{
xu if u ∈ M,
0 otherwise.

The pullback map F∗ :Z[T ]→ F∗Z[T ] is induced by the inclusion of M in 1
q M ; if

q is prime and k is the field with q elements, then the induced map k[T ]→ F∗k[T ]
may be identified with the inclusion of k[T ] in k[T ]1/q .

In particular, π0 ◦ F∗ is the identity, and hence gives a splitting of T .

Proposition 3.1. For any toric variety X , π0 extends to a splitting of X.

Proof. The composition π0 ◦ F∗ is the identity, and for each affine open Uσ , π0

maps Z[σ∨ ∩ 1
q M] into Z[σ∨ ∩M]. �

Properties of this canonical splitting π0 are closely related to Smith’s proof [2000,
Proposition 6.3] that toric varieties are globally F-regular.

Proposition 3.2. The canonical splitting π0 is compatible with every T -invariant
subvariety.
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Proof. First we claim that π0 is compatible with the union of the T -invariant
divisors. To see this, note that the ideal sheaf I of the union of the invariant divisors
is given by

I (Uσ )= Z[int(σ∨)∩M],

where int(σ∨) is the interior of σ∨. If u is a fractional lattice point in the interior of
σ∨ then π0(xu) is either zero or xu , and so is contained in I (Uσ ), which proves the
claim. The proposition then follows from Proposition 2.1, since every T -invariant
subvariety is an intersection of invariant divisors. �

However, if X is positive dimensional then the canonical splitting π0 of X × X is
not compatible with the diagonal 1. To see this, observe that if u ∈ 1

q M is not in
M , then 1− xu

⊗ x−u is in F∗ I1, but

π0(1− xu
⊗ x−u)= 1,

which is not in I1. To apply the standard techniques relating splittings to section
rings of ample line bundles discussed in Section 2, we must look for other splittings
of X× X , and X r for r greater than two, that are compatible with the diagonal and
the union of the large semidiagonals, respectively.

4. Splittings of diagonals

We now describe the space of all splittings of a toric variety and use this description
to characterize diagonally split toric varieties. First, it is helpful to consider the
structure of F∗OX as an OX -module in more detail.

Recall that an equivariant structure, or T -linearization, on a coherent sheaf F

on X is an isomorphism of sheaves on T × X ,

ϕ : µ∗F→ p∗F,

whereµ :T×X→ X is the torus action and p is the second projection, that satisfies
the usual cocycle condition [Brion and Kumar 2005, Section 2.1]. For example, the
natural equivariant structure on OX is given by 1⊗ xu

7→ x−u
⊗ xu . In general, the

push forward of an equivariant sheaf under an equivariant morphism does not carry
a natural equivariant structure. However, the equivariant endomorphism F has
the property that F∗OX is equivariantizable [Bøgvad 1998; Thomsen 2000]; it is
possible to choose an equivariant structure as follows. First, choose representatives
u1, . . . , us of the cosets in 1

q M/M . Let ϕ be the map from µ∗F∗OX to p∗F∗OX

that takes 1⊗ xu to xui−u
⊗ xu , for u in the coset ui + M . It is straightforward

to check that ϕ is an isomorphism and gives an equivariant structure on F∗OX , as
required.

A splitting of X restricts to a splitting of T , and two splittings of X agree if and
only if they agree on T , so we describe the space of all splittings of X in terms of
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splittings of T that extend to X , as follows. For fractional lattice points a ∈ 1
q M ,

let
πa : F∗Z[T ] → Z[T ]

be the map given by

πa(xu)=

{
xa+u if a+ u is in M,
0 otherwise.

Lemma 4.1. The set of maps πa , for a in 1
q M , is a Z-basis for

Hom(F∗Z[T ],Z[T ]).

Proof. The maps πa are independent, and the free generators xu1, . . . , xus for
F∗Z[T ] can be sent to an arbitrary s-tuple of elements of Z[T ] by a suitable linear
combination of the maps πa . �

If we choose an equivariant structure for Hom(F∗Z[T ],Z[T ]), as above, then the
maps πa form a T -eigenbasis. Therefore, a rational section

π = c1πa1 + · · ·+ crπar

of the sheaf Hom(F∗OX ,OX ), with each ci nonzero, extends to X if and only if
each πai is regular on X . For a ray, or one-dimensional cone ρ in 6, we write vρ
for the primitive generator of ρ.

Proposition 4.2. Let Uσ be an affine toric variety. Then πa is regular on Uσ if and
only if 〈a, vρ〉 is greater than minus one for each ray ρ in σ .

Proof. The map πa is regular on Uσ if and only if it takes

Z[σ∨ ∩ 1
q M]

into Z[σ∨ ∩ M]. Suppose 〈a, vρ〉 is greater than minus one for each ray ρ in σ
and u is in σ∨ ∩ 1

q M . Either πa(xu) is zero or a + u is in M and 〈u, vρ〉 is a
nonnegative integer for all rays ρ in σ , and hence a + u is in σ∨. Therefore πa

extends to Uσ . Conversely, if 〈a, vρ〉 is less than or equal to minus one for some
ρ, then it is straightforward to produce points u ∈ σ∨ such that a+ u is in M , but
not in σ∨. In this case, πa is not regular on Uσ . �

We follow the usual toric convention fixing K =−
∑

Dρ , the sum of the prime
T -invariant divisors each with multiplicity minus one, as a convenient represen-
tative of the canonical class. The polytope associated to a divisor D =

∑
dρDρ

is
PD = {u ∈ MR | 〈u, vρ〉 ≥ −dρ for all ρ}.

