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Kei-Ichi Watanabe Nihon University, Japan

Andrei Zelevinsky Northeastern University, USA

Efim Zelmanov University of California, San Diego, USA

PRODUCTION

ant@mathscipub.org
Paulo Ney de Souza, Production Manager Silvio Levy, Senior Production Editor

See inside back cover or www.jant.org for submission instructions.

Regular subscription rate for 2009: $200.00 a year ($140.00 electronic only).
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences
Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Algebra & Number Theory, ISSN 1937-0652, at Mathematical Sciences Publishers, Department of Mathematics, University of California,
Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing
offices.

PUBLISHED BY
mathematical sciences publishers

http://www.mathscipub.org
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright ©2009 by Mathematical Sciences Publishers



ALGEBRA AND NUMBER THEORY 3:4(2009)

Ideals generated by submaximal minors
Jan O. Kleppe and Rosa M. Miró-Roig

The goal of this paper is to study irreducible families W t−1
t,t (b; a) of codimen-

sion 4, arithmetically Gorenstein schemes X ⊂ Pn defined by the submaximal
minors of a t × t homogeneous matrix A whose entries are homogeneous forms
of degree a j−bi . Under some numerical assumption on a j and bi , we prove that
the closure of W t−1

t,t (b; a) is an irreducible component of Hilbp(x)(Pn), show that
Hilbp(x)(Pn) is generically smooth along W t−1

t,t (b; a), and compute the dimen-
sion of W t−1

t,t (b; a) in terms of a j and bi . To achieve these results we first prove
that X is determined by a regular section of IY /I

2
Y (s) where s = deg(det A) and

Y ⊂ Pn is a codimension-2, arithmetically Cohen–Macaulay scheme defined by
the maximal minors of the matrix obtained deleting a suitable row of A.

1. Introduction

In this paper we deal with determinantal schemes. A scheme X ⊂Pn of codimen-
sion c is called determinantal if its homogeneous saturated ideal can be generated
by the r×r minors of a homogeneous p×q matrix with c= (p−r+1)(q−r+1).
When r = min(p, q) we say that X is standard determinantal. Given integers
r ≤ p≤ q, a1 ≤ a2 ≤ . . .≤ ap, and b1 ≤ b2 ≤ . . .≤ bq , we denote by W r

p,q(b; a)⊂
Hilbp(x)(Pn) the locus of determinantal schemes X ⊂ Pn of codimension c =
(p− r + 1)(q − r + 1) defined by the r × r minors of a p× q matrix ( f j i )

i=1,...,q
j=1,...,p

where f j i ∈ k[x0, x1, . . . , xn] is a homogeneous polynomial of degree a j − bi .
The study of determinantal schemes has received considerable attention in the

literature [Bruns and Vetter 1988; Hochster and Eagon 1971; Eagon and Northcott
1962; Miró-Roig 2008]. Some classical schemes that can be constructed in this
way are the Segre varieties, rational normal scrolls, and the Veronese varieties. This
paper contributes to the classification of determinantal schemes, and addresses, in
the case p = q = t , r = t − 1, three fundamental problems:

(1) determining the dimension of W r
p,q(b; a) in terms of a j and bi ,

MSC2000: primary 14M12, 14C05, 14H10, 14J10; secondary 14N05.
Keywords: Hilbert scheme, arithmetically Gorenstein, determinantal schemes.
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368 Jan O. Kleppe and Rosa M. Miró-Roig

(2) determining whether the closure of W r
p,q(b; a) is an irreducible component of

Hilbp(x)(Pn), and

(3) determining when Hilbp(x)(Pn) is generically smooth along W r
p,q(b; a).

The first important contribution to these problems was made by Ellingsrud [1975],
who proved that every arithmetically Cohen–Macaulay, closed subscheme X of
codimension 2 of Pn is unobstructed (that is, the corresponding point in the Hilbert
scheme Hilbp(x)(Pn) is smooth) provided n ≥ 3. He also computed the dimension
of the Hilbert scheme at (X).

Recall that the homogeneous ideal of an arithmetically Cohen–Macaulay closed
subscheme of codimension 2 of Pn is given by the maximal minors of a (t−1)× t
homogeneous matrix, the Hilbert–Burch matrix; that is, such a scheme is stan-
dard determinantal. The purpose of this work is to extend Ellingsrud’s Theorem,
viewed as a statement on standard determinantal schemes of codimension 2, to
arbitrary determinantal schemes. The case of codimension-3 standard determinan-
tal schemes was mainly solved in [Kleppe et al. 2001, Proposition 1.12], and the
case of standard determinantal schemes of arbitrary codimension was studied and
partially solved in [Kleppe and Miró-Roig 2005]. In [Kleppe and Miró-Roig 2007],
we treated the case of codimension-3 determinantal schemes X ⊂ Pn defined by
the submaximal minors of a symmetric homogeneous matrix. In our opinion, it
is difficult to solve the above three questions in full generality, and, in this paper,
we will focus our attention on the first unsolved case; that is, we will deal with
codimension-4 determinantal schemes X ⊂ Pn , n ≥ 5, defined by the submaximal
minors of a homogeneous square matrix. As in [Kleppe et al. 2001; Kleppe and
Miró-Roig 2005; Kleppe and Miró-Roig 2007], we prove our results by considering
the smoothness of the Hilbert flag scheme of pairs, or, more generally, the Hilbert
flag scheme of chains of closed subschemes obtained by deleting suitable rows,
and its natural projections into the usual Hilbert schemes. We wonder if a similar
strategy could facilitate the study of the general case.

Here we outline the structure of the paper. In Section 2, we recall the basic facts
about local cohomology and deformation theory needed in what follows. In Section
3, we describe the deformations of the codimension-4 arithmetically Gorenstein
schemes X ⊂Pn defined as the degeneracy locus of a regular section of the twisted
conormal sheaf IY /I

2
Y (s) of a codimension-2, arithmetically Cohen–Macaulay

scheme Y ⊂ Pn of dimension ≥ 3. Section 4 is the heart of the paper. There we
determine the dimension of W t−1

t,t (b; a) in terms of bi and a j provided ai ≥ bi+3

for 1≤ i ≤ t − 3 (and a1 ≥ bt if t ≤ 3), at > at−1+ at−2− b1 and dim X ≥ 1. We
also prove that, under this numerical restriction, Hilbp(x)(Pn) is generically smooth
along W t−1

t,t (b; a), and that the closure of W t−1
t,t (b; a) is an irreducible component

of Hilbp(x)(Pn) (see Theorem 4.6).
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The key point in proving our result is the fact that any codimension-4, deter-
minantal scheme X ⊂ Pn defined by the submaximal minors of a homogeneous
square matrix A is arithmetically Gorenstein and determined by a regular section
of IY /I

2
Y (s) where s = deg(det A) and Y ⊂Pn is a codimension-2, arithmetically

Cohen–Macaulay scheme defined by the maximal minors of the matrix N obtained
deleting a suitable row of A (see Proposition 4.3). Conversely, any codimension-4,
arithmetically Gorenstein scheme X = Proj A⊂ Pn defined by a regular section σ
of IY /I

2
Y (s) where Y = Proj B ⊂ Pn is a codimension-2, arithmetically Cohen–

Macaulay scheme, fits into an exact sequence

0−→ K B(n+ 1− 2s)−→ NB(−s)
σ ∗
−→ B −→ A −→ 0,

and is determined by the submaximal minors of a t × t homogeneous matrix A

obtained by adding a suitable row to the Hilbert–Burch matrix of Y (see Proposition
4.3). In Section 5, we include some examples which illustrate that the numerical
hypothesis in Theorem 4.6, at > at−1+ at−2− b1, cannot be avoided.

Notation. Throughout this paper k will be an algebraically closed field k, R =
k[x0, x1, . . . , xn], m = (x0, . . . , xn) and Pn

= Proj R. As usual, the sheafification
of a graded R-module M will be denoted by M̃ and the support of M by Supp M .

Given a closed subscheme X of Pn of codimension c, we denote by IX its ideal
sheaf, by NX its normal sheaf, and by I (X) = H 0

∗
(Pn,IX ) its saturated homoge-

neous ideal unless X =∅, in which case we let I (X)=m . If X is equidimensional
and Cohen–Macaulay of codimension c, we set ωX = Extc

OPn (OX ,OPn )(−n−1) to
be its canonical sheaf.

In the sequel, for any graded quotient A of R of codimension c, we let IA =

ker(R � A), NA =HomR(IA, A) be the normal module. If A is Cohen–Macaulay
of codimension c, we let K A=ExtcR(A, R)(−n−1) be its canonical module. When
we write X =Proj A, we let A= R/I (X) and K X =K A. If M is a finitely generated
graded A-module, let depthJ M denote the length of a maximal M-sequence in
a homogeneous ideal J and let depth M = depthm M . If 0J (−) is the functor of
sections with support in Spec(A/J ), we denote by H i

J (−) the right derived functor
of 0J (−).

Let Hilbp(x)(Pn) be the Hilbert scheme parameterizing closed subschemes X
of Pn with Hilbert polynomial p(x) ∈ Q[x] [Grothendieck 1966]. By abuse of
notation we will write (X) ∈ Hilbp(x)(Pn) for the k-point which corresponds to a
closed subscheme X ⊂Pn . The Hilbert polynomial of X is sometimes denoted by
pX . By definition X is called unobstructed if Hilbp(x)(Pn) is smooth at (X).

The pullback of the universal family on Hilbp(Pn) via a morphism ψ : W −→
Hilbp(Pn) yields a flat family over W , and we will write (X)∈W for a member of
that family as well. Suppose that W is irreducible. Then, by definition, a general
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(X) ∈ W has a certain property if there is a nonempty open subset U of W such
that all members of U have this property. Moreover, we say that (X) is general in
W if it belongs to a sufficiently small open subset U of W (so any (X) in U has
all the openness properties that we want to require).

Finally we let D = D(pX , pY ) be the Hilbert flag scheme parameterizing pairs
of closed subschemes (X ′ ⊂ Y ′) of Pn with Hilbert polynomials pX ′ = pX and
pY ′ = pY , respectively.

2. Preliminaries

For the convenience of the reader we include in this section the background and
basic results on local cohomology and deformation theory needed in the sequel.

2.1. Local cohomology. Let B = R/IB be a graded quotient of the polynomial
ring R, let M and N be finitely generated graded B-modules and let J ⊂ B be
an ideal. We say that M (assumed nonzero) is Cohen–Macaulay if depth M =
dim M and maximal Cohen–Macaulay if depth M = dim B. Equivalently, since
depthJ M ≥ r is equivalent to H i

J (M) = 0 for i < r , the module M is Cohen–
Macaulay (resp. maximal Cohen–Macaulay) if H i

m(M) = 0 for all i 6= dim M
(resp. i < dim B). If B is Cohen–Macaulay, we know by Gorenstein duality that
the v-graded piece of H i

m(M) satisfies

vH i
m(M)' −vExtdim B−i

B (M, K B)
∨.

Let Z be closed in Y :=Proj B and let U =Y−Z . Then we have an exact sequence

0→ H 0
I (Z)(M)→ M→ H 0

∗
(U, M̃)→ H 1

I (Z)(M)→ 0

and isomorphisms H i
I (Z)(M) ' H i−1

∗
(U, M̃) for i ≥ 2, where as usual we write

H i
∗
(U, M̃)=

⊕
t H i (U, M̃(t)). More generally, if depthI (Z) N ≥ i +1, there is an

exact sequence

0ExtiB(M, N ) ↪→ ExtiOU
(M̃ |U , Ñ |U )

→ 0HomB(M, H i+1
I (Z)(N ))→ 0Exti+1

B (M, N )→ · · · (2-1)

by [Grothendieck 1968, exposé VI], where the middle form comes from a spectral
sequence also treated in the same source.

