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ALGEBRA AND NUMBER THEORY 3:3(2009)

On nondegeneracy of curves
Wouter Castryck and John Voight

We study the conditions under which an algebraic curve can be modeled by a
Laurent polynomial that is nondegenerate with respect to its Newton polytope.
We prove that every curve of genus g ≤ 4 over an algebraically closed field
is nondegenerate in the above sense. More generally, let Mnd

g be the locus of
nondegenerate curves inside the moduli space of curves of genus g≥ 2. Then we
show that dim Mnd

g =min(2g+1, 3g−3), except for g= 7 where dim Mnd
7 = 16;

thus, a generic curve of genus g is nondegenerate if and only if g ≤ 4.

Let k be a perfect field with algebraic closure k. Let f ∈ k[x±1, y±1
] be an

irreducible Laurent polynomial, and write f =
∑

(i, j)∈Z2 ci j x i y j . We denote by
supp( f )= {(i, j) ∈ Z2

: ci j 6= 0} the support of f , and we associate to f its New-
ton polytope 1=1( f ), the convex hull of supp( f ) in R2. We assume throughout
that 1 is 2-dimensional. For a face τ ⊂ 1, let f |τ =

∑
(i, j)∈τ ci j x i y j . We say

that f is nondegenerate if, for every face τ ⊂1 (of any dimension), the system of
equations

f |τ = x ∂ f |τ
∂x
= y ∂ f |τ

∂y
= 0 (1)

has no solutions in k∗2.
From the perspective of toric varieties, the condition of nondegeneracy can be

rephrased as follows. The Laurent polynomial f defines a curve U ( f ) in the torus
T2

k = Spec k[x±1, y±1
], and T2

k embeds canonically in the projective toric surface
X (1)k associated to 1 over k. Let V ( f ) be the Zariski closure of the curve U ( f )
inside X (1)k . Then f is nondegenerate if and only if for every face τ ⊂ 1,
the intersection V ( f ) ∩ Tτ is smooth of codimension 1 in Tτ , where Tτ is the
toric component of X (1)k associated to τ . (See Proposition 1.2 for alternative
characterizations.)

Nondegenerate polynomials have become popular objects in explicit algebraic
geometry, owing to their connection with toric geometry [Batyrev and Cox 1994]:
A wealth of geometric information about V ( f ) is contained in the combinatorics
of the Newton polytope 1( f ). The notion was first used by Kouchnirenko [1976],

MSC2000: primary 14M25; secondary 14H10.
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256 Wouter Castryck and John Voight

who studied nondegenerate polynomials in the context of singularity theory. Non-
denegerate polynomials also emerge naturally in the theory of sparse resultants
[Gel’fand et al. 1994] and admit a linear effective Nullstellensatz [Castryck et al.
2006, Section 2.3]. They make an appearance in the study of real algebraic curves
in maximal position [Mikhalkin 2000] and in the problem of enumerating curves
through a set of prescribed points [Mikhalkin 2003]. In the case where k is a
finite field, they arise in the construction of curves with many points [Beelen and
Pellikaan 2000; Kresch et al. 2002], in the p-adic cohomology theory of Adolphson
and Sperber [1989], and in explicit methods for computing zeta functions of vari-
eties over k [Castryck et al. 2006]. Despite their utility and seeming ubiquity, the
intrinsic property of nondegeneracy has not seen detailed study, with the exception
of the otherwise unpublished PhD thesis of Koelman [1991]; see Section 12 below.

We are therefore led to the central problem of this article: Which curves are
nondegenerate? To the extent that toric varieties are generalizations of projective
space, this question essentially asks us to generalize the characterization of nonsin-
gular plane curves amongst all curves. An immediate provocation for this question
was to understand the locus of curves to which the point counting algorithm of
Castryck, Denef, and Vercauteren [Castryck et al. 2006] actually applies. Our
results are collected in two parts.

In the first part, comprising Sections 3–7, we investigate the nondegeneracy of
some interesting classes of curves (hyperelliptic, Cab, and low genus curves). Our
conclusions can be summarized as follows.

Theorem. Let V be a curve of genus g over a perfect field k. Suppose that one of
these conditions holds:

(i) g = 0;

(ii) g = 1 and V (k) 6=∅;

(iii) g = 2, 3, and either 17≤ #k <∞, or #k =∞ and V (k) 6=∅;

(iv) g = 4 and k = k.

Then V is nondegenerate.

Remark. The condition #k ≥ 17 in (iii) ensures that k is large enough to allow
nontangency to the toric boundary of X (1)k , but is most likely superfluous; see
Remark 7.2.

In the second part, consisting of Sections 8–12, we restrict to algebraically
closed fields k = k and consider the locus Mnd

g of nondegenerate curves inside
the coarse moduli space of all curves of genus g ≥ 2. We prove the following:

Theorem. We have dim Mnd
g = min(2g + 1, 3g − 3), except for g = 7 where

dim Mnd
7 = 16. In particular, a generic curve of genus g is nondegenerate if and

only if g ≤ 4.
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Our methods combine ideas of Bruns and Gubeladze [2002] and Haase and
Schicho [2009] and are purely combinatorial — only the universal property of the
coarse moduli space is used.

Conventions and notations. Throughout, 1 ⊂ R2 will denote a polytope with
dim1= 2. The coordinate functions on the ambient space R2 will be denoted by
X and Y . A facet or edge of a polytope is a face of dimension 1. A lattice polytope
is a polytope with vertices in Z2. Two lattice polytopes 1 and 1′ are equivalent if
there is an affine map

ϕ : R2
→ R2, v 7→ Av+ b

such that ϕ(1) = 1′ with A ∈ GL2(Z) and b ∈ Z2. Two Laurent polynomials f
and f ′ are equivalent if f ′ can be obtained from f by applying such a map to the
exponent vectors. Note that equivalence preserves nondegeneracy. For a polytope
1⊂ R2, we let int(1) denote the interior of 1. We denote the standard 2-simplex
in R2 by 6 = conv({(0, 0), (1, 0), (0, 1)}).

1. Nondegenerate Laurent polynomials

In this section, we review the geometry of nondegenerate Laurent polynomials.
We retain the notation used in the introduction. In particular, k is a perfect field,
f =

∑
ci j x i y j

∈ k[x±1, y±1
] is an irreducible Laurent polynomial, and 1 is its

Newton polytope. Our main implicit reference on toric varieties is [Fulton 1993].
Let k[1] denote the graded semigroup algebra over k generated in degree d by

the monomials that are supported in d1, that is,

k[1] =
∞⊕

d=0

〈x i y j td
| (i, j) ∈ (d1∩Z2)〉k .

Then X = X (1)k =Proj k[1] is the projective toric surface associated to1 over k.
This surface naturally decomposes into toric components as

X =
⊔
τ⊂1

Tτ ,

where τ ranges over the faces of 1 and Tτ ∼= Tdim τ
k . The surface X is nonsingular

except possibly at the zero-dimensional toric components associated to the vertices
of 1. The Laurent polynomial f defines a curve in T2

k
∼= T1 ⊂ X , and we denote

by V = V ( f ) its closure in X . Alternatively, if we denote A = 1 ∩ Z2, then X
can be canonically embedded in P#A−1

k =Proj k[ti j ](i, j)∈A, and V is the hyperplane
section

∑
ci j ti j = 0 of X .

We abbreviate ∂x = x ∂
∂x and ∂y = y ∂

∂y .
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Definition 1.1. The Laurent polynomial f is nondegenerate if for each face τ ⊂1,
the system

f |τ = ∂x f |τ = ∂y f |τ = 0

has no solution in k∗2.

We sometimes write that f is 1-nondegenerate to emphasize that 1( f )=1.

Proposition 1.2. The following statements are equivalent.

(i) f is nondegenerate.

(ii) For each face τ ⊂1, the ideal of k[x±1, y±1
] generated by

f |τ , ∂x f |τ , ∂y f |τ

is the unit ideal.

(iii) For each face τ ⊂ 1, the intersection V ∩ Tτ is smooth of codimension 1 in
the torus orbit Tτ associated to τ .

(iv) The sequence of elements f, ∂x f, ∂y f (in degree one) forms a regular se-
quence in k[1].

(v) The quotient of k[1] by the ideal generated by f, ∂x f, ∂y f is finite and of
k-dimension equal to 2 vol(1).

Remark 1.3. Condition (iii) can also be read that V is smooth and intersects X \T2
k

transversally and outside the zero-dimensional toric components associated to the
vertices of 1.

Proof. See [Batyrev 1993, Section 4] for a proof of these equivalences and further
discussion. �

Remark 1.4. Some authors refer to nondegenerate as 1-regular, though we will
not employ this term. The use of nondegenerate to indicate a projective variety
that is not contained in a smaller projective space is unrelated to our present usage.

Example 1.5. Let f (x, y) ∈ k[x, y] be a bivariate polynomial of degree d ∈ Z≥1

with Newton polytope 1 = d6 = conv({(0, 0), (d, 0), (0, d)}). The toric variety
X (1)k is the d-uple Veronese embedding of P2

k in Pd(d+3)/2
k , and V ( f ) is the

projective curve in P2
k defined by the homogenization F(x, y, z) of f . We see that

f (x, y) is 1-nondegenerate if and only if V ( f ) is nonsingular, does not contain
the coordinate points (0, 0, 1), (0, 1, 0) and (1, 0, 0), and is not tangent to any
coordinate axis.

Example 1.6. The picture below illustrates nondegeneracy in case of a quadrilat-
eral Newton polytope.
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Proposition 1.7. If f ∈k[x±1, y±1
] is nondegenerate, then there exists a k-rational

canonical divisor K1 on V = V ( f ) such that {x i y j
: (i, j) ∈ int(1)∩Z2

} is a k-
basis for the Riemann–Roch space L(K1) ⊂ k(V ). In particular, the genus of V
is equal to #(int(1)∩Z2).

Proof. See Khovanskiı̆ [1977] or Castryck, Denef, and Vercauteren [Castryck et al.
2006, Section 2.2]. �

Remark 1.8. In general, if f is irreducible (but not necessarily nondegenerate),
the geometric genus of V ( f ) is bounded by #(int(1)∩Z2). This is also known as
Baker’s inequality [Beelen and Pellikaan 2000, Theorem 4.2].

We conclude this section with an intrinsic definition of nondegeneracy.

Definition 1.9. A curve V over k is 1-nondegenerate if V is birational over k to
a curve U ⊂ T2

k defined by a nondegenerate Laurent polynomial f with Newton
polytope 1. The curve V is nondegenerate if it is 1-nondegenerate for some 1.
The curve V is geometrically nondegenerate if V ×k k is nondegenerate over k.

2. Moduli of nondegenerate curves

We now construct the moduli space of nondegenerate curves of given genus g≥ 2.
Since in this article we will be concerned with dimension estimates only, we restrict
to the case k = k.

We denote by Mg the coarse moduli space of curves of genus g≥ 2 over k, with
the property that for any flat family V→M of curves of genus g, there is a (unique)
morphism M→Mg that maps each closed point f ∈ M to the isomorphism class
of the fiber V f . (See for example [Mumford 1965, Theorem 5.11].)

Let1⊂R2 be a lattice polytope with g interior lattice points. We will construct
a flat family V(1)→ M1 that parametrizes all 1-nondegenerate curves over k.
The key ingredient is provided by the following result of Gel’fand, Kapranov, and
Zelevinsky [Gel’fand et al. 1994]. Let A=1∩Z2 and define the polynomial ring
R1 = k[ci j ](i, j)∈A.
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Proposition 2.1. There exists a polynomial E A ∈ R1 with the property that for
any Laurent polynomial f ∈ k[x±1, y±1

] with supp( f ) ⊂ 1, we have that f is
1-nondegenerate if and only if E A( f ) 6= 0.

Proof. The proof in [Gel’fand et al. 1994, Chapter 10] is over C; however, the
construction yields a polynomial over Z that is easily seen to characterize non-
degeneracy for an arbitrary field. �

The polynomial E A is known as the principal A-determinant and is given by the
A-resultant resA(F, ∂1 F, ∂2 F). It is homogeneous in the variables ci j of degree
6 vol(1), and its irreducible factors are the face discriminants Dτ for faces τ ⊂1.

Example 2.2. Consider the universal plane conic

F = c00+ c10x + c01 y+ c20x2
+ c11xy+ c02 y2,

associated to the Newton polytope 26 as in Example 1.5.
Then

E A = c00c02c20(c2
11− 4c02c20)(c2

10− 4c00c20)(c2
01− 4c00c02)D1

where D1 = 4c00c20c02− c00c2
11− c2

10c02− c2
01c20+ c10c01c11. The nonvanishing

of the factor c00c02c20 (corresponding to the discriminants of the zero-dimensional
faces) ensures that the curve does not contain a coordinate point, and in particular
does not have Newton polytope smaller than 26; the nonvanishing of the qua-
dratic factors (corresponding to the one-dimensional faces) ensures that the curve
intersects the coordinate lines in two distinct points; and the nonvanishing of D1

ensures that the curve is smooth.

Let M1 be the complement in P#A−1
k = Proj R1 of the algebraic set defined

by E A. By the above, M1 parameterizes nondegenerate polynomials having 1 as
Newton polytope. One can show that

dim M1 = #A− 1, (2)

which is a nontrivial statement if k is of finite characteristic (and false in general
for an arbitrary number of variables), see [Castryck et al. 2006, Section 2]. Let
V(1) be the closed subvariety of

X (1)k ×M1 ⊂ Proj k[ti j ]×Proj k[ci j ]

defined by the universal hyperplane section∑
(i, j)∈A

ci j ti j = 0.

Then the universal family of 1-nondegenerate curves is realized by the projection
map ϕ :V(1)→M1. The fiber V(1) f above a nondegenerate Laurent polynomial
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f ∈ M1 is precisely the corresponding curve V ( f ), realized as the corresponding
hyperplane section of X (1)k ⊂ Proj k[ti j ]. Note that ϕ is indeed flat [Hartshorne
1977, Theorem III.9.9], since the Hilbert polynomial of V(1) f is independent
of f : its degree is equal to deg X (1)k and its genus is g by Proposition 1.7.

Thus by the universal property of Mg, there is a morphism h1 : M1 → Mg,
the image of which consists precisely of all isomorphism classes containing a
1-nondegenerate curve. Let M1 denote the Zariski closure of the image of h1.
Finally, let

Mnd
g =

⋃
g(1)=g

M1,

where the union is taken over all polytopes 1 with g interior lattice points, of
which there are finitely many up to equivalence; see [Hensley 1983].

The aim of Sections 8–12 is to estimate dim Mnd
g . This is done by first refining

the obvious upper bounds dim M1 ≤ dim M1 = #(1 ∩ Z2) − 1, taking into ac-
count the action of the automorphism group Aut(X (1)k), and then estimating the
outcome in terms of g.

Remark 2.3. It follows from the fact that Mg is of general type for g≥ 23 (see for
example [Harris and Morrison 1998]) that dim Mnd

g < dim Mg = 3g−3 for g ≥ 23,
since each component of Mnd

g is unirational. Below, we obtain much sharper results
that do not rely on this deep statement.

3. Triangular nondegeneracy

In Sections 4–6, we study the nondegeneracy of certain well-known classes, such
as elliptic, hyperelliptic, and Cab curves. In many cases, classical constructions
provide models for these curves that are supported on a triangular Newton polytope;
the elementary observations in this section will allow us to prove that these models
are nondegenerate when #k is not too small.

Lemma 3.1. Let f (x, y) ∈ k[x, y] define a smooth affine curve of genus g and
suppose that #k > 2(g +max(degx f, degy f )− 1)+min(degx f, degy f ). Then
there exist x0, y0 ∈ k such that the translated curve f (x − x0, y − y0) does not
contain (0, 0) and is also nontangent to both the x- and the y-axis.

Proof. Suppose degy f ≤ degx f . Applying the Riemann–Hurwitz theorem to the
projection map (x, y) 7→ x , one sees there are at most 2(g + degy f − 1) points
with a vertical tangent. Therefore, we can find an x0 ∈ k such that f (x − x0, y) is
nontangent to the y-axis. Subsequently, there are at most 2(g+degx f −1)+degy f
values of y0 ∈ k for which f (x−x0, y− y0) is tangent to the x-axis and/or contains
the point (0, 0). �
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Lemma 3.2. Let a ≤ b ∈ Z≥2 be such that gcd(a, b) ∈ {1, a}, and let 1 be the
triangular lattice polytope conv({(0, 0), (b, 0), (0, a)}). Let f (x, y) ∈ k[x, y] be
an irreducible polynomial such that

• f is supported on 1, and

• the genus of V ( f ) equals g = #(int(1)∩Z2).

Then V ( f ) is 1-nondegenerate if #k > 2(g+ b− 1)+ a.

Proof. First suppose that gcd(a, b) = 1. The coefficients of xb and ya must be
nonzero, because otherwise #(int(1( f )) ∩ Z2) < g, which contradicts Baker’s
inequality. For the same reason, f must define a smooth affine curve: If (x0, y0) is
a singular point (over k), then #(int(1( f (x−x0, y−y0))∩Z2))< g. The result now
follows from Lemma 3.1. Note that the nonvanishing of the face discriminant Dτ ,
where τ is the edge connecting (b, 0) and (0, a), follows automatically from the
fact that τ has no interior lattice points.

Next, suppose that gcd(a, b)= a. Then we may assume that the coefficients of
xb and ya are nonzero. Indeed, if a< b then the coefficient of ya must be nonzero.
Let g(t) ∈ k[t] be the coefficient of xb in f (x, y + t xb/a). It is of degree a and
therefore has a nonroot t0 ∈ k. Then substituting y← y + t0xb/a ensures that the
coefficient of xb is nonzero as well. If a = b then the coefficient of ya might be
zero, but f must contain at least one nonzero term of total degree a, and a similar
argument proves the claim.

Then as above, f defines a smooth affine curve. So by applying Lemma 3.1, we
may assume that the face discriminants decomposing E1∩Z2 are nonvanishing at f ,
with the possible exception of Dτ , where τ is the edge connecting (b, 0) and (0, a).
However, under the equivalence R2

→ R2
: (X, Y ) 7→ (b− X − (b/a)Y, Y ), the

edge τ is interchanged with the edge connecting (0, 0) and (0, a). We obtain full
nondegeneracy by applying Lemma 3.1 again. �

4. Nondegeneracy of curves of genus at most one

Curves of genus 0. Let V be a curve of genus 0 over k. The anticanonical divisor
embeds V ↪→ P2

k as a smooth conic. If #k =∞, we see that V is nondegenerate
by Lemma 3.2 and Proposition 1.2. If #k <∞, then V (k) 6= ∅ by Wedderburn,
and hence V ∼=P1

k can be embedded as a nondegenerate line in P2. Therefore, any
curve V of genus 0 is 1-nondegenerate, where 1 is one of the following:

1

1

2

2
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Curves of genus 1. Let V be a curve of genus 1 over k. First suppose V (k) 6=∅.
Then V is an elliptic curve and hence can be defined by a nonsingular Weierstrass
equation

y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6 (3)

with ai ∈ k. The corresponding Newton polytope 1 is

2

3

where one of the dashed lines appears as a facet if a6 = 0. By Lemma 3.2, we
have V is nondegenerate if #k ≥ 9. With some extra work we can get rid of this
condition.

For A = 1 ∩ Z2, the principal A-determinant has 7 or 9 face discriminants
Dτ as irreducible factors. The nonvanishing of D1 corresponds to the fact that
our curve is smooth in T2

k . In case τ is a vertex or a facet containing no interior
lattice points, the nonvanishing of Dτ is automatic. Thus it suffices to consider the
discriminants Dτ for τ a facet supported on the X -axis (denoted τX ) or the Y -axis
(denoted τY ). First, suppose that char k 6= 2. After completing the square, we have
a1= a3= 0, and the nonvanishing of DτX follows from the fact that the polynomial
p(x)= x3

+a2x2
+a4x+a6 is squarefree. The nonvanishing of DτY (if τY exists)

is clear. Now suppose char k = 2. Let δ be the number of distinct roots (over k)
of p(x) = x3

+ a2x2
+ a4x + a6. If δ = 3, then DτX is nonvanishing. For the

nonvanishing of DτY , it then suffices to substitute x ← x + 1 if necessary, so that
a3 is nonzero (note that not both a1 and a3 can be zero). If δ < 3, then p(x) has a
root x0 of multiplicity at least 2. Since k is perfect, this root is k-rational and after
substituting x 7→ x+x0 we have p(x)= x3

+a2x2. In particular, DτX (if τX exists)
and DτY do not vanish.

In conclusion, we have shown that every genus 1 curve V over a field k is
nondegenerate, given that V (k) 6=∅. This condition is automatically satisfied if k
is a finite field (by Hasse–Weil) or if k is algebraically closed. In particular, every
genus 1 curve is geometrically nondegenerate. More generally, we define the index
of a curve V over a field k to be the least degree of an effective nonzero k-rational
divisor on V (equivalently, the least extension degree of a field L ⊃ k for which
V (L) 6=∅). We then have the following criterion.

Lemma 4.1. A curve V of genus 1 is nondegenerate if and only if V has index at
most 3.
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Proof. First, assume that V is nondegenerate. There are exactly 16 equivalence
classes of polytopes with only 1 interior lattice point; see [Poonen and Rodriguez-
Villegas 2000, Figure 2] or the appendix of this article. So we may assume that
V is 1-nondegenerate with 1 in this list. Now for every facet τ ⊂ 1, the toric
component Tτ of X (1)k cuts out an effective k-rational divisor of degree `(τ )
on V , where `(τ )+1 is the number of lattice points on τ . The result follows since
one easily verifies that every polytope in the list contains a facet τ with `(τ )≤ 3.

Conversely, suppose that V has index ı ≤ 3. If ı = 1, we have shown above
that V is nondegenerate. If ı = 2 (respectively ı = 3), using Riemann–Roch one
can construct a plane model f ∈ k[x, y] with 1( f )⊂ conv({(0, 0), (4, 0), (0, 2)})
(respectively 1( f ) ⊂ 36); see for example [Fisher 2006, Section 3] for details.
Then since V (k)=∅ and hence #k =∞, an application of Lemma 3.2 concludes
the proof. �

Remark 4.2. There exist genus 1 curves of arbitrarily large index over every num-
ber field; see [Clark 2006]. Hence there exist infinitely many genus 1 curves that
are not nondegenerate.

5. Nondegeneracy of hyperelliptic curves and Cab curves

Hyperelliptic curves. A curve V over k of genus g ≥ 2 is hyperelliptic if there
is a nonconstant morphism V → P1

k of degree 2. The morphism is automatically
separable [Hartshorne 1977, Proposition IV.2.5] and the curve can be defined by a
Weierstrass equation

y2
+ q(x)y = p(x). (4)

Here p(x), q(x) ∈ k[x] satisfy

2 deg q(x)≤ deg p(x) and deg p(x) ∈ {2g+ 1, 2g+ 2}.

The universal such curve has Newton polytope as follows:

2

2g C 1
or 2g C 2

By Lemma 3.2, if #k ≥ 6g+ 5 then V is nondegenerate. In particular, if #k ≥ 17
then every curve of genus 2 is nondegenerate.

If char k 6= 2, we can drop the condition on #k by completing the square, as
in the elliptic curve case. This observation immediately weakens the condition
to #k ≥ 2blog2(6g+5)c

+ 1. As a consequence, #k ≥ 17 is also sufficient for every
hyperelliptic curve of genus 3 or 4 to be nondegenerate.
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Conversely, any curve defined by a nondegenerate polynomial as in (4) is hy-
perelliptic. We conclude that dim M1 = dim Hg = 2g− 1; see [Hartshorne 1977,
Example IV.5.5.5].

One can decide if a nondegenerate polynomial f defines a hyperelliptic curve
by the following criterion, which also appears in [Koelman 1991, Lemma 3.2.9]
with a more complicated proof.

Lemma 5.1. Let f ∈ k[x±, y±] be nondegenerate and let # int(1( f ) ∩ Z2) ≥ 2.
Then V ( f ) is hyperelliptic if and only if the interior lattice points of 1( f ) are
collinear.

Proof. We may assume that 1 = 1( f ) has g ≥ 3 interior lattice points, since all
curves of genus 2 are hyperelliptic and any two points are collinear.

Let L ⊂ k(V ) be the subfield generated by all quotients of functions in L(K ),
where K is a canonical divisor on V . Then L does not depend on the choice
of K , and L is isomorphic to the rational function field k(P1

k) if and only if V is
hyperelliptic.

We now show that L ∼= k(P1
k) if and only if the interior lattice points of 1 are

collinear. We may assume (0, 0) is in the interior of1. Then from Proposition 1.7,
we see that L contains all monomials of the form x i y j for (i, j) ∈ int(1)∩Z2. In
particular, if the interior lattice points of1 are not collinear then after a transforma-
tion we may assume further that (0, 1), (1, 0)∈ int(1), whence L⊃k(x, y)=k(V );
and if they are collinear, then clearly L ∼= k(P1

k). The result then follows. �

For this reason, we call a lattice polytope hyperelliptic if its interior lattice points
are collinear.

A curve V over k of genus g ≥ 2 is said to be geometrically hyperelliptic if
Vk = V ×k k is hyperelliptic. Every hyperelliptic curve is geometrically hyperel-
liptic, but not conversely: If V → C ⊂ P

g−1
k is the canonical morphism, then V is

hyperelliptic if and only if C ∼= P1
k . This latter condition is satisfied if and only if

C(k) 6=∅, which is guaranteed in each of the following cases: k is finite, V (k) 6=∅,
or g is even.

Lemma 5.2. Let V be a geometrically hyperelliptic curve that is nonhyperelliptic.
Then V is not nondegenerate.

Proof. Suppose that V is geometrically hyperelliptic and 1-nondegenerate for
some lattice polytope 1. Then applying Lemma 5.1 to Vk , we see that the interior
lattice points of 1 are collinear. But then again by Lemma 5.1 (now applied to V
itself), V must be hyperelliptic. �

Cab curves. Let a, b ∈ Z≥2 be coprime. A Cab curve is a curve having a rational
place with Weierstrass semigroup aZ≥0+bZ≥0; see [Miura 1992]. Any Cab curve
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is defined by a Weierstrass equation

f (x, y)=
∑

i, j∈N
ai+bj≤ab

ci j x i y j
= 0. (5)

with c0a, cb0 6= 0. By Lemma 3.2, if #k ≥ 2(g+ a+ b− 2) then we may assume
that this polynomial is nondegenerate with respect to its Newton polytope 1ab:

a

b

Conversely, every curve given by a 1ab-nondegenerate polynomial is Cab, and the
unique place dominating the point at projective infinity has Weierstrass semigroup
aZ≥2 + bZ≥2; see [Matsumoto 1998]. Note that if k is algebraically closed, the
class of hyperelliptic curves of genus g coincides with the class of C2,2g+1 curves.

The moduli space of all Cab curves (for varying a and b) of fixed genus g is then a
finite union of moduli spaces M1ab . One can show that its dimension equals 2g−1
by an analysis of the Weierstrass semigroup, which has been done by Rim and
Vitulli [1977, Corollary 6.3]. This dimension equals dim Hg = dim M12,2g+1 and in
fact this is the dominating part: In Example 8.7 we will show that dim M1ab <2g−1
if a, b ≥ 3 and g ≥ 6.

6. Nondegeneracy of curves of genus three and four

Curves of genus 3. A genus 3 curve V over k is either geometrically hyperelliptic
or it canonically embeds in P2

k as a plane quartic.
If V is geometrically hyperelliptic, then V may not be hyperelliptic and hence

(by Lemma 5.2) not nondegenerate. For example, over Q there exist degree 2
covers of the imaginary circle having genus 3. However, if k is finite or V (k) 6=∅
then every geometrically hyperelliptic curve is hyperelliptic. If moreover #k ≥ 17
we can conclude that V is nondegenerate. See Section 5 for more details.

If V is embedded as a plane quartic, then assuming #k ≥ 17, we can apply
Lemma 3.2 and see that V is defined by a 46-nondegenerate Laurent polynomial.

Curves of genus 4. Let V be a curve of genus 4 over k. If V is a geometrically
hyperelliptic curve, then it is hyperelliptic, since the genus is even. Thus if #k≥ 17
then V is nondegenerate (see Section 5). Assume therefore that V is nonhyperel-
liptic. Then it canonically embeds as a curve of degree 6 in P3

k that is the complete
intersection of a unique quadric surface Q and a (nonunique) cubic surface C
[Hartshorne 1977, Example IV.5.2.2].
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First, we note that if V is 1-nondegenerate for some nonhyperelliptic lattice
polytope 1 ⊂ R2, then Q or C must have combinatorial origins as follows. Let
1(1)= conv(int(1)∩Z2). Up to equivalence, there are three possible arrangements
for these interior lattice points:

(a) (b) (c)

By Proposition 1.7, one verifies that V canonically maps to X (1)
= X (1(1))k ⊂P3

k .
In (a), X (1) is nothing else but the Segre product P1

k ×P1
k defined by the equation

xz = yw in P3
k , and by uniqueness it must equal Q. For (b), X (1) is the singular

quadric cone yz = w2, which again must equal Q. For (c), X (1) is the singular
cubic xyz = w3, which must be an instance of C . Note that a curve V can be
1-nondegenerate with 1(1) as in (a) or (b), but not both: whether Q is smooth or
not is intrinsic, since Q is unique. The third type (c) is special, and we leave it as
an exercise to show that the locus of curves of genus 4 that canonically lie on such
a singular cubic surface is a codimension ≥ 2 subspace of M4 (use the dimension
bounds from Section 8).

With these observations in mind, we work towards conditions under which our
given nonhyperelliptic genus 4 curve V is nondegenerate. Suppose first that the
quadric Q has a (necessarily k-rational) singular point T ; then V is called conical.
This corresponds to the case where Vk = V ×k k has a unique g1

3 , and repre-
sents a codimension 1 subscheme of M4 [Hartshorne 1977, Exercise IV.5.3]. If
Q(k)= {T }, then V cannot be nondegenerate with respect to any polytope with
1(1) as in (a) or (b), since then Q is not isomorphic to either of the corresponding
canonical quadric surfaces X (1). If Q(k) ) {T }, which is guaranteed if k is finite
or if V (k) 6= ∅, then after a choice of coordinates we can identify Q with the
weighted projective space P(1, 2, 1). Our degree 6 curve V then has an equation
of the form

f (x, y, z)= y3
+ a2(x, z)y2

+ a4(x, z)y+ a6(x, z)

with deg ai = i ; the equation is monic in y because T 6∈ V . By Lemma 3.2, if
#k ≥ 23 then we may assume that f (x, y, 1) is nondegenerate with respect to its
Newton polytope 1 as follows:

3

6
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Next, suppose that Q is smooth; then V is called hyperboloidal. This corre-
sponds to the case where Vk has two g1

3’s, and represents a dense subscheme of
M4 [Hartshorne 1977, Exercise IV.5.3]. If Q 6∼= P1

k × P1
k (for example, this will

be the case whenever the discriminant of Q is nonsquare), then again V cannot be
nondegenerate with respect to 1 with 1(1) as in (a) or (b). Therefore suppose that
k is algebraically closed. Then Q ∼= P1

k × P1
k and V can be projected to a plane

quintic with 2 nodes [Hartshorne 1977, Exercise IV.5.4].
Consider the line connecting these nodes. Generically, it will intersect the nodes

with multiplicity 2, that is, it will intersect all branches transversally. By Bezout,
the line will then intersect the curve transversally in one other point. This obser-
vation fits within the following general phenomenon. Let d ∈ Z≥4, and consider
the polytope 1= d6 with up to three of its angles pruned as follows:

d

d�2

2

dd�22

(6)

Let f ∈ k[x, y] be a nondegenerate polynomial with Newton polytope 1. If we
prune no angle of d6, then X (1)k ∼=P2

k (it is the image of the d-uple embedding)
and V ( f ) is a smooth plane curve of degree d. Pruning an angle has the effect
of blowing up X (1)k at a coordinate point; the image of V ( f ) under the natural
projection X (1)k→ P2

k has a node at that point. If we prune m = 2 (respectively
m = 3) angles, then we likewise obtain the blow-up of P2

k at m points and the
image of V ( f ) in P2

k has m nodes. Since f is nondegenerate, the line connecting
any two of these nodes intersects the curve transversally elsewhere, and due to
the shape of 1, the intersection multiplicity at the nodes will be 2. Conversely,
every projective plane curve having at most 3 nodes such that the line connecting
any two nodes intersects the curve transversally (also at the nodes themselves) is
nondegenerate. Indeed, after an appropriate projective transformation, it will have
a Newton polytope as in (6). In particular, our hyperboloidal genus 4 curve V will
be 1-nondegenerate, where 1 equals polytope (h.1) from Section 7 below.

