Vol. 3, No. 1, 2009

Download this article
Download this article For screen
For printing
Recent Issues

Volume 10
Issue 9, 1845–2052
Issue 8, 1601–1843
Issue 7, 1373–1600
Issue 6, 1147–1371
Issue 5, 939–1146
Issue 4, 695–938
Issue 3, 451–694
Issue 2, 215–450
Issue 1, 1–214

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Cover
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Subscriptions
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
On the additive dilogarithm

Sinan Ünver

Vol. 3 (2009), No. 1, 1–34
Abstract

Let k be a field of characteristic zero, and let k[ε]n := k[ε](εn). We construct an additive dilogarithm Li2,n : B2(k[ε]n) k(n1), where B2 is the Bloch group which is crucial in studying weight two motivic cohomology. We use this construction to show that the Bloch complex of k[ε]n has cohomology groups expressed in terms of the K-groups K()(k[ε]n) as expected. Finally we compare this construction to the construction of the additive dilogarithm by Bloch and Esnault defined on the complex Tn(2)(k).

Keywords
polylogarithms, additive polylogarithms, mixed Tate motives, Hilbert's 3rd problem
Mathematical Subject Classification 2000
Primary: 11G55
Milestones
Received: 14 September 2007
Revised: 1 November 2008
Accepted: 11 November 2008
Published: 1 February 2009
Authors
Sinan Ünver
Koç University
Department of Mathematics
Rumelifeneri Yolu
34450 Sarıyer-İstanbul
Turkey