2.2. Basic deformation theory. To use deformation theory, we will need to con-
sider the (co)homology groups of algebras H2(R, B, B) and H 2(R, B, B). Let us
recall their definition. We consider

· · · → F2 :=

µ2⊕
j=1

R(−n2, j )→ F1 :=

µ⊕
i=1

R(−n1,i )→ R→ B→ 0, (2-2)



Ideals generated by submaximal minors 371

a minimal graded free R-resolution of B and let H1 = H1(IB) be the first Koszul
homology built on a set of minimal generators of IB . Then we may take the exact
sequence

0→ H2(R, B, B)→ H1→ F1⊗R B→ IB/IB
2
→ 0 (2-3)

as a definition of the second algebra homology H2(R, B, B) [Vasconcelos 1994],
and the dual sequence

→ vHomB(F1⊗ B, B)→ vHomB(H1, B)→ vH 2(R, B, B)→ 0,

as a definition of graded second algebra cohomology H 2(R, B, B). If B is gener-
ically a complete intersection, then it is well known that [André 1974, Proposition
16.1]:

Ext1B(IB/I 2
B, B)' H 2(R, B, B).

We also know that H 0(Y,NY ) is the tangent space of Hilbp(x)(Pn) in general, while
H 1(Y,NY ) contains the obstructions of deforming Y ⊂Pn in the case in which Y is
locally a complete intersection (l.c.i.) [Grothendieck 1966]. If 0HomR(IB, H 1

m(B))
vanishes (for example if depthm B≥2), we have by (2-1) that 0HomB(IB/I 2

B, B)'
H 0(Y,NY ) and 0 H 2(R, B, B) ↪→ H 1(Y,NY ) is injective in the l.c.i. case, and
that 0 H 2(R, B, B) contains the obstructions of deforming Y ⊂ Pn [Kleppe 1979,
Remark 3.7]. Thus 0 H 2(R, B, B) = 0 suffices for the unobstructedness of an
l.c.i. arithmetically Cohen–Macaulay subscheme Y of Pn of dim Y ≥ 1. For this
conclusion we may even entirely skip “l.c.i.” by slightly extending the argument,
as done in [Kleppe 1979].

2.3. Useful exact sequences. In the last part of this section, we collect some exact
sequences frequently used in this paper, in the case that B = R/IB is a gener-
ically complete intersection codimension-2 CM quotient of R. First, applying
HomR(−, R) to the minimal graded free R-resolution of B,

0→ F2 :=
⊕µ−1

j=1 R(−n2, j )→ F1 :=
⊕µ

i=1 R(−n1,i )→ R→ B→ 0, (2-4)

we get a minimal graded free R-resolution of K B :

0→ R→
⊕

R(n1,i )→
⊕

R(n2, j )→ K B(n+ 1)→ 0. (2-5)

If we apply Hom(−, B) to (2-5) we get the exactness on the left in the exact se-
quence

0→ K B(n+ 1)∗→
⊕

B(−n2, j )→
⊕

B(−n1,i )→ IB/I 2
B→ 0, (2-6)

which splits into two short exact sequences via
⊕

B(−n2, j )� H1 ↪→
⊕

B(−n1,i ),
one of which is (2-3) with H2(R, B, B)= 0. Indeed since H1 is Cohen–Macaulay
by [Avramov and Herzog 1980], we get H2(R, B, B)= 0 by (2-3). Moreover since
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Ext1R(IB, IB)' NB we showed in [Kleppe and Peterson 2001, page 788] that there
is an exact sequence of the form

0→ F∗1 ⊗R F2→
(
(F∗1 ⊗R F1)⊕(F∗2 ⊗R F2)

)
/R→ F∗2 ⊗R F1→ NB→ 0, (2-7)

where F∗i = HomR(Fi , R). Indeed this sequence is deduced from the exact se-
quence

0→ R→
⊕

IB(n1,i )→
⊕

IB(n2, j )→ NB→ 0,

which we get by applying HomR(−, IB) to (2-4) [Kleppe and Peterson 2001, (26)].
Similarly applying HomR(−, IB/I 2

B) to (2-4), and noting that

HomR(IB, IB/I 2
B)' HomB(IB/I 2

B, IB/I 2
B),

we get the exact sequence

0→ HomB(IB/I 2
B, IB/I 2

B)→
⊕

IB/I 2
B(n1,i )→

⊕
IB/I 2

B(n2, j )→ NB→ 0.
(2-8)

Finally we recall the following frequently used exact sequence [Vasconcelos 1994]:

0→
∧2(⊕ R(−n2, j )

)
→
(⊕

R(−n1,i )
)
⊗
(⊕

R(−n2, j )
)

→ S2
(⊕

R(−n1,i )
)
→ I 2

B→ 0 . (2-9)

3. Deformations of quotients of regular sections

In [Kleppe 2007] the first author studied deformations of a scheme X := Proj A
defined as the degeneracy locus of a regular section of a “nice” sheaf M̃ on an
arithmetically Cohen–Macaulay (ACM) scheme Y = Proj B. Recall that if we take
a regular section of the anticanonical sheaf K̃ ∗B(s) and Y is an l.c.i. of positive
dimension, then we get an exact sequence

0→ K B(−s)→ B→ A→ 0,

in which A is Gorenstein. Indeed the mapping cone construction leads to a resolu-
tion of A from which we easily see that A is Gorenstein. In [Kleppe and Peterson
2001], we generalized this way of constructing Gorenstein algebras to sheaves of
higher rank and, in [Kleppe 2007], we studied the deformations of this “construc-
tion”, notably in the rank 2 case which we now recall.

Let M be a maximal Cohen–Macaulay B-module of rank r = 2 such that M̃ |U
is locally free and

∧2 M̃ |U ' K̃ B(t)|U in an open set U := Y − Z of Y satisfying
depthI (Z) B ≥ 2. Then a regular section σ of M̃∗(s)|U defines an arithmetically
Gorenstein scheme X = Proj A given by the exact sequence

0→ K B(t − 2s)→ M(−s)
σ ∗
→ B→ A→ 0, (3-1)
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and M 'HomB(M, K B(t)) by Theorem 8 of [Kleppe and Peterson 2001]. In this
paper we consider and further develop the case where M = NB and dim B = n−1
(n+1= dim R, n ≥ 5). By Proposition 13 of the same reference, NB is a maximal
Cohen–Macaulay B-module and we have the exact sequence

0→ K B(n+1−2s)→ NB(−s)→ IA/B→0, where IA/B :=ker(B→ A). (3-2)

Example 3.1. Set R=k[x0, . . . , x5] and let B= R/IB be a codimension-2 quotient
with minimal resolution

0→ R(−3)2→ R(−2)3→ R→ B→ 0,

and suppose Y = Proj B is an l.c.i. in P5. Let A be given by a regular section of

ĨB/I 2
B(s), s ≥ 3. Thanks to the exact sequences (2-5) and (2-7) and the mapping

cone construction applied to both (3-2) and 0→ IA/B→ B→ A→ 0, we get the
following resolution of the Gorenstein algebra A:

0→ R(−2s)→ R(2−2s)3 ⊕ R(−1−s)6→ R(3−2s)2 ⊕ R(−s)12
⊕ R(−3)2

→ R(1−s)6 ⊕ R(−2)3→ R→ A→ 0 .

Indeed X=Proj A is an arithmetically Gorenstein curve of degree d=3s2
−10s+9

and arithmetic genus g = 1+ d(s− 3) in P5 [Kleppe 2007, Example 43].

With M and A as above, it turns out that [Kleppe 2007, Theorems 1 and 25]
describes the deformations space, GradAlg R, of the graded quotient A and com-
putes the dimension of GradAlg R in terms of a number δ := δ(K B)t−2s−δ(M)−s ,
where

δ(N )v := vhomB(IB/I 2
B, N )− vext1B(IB/I 2

B, N ). (3-3)

Here we have used small letters for the k-dimension of vExtiB(−,−) and of sim-
ilar groups. If we suppose M = NB , depthI (Z) B ≥ 4 and char k 6= 2, then the
conditions of parts A and B of [Kleppe 2007, Theorem 25] are satisfied provided
0Ext2B(NB, NB) = 0 or −sExt1B(IB/I 2

B, NB) = 0, respectively. In both cases X is
unobstructed and

dim(X) Hilbp(x)(Pn)=

dim(NB)0+ dim(IB/I 2
B)s − 0homB(IB/I 2

B, IB/I 2
B)+ dim(K B)t−2s + δ, (3-4)

where t = n+ 1 [Kleppe 2007, Corollary 41 and its proof and Remark 42]. Using
the exact sequence (2-7) we get −sExt1B(IB/I 2

B, NB) = 0 for s > 2 max n2, j −

min n1,i which led to Corollary 41 of [Kleppe 2007] which we slightly generalize
in Corollary 3.2(i) below. The A-part was considered in [Kleppe 2007, Remark
42]. By the proof of [Kleppe 2007, Theorem 25] we may replace the vanishing of
0Ext2B(NB, NB) by the vanishing of the subgroup t Ext2B(S

2(IA/B(s)), K B) and still
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get all conclusions of the A-part. Therefore, we can also prove (ii) of the following
corollary to [Kleppe 2007, Theorem 25].

Corollary 3.2. Let B = R/IB be a codimension-2 CM quotient of R, let U =
Proj B − Z ↪→ Pn be an l.c.i., and suppose depthI (Z) B ≥ 4. Let A be given by a
regular section of ÑB

∗
(s) on U , let η(v) := dim(IB/I 2

B)v, and put

ε := η(s)+
µ−1∑
j=1

η(n2, j )−

µ∑
i=1

η(n1,i ).

(i) Let j0 satisfy n2, j0 = max n2, j . If s > n2, j0 + max j 6= j0 n2, j − min n1,i and
char k 6= 2, then X is a pY -generic unobstructed arithmetically Gorenstein
subscheme of Pn of codimension 4 and dim(X) Hilbp(x)(Pn)= ε.

(ii) If sExt1B(NB, A)= 0, char k = 0, s >max n2, j/2 and (X ⊂ Y ) is general, then
X is unobstructed, dim(X) Hilbp(x)(Pn) = ε + δ and the codimension of the
stratum in Hilbp(x)(Pn) of subschemes given by (3-1) is 0ext1B(IB/I 2

B, IA/B).
Moreover if s >max n2, j+max n1,i−min n1,i we have 0ext1B(IB/I 2

B, IA/B)=

−sext1B(IB/I 2
B, NB)= δ, while if s >max n2, j we have 0ext1B(IB/I 2

B, IA/B)=

−sext1B(IB/I 2
B, NB).

Here IA/B = ker(B → A) and “X is pY -generic” if there is an open subset of
Hilbp(x)(Pn) containing (X) whose members X ′ are subschemes of some closed
Y ′ with Hilbert polynomial pY . The stratum in Hilbp(x)(Pn) of subschemes given
by (3-1) around (X) is defined by functorially varying both B, M and the regular
section around (B→ A) [Kleppe 2007, the definition before Theorem 25]. Indeed
it is proved in [Kleppe 2007, Lemma 2.9] that pairs of closed subschemes (X ′⊂Y ′)
of Pn , X ′ = Proj A′ and Y ′ = Proj B ′, obtained as in (3-1), contain an open subset
U 3 (X ⊂ Y ) in the Hilbert flag scheme D, and taking such a U small enough,
we may define the mentioned stratum to be p(U ) where p : D→ Hilbp(x)(Pn) is
the projection morphism induced by (X ′ ⊂ Y ′)→ (X ′). Thus “X is pY -generic”
essentially means that the codimension of the stratum of subschemes given by (3-1)
around (X) is zero.