Exceptionally, the line connecting the two nodes of our quintic may be tangent
to one of the branches at a node. Using a similar reasoning, we conclude that V is
1-nondegenerate, with 1 equal to polytope (h.2) from Section 7 below.

Remark 6.1. As in Remark 4.2, an argument based on the index shows that there
exist genus 4 curves that are not nondegenerate. A result by Clark [2007] states
that for every g ≥ 2, there exists a number field k and a genus g curve V over k,
such that the index of V is equal to 2g − 2, the degree of the canonical divisor.
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In particular, there exists a genus 4 curve V of index 6. Such a curve cannot be
nondegenerate. Indeed, for each of the above arrangements (a)–(c), X (1) contains
the line z = w = 0, which cuts out an effective divisor on V of degree 3 in cases
(a) and (b) and degree 2 in case (c).

7. Nondegeneracy of low genus curves: summary

We now summarize the results of the preceding sections. If k is an algebraically
closed field, then every curve V of genus at most 4 over k can be modeled by a
nondegenerate polynomial having one of the following as Newton polytope:

1

1
(a) genus 0

2

3
(b) genus 1

2

6
(c) genus 2

2

8
(d) genus 3 hyperelliptic

4

4
(e) genus 3 planar

2

10
(f) genus 4 hyperelliptic

3

6
(g) genus 4 conical

3

3

(1)
3

3

(2)

(h) genus 4 hyperboloidal

Moreover, these classes are disjoint. For the polytopes (c) through (h.1), we have
dim M1 = 3, 5, 6, 7, 8, 9, respectively. All hyperelliptic curves and Cab curves are
nondegenerate.

For an arbitrary perfect field k, if V is not hyperboloidal and has genus at most 4,
then V is nondegenerate whenever k is a sufficiently large finite field, or when k is
infinite and V (k) 6=∅; for the former, the condition #k ≥ 23 is sufficient but most
likely superfluous (see Remark 7.2).

Remark 7.1. We can situate the nonhyperelliptic Cab curves that lie in this classi-
fication. In genus 3, we have C3,4 curves, which have a smooth model in P2

k , since
13,4 is nonhyperelliptic. In genus 4, we have C3,5 curves, which are conical; this
can be seen by analyzing the interior lattice points of 13,5, as in Section 6.

Remark 7.2. In case #k <∞, we proved (without further condition on #k) that
if V is not hyperboloidal then it can be modeled by a polynomial f ∈ k[x, y]
with Newton polytope contained in one of the polytopes (a)–(g). The condition on
#k then came along with an application of Lemma 3.2 to deduce nondegeneracy.
In the g = 1 case, we got rid of this condition by using nonlinear transformations
(completing the square) and allowing smaller polytopes. Similar techniques can be
used to improve (and probably even remove) the bounds on #k in genera 2≤ g≤ 4.
For example, using naive brute force computation we have verified that in genus 2,
all curves are nondegenerate whenever #k = 2, 4, 8.
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8. An upper bound for dim Mnd
g

From now on, we assume k = k. In this section, we prepare for a proof of
Theorem 11.1, which gives an upper bound for dim Mnd

g in terms of g.
For a lattice polytope 1⊂ Z2 with g ≥ 2 interior lattice points, we sharpen the

obvious upper bound dim M1 ≤ dim M1 = #(1 ∩ Z2)− 1 (see (2)) by incorpo-
rating the action of the automorphism group of X (1)k , which has been explicitly
described by Bruns and Gubeladze [2002, Section 5]. In Sections 9–11 we then
work towards a bound in terms of g, following ideas of Haase and Schicho [2009].

The automorphisms of X (1)k = Proj k[1] ↪→ P#(1∩Z2)−1 correspond to the
graded k-algebra automorphisms of k[1], and admit a combinatorial description
as follows.

Definition 8.1. A nonzero vector v ∈ Z2 is a column vector of 1 if there exists a
facet τ ⊂1 (the base facet) such that v+ ((1 \ τ)∩Z2)⊂1.

We denote by c(1) the number of column vectors of 1.

Example 8.2. Any multiple of the standard 2-simplex 6 has 6 column vectors.
The octagonal polytope below shows that a polytope may have no column vectors.

The dimension of the automorphism group Aut(X (1)k) is then given as follows:

Proposition 8.3 [Bruns and Gubeladze 2002, Theorem 5.3.2]. We have

dim Aut(X (1)k)= c(1)+ 2.

Proof sketch. One begins with the 2-dimensional subgroup of Aut(X (1)k) induced
by the inclusion Aut(T2) ↪→ Aut(X (1)k). On the k[1]-side, this corresponds to
the graded automorphisms induced by (x, y) 7→ (λx, µy) for λ,µ ∈ k∗2.

Next, column vectors of 1 correspond to automorphisms of X (1)k as follows.
If v is a column vector, modulo equivalence we may assume that v = (0,−1), that
the base facet is supported on the X -axis, and that 1 is contained in the positive
quadrant R2

≥0. Let f (x, y) ∈ k[x, y] be supported on 1. Since v = (0,−1) is
a column vector, the polynomial f (x, y + λ) will again be supported on 1 for
any λ ∈ k. Hence v induces a family of graded automorphisms k[1] → k[1],
corresponding to a one-dimensional subgroup of Aut(X (1)k).
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It then remains to show that these subgroups are algebraically independent from
each other and from Aut(T2), and that together they generate Aut(X (1)k) (after
including the finitely many automorphisms coming from Z-affine transformations
mapping 1 to itself). �

Using the fact that a curve of genus g ≥ 2 has finitely many automorphisms we
obtain the following corollary. We leave the details as an exercise.

Corollary 8.4. dim M1 ≤ m(1) := #(1∩Z2)− c(1)− 3.

Remark 8.5. In order to have equality, it is sufficient that1 is a so-called maximal
polytope (see Section 10 for the definition). This is the main result of Koelman’s
thesis [1991, Theorem 2.5.12].

Example 8.6. Let 1 = conv({(0, 0), (2g + 2, 0), (0, 2)}) as in Section 5, so that
dim M1=2g−1. One checks that c(1)=g+4, so the upper bound in Corollary 8.4
reads m(1) = (3g+ 6)− (g+ 4)− 3 = 2g− 1; in this case, the bound is sharp.
It is easy to verify that the bound is also sharp if 1= d6, d ∈ Z≥4; then dim M1

reads (d+1)(d+2)/2−9= g+3d−9≤ 2g. The latter are examples of maximal
polytopes. Opposed to this, let (d6)0 be obtained from d6 by pruning off (0, 0).
This reduces the number of lattice points by 1 and the number of column vectors
by 2. Hence our bound increases, although d6 and (d6)0 give rise to the same
moduli space. Indeed, pruning off (0, 0) only forces our curves in X (d6)k ∼= P2

k
to pass through (0, 0, 1).

Example 8.7. We now use Corollary 8.4 to show that the dimension of the moduli
space of nonhyperelliptic Cab curves of genus g (where a and b may vary) has
dimension strictly smaller than 2g−1= dim Hg whenever g ≥ 6. Consider 1ab =

Conv{(0, a), (b, 0), (0, 0)} with a, b ∈ Z≥3 coprime. Then we have

g = (a− 1)(b− 1)/2 and #(1∩Z2)= g+ a+ b+ 1,

and the set of column vectors is given by

{(n,−1) : n = 0, . . . , bb/ac} ∪ {(−1,m) : m = 0, . . . , ba/bc}.

Suppose without loss of generality that a < b. Then a is bounded by
√

2g + 1.
Corollary 8.4 yields

dim M1 ≤ m(1)= g+ a+ b+ 1−
(⌊b

a

⌋
+ 2

)
− 3< a+ 2g−1

a
+ g− 2.

As a (real) function of a, this upper bound has a unique minimum at a=
√

2g− 1.
Therefore, to deduce that it is strictly smaller than 2g−1 for all a ∈ [3,

√
2g+1],

it suffices to verify so for the boundary values a = 3 and a =
√

2g+ 1, which is
indeed the case if g ≥ 6.
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9. A bound in terms of the genus

For the rest of this article, we will employ the following notation. Let 1(1) be the
convex hull of the interior lattice points of 1. Let r and r (1) denote the number of
lattice points on the boundary of 1 and 1(1), respectively, and let g(1) denote the
number of interior lattice points in 1(1), so that g = g(1)+ r (1).

We now prove the following preliminary bound.

Proposition 9.1. If 1 has at least g ≥ 2 interior lattice points, then we have
dim M1 ≤ 2g+ 3.

Proof. We may assume that 1 is nonhyperelliptic; otherwise dim M1 ≤ 2g− 1 by
Lemma 5.1. We may also assume that 1(1) is not a multiple of 6, since other-
wise 1-nondegenerate curves are canonically embedded in X (1(1))k ∼= P2

k using
Proposition 1.7; then from Example 8.6 it follows that dim M1 ≤ 2g.

An upper bound for dim M1 in terms of g then follows from a lemma by Haase
and Schicho [2009, Lemma 12], who proved that r ≤ r (1) + 9, in which equality
holds if and only if 1 = d6 for some d ∈ Z≥4 (a case which we have excluded).
Hence

#(1∩Z2)= g+ r ≤ g+ r (1)+ 8= 2g+ 8− g(1), (7)

and thus

dim M1 ≤ m(1)= #(1∩Z2)− c(1)− 3≤ 2g+ 5− c(1)− g(1) ≤ 2g+ 5. (8)

This bound improves to 2g + 3 if g(1) ≥ 2, so two cases remain: g(1) = 0 and
g(1) = 1.

Suppose first that g(1) = 0. Then by Lemma 9.2 below, any 1-nondegenerate
curve is either a smooth plane quintic (excluded), or a trigonal curve. Since the
moduli space of trigonal curves has dimension 2g+ 1 (a classical result, see also
Section 12 below), the bound holds.

Next suppose that g(1) = 1. Then, up to equivalence, there are only 16 possibil-
ities for 1(1); these are listed in [Poonen and Rodriguez-Villegas 2000, Figure 2]
or in the appendix below. Hence, there are only finitely many possibilities for 1,
and for each of these polytopes we find that #(1∩Z2)− c(1)− 3≤ 2g+ 2. �

In fact, for all but the 5 polytopes in Figure 1 (up to equivalence), we find that
the stronger bound #(1∩Z2)− c(1)− 3≤ 2g+ 1 holds.

Lemma 9.2. If 1(1) is a 2-dimensional polytope having no interior lattice points,
then any1-nondegenerate curve is either trigonal or isomorphic to a smooth quin-
tic in P2

k .

Proof. Koelman’s proof, from his PhD thesis [1991, Lemma 3.2.13], is based on
Petri’s theorem. A more combinatorial argument uses the fact that lattice polytopes
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(a) (b) (c) (d) (e)

Figure 1. Polytopes with g(1) = 1 and #(1∩Z2)− c(1)− 3= 2g+ 2.

of genus 0 are equivalent with either 26, or with a polytope that is caught between
two horizontal lines of distance 1. This was proved independently by Arkinstall,
Khovanskii, Koelman, and Schicho (see the generalized statement by Batyrev and
Nill [2007, Theorem 2.5]).

In the first case, 1-nondegenerate curves canonically embed in X (26)k ∼= P2
k ;

hence they are isomorphic to smooth plane quintics.
In the second case, it follows that 1 is caught between two horizontal lines of

distance 3. This may actually fail if 1(1) =6, which corresponds to smooth plane
quartics. But in both situations, 1-nondegenerate curves are trigonal. �

10. Refining the upper bound: Maximal polytopes

We further refine the bound in Proposition 9.1 by adapting the proof of the Haase–
Schicho bound r ≤ r (1)+ 9 in order to obtain an estimate for r − c(1) instead of
just r . We first do this for maximal polytopes, and treat nonmaximal polytopes in
the next section.

Definition 10.1. A lattice polytope 1 ⊂ Zn is maximal if 1 is not properly con-
tained in another lattice polytope with the same interior lattice points, that is, for
all lattice polytopes 1′ )1, we have int(1′)∩Zn

6= int(1)∩Zn .

We define the relaxed polytope 1(−1) of a lattice polytope 1 ⊂ Z2 as follows.
Let 0 ∈1. To each facet τ ⊂1 given by an inequality of the form a1 X +a2Y ≤ b
with ai ∈ Z coprime, we define the relaxed inequality a1 X + a2Y ≤ b+ 1 and let
1(−1) be the intersection of these relaxed inequalities. If p is a vertex of 1 given
by the intersection of two such facets, we define the relaxed vertex p(−1) to be the
intersection of the boundaries of the corresponding relaxed inequalities.

Lemma 10.2 ([Haase and Schicho 2009, Lemmas 9 and 10] and [Koelman 1991,
Section 2.2]). Let 1 ⊂ Z2 be a 2-dimensional lattice polytope. Then 1(−1) is a
lattice polytope if and only if1=1′(1) for some lattice polytope1′. Furthermore,
if 1 is nonhyperelliptic, then 1 is maximal if and only if 1= (1(1))(−1).
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The proof of the Haase–Schicho bound r ≤ r (1)+ 9 uses a theorem of Poonen
and Rodriguez-Villegas [2000], which we now introduce.

A legal move is a pair (v,w) with v,w ∈ Z2 such that conv({0, v, w}) is a
2-dimensional triangle whose only nonzero lattice points lie on e(v,w), the edge
between v and w. The length of a legal move (v,w) is

`(v,w)= det
( v
w

)
,

which is of absolute value r−1, where r = #(e(v,w)∩Z2) is the number of lattice
points on the edge between v and w. Note that the length can be negative.

A legal loop P is a sequence of vectors v1, v2, . . . , vn ∈ Z2 such that for all
i = 1, . . . , n and indices taken modulo n,

• (vi , vi+1) is a legal move, and

• vi−1, vi , vi+1 are not contained in a line.

The length `(P) of a legal loop P is the sum of the lengths of its legal moves.
The winding number of a legal loop is its winding number around 0 in the

sense of algebraic topology. The dual loop P∨ is given by w1, . . . , wn , where
wi = `(vi , vi+1)

−1
· (vi+1− vi ) for i = 1, . . . , n. One can check that this is again

a legal loop with the same winding number as P and that P∨∨ = P after a 180◦

rotation.

Theorem 10.3 [Poonen and Rodriguez-Villegas 2000, Section 9.1]. Let P be a
legal loop with winding number w. Then `(P)+ `(P∨)= 12w.

Now let 1 ⊂ Z2 be a maximal polytope with 2-dimensional interior 1(1). We
associate to 1 a legal loop P(1) as follows. By Lemma 10.2, 1 is obtained from
1(1) by relaxing the edges. Let p1, . . . , pn be the vertices of 1(1), enumerated
counterclockwise; then P(1) is given by the sequence qi = p(−1)

i − pi , where
p(−1)

i is the relaxed vertex of pi .

Example 10.4. The following picture, inspired by [Haase and Schicho 2009, Fig-
ure 20], is illustrative. It shows a polytope 1 with 2-dimensional interior 1(1), the
associated legal loop P(1), and its dual P(1)∨. In this example, the loops satisfy
`(P(1))= `(P(1)∨)= 6.
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A crucial observation is that the bold-marked lattice points of P(1) are column
vectors of1. This holds in general and lies at the core of our following refinement
of the Haase–Schicho bound.

Lemma 10.5. If 1 is maximal and nonhyperelliptic, then

(a) r − r (1) = `(P(1))≤ 9, and

(b) r − r (1)− c(1)≤min
(
`(P(1)), `(P(1)∨)

)
≤ 6.

Proof. We abbreviate P= P(1).
Inequality (a) is by [Haase and Schicho 2009, Lemma 11] and works as follows.

The length of the legal move (qi , qi+1)measures the difference between the number
of lattice points on the facet of 1 connecting p(−1)

i and p(−1)
i+1 , and the number of

lattice points on the edge of 1(1) connecting pi and pi+1. Therefore r − r (1) =
`(P). The dual loop P∨ walks (in a consistent and counterclockwise-oriented way)
through the normal vectors of 1(1); therefore each move has positive length and
we have `(P(1)∨) ≥ 3. Since P∨ has winding number 1, the statement follows
from Theorem 10.3. (One can further show that equality holds if and only if 1 is
a multiple of the standard 2-simplex 6.)

To prove inequality (b), we first claim that there is a bijection between lattice
points v that lie properly on a counterclockwise-oriented (positive length) legal
move qi qi+1 of P, and column vectors of 1 with base facet p(−1)

i p(−1)
i+1 . Indeed,

after an appropriate transformation, we may assume as we did in Proposition 8.3
that v = (0,−1), that p(−1)

i and p(−1)
i+1 lie on the X -axis, and that 1 is contained in

the quadrant R2
≥0; after these normalizations, the claim is straightforward.

Now, since the dual loop P∨ consists of counterclockwise-oriented legal moves
only, it has at most `(P∨) vertices. Since P= P∨∨ (after 180◦ rotation), P has at
most `(P∨) vertices. By the claim, we have `(P) ≤ `(P∨)+ c(1), and the result
follows by combining this with part (a) and Theorem 10.3. �

Corollary 10.6. If 1 is maximal, then dim M1 ≤ 2g + 3− g(1). In particular, if
g(1) ≥ 2, then dim M1 ≤ 2g+ 1.

Proof. Lemma 10.5 gives m(1)= g+r−3−c(1)≤ g+r (1)+3≤ 2g+3−g(1). �

Remark 10.7. Note that Lemma 10.5(a) immediately extends to nonmaximal poly-
topes (r−r (1) can only decrease), so the Haase–Schicho bound holds for arbitrary
nonhyperelliptic polytopes. This we cannot conclude for part (b): If r decreases,
c(1) may decrease more quickly so that the bound no longer holds. An example
of such behavior can be found in Figure 1(c).

11. Refining the upper bound: General polytopes

We are now ready to prove the main result of Sections 8–11.
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Theorem 11.1. If g ≥ 2, then dim Mnd
g ≤ 2g+ 1 except for g = 7 where we have

dim Mnd
7 ≤ 16.

Proof. It suffices to show that the claimed bounds hold for all polytopes 1 with g
interior lattice points. By the proof of Proposition 9.1, we may assume that 1(1)

is two-dimensional, that it is not a multiple of 6, and that it has g(1) ≥ 1 interior
lattice points.

Let us first assume that g(1) ≥ 2. We will show that dim M1 ≤ 2g + 1. From
Corollary 10.6, we know that this is true if 1 is maximal. Therefore, suppose that
1 is nonmaximal; then it is obtained from a maximal polytope 1̃ by taking away
points on the boundary (keeping the interior lattice points intact). If two or more
boundary points are taken away, then as in (8) we have

m(1)≤ #(1∩Z2)− 3≤ #(1̃∩Z2)− 2− 3≤ 2g+ 5− g(1)− 2≤ 2g+ 1.

So we may assume that 1= conv(1̃∩Z2
\ {p}) for a vertex p ∈ 1̃. Similarly, we

may assume that c(1) < c(1̃), for else

m(1)= #(1∩Z2)− c(1)− 3≤ #(1̃∩Z2)− c(1̃)− 3= m(1̃)≤ 2g+ 1.

Let v be a column vector of 1̃ that is not a column vector of1= conv(1̃∩Z2
\{p}).

Then p must lie on the base facet τ of v. After an appropriate transformation, we
may assume that p= (0, 0), that v= (0,−1), that τ lies along the X -axis, and that
1̃ lies in the positive quadrant, as below:

p
v

Note that (1, 1) ∈ int(1̃) since otherwise v would still be a column vector of 1.
But then the other facet of 1̃ that contains p must be supported on the Y -axis, for
else (1, 1) would no longer be in int(1). One can now verify that if f (x, y) is
1-nondegenerate, then for all but finitely many λ ∈ k, the polynomial f (x, y+λ)
will have Newton polytope 1̃ and all but finitely of those will be 1̃-nondegenerate.
Therefore, we have M1 ⊂M1̃, and the dimension estimate follows.

Now suppose g(1)= 1. From the finite computation in Proposition 9.1, we know
that the bound dim M1 ≤ 2g + 1 holds if 1 is not among the polytopes listed in
Figure 1. Now in this list, the polytopes (b)–(e) are not maximal, and for these
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polytopes the same trick as in the g(1) ≥ 2 case applies. However, polytope (a)
is maximal and contains 7 interior lattice points: Therefore, we can only prove
dim Mnd

7 ≤ 16. �

Let1 be a nonmaximal nonhyperelliptic lattice polytope, and let 1̃= (1(1))(−1)

be the smallest maximal polytope that contains 1. Let f ∈ k[x±, y±] be a 1-non-
degenerate Laurent polynomial. Since 1 ⊂ 1̃, we can consider the (degree 1)
locus Ṽ of f = 0 in X (1̃)k = Proj k[1̃]. Then one can wonder whether the
observation we made in the proof of Theorem 11.1 holds in general: Is there
always a σ ∈ Aut(X (1̃)k) such that σ(Ṽ )∩ T2

k is defined by a 1̃-nondegenerate
polynomial? The answer is no, because it is easy to construct examples where the
only automorphisms of X (1̃)k are those induced by Aut(T2

k). Then σ(Ṽ )∩T2
k is

always defined by f (λx, µy) (for some λ,µ ∈ k∗), which does not have 1̃ as its
Newton polytope and hence cannot be 1̃-nondegenerate.

However, f is very close to being 1̃-nondegenerate, and this line of thinking
leads to the following observation. Let p be a vertex of 1̃ that is not a vertex
of 1, and let q1 and q2 be the closest lattice points to p on the respective facets
of 1̃ containing p. The triangle spanned by p, q1, and q2 cannot contain any
other lattice points, because otherwise removing p would affect the interior of
1̃. Thus the volume of this triangle is equal to 1/2 by Pick’s theorem, and the
affine chart of X (1̃)k attached to the cone at p is isomorphic to A2

k . In particular,
X (1̃)k is nonsingular in the zero-dimensional torus Tp corresponding to p. Then
f fails to be 1̃-nondegenerate only because Ṽ passes through Tp (that is, it passes
through (0, 0) ∈ A2

k ); elsewhere it fulfills the conditions of nondegeneracy: Ṽ is
smooth, intersects the 1-dimensional tori associated to the facets of 1̃ transversally,
and does not contain the singular points of X (1̃)k . Now following the methods
of Section 2, one could construct the bigger moduli space of curves satisfying
this weaker nondegeneracy condition. Its dimension would still be bounded by
#(1̃∩Z2)− c(1̃)− 3, which by Lemma 10.5 is at most 2g+ 3− g(1) because 1̃
is maximal. Therefore dim M1 ≤ 2g+3− g(1) for nonmaximal 1, and this yields
an alternative proof of Theorem 11.1. Related observations have been made by
Koelman [1991, Section 2.6].

12. Trigonal curves, trinodal sextics, and sharpness of our bounds

For g≥ 2, we implicitly proved in Section 5 that dim Mnd
g ≥ 2g− 1. But already in

genera 3 and 4, by the results in Section 6 we have dim Mnd
3 = 6 and dim Mnd

4 = 9,
so this lower bound is an underestimation. For higher genera, we prove in this last
section that the bounds given in Theorem 11.1 are sharp, mainly by investigating
spaces of trigonal curves. Our main result is the following.

Theorem 12.1. If g≥ 4, then dim Mnd
g = 2g+1 unless g= 7, where dim Mnd

7 = 16.
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Proof. It suffices to find for every genus g ≥ 5 a lattice polytope 1 with g interior
lattice points, for which dim M1 = 2g+ 1 if g 6= 7, and dim M1 = 16 if g = 7. If
g = 2h is even, let 1 be the rectangle

conv ({(0, 0), (0, 3), (h+ 1, 3), (h+ 1, 0)}) . (9)

Note that then #(1∩Z2)= 2g+8 and c(1)= 4. If g= 2h+1 is odd but different
from 7, let 1 be the trapezium

conv ({(0, 0), (0, 3), (h, 3), (h+ 3, 0)}) . (10)

Again, #(1∩Z2)= 2g+ 8 and c(1)= 4. Finally, if g = 7 then, let 1 be

conv{(2, 0), (0, 2), (−2, 2), (−2, 0), (0,−2), (2,−2)} (11)

(that is, the polytope given in Figure 1(a)). Here, #(1∩Z2)= 19 and c(1)= 0.
We first prove that

dim M1 = #(1∩Z2)− 1− dim Aut(X (1)k), (12)

holds for the families of polytopes (9) and (10), for which the result then follows
from Proposition 8.3. This can be achieved using the well-known theory of trigonal
curves [Coppens 1986; Maroni 1946]. More generally, let k, `∈Z≥2 satisfy k ≤ `,
let 1(1) be the trapezium

1

k `

and let 1 = 1(1)(−1). Then if a curve V is 1-nondegenerate, it is trigonal of
genus g = k + ` + 2. By Proposition 1.7, it can be canonically embedded in
X (1(1))k , which is the rational surface scroll Sk,`⊂P

g−1
k . Then by Petri’s theorem

[Arbarello et al. 1985], this scroll is the intersection of all quadrics containing the
canonical embedding. As a consequence, two different such canonical embeddings
must differ by an automorphism of P

g−1
k that maps X (1(1))k to itself; in other

words, any two canonical embeddings of V differ by an automorphism of X (1(1))k .
Now let f1, f2 ∈ k[x±, y±] be 1-nondegenerate polynomials such that V ( f1)

and V ( f2) are isomorphic as abstract curves. Since the fans associated to 1 and
1(1) are the same, we have X (1)k= X (1(1))k . Under this identification, V ( f1) and
V ( f2) become canonical curves that must differ by an automorphism of X (1)k .
Thus we can conclude (12). (Although any trigonal curve is canonically embedded
in some rational normal scroll Sk,` and hence in some X (1)k , it might fail to be
nondegenerate because it can be impossible to avoid tangency to X (1)k \T2

k .)



On nondegeneracy of curves 279

To conclude, suppose that 1 is as in (11). We refer to the pruned simplex (6)
and the accompanying discussion; here we have d = 6. It follows that if f is
a 1-nondegenerate polynomial, then f gives rise to a plane sextic V with three
nodes (at the coordinate points) and no other singularities. Conversely, any trinodal
sextic is 1-nondegenerate if any line connecting two nodes intersects the curve
transversally elsewhere. Since the latter is an open condition, M1 is the Zariski
closure of the moduli space V3,6 of trinodal plane sextics. The variety V3,6 is in
its turn the image of a Severi variety [Severi 1921], and it is a classical result that
dim V3,6 = 16 — for a modern treatment, see [Sernesi 1984]. �

Remark 12.2. In his PhD thesis, Koelman [1991, Theorem 2.5.12] proves that
Equation (12) holds for any polytope1⊂R2 that is maximal and nonhyperelliptic.
In fact, Koelman assumes k = C, but his methods extend to an arbitrary alge-
braically closed field k = k. This provides another proof of Theorem 12.1, but we
are content to prove our results in the above more elementary (and classical) way.

Appendix: lattice polytopes of genus one

There are 16 equivalence classes of lattice polytopes having one interior lattice
point. Polytopes representing these are drawn below in a copy of [Poonen and
Rodriguez-Villegas 2000, Figure 2]. We include the list here for self-containedness.
It is an essential ingredient in the proofs of Lemma 4.1 and Proposition 9.1.
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Self-points on elliptic curves
Christian Wuthrich

Let E/Q be an elliptic curve of conductor N and let p be a prime. We con-
sider trace-compatible towers of modular points in the noncommutative division
tower Q(E[p∞]). Under weak assumptions, we can prove that all these points
are of infinite order and determine the rank of the group they generate. Also,
we use Kolyvagin’s construction of derivative classes to find explicit elements in
certain Tate–Shafarevich groups.

1. Introduction

1.1. Definition of self-points. Let E/Q be an elliptic curve and write N for its
conductor. As proved in [Breuil et al. 2001], there exists a modular parametrisation

ϕE : X0(N )→ E

that is a surjective morphism defined over Q and maps the cusp∞ on the modular
curve X0(N ) to O . The open subvariety Y0(N ) in X0(N ) is a moduli space for the
set of pairs (A,C), where A is an elliptic curve and C is a cyclic subgroup in A of
order N . More precisely, if k/Q is a field, then Y0(N )(k) is in bijection with the
set of such pairs (A,C) with A and C defined over k, up to isomorphism over the
algebraic closure k̄.

In particular, we may consider the pairs xC = (E,C) for any given cyclic sub-
group C of order N in E as a point in Y0(N )(C). Its image PC = ϕE(xC) under the
modular parametrisation is called a self-point of E . The field of definition of the
point PC on E is the same as the field of definition Q(C) of C . The compositum
of all Q(C) will be denoted by KN ; it is the smallest field K such that the Galois
group Gal(K/K ) acts by scalars on E[N ].

More generally, for any integer m we define a number field Km as follows. There
is a Galois representation attached to the m-torsion points on E , given by

ρ̄m : Gal(Q/Q)−→ Aut(E[m])∼= GL2(Z/mZ)−→ PGL2(Z/mZ).

MSC2000: primary 11G05; secondary 11G18, 11G40.
Keywords: elliptic curves, modular point, modular curves.
The author was supported by a fellowship of the Swiss National Science Foundation.
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The field Km is the field fixed by the kernel of ρ̄m . The Galois group of the exten-
sion Km/Q can be viewed via ρ̄m as a subgroup of PGL2(Z/mZ).

We will call higher self-point the image under ϕE of any pair (A,C) in which A
is an elliptic curve that is isogenous to E over Q, though the most interesting case
of higher self-points is the case when the isogeny between E and A is of degree a
prime power pn . In particular, this prime p is allowed to divide the conductor N .

This construction imitates the definition of Heegner points, where one uses pairs
(A,C) with A having complex multiplication. More generally, modular points on
elliptic curves were considered earlier by Harris [1979] without any restriction
on A. This article is a sequel to the articles [Delaunay and Wuthrich 2008] and
[Wuthrich 2007] on self-points, where we have emphasised already that the theory
of self-points differs from the well-known theory of Heegner points. For instance,
there does not seem to be a link between the root numbers and the question of
whether the self-points are of infinite order.

We present here not only a generalisation of the previous results on self-points,
but also we introduce the construction of derivative classes à la Kolyvagin. Indeed,
Kolyvagin [1990] was able to find upper bounds on certain Selmer groups by con-
structing cohomology classes starting from Heegner points. We propose here to do
the analogue for self-points. But the situation is radically different as the Galois
groups involved are noncommutative; rather than finding upper bounds of Selmer
groups over the base field, we will find lower bounds on Selmer groups over certain
number fields.

1.2. The results for self-points. The main question that arises first is whether we
can determine if the self-points are of infinite order in the Mordell–Weil group
E(Q(C)). It was shown in [Delaunay and Wuthrich 2008] that the self-points are
always of infinite order if the conductor is a prime number. We extend here the
method and provide a framework to treat the general case. In Section 5.2 we will
prove the following.