In particular, the polytope P−K associated to the anticanonical divisor is

P−K = {u ∈ MR | 〈u, vρ〉 ≥ −1 for all ρ}.
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The interior of the polytope P−K controls the space of OX -module maps from F∗OX

to OX as follows.

Proposition 4.3. The set of maps πa for fractional lattice points a in the interior
of P−K is a basis for Hom(F∗OX ,OX ).

Proof. If a is not in the interior of P−K then 〈a, vρ〉 is less than or equal to minus
one for some ray ρ ∈6 and then πa is not regular on Uρ . Conversely, if a is in the
interior of P−K , then πa extends to every invariant affine open subvariety of X , by
Proposition 4.2, and therefore is regular on X . �

Remark 4.4. When X is smooth, Proposition 4.3 corresponds to the natural iden-
tification between Hom(F∗OX ,OX ) and H 0(X, K 1−q

X ) given by duality for finite
flat morphisms [Brion and Kumar 2005, Section 1.3].

Proposition 4.5. A map
∑

caπa in Hom(F∗OX ,OX ) is a splitting if and only if
c0 = 1.

Proof. Zero is the only lattice point in the interior of P−K ∩M , so the image of xu

under π =
∑

caπa is equal to c0xu for u ∈ M . In particular, since F∗ maps xu to
xu in F∗OX , π ◦ F∗ is the identity if and only if c0 is equal to one. �

The set of splittings of X is an affine hyperplane in Hom(F∗OX ,OX ) by Proposition
4.5. For any subvariety Y ⊂ X , the condition that π(F∗ IY ) is contained in IY cuts
out a linear subspace of Hom(F∗OX ,OX ). So the set of splittings of X that are com-
patible with Y is an affine subspace of Hom(F∗OX ,OX ), which may be empty. We
now prove Theorem 1.2, which gives a necessary and sufficient condition for the
space of splittings of X× X that are compatible with the diagonal to be nonempty.

Proof of Theorem 1.2. Suppose

π =
∑

ca,a′πa,a′

is a splitting of X× X that is compatible with the diagonal. Then the restriction of
π to the dense torus is a splitting compatible with the diagonal in T × T . For any
u ∈ 1

q M , we have
1− xu

⊗ x−u

in F∗ I1, where I1 is the ideal of the diagonal in T ×T . Since π(1) is equal to one,
the restriction of π(xu

⊗ x−u) to the diagonal must also be equal to one. Now the
restriction of π(xu

⊗ x−u) to the diagonal is a Laurent polynomial in Z[T ] whose
constant term is ∑

a∈[u]

c−a,a,

where [u] is the coset of u in 1
q M/M . Since the polytope associated to −K X×X is

P−K X × P−K X , there must be a representative a of [u] such that both a and −a are
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contained in the interior of P−K X , which means that a is contained in the interior
of the diagonal splitting polytope

FX = P−K X ∩−P−K X .

For the converse, suppose that every nonzero equivalence class [ui ] in 1
q M/M

has a representative ai in the interior of FX . Then

π1 = π0+

s∑
i=1

πai ,−ai

is a splitting, and we claim that π1 is compatible with the diagonal. To see this, note
that the ideal of the diagonal in Uσ ×Uσ is generated by the Laurent polynomials
1− xu

⊗ x−u for u in σ∨ ∩M . Then F∗ I1 is generated as a Z[Uσ ×Uσ ]-module
by the

xb
− xb
· (xu
⊗ x−u),

as b= (b1, b2) ranges over 1
q (M×M) and u ranges over 1

q M . Now the restriction
of π1(xb) to the diagonal is xb1+b2 if b1 + b2 is in M and zero otherwise. In
particular, the restriction of π1(xb

− xb
· (xu
⊗ x−u)) to the diagonal vanishes, as

required. �

Proof of Theorem 1.3. Suppose the diagonal is compatibly split in X × X . Then
every nonzero equivalence class [u j ] in 1

q M/M is represented by a fractional lattice
point a j in the interior of FX , by Theorem 1.2.

A splitting of Xn is compatible with the union11∪· · ·∪1n−1 if it is compatible
with each1i . For u ∈M , let u(i) denote the lattice point in Mn whose only nonzero
coordinate is the i-th one, which is equal to u. The ideal of 1i is generated by the
functions

1− xu(i)
· x−u(i+1)

.

We claim that the splitting

π = π0+

n−1∑
i=1

∑
j

πa(i)j −a(i+1)
j

is compatible with 1i for 1 ≤ i < n, and hence with the union 11 ∪ · · · ∪1n−1.
The proof of the claim is then similar to the proof of Theorem 1.2 above, and the
theorem follows. �

Proof of Theorem 1.4. Suppose the diagonal is compatibly split in X × X . Then
11∪· · ·∪1n−1 is compatibly split in Xn for every n, by Theorem 1.3. Therefore,
for any nef line bundles L1, . . . , Lr on X the section ring R(L1, . . . , Lr ) is normal
and Koszul, by Proposition 2.5. �
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Remark 4.6. Pairs of opposite lattice points u and −u in the polytopes associ-
ated to anticanonical divisors have also appeared in relation to the classification
of smooth toric Fano varieties. In particular, Ewald [1988] conjectured twenty
years ago that if X is a smooth toric Fano variety then FX contains a basis for the
character lattice M . Ewald’s conjecture has been verified for smooth toric Fano
varieties of dimension less than or equal to seven by Øbro [2007, Section 4.1].
However, it remains unknown in higher dimensions whether there exists a single
nonzero lattice point u in FX [Kreuzer and Nill 2007, Section 4.6].
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