Note also that “(X ⊂ Y ) is general” means that it is the general member of an
irreducible (nonembedded) component of the Hilbert flag scheme D. Since we, in
Corollary 3.2 suppose depthI (Z) B ≥ 4 and hence depthm A ≥ 2, this is equivalent
to saying that (B → A) is the general member of an irreducible (nonembedded)
component of the “Hilbert flag scheme” parameterizing pairs of quotients of R
with fixed Hilbert functions. Indeed we can replace the schemes GradAlg R of
[Kleppe 2007] by Hilbp(x)(Pn) because we work with algebras of depth at least 2
at m [Ellingsrud 1975; Kleppe 1979, Remark 3.7].
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Proof. By the text before (3-4), in order to prove (i) it is sufficient to show that
−sExt1B(IB/I 2

B, NB)= 0. To see it we observe that

Ext1B(IB/I 2
B, NB)' Ext1B(TB, K B(n+ 1)),

where TB :=HomB(IB/I 2
B, IB/I 2

B) by [Kleppe 2007, Remark 42]. We consider the
exact sequence (2-8) and we define F := ker(

⊕
IB/I 2

B(n2, j )→ NB). Since NB is
a maximal CM B-module and IB/I 2

B has codepth 1 (that is, ExtiB(IB/I 2
B, K B)= 0

for i ≥ 2) by [Avramov and Herzog 1980] or (2-9), we get Ext2B(F, K B) = 0. It
follows that

Ext1B
(⊕

IB/I 2
B(n1,i ), K B(n+ 1)

)
→ Ext1B(TB, K B(n+ 1))

is surjective. Since

Ext1B(IB/I 2
B, K B(n+ 1))' Ext3R(IB/I 2

B, R)' Ext2R(I
2
B, R) ,

it suffices to show −sExt2R(I
2
B(n1,i ), R)= 0 for any i . Looking to (2-9) it is enough

to see that −sHom
(∧2(⊕ R(−n2, j )

)
(n1,i ), R

)
= 0. Since, however, n2, j +n2, j ′−

n1,i − s < 0 for any i, j, j ′, j 6= j ′ by assumption, we easily get this vanishing for
any i and hence −sExt1B(IB/I 2

B, NB) = 0. Finally, the dimension formula follows
from (3-4) and (2-8) since we get (K B)t−2s = 0 and δ = 0 from the proof of (ii).

(ii) By (2-5) we have (K B)t−2s = 0, provided 2s > max n2, j . By the discussion
before Corollary 3.2 we must prove t Ext2B(S

2(IA/B(s)), K B)= 0. Using the proof
of [Kleppe 2007, Lemma 28] there is an exact sequence

0→ t Ext2B(S
2(IA/B(s)), K B)→t Ext2B(S

2(NB), K B)→ sExt2B(NB, B),

induced by (3-2), where we have

t Ext2B(S
2(NB), K B)' 0Ext2B(NB, NB)' 0Ext2B(NB, IA/B(s)),

by (2-1), (3-2), and the fact that NB is a maximal CM B-module. Indeed

t Ext2B(S
2(NB), K B)' Ext2OU

(S̃2(NB)|U , K̃ B |U (t))

' Ext2OU
(ÑB |U , ÑB

∗
⊗ K̃ B |U (t))' 0Ext2B(NB, NB),

by (2-1). Since Ext1B(NB, B)= 0 by (2-1) and (2-9), it follows that

t Ext2B(S
2(IA/B(s)), K B)' sExt1B(NB, A),

which vanishes by assumption.
It remains to prove the final statement. If we apply Hom(−, K B) to (2-2) and we

use (2-5), we get −2sExtiR(IB, K B(t)) = 0 and hence −2sExtiB(IB/I 2
B, K B(t)) = 0

for i = 0, 1 provided s > max n2, j . Similarly we use Hom(−, NB) and (2-7) to
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show that −sHom(IB, NB) = 0 provided s > max n2, j +max n1,i −min n1,i . We
conclude by applying HomB(IB/I 2

B,−) to (3-2). �

Remark 3.3. If depthI (Z) B ≥ 4 and char k 6= 2, we showed in [Kleppe 2007,
Remark 42] that

0Ext2B(NB, NB) ' 0HomB(IB/I 2
B, H 3

I (Z)(IB/I 2
B)) ' 0HomB(IB/I 2

B, H 4
I (Z)(I

2
B)) .

In a similar way one can show that Ext2B(NB, B) ' H 4
I (Z)(I

2
B). Hence the group

sExt1B(NB, A) of Corollary 3.2 is isomorphic to the kernel of the natural map

0HomB(IB/I 2
B, H 4

I (Z)(I
2
B))→ s H 4

I (Z)(I
2
B),

induced by the regular section σ . This sometimes allows us to verify that

sExt1B(NB, A)= 0.

Remark 3.4. The first author takes the opportunity to point out a missing as-
sumption in [Kleppe 2007] as well as in [Kleppe 2006]. In these papers there are
several theorems involving the codimension of a stratum in which the assumption
“(B→ A) is general” or “(B) general” is missing. The main result [Kleppe 2006,
Theorem 5] (and hence [Kleppe 2007, Theorem 15]) uses generic smoothness in
its proof and refers to [Kleppe et al. 2001, Proposition 9.14] where the generality
assumption occurs, as it should. In the proof of [Kleppe 2006, Theorem 5] we need
(B→ A) to be general to compute the dimension of the stratum. It is easily seen
from the proof that what we really need is that (B→ A) be general, in the sense
that, for a given (B→ A), 0homR(IB, IA/B) attains its least possible value in the
irreducible components of GradAlg(HB, HA) to which (B→ A) belongs. Thus in
[Kleppe 2006, Theorem 5, Proposition 13, Theorem 16] (and hence [Kleppe 2007,
Theorem 23]), for the codimension statement we should assume that (B) is general
or at least that −shomR(IB, K B) attains its least possible value in the irreducible
component of GradAlg(HB) to which (B) belongs. If we apply our results in a
setting where these hom-numbers vanish (this is what we almost always do), we
don’t need to assume that (B) or (B→ A) is general.

So Remark 3.4 gives the reason for including the assumption that (X ⊂ Y ) is
general in Corollary 3.2(ii), even though this assumption does not occur in the
codimension statements of the A-part of [Kleppe 2007, Theorems 1 and 25].

4. Ideals generated by submaximal minors of square matrices

Let X = Proj A ⊂ Pn be a codimension-4, determinantal scheme defined by the
submaximal minors of a t× t homogeneous matrix. In this section we compute the
dimension of Hilbp(x)(Pn) for n ≥ 5 at (X) in terms of the corresponding degree
matrix. The proof requires a proposition (valid for n ≥ 3) on how A is determined
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by a locally regular section of IB/I 2
B(s) where B = R/IB is a codimension-2 CM

quotient. Let us first fix the notation we will use throughout this section.
Given a homogeneous matrix A, that is, a matrix representing a degree 0 mor-

phism φ of free graded R-modules, we denote by I (A) (or I (φ)) the ideal of R
generated by the maximal minors of A and by I j (A) (or I j (φ)) the ideal generated
by the j × j minors of A.

Definition 4.1. A codimension-c subscheme X ⊂ Pn is called a determinantal
scheme if there exist integers r , p and q such that c = (p− r + 1)(q − r + 1) and
I (X)= Ir (A) for some p×q homogeneous matrix A. X ⊂Pn is called a standard
determinantal scheme if r = min(p, q). The corresponding rings R/Ir (A) are
called determinantal (resp. standard determinantal) rings.

Let X ⊂Pn be a codimension-4, determinantal scheme defined by the vanishing
of the submaximal minors of a t× t homogeneous matrix A= ( f j i )i, j=1,...,t where
f j i ∈ k[x0, . . . , xn] are homogeneous polynomials of degree a j−bi with b1≤ b2≤

. . . ≤ bt and a1 ≤ a2 ≤ . . . ≤ at . We assume without loss of generality that A is
minimal; that is, f j i = 0 for all i, j with bi = a j . If we let u j i = a j − bi for all
j = 1, . . . , t and i = 1, . . . , t , the matrix U = (u j i )i, j=1,...,t is called the degree
matrix associated to X .

We denote by W t−1
t,t (b; a) ⊂ Hilbp(x)(Pn) the locus of determinantal schemes

X ⊂ Pn of codimension 4 defined by the submaximal minors of a homogeneous
square matrix A= ( f j i )i, j=1,...,t as above. Notice that W t−1

t,t (b; a) 6=∅ if and only
if ui−1,i = ai−1− bi > 0 for i = 2, . . . , t .

Let N be the matrix obtained by deleting the last row, let IB = It−1(N) be
the ideal defined by the maximal minors of N, and let IA = It−1(A) be the ideal
generated by the submaximal minors of A. Set A= R/IA= R/I (X) and B= R/IB .

Remark 4.2. If the entries of A and N are sufficiently general polynomials of
degree ai − b j , 1 ≤ i, j ≤ t , and ai−1 − bi > 0 for 2 ≤ i ≤ t , then B is a graded
Cohen–Macaulay quotient of codimension 2 and A is a graded Gorenstein quotient
of codimension 4.

The goal of this section is to compute, in terms of a j and bi , the dimension
of the determinantal locus W t−1

t,t (b; a) ⊂ Hilbp(x)(Pn), where p(x) ∈ Q[x] is the
Hilbert polynomial of X . Note that the Hilbert polynomial of X can be computed
explicitly using the minimal free R-resolution of R/I (X) given by Gulliksen and
Negȧrd [1972], see (4-5). We will also analyze whether the closure of W t−1

t,t (b; a)
in Hilbp(x)(Pn) is a generically smooth, irreducible component of Hilbp(x)(Pn).

To this end, we consider

F :=
t⊕

i=1
R(bi )

φ
−→ G :=

t⊕
j=1

R(a j ),
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the morphism induced by the matrix A, and

F
φt
−→ G t :=

t−1⊕
j=1

R(a j ),

the morphism induced by the matrix N obtained by deleting the last row of A. The
determinant of A is a homogeneous polynomial of degree s =

∑t
j=1 a j−

∑t
i=1 bi ,

and the degrees of the maximal minors of N are s + bi − at ; that is, IB has the
minimal free R-resolution

0−→ G∗t (at − s)
t N
−→ F∗(at − s)

β
−→ IB −→ 0. (4-1)

Proposition 4.3. Suppose char k = 0.

(i) Let A= R/It−1(A) be a determinantal ring of codimension 4 where A is a t×t
homogeneous matrix, and let B = R/It−1(N) be the standard determinantal
ring associated to N where N is the matrix obtained by deleting the last row
of A. Moreover, let Z ⊂ Proj B be a closed subset such that Proj B− Z ↪→Pn

is an l.c.i., and suppose depthI (Z) B ≥ 2. Then there is a regular section σ of
( ĨB/ Ĩ 2

B(s))|Proj B−Z , where s = deg det A, whose zero locus precisely defines
A as a quotient of B (that is, σ extends to a map σ : B −→ IB/I 2

B(s) such that
A = B/ im σ ∗).