Theorem 12. Let E/Q be a semistable elliptic curve of conductor N 6= 30 or 210.
Then all the self-points are of infinite order.

But the methods are more general and we are able to prove that they are of infinite
order in most cases. In fact, we conjecture that this holds whenever E does not
admit complex multiplication. In Section 6.2 we will give a self-point of finite
order on a curve with complex multiplication. In the largest generality, we are able
to prove in Theorem 2 that there is at least one self-point of infinite order under
the assumption that j (E) /∈ 1

2 Z.
Next we address the question of the rank of the group generated by self-points

in E(KN ). If N is prime, we saw that the only relation among the self-points is
that the sum of all of them is a torsion point in E(Q). For a general conductor, we
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find that for all proper divisors d of N and all cyclic subgroups B in E of order d,
the sum of all self-points PC with C ⊃ B is torsion. This is proved in Proposition
4 as a consequence of the existence of the degeneracy maps on modular curves.
For a lot of semistable curves, the following result shows that these are the only
relations among self-points.

Theorem 14. Let E/Q be a semistable elliptic curve. Suppose that N is not equal
to 30 or 210. Suppose that for each prime p | N such that ρ̄p is not surjective, there
is a prime ` | N such that the Tamagawa number c` is not divisible by p. Then the
group generated by the self-points is of rank N.

We think that this may hold more generally.

Conjecture. Let E/Q be an elliptic curve without complex multiplication. Then
all the self-points are of infinite order and the only relations among them are pro-
duced by the degeneracy maps as described in Proposition 4. In particular, the
rank of the group generated by self-points is equal to

δ(N )=
∏
p|N

⌈
(1− p−2) · pordp(N )

⌉
,

where dxe denotes the smallest integer no less than x.

The expression δ(N ) in the conjecture is equal to N if and only if N is square-free.

1.3. The results for higher self-points. We are particularly interested in higher
self-points that are modular points coming from a pair (E ′,C ′) in which E ′ has
an isogeny to E of degree a power of a prime p. We treat two cases: when p is a
prime of good reduction and when p is a prime of multiplicative reduction.

For simplicity we only sketch the results for the good case here, that is, p - N .
See Section 7 for more details.

We fix now a cyclic subgroup C in E of order N ; the following construction
depends on this choice, but our notation will not reflect this. Let D be a cyclic
subgroup of E of order pn+1 and let E ′ = E/D. Given any self-point PC , we may
consider the image C ′ of C under the isogeny E→ E ′. The higher self-point Q D is
defined to be the image of (E ′,C ′)∈ Y0(N ) under the modular parametrisation ϕE .
It is a point in the Mordell–Weil group of E over the field Q(C, D), which is
contained in K pn+1 N . In Corollary 20, we are able to prove that the higher self-
points are all of infinite order in some cases.

Theorem 1. Let E/Q be a semistable curve of conductor N not equal to 30 or 210.
Suppose that p is a prime such that p> N , and such that the Galois representation
ρ̄p :Gal(Q/Q)→ PGL2(Fp) is surjective. Let s be the rank of the group generated
by the self-points in E(KN ). Then the higher self-points in E(K pn+1 N ) generate a
group of rank s · (p+ 1) · pn .
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If one assumes that the prime is of ordinary reduction for E , one can weaken the
condition on the bad reduction substantially.

Furthermore these higher self-points are trace-compatible in the following sense.
Let D be a cyclic subgroup of order pn+1, and let ap be the p-th Fourier coefficient
of the modular form associated to the isogeny class of E . Then we have∑

D′⊃D

Q D′ = ap · Q D,

where the sum runs over all cyclic subgroups D′ of order pn+2 containing D. For
any number field F , we will write

ρF,p : Gal(F/F)−→ Aut(Tp E)∼= GL2(Zp)−→ PGL2(Zp)

for the representation of Gal(F/F) on the Tate module Tp E . If the Galois repre-
sentation ρKN ,p is surjective, then we can reformulate the above relation by saying
that the trace of Q D′ from its field of definition to the field of definition of Q D is
equal to ap ·Q D. This trace compatibility reminds one of the definition of an Euler
system. However, the field Q(C, D) is not Galois over Q and the Galois closure
is not an abelian extension, and worse not even a solvable extension.

The higher self-points are the only known towers of points of infinite order in
the division tower Q(E[p∞]) of E . Nevertheless the growth of the rank of the
Mordell–Weil group should often be faster than the lower bound (p + 1)pn that
we establish here in many cases. This is due to changing signs in the functional
equations and the corresponding parity results on the corank of Selmer groups. See
[Coates et al. 2009; Mazur and Rubin 2008]. These results predict, under the as-
sumption of the finiteness of the Tate–Shafarevich group, that there should be more
points of infinite order in the division tower that are not accounted for by higher
self-points. Furthermore the higher self-points do not seem to be linked in any
obvious way to root numbers. Also it is completely unknown if there is a relation to
L-functions (or to noncommutative p-adic L-functions as in [Coates et al. 2005])
in analogy to the Gross–Zagier formula for Heegner points.

1.4. Derivatives. Kolyvagin [1990] has used Heegner points of infinite order to
construct cohomology classes that obstruct the existence of further points of infinite
order. We aim to use a similar construction to build cohomology classes from
higher self-points of infinite order.

Let p be a prime of either good ordinary reduction or of multiplicative reduction.
If p does not divide the conductor N , define Fn=K pn+1 N ; otherwise let Fn=K pn N .
Put F = F−1. If we suppose that ρF,p : Gal(F/F)→ PGL2(Zp) is surjective, then
Gal(Fn/F)= PGL2(Z/pn+1Z). We are interested in a particular cyclic subgroup A
in Gal(Fn/F). Choosing a Zp-basis of the quadratic unramified extension O of Zp
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gives a map

O×→ GL2(Zp)→ PGL2(Zp)→ PGL2(Z/pn+1Z),

whose image is a cyclic group An of order (p+1)· pn . By a slight abuse of notation
we will denote the subfield of Fn fixed by An by F A

n .
The construction of derivatives provides us with a map

∂n : H1(An, S)→X(E/F A
n ).

The source is a cohomology group of the saturated group S of higher self-points
(see Section 8 for the definitions). Although we do not know its exact structure, we
can prove that it contains at least pn elements. It seems plausible to think that the
map ∂n is very often injective, but we do have no means to prove this in a single
case. Nevertheless, we are able to show the existence of points of infinite order in
E(F A

n ) whenever the map is not injective. Here is the final result:

Theorem 21. Let E/Q be an elliptic curve. Suppose E does not have potentially
good supersingular reduction for any prime of additive reduction. Let p be a prime
of either good ordinary or multiplicative reduction. Assume that ρF,p is surjective
and that KN contains a self-point of infinite order. Then we have

# Selpn (E/F A
n )> pn.

The construction of derivatives relies on a property of modular representation
theory. The higher self-points generate in the Mordell–Weil group a copy of the
irreducible Steinberg representation. More precisely, if Hn denotes Gal(Fn/F),
there is a certain Q[Hn]-module in E(Fn)⊗Q that is irreducible, but this module
is no longer irreducible over F`[Hn]when ` divides (p+1)· pn . Perhaps the idea of
using modular representation theory to study Selmer groups, which was developed
in [Greenberg 2008], could shed new light on these derivatives.

2. The fundamental theorem

Theorem 2. Let E/Q be an elliptic curve of conductor N. If the j-invariant of E
is not in 1

2 Z, then there is at least one self-point PC of infinite order in E(KN ).

Proof. Let p be a prime that divides the denominator of the j-invariant of E . If
possible, we avoid p= 2. Note that p2 may divide N , but we know that E acquires
multiplicative reduction over some extension of Q at p.

First we fix an embedding of Q into Qp. We consider the modular parame-
trisation over Zp. The modular curve X0(N ) over Zp has a neighbourhood of
the cusp ∞ consisting of pairs (A,C) of a Tate curve of the form A = Q×p /q

Z,
together with a cyclic subgroup C of order N generated by the N -th root of unity.
The parameter q is a p-adic analytic uniformiser at ∞, so that the Spf Zp[[q]] is
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the formal completion of X0(N )/Zp at the cusp ∞; see [Katz and Mazur 1985,
Chapter 8].

Let fE =
∑

an qn be the normalised newform associated to E . Then fE/q · dq
is the associated differential. Let cE be the Manin constant (of the not necessarily
strong Weil curve E), that is, the number such that ϕ∗E(ωE)= cE · fE/q ·dq , where
ωE is the invariant differential on E . The rigid analytic map induced by ϕE on the
completion can now be characterised as

logE(ϕE(q))=
∫ ϕE (q)

O
ωE = cE ·

∫ q

0
fE

dq
q
= cE ·

∑
n>1

an

n
· qn. (1)

Here logE denotes the formal logarithm associated to E from the formal group
Ê(m) to the maximal ideal Ĝa(m)=m of Zp. We deduce from this description the
following lemma that will be useful later. Write | · |p for the normalised absolute
value such that |p|p = p−1.

Lemma 3. Let (A,C) be a point in Y0(N )(Qp) such that A is isomorphic to the
Tate curve with parameter q0 6= 0 and C is isomorphic to the Galois module of
N-th roots of unity µ[N ]. If |q0|p < p−1/(p−1), then ϕE(A,C) is a point of infinite
order on E(Qp).

Proof. Under the condition on the absolute value of q0, we know that the sum on
the right-hand side of (1) converges. We consider the sum

z = cE ·
∑
n>1

an
n
· qn

0 .

Since the Manin constant is known to be an integer (see [Edixhoven 1991]), the
absolute value of the right-hand side is

|z|p = |cE |p ·

∣∣∣q0+
ap

p
q p

0

∣∣∣
p

as these are the terms of large absolute value. However note that the condition on
q0 implies that the second term on the right side is actually slightly smaller that
the first, and hence the absolute value of the sum is bounded by

|z|p = |cE |p · |q0|p < p−1/(p−1).

Therefore the value of z lies in the domain of convergence of the p-adic elliptic
exponential expE , and we obtain that ϕE(A,C) = expE(z). Since we know that
|z|p 6= 0, we can deduce that expE(z) is not a torsion point in E(Qp). �

We may now finish proving the theorem. Since E has multiplicative reduction
over Zp, exactly one of the xC = (E,C) if in the neighbourhood of∞ on X0(N );
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it is represented by the p-adic Tate parameter qE associated to E together with the
group C isomorphic to µ[N ]. If p 6= 2, then we know that

|qE |p = | j (E)|
−1
p 6 p−1 < p−1/(p−1),

and if p had to be chosen to be equal to 2 in the beginning then we know that

|qE |2 = | j (E)|
−1
2 6 p−2 < p−1/(p−1).

Hence in any case, the lemma applies and provides us with a point of infinite order
among the self-points. �

If the chosen prime p is such that p2 does not divide N , then qE lies in pvZp,
where v =− ordp( j (E)). Hence the proof’s point PC will be defined over Qp.

The restriction at p = 2 seems unnecessary. Often one can deduce the result of
the theorem by hand for curves whose j-invariant is an odd integer divided by 2.
We present here an easy example. For the curve 2450o1 in Cremona’s tables [1997]
with j-invariant −189/2, the 2-adic Tate parameter is equal to 2+22

+24
+O(29)

and the newform is fE = q − q2
+ q4

+ O(q8). From this one concludes that
logE(PC)= 23

+O(25). So PC is of infinite order. Nevertheless we do not see any
easy argument to prove that PC 6= O for a general curve with j (E) ∈ 1

2 Z \Z, as it
seems that the 2-adic valuation of logE(PC) can be arbitrarily large.

2.1. A torsion self-point. We believe that this theorem is still valid if E is a curve
with integral j-invariant as long as the curve does not admit complex multiplica-
tion. But not all self-points are of infinite order. We present here a surprisingly
easy example of a self-point that is torsion.

The curve 27a2 admits a cyclic isogeny of degree 27 defined over Q to the
curve 27a4. Let E be either of the two curves. Then E has exactly one cyclic sub-
group of order 27 defined over Q, that is, E admits a self-point in E(Q). Since the
rank of E(Q) is zero, the self-point has to be of finite order. Note that these curves
have complex multiplication. See Section 6.2 for more detailed computations on
these self-points.

3. Relations

In [Delaunay and Wuthrich 2008] it is shown that the self-points on a curve of
prime conductor satisfy exactly one relation. What kind of relations could occur
among the self-points for a curve of conductor N? Here is a first part of an answer.
First, we need some more notation. The Galois group G =G N =Gal(KN/Q) was
identified with a subgroup of PGL2(Z/NZ). For any divisor d of N , we define the
image of G N under the projection PGL2(Z/NZ)→ PGL2(Z/dZ) as Gd and by Kd

its fixed field in KN . In other words, Kd is the smallest number field for which the
absolute Galois groups acts by scalars on E[d].
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Proposition 4. The sum of all self-points is a torsion point defined over Q. If
d 6= N is an integer dividing N , then there are relations of the form

RB :
∑
C⊃B

PC is torsion in E(Kd),

where B is any given cyclic subgroup of order d and C runs through all cyclic
groups of order N containing B.

Proof. The degeneracy map π : X0(N )→ X0(d) induces π∗ : J0(d)→ J0(N ) on
Jacobians. Given a cyclic subgroup B of order d on E , we may consider the point
xB = (E, B) on X0(d). The divisor class

π∗[(xB)− (∞)] =
∑
C⊃B

[(xC)] −π
∗
[(∞)]

is in the image of π∗ in J0(N ) and hence in the kernel of the map ϕE : J0(N )→ E
because N is the exact conductor of E . This gives the relation RB .

Taking d = 1 gives the result that the sum of all self-points is a torsion point.
Since this sum is fixed by the Galois group, it has to be a rational point. �

4. The Steinberg representations

The aim is to describe certain irreducible representations that will appear in the
study of self-points. Let N > 1 be an integer. We are interested in the group
P = PGL2(Z/NZ). We will decompose the Q[P]-module V whose basis {eC} as a
Q-vector space is in bijection with the projective line P1(Z/NZ) and on which the
P-action is given by the usual permutation on the basis. So it can be written as

V =
⊕

C∈P1(Z/NZ)

QeC = IndP
B (1B),

where B is a Borel subgroup of P and 1B is its trivial representation.

Theorem 5. The Q[PGL2(Z/NZ)]-module V splits into the sum V =
⊕

D|N WD of
irreducible Q[PGL2(Z/NZ)]-modules WD , where D runs through all divisors of N .
Let D =

∏
p pdp be the prime decomposition of a divisor D of N. Define

δp =
⌈

pdp − pdp−2⌉
=


1 if dp = 0,
p if dp = 1,
pdp − pdp−2 if dp > 1.

Then WD has dimension δ(D)=
∏

p|D δp as a Q-vector space.
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Proof. We split the proof into three parts according to whether N is a prime, a
prime power or any integer. The first two cases could also be treated by invoking
[Silberger 1970, Theorem 3.3 on page 58], but, since we need the explicit descrip-
tion of WD later on, we prefer to prove this theorem in detail. Since the proof is
inductive on N , we will now write PN for PGL2(Z/NZ) and VN for its V .

Case: N is prime. Write p = N . The claim is simply that the Q[P]-module
Vp splits into two irreducible components W1 ⊕ Wp. We define W1 to be the
1-dimensional subspace of V generated by the vector v1 =

∑
C eC , where the sum

runs over all C in P1(Fp). Of course, W1 = V P
p is an irreducible Q[P]-submodule

of Vp and the space

Wp =
{∑

aC · eC

∣∣ ∑ aC = 0
}

is a complement to it. It remains to show that Wp is irreducible. Let g be an
element of order p in P , such as the class of

(
1 1
0 1

)
. On Vp⊗C the element g acts

with eigenvalues 1, 1, ζ , ζ 2, . . . , ζ p−1, where ζ is a primitive p-th root of unity.
Hence on Wp every p-th root of unity appears exactly once as an eigenvalue. So
the only possibility for Wp to split up into two Q[P]-submodules would have to
involve a 1-dimensional and a (p−1)-dimensional submodule.

As we can see from the fact that PSL2(Fp) is a simple group when p> 3 and by
direct calculations for p = 2 and 3, there are only two one-dimensional represen-
tations of PGL2(Fp): the trivial representation and the one with kernel PSL2(Fp)

of index 2. Since PSL2(Fp) acts transitively on P1(Fp), the one-dimensional sub-
representations of Vp must be contained in V PSL2(Fp)

p =W1.

Case: N is a prime power. We write N = pk with p prime. We prove the statement
by induction on k. The case k = 1 has been treated already; thus we may assume
that k > 2. The claim is that Vpk splits as

⊕
Wpm , where m runs from 0 to k.

There is a reduction map α : P1(Z/pkZ)→ P1(Z/pk−1Z) that is surjective and all
of whose fibres contain p elements. Define

V ′ =
{∑

aC eC

∣∣ aC = aC ′ whenever α(C)= α(C ′)
}
.

It is easy to see that V ′ is canonically isomorphic to Vpk−1 as a vector space, so
we will identify them. The action of Ppk factors through the quotient Ppk → Ppk−1

induced by reduction. By induction, V ′ splits as a Q[Ppk−1]-module into the sum
V ′ =

⊕k−1
m=0 Wpm ; this also decomposes V ′ into irreducible Q[Ppk ]-modules. As a

complement to V ′, we define

Wpk =

{∑
aC eC

∣∣∣ ∑
α(C)=D

aC = 0 for all D in P1(Z/pk−1Z)
}
.
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It is clear that Wpk is a Q[Ppk ]-submodule of Vpk . If k > 1 then its dimension is
equal to

dimQ Wpk = #P1(Z/pkZ)− #P1(Z/pk−1Z)

= (p+ 1) · pk−1
− (p+ 1) · pk−2

= pk
− pk−2.

It remains to show that Wpk is irreducible.
Let∞ be any point in P1(Fp) and write U∞ for the preimage of∞ under the

reduction map P1(Z/pkZ)→ P1(Fp). Within V , we define a linear subspace

V∞ =
{∑

aC eC

∣∣ aC = 0 if C ∈U∞
}

of dimension pk and let W∞ =Wpk ∩ V∞ and V ′∞=V ′∩V∞. Let g be an element
of Ppk of order pk whose fixed points lie in U∞. If∞ is (0 : 1), then we may take
the class of the matrix

(
1 1
0 1

)
. The element g acts on V∞⊗C such that every pk-th

root of unity appears exactly once. The eigenvalues of g on the subspace V ′∞

are all pk−1-st roots of unity. Hence on W∞ every primitive pk-th root of unity
appears exactly once as an eigenvalue. So W∞ is an irreducible Q[〈g〉]-module,
and so if Wpk splits as a Q[Ppk ]-module, then W∞ has to be completely contained
in one of the summands. But for any two distinct points∞ and∞′ in P1(Fp) the
spaces W∞ and W∞

′

span the whole of Wpk . Hence Wpk cannot be reducible.
The general case follows fairly easily from the previous cases. Let N =

∏
pn p

be the prime decomposition of N . We may suppose that N is not a prime power,
since we have treated this case already. Now the group PN splits as

PN = PGL2(Z/NZ)=
∏
p|N

PGL2(Z/pn p Z)=
∏
p|N

Ppnp

by the Chinese remainder theorem. Similarly, we have

P1(Z/NZ)=
∏
p|N

P1(Z/pn p Z) and so VN =
⊗
p|N

Vpn p

as a Q[PN ]-module. Now we use the previous case to rewrite

VN =
⊗
p|N

n p⊕
m=0

Wpm .

Let D be any divisor of N and
∏

pdp its prime factorisation. Then define

WD =
⊗
p|D

Wpdp .
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It is clear from the representation theory of direct products that WD is irreducible.
Rearranging the above decomposition of VN , we arrive at the desired expression
VN =

⊕
D|N WD . �

Proposition 6. Let p be a prime. Let G be a subgroup of a Borel subgroup of
PGL2(Fp) acting on Vp =

⊕
QeC . Suppose that the class of

(
1 1
0 1

)
belongs to G.

Then Vp decomposes into irreducible Q[G]-modules as W1⊕W ′1⊕W ′p, where W ′p
is an irreducible Q[G]-module of dimension p− 1.

Proof. Let C0 be the element of P1(Fp) fixed by the Borel group containing G. By
assumption, we know that C0 is the only fixed point of G acting on P1(Fp). Hence
Vp contains two linearly independent vectors that are fixed by G, namely eC0 and
v0 =

∑
C 6=C0

eC . The Q[G]-submodule

W ′p =
{∑

C 6=C0

aC · eC

∣∣∣ ∑
C 6=C0

aC = 0
}

is a complement to V G
p . Now use the class g of the matrix

(
1 1
0 1

)
as before to show

that W ′p is irreducible since the eigenvalues of g on W ′p are exactly the set of all
primitive p-th roots of unity. �

In fact one can show that Theorem 5 holds even for the complex representation
V ⊗C as C[PGL2(Z/NZ)]-modules. On the other hand, Proposition 6 really relies
on the fact that we are only considering decompositions as Q[G]-modules. For
instance, we may well take G to be the cyclic group generated by the matrix

(
1 1
0 1

)
;

then of course W ′p⊗C will split into 1-dimensional representations. But since the
p-th roots of unity are not all defined over Q, at least if p > 2, this decomposition
does not hold in general for W ′p.

We can now reformulate the statement of Proposition 4 as follows. There is a
G-equivariant map ι : VN → E(KN )⊗Q, defined by sending eC to PC . It has a
kernel containing all submodules Wd for d 6= N dividing N . So it induces a map
ι : WN → E(KN )⊗Q that is G-equivariant. By the fundamental Theorem 2, this
morphism is nontrivial if j 6∈ 1

2 Z. Hence we can deduce the following corollary.

Corollary 7. The self-points generate a group of rank at most δ(N ) inside E(KN ).
If WN is an irreducible Q[G N ]-module and the j-invariant is not in 1

2 Z, then the
self-points generate a group of rank δ(N ) and the Galois group acts like the Stein-
berg representation WN on it.

5. Self-points on semistable curves

We will suppose in this section that the curve E/Q is semistable. In particular,
the j-invariant cannot belong to 1

2 Z since all primes dividing N must appear in the
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denominator of j (E) and there is no curve of conductor 2. Hence the fundamental
Theorem 2 applies to E .

5.1. Some lemmata. Recall that Km was defined to be the field fixed by the kernel
of ρ̄m . We denote the Galois group Gal(Km/Q) by Gm and think of it as a subgroup
in PGL2(Z/mZ).

In what follows, we often have to split up the primes dividing N into two groups.
Let s, standing for “surjective”, be the product of all primes p dividing N such that
the representation ρ̄p is surjective. Let m, standing for “méchant”, be the product
of the remaining primes dividing N . Note that there are not many choices for m
as described in the following lemma.

Lemma 8. We have m ∈ {1, 2, 3, 4, 5, 6, 7, 10}. If p | m, then G p is contained in
a Borel group of PGL2(Fp) and hence is either a cyclic or a metacyclic1 group.

Proof. Let p | m. By a theorem of Serre [1996], the curve admits a p-isogeny
E→ E ′ defined over Q, and either E or E ′ must have a point of order p defined
over Q. Then by Mazur’s theorem [1978] on torsion points on elliptic curves
over Q, and we know now that p 6 7 and that m 6 10. �

Lemma 9. Let E/Q be a semistable elliptic curve. Then the largest prime p
dividing N is such that the representation ρ̄p is surjective, and p− 1 > m unless
N is 30 or 210.

Proof. If N is divisible by a prime p > 13, then the largest prime p dividing N
cannot divide m and satisfies p− 1 > m because m 6 10 by the previous lemma.
Hence we are left with a finite list of possible N to check. This can be done easily;
to illustrate it we show in Table 1 the list of curves of square-free conductors N
whose prime divisors are among {2, 3, 5, 7}. For the full proof, we would need
to list also conductors divisible by 11, but then the list will be far too long to be
included here. However the only three exceptional isogeny classes can already be
seen in this table.

To each isogeny class, we give the number i of isogenous curves, the maximal
degree d of an isogeny among them, the value of m, and the largest p | N such that
ρ̄p is surjective. This ends the proof. �

Lemma 10. Let E/Q be a semistable elliptic curve with 6 | N and such that the
representation ρ̄2 is surjective onto PGL2(F2). If there exists a prime p | N such
that 3 - cp, then K2 cannot be contained in K3.

Proof. We wish to derive a contradiction from the assumption that K2 is contained
in K3. By assumption, the Galois group G2 of the extension K2/Q is PGL2(F2),
which is isomorphic to the symmetric group on three letters S3. The Galois group

1metacyclic: a semidirect product of cyclic groups
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N 14a 15a 21a 30a 35a 42a 70a 105a 210a 210b 210c 210d 210e
i 6 8 6 8 3 6 4 4 8 8 6 4 8
d 18 16 8 12 9 8 4 4 12 12 8 4 16
m 2 1 1 6 1 2 2 1 6 6 2 2 2
p 7 5 7 5 7 7 7 7 7 7 7 7 7

Table 1. Some of the “evil curves” to be treated separately in
Lemma 9.

G3 is contained in PGL3(F3) = S4. Therefore the Galois group Gal(K3/K2) is
contained in the Klein group V4 of S4.

Suppose first that the reduction of E at p is split multiplicative. Let qE be the
Tate parameter of E over Qp. Choose a place υ above p in K2 and a placew above
υ in K3. Then the completion K3,w is equal to Qp(ζ3, 3

√
qE) and K2,υ is equal to

Qp(
√

qE). Since 3 does not divide cp > 1, we know that qE cannot be a cube.
Therefore the degree of K3,w/K2,υ is divisible by 3. This is impossible since the
degree of K3/K2 must be a power of 2.

If the reduction is nonsplit multiplicative at p, one can do the same argument
but transposed to the extension L of Qp over which E acquires split multiplicative
reduction. As L/Qp is of degree 2, we still find that the degree of K3,w/K2,υ must
be a multiple of 3. �

Lemma 11. Let E/Q be a semistable elliptic curve. For (ii) and (iii) below, we
assume that if 2 | N and 3 | N , then there is a prime p | N such that 3 - cp.

(i) Gs acts transitively on the set P1(Z/sZ) of cyclic subgroups of order s in E.

(ii) The Steinberg representation Ws is irreducible as a Q[Gs]-module.

(iii) Suppose Wm decomposes into irreducible Q[Gm]-modules as U1⊕ · · · ⊕Uk .
Then WN decomposes into irreducible Q[G N ]-modules as

WN =

k⊕
i=1

(Ui ⊗Ws).

Proof. We will first prove by induction the statement in (ii) with s replaced by
any of its divisors r , assuming the additional hypothesis. If r = p is prime then
G p = PGL2(Fp) and Theorem 5 shows that Wp is irreducible as a Q[G p]-module.
Let p be the largest prime factor of r . We may suppose that r is composite and so
p > 2. Put t = r/p > 2. We assume that Wt is an irreducible Q[G t ]-module. We
wish to prove that Wr is an irreducible Q[Gr ]-module.
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The Galois group Hp = Gal(Kr/Kt) is isomorphic to that of the extension
K p/Kt ∩ K p. Hence Hp is a normal subgroup of G p = PGL2(Fp). We use the
fact that PSL2(Fp) is simple for p > 3. So Hp is either all of G p, PSL2(Fp), the
trivial group or, in the case p= 3, the Klein group V4 in PGL2(F3)=S4. Treating
the four cases separately, we will prove that Wp is an irreducible Q[Hp]-module.

If Hp is all of G p, then Wp is irreducible as a Q[Hp]-module by Theorem 5. If
Hp is equal to PSL2(Fp), then Wp could split at most into two subspace of equal
dimension since PSL2(Fp) has index 2 in PGL2(Fp). But the dimension of Wp is
odd unless p = 2, which we excluded. Hence Wp is irreducible.

Next, we will exclude the case when Hp is trivial. If it were so, then there is
a surjective map from G t onto G p = PGL2(Fp). The group G t is contained in
PGL2(Z/tZ), whose order is ∏

`|t

` · (`+ 1) · (`− 1).

So the order of G t cannot be divisible by p since p is larger than any of the `,
unless p = 3 and t = 2. It is also impossible that there is a surjective map from
PGL2(F2) onto PGL2(F3). So Hp is not trivial.

Finally, we treat the case when Hp is the Klein group in PGL2(F3). Since p= 3,
we have t = 2. As G2 = PGL2(F2)=S3, the only possibility for this case is when
K2 is contained in K3. But it was shown in Lemma 10 that this is not possible
under our additional hypothesis.

Let X be a sub-Q[Gr ]-module of Wr =Wp⊗Wt . As Hp acts trivially on Wt , we
deduce that there is a subspace Z of Wt such that X = Wp ⊗ Z . By the induction
hypothesis, we know that Wt is irreducible as a Q[G t ]-module. Hence Z =Wt and
we have shown that Wr is Q[Gr ]-irreducible.

Now we will prove (i). If the additional hypothesis is verified, then Ws is an
irreducible Q[Gs]-module by (ii); hence Gs acts transitively on P1(Z/sZ). But the
only place where we used the additional hypothesis in the proof of (ii) is when
we excluded the possibility that Hp is the Klein group in PGL2(F3). But since the
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Klein group acts transitively on P1(F3), we can prove directly the truth of (i) in
general.

Finally we must prove (iii). We follow again along the same lines as the proof
of (ii). Of course, we may assume that m > 1. Let 1 6 i 6 k, and let r | s. We
will prove by induction that Ui ⊗Wr is an irreducible Q[Grm]-module. Let p be
the largest prime dividing r and let t = r/p. By induction, we may suppose that
Ui⊗Wt is G tm-irreducible. Let Hp=Gal(Krm/Ktm)⊂PGL2(Fp). As before, if we
can prove that Wp is an irreducible Q[Hp]-module, then we know that Ui ⊗Wr =

Ui⊗Wt⊗Wp is Grm-irreducible. Once again we must exclude only the possibility
that Hp is trivial or equal to the Klein group V4 in PGL2(F3).

Suppose first that p = 2. By maximality of p, we must have t = 1. If Hp

is trivial, then there is a surjective map from Gm to PGL2(F2). Running through
all the possible odd m in Lemma 8, we find that only m = 3 can be possible.
Moreover in this case we must have K2= K3. Again we use Lemma 10 to exclude
this possibility.

We treat now the case that p= 3. Then t = 1 or t = 2. Suppose that Hp is trivial.
There must be a surjective map from G tm to PGL2(F3)∼=S4. We can check that if
t = 1, then we must have m = 7 since otherwise #Gm will not be a multiple of 3.
But #G7 is not divisible by 24. If t = 2, then m can only be 5 or 7. Again it cannot
be 7. So we must have G tm ⊂S3× (Z/4Z n Z/5Z), and it is easy to check that the
latter group does not have a subquotient isomorphic to S4.

Continuing with the case p = 3, we suppose now that Hp is the Klein group
in PGL2(F3). This time we have a surjection of G tm onto S3. If t = 1, we can
again check that there is no possibility for Gm . So suppose that t = 2. Then G tm is
contained in S3×Gm . Then the only possibility for the surjection is that Gm lies
in its kernel and PGL2(F2) maps isomorphically onto S3. In this case we would
have that K2 is contained in K3. Once again Lemma 10 excludes this.

The very last step is to assume that p > 3 and that Hp is trivial. Then there is
a surjective map from G tm to PGL2(Fp). By the maximality of p, we know that
# PGL2(Z/tZ) is not divisible by p. Therefore p 6= m must divide #Gm . Running
through the list of possible groups in Lemma 8, we find that this is not possible. �

5.2. Results for semistable curves.

Theorem 12. Let E/Q be a semistable elliptic curve of conductor N with N not
equal to 30 or 210. Then all the self-points PC are of infinite order in E(Q(C)).