(ii) Conversely, let B = R/It−1(N) be a standard determinantal ring of codimen-
sion 2, let Z ⊂Proj B be a closed subset such that Proj B−Z ↪→Pn is an l.c.i.
and depthI (Z) B ≥ 2, and furthermore let A′ be defined by a regular section σ
of ( ĨB/ Ĩ 2

B(s))|Proj B−Z , that is, given by

0−→ K B(n+ 1− 2s)−→ NB(−s)
σ ∗
−→ B −→ A′ −→ 0 (4-2)

for some integer s. Then, there is a t × t homogeneous matrix A′ obtained by
adding a row to N such that IA′ = It−1(A

′).

Proof. To define σ , we consider the commutative diagram

0

0 - G∗t (at−s)
? t N - F∗(at−s)

β - IB - 0

G∗(at−s)
α?

φ∗(at−s)- F∗(at−s)

www
- (cokerφ∗)(at−s)

?
- 0

R(−s)
?

0
?
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where α : G∗t (at − s) ↪→ G∗(at − s) is the natural inclusion defined by

α

 f1
...

ft−1

=


f1
...

ft−1

0

 ,
and β is given by multiplication with the maximal minors of the matrix N. The
snake Lemma yields the exact sequence

R(−s) ·
detφ
−→ IB −→ (cokerφ∗)(at − s)−→ 0, (4-3)

and hence

(cokerφ∗)(at)' IB(s)/ detφ. (4-4)

If we tensor R(−s) ·
detφ
−→ IB with B(s), we get a section σ of IB/I 2

B(s). Before
proving that the zero locus of σ defines precisely A as a quotient of B via im σ ∗=

IA/B , we claim that any locally regular section σ ′ of IB/I 2
B(s) defining A′ via

A′ = B/ im σ ′∗ gives rise to a homogeneous matrix A′ and a corresponding map
φ′ such that (4-3) and (4-4) hold with φ′ instead of φ. Indeed, given a section σ ′

of IB/I 2
B(s), there exists a map σ ′′ fitting into a commutative diagram

F∗(at)⊗ B

����

B
σ ′

//

σ ′′
::uuuuuuuuuu

IB/I 2
B(s)

and we denote by σR ∈ HomR(F, R(at)) the map which corresponds to σ ′′(1).
Since HomR(F, R(at))=Hom

(⊕t
i=1 R(bi ), R(at)

)
, the morphism σR determines

a 1× t row g = (g1, . . . , gt) where gi is a homogeneous form of degree at − bi ,
1≤ i ≤ t and we define

A′ =
(

N
g

)
.

Since the vertical map in the above diagram is induced by β described above, we
may assume that det(φ′)= σ ′(1) modulo I 2

B(s) and we get the claim.
It remains to show that im σ ∗= IA/B , where IA= It−1(A), and that σ is a locally

regular section. Note that this will also show that im σ ′∗ = IA′/B , where IA′ =

It−1(A
′); that is, we get the converse. Moreover, looking at the exact sequence

(4-2) with A instead of A′ and recalling that

NB ' K B(n+ 1)⊗ IB/I 2
B,
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we see that im σ ∗ = coker(σ (−2s)⊗ id) where id : K B(n+ 1) −→ K B(n+ 1) is
the identity map and σ is induced by detφ. Since we get

F(s− at)−→ G t(s− at)−→ K B(n+ 1)−→ 0

by dualizing the exact sequence (4-1), we see that the cokernel above is the same
as the twisted cokernel of the composition

γ : G t(−at)−→ K B(n+ 1− s)
σ(−s)⊗id
−→ NB .

Hence, we must prove that coker(γ )= IA/B(s) where IA = It−1(A).
By [Gulliksen and Negȧrd 1972, Theorem 2] and [Ile 2004, Theorem 2], we

have an exact sequence

ker
[
Hom(F, F)⊕Hom(G,G)

j
−→ R

]
−→ Hom(F,G)−→ IA(s)−→ 0, (4-5)

where j (ρ0, ρ1)= tr ρ0− tr ρ1 is the difference between trace maps. The map

Hom(F,G)−→ IA(s)

is given by γ 7→ tr(γψ), where ψ is the matrix of cofactors; that is, this map is
given by the submaximal minors of A while the map Hom(F,F)⊕Hom(G,G)

η
−→

Hom(F,G) is given as a difference of the obvious compositions with φ, that is,
η(ρ0, ρ1)= ρ1φ−φρ0. Since we have

Hom(F, F)⊕Hom(G,G)
η
−→ Hom(F,G)−→ IA(s)

(id, 0) 7−→ t · detφ

and since there is a commutative diagram

0

ker j
?

- Hom(F,G) - IA(s) - 0
‖

Hom(F, F)⊕Hom(G,G)
?

η- Hom(F,G) - coker η
?

- 0

R
?

we get an exact sequence

R ·
t detφ
−→ IA(s)−→ coker η −→ 0.

Hence, coker(η)' IA(s)/ detφ (char k = 0) and the following sequence is exact:

Hom(F, F)⊕Hom(G,G)
η
−→ Hom(F,G)−→ IA(s)/ detφ −→ 0.
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Now we look at the commutative diagram

Hom(R(−at ),G∗)

'

��

// Hom(R(−at ), F∗)

'

��

// IB(s)/ detφ

��

// 0

Hom(G, R(at ))

(0,·)
��

// Hom(F, R(at ))

��
Hom(F, F)⊕Hom(G,G)

(id,α∗1 )

��

η // Hom(F,G)

α∗2
��

// IA(s)/ detφ

��

// 0

Hom(F, F)⊕Hom(G,G t )
ηt // Hom(F,G t ) // coker(ηt ) // 0

where α∗1 and α∗2 are induced by α in a natural way and ηt is a difference of the
obvious compositions, that is, ηt(ρ0, ρ

′

1)= ρ
′

1φ−φtρ0. We see, in particular, that
the ideal IA/B = IA/IB is given by an exact sequence

Hom(F, F)⊕Hom(G,G t)
ηt
−→ Hom(F,G t)−→ IA/B(s)−→ 0,

where the rightmost map is given by the submaximal minors of the matrix A which
do not belong to IB .

On the other hand, by (2-7), there is an exact sequence

Hom(G∗t ,G∗t )⊕Hom(F∗, F∗)−→ Hom(G∗t , F∗)−→ NB −→ 0,

or, equivalently,

Hom(F, F)⊕Hom(G t ,G t)
η′

−→ Hom(F,G t)−→ NB −→ 0,

where η′ is given by η′(ρ0, ρ2)= ρ2φt −φtρ0. Using again the exact sequence

0−→ R(at)−→ G
α∗
−→ G t −→ 0,

we get a commutative diagram

Hom(F, F)⊕Hom(G t ,G t)

(id,α3)

��

η′ // Hom(F,G t) // NB

��

// 0

Hom(F, F)⊕Hom(G,G t)

��

ηt // Hom(F,G t) // IA/B(s) // 0

Hom(R(at),G t)

where α3 is induced by α. Hence we get an exact sequence

Hom(R(at),G t)
γ
−→ NB −→ IA/B(s)−→ 0.



382 Jan O. Kleppe and Rosa M. Miró-Roig

This proves that coker(γ )= IA/B(s), that is, im σ ∗ = IA/B as required. Finally
note that the above codimension and depth relations imply that σ is a regular sec-
tion on U := Proj B− Z because (im σ̃ ∗)|U must locally on U be generated by two
regular elements (to get that (B/ im σ̃ ∗)|U is a codimension-2 Cohen–Macaulay
quotient of B̃|U ). This completes the proof of Proposition 4.3. �

This proposition seems to be known in special cases. For instance, Ellingsrud
and Peskine [1993, before Proposition 6] state that the Artinian Gorenstein ring
associated to an invertible sheaf OS(C) on a surface S in P3, where C is an arith-
metically CM curve, is given by the submaximal minors of a square matrix which
extends the Hilbert–Burch matrix associated to C in P3. Since we get (3-1) with
M = NB by applying H 0

∗
(−) to the exact sequence

0→ NC/S(−s)→ NC(−s)→ NS|C(−s)' OC → 0,

of normal sheaves, it is clear that their Gorenstein ring (see their construction 2) is
essentially the same as ours in the Artinian case. However, we have given a proof
of the proposition suited to our applications.

As a nice application of Proposition 4.3 we have:

Proposition 4.4. Let X ⊂ Pn , n ≥ 4, be a codimension-4 scheme defined by the
submaximal minors of a t × t homogeneous square matrix A. Then X is in the
Gorenstein liaison class of a complete intersection, that is, X is glicci.

Proof. By [Gulliksen and Negȧrd 1972, Theorem 2] (see also Proposition 4.3),
X is arithmetically Gorenstein and hence glicci [Casanellas et al. 2005, Theorem
7.1]. �

Remark 4.5. This proposition has been recently generalized by Gorla, who proved
[2008, Theorem 3.1] that any codimension-(t − r + 1)2 ACM scheme X ⊂ Pn

defined by the r × r minors of a t × t homogeneous square matrix A is glicci.
For an introduction to glicciness, see [Kleppe et al. 2001].

We are now ready to compute dim W t−1
t,t (b; a) and dim(X) Hilbp(x) Pn , n ≥ 5,

in terms of a1, . . . , at and b1, · · · , bt . Note that if t = 2 then a general X is a
complete intersection in which case these dimensions are well known.

Theorem 4.6. Assume char k = 0. Fix integers a1 ≤ a2 ≤ · · · ≤ at and b1 ≤ b2 ≤

· · · ≤ bt . Assume t > 2, ai ≥ bi+3 for 1 ≤ i ≤ t − 3 (and a1 ≥ bt if t = 3),
at > at−1 + at−2 − b1 and n ≥ 5. Then W t−1

t,t (b; a) is irreducible. Moreover,
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if (X) is general in W t−1
t,t (b; a), then X is unobstructed, and

dim W t−1
t,t (b; a)= dim(X) Hilbp(x)(Pn)

=

∑
1≤i, j≤t

(
a j−bi+n

n

)
−

∑
1≤i≤t−1

1≤ j≤t

(
a j−ai+n

n

)

−

∑
1≤i, j≤t

(
bi−b j+n

n

)
+

∑
1≤i≤t

1≤ j≤t−1

(
bi−a j+n

n

)

−

∑
1≤ j≤t

1≤i≤k≤t

(
at−s−bi−bk+a j+n

n

)
+

∑
1≤i, j≤t

1≤k≤t−1

(
at−s−bi−ak+a j+n

n

)

−

∑
1≤i<k≤t−1

1≤ j≤t

(
at−s−ai−ak+a j+n

n

)
+

∑
2≤i≤t

(
at−s+bi−2b1+n

n

)
. (4-6)

Proof. Let X ⊂ Pn be an arithmetically Gorenstein scheme of codimension 4 de-
fined by the submaximal minors of a homogeneous square matrix A= ( f j i )

i=1,...,t
j=1,...,t

where f j i ∈ k[x0, . . . , xn] is a sufficiently general homogeneous polynomial of
degree a j − bi , and let Y ⊂ Pn be a codimension-2 subscheme defined by the
maximal minors of the matrix N obtained deleting the last row of A (see Remark
4.2). So, the homogeneous ideal IB = I (Y ) of Y has the minimal free R-resolution

0−→ F2 =
t−1⊕
j=1

R(at − s− a j )
t N
−→ F1 =

t⊕
i=1

R(at − s− bi )−→ IB −→ 0. (4-7)

By Proposition 4.3, X is the zero locus of a suitable regular section of ĨB/ Ĩ 2
B(s)

where s = deg(det A) and W t−1
t,t (b; a) is irreducible by [Kleppe 2007, Corollary

41]. Since the hypothesis at > at−1+ at−2− b1 is equivalent to

s > s+ a j0 − at + max
1≤ j≤t−1

j 6= j0

(s+ a j − at)− min
1≤i≤t

(s+ bi − at),

where s+a j0−at =max1≤ j≤t−1(s+a j−at); and since ai ≥ bi+3 for 1≤ i ≤ t−3
(and a1≥bt if t=3) implies that B := R/IB given by (4-7) satisfies depthI (Z) B≥4
[Kleppe and Miró-Roig 2005, Remark 2.7], we can apply Corollary 3.2 and we get
that X is unobstructed and

dim W t−1
t,t (b; a)= dim(X) Hilbp(x)(Pn)= η(s)+

t−1∑
j=1
η(n2, j )−

t∑
i=1
η(n1,i ),

where η(t) = dim(I (Y )/I (Y )2)t = dim I (Y )t − dim I (Y )2t , n2, j = s + a j − at ,
1≤ j ≤ t−1, and n1,i = s+bi −at , 1≤ i ≤ t . By (2-9), I (Y )2 has a minimal free
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R-resolution of the following type:

0−→
∧2 F2 =

⊕
1≤i< j≤t−1

R(−ai−a j+2at−2s)

−→ F1⊗F2 =
⊕

1≤i≤t
1≤ j≤t−1

R(−bi−a j+2at−2s)

−→ S2 F1 =
⊕

1≤i≤ j≤t
R(−bi−b j+2at−2s)−→ I (Y )2 −→ 0. (4-8)

Using (4-7) and (4-8), we obtain

η(s)=
∑

1≤i≤t

(
at−bi+n

n

)
−

∑
1≤i≤t−1

(
at−ai+n

n

)
−

∑
1≤i≤ j≤t

(
2at−s−bi−b j+n

n

)

+

∑
1≤i≤t

1≤ j≤t−1

(
2at−s−bi−a j+n

n

)
−

∑
1≤i< j≤t−1

(
2at−s−ai−a j+n

n

)
.

Using again (4-7) and (4-8), we get

t−1∑
j=1

η(n2, j )−

t∑
i=1

η(n1,i ) =
∑

1≤i≤t
1≤ j≤t−1

(
a j−bi+n

n

)
−

∑
1≤i≤t−1
1≤ j≤t−1

(
a j−ai+n

n

)

−

∑
1≤ j≤t−1
1≤i≤k≤t

(
at−s−bi−bk+a j+n

n

)
+

∑
1≤i≤t

1≤ j,k≤t−1

(
at−s−bi−ak+a j+n

n

)

−

∑
1≤i<k≤t−1

1≤ j≤t−1

(
at−s−ai−ak+a j+n

n

)
−

∑
1≤i≤t
1≤ j≤t

(
bi−b j+n

n

)

+

∑
1≤i≤t

1≤ j≤t−1

(
bi−a j+n

n

)
+

∑
1≤i≤t

1≤ j≤k≤t

(
at−s+bi−b j−bk+n

n

)

−

∑
1≤i,k≤t

1≤ j≤t−1

(
at−s+bi−bk−a j+n

n

)
+

∑
1≤k< j≤t−1

1≤i≤t

(
at−s+bi−ak−a j+n

n

)
.

Since ai−1>bi and ai ≥bi+3 for 1≤ i≤ t−3 (and a1≥bt if t=3), by hypothesis,
the last two sums of binomials vanish. Indeed, to see that at − s+bi −bk−a j < 0
for 1 ≤ i, k ≤ t and 1 ≤ j ≤ t − 1, it suffices to show that bt − b1− a1 < s− at =

a1 + a2 + · · · + at−1 − b1 − b2 − · · · − bt , which is straightforward. Similarly,
showing that at − s+bi −ak −a j < 0 for 1≤ i ≤ t and 1≤ k < j ≤ t −1 reduces
to showing that bt − a1− a1 < s− at = a1+ a2+ · · · + at−1− b1− b2− · · · − bt ,
which is straightforward too.
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The same type of argument applies to see that at − s + bi − b j − bk < 0 for all
1≤ i ≤ t and 1≤ j < k ≤ t and we can replace the summand∑

1≤i≤t
1≤ j≤k≤t

(
at−s+bi−b j−bk+n

n

)
by

∑
2≤i≤t

(
at−s+bi−2b1+n

n

)
.

Putting all together we obtain (4-6). �

5. Examples

We will end this work with some examples where we use Theorem 4.6. Moreover,
these examples show that the hypothesis at > at−1+at−2−b1 cannot be avoided!
To handle such cases, we state a proposition which estimates the codimension of
the stratum in Hilbp(x)(Pn) of subschemes given by the exact sequence (3-1).

Example 5.1. Let R= k[x0, . . . , x5] and let X =Proj A⊂P5
=Proj R be a general

arithmetically Gorenstein curve defined by the submaximal minors of a 4×4 matrix
whose first 3 rows are linear forms and whose last row are forms of degree s − 3
(s ≥ 4), that is, bi = 0 for 1 ≤ i ≤ 4, a j = 1 for 1 ≤ j ≤ 3 and a4 = s − 3. Then,
Theorem 4.6 applies provided s > 5 and we get that X is unobstructed and

dim W 3
4,4(0; 1, 1, 1, s−3)

= dim(X) Hilbp(x)(P5)

= 12
(6

5

)
+4
(s+2

5

)
−9
(5

5

)
−3
(s+1

5

)
−16

(5
5

)
−10

(s−1
5

)
+12

(s−2
5

)
−3
(s−2

5

)
= 2s3

− 10s2
+ 13s + 48.

Moreover, deleting the last row and taking maximal minors, we get a threefold
Y = Proj B with resolution

0−→ R(−4)3 −→ R(−3)4 −→ R −→ B −→ 0, (5-1)

leading to

HB(ν)=
(ν+3

3

)
+ 2

(ν+2
3

)
+ 3

(ν+1
3

)
= pY (ν) for ν ≥ 0.

Since A is given by (3-1) with t = 6 and M = NB , we get OX 'ωX (2s−6). Hence
h1(OX (s − 3)) = h0(OX (s − 3)) and the Hilbert polynomial of X must be of the
form pX (ν)= dν+ 1− g = d(ν− s+ 3). Looking to (5-1) we get

pX (s− 2)= h0(OX (s− 2))− h0(OX (s− 4))

= h0(OY (s− 2))− h0(OY (s− 4))= 6s2
− 28s+ 36,

that is, d = deg X = 6s2
− 28s+ 36 and g = 1+ d(s− 3).
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Note that Theorem 4.6 takes care of all cases except for s=4 and s=5. For these
two values of s, we can, however, use Corollary 3.2(ii) to find dim(X) Hilbp(x)(P5)

because

0Ext2B(NB, NB)' 0Hom(IB/I 2
B, H 4

m(I
2
B))= 0,

by (5-1) and Remark 3.3. Indeed 3 H 4
m(I

2
B) ↪→ 3 H 6

m(R(−8)3)= 0 by (2-9). Hence
X is unobstructed,

dim(X) Hilbp(x)(P5)= 2s3
− 10s2

+ 13s+ 48+ δ,

where δ= δ(K B)6−2s−δ(NB)−s , and moreover, if s= 5, then δ is the codimension
of the closure of W 3

4,4 :=W 3
4,4(0; 1, 1, 1, s− 3) in Hilbp(x)(P5). We claim that

(δ(K B)6−2s, δ(NB)−s)=

{
(−3,−15) for s = 4,
(0,−12) for s = 5,

that is, δ = 12 in both cases.
To find δ(K B)6−2s we apply HomB(−, K B(6)) to (2-3) and we get

−2sHomB(IB/I 2
B,K B(6))= 0, −2sExt1B(IB/I 2

B,K B(6))=−2sHom(H1,K B(6)).

Since the rank of H1 is 2, we have

Hom(H1, K B(6))' H1
(∑

i
n1,i

)
= H1(12) (5-2)

by [Avramov and Herzog 1980] or [Kleppe and Peterson 2001, Theorem 8], see the
isomorphism accompanying (3-1). Using (2-6) or, more precisely, the exactness of

∧2(R(−3)4)−→ R(−4)3 −→ H1 −→ 0 (5-3)

[Avramov and Herzog 1980], we get

δ(K B)6−2s =− dim H1(12)−2s =

{
−3 for s = 4,

0 for s = 5.

It remains to compute δ(NB)−s . If we dualize the exact sequence (2-3) we get

0−→ NB −→ B(3)4 −→ H∗1 −→ 0,

to which we apply −sHom(IB/I 2
B,−). Combining with

−sHom(IB/I 2
B, H∗1 )' −sHom(IB/I 2

B ⊗ K B(6), H∗1 ⊗ K B(6))

' −sHom(NB, H1(12)),

where again we have used (5-2), we get

δ(NB)−s = 4 dim(NB)3−s − dim(−sHom(NB(−12), H1)).
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Using (2-6), we see that

0→ −sHom(NB(−12), K B(6)∗)

→ −sHom(NB(−12), B(−4)3)→ −sHom(NB(−12), H1)→ 0

is exact because we have Ext1B(IB/I 2
B⊗K B, K ∗B)=0 by Lemma 4.9 of [Kleppe and

Miró-Roig 2005]. Using (4.17) of the same reference we also get the surjectivity
of the natural map K ∗B ⊗ B(−4)4 −→ HomB(IB/I 2

B ⊗ K B, K ∗B). Since we may
use (5-3) to see that (H1)ν ' R(−4)3ν ' B(−4)3ν for ν ≤ 5, we get K B(6)∗ν = 0 for
ν ≤ 5 by (2-6) and hence

−sHom(NB(−12), K ∗B(−6))' −sHom(IB/I 2
B ⊗ K B(6), K ∗B(6))= 0,

for s ≥ 4. It follows that

−sHom(NB(−12), H1)' (IB/I 2
B)

3
8−s,

for s ≥ 4, which implies (by (2-7) and (2-9)) that

δ(NB)−s =

{
4 dim(NB)−2− 3 dim(IB)3 =−12 for s = 5,
4 dim(NB)−1− 3 dim(IB)4 =−15 for s = 4.

Putting all together we get

dim(X) Hilbp(x)(P5)=


2s3
− 10s2

+ 13s+ 48= dim W 3
4,4 for s > 5,

125 for s = 5,
80 for s = 4.

Moreover, applying Corollary 3.2(ii), we get codimHilbp(x)(P5) W 3
4,4(0; 1, 1, 1, 2)=

12 in the case s = 5. Finally, for s = 4, using a Macaulay 2 program [Grayson
and Stillman] we have computed the dimension 0hom(IB, IA/B)= 3 for (B→ A)
general and hence codimHilbp(x)(P5) W 3

4,4(0; 1)= 0hom(IB, IA/B)+ δ = 15.

If at ≤ at−1 + at−2 − b1 we see in the example above that W t−1
t,t (b; a) is a

proper closed irreducible subset, that is, the generic curve of the component of
Hilbp(x)(P5) to which W t−1

t,t (b; a) belongs is not defined by submaximal minors
of a matrix of forms of degree a j − bi . The converse inequality always implies
dim W t−1

t,t (b; a) = dim(X) Hilbp(x)(Pn) by Theorem 4.6. The pattern above for
small at may be typical, but is in general rather difficult to prove. We illustrate this
by two more examples.