Proof. By Lemma 9, we may choose a prime p dividing N such that ρ̄p is surjective
and such that p− 1> m.

Any cyclic subgroup C of order N may be written as C = A ⊕ B, with A
of order m and B of order s = N/m. Now we use the previous lemma. For any
fixed A, the group G N acts transitively on the set {A⊕B}B as B runs over all cyclic
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subgroups of order s in E . Hence all self-points {PC} with the m-part A fixed are
conjugate in E(KN ). In particular, if m = 1, then all self-points are conjugate and
the fundamental Theorem 2 proves the theorem. So suppose now that m > 1.

Now we use the p-adic proof of Theorem 2. We identify the curve E/Qp with
the Tate curve Q×p /q

Z
E . Fix a cyclic subgroup A of order m in E , and let B =µ[s]

and C = A⊕ B. Since any self-point is conjugate to such a point, it is sufficient to
prove that PC is of infinite order.

For each ` |m, let A` be the `-torsion part of A. Write A′′ for the direct sum of
all A` such that A` is generated by the `-th roots of unities µ[`] in E(Qp). Write
A′ for the sum of all other A`. So A= A′⊕ A′′. Denote the order of A′ by m′ and
likewise the order of A′′ by m′′. Now we consider the isogeny ψ with kernel A′,
given by

0 � A′ � E
ψ
� E ′ � 0.

If Â′ is the kernel of the dual isogeny ψ̂ : E ′→ E , then we may consider the point

x ′C = (E
′, Â′⊕ψ(A′′)⊕ψ(B)) ∈ X0(N )(Qp),

which is nothing other than the Atkin–Lehner involution wm′ applied to the point
xC = (E,C). We know already that ψ(B)=µ[k] and ψ(A′′)=µ[m′′], but we also
see that the group Â′ is isomorphic to µ[m′]. Hence the point x ′C lies now close to
the cusp∞ and its Tate-parameter will be a certain m′-th root u of qE . Since

|u|p = (|qE |p)
1/m′
= p−cp/m′ < p−1/(p−1)

because m′ 6m < p−1, we can apply Lemma 3 to show that ϕE(x
′
C) is of infinite

order. But the Atkin–Lehner involutions w` act like multiplication by −a` ∈ {±1}
for all primes ` dividing N , as shown in [Atkin and Lehner 1970]. Therefore
PC = ϕE(xC)=±ϕE(x

′
C)+ T , where T is a point of finite order, and hence PC is

of infinite order. �

As remarked earlier we have a G N -equivariant map

ι :WN → E(KN )⊗Q

Part (ii) of Lemma 11 shows this:

Theorem 13. Let E/Q be a semistable elliptic curve with N not equal to 30
or 210. Suppose all the representations ρ̄p for all primes p | N are surjective.
Then the group generated by the self-points is of rank N and the Galois group acts
like the irreducible Steinberg representation WN on it.

We prove now an extension of this theorem to the case when m 6=1. In particular
WN might not be irreducible anymore. Unfortunately we cannot prove that the
rank is N in general for a semistable curve since we have to exclude the possibility
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that the curve has two distinct isogenies of the same degree defined over Q: If
the curve has two isogenies of degree p over Q, then in the decomposition of
WN into irreducible Q[G]-modules, there will be a representation that appears
with multiplicity 2. The second hypothesis in the following theorem excludes this
possibility, but it is also needed elsewhere to be able to apply the lemmata from
the previous section.

Theorem 14. Let E/Q be a semistable elliptic curve. Suppose that N is not equal
to 30 or 210. Suppose that for each prime p | N such that ρ̄p is not surjective, there
is a prime ` | N such that the Tamagawa number c` is not divisible by p. Then the
group generated by the self-points is of rank N.

Proof. As a consequence of the second hypothesis, we know that for each p | N
there is an element of order p in G p. See the appendix of [Serre 1968]. Since
either G p is all of PGL2(Fp) or it is contained in the Borel subgroup, we conclude
that either G p acts transitively on P1(Fp) or it has one single fixed point, which we
will call C p ∈ P1(Fp).

Let p |m. Then by Proposition 6, the Q[G p]-module Wp decomposes as the
sum of the trivial part W ′1 and an irreducible part W ′p of dimension p− 1. If m is
not prime it can only be either 2 · 3 or 2 · 5 by Mazur’s theorem. If m = 6, then
W6 decomposes as W ′1 ⊕W ′2 ⊕W ′3 ⊕W ′6, where W ′6 = W ′2 ⊗W ′3. To see that the
latter is also irreducible one needs only to note that the dimension of W ′2 is 1. In
the same way, for m = 10, we have an irreducible component W ′10.

Using Lemma 11, we know now that WN decomposes as

WN =
⊕
d |m

(W ′d ⊗Ws)

into irreducible Q[G N ]-modules. We must now prove that none of the components
belongs to the kernel of the map ι :WN → E(K )⊗Q.

First recall the definition of W ′d ⊗Ws . It contains all elements∑
C∈P1(Z/NZ)

aC eC ∈
⊕

C∈P1(Z/NZ)

QeC ,

subject to the following three conditions.

• For all N 6= b | N and all cyclic subgroups B of order b, the sum
∑

C⊃B aC

vanishes.

• For all primes p | d and all C ⊃ C p, we have aC = 0.

• For all primes p | (m/d) and all C 6⊃ C p, we have aC = 0.
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Let d |m. Define A to be the direct sum of C p for all p | (m/d). So A is a cyclic
group of order m/d . The map ι on W ′d ⊗Ws is induced from the map

ιd :
⊕

D

QeA⊕D −→ E(K )⊗Q,

where D runs through all the cyclic subgroups D in E of order d · s such that
D does not contain any of the C p with p | d . Since this map sends eA⊕D to the
self-point PA⊕D , it follows from Theorem 12 that the map ιd is not trivial.

Now we use the relations in Proposition 4 to see that, for all b | ds and all cyclic
groups B of order b not containing any of the C p, we have

∑
D⊃B eA⊕D ∈ ker ιd .

Hence the only irreducible part of the domain of ιd that does not lie in the kernel
is W ′d ⊗Ws Hence ιd induces an injection W ′d ⊗Ws→ E(K )⊗Q. �

The hypothesis in this last theorem is fulfilled for the very large part of semistable
curves. We could not find a strong Weil curve with N <10,000 for that the theorem
would not apply. The first curve which does not satisfy the hypothesis with p = 3
is 651e2 since it has G3 = Z/2Z, and the Tamagawa numbers are c3 = 3, c7 = 3,
and c31 = 3. For p= 2, the examples that do not satisfy the hypothesis are exactly
those that have all 2-torsion points defined over Q, as for instance 30a2.

6. Examples

Table 2 shows some computations done for the optimal curves (with one exception)
of smallest conductor. We do not give the complete explanation of how one obtains
these results. For more detail, we refer the reader to [Delaunay and Wuthrich 2008]
and [Wuthrich 2007]. We will consider two curves in more detail later.

N 11a1 14a1 15a1 17a1 19a1 20a1 21a1 24a1 26a1

torsion 5 2 · 3 2 · 4 4 3 2 · 3 2 · 4 2 · 4 3
isogeny 25 18 16 4 9 6 8 8 9

WN 1 2 1 1 1 2 1 4 1
rank 11 14 15 17 19 15 21 18∗ 26

N 26b1 27a2 30a1 32a1 33a1 34a1 35a1 37a1 38a1

torsion 7 3 2 · 3 4 2 · 2 2 · 3 3 1 3
isogeny 7 27 12 4 4 6 9 1 9

WN 1 5 4 ? 1 2 1 1 1
rank 26 20 30∗ 12∗ 33 34 35 37 38

Table 2. The ranks of the group generated by self-points for some curves.
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We label the curves as in Cremona’s tables [1997]. The first line of our table
shows the structure of the torsion group over Q; for example, 2 · 4 means that
E(Q)tors = Z/2Z ⊕ Z/4Z. The next line indicates the largest degree of a cyclic
isogeny defined over Q on E . The last two lines are those containing information
about self-points: First we counted the number of irreducible Q[G N ]-modules
in WN , and finally we computed the rank of the group generated by self-points in
E(KN ).

The two values in bold face are lower than the usual conjectured rank, which is
no surprise since these two curves have complex multiplication. When there is no
∗ sign next to the rank, the value is proved using the results in the previous section.
The sign ∗ indicates that we have only empirically computed the rank using the
following method.

Using high precision computation we may find a very good approximation to
the values of

zC =

∫
∞

xC

fE(q)
dq
q

as elements of C, where C runs over all cyclic subgroups of order N in E . Hence
zC maps to PC under C→ C/3E → E(C), where 3E = Zω1⊕Zω2 is the period
lattice of E . Let t be the order of the torsion subgroup of E over Q. Consider the
abelian group spanned by 1

t ω1, 1
t ω2 and all the zC in a complex vector space of

dimension 2+#P1(Z/NZ). Using the LLL algorithm, we find small vectors in this
lattice. These are likely to give relations

b1ω1+ b2ω2+
∑

C

aC zC = 0

with b1, b2, and aC all integers. This yields a probable relation among the self-
points. Unfortunately we might not catch those relations involving torsion points
on E not defined over Q. So to increase the likelihood of finding all relations we
multiply t by a product of small primes. For all cases for which we were able to
determine the rank, this empirical computation gave the same answer. In principle
these computations could be made rigorous by considering exact estimates for the
error terms.

6.1. Conductor 24. We present here an example of a curve where we are unable
to determine the rank of the group generated by self-points. The Mordell–Weil
group of the curve 24a1, given by the equation

E : y2
= x3
− x2
− 4 · x + 4,

is E(Q)= Z/2Z⊕Z/4Z. The situation is rather complicated and we do not explain
all computations here. The field K4 turns out to be Q(i,

√
3), which happens to

be equal to Q(E[4]). There is are two nontrivial Galois-orbits of 4-torsion points,
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one over Q(
√

3) and the other over Q(
√
−3). Hence the representation V4 splits

as
V4 = 1⊕1⊕1⊕1⊕1(

√
3)⊕1(

√
−3) ,

where 1(
√

d) is the one-dimensional representation corresponding to the Dirichlet
character associated to Q(

√
d). Now the field K8 can be computed too; it coincides

with Q(E[8]) in this case. It is a degree 16 extension of discriminant 236
· 312,

and contains the extension Q(i,
√

2,
√

3). The subextension K4 is fixed by the
centre of the Galois group G8. The group G8 admits two irreducible 2-dimensional
representations, one of which we call Z2. Then the representation V8 splits in many
components and we find that

W8 = 1(
√

2)⊕1(
√
−2)⊕ Z2⊕ Z2.

The first two factors correspond to two pairs of lines in E[8] defined over Q(
√

2)
and Q(

√
−2) respectively. The other lines are defined over fields of degree 4.

Using that the field K3 intersects K8 in Q(
√
−3), we find that W24 splits into 4

irreducible factors W24 = W3(
√

2)⊕W3(
√
−2)⊕ Z6 ⊕ Z6. Here Z6 = W3 ⊗ Z2

is an irreducible representation of dimension 6. In particular, this representation
appears with multiplicity 2. So the usual proof that there are no further relations
among self-points will not work.

The cyclic subgroup of order 8 in E that corresponds to µ[8] over Q3 contains
the rational 4-torsion point. So one of the two factors of dimension 3 in W24

certainly appears in E(KN )⊗Q. But we are unable to show that any other self-
points are of infinite order by means of Theorem 12.

Though we can only conclude that the rank r of the group generated by the
self-points satisfies 3 6 r 6 18, we strongly believe that r = 18, as suggested by
the empirical computations.

6.2. Conductor 27. There are four curves of conductor 27 forming the isogeny
graph

27a2← 27a1← 27a3← 27a4

The isogenies ← are all of degree 3, and in the sense that they are drawn here,
the kernels are Z/3Z while the dual isogenies have kernel µ[3]. Over the field
F = Q(

√
−3) = Q(ζ ), with ζ a third root of unity, the curves 27a1 and 27a3

become isomorphic, the same holds for the curves 27a2 and 27a4. The first pair
has complex multiplication by the maximal order Z[ζ ], while the second pair has
complex multiplication by Z[3ζ ].

Let E be the curve 27a2 defined by y2
+ y = x3

− 270 · x − 1708.

Theorem 15. The self-points on the curve 27a2 generate a group of rank 20
in E(K27). There are exactly two linearly independent self-points defined over
K3 =Q( 6

√
−3), and they generate a subgroup of finite index in E(K3).
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The proof is contained in the following explanations, but we do omit certain
computations.

The field K3 is equal to Q( 6
√
−3), and the Galois group G3 is a dihedral group

of order 6. In fact some 3-torsion points are defined over F = Q(
√
−3), some

others are over Q( 3
√
−3), and we have V3 = 1⊕ 1(

√
−3)⊕ Z2, where Z2 is the

unique irreducible 2-dimensional representation of G3.
In order to determine the structure of V27, we need to use the theory of complex

multiplication. Let H27 be the subgroup Gal(K27/F) inside G27. We know that
the representation ρ̄27,F now maps to

ρ̄27,F : H27 � �
AutO/27O(E[27])

(Z/27Z)
× =

(O/27O)
×

(Z/27Z)×

∼=
�
{(

1 ∗
0 1

)
∈ PGL2(Z/27Z)

} ∼=
� Z/27Z,

where O=Z[3 ζ ] is the ring of endomorphisms of E/F . It is possible to verify that
H27 is equal to this group, and hence G27 is a dihedral group of order 54 generated
by h =

(
1 1
0 1

)
and s =

(
1 0
0 −1

)
. The computation of V27 is now easy and one finds

W27 = 1⊕1(
√
−3)⊕ Z2⊕ Z2⊕ Z18.

Here Z2 is the unique 2-dimensional irreducible Q[G27]-module (the action of h
has trace−1), and Z18 is the unique irreducible 18-dimensional Q[G27]-module (it
splits over C into six 2-dimensional representations). Since the curve 27a2 is not
the strong Weil curve in the isogeny class, the modular parametrisation ϕE from
the elliptic curve X0(27) to E is not an isomorphism but an isogeny of degree 3.
The curve X0(27) has six cusps represented by the classes {∞, 0, 1

3 ,
2
3 ,

2
9 ,

4
9}. The

group X0(27)(Q) contains the cusps∞ and 0 and the self-point obtained from the
isogeny 27a2→27a4. They form exactly the kernel of ϕE . The other cusps are
mapped to the 3-torsion points defined over F on E . In fact E(F) = Z/3Z and
E(K3)tors = Z/3Z⊕ Z/3Z. A two-descent over K3 shows that the 2-Selmer group
of E/K3 has two copies of Z/2Z in it.

The trivial factor in W27 corresponds to the self-point obtained from the 27-
isogeny defined over Q on 27a2. We know that it is the point O in E(Q). The
factor 1(

√
−3) in W27 must also belong to the kernel of ι : W27 → E(K27)⊗Q

since the Mordell–Weil group E(F) is of rank 0. Of the factors Z2 at least one
must be in the kernel since the rank of E(K3) is bounded by 2 from above. It is not
hard to check by looking at traces of Frobenii that the torsion subgroup of E(K27)

only contains nine 3-torsion points. Since the degree of ϕE is 3, there are at most
27 points in X0(27)(K27) that map to torsion points in E(K27) under ϕE . Since
there are 36 points xC , we conclude that at least 9 self-points are of infinite order.
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Looking at the decomposition of W27, we see that Z18 cannot belong to the kernel
of ι.

Finally we have to show that there is a self-point of infinite order in E(K3).
This will show that the second copy of Z2 does not belong to the kernel of ι. This
can be done numerically. The point τC =

1
6 · (−1+

√
−3) in the upper half plane

corresponds to a point xC in X0(27). We find that

−
1
8(36 · s5

+ 15 · s4
− 45 · s3

− 18 · s2
+ 69 · s+ 99) with s = 6

√
−3

is the x-coordinate of the self-point PC in E(K3). Its canonical height is 1.5191
and hence PC is of infinite order. This point PC and its conjugates over F will
generate a group of rank 2 in E(K3). Since we have computed the 2-Selmer group
earlier, we conclude that the rank of E(K3) is as claimed equal to 2.

It seems plausible that this PC can also be constructed as an “exotic Heegner
point” using the construction of Bertolini, Darmon and Prasanna [≥ 2009], but the
authors exclude there explicitly the case of conductor N = 27.

7. Higher self-points

In this section, we investigate three particular cases of higher self-points. Let E/Q
be an elliptic curve of conductor N . For any cyclic subgroup D in E we may
consider the isogenous curve E/D with a suitable choice of a cyclic subgroup of
order N in it. In the first case, we use subgroups D defined over Q to construct new
points and for the two other cases we use subgroups D of prime-power order pn ,
first when p divides the conductor and then when it does not divide the conductor.

7.1. Self-points via rational isogenies. Let D be a cyclic subgroup in E defined
over Q. Suppose for simplicity that the order of D is prime to N . Then for any
cyclic subgroup C of order N on E ,

Q D = ϕE(E/D, (C + D)/D)

is a higher self-point defined over the same field as PC . It would be interesting
to know in general when PC and Q D are linearly independent. For instance this
can be shown on the curves of conductor 11: There are 3 curves in the isogeny
class, and hence we find, for any fixed C , one self-point and two higher self-points
on E defined over Q(C). Using the canonical height pairing, we can prove the
linear independence of these three points computed explicitly on E . So the rank
of E(Q(C)) will have to be at least 3. See [Delaunay and Wuthrich 2008] and
[Wuthrich 2007] for more details on this example.

In some cases the method of the proof of Theorem 12 can be used to show that
Q D is also of infinite order. But the methods of the proof of Theorem 14 will not
be sufficient to prove the independence of PC and Q D.
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7.2. The multiplicative case. Let now p be a prime dividing N exactly once,
that is, E has multiplicative reduction at p. Let M be such that N = p · M . As a
base-field we will consider here the number field F = KM , the smallest field such
that its absolute Galois group acts as scalars on E[M]. In the particular situation
when N = p is prime then F =Q; the same is true for instance if E is a curve of
conductor 14 and p = 7.

For any n > 0, we define now Fn to be the field K pn N and Hn to be the Galois
group of Fn/F . Via the Galois representation

ρF,p : Gal(F/F)−→ Aut(Tp E)∼= GL2(Zp)−→ PGL2(Zp),

the group Hn identifies with a subgroup of PGL2(Z/pn+1Z).
Fix a subgroup B of order M in E . Let n > 0, and let D be a cyclic subgroup

of order pn+1 in E . Let A = D[p] and C = A⊕ B, which is a cyclic subgroup of
order N . Write ψ for the isogeny E→ E ′ of kernel D and ψ̂ for its dual. Define

C ′ = ker(ψ̂)[p]⊕ψ(B),

which is a cyclic subgroup of E ′ of order M · p = N . The image of the point
yD = (E ′,C ′) ∈ Y0(N ) through the map ϕE will be denoted by Q D. It is by
definition a higher self-point. We will say that “Q D lies over PC” or “over B”.

In particular, if n = 0, then D = A is a cyclic subgroup of order p. From the
construction above, we see that the point yD is nothing but wp(xC), where wp is
the Atkin–Lehner involution on X0(N ). Hence we have that Q D = −ap · PC + T
for some 2-torsion point T defined over Q. Here ap =±1 is, as before, the Hecke
eigenvalue of the newform fE attached to the isogeny class of E .

Let D be a cyclic subgroup of E of order pn+1. By the definition of the Hecke
operator Tp on J0(N ), we have Tp((yD)− (∞)) =

∑
D′⊃D((yD′)− (∞)), where

the sum runs over all cyclic subgroups D′ in E of order pn+2 containing D. This
gives us the relation

ap · Q D =
∑

D′⊃D

Q D′ . (2)

Hence by induction, we know that Q D is of infinite order if the self-point PC is.

Lemma 16. Let B be a fixed subgroup of order M in E , and let n > 0. Then∑
D Q D is a torsion point in E(F), where the sum is over all cyclic subgroups D

of E of order pn+1.

Proof. Suppose first that n = 0. Then we sum over all cyclic subgroups D = A of
order p, which gives∑

D

Q D =
∑
C⊃B

(−ap PC + T )= (p+ 1) · T − ap

∑
C⊃B

PC .
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The first term on the right side is clearly torsion and the second term contains
exactly one of the relations from Proposition 4. Now by induction, we assume that
the statement holds for n. But then

∑
D′ Q D′ , with the sum running over all cyclic

subgroups D′ of order pn+2, is, by (2), equal to ap ·
∑

D Q D, with the sum now
running over cyclic subgroups of order pn+1. �

The Q-vector space with basis {eD}D in bijection with P1(Z/pn+1Z) is a natural
Q[Hn]-module. Define

V ′(n) =
⊕

A QeD

Q(
∑

D eD)
,

which is a vector space of dimension pn+1
+ pn

− 1.
Fix a cyclic subgroup B of order M in E . By the previous lemma, there is a

morphism of Q[Hn]-modules given by

ιn = ιB,n : V ′(n) −→ E(Fn)⊗Q, eD 7−→ Q D

We assume that the Galois representation ρF,p is surjective onto PGL2(Zp). So
Hn is isomorphic to PGL2(Z/pn+1Z) and the Q[Hn]-module V ′(n) is the Steinberg
representation, which was denoted by Vpn/W1 in Section 4.

Theorem 17. Suppose E/Q is an elliptic curve and p a prime of multiplicative
reduction. Suppose that ρF,p is surjective and that there is a self-point PC of infinite
order in E(F0). Then for all n > 0 and all cyclic subgroups D of order pn+1

with D[p] ⊂ C , the point Q D is of infinite order. They generate in E(Fn)⊗Q a
Q[Hn]-module isomorphic to the representation V ′(n) of dimension pn+1

+ pn
− 1.

As a special case, we recover [Delaunay and Wuthrich 2008, Theorem 8] in the
case when N = p is prime and F =Q.

Proof. We only have to show that ιn is injective. Suppose n>0 is the smallest value
such that ιn is not injective. Since V ′(n) =Wpn+1 ⊕ V ′(n−1) if n > 0 and V ′(0) =Wp,
this means that ιn induced on Wpn+1 is not injective. Since this is an irreducible
Q[Hn]-module when ρF,p is surjective, this means that ιn is trivial on Wpn+1 . This
is impossible since we have shown that all Q D above PC are of infinite order. �

7.3. The good case. Let p be a prime not dividing N , that is, of good reduction
for E . Let F be a number field such that E(F) contains a self-point PC of infinite
order. We fix the corresponding cyclic subgroup C of order N in E .

For any n>0, let Fn be the smallest Galois extension of F such that the absolute
Galois group Gal(F/F) acts via scalars on E[pn+1

]; hence Fn = F ·K pn+1 . Define
Hn to be the Galois group Gal(Fn/F), which will be considered as a subgroup of
PGL2(Z/pn+1Z).

For any n > 0 and any cyclic subgroup D of order pn+1, we construct a higher
self-point Q D in E(Fn) as follows. Let ψ : E → E/D be the isogeny associated



Self-points on elliptic curves 307

to D. Put yD= (E/D, ψ(C))∈Y0(N ) and Q D=ϕE(yD). This is a higher self-point
“above PC”.

Again we may use the definition of the Hecke operator Tp to prove that, for all
n > 0 and D as before,

ap · Q D =
∑

D′⊃D

Q D′, (3)

where the sum runs over all cyclic subgroups D′ of order pn+2 in E containing D.
Furthermore we have

ap · PC =
∑

D

Q D, (4)

with the sum running over all cyclic subgroups D of order p in E .
Let V(n)= Vpn+1 be the Q[Hn]-module whose basis {eD}D as a vector space over

Q is in bijection with P1(Z/pn+1Z). We have a Hn-morphism defined by

ιn = ιC,n : V(n) −→ E(Fn)⊗Q, eD 7−→ Q D

Theorem 18. Let E/Q be an elliptic curve of conductor N. Let p be a prime
of good and ordinary reduction for E. Let F be a number field such that E(F)
contains a self-point PC of infinite order. Suppose that the representation ρF,p is
surjective. Then all higher self-points Q D constructed above are of infinite order
and they generate a group of rank pn

· (p+ 1).

Proof. By induction on n, using the formulae (3) and (4) and the hypothesis that p
is ordinary to guarantee that ap 6= 0. �

The above easy proof of the theorem breaks down if E has supersingular reduc-
tion at p, for ap is then almost always equal to 0.

Theorem 19. Let E/Q be a semistable elliptic curve of conductor N not equal to
30 or 210. Let p > N be a supersingular prime for E. Let F = KN . Suppose that
the representation ρF,p is surjective. Then all higher self-points Q D above a given
self-point PC are of infinite order, and they generate a group of rank pn

· (p+ 1).

Proof. We follow the proof of Theorem 12. Let ` > 2 be a prime dividing N .
We proved that the self-points are of infinite order by showing that when a certain
Atkin–Lehner involution is applied to one of the conjugates of xC , one obtains a
point `-adically close to the cusp∞ on X0(N )(Q`).

Let Q D be a higher self-point above the self-point PC . Since ρF,p is surjective,
the point Q D will be conjugate over KN to all other higher self-points above the
same self-point. Therefore without loss of generality we may assume that the cyclic
subgroup D on E corresponds to µ[pn+1

] in E(Q`). Then the point yD = (E ′,C ′)
is represented by a Tate curve over Q` with parameter qE ′ equal to the pn+1-st
power of qE .
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Let r be a divisor of N such that wr (yD) is the pair (E ′′, µ[N ]), with E ′′ the
Tate curve with parameter q1/r

E ′ . Using that p > N > r , we find that

|q1/r
E ′ |` = |qE |

pn+1/r
` 6 `−(p/r)·pn

6 `−1 < `−1/(`−1),

and hence Lemma 3 shows that ϕE(E
′′, µ[N ]) is of infinite order. Then as usual

Q D differs from ±ϕE(wr (yD)) by a torsion point. So Q D is of infinite order.
Since the representation Wpn is irreducible for PGL2(Z/pn+1Z), we can show by

induction that the rank of the group generated by higher self-points is dim(V(n))=
pn
· (p+ 1). �

Putting the previous two results together, we are able to show a corollary that
holds for all but finitely many primes p.

Corollary 20. Suppose E/Q is a semistable curve of conductor N not equal to 30
or 210. Let p be a prime such that p> N , (so it is of good reduction), and such that
ρ̄p :Gal(Q/Q)→ PGL2(Fp) is surjective. Let s be the rank of the group generated
by self-points in E(KN ). Then the higher self-points in E(K pn+1 N ) generate a
group of rank s · (p+ 1) · pn .

Proof. Take F = KN in the previous theorems. We only have to show the condition
that ρF,p is surjective. It is enough to show that ρ̄F,p :Gal(F/F)→ PGL2(Fp) has
all of PSL2(Fp) in its image, since the representation Vpn will still have the same
decomposition.

Let Hp be the group Gal(KN p/KN ), that is, the image of ρ̄F,p. It is equal to the
normal subgroup in Gal(K p/Q) ∼= PGL2(Fp) corresponding to the subextension
K p/KN ∩ K p. Since p > 11 when p > N , we have that PGL2(Fp) has only three
normal subgroups, namely itself, PSL2(Fp) and {1}. By the remark above, we only
have to exclude that Hp is not trivial.

If Hp was trivial, then p, dividing the order of PGL2(Fp), would have to divide
the order of G N , which is a subgroup of PGL2(Z/NZ). But if p > N , then p
cannot divide the order of PGL2(Z/NZ), except when p = 3 and N = 2, which
cannot occur as a conductor. �

8. Derivatives

Let E/Q be an elliptic curve of conductor N . Let p be an odd prime of ordinary,
either good or multiplicative, reduction. To treat the cases of higher self-points
discussed in the Sections 7.2 and 7.3 simultaneously, we choose now a base field F .
If E has good ordinary reduction at p, then F is any number field such that E(F)
contains a self-point PC of infinite order. If p divides N , then F is a number field
such that the absolute Galois group of F acts by scalars on E[N/p].

We will suppose from now on that ρF,p :Gal(F/F)→ PGL2(Zp) is surjective.
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We suppose that Fn is the smallest extension of F such that the Galois group
Hn = Gal(Fn/F) acts by scalars on E[pn+1

]. By assumption the map ρF,p induces
an isomorphism from Hn to PGL2(Z/pn+1Z). Also, this implies that E(Fn) has no
p-torsion elements.

Let O be the ring of integers in the unramified quadratic extension of Qp. Choos-
ing a basis of O over Zp and viewing each element u ∈ O× as the (Zp-linear)
multiplication by u on O, we get a homomorphism

9 : O×→ GL2(Zp)→ PGL2(Zp),

whose kernel is Z×p . The image of the composition

O×→ PGL2(Zp)→ PGL2(Z/pn+1Z)→ Hn

will be denoted by An . This is a cyclic group of order (p+1)·pn
=#P1(Z/pn+1Z). It

is the projective version of the nonsplit Cartan group in GL2(Z/pn+1Z). To simplify
notation, we will write F A

n for the subfield of Fn fixed by An .

Theorem 21. Let E/Q be an elliptic curve. Suppose E does not have potentially
good supersingular reduction for any prime of additive reduction. Let p be a prime
of either good ordinary or multiplicative reduction. Let F be the number field as
above and assume that ρF,p is surjective. Then we have # Selpn (E/F A

n ) > pn ,
where A is any nonsplit Cartan group in PGL2(Zp).

The proof of this theorem will be completed in Section 8.3.
Since there are no p-torsion points in E(Fn), as ρF,p is assumed to be surjec-

tive, there is an isomorphism H1(F A
n , E[pk

])→ H1(Fn, E[pk
])An induced by the

restriction map. This implies that the map

Selpn (E/F A
n )→ Selpn (E/Fn)

An

is injective. We conjecture that the elements in the Selmer group constructed in
Theorem 21 do not lie in the image of the Kummer map, but represent nontrivial
elements in the Tate–Shafarevich group X(E/F A

n ). If so, these classes in the Tate–
Shafarevich group will capitulate in the extension Fn/F A

n , since the elements of
the Selmer group in the theorem restrict to elements in the image of the higher self-
points inside Selpn (E/Fn). It would be very interesting to verify this conjecture
in some cases, but even for the smallest cases like p = 11 it seems completely
impossible to compute the classes explicitly. Nevertheless it is natural to make
this conjecture when comparing it to Kolyvagin’s conjecture on the nontriviality
of derivative classes of Heegner points (as investigated in [Jetchev et al. 2007]).

8.1. The field extension.

Lemma 22. The cyclic group An intersects trivially any Borel subgroup in Hn .



310 Christian Wuthrich

Proof. We prove the statement that the image of 9 in PGL2(Zp) intersects trivially
any of its Borel subgroups B. Let L be the Zp-line in O such that B is the stabiliser
under the action of PGL2(Zp) on P1(Zp) viewed as the set of Zp-modules in O

generated by a unit. Let α ∈ O× be any element with a nontrivial image under 9.
Then α 6∈ Z×p cannot fix L . �

This implies in particular that any generator αn of An acts simply transitively
on the set P1(Z/pn+1Z).

Lemma 23. Let υ be either a place of ordinary reduction above p or an infinite
place or a place of potentially multiplicative reduction. Then the image of

ρ̄Fυ ,p : Gal(Fυ/Fυ)→ PGL2(Z/pn+1Z)

lies in a Borel subgroup of PGL2(Z/pn+1Z).

Proof. First suppose that υ divides p. Since E is of ordinary reduction at υ,
there is a cyclic subgroup of E[pn+1

] of order pn+1 that is fixed by the Galois
group Gal(Fυ/Fυ). This subgroup consists of all elements of E[pn+1

] with trivial
reduction over Fυ . Therefore the image of ρ̄Fυ ,p is contained in the stabiliser of
this point in P1(Z/pn+1Z), which is a Borel subgroup.