Example 5.2. Let X = Proj A ⊂ P5 be a general arithmetically Gorenstein curve
defined by the submaximal minors of a 3× 3 matrix whose first 2 rows are linear
forms and whose last row are forms of degree s − 2 (s ≥ 3), that is, bi = 0 for
1 ≤ i ≤ 3, a j = 1 for 1 ≤ j ≤ 2 and a3 = s − 2. Thanks to Proposition 4.3, the
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analysis of [Kleppe 2007, Example 43] immediately transfers to our case. Hence,
for s > 4 (at > at−1+ at−2− b1), we see that X is unobstructed and

dim W 2
3,3(0; 1, 1, s− 2)= dim(X) Hilbp(x)(P5)= (s+ 1)(s− 1)2+ 23.

Since by deleting the last row and taking maximal minors we get a threefold Y =
Proj B for which 0Ext2B(NB, NB)= 0, we have the unobstructedness of X also for
s = 3, 4, and

(δ(K B)6−2s, δ(NB)−s)=

{
(−1, 2) for s = 3,
(0,−3) for s = 4.

That is, δ =−3 when s = 3, and δ = 3 when s = 4. In both cases,

dim(X) Hilbp(x)(P5)= (s+ 1)(s− 1)2+ 23+ δ.

Thus

dim(X) Hilbp(x)(P5)=

{
36 for s = 3,
71 for s = 4;

see [Kleppe 2007, Example 43] for the computations. Now, applying Corollary
3.2(ii), we get codimHilbp(x)(P5) W 2

3,3(0; 1, 1, 2) = 3 in the case s = 4. Finally, for
s = 3, a Macaulay 2 computation shows 0hom(IB, IA/B)= 3 and hence

codimHilbp(x)(P5) W 2
3,3(0; 1)= 0hom(IB, IA/B)+ δ = 0 !

In the above examples we were able to analyze the case at ≤ at−1+ at−2− b1

through Corollary 3.2(ii) because sExt1B(NB, A)= 0. Since this vanishing may be
rare, we want to improve upon Corollary 3.2(ii), at least to get estimates of the
codimension of the stratum. We prefer to do it in the generality of [Kleppe 2007,
Theorem 25] to extend Theorem 25 in this direction. This leads to the proposition
below. Indeed with assumptions as in Proposition 5.3, one knows that the projec-
tion morphism q : D → HilbpY (Pn) induced by (X ′ ⊂ Y ′)→ (Y ′) is smooth at
(X ⊂Y ) [Kleppe 2007, Theorem 47]. Using the fact that the corresponding tangent
map is surjective, we get Proposition 5.3 and Remark 5.4(a). Since we only use
these results in Example 5.6 and Remark 5.5, we skip the details of the proof which
are rather straightforward once we have the results and proofs of [Kleppe 2007].
Put

c(IA/B) := 0ext1B(IB/I 2
B, IA/B)− t ext2B(S

2(IA/B(s)), K B).

Proposition 5.3. Let B = R/IB be a graded licci quotient of R, let M be a graded
maximal Cohen–Macaulay B-module, and suppose M̃ is locally free of rank 2 in
U := Proj B− Z , that dim B−dim B/I (Z)≥ 2 and that

∧2 M̃ |U ' K̃ B(t)|U . Let
A be defined by a regular section σ of M̃∗(s) on U , as given by (3-1), let X =
Proj A, and suppose sExt1B(M, B) = 0 and dim B ≥ 4. Moreover let char (k) = 0,
let (B → A) be general and suppose (M, B) is unobstructed along any graded
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deformation of B and −sExt2B(IB/I 2
B,M) = 0 . Then the codimension codi of the

stratum in Hilbp(x)(Pn) of subschemes given by (3-1) around (X) satisfies

c(IA/B)≤ codi≤ c(IA/B)+ 0h2(R, A, A)≤ 0ext1B(IB/I 2
B, IA/B),

and codi= c(IA/B)+ 0h2(R, A, A) if and only if X is unobstructed.

Here “(M, B) unobstructed along any graded deformation of B” means that for
every graded deformation (MS, BS) of (M, B), S local and Artinian with residue
field k, there is a graded deformation of MS to any graded deformation BT of BS

for any small Artin surjection T → S [Kleppe 2007, Definition 11]. The important
remark for our application M = NB where the codimension-2 CM quotient B
satisfies depthI (Z) B ≥ 4, is that all assumptions of the proposition are satisfied
provided char k= 0 and (B→ A) is general (see proof of Corollary 41 and Remark
42 of [Kleppe 2007]).

Moreover recall that if we put

δ := −δ(IA/B)0 = 0ext1B(IB/I 2
B, IA/B)− 0homR(IB, IA/B),

and use the exact sequence (3-2), we get δ = δ(K B)t−2s− δ(NB)−s , as previously.

Remark 5.4. (a) With assumptions as in Proposition 5.3, except for (B → A)
being general, we can also show

δ− t ext2B(S
2(IA/B(s)), K B)≤ codi.

(b) If depthI (Z) B ≥ 4, then we show

t Ext2B(S
2(IA/B(s)), K B)' sExt1B(M, A),

exactly as we did for M= NB in the proof of Corollary 3.2. Thus if sExt1B(M, A)=
0, then the lower bound c(IA/B) of Proposition 5.3 is equal to the upper bound and
we essentially get Corollary 3.2(ii)! Moreover, since codi ≥ 0, Corollary 3.2(i)
corresponds to the case where the upper bound is zero!

Remark 5.5. In the case s > max n2, j/2, depthI (Z) B ≥ 4 and char (k) = 0, the
inequalities of Proposition 5.3 lead to

ε+ δ− 0ext1B(NB, A)≤ dim(X) Hilbp(x)(Pn)≤ ε+ δ ,

with ε as in Corollary 3.2.

Example 5.6. Now let X = Proj A ⊂ P5 be a general arithmetically Gorenstein
curve defined by the submaximal minors of a 3×3 matrix whose first (resp. second)
row consists of linear (resp. quadratic) forms and whose last row are forms of
degree s−3 (s ≥ 5), that is, bi = 0 for 1≤ i ≤ 3, a1 = 1, a2 = 2 and a3 = s−3. In
the following we skip a few details which we leave to the reader. Note that the case
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at > at−1+ at−2− b1 or equivalently s > 6, is taken care of by Theorem 4.6. So
we concentrate on the cases s = 5 and 6, which we analyze by using Proposition
5.3 and Remark 5.4. First, we use Remark 3.3 to compute 0ext2B(NB, NB) where
B is obtained by deleting the last row and taking maximal minors. We easily get
0ext2B(NB, NB)= sext1B(NB, A)= 3 by using

0−→ R(−5)⊕ R(−4)−→ R(−3)3 −→ R −→ B −→ 0,

(2-9), and

0Ext2B(NB, NB) ' 0HomB(IB/I 2
B, H 4

m(I
2
B)).

Moreover, dim(K B)6−2s = 0 by (2-5). Now if we apply −2sHom(−, K B(6)) to
(2-3) we get δ(K B)6−2s = 0 and −2sExt1B(IB/I 2

B, K B(6)) = 0 for s ≥ 5 provided
we can show −2sHom(H1, K B(6))= 0. Using (2-3) we get that H1 has rank 1 and
H1 ' K B(−3). Hence −2sHom(H1, K B(6))' B(9)−2s = 0 for s ≥ 5.

It remains to compute δ(NB)−s . We claim that δ(NB)−s = −8 for s = 5 and
δ(NB)−s =−3 for s = 6. Indeed, dualizing the exact sequence (2-3), we get

0−→ NB −→ B(3)3 −→ H∗1 −→ 0 .

If we apply −sHom(IB/I 2
B,−) to this sequence, recalling H1' K B(−3) and hence

−sHom(IB/I 2
B, H∗1 ) ' (IB/I 2

B)9−s , we get an exact sequence which rather easily
proves the claim. It follows that the numbers δ = δ(K B)6−2s − δ(NB)−s and
sext1B(NB, A) appearing in Remark 5.4 are computed. We conclude, for s = 5,
that the codimension codi of the stratum in Hilbp(x)(P5) of subschemes given by
(3-1) around (X) is at least 5-dimensional. In fact a Macaulay 2 computation
shows 0h2(R, A, A) = 0 and 0hom(IB, IA/B) = 1 and hence we have codi =
c(IA/B)+0h2(R, A, A)= 6 by Proposition 5.3. For s= 6 the lower bound for codi
of Remark 5.4(a) is 0. Since a Macaulay 2 computation shows 0hom(IB, IA/B)= 0
the better lower bound of Proposition 5.3 is also 0 while the smallest upper bound
of Proposition 5.3 is 3. The latter is the correct bound for the codimension of the
stratum, provided X is unobstructed. In conclusion, if X belongs to a reduced
component V of Hilbp(x)(P5), then codi = 3, but codi= 0 is possible, in which
case V is nonreduced. We have not been able to fully tell what happens, but we
expect V to be reduced and codi= 3.

The last case of the preceding example illustrates how difficult the analysis of
when codi is positive could be. Cases where at is close to at−1+ at−2− b1 seem
especially difficult to handle. Since it turns out that the lower bounds of Proposition
5.3 and Remark 5.4(a) are often negative (also in the case at > at−1 + at−2 − b1

treated in Theorem 4.6), they are not very helpful. This, however, also indicates
that the conclusions of Theorem 4.6 are rather strong.



Ideals generated by submaximal minors 391

References

[André 1974] M. André, Homologie des algèbres commutatives, Grundlehren der Math. Wissen-
schaften 206, Springer, Berlin, 1974. MR 50 #4707 Zbl 0284.18009

[Avramov and Herzog 1980] L. Avramov and J. Herzog, “The Koszul algebra of a codimension 2
embedding”, Math. Z. 175:3 (1980), 249–260. MR 82g:13011 Zbl 0461.14014

[Bruns and Vetter 1988] W. Bruns and U. Vetter, Determinantal rings, Lecture Notes in Mathematics
1327, Springer, Berlin, 1988. MR 89i:13001 Zbl 0673.13006

[Casanellas et al. 2005] M. Casanellas, E. Drozd, and R. Hartshorne, “Gorenstein liaison and ACM
sheaves”, J. Reine Angew. Math. 584 (2005), 149–171. MR 2006c:14072 Zbl 1095.14045

[Eagon and Northcott 1962] J. A. Eagon and D. G. Northcott, “Ideals defined by matrices and a
certain complex associated with them.”, Proc. Roy. Soc. Ser. A 269 (1962), 188–204. MR 26 #161
Zbl 0106.25603

[Ellingsrud 1975] G. Ellingsrud, “Sur le schéma de Hilbert des variétés de codimension 2 dans Pe

à cône de Cohen-Macaulay”, Ann. Sci. École Norm. Sup. (4) 8:4 (1975), 423–431. MR 52 #13831
Zbl 0325.14002

[Ellingsrud and Peskine 1993] G. Ellingsrud and C. Peskine, “Anneau de Gorenstein associé à un
fibré inversible sur une surface de l’espace et lieu de Noether-Lefschetz”, pp. 29–42 in Proceedings
of the Indo-French Conference on Geometry (Bombay, 1989), Hindustan Book Agency, Delhi,
1993. MR 95e:14025 Zbl 0846.14029

[Gorla 2008] E. Gorla, “A generalized Gaeta’s theorem”, Compos. Math. 144:3 (2008), 689–704.
MR 2009c:14098 Zbl 1147.14022

[Grayson and Stillman] D. Grayson and M. Stillman, “Macaulay 2: a software system for algebraic
geometry and commutative algebra”, Available at http://www.math.uiuc.edu/Macaulay2.

[Grothendieck 1966] A. Grothendieck, “Techniques de construction et théorèmes d’existence en
géométrie algébrique, IV: Les schémas de Hilbert”, in Séminaire Bourbaki 1960/1961 (exposé 221),
W. A. Benjamin, New York, 1966. Reprinted as pp. 249–276 in Séminaire Bourbaki 6, Soc. Math.
France, Paris, 1995. MR 1611822 Zbl 0236.14003

[Grothendieck 1968] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de
Lefschetz locaux et globaux (SGA2), Masson, Paris, 1968. MR 57 #16294 Zbl 0197.47202
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The structure of the group G(k[t ]):
Variations on a theme of Soulé

Benedictus Margaux

Following Soulé’s ideas from 1979, we give a presentation of the abstract group
G(k[t]) for any semisimple (connected) simply connected absolutely almost
simple k-group G(k[t]). As an application, we give a description of G(k[t])
in terms of direct limits, and show that the Whitehead group and the naive group
of connected components of G(k[t]) coincide.

1. Introduction

Let k be a field, and let G be a semisimple simply connected absolutely almost
simple k-group. In the case that G is split, Soulé [1979] has given a presentation
of the group G(k[t]), thus extending a theorem of Nagao [1959] for SL2 (see also
[Serre 1977, II.1.6]). The goal of this note is to provide a presentation of G(k[t])
in the general case.

We will follow Soulé’s original ideas and study the action of G(k[t]) on the
Bruhat–Tits building [1984] of G corresponding to the field K = k((1/t)), where
K is viewed as the completion of k(t) with respect to the valuation at ∞. As an
application, we show that the Whitehead group of G coincides with the naive group
of connected components of G.

2. Structure of the group G(k[t])

Throughout k and G will be as above. For convenience the group G(k[t]) will be
denoted by 0.

Notation and statement of the main theorem. Let S be a maximal k-split torus of
G, and let T be a maximal torus of G containing S. Recall that SK is a maximal
K -split torus of GK . Let k̃/k be a finite Galois extension that splits T (hence also
G). Set G= Gal(k̃/k) and T̃ = T ×k k̃.

MSC2000: primary 20G10; secondary 20F05.
Keywords: Bruhat–Tits buildings, arithmetic groups, simplicial fundamental domain.
The author is affiliated with the Laboratoire de Recherche “Princess Stephanie” in Monte Carlo,
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Let G̃ = G ×k k̃ and S̃ = S ×k k̃. We choose compatible orderings on the root
systems 8=8(G, S) and 8̃=8(G̃, T̃ ); see [Borel 1991]. We then have a set 1
of relative simple roots and a set 1̃ of absolute simple roots.

It will be convenient to maintain essentially the same notation as in Soulé’s
paper:

• A = k[t], K = k((1/t)) and G = G(K ).
• ω is the valuation on K at∞, that is, the valuation on K having O= k[[1/t]]

as its ring of integers.

We also have the analogues of the above objects for k̃:

• Ã = k̃[t], K̃ = k̃((1/t)), 0̃ = G( Ã), and Õ= k̃[[1/t]].

At the level of buildings we set [Bruhat and Tits 1984, section 4.2]

• T the (affine) Bruhat–Tits building of the K -group GK := G×k K , and

• T̃ the Bruhat–Tits building of the K̃ -group G K̃ := G×k K̃ .1

Both T and T̃ have a natural simplicial complex structure [ibidem, section 4.2.23].
Recall that T is equipped with an action of G(K ) and that T̃ is equipped with

an action of G(K̃ )oG. We have an isometric embedding j :T→ T̃ that identifies
T with T̃G. The hyperspecial group G(Õ) of G(K̃ ) fixes a unique point φ̃ of T̃

[Bruhat and Tits 1972, section 9.1.9.c]. This point descends to a point φ of T.
We denote by A the standard apartment of T associated to S (this is a real affine

space) and similarly by Ã the standard apartment associated to T̃ . The point φ̃
belongs to Ã (ibidem). Since

Homk−gr (Gm, S)⊗Z R∼= Homk−gr (Gm, T )⊗Z R∼= (Homk̃−gr (Gm,k̃, T̃ )⊗Z R)G

[Bruhat and Tits 1984, section 4.2], we have j (A)= Ã
G, so φ belongs to A and

A= φ + Homk−gr (Gm, S)⊗Z R.

By means of the canonical pairing 〈 · , · 〉 :Homk−gr (S, Gm)×Homk−gr (S, Gm)→

Z we can then define the sector (quartier)

Q := φ+ D, where D :=
{
v ∈ Homk−gr (S, Gm)⊗Z R

∣∣ 〈b, λ〉 ≥ 0, ∀b ∈1
}
.

The following result generalizes Soulé’s theorem [1979].

Theorem 2.1. The set Q is a simplicial fundamental domain for the action of
G(k[t]) on T. In other words, any simplex of T is equivalent under the action
of G(k[t]) to a unique simplex of Q.

1Since G×K K̃ is split, the assumptions of [Bruhat and Tits 1984, section 5.1.1.1] are satisfied.
This allows us to do away with the “standard” assumption that the base field k be perfect.
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Buildings and valuations. Let P be the minimal parabolic k-subgroup of G de-
fined by S and 1. We denote by U = Ru(P) the unipotent radical of P .

We denote by Ũã the split unipotent subgroup associated to a root ã ∈ 8̃, and
by ã∨ : SL2→ G the corresponding standard homomorphism; see [Springer 1979,
Section 2.2].

The set of positive and negative roots with respect to the basis 1 of 8 will be
denoted by 8+ and 8−, respectively. Given b ∈8, the subset of absolute roots

8̃b
:=
{
ã ∈ 8̃

∣∣ ã|S×k k̃= b or 2b
}

is positively closed in 8̃. It defines then a split k̃-unipotent subgroup Ũb of G̃ that
descends to a split k-unipotent subgroup Ub of G. As in [Bruhat and Tits 1972],
we make the convention that U2b = 1 if 2b 6∈8.

For I ⊂1, we define along standard lines

SI =

(⋂
b∈I

ker(b)
)0
⊂ S, L I = ZG(SI ), PI = UI o L I .

Thus PI is the standard parabolic subgroup of G of type I and L I is its stan-
dard Levi subgroup (see [Borel 1991, Section 21.11]). Recall that the root system
8(L I , S)= [I ] is the subroot system of 8 consisting of roots that are linear com-
binations of I ; the split unipotent k-group UI is the subgroup of U generated by
the Ub with b running over 8+ \ [I ].

Given ã ∈ 8̃, the group Ũã := Ũã(K̃ ) = K̃ is equipped with the valuation ω,
which we denote by ϕ̃a : Ũa → R ∪ {∞}. This defines the Chevalley–Steinberg
“donnée radicielle valuée”

(T (K̃ ), (Ũã,Mã)ã∈8̃), where Mã = T (K̃ ) ã∨
([

0 −1
1 0

])
[Bruhat and Tits 1972, exemple 6.2.3.b], and also a filtration (Ũã,m)m∈Z of Ũã

where Ũã,m := ϕ̃
−1([m,+∞[). Note that Ũã,0 = Ũã (̃O).

A crucial point of Bruhat–Tits theory is the descent of this data to G = G(K )
[1984, section 5.1]. Given b∈8, the commutative group Ub :=Ub(K ) is equipped
with the descended valuation ϕb :Ub→ R∪ {∞}. The definition of ϕb is delicate,
and is given as follows [Bruhat and Tits 1984, section 5.1.16]. Define

Ũb,m :=
∏

ã∈8̃b,
ã|S×k k̃=b

Ũã,m .
∏

ã∈8̃b,
ã|S×k k̃=2b

Ũã,2m for m ∈ R.

Then Ub is a subgroup of Ub(K̃ )= Ũb =
⋃

m∈R Ũb,m and the descended valuation
is defined by

ϕb(u) := Sup{m ∈ R | u ∈ Ũb,m}.
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Note that2 2b := ϕb
(
Ub \ {e}

)
is either Z or 1

2 Z. As above, it gives rises to a
filtration (Ub,m)m∈2b of Ub such that Ub,0 = Ub(O).

Again we make the convention that U2b = 1 if 2b 6∈8.

Description of the isotropy group of a vertex. Given �⊂Q, we denote by 0� the
corresponding isotropy subgroup, namely the elements of 0 that fix all elements
of �. We introduce an analogous definition and notation for j (�) ∈ Ã. By Galois
descent we have

0� =
(
0̃ j (�)

)G
. (2-1)

In particular, since 0̃φ̃ = G(̃O) ∩ 0̃ = G(k̃) [Soulé 1973, section 1.1], we have
0φ = (0̃φ̃)

G
= G(k̃)G = G(k).

If x ∈ Q \ {φ} and if [x[ is the halfline of origin x and direction −→φx , we claim
that 0x =0[x[. If G is split, this is proven in Soulé’s paper by reduction to the case
of SLn . By applying the identity (2-1) to x and [x[, our claim now readily follows
from the absolute case.

The isotropy of [x[ in G=G(K ) is the Bruhat–Tits abstract parahoric group P[x[.
See [Bruhat and Tits 1972, section 7.1]. We have

P[x[ =U[x[ . H, where H = FixG(A).

By [Bruhat and Tits 1984, section 5.2.2], we have H =ZG(S)(O). The group U[x[
is defined by means of the function [Bruhat and Tits 1972, section 6.4.2]

f[x[ :8→ R∪ {∞}, b 7→ inf{s ∈ R | b(y)+ s ≥ 0 for all y ∈ [x[}.

Hence

f[x[(b)=


0 if b(x)= 0,
−b(x) if b(x) > 0,
∞ if b(x) < 0.

The group U[x[ ⊂ G is then the subgroup of G generated by the Ub,m for b ∈ 8+

and m ≥−b(x) (m ∈2b), together with the Ub(O) for b ∈8− such that b(x)= 0.
In other words, by distinguishing positive roots that vanish at x , we see that U[x[
is the subgroup of G generated by subgroups of the following three “shapes”:

(I) Ub,m for b ∈8+ such that b(x) > 0 and m ∈2b such that m ≥−b(x);

(II) Ub(O) for b ∈8+ such that b(x)= 0;

(III) Ub(O) for b ∈8− such that b(x)= 0.

Define U±
[x[ :=U[x[ ∩U±(K ) as in [Bruhat and Tits 1972, section 6.4.2]. These by

definition generate U[x[. On the other hand, U+
[x[ (respectively U−

[x[) is the subgroup

2We use the notation 2b rather than the more standard 0b found in [Bruhat and Tits 1972] to
avoid any possible confusion with the notation used in Soulé’s paper.



The structure of the group G(k[t ]): Variations on a theme of Soulé 397

of U[x[ generated by the subgroups of type (I) and (II) (respectively (III)); see
[Bruhat and Tits 1972, proposition 6.4.9]. Define the subset of roots

Ix = {b ∈1 | b(x)= 0}.

This definition makes sense if x is an element of A, and we then have Iφ =1.