Now, let υ be a place of split multiplicative reduction for E . From the descrip-
tion of E as a Tate curve over Fυ , we see that there is subgroup isomorphic to
µ[pn+1

] inside E[pn+1
]. As before Gal(Fυ/Fυ) will fix this subgroup and hence

the image of ρ̄Fυ ,p is contained in a Borel subgroup.
Next, we suppose that υ is a place of bad reduction, but not of split multiplicative

type. Then by hypothesis, E has either nonsplit multiplicative or additive and
potentially multiplicative reduction. In both cases there exists a quadratic extension
L of Fυ , unramified in the first case and ramified in the second, such that E has split
multiplicative reduction over L; see [Serre 1972, page 312]. Hence E[pn+1

] can
be described as the set of ζ i

·a j , with ζ a primitive pn+1-st root of unity, a a pn+1-
st root of the Tate-parameter q and 06 i, j < pn+1; the action of σ ∈Gal(Fυ/Fυ)
is given by σ ∗(ζ i

·a j )= χL(σ ) ·σ(ζ )
i
·σ(a) j , where χL is the quadratic character

associated to L/Fυ . Therefore the subgroup generated by ζ is still fixed under
Gal(Fυ/Fυ).

Finally, we have to treat the case when υ is an infinite place. But for any p,
there is a cyclic subgroup of order pn+1 in E(R); hence the image is contained in
a Borel subgroup. �

Remark: We used here in a crucial way the assumption that p is a prime of
ordinary reduction. Certainly it will not hold for places of additive reduction that
are potentially supersingular.



Self-points on elliptic curves 311

Proposition 24. Suppose that none of the primes of additive reduction for E are
potentially good supersingular. Then then extension Fn/F A

n is nowhere ramified.
Moreover all places above∞, p, and N split completely in this extension.

Proof. Since Fn is a subfield of F(E[p∞]), it is unramified outside∞, p, and N .
By the previous lemma, the decomposition group of a place υ dividing∞· p ·N in
F inside Hn is contained in a Borel. Since any Borel intersects An =Gal(Fn/F A

n )

trivially by Lemma 22, the places above∞· p · N in F A
n split completely. �

8.2. The A-cohomology of the Steinberg representation. Let

V ′n =
{

f : P1(Z/pn+1Z)→Q
∣∣ ∑

D f (D)= 0
}

be the Q[Hn]-module considered earlier in Section 7.2. It is a Q-vector space of
dimension m − 1 with m = (p+ 1) · pn . There is a natural lattice T ′n in V ′n that is
fixed by Hn , defined by

T ′n =
{

f : P1(Z/pn+1Z)→ Z
∣∣ ∑

D f (D)= 0
}
.

Lemma 25. H1(An, T ′n)= Z/mZ.

Proof. The An-fixed part of V ′n is trivial, since An acts transitively on P1(Z/pn+1Z):
A function f : P1(Z/pn+1Z)→Q that is fixed by An would necessarily be constant,
but then

∑
D f (D)= 0 implies that f = 0. Consider now the exact sequence

0→ T ′n→ V ′n→ V ′n/T ′n→ 0

of Hn-modules, which induces an isomorphism (V ′n/T ′n)
An → H1(An, T ′n) since

H1(Hn, V ′n) = 0 as V ′n is divisible. So we are looking to determine the An-fixed
functions in

V ′n/T ′n =
{

f : P1(Z/pn+1Z)→ Q/Z
∣∣ ∑

D f (D)= 0
}
.

Such a function must be constant, since An acts transitively. Say f (D)= f0. Then
m · f0 = 0, so f0 ∈ (1/m)Z gives the result. �

Proposition 26. If U is any lattice in V ′n fixed by Hn , then # H1(An,U )= m.

Proof. The lattice U is contained in a scaled version of T ′n with finite index, say
0→ U → T ′n → Z → 0. Since the Herbrand quotient2 satisfies h(An, Z) = 1
for the finite An-module Z , we have # H1(An,U ) = h(An,U ) = h(An, T ′n) =
# H1(An, T ′n)= m. �

It is not true in general that H1(An,U ) is cyclic. For n = 0, it can have up to three
cyclic factors.

2We set h(G, A)= # H1(G, A)/# H2(G, A) for a finite cyclic group G acting on a G-module A.
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8.3. Proof of Theorem 21. We have an injection

ι : V ′n→ E(Fn)⊗Q, f 7→
∑

D f (D) · Q D,

where Q D is the higher self-point constructed in Sections 7.2 and 7.3. Let Sn be
the saturated group generated by the higher self-points in E(Fn), that is,

Sn =
{

P ∈ E(Fn)
∣∣ there is a k > 0 such that k · P ∈ Z[Hn] · Q D

}
.

By definition all torsion points in E(Fn) belong to Sn; moreover we have

0→ E(Fn)tors→ Sn→Un→ 0,

where Un can be identified as a Hn-stable lattice in the image of ι. Because there
are no An-fixed elements in Un , we find

0−→ H1(An, E(Fn)tors)−→ H1(An, Sn)−→ H1(An,Un)

−→ H2(An, E(Fn)tors)−→ H2(An, Sn)−→ 0.

Since the Herbrand quotient h(An, E(Fn)tors) is trivial, we find

# H1(An, Sn)= # H1(An,Un) · # H1(An, Sn)

> # H1(An,Un)= m = (p+ 1) · pn

by Proposition 26. Note also that since E(Fn) has no p-torsion points, we know
that # H1(An, Sn)[pn

] = # H1(An,Un)[pn
] = pn . Consider the natural inclusion

of Sn into E(Fn). The cokernel of this inclusion Yn is a free Z-module. The long
exact sequence

0−→ E(F A
n )tors −→ E(F A

n )−→ Yn
An −→ H1(An, Sn)−→ H1(An, E(Fn)) (5)

shows that Yn
An has the same rank as E(F A

n ).
Composing the last map in the above sequence with the inflation map will be

called the derivation map

∂n : H1(An, Sn) � H1(An, E(Fn))�
inf
� H1(F A

n , E).

Since Sn has no p-torsion elements, we can identify the pn-torsion part of the
source with ( Sn

pn Sn

)An ∼=
� H1(An, Sn)[pn

] ,

and therefore we call the image of ∂n the derived classes of higher self-points.

Lemma 27. The image of ∂n is contained in X(E/F A
n ).
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Proof. Let κ be the lift of an element in the image of ∂n under the map

H1(F A
n , E[m′])−→ H1(F A

n , E)[m′]

for a sufficiently large m′. Since the extension Fn/F A
n is nonramified at a place

υ outside the set 6 of places in F A
n above p, N or ∞, the restriction of κ to

H1(F A
n,υ, E[m′]) will lie in H1

f (F
A

n , E[m′]). Now for any place υ in 6, the place υ
splits completely in extension Fn/F A

n by Proposition 24. Therefore the restriction
of κ to H1(F A

n,υ, E)[m′] is trivial since it comes from the inflation

H1(Fn/F A
n , E(Fn))−→ H1(F A

n , E).

Hence κ belongs to the Selmer group within H1(F A
n , E[m′]). �

We can now end the proof of Theorem 21. Denote by s the minimal number of
generators of the kernel of ∂n . From the long exact sequence (5), we see that the
rank of Yn

An is at least s. So, if ∂n is not injective, then rank(E(F A
n )) is positive.

So either the image of ∂ , lifted to the Selmer group, will contribute pn elements or
else E(F A

n ) will give rise to a copy of Z/pnZ in Selpn (E/F A
n ). �

We add here a comment on the case when E has supersingular reduction at p.
It turns out that construction of derivative classes in H1(F A

n , E) using higher self-
points works the same, provided that the higher self-points are of infinite order.
The main difference is that the cohomology classes do not belong to the Tate–
Shafarevich group. In fact, under the assumption that the derivative map is not
trivial, they will provide classes that are orthogonal to elements from the Selmer
group and could be used to bound the Selmer group from above, just like Koly-
vagin’s classes built from Heegner points. Unfortunately we do not know a way
of proving the assumption; hence these derivative classes cannot be used to say
something about the Selmer group.

8.4. Derivative of self-points. Besides constructing derivative classes of higher
self-points, we can also produce cohomology classes from self-points. We only
sketch here the results whose proofs are similar to the previous sections.

Let E/Q be an elliptic curve of conductor N . Assume for simplicity that N = p
is prime. Put K = K p. It is known that ρp is surjective; for more details see
[Delaunay and Wuthrich 2008]. So the Galois group G=Gal(K/Q) is isomorphic
to PGL2(Fp). Let A be any cyclic subgroup of order p+ 1 in G.

Theorem 28. There is map ∂ to the Tate–Shafarevich group X(E/K A) from a
group of order at least p + 1. If r is the difference of the rank of E(Q(C)) and
E(Q), then

# Selp+1(E/K A)> (p+ 1)r · #E(Q)[p+ 1].
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As before we consider the saturation of the self-points S in E(K ). We know that S
modulo its torsion part is a lattice U in the Steinberg representation of PGL2(Fp).
As we have seen in Section 8.2, the cohomology group H1(A,U ) will have p+ 1
elements. In [Delaunay and Wuthrich 2008, Section 4], we computed the torsion
subgroup of E(K ). Using this we obtain that E(K A)tors = E(Q)tors and

H1(A, E(K )tors)= H2(A, E(K )tors)=

{
Z/2Z,

0,

the nontrivial case occurring exactly when E is one of the curves 17a2, 17a3, 17a4
or any Neumann–Setzer curve. As before, this shows that H1(A, S) has either p+1
or 2 (p+ 1) elements. The derivative map is again

∂ : H1(A, S)−→ H1(A, E(K ))−→ H1(K A, E),

and its image is in the Tate–Shafarevich group X(E/K A). Denote by Y the quo-
tient of E(K ) by S. Then ker ∂ is the quotient of Y A by E(K A). If this map ∂ is not
injective, then there is a y ∈ Y G , lifting to a point of infinite order Q ∈ E(K ), such
that Q does not belong to E(K A) but a nonzero multiple of it does. So either ∂ is
surjective or there are points of infinite order defined over K A that only become
divisible in E(K ).

We should add that the control theorem for the Selmer group is not necessarily
perfect; the kernel of Selp+1(E/K A)→ Selp+1(E/K ) can be of order 1 or 2.

It is also worth adding another particular property of K A: the L-series of E
over K A is the product of

∏
ρ L(E, ρ, s), where ρ runs over all distinct irreducible

representations of PGL2(Fp) except the Steinberg representation and the nontrivial
1-dimensional representation. It is not known whether this L-series admits analytic
continuation.

Acknowledgments

It is a pleasure to thank John Coates, Henri Darmon, Christophe Delaunay, Ralph
Greenberg, Masato Kurihara, and Marusia Rebolledo for helpful and interesting
discussions concerning self-points.

References

[Atkin and Lehner 1970] A. O. L. Atkin and J. Lehner, “Hecke operators on 00(m)”, Math. Ann.
185 (1970), 134–160. MR 42 #3022 Zbl 0177.34901

[Bertolini, Darmon and Prasanna≥ 2009] M. Bertolini, H. Darmon, and K. Prasanna, “Exotic Heeg-
ner points”, in preparation.

[Breuil et al. 2001] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, “On the modularity of elliptic
curves over Q: Wild 3-adic exercises”, J. Amer. Math. Soc. 14:4 (2001), 843–939. MR 2002d:11058
Zbl 0982.11033



Self-points on elliptic curves 315

[Coates et al. 2005] J. Coates, T. Fukaya, K. Kato, R. Sujatha, and O. Venjakob, “The GL2 main
conjecture for elliptic curves without complex multiplication”, Publ. Math. Inst. Hautes Études Sci.
101 (2005), 163–208. MR 2007b:11172

[Coates et al. 2009] J. Coates, T. Fukaya, K. Kato, and R. Sujatha, “Root numbers, Selmer groups,
and non-commutative Iwasawa theory”, J. Algebraic Geom. (2009).

[Cremona 1997] J. E. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge Univer-
sity Press, 1997. MR 99e:11068 Zbl 0872.14041

[Delaunay and Wuthrich 2008] C. Delaunay and C. Wuthrich, “Self-points on elliptic curves of
prime conductor”, preprint, 2008. To appear in Internat. J. Number Theory.

[Edixhoven 1991] B. Edixhoven, “On the Manin constants of modular elliptic curves”, pp. 25–39
in Arithmetic algebraic geometry (Texel, 1989), edited by G. van der Geer et al., Progr. Math. 89,
Birkhäuser, Boston, 1991. MR 92a:11066 Zbl 0749.14025

[Greenberg 2008] R. Greenberg, “Iwasawa theory, projective modules, and modular representa-
tions”, preprint, 2008, Available at http://www.math.washington.edu/~greenber/NewMod.pdf.

[Harris 1979] M. Harris, “Systematic growth of Mordell–Weil groups of abelian varieties in towers
of number fields”, Invent. Math. 51:2 (1979), 123–141. MR 80i:14015 Zbl 0429.14013

[Jetchev et al. 2007] D. Jetchev, K. Lauter, and W. Stein, “Explicit Heegner points: Kolyvagin’s con-
jecture and nontrivial elements in the Shafarevich–Tate group”, preprint, 2007. arXiv 0707.0032

[Katz and Mazur 1985] N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of
Mathematics Studies 108, Princeton University Press, 1985. MR 86i:11024 Zbl 0576.14026

[Kolyvagin 1990] V. A. Kolyvagin, “Euler systems”, pp. 435–483 in The Grothendieck Festschrift,
II, edited by P. Cartier et al., Progr. Math. 87, Birkhäuser, 1990. MR 92g:11109 Zbl 0742.14017

[Mazur 1978] B. Mazur, “Rational isogenies of prime degree”, Invent. Math. 44:2 (1978), 129–162.
MR 80h:14022 Zbl 0386.14009

[Mazur and Rubin 2008] B. Mazur and K. Rubin, “Growth of Selmer rank in nonabelian extensions
of number fields”, Duke Math. J. 143:3 (2008), 437–461. MR 2423759 Zbl 1151.11023

[Serre 1968] J.-P. Serre, Abelian l-adic representations and elliptic curves, Benjamin, New York,
1968. MR 41 #8422 Zbl 0186.25701

[Serre 1972] J.-P. Serre, “Propriétés galoisiennes des points d’ordre fini des courbes elliptiques”,
Invent. Math. 15:4 (1972), 259–331. MR 52 #8126 Zbl 0235.14012

[Serre 1996] J.-P. Serre, “Travaux de Wiles (et Taylor, . . . ), I”, pp. 319–332 in Séminaire Bour-
baki, 1994/95, Astérisque 237, Exposé 803, Société Math. de France, Paris, 1996. MR 97m:11076
Zbl 0957.11027

[Silberger 1970] A. J. Silberger, PGL2 over the p-adics: its representations, spherical functions,
and Fourier analysis, Lecture Notes in Mathematics 166, Springer, Berlin, 1970. MR 44 #2891
Zbl 0204.44102

[Wuthrich 2007] C. Wuthrich, “Self-points on an elliptic curve of conductor 14”, pp. 189–195 in
Proceedings of the Symposium on Algebraic Number Theory and Related Topics, edited by K.
Hashimoto, RIMS Kôkyûroku Bessatsu B4, Res. Inst. Math. Sci., Kyoto, 2007. MR 2402010
Zbl 05258116

Communicated by Karl Rubin
Received 2008-06-10 Revised 2009-02-23 Accepted 2009-02-24

christian.wuthrich@nottingham.ac.uk
School of Mathematical Sciences, University of Nottingham,
Nottingham NG7 2RD, United Kingdom



ALGEBRA AND NUMBER THEORY 3:3(2009)

Weyl groupoids of rank two
and continued fractions
Michael Cuntz and István Heckenberger

We present a relationship between continued fractions and Weyl groupoids of
Cartan schemes of rank two. This allows one to decide easily if a given Cartan
scheme of rank two admits a finite root system. We obtain obstructions and sharp
bounds for the entries of the Cartan matrices.

1. Introduction

Root systems and crystallographic Coxeter groups are key tools in the study of
semisimple Lie algebras [Bourbaki 1968]. In the structure theory of pointed Hopf
algebras [Montgomery 1993] a similar role is expected to be played by Weyl
groupoids and their root systems. Let us give some hints towards this claim.
The most striking results on pointed Hopf algebras rely on the lifting method of
Andruskiewitsch and Schneider [1998]. Based on it, many new examples of finite-
dimensional pointed Hopf algebras have been detected, and fairly general classifi-
cation results were achieved [Andruskiewitsch and Schneider 2005; Heckenberger
2009]. The first step in the lifting method is the determination of finite-dimensional
Nichols algebras of finite group type. The upper triangular part of a small quantum
group, also called Frobenius–Lusztig kernel, is a prominent example. A very natu-
ral symmetry object of Nichols algebras of finite group type is the Weyl groupoid.
This was observed first in [Heckenberger 2006] for Nichols algebras of diagonal
type, and then in [Andruskiewitsch et al. 2008] in a very general setting.

An axiomatic approach to Weyl groupoids and their root systems, without re-
ferring to Nichols algebras, was initiated in [Heckenberger and Yamane 2008].
The theory includes and extends the theory of crystallographic Coxeter groups,
but contains even such examples which do not seem to be related to Nichols alge-
bras of diagonal type. In this paper we use the language and some structural and
classification results achieved in [Cuntz and Heckenberger 2008]; see Section 2 for
the most essential definitions and facts.
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For the classification of Nichols algebras of diagonal type it is crucial to be able
to decide whether a given Cartan scheme (a categorical generalization of the notion
of a generalized Cartan matrix; see Definition 2.1) admits a finite root system.
Because of the large variety of examples, this seems to be a difficult task. In our
paper, we present a very efficient method for Cartan schemes of rank two. It relies
on a relationship between Cartan schemes of rank two and continued fractions
[Perron 1929]. Instead of giving a complete list of Cartan schemes of rank two
admitting a finite root system (which is then unique by a result in [Cuntz and
Heckenberger 2008]), we present an algorithm in Theorem 6.19. It works with
very elementary operations on sequences of positive integers and transforms any
Cartan scheme into another one, for which the answer is known. The algorithm
is based on various observations: on the introduction and study of coverings of
Cartan schemes in Section 3, on an old theorem of Stern, Pringsheim, and Tietze,
and a variation of a transformation formula for continued fractions (Section 4 and
Lemma 5.2) on the characterization of simple connected Cartan schemes admitting
a finite root system in terms of certain sequences of positive integers (Proposition
6.5 and Theorem 6.6), and on the description of Cartan schemes with object change
diagram a cycle using characteristic sequences (Definition 6.9). As an application,
in Section 7 we give obstructions for the entries of the Cartan matrices in a Cartan
scheme admitting a finite root system. We present the power of our method on a
small example at the end of Section 6.

We are confident that a suitable generalization of our method to Cartan schemes
and Weyl groupoids of higher rank would have a deep impact on the classification
of Nichols algebras, and consider it as a great challenge for the future.

2. Cartan schemes, root systems, and their Weyl groupoids

If not stated otherwise, we follow the notation in [Cuntz and Heckenberger 2008].
Let us start by recalling the main definitions.

Let I be a nonempty finite set and {αi | i ∈ I } the standard basis of ZI . By [Kac
1990, §1.1] a generalized Cartan matrix C = (ci j )i, j∈I is a matrix in ZI×I such
that

(M1) ci i = 2 and c jk ≤ 0 for all i, j, k ∈ I with j 6= k,

(M2) if i, j ∈ I and ci j = 0, then c j i = 0.

Definition 2.1. Let A be a nonempty set, ρi : A → A a map for all i ∈ I , and
Ca
= (ca

jk) j,k∈I a generalized Cartan matrix in ZI×I for all a ∈ A. The quadruple

C= C(I, A, (ρi )i∈I , (Ca)a∈A)

is called a Cartan scheme if
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(C1) ρ2
i = id for all i ∈ I ,

(C2) ca
i j = cρi (a)

i j for all a ∈ A and i, j ∈ I .

Remark 2.2. The preceding definition of a Cartan scheme has the striking advan-
tage to be very simple, but sufficiently powerful to admit the definition of a Weyl
groupoid, as we will see below. For some investigations it can be of advantage
to consider more general axioms (for example by allowing the maps ρi to be par-
tially defined) or to impose additional restrictions (like (C3) below, or other for
example to exclude the existence of associated roots which are neither positive nor
negative). We will mostly consider Cartan schemes admitting a root system. This
restriction still gives many more examples than those coming from contragredient
Lie superalgebras and Nichols algebras of diagonal type with finite root system.
Nevertheless, up to now no further axioms on Cartan schemes are known which
keep this property.

Two Cartan schemes

C= C(I, A, (ρi )i∈I , (Ca)a∈A) and C′ = C′(I ′, A′, (ρ ′i )i∈I ′, (C ′
a
)a∈A′)

are termed equivalent if there are bijections ϕ0 : I → I ′ and ϕ1 : A→ A′ such that

ϕ1(ρi (a))= ρ ′ϕ0(i)(ϕ1(a)), cϕ1(a)
ϕ0(i)ϕ0( j) = ca

i j (2-1)

for all i, j ∈ I and a ∈ A.
Let C= C(I, A, (ρi )i∈I , (Ca)a∈A) be a Cartan scheme. For all i ∈ I and a ∈ A

define σ a
i ∈ Aut(ZI ) by

σ a
i (α j )= α j − ca

i jαi for all j ∈ I . (2-2)

The Weyl groupoid of C is the category W(C) such that Ob(W(C)) = A and the
morphisms are generated by the maps σ a

i ∈Hom(a, ρi (a))with i ∈ I , a ∈ A. In this
paper, we will always denote the set of all morphisms of W(C) by Hom(W(C)).
Formally, for a, b ∈ A the set Hom(a, b) consists of the triples (b, f, a), where

f = σ
ρin−1 ···ρi1 (a)
in

· · · σ
ρi1 (a)
i2

σ a
i1

and b = ρin · · · ρi2ρi1(a) for some n ∈ N0 and i1, . . . , in ∈ I . The composition is
induced by the group structure of Aut(ZI ):

(a3, f2, a2) ◦ (a2, f1, a1)= (a3, f2 f1, a1)

for all (a3, f2, a2), (a2, f1, a1) ∈Hom(W(C)). By abuse of notation we will write
f ∈ Hom(a, b) instead of (b, f, a) ∈ Hom(a, b).

The cardinality of I is termed the rank of W(C). A Cartan scheme is called
connected if its Weyl groupoid is connected, that is, if for all a, b ∈ A there exists
w ∈ Hom(a, b).



320 Michael Cuntz and István Heckenberger

In many cases it will be natural to assume that a Cartan scheme satisfies the
following additional property.

(C3) If a, b ∈ A and (b, id, a) ∈ Hom(a, b), then a = b.

Definition 2.3. Let C = C(I, A, (ρi )i∈I , (Ca)a∈A) be a Cartan scheme. For all
a ∈ A let Ra

⊂ ZI , and define ma
i, j = |R

a
∩ (N0αi +N0α j )| for all i, j ∈ I and

a ∈ A. We say that

R=R(C, (Ra)a∈A)

is a root system of type C if it satisfies the following axioms.

(R1) Ra
= Ra

+
∪−Ra

+
, where Ra

+
= Ra

∩NI
0, for all a ∈ A.

(R2) Ra
∩Zαi = {αi ,−αi } for all i ∈ I , a ∈ A.

(R3) σ a
i (R

a)= Rρi (a) for all i ∈ I , a ∈ A.

(R4) If i, j ∈ I and a ∈ A such that i 6= j and ma
i, j is finite, then (ρiρ j )

ma
i, j (a)= a.

If R is a root system of type C, then we say that W(R) = W(C) is the Weyl
groupoid of R. Further, R is called connected if C is a connected Cartan scheme.
If R = R(C, (Ra)a∈A) is a root system of type C and R′ = R′(C′, (R′a)a∈A′) is a
root system of type C′, then we say that R and R′ are equivalent if C and C′ are
equivalent Cartan schemes given by maps ϕ0 : I→ I ′, ϕ1 : A→ A′ as in Definition
2.1, and if the map ϕ∗0 :Z

I
→ZI ′ given by ϕ∗0(αi )=αϕ0(i) satisfies ϕ∗0(R

a)= R′ϕ1(a)

for all a ∈ A.

There exist many interesting examples of root systems of type C related to
semisimple Lie algebras, Lie superalgebras and Nichols algebras of diagonal type,
respectively. For further details and results we refer to [Heckenberger and Yamane
2008] and [Cuntz and Heckenberger 2008].

Convention 2.4. In connection with Cartan schemes, upper indices usually refer to
elements of A. Often, these indices will be omitted if they are uniquely determined
by the context.

Remark 2.5. If C is a Cartan scheme and there exists a root system of type C,
then C satisfies (C3) by [Heckenberger and Yamane 2008, Lemma 8(iii)].

Definition 4.3 of [Cuntz and Heckenberger 2008] introduced the concept of an
irreducible root system of type C. By Proposition 4.6 of the same paper, if C

is a connected Cartan scheme and R is a finite root system of type C, then R is
irreducible if and only if the generalized Cartan matrix Ca is indecomposable for
one (equivalently, for all) a ∈ A.
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Here is a fundamental result about Weyl groupoids.

Theorem 2.6 [Heckenberger and Yamane 2008, Theorem 1]. Let C = C(I, A,
(ρi )i∈I , (Ca)a∈A) be a Cartan scheme and R = R(C, (Ra)a∈A) a root system of
type C. Let W be the abstract groupoid with Ob(W) = A such that Hom(W) is
generated by abstract morphisms sa

i ∈ Hom(a, ρi (a)), where i ∈ I and a ∈ A,
satisfying the relations

si si 1a = 1a, (s j sk)
ma

j,k 1a = 1a, a ∈ A, i, j, k ∈ I, j 6= k

(see Convention 2.4). Here 1a is the identity of the object a, and (s j sk)
∞1a is

understood to be 1a . The functor W→W(R), which is the identity on the objects,
and on the set of morphisms is given by sa

i 7→ σ a
i for all i ∈ I , a ∈ A, is an

isomorphism of groupoids.

Definition 2.7. Let C = C(I, A, (ρi )i∈I , (Ca)a∈A) be a Cartan scheme. Let 0 be
a nondirected graph such that the vertices of 0 correspond to the elements of A.
Assume that for all i ∈ I and a ∈ A with ρi (a) 6= a there is precisely one edge
between the vertices a and ρi (a) with label i , and all edges of 0 are given in this
way. The graph 0 is called the object change diagram of C. If R=R(C, (Ra)a∈A)

is a root system of type C, then we also say that 0 is the object change diagram
of R.

3. Coverings of Cartan schemes, Weyl groupoids, and root systems

Two Cartan schemes can be related to each other in different ways. In this sec-
tion we analyze coverings of Cartan schemes. The definition is motivated by the
corresponding notion in topology.

Definition 3.1. Let

C= C(I, A, (ρi )i∈I , (Ca)a∈A) and C′ = C′(I, A′, (ρ ′i )i∈I , (C ′a)a∈A′)

be connected Cartan schemes. Let π : A′→ A be a map such that Cπ(a)
= C ′a for

all a ∈ A′ and the diagrams

A′
ρ′i
−−−→ A′

π

y yπ
A −−−→

ρi
A

(3-1)

commute for all i ∈ I . We say that π : C′ → C is a covering, and that C′ is a
covering of C.
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The composition of two coverings is again one. For any covering π : C′→ C

of Cartan schemes C′,C, the map π : A′ → A is surjective by (3-1), since A′ is
nonempty and C is connected.

Remark 3.2. Many of the following results can be formulated without assuming
that C and/or C′ in Definition 3.1 are connected Cartan schemes. In that case one
should assume that π is a surjective map. However, in the applications we are
interested in, all Cartan schemes are connected, and hence we prefer the above
definition in order to simplify the terminology.

Any covering π : C′→ C of Cartan schemes C′,C induces a covariant functor
Fπ :W(C′)→W(C) by letting

Fπ (a′)= π(a′), Fπ (σ a′
i )= σ

π(a′)
i for all i ∈ I , a′ ∈ A′.

In this case the Weyl groupoid W(C′) is termed a covering of W(C), and the functor
Fπ a covering of Weyl groupoids.

First we need a technical result.

Lemma 3.3. Let π :C′→C be a covering, and assume that C′ satisfies Axiom (C3).

(1) C satisfies (C3).

(2) Let a ∈ A and a′, a′′ ∈ A′ such that π(a′) = π(a′′) = a. If there exists w′ ∈
Hom(a′, a′′) such that Fπ (w′) ∈ Fπ (End(a′)), then a′ = a′′.

Proof. (1) Let a ∈ A. If k ∈ N0 and i1, . . . , ik ∈ I , then Definition 3.1 gives that
σi1 · · · σik−1σ

a
ik
= σi1 · · · σik−1σ

a′
ik

in Aut(ZI ) for all a′ ∈ A′ with π(a′)= a. Assume
now that σi1 · · · σik−1σ

a
ik
= id. Then ρ ′i1

· · · ρ ′ik
(a′)=a′ for all a′ ∈ A′ with π(a′)=a,

since C′ satisfies (C3). Hence ρi1 · · · ρik (a)= a by (3-1). This yields the claim.

(2) Let w′′ ∈ End(a′) with Fπ (w′′)= Fπ (w′). Then Fπ (w′w′′−1)= ida , and hence
w′w′′−1

= id in Aut(ZI ). Since C′ satisfies (C3), it follows that w′w′′−1
= ida′ , and

hence a′ = a′′. �

Let C = C(I, A, (ρi )i∈I , (Ca)a∈A) be a connected Cartan scheme, W(C) its
Weyl groupoid, and a ∈ A. Coverings of C can be parametrized by subgroups of
End(a)⊂ Hom(W(C)) (up to conjugation).

Proposition 3.4. (1) Let C′ be a connected Cartan scheme and assume that π :
C′→ C is a covering. Let a′ ∈ A′ with π(a′)= a.

(a) The group homomorphism Fπ : End(a′)→ End(a) is injective.
(b) For each b′ ∈ A′ with π(b′) = a the subgroup Fπ (End(b′)) of End(a) is

conjugate to Fπ (End(a′)).
(c) If U ′ is a subgroup of End(a) conjugate to Fπ (End(a′)), then there exists

b′ ∈ A′ with π(b′)= a and Fπ (End(b′))=U ′.
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(2) Suppose that U ⊂ End(a) is a subgroup. There exists a covering π : C′→ C

and b′ ∈ A′ such that

Fπ (End(b′))=U, (3-2)

|π−1(b)| = [End(a) :U ] for all b ∈ A. (3-3)

If C satisfies Axiom (C3), then up to equivalence there is a unique covering C′

satisfying (3-2) and Axiom (C3). For this covering (3-3) holds.

Proof. (1A) Each element w′ ∈ End(a′) is a product of σ b′
i for some i ∈ I and

b′ ∈ A′. Moreover, w′ can be naturally regarded as an element in Aut(ZI ). The
same is true for w ∈ End(a). Since C ′b

′

= Cπ(b′) for all b′ ∈ A′, Fπ (w′) identifies
with the same element of Aut(ZI ) as w′.

(1B) Let b′ ∈ A′. Since C′ is connected, there exists w′ ∈ Hom(a′, b′). Then
End(b′)= w′ End(a′)w′−1. Since Fπ is a functor,

Fπ (End(b′))= Fπ (w′)Fπ (End(a′))Fπ (w′)−1.

(1C) Assume that w ∈ End(a) such that U ′ = wFπ (End(a′))w−1. Then w =
σi1 · · · σik−1σ

a
ik

for some k ∈ N0 and i1, . . . , ik ∈ I . Let w′ = σi1 · · · σik−1σ
a′
ik

and
b′ = ρ ′i1

· · · ρ ′ik
(a′). Then End(b′) = w′ End(a′)w′−1, and hence Fπ (End(b′)) =

wFπ (End(a′))w−1
=U ′.

(2) We construct C′ explicitly. Let

A′ = Hom(W(C))/U =
{
gU ⊂ Hom(a, b) | b ∈ A, g ∈ Hom(a, b)

}
be the set of left cosets. For all i ∈ I and gU ∈ A′ with g∈Hom(a, b), where b∈ A,
define C ′gU

= Cb and ρ ′i (gU ) = σ b
i gU . Then ρ ′i : A′ → A′ satisfies (C1) since

σ
ρi (b)
i σ b

i = id and ρ2
i = id, and C′ fulfills (C3), since C does. Since C is connected,

C′=C′(I, A′, (ρ ′i )i∈I , (C ′a
′

)a′∈A′) is a connected Cartan scheme. Define π : A′→ A
by π(gU ) = b for all b ∈ A, g ∈ Hom(a, b). Then Fπ (End(1aU )) = U and
|π−1(a)| = [End(a) :U ]. Since C′ is connected, |π−1(b)| = |π−1(a)| for all b ∈ A.

Assume that C satisfies (C3). We show that C′ satisfies (C3). For l ∈ {1, 2}
let al ∈ A and gl ∈ Hom(a, al) such that (g1U, id, g2U ) ∈ Hom(W(C′)). Then
there exist k ∈ N0 and i1, . . . , ik ∈ I such that σi1 · · · σik−1σ

a2
ik

g2U = g1U and that
σi1 · · · σik−1σ

a2
ik
= id in Aut(ZI ). Since C fulfills (C3), we obtain that a1 = a2, and

hence g2U = g1U . Therefore C′ satisfies (C3).
Finally, let π : C′ → C and π ′′ : C′′ → C be coverings of C satisfying (C3),

and assume that there exist b′ ∈ A′, b′′ ∈ A′′ such that π(b′) = π ′′(b′′) = a and
Fπ (End(b′))= Fπ ′′(End(b′′))=U . We have to show that C′ and C′′ are equivalent
Cartan schemes. Define φ : A′→ A′′ by

φ(ρ ′i1
· · · ρ ′ik

(b′))= ρ ′′i1
· · · ρ ′′ik

(b′′) for all k ∈ N0, i1, . . . , ik ∈ I .
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Then φ is well-defined: Assume that ρ ′i1
· · · ρ ′ik

(b′)=b′. Then σi1 · · · σ
b′
ik
∈End(b′),

and hence an application of π and Fπ gives ρi1 · · · ρik (a) = a, σi1 · · · σ
a
ik
∈ U .

Thus Fπ ′′(σi1 · · · σ
b′′
ik
)∈U , and hence Lemma 3.3(2) gives that ρ ′′i1

· · · ρ ′′ik
(b′′)= b′′.

The compatibility of φ with ρ ′, ρ ′′,C ′b
′

,C ′′b
′′

is fulfilled by Definition 3.1 and by
definition of φ. Further, φ : A′→ A′′ is a bijection, the construction of φ−1 being
analogous. Hence φ gives rise to an equivalence of the Cartan schemes C′ and
C′′. �

Definition 3.5. We say that a Cartan scheme C is simply connected if End(a) is
the trivial group for all a ∈ A.

Corollary 3.6. Let C be a connected Cartan scheme satisfying (C3). Then up to
equivalence there exists a unique covering C′ of C which is simply connected and
satisfies (C3).

As usual, this simply connected covering of C is called the universal covering.

Proof. The claim follows from Proposition 3.4(2) by setting U = {1}. �

Proposition 3.7. Let C, C′ be connected Cartan schemes and π : C′→ C a cover-
ing.

(1) If there exists a root system R′ of type C′, then the equations

Ra
=

⋂
a′∈A′
π(a′)=a

R′a
′

for all a ∈ A (3-4)

define a root system R of type C.

(2) If there exists a root system R of type C, and C′ satisfies (C3), then the equa-
tions

R′a
′

= Rπ(a
′) for all a′ ∈ A′ (3-5)

define a root system R′ of type C′.

Proof. (1) By Definition 3.1 and Axioms (R1)–(R4) for R′, the Axioms (R1)–(R4)
are fulfilled for R.

(2) Since Axioms (R1)–(R3) hold for R, they also hold for R′. Suppose that i, j ∈ I
and a′ ∈ A′ such that i 6= j and that ma′

i, j = ma
i, j is finite, where a = π(a′). Then

(σiσ j )
ma

i, j 1a = ida by Theorem 2.6. Hence (σiσ j )
ma

i, j 1a′ = id, and (C3) for C′

implies that (ρ ′iρ
′

j )
ma′

i, j (a′) = a′. Thus (R4) holds for R′ and hence R′ is a root
system of type C′. �
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4. Continued fractions

Continued fractions are related to Weyl groupoids of Cartan schemes of rank two.
We recall some basic facts about continued fractions and formulate the facts we
will use in our study.

A continued fraction is a sequence of indeterminates a1, a2, a3, . . ., b0, b1, . . .

written in the form

b0+
a1|

|b1
+

a2|

|b2
+ · · · = b0+

a1

b1+
a2

b2 + . . .

(4-1)

(see [Perron 1929] for an introduction). We assume the ai and bi are integers. The
convergents of (4-1) are the numbers

Aν
Bν
= b0+

a1|

|b1
+

a2|

|b2
+ · · ·+

aν |
|bν
,

for ν ∈ N, also given by the recursion(
B0 A0

B−1 A−1

)
=

(
1 b0

0 1

)
,

(
bν aν
1 0

)(
Bν−1 Aν−1

Bν−2 Aν−2

)
=

(
Bν Aν
Bν−1 Aν−1

)
. (4-2)

One says that the continued fraction (4-1) is convergent if, for some ν0 ∈ N, the
sequence (Aν/Bν)ν≥ν0 is well-defined and converges in R.

The case where all aν are 1 is the most important one and well understood.
However, we will be interested in a different case: From now on, let aν = −1,
bν ∈ N for all ν and assume that the sequence b1, b2, . . . is periodic. For any
i ∈ Z, let

η(i)=
(

i −1
1 0

)
∈ SL(2,Z). (4-3)

We will often need the following equations, which hold for all i, j, k ∈ Z.

η(i)−1
=

(
0 1
−1 i

)
, (4-4)

η(i)η( j)=
(

i j − 1 −i
j −1

)
, (4-5)

η(i)η( j)η(k)=
(
(i j−1)k− i −(i j−1)

jk− 1 − j

)
, (4-6)

τη(i)τ = η(i)−1, τη(i)−1τ = η(i), (4-7)

where
τ =

(
0 1
1 0

)
. (4-8)
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By (4-2), (
Bn

Bn−1

)
= η(bn) · · · η(b1)

(
B0

B−1

)
.

The product η(bn) · · · η(b1)will appear in the study of Weyl groupoids of rank two.
In particular, we will need to know for which sequences bn, . . . , b1 this product
has finite order. If it has finite order, then, since B−1 = 0, there exists ν ∈ N such
that Bν = 0.

The following fact is well-known. Variations of it were considered for example
by Stern, Pringsheim, and Tietze; see respectively Satz 15 (§51), Satz 24 (§53),
and Satz 1 (§35) in [Perron 1929].

Theorem 4.1. If aν = −1 and bν ≥ 2 for all ν ∈ N, then the continued fraction
a1|
|b1
+

a2|
|b2
+ · · · is convergent.

Thus we get:

Corollary 4.2. Let n ∈ N and b1, . . . , bn ∈ Z. If bi ≥ 2 for all i ∈ {1, . . . , n}, then
η(b1) · · · η(bn) does not have finite order.

Proof. Assume bi ≥ 2 for all i ∈ {1, . . . , n}. If η(b1) · · · η(bn) had finite order, then
the periodic continued fraction

−1|
|bn
+
−1|
|bn−1

+ · · ·+
−1|
|b1
+
−1|
|bn
+
−1|
|bn−1

+ · · ·+
−1|
|b1
+
−1|
|bn
+ · · ·

would have infinitely many convergents with denominator 0. This is a contradiction
to Theorem 4.1. �

One can also prove Corollary 4.2 without Theorem 4.1, using for example
[Heckenberger 2008, Lemma 9].

5. Distinguished finite sequences of integers

We now study a special class of finite sequences of positive integers. They corre-
spond to a class of continued fractions which are not convergent. Later we will use
these sequences to classify finite root systems of type C and rank two. Recall the
definition of the map η : Z→ SL(2,Z) from (4-3).

Definition 5.1. Let A denote the set of finite sequences (c1, . . . , cn) of integers
such that n ≥ 1 and η(c1) · · · η(cn) = −id. Let A+ be the subset of A formed by
those (c1, . . . , cn)∈A, for which ci ≥ 1 for all i ∈ {1, . . . , n} and the entries in the
first column of η(c1) · · · η(ci ) are nonnegative for all i < n.

The following lemma will be crucial for our analysis of A+. It is related to
a well-known transformation formula for continued fractions [Perron 1929, §37,
Equations (1), (2)].
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Lemma 5.2. Let n ≥ 3 and c = (c1, 1, c3, c4, . . . , cn) such that ci ∈ Z for all
i ∈ {1, . . . , n}. Let c′ = (c1− 1, c3− 1, c4, . . . , cn).

(1) c′ ∈A if and only if c ∈A.

(2) c′ ∈A+ if and only if c ∈A+, c1, c3 ≥ 2.

(3) If c ∈A+, then either n = 3, c1 = c3 = 1 or n > 3, c1, c3 ≥ 2.

Proof. If i, k ∈ Z, then

η(i)η(1)η(k)=
(

ik− i − k 1− i
k− 1 −1

)
= η(i − 1)η(k− 1)

by (4-5) and (4-6). This gives (1). By (4-5), the first column of η(c1)η(1) contains
only nonnegative integers if and only if c1 ≥ 1. Thus (2) holds. Let c ∈ A+ such
that c1= 1 or c3= 1. Then (4-6) gives that the upper left entry of η(c1)η(1)η(c3) is
−1, and hence n= 3. Then c ∈A implies that c1= c3= 1. Hence (3) is proven. �

Proposition 5.3. Let n ∈ N and (c1, . . . , cn) ∈A+.

(1) Let i, j ∈ {1, . . . , n} with i ≤ j and (i, j) 6= (1, n). Then

η(ci )η(ci+1) · · · η(c j ) ∈ SL(2,Z)

such that the first column contains only nonnegative and the second only non-
positive integers.

(2) Let i ∈ {1, . . . , n}. Then (ci , ci+1, . . . , cn, c1, . . . , ci−1) ∈A+.

(3) (cn, cn−1, . . . , c2, c1) ∈A+.

(4) If n ≤ 3 then (c1, . . . , cn)= (1, 1, 1).

Proof. (1) We proceed by induction on the lexicographically ordered pairs (i, j).
If i = j then we are done, since the matrix η(ci ) satisfies the claim.
Let i, j ∈ {1, . . . , n} with i < j and (i, j) 6= (1, n). Assume that the claim holds

for all pairs (i ′, j ′) ∈ {1, . . . , n} such that i ′ ≤ j ′ and either i ′ < i or i ′ = i , j ′ < j .
Let

η(ci ) · · · η(c j )=

(
a −b
c −d

)
with a, b, c, d ∈ Z. Clearly, −ad + bc = 1 since η(k) ∈ SL(2,Z) for all k ∈ Z.
Moreover, (4-4) gives that

η(ci ) · · · η(c j−1)=

(
a −b
c −d

)(
0 1
−1 c j

)
=

(
b −(bc j − a)
d −(dc j − c)

)
.

Hence b, d ≥ 0 by induction hypothesis.
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If i = 1, then a, c ≥ 0 by definition of A+ and the assumption (i, j) 6= (1, n),
and hence we are done. Otherwise

η(ci−1) · · · η(c j )=

(
ci−1 −1

1 0

)(
a −b
c −d

)
=

(
ci−1a− c d − ci−1b

a −b

)
,

and hence a>0 by induction hypothesis. Since a, b, d≥0, we get bc=1+ad≥1,
and hence c > 0, which proves the claim.

(2) It suffices to prove the claim for i = 2. If η(c1) · · · η(cn) = −id, then clearly
η(c2) · · · η(cn)η(c1)=−id. Let j ∈ {2, . . . , n}. Then the entries in the first column
of η(c2) · · · η(c j ) are nonnegative by part (1) of the proposition. This gives (2).

(3) Recall the definition of τ in (4-8). Then (4-7) gives that

η(cn)η(cn−1) · · · η(c1)= τη(cn)
−1η(cn−1)

−1
· · · η(c1)

−1τ =−id

since η(c1) · · · η(cn)=−id. Therefore (cn, cn−1, . . . , c1) ∈A.
Let 2≤ i ≤ n and assume that

η(ci )η(ci+1) · · · η(cn)=

(
a −b
c −d

)
for some a, b, c, d ∈ Z. Then a, b, c, d ≥ 0 and bc − ad = 1 by part (1) of the
proposition. We obtain that

η(cn) · · · η(ci )= τη(cn)
−1
· · · η(ci )

−1τ

=

(
0 1
1 0

)(
−d b
−c a

)(
0 1
1 0

)
=

(
a −c
b −d

)
.

Thus (cn, cn−1, . . . , c1) ∈A+.

(4) Equations η(c1)=−id, η(c1)η(c2)=−id have no solutions with c1, c2 ∈N by
(4-3), (4-5). Let now n= 3 and c1, c2, c3 ∈N. If c1, c2, c3≥ 2, then (c1, c2, c3) /∈A

by Corollary 4.2. Otherwise c1 = c2 = c3 = 1 by Lemma 5.2(3) and part (2) of the
proposition. Relation (1, 1, 1) ∈A+ holds by (4-5) with i = j = 1. �

By Proposition 5.3(2) and (3), the dihedral group Dn of 2n elements, where
n ∈ N, acts on sequences of length n in A+ by cyclic permutation of the entries
and by reflections. This action gives rise to an equivalence relation ∼ on A+ by
taking the orbits of the action as equivalence classes. For brevity we will usually
not distinguish between elements of A+ and A+/∼. By Proposition 5.3(4) there
is precisely one element of A+/∼ of length 3.

Lemma 5.2 suggests to introduce a further equivalence relation ≈ on A+. Let
n,m ∈ N with m ≥ n, and let c = (c1, . . . , cn), d = (d1, . . . , dm) ∈A+. We write
c≈′ d if and only if m=n, c∼d or m=n+1, d= (c1+1, 1, c2+1, c3, c4, . . . , cn).
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t t · · · t? t t · · · t
t t · · · t

1

1

2 ?

Figure 1. Left: chain diagram. Right: cycle diagram.

Definition 5.4. Let c, d ∈A+. Write c ≈ d if and only if there exists k ∈ N and a
sequence c= e1, e2, . . . , ek=d of elements of A+, such that ei ≈

′ ei+1 or ei+1≈
′ ei

for all i ∈ {1, 2, . . . , k− 1}.

Clearly,≈ is an equivalence relation on A+. We are interested in the equivalence
classes of A+/≈.

Theorem 5.5. The only element of A+/≈ is (1, 1, 1).

Proof. Let n ≥ 1 and c = (c1, . . . , cn) ∈ A+. By Proposition 5.3(4) it suffices to
prove that if n ≥ 4, then c ≈ c′ for some c′ = (c′1, c′2, . . . , c′n−1) ∈A+.

Assume that n≥ 4. By Corollary 4.2 there exists i ∈ {1, . . . , n} such that ci = 1.
By Proposition 5.3(2) and the definition of ≈ we may assume that c2 = 1. Now
apply Lemma 5.2(2) and (3) to obtain the desired c′ ∈A+. �

Corollary 5.6. If n ∈ N, (c1, . . . , cn) ∈A+, then
∑n

i=1 ci = 3(n− 2).

Proof. The expression
∑n

i=1 ci−3(n−2) is zero for c= (1, 1, 1) and is an invariant
of ≈. �

6. Connected root systems of rank two

Throughout this section I will denote a two-element set, A a finite set, and C =

C(I, A, (ρi )i∈I , (Ca)a∈A) a connected Cartan scheme. Since ρ2
i = id for all i ∈ I ,

and C is connected, the object change diagram of C is either a chain (if ρi has a
fixed point for some i ∈ I ) or a cycle; see Figure 1.

Recall that an element w ∈ Hom(W(C)) is called even if det(w)= 1.

Lemma 6.1. The object change diagram of C is a cycle if and only if End(a)
contains only even elements (for all a ∈ A).

Proof. If the object change diagram of C is a cycle, then for all a ∈ A, End(a)
consists of the elements (σiσ j )

k|A|/21a , where k ∈ Z and I = {i, j}. These are all
even. Otherwise the object change diagram of C is a chain, and there exists a ∈ A
and i ∈ I such that ρi (a)= a. Then End(a) is generated by σ a

i and (σ jσi )
|A|−1σ a

j
which are odd. �

Assume that C admits a finite root system. The next proposition explains the
relationship between the ma

i, j and the number |A| of objects. For this, we need the
following standard lemma.
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Lemma 6.2. Let M ∈ GL(2,Z). If the order e of M is finite, then

−2≤ tr(M)≤ 2, e ∈ {1, 2, 3, 4, 6}.

Proposition 6.3. Assume that I = {i, j} and that C admits a finite root system.
Then ma

i, j = ma
j,i = |R

a
+
| for all objects a. If the object change diagram is a cycle,

then ma
i, j =

1
2 m |A| for some m ∈ {1, 2, 3, 4, 6}. If it is a chain, then ma

i, j = m |A|
with the same possibilities for m.

Proof. We have ma
i, j =ma

j,i = |R
a
+
| by Definition 2.3 for all objects a. Axiom (R3)

from the same definition implies that ma
i, j does not depend on a. Let d = |A| if the

object change diagram is a chain and d = |A|/2 if it is a cycle. Then (σ jσi )
k1a ∈

End(a), k ∈ N0, if and only if k ∈ N0d . Theorem 2.6 and Lemma 6.2 give that
md = ma

i, j for some m ∈ {1, 2, 3, 4, 6}. �

We are going to give a characterization of finite connected irreducible root
systems of type C. First we analyze root systems with simply connected Cartan
schemes.

Lemma 6.4. Assume that C is simply connected and that R is a finite root system
of type C. Then the object change diagram of C is a cycle with |Ra

| vertices, where
a ∈ A.

Proof. Since C is simply connected, End(a) = {1} for all a ∈ A. By Lemma 6.1
the object change diagram of C is a cycle. Now∣∣Hom(W(C))1a

∣∣= |A| · ∣∣End(a)
∣∣

since C is connected. Again, C is simply connected, hence |A| =
∣∣Hom(W(C))1a

∣∣.
This is equal to 2|Ra

+
| by Theorem 2.6, since |I | = 2. �

Proposition 6.5. Assume that I = {i, j} and that R is a finite irreducible root sys-
tem of type C. Let a ∈ A and n=|Ra

+
|. Let a1, a2, . . . , a2n ∈ A and c1, c2, . . . , c2n ∈

Z such that

a2r−1 = (ρ jρi )
r−1(a), a2r = ρi (ρ jρi )

r−1(a),

c2r−1 =−ca2r−1
i j , c2r =−ca2r

j i

(6-1)

for all r ∈ {1, 2, . . . , n}. Then (c1, c2, . . . , cn) ∈ A+, cn+r = cr for all r ∈
{1, 2, . . . , n}, and ρ j (a2n)= a.

Proof. For all r ∈ Z let ir ∈ I such that ir = i for r odd and ir = j for r even. Let
θ2r−1 = σ

a2r−1
i τ , θ2r = τσ

a2r
j ∈ SL(2,Z) for all r ∈ {1, . . . , n}. Then θr = η(cr ) for

all r ∈ {1, . . . , 2n}. Since R is irreducible, cr > 0 for all r . By Lemmas 4 and 7 of
[Heckenberger and Yamane 2008], `(σ an

in
· · · σ a2

i2
σ a

i1
)= n. Hence

σ an
in
· · · σ a2

i2
σ a

i1
({α1, α2})= {−α1,−α2}
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by Lemma 8(iii) of the same work. Thus θn · · · θ2θ1({α1, α2}) = {−α1,−α2}, and
since det θr =1 for all r , we conclude that θn · · · θ2θ1=−id. Hence (cn, . . . , c2, c1)

lies in A.
Clearly, if 2 ≤ r ≤ n, then the first column of θn · · · θr+1θr has nonnegative

entries if and only if σin · · · σir+1σ
ar
ir
(αir−1) is a positive root. The latter is true by

[Heckenberger and Yamane 2008, Lemma 4], and hence (cn, . . . , c2, c1) ∈ A+.
Then (c1, c2, . . . , cn) ∈A+ by Proposition 5.3(3).

Replacing in the construction a by a2 and i by j , we find that (c2, . . . , cn, cn+1)

lies in A+. Then η(c1)
−1
= −η(c2) · · · η(cn) = η(cn+1)

−1, and hence c1 = cn+1.
Thus cn+r = cr for all r ∈ {1, 2, . . . , n} by induction on r . Finally, ρ j (a2n) =

(ρ jρi )
n(a)= a by (R4). �

The construction in Proposition 6.5 associates to any pair (i, a) ∈ I × A a se-
quence (c1, c2, . . . , cn) ∈A+. This defines a map

8 : I × A→A+.

Proposition 6.5 gives immediately, that

8( j, a)= (cn, cn−1, . . . , c1), 8( j, ρi (a))= (c2, c3, . . . , cn, c1). (6-2)

Thus, by definition of ∼, the induced map 8 : I × A→A+/∼ is constant. But we
can say more.

Theorem 6.6. Let n ∈N and c= (c1, c2, . . . , cn)∈A+. Then there is a unique (up
to equivalence) finite connected irreducible root system R with simply connected
Cartan scheme of rank two such that c ∈ Im8.

Proof. Assume that c ∈A+, R is a connected irreducible root system of rank two,
i ∈ I , and a ∈ A such that 8(i, a) = c. If the Cartan scheme of R is simply
connected, then by Lemma 6.4 and Proposition 6.5 the object change diagram of
R is a cycle and |A| = 2n. The Cartan matrices Ca and the sets Ra , where a ∈ A,
are then uniquely determined by the construction in Proposition 6.5. Thus R is
uniquely determined. We describe R explicitly.

Let I = {i, j} and let A = {a1, . . . , a2n} be a set with 2n elements. Define
ρi , ρ j : A→ A such that

ρi (a2r−1)= a2r , ρi (a2r )= a2r−1,

ρ j (a2r )= a2r+1, ρ j (a2r+1)= a2r
(6-3)

for all r ∈ {1, 2, . . . , n}, where a2n+1 = a1. Then ρ2
i = ρ

2
j = id. Let cln+r = cr for

all r ∈ {1, 2, . . . , n} and l ∈ Z, and define

Ca2r−1 =

(
2 −c2r−1

−c2r−2 2

)
, Ca2r =

(
2 −c2r−1

−c2r 2

)
(6-4)
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for all r ∈{1, 2, . . . , n}. Since cr ∈N for all r ∈{1, 2, . . . , 2n}, the matrices Car sat-
isfy (M1) and (M2). Since also (C1) and (C3) hold, C=C(I, A, (ρi , ρ j ), (Ca)a∈A)

is a connected Cartan scheme.
Now define

Ra2r−1 =
{
±η(c2r−1)η(c2r ) · · · η(c2r−2+l)

(1
0

) ∣∣ 0≤ l ≤ n− 1
}
,

Ra2r =
{
±τη(c2r )η(c2r+1) · · · η(c2r+l−1)

(1
0

) ∣∣ 0≤ l ≤ n− 1
}
,

for all r ∈ {1, 2, . . . , n}. Note that |Ra
+
| = n for all a ∈ A. Indeed, otherwise

η(cr )η(cr+1) · · · η(cr+l−1)
(1

0

)
=
(1

0

)
for some r ∈ {1, . . . , 2n} and l ∈ {1, . . . , n−1}.

Then
η(cr+1)η(cr+2) · · · η(cr+l−1)

(1
0

)
= η(cr )

−1
(1

0

)
=
( 0
−1

)
,

a contradiction to Proposition 5.3(1) and (2).
Axiom (R1) is fulfilled by Proposition 5.3(2). Let r ∈ {1, 2, . . . , 2n}. Equation

η(cr )η(cr+1) · · · η(cr+n−1)=−id implies that

η(cr )η(cr+1) · · · η(cr+n−2)=−η(cr+n−1)
−1,

and hence ±α1,±α2 ∈ Rar . Since τ, η(l) ∈ SL(2,Z) for all l ∈ Z, we get (R2).
(R4) holds by (6-3), since |Ra

+
| = n for all a ∈ A.

Now we prove (R3). Let r ∈{1, 2, . . . , 2n}. Then σ ar
i =η(−car

i j )τ = τη(−car
i j )
−1

by (6-4), (4-7). If r is odd, then

σ ar
i (R

ar )= τη(cr )
−1({
±η(cr )η(cr+1) · · · η(cr+l−1)

(1
0

) ∣∣ 0≤ l ≤ n− 1
})

⊂ Rar+1 = Rρi (ar ),

and if r is even, then

σ ar
i (R

ar )= η(cr−1)τ
({
±τη(cr )η(cr+1) · · · η(cr+l−1)

(1
0

) ∣∣ 0≤ l ≤ n− 1
})

⊂ Rar−1 = Rρi (ar ).

Similarly, σ ar
j = τη(cr−1) for odd r and σ ar

j = η(cr )
−1τ for even r . Hence

σ ar
j (R

ar ) ⊂ Rρ j (ar ), (R3) holds, and R is a finite irreducible root system of type
C. The Cartan scheme C is simply connected, since

∣∣Hom(W(C))1a1

∣∣= 2n = |A|
and (c1, . . . , cn) ∈A. Finally, 8(i, a1)= (c1, . . . , cn) because of (6-1), (6-3), and
(6-4). �

Corollary 6.7. Assume that there is a finite root system R of type C. Then there
are a ∈ A and i, j ∈ I with i 6= j such that ca

i j = 0 or ca
i j =−1.

Proof. If R is not irreducible, then Ca
i j = 0 for all a ∈ A and i, j ∈ I with i 6= j ;

see the end of Section 2. Otherwise Proposition 6.5 gives that the negatives of the
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entries of the Cartan matrices of C give rise to a sequence (c1, . . . , cn) ∈ A+. By
Corollary 4.2, this sequence has an entry 1, and the corollary is proven. �

Remark 6.8. The assumption in Corollary 6.7 can be weakened for example by
requiring only that W(C) is finite. We don’t work out the details, since we are
mainly interested in Cartan schemes admitting (finite) root systems.

We are going to give a very effective algorithm to decide if our given con-
nected Cartan scheme C admits a finite irreducible root system. The central notions
towards this will be the characteristic sequences and centrally symmetric Cartan
schemes. Our algorithm can also be used to get a more precise classification of
root systems of rank two, for example in form of explicit lists for a given number
of objects.

Definition 6.9. Assume that the object change diagram of C is a cycle. Let i ∈ I ,
a ∈ A, and define a1, . . . , a|A| ∈ A and c1, . . . , c|A| ∈ N0 by

a2k−1 = (ρ jρi )
k−1(a), a2k = (ρiρ j )

k−1ρi (a),

c2k−1 =−ca2k−1
i j , c2k =−ca2k

j i

for all k ∈ {1, 2, . . . , |A|/2}, where I = {i, j}. Then (c1, c2, . . . , c|A|) is called
the characteristic sequence of C with respect to i and a. The Cartan scheme C is
termed centrally symmetric if ck = ck+|A|/2 for all k ∈ {1, 2, . . . , |A|/2}. In this
case we write also (c1, c2, . . . , c|A|/2)2 for (c1, c2, . . . , c|A|).

Remark 6.10. Let (c1, c2, . . . , c|A|) be the characteristic sequence of C with re-
spect to i and a. Then the characteristic sequences with respect to j and a and i
and ρi (a), respectively, are (c|A|, c|A|−1, . . . , c1) and (c1, c|A|, c|A|−1, . . . , c3, c2),
respectively. Thus if C is centrally symmetric with respect to i and a, it is also
centrally symmetric with respect to j and a and i and ρi (a), respectively. Since
C is connected, this means that C being centrally symmetric is independent of the
choice of i ∈ I and a ∈ A.

Remark 6.11. Characteristic sequences must not be confused with elements of A

or A+. Their precise relationship will not be needed in the sequel, so we don’t
work it out in detail.

Remark 6.12. Let n ∈ N and let c = (c1, c2, . . . , c2n) be a sequence of positive
integers. By axioms (M1) and (C3) there is a unique (up to equivalence) connected
Cartan scheme C with object change diagram a cycle, such that the characteristic
sequence of C (with respect to some i ∈ I and a ∈ A) is c.

Remark 6.13. Assume that C is simply connected, and that there exists a finite
irreducible root system of type C. Then C is centrally symmetric by Lemma 6.4
and Proposition 6.5.
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Remark 6.14. Assume that the object change diagram of C is a cycle. By Lemma
6.1 and Proposition 3.4 the object change diagram of an n-fold covering C′ of
C, where n ∈ N, is a cycle. The characteristic sequence of C′ is just the n-fold
repetition of the characteristic sequence of C. Thus an n-fold covering of C is
centrally symmetric if and only if C is centrally symmetric or n is even.

Lemma 6.15. Assume that there exists a finite irreducible root system of type C.
Suppose that the object change diagram of C is a chain. Then there is a unique
double covering C′ of C and a finite irreducible root system of type C′ such that the
object change diagram of C′ is a cycle.

Proof. By assumption there exists a ∈ A and i ∈ I such that ρi (a)=a. Then End(a)
is generated by σ a

i and τ a
= (σ jσi )

|A|−1σ a
j , where I = {i, j}. Since σ a

i , τ a are
reflections, for the subgroup U =〈σ a

i τ
a
〉⊂End(a)we obtain that [End(a) :U ]=2,

and U consists of even elements. By Proposition 3.4(2) there exists a unique double
covering C′ of C satisfying Axiom (C3) such that End(a′)'U for all a′ ∈ A′. By
Lemma 6.1 the object change diagram of C′ is a cycle. The uniqueness of C′

holds, since U is the unique subgroup of End(a) consisting of even elements and
satisfying [End(a) : U ] = 2. The existence of a finite irreducible root system of
type C′ follows from Proposition 3.7(2). �

Remark 6.16. If C′ is a Cartan scheme with object change diagram a cycle, then
C′ is the double covering of a Cartan scheme with object change diagram a chain
if and only if there exist i ∈ I ′, a ∈ A′, such that the characteristic sequence of
C′ with respect to i and a is of the form (c1, . . . , cn, cn+1, cn, cn−1, . . . , c2) with
n = |A′|/2 and c1, . . . , cn+1 ∈ N0.

Lemma 6.17. Assume that there exists a finite irreducible root system of type C.
Suppose that the object change diagram of C is a cycle, and that C is not centrally
symmetric. Then there is a unique double covering C′ of C which admits a (finite
irreducible) root system. The Cartan scheme C′ is centrally symmetric.

Proof. Since the object change diagram of C is a cycle, End(a) is cyclic for all
a ∈ A. The universal covering of C is centrally symmetric by Remark 6.13. Since
C is not centrally symmetric, |End(a)| is even by Remark 6.14 and Proposition
3.4(2). By Proposition 3.4(2) there is a unique double covering C′ of C satisfying
(C3). It admits a finite irreducible root system of type C′ by Proposition 3.7(2). All
coverings of C admitting a root system fulfill (C3). Hence C′ is the only double
covering of C admitting a root system. This C′ is centrally symmetric by Remark
6.14. �

Remark 6.18. Let C′ be a Cartan scheme with object change diagram a centrally
symmetric cycle, and n = |A′|. Then C′ is the double covering of a Cartan scheme
with object change diagram a not centrally symmetric cycle if and only if n ∈ 4N,
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and with respect to one (equivalently, all) pair (i ′, a′) ∈ I ′ × A′ the characteristic
sequence of C′ is not of the form

(c1, c2, . . . , cn/4, c1, c2, . . . , cn/4)
2,

where c1, . . . , cn/4 ∈ N0.

In order to decide if a given connected Cartan scheme admits a finite root sys-
tem, Lemmas 6.15 and 6.17 allow us to concentrate on centrally symmetric Cartan
schemes. Further, since the classification of finite root systems with at most three
objects is known [Cuntz and Heckenberger 2008], we may assume that the Cartan
scheme has at least 4 objects.

For any matrix C , let C t denote the transpose of C .

Theorem 6.19. Let C = C(I, A, (ρi )i∈I , (Ca)a∈A) be a connected centrally sym-
metric Cartan scheme with |A| ≥ 4.

(1) Assume that the characteristic sequence of C contains 0. Then ca
i j = 0 for all

a ∈ A and i, j ∈ I with i 6= j . Moreover, C admits a finite root system if and
only if |A| = 4.

(2) If all entries of the characteristic sequence of C are at least two, then C does
not admit a finite root system.

(3) Assume that the characteristic sequence of C is of the form

c = (c1, 1, c3, c4, . . . , c|A|/2)2.

(Thus 0 /∈ {c1, . . . , c|A|/2} by (1).) If c1= 1 or c3= 1, then there is a finite root
system of type C if and only if |A| = 6 and c1 = c3 = 1. If c1 > 1 and |A| = 4,
then there is a finite root system of type C if and only if c1 ∈ {2, 3}. If c1 > 1,
c3 > 1, and |A| ≥ 6, then there is a finite root system of type C if and only if
the Cartan scheme with object change diagram a cycle with |A|−2 edges and
with characteristic sequence

(c1− 1, c3− 1, c4, . . . , c|A|/2)2 (6-5)

admits a finite root system.

Proof. (1) follows from (M2), (C3), and (R4), and (2) from Corollary 6.7.

(3) If c1 = 1 or c3 = 1, then there exists a ∈ A such that ca
i j = ca

ji = −1, where
I = {i, j}. Then Lemma 4.8 of [Cuntz and Heckenberger 2008] gives that ma

i, j = 3
and cr = 1 for all r ∈ {1, 3, 4, . . . , |A|/2}. By (R4) we get |A| = 6.

Assume next that c1 > 1 and |A| = 4. Then Ca
=Cb for all a, b ∈ A, and hence

C admits a finite root system if and only if Ca is of finite type and (R4) holds (see
Theorem 3.3 of the same reference), that is, c1 ∈ {2, 3}.
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Finally, assume that c1 > 1, c3 > 1, |A| ≥ 6, and C admits a finite root system.
By Proposition 3.7, the universal covering C′ of C admits a finite root system.
Hence A′ is finite by (C1) and (R4). Therefore End(a)⊂Hom(W(C)) is finite for
all a ∈ A by (3-3). Let m = |End(a)|. Remark 6.14 and Lemma 6.4 tell that the
object change diagram of C′ is a centrally symmetric cycle, and the characteristic
sequence of C′ is an m-fold repetition of c. Let

c̃ = (c1, 1, c3, c4, . . . , c|A|/2).

By Proposition 6.5 the m-fold repetition of c̃ is an element of A+. Since |A| ≥ 6,
Lemma 5.2(2) gives that the m-fold repetition of

c̃′ = (c1− 1, c3− 1, c4, . . . , c|A|/2)

is in A+. Let C′′ be the connected simply connected Cartan scheme which cor-
responds to the m-fold repetition of c̃′ via Theorem 6.6. It admits a finite root
system. Now C′′ is the m-fold covering of a Cartan scheme C′′′ with characteristic
sequence given in (6-5). Hence Proposition 3.7 gives that C′′′ admits a finite root
system.

We have shown that if C admits a finite root system, then also C′′′. The proof
of the converse goes in the same way, and we are done. �

Example 6.20. Consider the connected Cartan scheme C of rank two with 4 ob-
jects, object change diagram a cycle and characteristic sequence (5, 1, 2, 2). To
check that C admits a finite root system, consider the double covering C′ corre-
sponding to the characteristic sequence (5, 1, 2, 2)2. By Proposition 3.7, C admits
a finite root system if and only if C′ does. Theorem 6.19(3) allows one to replace
C′ by the Cartan scheme with characteristic sequence (4, 1, 2)2 and then (3, 1)2.
Thus C admits a finite root system.

If we start with the characteristic sequence (5, 1, 2, 3) for C, then the analogous
arguments produce the characteristic sequences (5, 1, 2, 3)2, (4, 1, 3)2 and (3, 2)2,
and then C does not admit a finite root system by Theorem 6.19(2).

Example 6.21. Theorem 6.19 also enables us to list all connected centrally sym-
metric Cartan schemes which admit a finite root system to a fixed number of ob-
jects. For example if |A| = 4, then there are 3 such schemes and they belong to the
characteristic sequences (0, 0)2, (1, 2)2, (1, 3)2. Therefore by Theorem 6.19(2) and
(3), the only connected centrally symmetric Cartan schemes (up to equivalence)
which have 6 objects and admit a finite root system are those that correspond to
the characteristic sequences (1, 1, 1)2, (2, 1, 3)2 and (2, 1, 4)2, and, if |A| = 8,
then we obtain (2, 1, 2, 1)2, (3, 1, 2, 3)2, (2, 2, 1, 4)2, (3, 1, 4, 1)2, (3, 1, 2, 4)2,
(2, 2, 1, 5)2 and (3, 1, 5, 1)2. Similarly, we have 15, 47, 136 connected centrally
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symmetric Cartan schemes up to equivalence with 10, 12, 14 objects, respectively,
admitting a finite root system.

According to Lemma 6.17 and the above lists for |A| = 4 and |A| = 8, the
complete list of all characteristic sequences to irreducible Cartan schemes which
admit a finite root system, with object change diagram a cycle and 4 objects is thus:
(1, 2, 1, 2), (1, 3, 1, 3), (3, 1, 2, 3), (2, 2, 1, 4), (3, 1, 4, 1), (3, 1, 2, 4), (2, 2, 1, 5),
(3, 1, 5, 1).

Remark 6.16 and the list for |A| = 8 also supports us with Cartan schemes
with 4 objects which admit a finite root system and have a chain as object change
diagram. The symmetry property mentioned in Remark 6.16 is fulfilled for the
sequences (2, 1, 2, 1)2 (also in the form (1, 2, 1, 2)2), (3, 1, 4, 1)2 (also in the form
(4, 1, 3, 1)2), and (3, 1, 5, 1)2 (also in the form (5, 1, 3, 1)2). This yields the fol-
lowing 6 Cartan schemes with 4 objects (the Cartan matrices represent the objects).(

2 −2
−1 2

)
2—–
(

2 −2
−1 2

)
1—–
(

2 −2
−1 2

)
2—–
(

2 −2
−1 2

)
(

2 −1
−2 2

)
2—–
(

2 −1
−2 2

)
1—–
(

2 −1
−2 2

)
2—–
(

2 −1
−2 2

)
(

2 −3
−1 2

)
2—–
(

2 −4
−1 2

)
1—–
(

2 −4
−1 2

)
2—–
(

2 −3
−1 2

)
(

2 −4
−1 2

)
2—–
(

2 −3
−1 2

)
1—–
(

2 −3
−1 2

)
2—–
(

2 −4
−1 2

)
(

2 −3
−1 2

)
2—–
(

2 −5
−1 2

)
1—–
(

2 −5
−1 2

)
2—–
(

2 −3
−1 2

)
(

2 −5
−1 2

)
2—–
(

2 −3
−1 2

)
1—–
(

2 −3
−1 2

)
2—–
(

2 −5
−1 2

)
To complete the classification of all connected Cartan schemes with finite root sys-
tem and 4 objects, it remains to calculate all connected Cartan schemes with finite
root system and 8 objects with object change diagram a not centrally symmetric
cycle, and then to apply Remark 6.16 to them, as indicated above, to get all chains
with 4 objects. This is certainly an easy task for a computer but there are too many
such Cartan schemes to list them here.

7. Bounds

Let C= C(I, A, (ρi )i∈I , (Ca)a∈A) be a connected Cartan scheme of rank two ad-
mitting a finite irreducible root system of type C. Then A is finite by (C1) and
(R4). Let −q = −q(C) denote the sum of all nondiagonal entries of the Cartan



338 Michael Cuntz and István Heckenberger

matrices of C, and h = |End(a)| for an a ∈ A. Then |End(b)| = h for all b ∈ A,
since C is connected.

Theorem 7.1. We have h(6|A| − q)= 24 and

|Ra
+
| =

h|A|
2
=

12|A|
6|A| − q

.

Proof. The universal covering C′ of C has h|A| objects by (3-3), and q(C′)/4 =
3(h|A|/2 − 2) by Proposition 6.5 and Corollary 5.6. Since q(C′) = hq(C), we
obtain that hq = 6(h|A| − 4). Hence h(6|A| − q) = 24. Lemma 6.4 tells that
|Ra
+
| = h|A|/2. This yields the claim. �

Remark 7.2. Proposition 6.3 and Theorem 7.1 give that h ∈ {1, 2, 3, 4, 6} if the
object change diagram of C is a cycle, and h/2 ∈ {1, 2, 3, 4, 6} if it is a chain.
But this result could have been obtained much easier. Nevertheless, Theorem 7.1
gives a restriction for q = 6|A| − 24/h for given number |A| of objects in a finite
irreducible root system.

Next we give sharp bounds for the entries of the Cartan matrices.

Proposition 7.3. Assume that |A| ≥ 2. Let c≤ 0 be an entry of Ca for some a ∈ A.
If the object change diagram is a cycle (chain), then |c| ≤ |A|+ 1 (|c| ≤ 2|A|+ 1).

Proof. Assume first that the object change diagram of C is a cycle. If |A| ≥ 4 and
C is centrally symmetric, then Theorem 6.19(2) and (3) yields by induction on |A|,
that |c| ≤ |A|/2+ 1. If C is not centrally symmetric, then by Lemma 6.17 there
exists a double covering of C which is centrally symmetric. Hence |c| ≤ |A| + 1.

If the object change diagram of C is a chain, then by Lemma 6.15 there exists
a double covering of C which has a cycle as object change diagram. Hence |c| ≤
2|A| + 1. �

Proposition 7.4. For all n ≥ 1 there exist finite connected irreducible root systems
R of rank two with |A| = 2n and object change diagram a cycle or |A| = n and
object change diagram a chain such that −(2n+ 1) is an entry in a Cartan matrix
Ca , a ∈ A.

Proof. For n = 1 the claim follows from [Cuntz and Heckenberger 2008, Proposi-
tion 5.2].

Theorem 6.19 tells that for all n ≥ 2 the Cartan scheme Cn with 4n objects,
object change diagram a cycle, and characteristic sequence

(3, 2, 2, . . . , 2︸ ︷︷ ︸
n−2 times

, 1, 2n+ 1, 1, 2, 2, . . . , 2︸ ︷︷ ︸
n−2 times

)2 (7-1)

admits a finite irreducible root system with |A| = 4n. Indeed, if n = 2, then using
Theorem 6.19(3) we can transform the sequence (3, 1, 5, 1)2 first to (2, 4, 1)2. By



Weyl groupoids of rank two and continued fractions 339

changing the reference object, the latter is equivalent to (4, 1, 2)2, and using the
same result we may reduce it to (3, 1)2. If n > 2, then using Theorem 6.19(3) we
may transform the sequence in (7-1) in two steps, first to

(3, 2, 2, . . . , 2︸ ︷︷ ︸
n−3 times

, 1, 2n, 1, 2, 2, . . . , 2︸ ︷︷ ︸
n−2 times

)2,

and then to
(3, 2, 2, . . . , 2︸ ︷︷ ︸

n−3 times

, 1, 2n− 1, 1, 2, 2, . . . , 2︸ ︷︷ ︸
n−3 times

)2.

By induction on n we obtain that Cn admits a finite irreducible root system. By
Remark 6.18, Cn is the double covering of a Cartan scheme C′n with 2n objects,
object change diagram a cycle, and characteristic sequence

(3, 2, 2, . . . , 2︸ ︷︷ ︸
n−2 times

, 1, 2n+ 1, 1, 2, 2, . . . , 2︸ ︷︷ ︸
n−2 times

).

By Proposition 3.7, C′n admits a finite irreducible root system R′, and R′ is such
a root system we are looking for. By Remark 6.16, C′n is the double covering
of a Cartan scheme C′′n with n objects and object change diagram a chain. By
Proposition 3.7, C′′n admits a finite irreducible root system R′′, and the proposition
is proven. �

Corollary 7.5. Any c ∈N occurs as the negative of an entry of a Cartan matrix of
a finite connected irreducible root system of rank two.

Proof. For even c use the appropriate intermediate step in the proof of Proposition
7.4. �

Corollary 7.6. For r, n ∈ N, there are only finitely many finite root systems R of
rank r with n objects.

Proof. Let I , A be finite sets with |I | = r and |A| = n, and let R be a finite root
system of rank r with object set A. For all i, j ∈ I with i 6= j the restriction R|{i, j}

(see [Cuntz and Heckenberger 2008, Definition 4.1]) is a finite root system of rank
two. Hence the entries of the Cartan matrices of R are bounded by 2|A| + 1 by
Proposition 7.3. Since for all i ∈ I , ρi is one of finitely many permutations of A,
and since finite root systems are uniquely determined by their Cartan scheme, the
claim is proven. �
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The semigroup of Betti diagrams
Daniel Erman

The recent proof of the Boij–Söderberg conjectures reveals new structure about
Betti diagrams of modules, giving a complete description of the cone of Betti
diagrams. We begin to expand on this new structure by investigating the semi-
group of such diagrams. We prove that this semigroup is finitely generated, and
answer several other fundamental questions about it.

1. Introduction

Recent work of a number of authors [Boij and Söderberg 2008b; 2008a; Eisenbud
et al. 2007; Eisenbud and Schreyer 2009], completely characterizes the structure
of Betti diagrams of graded modules, but only if one is allowed to take arbitrary
rational multiples of the diagrams. This Boij–Söderberg theory shows that the
rational cone of Betti diagrams is a simplicial fan whose rays and facet equations
have a remarkably simple description.1

In this note, we consider the integral structure of Betti diagrams from the per-
spective of Boij–Söderberg theory, and we begin to survey this new landscape. In
particular, we replace the cone by the semigroup of Betti diagrams (see Definition
1.1 below) and answer several fundamental questions about the structure of this
semigroup.

We first use the results of Boij–Söderberg theory to draw conclusions about
the semigroup of Betti diagrams. This comparison leads to Theorem 1.3, that the
semigroup of Betti diagrams is finitely generated.

We then seek conditions which prevent a diagram from being the Betti diagram
of an actual module. Using these conditions, we build families of diagrams which
are not the Betti diagram of any module. For instance, consider the family

Eα :=
(

2+α 3 2 −

− 5+ 6α 7+ 8α 3+ 3α

)
, α ∈ N.

MSC2000: primary 13D02; secondary 13D25.
Keywords: Boij–Söderberg Theory, Betti diagrams, Betti tables, minimal free resoultions.
The author was partially supported by an NDSEG fellowship.

1See [Boij and Söderberg 2008b] for the original conjecture, [Eisenbud and Schreyer 2009] for
the Cohen–Macaulay case, and [Boij and Söderberg 2008a] for the general case. The introduction of
[Eisenbud and Schreyer 2009] includes a particularly clear exposition of the main results.
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We will use the theory of Buchsbaum–Eisenbud multiplier ideals to conclude that
no member of this family can be the Betti diagram of a module. Yet each Eα
belongs to the cone of Betti diagrams, and in fact, if we were to multiply any
diagram Eα by 3, then the result would equal the Betti diagram of a module.

We produce further examples of obstructed diagrams by using properties of the
Buchsbaum–Rim complex. Based on our examples, we establish several negative
results about the semigroup of Betti diagrams. These negative results are summa-
rized in Theorem 1.6.

To state our results more precisely, we introduce notation. Let S be the poly-
nomial ring S = k[x1, . . . , xn] where k is any field. If M is any finitely generated
graded S-module, we can take a minimal free resolution

0→ Fp→ · · · → F1→ F0→ M→ 0

with Fi =
⊕

j S(− j)βi, j (M). We write β(M) for the Betti diagram of M , thought
of as an element of the vector space

⊕
∞

j=−∞
⊕p

i=0 Q with coordinates βi, j (M).
The set of graded S-modules is a semigroup under the operation of direct sum, and
the vector space is a semigroup under addition. By observing that β(M ⊕ M ′) =
β(M)+β(M ′), we can think of β as a map of semigroups:

{ finitely generated graded S-modules}
β-

∞⊕
j=−∞

p⊕
i=0

Q.

The image of this map is thus a semigroup. Furthermore, if we restrict β to any
subsemigroup of S-modules, then the image of the restricted map is also a semi-
group.

A degree sequence will mean an integral sequence d = (d0, . . . , dp) ∈ Np+1

where di < di+1. If there exists a Cohen–Macaulay module M of codimension p
with all Betti numbers equal to zero except for βi,di (M), then we say that β(M) is a
pure diagram of type d. It was first shown in [Herzog and Kühl 1984] that any two
pure diagrams of type d would be scalar multiples of one another. The existence
of modules whose Betti diagrams are pure diagrams of type d was conjectured by
[Boij and Söderberg 2008b] and proved by [Eisenbud et al. 2007] in characteristic
0 and by [Eisenbud and Schreyer 2009] in arbitrary characteristic. These pure
diagrams play a central role in the Boij–Söderberg theorems.

Fix two degree sequences d and d of length p and such that d i ≤ d i for all i .
Consider the semigroup Z of graded modules M such that

• M has projective dimension ≤ p, and

• the Betti number βi, j (M) is nonzero only if i ≤ p and d i ≤ j ≤ d i .

Our choice of Z is meant to match the simplicial structure of the cone of Betti
diagrams. We may now define our main objects of study.
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Figure 1. The cone of Betti diagrams BQ is a simplicial fan which
is described explicitly in [Eisenbud and Schreyer 2009] and [Boij
and Söderberg 2008a]. This description can be used to understand
the integral structure of the semigroup of virtual Betti diagrams
BN. The semigroup of Betti diagrams Bmod is more mysterious.

Definition 1.1. The semigroup of Betti diagrams Bmod is defined as

Bmod = Bmod(d, d) := imβ|Z.

To study this object, it will be useful to consider two related ones:

Definition 1.2. The cone of Betti diagrams BQ is the positive rational cone over
the semigroup of Betti diagrams. The semigroup of virtual Betti diagrams BN is
the semigroup of lattice points in BQ.

One could define a cone of Betti diagrams without restricting which Betti num-
bers can be nonzero. This is the choice that [Eisenbud and Schreyer 2009] make,
and our cone of Betti diagrams equals their big cone restricted to an interval. We
choose to work with a finite dimensional cone in order to discuss the finiteness
properties of Bmod.

A naive hope would be that the semigroups BN and Bmod are equal. But a
quick search yields virtual Betti diagrams which cannot equal the Betti diagram of
module. Take for example the following pure diagram of type (0, 1, 3, 4):

D1 := π(0,1,3,4) =

(
1 2 − −
− − 2 1

)
. (1)

This diagram belongs to the semigroup of virtual Betti diagrams. However, D1

cannot equal the Betti diagram of an actual module as the two first syzygies would
satisfy a linear Koszul relation which does not appear in the diagram D1.

It is thus natural to compare Bmod and BN, and we will consider some questions
about the semigroup of Betti diagrams:

(Q1) Is Bmod finitely generated?

(Q2) Does Bmod = BN in some special cases?

(Q3) Is Bmod a saturated semigroup?
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•
0

◦
•
•
•
•

nonsaturated

•
0

◦
◦
◦
◦
•

missing consecutive points

•
0

◦
•
◦
•

nonconsecutive points

Figure 2. There exist rays that exhibit each of these behaviors.

(Q4) Is BN \ Bmod a finite set?

(Q5) On a single ray, can we have consecutive points of BN which fail to belong
to Bmod? Nonconsecutive points?

In Section 2, we answer (Q1) affirmatively:

Theorem 1.3. The semigroup of Betti diagrams Bmod is finitely generated.

Sections 3 and 4 of this paper develop obstructions which prevent a virtual Betti
diagram from being the diagram of some module. These obstructions are our tools
for answering the other questions above. In Section 5, we consider (Q2), and prove
the following:

Proposition 1.4. BN = Bmod for projective dimension 1 and for projective dimen-
sion 2 level modules.

Our proof of Proposition 1.4 rests heavily on [Söderberg 2006], which shows
the existence of level modules of embedding dimension 2 and with a given Hilbert
function by constructing these modules as quotients of monomial ideals.

In [Erman ≥ 2009] we verify that, in a certain sense, projective dimension 2
diagrams generated in a single degree are “unobstructed.” This leads us to:

Conjecture 1.5. BN = Bmod for projective dimension 2 diagrams.

In the final section, we will consider questions (Q3)–(Q5). Here we show that
the semigroup of Betti diagrams can have rather complicated behavior (see also
Figure 2):

Theorem 1.6. Each of the following occurs in the semigroup of Betti diagrams:

(1) Bmod is not necessarily a saturated semigroup.

(2) The set |BN \ Bmod| is not necessarily finite.

(3) There exist rays of Bmod missing at least dim S− 2 consecutive lattice points.

(4) There exist rays of BN where the points of Bmod are nonconsecutive lattice
points.
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Remark 1.7. Almost nothing in this paper would be changed if we swapped the
semigroup Z for some subsemigroup of Z which respects the simplicial structure
of BQ. For instance, we could consider the subsemigroup of Cohen–Macaulay
modules of codimension e. The analogous statements of Theorems 1.3 and 1.6
and Proposition 1.4 all remain true in the Cohen–Macaulay case; one can even use
the same proofs.

This paper is organized as follows. In Section 2, we prove that the semigroup
of Betti diagrams is finitely generated. Sections 3 and 4 introduce obstructions for
a virtual Betti diagram to be the Betti diagram of some module. The obstructions
in Section 3 are based on properties of the Buchsbaum–Rim complex, and the
obstruction in Section 4 focuses on the linear strand of a resolution and is based on
the properties of Buchsbaum–Eisenbud multiplier ideals. Section 5 deals with the
semigroup of Betti diagrams for small projective dimension, and contains the proof
of Proposition 1.4. In Section 6 we prove Theorem 1.6 by constructing explicit
examples based on our obstructions. Section 7 offers some open questions.

2. Finite generation of the semigroup of Betti diagrams

We fix a pair of degree sequences d, d ∈ Np+1 and work with the correspond-
ing semigroup of Betti diagrams Bmod. Our proof of the finite generation of the
semigroup of Betti diagrams uses the structure of the cone of Betti diagrams, so we
begin by reviewing the relevant results. This structure was first proved in [Eisenbud
and Schreyer 2009] for the Cohen–Macaulay case; the general case is similar, and
was worked out in [Boij and Söderberg 2008a].

If d is any degree sequence then we set πd to be the first lattice point on the ray
corresponding to d. As illustrated in Figure 3, the cone BQ is a rational simplicial
fan whose defining rays correspond to rays of pure diagrams. To describe the
simplicial structure, we recall the following partial ordering on degree sequences,
introduced in [Boij and Söderberg 2008a]:

Definition 2.1. Let d ∈ Nt+1 and d ′ ∈ Nu+1. Then d ≤ d ′ if t ≥ u and di ≤ d ′i for
all i ≤ u.

The simplices of the fan BQ correspond to maximal chains

d0 < d1 < · · ·< ds−1 < ds

of degree sequences, where if d j
∈Nt+1 then d i ≤ d j

i ≤ d i for all i ≤ t . There are
thus s + 1 positions which may be nonzero for a Betti diagram in Bmod [Boij and
Söderberg 2008a, Example 1]. In particular, s+ 1=

∑p
i=0 d i − d i + 1.

Before proving Theorem 1.3, we first prove a simpler analog for the semigroup
of virtual Betti diagrams BN.
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BQ

πd0

πd1

πd2

1(d0, d1, d2)

Figure 3. The cone BQ is a simplicial fan. The simplex corre-
sponding to a maximal sequence d0, d1, d2 is highlighted in gray.
The extremal rays of a simplex correspond to pure diagrams.

Lemma 2.2. The semigroup BN is finitely generated. There exists an integer m
such that every virtual Betti diagram can be written as a (1/m)N-combination of
pure diagrams.

Proof. Since BN consists of the lattice points of the simplicial fan BQ, it is sufficient
to prove this lemma after restricting to a single simplex1. Let πd0, . . . , πds be the
pure diagrams defining 1. Then the semigroup BN ∩1 is generated by pure dia-
grams spanning 1 and by the lattice points inside the fundamental parallelepiped
of 1. This proves the first claim.

For the second claim of the lemma, let P1, . . . , PN be the minimal generators
of BN ∩1. Every generator can be written as a positive rational sum:

Pi =
∑

j

pi j

qi j
πd j , pi j , qi j ∈ N.

We set m1 to be the least common multiple of all the qi j . Then we set m to be the
least common multiple of the m1 for all 1. �

We refer to m1 as a universal denominator for BN ∩ 1. The existence of this
universal denominator is central to our proof of the finite generation of Bmod.

Proof of Theorem 1.3. It is sufficient to prove the theorem for Bmod ∩1 where 1
is a simplex of BQ. Let πd0, . . . , πds be the pure diagrams defining 1, and let m1

be the universal denominator for BN ∩1.
For i = 0, . . . , s, let ci ∈ N be minimal such that ciπd i belongs to Bmod. The

existence of such a ci is guaranteed by Theorems 0.1 and 0.2 of [Eisenbud et al.
2007] and Theorem 5.1 of [Eisenbud and Schreyer 2009]. Let S1 be the semigroup
generated by the pure diagrams ciπd i . Let S0 be the semigroup generated by the
pure diagrams (1/m1)πd i . Then we have the inclusions of semigroups

S1 ⊆ (Bmod ∩1)⊆ (BN ∩1)⊆ S0.
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Passing to semigroup rings gives

k[S1] ⊆ k[Bmod ∩1] ⊆ k[BN ∩1] ⊆ k[S0].

Observe that k[S1] and k[S0] are both polynomial rings of dimension s+1, and that
k[S1] ⊆ k[S0] is a finite extension of rings. This implies that k[S1] ⊆ k[Bmod∩1]

is also a finite extension, and hence k[Bmod ∩1] is a finitely generated k-algebra.
We conclude that Bmod ∩1 is a finitely generated semigroup. �

Computing generators of BN. Minimal generators of BN ∩1 can be computed
explicitly as the generators of the N-solutions to a certain linear Z-system defined
by the πd i and by m1. For an overview of relevant algorithms, see the introduction
of [Pisón-Casares and Vigneron-Tenorio 2004]. The following example illustrates
the method.

Consider S = k[x, y], d = (0, 1, 4), d = (0, 3, 4). The corresponding cone of
Betti diagrams has several simplices and we choose the simplex 1 spanned by the
maximal chain of degree sequences

(0) > (0, 3) > (0, 3, 4) > (0, 2, 4) > (0, 1, 4).

The corresponding pure diagrams are1 − −
− − −

− − −

 ,
1 − −
− − −

− 1 −

 ,
1 − −
− − −

− 4 3

 ,
1 − −
− 2 −
− − 1

 ,
3 4 −
− − −

− − 1

 .
(2)

First we must compute m1. To do this, we consider the square matrix 8 whose
columns correspond to the pure diagrams above:

8=


1 1 1 1 3
0 0 0 0 4
0 0 0 2 0
0 1 4 0 0
0 0 3 1 1

 . (3)

The columns of 8 are indexed by the pure diagrams in (2) and the rows of 8
are indexed by the Betti numbers β0,0, β1,1, β1,2, β1,3 and β2,4 respectively. Since
the columns of 8 are Q-linearly independent, it follows that the cokernel of 8
is entirely torsion. Note that each minimal generator of BN ∩1 is either a pure
diagram or corresponds to a unique nonzero torsion element of coker(8). The
annihilator of coker8 is thus the universal denominator for 1. A computation in
Macaulay2 shows that m1 = 12 in this case.



348 Daniel Erman

We next compute minimal generators of the N-solutions of the linear Z-system

Z10



–12 0 0 0 0 1 1 1 1 3
0 –12 0 0 0 0 0 0 0 4
0 0 –12 0 0 0 0 0 2 0
0 0 0 –12 0 0 1 4 0 0
0 0 0 0 –12 0 0 3 1 1


- Z5.

The N-solutions of the above system correspond to elements of BN ∩1 under the
correspondence

(b1, b2, b3, b4, b5, a1, a2, a3, a4, a5)

7→
a1

12
π(0)+

a2

12
π(0,3)+

a3

12
π(0,3,4)+

a4

12
π(0,2,4)+

a5

12
π(0,1,4).

Computation yields that BN ∩1 has 14 minimal semigroup generators.2 These
consist of the 5 pure diagrams from line (2) plus the following 9 diagrams:1 1 −
− − −

− 1 1

 ,
2 2 −
− 1 −
− − 1

 ,
1 − −
− 1 −
− 2 2

 ,
1 − −
− − −

− 2 1

 ,
2 2 −
− − −

− 1 1

 ,
3 3 −
− − −

− 1 1

 ,
1 − −
− − −

− 3 2

 ,
2 1 −
− 1 −
− 1 1

 ,
1 − −
− 1 −
− 1 1

 .
It is not difficult to verify that each of these generators is the Betti diagram of some
module. Thus in this case we have BN ∩1= Bmod ∩1.

Remark 2.3. We can easily bound the number of generators of BN∩1 from above.
Let 1 be a simplex spanned by d0, . . . , ds . Let 8 be the square matrix

8 : Zs+1
→

n⊕
i=0

d i⊕
j=d i

Z,

which sends the `th generator to the pure diagram πd` . As in line (3), the co-
kernel of 8 will be entirely torsion (this follows from [Boij and Söderberg 2008a,
Proposition 1].) Each minimal generator of BN ∩1 will correspond to either a
pure diagram or a unique nonzero element of coker8. Since the order of coker8
equals the determinant of8, the number of generators of BN∩1 is bounded above
by det(8)+ s.

We know of no effective upper bound for the number of generators of Bmod∩1.

2We use [Sturmfels 1993, Algorithm 2.7.3] for this computation. Also, see [Pisón-Casares and
Vigneron-Tenorio 2004] for other relevant algorithms.
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Remark 2.4. Although the semigroup BN is saturated, the map k[Bmod]→ k[BN]

may not be the normalization map. For instance, if there is a ray r such that r∩Bmod

only contains every other lattice point, then the saturation of r∩Bmod will not equal
r ∩ BN. Eisenbud et al. [2007] conjecture that there are no rays corresponding to
pure diagrams which have this property .

3. Buchsbaum–Rim obstructions to existence of Betti diagrams

In Proposition 3.1 we illustrate obstructions which prevent a virtual Betti diagram
from being the Betti diagram of an actual module. To yield information not con-
tained in the main results of [Eisenbud and Schreyer 2009; Boij and Söderberg
2008a], these obstructions must be sensitive to scalar multiplication of diagrams.
For simplicity, we restrict to the case that M is generated in degree 0, though all
of these obstructions can be extended to the general case.

We say that a diagram D is a Betti diagram if D equals the Betti diagram of
some module M , and we say that D is a virtual Betti diagram if D belongs to the
semigroup of virtual Betti diagrams BN. Many properties of modules (for example,
codimension, Hilbert function) can be computed directly from the Betti diagram.
We extend such properties to virtual diagrams in the obvious way. Proposition 3.1
only involves quantities which can be determined entirely from the Betti diagram;
thus we may easily test whether an arbitrary virtual Betti diagram is “obstructed”
in the sense of this proposition.

Proposition 3.1 (Buchsbaum–Rim obstructions). Let M a graded module of codi-
mension e ≥ 2 with minimal presentation

b⊕
`=1

S(− j`)
φ- Sa - M - 0.

Assume that j1 ≤ j2 ≤ · · · ≤ jb. Then we have the following obstructions, which
are independent of one another, and each of which occurs for some virtual Betti
diagram.

(1) Second syzygy obstruction:

d2(M)≤
a+1∑
`=1

j`.

(2) Codimension obstruction:

b =
∑

j

β1, j (M)≥ e+ a− 1.

If we have equality, β(M) must equal the Betti diagram of the Buchsbaum–
Rim complex of φ.
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(3) Regularity obstruction in Cohen–Macaulay case: If M is Cohen–Macaulay,

reg(M)+ e = de(M)≤
b∑

`=b−e−a+2

j`.

Note that both the weak and strong versions of the Buchsbaum–Eisenbud–Horrocks
rank conjecture about minimal Betti numbers (see [Buchsbaum and Eisenbud 1977]
or [Charalambous et al. 1990] for a description) would lead to similar obstruc-
tions. Since each Buchsbaum–Eisenbud–Horrocks conjecture imposes a condition
on each column of the Betti diagram, the corresponding obstruction would greatly
strengthen part (2) of Proposition 3.1.

Remark 3.2. For D a diagram, let D∨ be the diagram obtained by rotating D by
180 degrees. When D is the Betti diagram of a Cohen–Macaulay module M of
codimension e, then D∨ is the Betti diagram of some twist of M∨ := ExteS(M, S),
which is also a Cohen–Macaulay module of codimension e. Thus, in the Cohen–
Macaulay case, we may apply these obstructions to D or to D∨.

Given any map φ̃ between free modules F and G, we can construct the Buchs-
baum–Rim complex on this map, which we denote as Buchs•(φ̃). The Betti table
of the complex Buchs•(φ̃) will depend only on the Betti numbers of F and G, and
it can be thought of as an approximation of the Betti diagram of the cokernel of φ̃.

As in the statement of Proposition 3.1, let M be a graded S-module of codimen-
sion ≥ 2 with minimal presentation

F1 :=

b⊕
`=1

S(− j`)
φ- Sa - M - 0.

We will consider free submodules F̃1 ⊆ F1, the induced map φ̃ : F̃1→ Sa , and the
Buchsbaum–Rim complex on φ̃. By varying φ̃ we will produce the obstructions
listed in Proposition 3.1.

To prove the first obstruction, we introduce some additional notation. Let the
first syzygies of M be σ1, . . . , σb with degrees deg(σ`)= j`. The first stage of the
Buchsbaum–Rim complex on φ is the complex

a+1∧
F1

ε- F1→ Sa.

A basis of
∧a+1 F1 is given by eI ′ where I ′ is a subset I ′ ⊆ {1, . . . , b} with

|I ′| = a+ 1. Let det(φI ′\{i}) be the maximal minor corresponding to the columns
I ′ \ {i}. Then the map ε sends eI ′ 7→

∑
i∈I ′ ei det(φI ′\{i}). We refer to ε(eI ′)

as a Buchsbaum–Rim second syzygy, and we denote it by ρI ′ . There are
( b

a+1

)
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Buchsbaum–Rim second syzygies. It may happen that one of these syzygies spe-
cializes to 0 in the case of φ. But as we now prove, if ρI ′ specializes to 0 then we
can find another related syzygy in lower degree.

Lemma 3.3. Let I ′ = {i1, . . . , ia+1} ⊆ {1, . . . , b}, and assume that ρI ′ is a trivial
second syzygy. Then M has a second syzygy of degree strictly less than

∑
i∈I ′ ji

and supported on a subset of the columns corresponding to I ′.

Proof. Let A be an a × b-matrix representing φ. Let C = {1, . . . , b} index the
columns of A, and let W = {1, . . . , a} index the rows of A. If I ⊆ C and J ⊆ W
then we write AI,J for the corresponding submatrix.

The Buchsbaum–Rim syzygy ρI ′ is trivial if and only if all the a × a minors
of AI ′,W are zero. Let a′ = rank AI ′,W which by assumption is strictly less than
a. We may assume that the upper left a′ × a′ minor of AI ′,W is nonzero. We set
I ′′ = {i1, . . . , ia′+1} and J ′′ = {1, . . . , a′}. Let τ be the Buchsbaum–Rim syzygy
of AI ′′,J ′′ . Then τ 6= 0 because det(AI ′′\{a′+1},J ′′) 6= 0. Also (AI ′′,J ′′) · τ = 0. Thus,

(
AI ′′,W

)
· τ =

(
AI ′′,J

AI ′′,W−J ′′

)
· τ =

(
0
∗

)
.

There exists an invertible matrix B ∈ GLa(k(x1, . . . , xn)) such that

B · AI ′′,W =

(
AI ′′,J ′′

0

)
.

This gives
0= (B · AI ′′,W ) · τ = B · (AI ′′,W · τ).

Since B is invertible over k(x1, . . . , xn), we conclude that AI ′′,W ·τ = 0. Thus τ is
a syzygy on the columns of A indexed by I ′′, and therefore τ represents a second
syzygy of M . The degree of τ is

∑
i∈I ′′ ji which is strictly less than

∑
i∈I ′ ji . �

We may now prove the second syzygy obstruction and the codimension obstruction.

Proof of the second syzygy obstruction in Proposition 3.1. Apply Lemma 3.3,
choosing I ′ = {1, . . . , a+ 1}. �

Proof of codimension obstruction in Proposition 3.1. Recall that the module M has
minimal presentation

b⊕
`=1

S(− j`)
φ- Sa - M - 0.

Let Buchs•(φ) be the Buchsbaum–Rim complex of φ. Then we have

codim M ≤ pdim M ≤ pdim Buchs•(φ)= b− a+ 1=
∑

j

β1, j (M)− a+ 1.
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Since M has codimension e, we obtain the desired inequality. In the case of equal-
ity, the maximal minors of φ contain a regular sequence of length e, so we may
conclude that

β(M)= β(Buchs•(φ)). �

Proof of regularity obstruction in Proposition 3.1. Since M is Cohen–Macaulay of
codimension e, we may assume by Artinian reduction that M is finite length. Recall
that b =

∑
j β1, j (M) and let φ as in the proof of the codimension obstruction. If

b = e+ a− 1, then

reg(M)= reg(Buchs•(φ))=
b∑
`=1

j`.

We are left with the case that b > e+ a − 1. Recall that σ1, . . . , σb is a basis of
the syzygies of M . We may change bases on the first syzygies by sending σi 7→∑

pi`σ` where deg(pi`)= deg σi − deg σ` = ji − j`, and where the matrix (pi`)

is invertible over the polynomial ring. We choose a generic (pi`) which satisfies
these conditions. Let φ̃ be the map defined by σb, σb−1, . . . , σb−e−a+2. Define
M ′ := coker φ̃. By construction, M ′ has finite length, β(M ′)= β(Buchs•(φ̃)), and
M ′ surjects onto M . Thus we have

f∑
`=b−e−a+2

j` = reg(M ′)≥ reg(M)= dn(M),

where the inequality follows from Corollary 20.19 of [Eisenbud 1995]. �

Proof of independence of obstructions in Proposition 3.1. To show that the ob-
structions of Proposition 3.1 are independent, we construct an explicit example of
a virtual Betti diagram with precisely one of the obstructions.

For Proposition 3.1(1), consider

2 ·π(0,1,5,6,7,8)+π(0,5,6,7,8,9) =


3 4 − − − −

− − − − − −

− − − − − −

− 70 252 336 200 45

 .
Then d2=5>4 so this diagram has a Buchsbaum–Rim second syzygy obstruction.

For Proposition 3.1(2), consider

π(0,1,3,4) =

(
1 2 − −
− − 2 1

)
.

In this case
∑
β1, j (π(0,1,3,4))=2<3+1−1=3. More generally, the pure diagram

π(0,1,α,α+1) has a codimension obstruction for any α ≥ 3.
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For the case of equality in Proposition 3.1(2), consider

π(0,1,6,10) =



6 8 − −
− − − −

− − − −

− − 3 −
− − − −

− − − −

− − − −

− − − 1


.

Since we have
∑
β1, j (π(0,1,6,10)) = 8 = 3+ 6− 1, the diagram π(0,1,6,10) should

equal the Betti table of the Buchsbaum–Rim complex on a map: φ : R(−1)8→ R6.
This is not the case.

For Proposition 3.1(3), consider

2 ·π(0,1,4,9,10) =



6 10 − − −
− − − − −

− − 6 − −
− − − − −

− − − − −

− − − − −

− − − 6 4


.

Here we have d4 = 10> 9=
∑9

j=1 1.
�

4. A linear strand obstruction in projective dimension 3

In this section, we build obstructions based on one of Buchsbaum and Eisenbud’s
structure theorems about free resolutions in the special case of codimension 3
[Buchsbaum and Eisenbud 1974]. The motivation of this section is to explain
why the following virtual Betti diagrams do not belong to Bmod:

D =
(

2 4 3 −
− 3 4 2

)
, D′ =

(
3 6 4 −
− 4 6 3

)
, D′′ =

(
2 3 2 −
− 5 7 3

)
. (4)

Note that these diagrams do not have any of the Buchsbaum–Rim obstructions.
In fact, there are virtual Betti diagrams similar to each of these which are Betti
diagrams of modules. For instance, all of the following variants of D are Betti
diagrams of modules:(

2 4 1 −
− 1 4 2

)
,

(
2 4 2 −
− 2 4 2

)
,

(
2 4 3 1
− 3 5 2

)
,

(
4 8 6 −
− 6 8 4

)
.
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The problem with D must therefore relate to the fact that it has too many linear
second syzygies to not contain a Koszul summand. Yet whatever obstruction exists
for D must disappear upon scaling from D to 2 · D. Incidentally, the theory of
matrix pencils could be used to show that D and D′′ are not Betti diagrams. We
do not approach this problem via matrix pencils because we seek an obstruction
which does not depend on the fact that β0,0 = 2.

Let S = k[x, y, z] and let M be a graded S-module M of finite length. Further,
let M be generated in degree 0 and with regularity 1, so that

β(M)=
(

a b c d
− b′ c′ d ′

)
.

Let Ti be the maps along the top row of the resolution of M so that we have a
complex

0 - S(−3)d (T3)- S(−2)c (T2)- S(−1)b (T1)- Sa - 0.

Similarly, let U j stand for matrices which give the maps along the bottom row of
the resolution of M . Observe that each Ti and U j consists entirely of linear forms,
and that U1 = 0. If d 6= 0, then the minimal resolution of M contains a copy of
the Koszul complex as a free summand. Since we may split off this summand, we
assume that d = 0.

Proposition 4.1 (Maximal minor, codimension 3 obstruction). Let M be as defined
above, and continue with the same notation. Then

b′− a+ rank T1+ rank U3 ≤ c′.

Equivalently c− d ′+ rank T1+ rank U3 ≤ b.

Proof. By assumption, M has a minimal free resolution given by

0 - S(−4)d
′

( Q3
U3

)
- S(−2)c⊕S(−3)c

′

( T2 Q2
0 U2

)
-

S(−1)b⊕S(−2)b
′ ( T1 Q1 )- Sa - M.

Each Qi stands for a matrix of degree 2 polynomials. By [Buchsbaum and Eisen-
bud 1974] we know that each maximal minor of the middle matrix is the product of
a corresponding maximal minor from the first matrix and a corresponding maximal
minor from the third matrix.

Let τ = rank T1 and µ = rank U3. Since codim M 6= 0, the rank of the matrix(
T1 Q1

)
equals a. By thinking of this matrix over the quotient field k(x, y, z),

we may choose a basis of the column space which contains τ columns from T1

and a − τ columns from Q1. Let 11 be the determinant of the resulting a × a
submatrix, and observe that 11 is nonzero. Similarly, we may construct a d ′× d ′
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minor 13 from the last matrix such that 13 is nonzero and involves µ rows from
U3 and d ′−µ rows from Q3.

Now consider the middle matrix

( c c′

b T2 Q2

b′ 0 U2

)
.

Note that the columns of this matrix are indexed by the rows of the third matrix,
and the rows of this matrix are indexed by the columns of the first matrix. Choose
the unique maximal submatrix such that the columns repeat none of the choices
from 13 and such that the rows repeat none of the choices from 11. We obtain a
matrix of the shape

( c− d ′+µ c′−µ
b− τ ∗ ∗

b′− a+ τ 0 ∗

)
.

Since M has finite length, the Herzog–Kühl conditions [1984] imply that c′+ c−
d ′ = b+ b′ − a, and thus this is a square matrix. If 12 is the determinant of the
matrix constructed above, then 12 = 1113 by [Buchsbaum and Eisenbud 1974].
Since 11 6= 0 and 13 6= 0, this implies that the (b′− a+ τ × c− d ′+µ) block of
zeroes in the lower left corner cannot be too large. In particular,

b′− a+ τ + c− d ′+µ≤ b′+ b− a.

By applying the Herzog–Kühl equality c′ + c − d ′ = b + b′ − a, we obtain the
desired results. �

We now prove a couple of lemmas which will allow us to use this obstruction to
rule out the virtual Betti diagrams from (4). We continue with the same notation,
but without the assumption that d = 0.

Definition 4.2. A matrix T is decomposable if there exists a change of coordinates
on the source and target of T such that T becomes block diagonal or such that T
contains a column or row of all zeroes. If T is not decomposable then we say that
T is indecomposable.

Lemma 4.3. If the Betti diagram(
a b c d
− b′ c′ d ′

)
is Cohen–Macaulay and is a minimal generator of Bmod, then T1 is indecomposable
or b = 0.
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Proof. If we project the semigroup Bmod onto its linear strand via(
a b c d
− b′ c′ d ′

)
7→
(
a b c d

)
,

then the image equals the semigroup of linear strands in Bmod. By the Herzog–Kühl
equations, the linear strand (

a b c d
)

of such a Cohen–Macaulay module determines the entire Betti diagram. Hence the
projection induces an isomorphism between the subsemigroup of Cohen–Macaulay
modules of codimension 3 in Bmod and the semigroup of linear strands in Bmod.
The modules with T1 decomposable and b 6= 0 cannot be minimal generators of
the semigroup of linear strands in Bmod. �

Lemma 4.4. Let the notation be as above.

(a) If there exists a free submodule F ⊆ S(−1)b such that F ∼= S(−1)3 and such
that the restricted map T1|F has rank 1, then the minimal resolution of M
contains a copy of the Koszul complex as a direct summand.

(b) If a = 2, b ≥ 3, and T1 is indecomposable then T1 has rank 2.

Proof. (a) Given the setup of the lemma, we have that T1|F is an a × 3 matrix of
rank 1 with linearly independent columns over k. All matrices of linear forms of
rank 1 are compression spaces by [Eisenbud and Harris 1988]. Since the columns
of T1|F are linearly independent, this means that we may choose bases such that

T1|F =


x y z
0 0 0
0 0 0
...
...
...

0 0 0

 . (5)

The result follows immediately.

(b) Assume that T1 has rank 1 and apply part (a) with F any free submodule iso-
morphic to S(−1)3. We may then assume that the first three columns of T1 look
like (5), and whether b= 3 or b> 3, it quickly follows that T1 is decomposable. �

Proposition 4.5. The virtual Betti diagrams

D =
(

2 4 3 −
− 3 4 2

)
, D′ =

(
3 6 4 −
− 4 6 3

)
, D′′ =

(
2 3 2 −
− 5 7 3

)
do not belong to Bmod.
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Proof. Assuming D were a Betti diagram, Lemma 4.3 implies that the correspond-
ing matrices T1 and U3 are indecomposable. Lemma 4.4(b) implies that for D as
in (5), we have rank T1 = rank U3 = 2. Observe that D now has a maximal minor
obstruction, as c− d ′+ τ +µ= 5 while b = 4.

Next we consider D′. If D′ were a Betti diagram, the corresponding T1 and U3

would both have to be indecomposable. If also T1 had rank 2, then Theorem 1.1
of [Eisenbud and Harris 1988] would imply that it is a compression space. In
particular, T1 would have one of the following forms:0 0 0 0 ∗ ∗

0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗

 ,
0 0 0 0 0 ∗

0 0 0 0 0 ∗
∗ ∗ ∗ ∗ ∗ ∗

 , or

0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

 .
The matrix forms on the left and right fail to be indecomposable. The middle form
could not have linearly independent columns, since each ∗ stands for a linear form,
and we are working over k[x, y, z]. Thus T1 and U3 both have rank 3, and it follows
that D′ has a maximal minor obstruction.

In the case of D′′, similar arguments show that the ranks of T1 and U3 must
equal 2 and 3 respectively. Thus D′′ also has a maximal minor obstruction. �

Example 4.6. The diagram 2·D belongs to Bmod. In fact, if N=k[x, y, z]/(x, y, z)2

and N∨ = Ext3(N , S), then

β(N ⊕ N∨(4))=
(

1 − − −
− 6 8 3

)
+

(
3 8 6 −
− − − 1

)
=

(
4 8 6 −
− 6 8 4

)
= 2 · D.

This diagram does not have a maximal minor obstruction as rank T1= rank U3= 3.
Conversely, up to isomorphism the direct sum N⊕N∨(4) is the only module M

whose Betti diagram equals 2·D. The key observation is that for M to avoid having
a maximal minor obstruction, we must have that rank T1+ rank U3 ≤ 6. Thus we
may assume that M is determined by a 4×8 matrix of linear forms which has rank
at most 3. Such matrices are completely classified in [Eisenbud and Harris 1988],
and an argument such as that in Proposition 4.5 can rule out all possibilities except
that M ∼= N ⊕ N∨(4).

In the proof of Theorem 1.6(4), we will show that 3 ·D does not belong to Bmod.

5. Special cases when BN = Bmod

In this section we prove Proposition 1.4 in two parts. We first deal with projective
dimension 1.

Proposition 5.1. Let S = k[x] and fix d ≤ d. Then BN = Bmod. The semigroup
Bmod is minimally generated by pure diagrams.
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Proof. Let D ∈ BN be a virtual Betti diagram of projective dimension 1. We
may assume that D is a Cohen–Macaulay diagram of codimension 1. Then the
Herzog–Kühl conditions [1984] imply that D has the same number of generators
and first syzygies. List the degrees of the generators of D in increasing order
α1 ≤ α2 ≤ · · · ≤ αs , and list the degrees of the syzygies of D in increasing order
γ1 ≤ γ2 ≤ · · · ≤ γs . Then D ∈ BN if and only if we have

αi + 1≤ γi

for i = 1, . . . , s. Choose M to be a direct sum of the modules

Mi := coker(φi : R(−γi )→ R(−αi )),

where φi is represented by any element of degree γi − αi in R. Note that β(Mi )

equals the pure diagram π(αi ,γi ). Thus D ∈ Bmod and D = β(M)=
∑

i π(αi ,γi ). �

Definition 5.2 [Boij 2000]. A graded module M is a level module if its generators
are concentrated in a single degree and its socle is concentrated in a single degree.

We now show that in the case of projective dimension 2 level modules, the
semigroups BN and Bmod are equal.

Proposition 5.3. Let S = k[x, y] and fix d ≤ d such that d0 = d0 and d2 = d2.
Then BN = Bmod.

Proof. We may assume that d0 = 0, and then we are considering the semigroup of
level modules of projective dimension 2 with socle degree (d2 − 2). Let D ∈ BN

and let c be a positive integer such that cD ∈ Bmod. Let Eh(D) = (h0, h1, . . . ) be
the Hilbert function of D. The main result of [Söderberg 2006] shows that Eh(D) is
the Hilbert function of some level module of embedding dimension 2 if and only
if hi−1− 2hi + hi ≤ 0 for all i ≤ d2− 2.

Since cD ∈ Bmod, we know that Eh(cD) = cEh(D) is the Hilbert function of a
level module. Thus

chi−1− 2chi + chi ≤ 0.

The same holds when we divide by c, and thus Eh(D) is the Hilbert function of
some level module M . Since M is also a level module, its Betti diagram must
equal D. �

Remark 5.4. We conjectured above that BN= Bmod in general in projective dimen-
sion 2. Some evidence for this conjecture is provided by computations by Erman
[≥ 2009] which prove that all virtual Betti diagrams of projective dimension 2 and
generated in a single degree are “unobstructed” in the sense of Proposition 3.1.
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6. The structure of BN \ Bmod

We are now prepared to prove Theorem 1.6 and thus show that for projective di-
mension greater than 2, the semigroups BN and Bmod diverge.

The various pieces of the theorem follow from a collection of obstructed virtual
Betti diagrams.

Proof of Theorem 1.6(1): Bmod is not necessarily a saturated semigroup. We will
show that on the ray corresponding to

D1 =

(
1 2 − −
− − 2 1

)
,

every lattice point except D1 itself belongs to Bmod. We have seen in (1) that
D1 /∈ Bmod. Certainly 2 · D1 ∈ Bmod as 2 · D is the Buchsbaum–Rim complex on a
generic 2×4 matrix of linear forms. We claim that 3 ·D1 also belongs to Bmod. In
fact, if we set S = k[x, y, z] and

M := coker

 x y z 0 0 0
0 0 x y z 0

x + y 0 0 x y z

 ,
then the Betti diagram of M is 3 · D1. �

Proof of Theorem 1.6(2): |BN \ Bmod| may be infinite. We will show that for all
α ∈ N, the virtual Betti diagram

Eα :=
(

2+α 3 2 −

− 5+ 6α 7+ 8α 3+ 3α

)
does not belong to Bmod.

Note that E0 /∈ Bmod by Proposition 4.5. Imagine now that β(M) = Eα for
some α. Let T1 be the linear part of the presentation matrix of M so that T1 is an
(α+ 2)× 3 matrix of linear forms. Let T2 be the (3× 2) matrix of linear second
syzygies and write

T1 · T2 =

l1,1 l1,2 l1,3

l2,1 l2,2 l2,3
...

...
...

 ·
s1,1 s1,2

s2,1 s2,2

s3,1 s3,2

 .
By Lemma 4.4(a), the rank of T1 must be at least 2. Let T ′1 be the top two rows
of T1, and by shuffling the rows of T1, we may assume that the rank of T ′1 equals
2. So then may assume that l1,1 and l2,2 are nonzero. Since each column of T2

has at least 2 nonzero entries, it follows that the syzygies represented by T2 remain
nontrivial syzygies on the columns of T ′1.
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It is possible however that columns of T ′1 are not k-linearly independent. But
since the rank of T ′1 equals 2, we know that at least two of the columns are linearly
independent. Let C be the cokernel of T ′1, and let M ′ := C≤1 be the truncation of
C in degrees greater than 1. Then we would have

β(M ′)=
(

2 3 2 −
− 5 7 3

)
or =

(
2 2 2 −
− ∗ ∗ ∗

)
.

The first case is impossible by Proposition 4.5, and the second case does not even
belong to BN. �

Proof of Theorem 1.6(3): A ray of Bmod can miss dim S − 2 consecutive lattice
points. Fix some prime P ≥ 2 and let

S = k[x1, . . . , xP+1].

Consider the degree sequence

d = (0, 1, P + 1, P + 2, . . . , 2P).

We will show that the first P − 1 lattice points of the ray rd have a codimension
obstruction.

Let πd be the pure diagram of type d where we fix β0,0(πd)= 1. We claim that

• β1,1(πd)= 2, and

• all the entries of β(πd) are positive integers.

For both claims we use the formula βi,di (πd) =
∏
k 6=i

dk
(−1)k(di−dk)

. We first
compute

β1,1(πd)=
(P + 1) · · · · · (2P − 1) · (2P)
(P · (P + 1) . . . (2P − 1))

=
2P
P
= 2.

For the other entries of πd we compute

βi,di (πd)=
2P ·(2P−1)·· · ··(P+1)
(i−2)! (P−i+1)!

·
1

P+i−1
·

1
P+i−2

=
1
P

(
P+i−3

i−2

)(
2P

P−i+1

)
.

Note that
( 2P

P−i+1

)
is divisible by P for all i ≥ 2 and thus βi,di (πd) is an integer as

claimed.
Since β0,0 = 1 and β1,1 = 2, the diagram c · πd has a codimension obstruction

for c = 1, . . . , P − 1. Thus the first P − 1 lattice points of the ray of πd do not
correspond to Betti diagrams. �
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Proof of Theorem 1.6(4): There exist rays of BN where the points of Bmod are
nonconsecutive lattice points. Consider the ray corresponding to

D2 =

(
2 4 3 −
− 3 4 2

)
.

Proposition 4.5 shows that D2 does not belong to Bmod. In Example 4.6 we showed
that 2 · D2 does belong to Bmod. Thus, it will be sufficient to show that

3 · D2 =

(
6 12 9 −
− 9 12 6

)
does not belong to Bmod.

We assume for a contradiction that there exists M such that β(M)= 3·D2. Then
the minimal free resolution of M is

0 - R(−4)6
( Q3

U3

)
- R(−2)9⊕ R(−3)12

( T2 Q2
0 U2

)
-

R(−1)12
⊕ R(−2)9 ( T1 Q1 )- R6 (6)

where T1, T2,U2 and U3 are matrices of linear forms. By Proposition 4.1 we have
that rank T1 + rank U3 ≤ 9. Since the diagram 3 · D2 is Cohen–Macaulay and
symmetric, we may use Remark 3.2 to assume that rank T1 ≤ 4.

We next use the fact that, after a change of coordinates, T2 contains a second
syzygy which involves only 2 of the variables of S. This is proved in Lemma 6.1
below. Change coordinates so that the first column of T2 represents this second
syzygy and equals 

y
−x
0
...

0

 .
Since T1 must be indecomposable, we may put T1 into the form

T1 =


x y z 0 . . . 0
0 0 ∗ ∗ . . . ∗
...

...

0 0 ∗ ∗ . . . ∗

 . (7)

Now set T̃1 to be the lower right corner of ∗’s in T1. Since rank T1≤ 4 we have that
rank T̃1 ≤ 3. Matrices of rank ≤ 3 are fully classified, and by applying Corollary
1.4 of [Eisenbud and Harris 1988] we conclude that T̃1 is a compression space. We
can rule out the compression spaces cases where T̃1 has a column or a row equal
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to zero, or else T1 would have been decomposable. Thus T̃1 is equivalent to one of
the two following forms:

0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


or



0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


.

If we substitute the matrix on the left into the form for T1 from (7), then we see
that T1 would have 8 k-linearly independent columns which are supported on only
the bottom two rows. Since all entries of T1 are linear forms in k[x, y, z], this is
impossible. We can similarly rule out the possibility of the matrix on the right. �

Lemma 6.1. If there exists a minimal resolution as in (6), then the matrix T2 con-
tains a second syzygy involving only 2 variables of S.

Proof. Assume that this is not the case and quotient by the variable z. Then the
quotient matrices T1 and T2 still multiply to 0. It is possible that after quotienting,
some of the columns of T1 are dependent. However this is not possible for T2.
For if some combination went to 0 after quotienting by z, then there would exist a
column of T2, that is, a second syzygy of M , which involves only the variable z.
This is clearly impossible. Thus the columns of T2 are linearly independent.

Nevertheless, we know that the columns of a 6×12 matrix of linear forms over
k[x, y] can satisfy at most 6 independent linear syzygies. By changing coordinates
we may arrange that 3 of the columns of T2 are trivial syzygies on T1. By triv-
ial syzygy, we mean a column of T2 where the nonzero entries of that columns
multiply with zero entries of T1. For an example of how a nontrivial syzygy over
k[x, y, z] can become trivial after quotienting by z, consider(

x z 0
y 0 z

) z
−x
−y

→ (
x 0 0
y 0 0

) 0
−x
−y

 .
Change coordinates so that the first 3 columns of T2 represent the trivial syzygies

and are in Kronecker normal form. By assumption, each column of T2 involves
both x and y, so these first 3 columns must consist of combinations of the Kro-
necker blocks

B1 =

(
x
y

)
, B2 =

x 0
y x
0 y

 , B3 =


x 0 0
y x 0
0 y x
0 0 y

 .
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Since each nonzero entry in the trivial part of T2 must multiply with a 0 from
T1, this forces certain columns of T1 to equal 0. More precisely, the number of
nonzero rows in the trivial part of T2 is a lower bound for the number of columns
of T1 which are identically zero. The block decomposition shows that the trivial
part of T2 has at least 4 nonzero rows, and thus T1 has at least 4 columns which
are identically zero.

But now the nonzero part of T1 is a 6× 8 matrix of linear forms, and this can
satisfy at most 4 linear syzygies. This forces two additional columns of T2 to be
trivial syzygies which in turn forces more columns of T1 to equal zero, and so on.

Working through this iterative process, we eventually conclude that T1 contains
8 columns which are identically zero. This means that T1 must have contained 8
columns which involved only z. But since T1 is a 6× 12 matrix of linear forms
with linearly independent columns, this is impossible. �

Remark 6.2. Consider the diagram

D =
a
2
π(0,1,2,4)+

b
2
π(0,2,3,4) =

 3a+b
2

4a 3a −

− 3b 4b a+3b
2

 .
Clearly D ∈ BN if and only if a+ b is even. By an argument analogous to that in
the proof of Theorem 1.6(2), one can show that D /∈ Bmod if a = 1 or b = 1.

Recent unpublished work of Eisenbud and Schreyer uses this example to greatly
strengthen parts (2) and (4) of Theorem 1.6. They show that D /∈ Bmod whenever
a is odd (or equivalently whenever b is odd). Furthermore, they show that if M is
any module such that

β(M)= a′π(0,1,2,4)+ b′π(0,2,3,4),

then the module M splits into a direct sum of the pure pieces. Namely, M ∼=
M ′⊕M ′′ where β(M ′)= a′π(0,1,2,4) and β(M ′′)= b′π(0,2,3,4). Similar results are
shown to hold in codimension greater than 3.

Based on a generalization of Eisenbud and Schreyer’s methods, we have recently
computed all generators for Bmod when d = (0, 1, 2, 3) and d = (1, 2, 3, 4). This
computation will appear in [Erman ≥ 2009].

7. Further questions

An ambitious question is whether we can find a better description of Bmod or com-
pile a complete list of obstructions. Here are several more specific questions. A
further list of questions is compiled in [Erman et al. 2008].
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(1) Bounds on Bmod: Can we bound the number of generators of the semigroup
of Betti diagrams? Can we bound the size of a minimal generator of the
semigroup of Betti diagrams?

(2) The behavior of single rays: Given a degree sequence d, what is the minimal
cd such that cdπd is the Betti diagram of some module? In many cases where
computation is feasible, it is known that the examples produced by Eisenbud
et al. [2007] and Eisenbud and Schreyer [2009] do not represent the first ele-
ment of Bmod on the ray. In some other cases, it is known that πd itself does
not belong to Bmod so that cd is greater than 1. Can we find better lower and
upper bounds for the integer cd?

(3) Dependence on the characteristic: Schreyer’s conjecture that the semigroup
of Betti diagrams depends on the characteristic of k has recently been proved
by Kunte [2008, Corollary 2.4.10]. In particular, Kunte shows that the virtual
Betti diagram 

1 − − − − −
− 10 16 − − −
− − − 16 10 −
− − − − − 1


is not the Betti diagram of a finite length algebra when the characteristic of k
equals 2. It was previously known that this is a Betti diagram when the charac-
teristic of k equals 0. To what extent does Bmod depend on the characteristic?
Can we find obstructions which only live in specific characteristics?
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