Lemma 2.2. We have

[Ix ] ∩8
+
= {b ∈8+ | b(x)= 0}, (2-2)

8+ \ [Ix ] = {b ∈8+ | b(x) > 0}, (2-3)

[Ix ] ∩8
−
= {b ∈8− | b(x)= 0}. (2-4)

Proof. Observe that if b ∈ [Ix ], then b is a linear combination of elements of Ix ;
hence b(x) = 0. This implies that [Ix ] ∩8

+
⊂ {b ∈ 8+ | b(x) = 0}. Conversely,

let b be a positive root such that b(x) = 0. Then b =
∑

c∈1 ncc, where the nc are
nonnegative integers. Hence

∑
c∈1 ncc(x) = 0. Since x ∈ Q, we have c(x) ≥ 0.

Therefore ncc(x)=0 and b is a linear combination of elements of Ix , proving (2-2).
Since

{b ∈8+ | b(x) 6= 0} = {b ∈8+ | b(x) > 0},

we get also (2-3). Similar considerations apply to (2-4). �

It follows from (2-2) and (2-4) respectively that the subgroups of shape (II) and
(III) are subgroups of L Ix (O), and (2-3) shows that the subgroups of shape (I) are
subgroups of UIx (K ). Hence we get the inclusion

U[x[ ⊂ (U[x[ ∩UIx (K ))o L Ix (O)⊂ PIx (K ). (2-5)

Lemma 2.3. (1) L Ix (O)⊂ P[x[ ⊂ UIx (K )o L Ix (O)⊂ PIx (K );

(2) UIx (K )∩ P[x[ ⊂U+
[x[;

(3)
⋃

z≥1(U
+

[zx[ ∩UIx (K ))= UIx (K ).

Proof. Let I = Ix .

(1) Since U[x[⊂UI (K )o L I (O) and ZG(S)⊂ L I , it follows that P[x[=U[x[ . H =
U[x[ . ZG(S)(O) is a subgroup of UI (K )o L I (O).

Let us show that L I (O) ⊂ P[x[. Let VI be the unipotent radical of the minimal
standard parabolic subgroup of L I , namely the k-subgroup of U generated by
the Ub such that b ∈ 8+ and b(x) = 0. We have [SGA3 1962/1964, théorème
XXVI.5.1] ⋃

g∈VI (k)

g�= L I ,
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where � stands for the big cell V−I ×k ZG(S)×k VI of L I . Since O is local, it
follows that

L I (O)= VI (k) . �(O)= VI (k) . V−I (O) . H . VI (O).

We conclude that L I (O) ⊂ P[x[.

(2) We claim that U(K )∩ P[x[ =U+
[x[. This establishes (2) since UI (K )⊂ U(K ).

To prove the claim, we need to show that U(K )∩P[x[⊂U+
[x[ (the reversed inclusion

is obvious). With the notations of [Bruhat and Tits 1972, section 7], we have
U(K )=U+D where D is the direction of the sector Q. By [ibidem, 7.1.4], we have

P[x[ ∩U(K )=U[x[+D,

where U[x[+D is the subgroup of G(K ) attached to the subset [x[ + D = x + D
of A. This group is defined by means of the function [ibidem, section 6.4.2]

fx+D :8→ R∪ {∞}, b 7→ inf
{
s ∈ R

∣∣ b(y)+ s ≥ 0 for all y ∈ x + D
}
.

Hence

fx+D(b)=
{
−b(x) if b > 0,
∞ if b < 0,

so Ux+D =U+
[x[ as desired.

(3) If b∈8+ satisfies b(x)> 0, then the number Inf{m ∈2b |m+b(zx)≥ 0} tends
to −∞ as z tends to∞. This readily yields

⋃
z≥1(U

+

[zx[ ∩UI (K ))= UI (K ). �

Remark 2.4. Geometrically speaking, the K -parabolic PIx ×k K is attached to the
extremity of the halfline [x[ in the spherical building at infinity; see [Garrett 1997,
Section 16.9]. Since P[x[ is the isotropy group of the half line [x[, it fixes its ex-
tremity. This point of view yields another way to prove the inclusion P[x[ ⊂ PIx (K )
which is part of Lemma 2.3(1).

Given b ∈8, we set

mx(b) := Inf{m ∈2b | m+ b(x)≥ 0}.

Since 0x = P[x[ ∩0, we have the inclusion〈
(Ub,mx (b) .U2b,mx (2b))∩0, b ∈8, b(x)≥ 0

〉
⊂ 0x . (2-6)

Proposition 2.5. (1) 0x =
(
0x ∩UIx (K )

)
o L Ix (k);

(2) 0x =
〈
(Ub,mx (b).U2b,mx (2b))∩0, b(x) > 0

〉
o L Ix (k);

(3)
⋃

z≥1 0zx = UIx (k[t])o L Ix (k).
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Proof. To lighten the notation we set I = Ix .

(1) According to Lemma 2.3(1), L I (k) = 0 ∩ L I (O) fixes the point x . Hence the
inclusion

(0x ∩UI (K ))o L I (k)⊂ 0x .

To prove the reverse inclusion we use the projection PI (K )→ L I (K ). The image
of 0x inside L I (K ) is a subgroup of L I (A). On the other hand, by Lemma 2.3(1),
the image of Px inside L I (K ) is the subgroup L I (O). Hence the image of 0x inside
L I (K ) is a subgroup of L I (A)∩ L I (O)= L I (k). We thus have an exact sequence

1→ (0x ∩UI (K ))→ 0x → L I (k)

which is a split surjection.

(2) Put V := 〈(Ub,mx (b) .U2b,mx (2b))∩0, b ∈8, b(x) > 0〉. This is a subgroup of
0x by (2-6) and of UI (K ) by (2-5). So V ⊂ 0x ∩UI (K ). For showing the reverse
inclusion, it suffices to show that

0x ∩UI (K )⊂
〈
(Ub,mx (b) .U2b,mx (2b))∩0, b(x)≥ 0

〉
. (2-7)

From Lemma 2.3(3) we have 0x ∩UI (K )⊂ 0 ∩U+
[x[. Accordingly, it will suf-

fice to show that 0x ∩U+
[x[ is a subgroup of the right side of (2-7). Let 8+red =

{b1, . . . , bN } be the subset of reduced positive roots (with an arbitrary order). The
product induces a isomorphism of k-varieties

∏N
j=1 Ub j

∼−→ U by [Borel 1991,
Proposition 21.9]. In particular, we have compatible bijections

N∏
j=1

Ub j (K ) ∼−→ U(K )

∪ ∪

N∏
j=1

Ub j (A) ∼−→ U(A).

By comparing these with the bijection [Bruhat and Tits 1972, section 6.4.9]

N∏
j=1

Ub j ,mx (b j ) .U2b j ,mx (2b j )
∼−→U+

[x[,

we can see that 0x ∩ UI (K ) ⊂ U+
[x[ ∩ U(A) consists of products of elements

(Ub j ,mx (b j ) .U2b j ,mx (2b j ))∩0 with b j (x)≥ 0.

(3) This follows from (1) and Lemma 2.3(3). �
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Action on the star of certain points. We will now make use of the spherical build-
ing B(G) of G from [Tits 1974, Section 5]. Recall that B(G) is a simplicial
complex whose simplexes are the k-parabolic subgroups of G. If Q is such a
parabolic subgroup, the faces of its associated simplex are the simplexes associated
to the maximal proper k-parabolic subgroups of Q. The standard apartment A of
B(G) is the subcomplex of k-parabolic subgroups containing S, and the standard
chamber C is the simplex associated to the minimal k-parabolic subgroup P . We
denote by W = NG(S)/ZG(S) the relative Weyl group of G.

If x ∈T, we denote by Lx the star of x (étoile in French),3 that is, the subspace
of T consisting of facets F such that x ∈ F [Bruhat and Tits 1984, section 4.6.33].

We denote by S∗ =Homk−gr (Gm, S) the group of cocharacters of S. Inside the
apartment A= φ+ S∗⊗Z R, this corresponds to the lattice of points having type 0,
that is, the type of φ. The action of S(K ) on T preserves A. More precisely,
the element s ∈ S(K ) acts on A as the translation by the vector vs defined by the
property [Bruhat and Tits 1984, section 5.1.22]

〈vs, b〉 = −ω(b(s)) for all b ∈8. (2-8)

We denote by C ⊂ S∗ ⊗Z R the vector chamber such that φ +C is the unique
chamber of the sector Q that contains the special point φ in its adherence; see
[Bruhat and Tits 1972, section 1.3.11].

Lemma 2.6. Let x be a point of S∗ ∩ Q. Then the chambers of Lx ∩ Q are the
x +wC for w ∈W(k) satisfying Ix ⊂ w . 8

+.

Proof. Set I = Ix . The chambers of Lx are the x+wC with w ∈W(k). Let y ∈C.
If x +wC⊂ Q, then

b(x +w . y)= b(x)+ (w−1 . b)(y)≥ 0 for all b ∈1.

It follows that if b ∈ I , that is, b(x) = 0, then (w−1 . b)(y) ≥ 0, and therefore
b ∈ w(8+). Conversely, if w ∈ W(k) satisfies I ⊂ w(8+), then the inequality
above holds for εy for all b ∈ 1 for ε > 0 small enough. Thus x +w . (εy) ∈ Q

and x +wC⊂ Q. �

Lemma 2.7. Let I be a subset of 1, and set WI := NL I (S)/ZG(S). Let AI be the
union of the wC for w running over the elements of W(k) satisfying I ⊂ w . 8+.

(1) WI (k) . AI = A.

(2) PI (k) . AI =B(G).

Proof. (1) We reason by induction on the cardinality of I . If I = ∅, then AI = A

and there is nothing to prove. Assume that I = I ′ ∪ {b}. We are given a chamber
wC of A with w ∈W(k). We want to show that wC is equivalent under WI (k) to a

3The terminology link is also used in the literature.
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chamber of AI . Since WI ′(k)⊂WI (k), we can assume by the induction hypothesis
that I ′ ⊂ w . 8+. If b ∈ w . 8+, we have I ⊂ w . 8+. The other case is when
−b ∈ w . 8+. Let sb ∈WI (k) be the reflection associated to b. Then sb(b)=−b;
hence b⊂ sbw .8

+. For b′ ∈ I ′, we have sb(b′)= b′+mb, where m is nonnegative.
Therefore

b′ = s2
b(b
′)= sb(b′+mb)= sb(b′)−mb ∈ sbw . 8

+.

We conclude that I ⊂ sbw . 8
+ and sb . (wC)⊂ AI .

(2) Again it suffices to prove that any chamber of B(G) is equivalent under PI (k) to
a chamber of AI . Let C′ be a chamber of B(G). Let P ′ be the underlying minimal
k-parabolic subgroup. By [Borel and Tits 1965, Proposition 4.4.b], PI∩P ′ contains
a maximal k-split torus of PI . Since maximal k-split tori of PI are conjugate under
UI (k), it follows that there exists u ∈ UI (k) such that uSu−1

⊂ PI ∩ P ′; hence
S ⊂ u−1 P ′u. So we can assume that S ⊂ P ′, that is, that C′ ⊂ A. Then C′ = wC

for some w ∈W(k). By (1), C′ is then equivalent under WI (k) to a chamber of AI .
Since NL I (S)(k) maps onto WI (k), we conclude that C′ is then equivalent under
PI (k) to a chamber of AI . �

We come now to the following important step in Soulé’s proof.

Lemma 2.8. Let x ∈ S∗ ∩Q. Then 0x . (Lx ∩Q)= Lx .

Proof. We will make use of the canonical smooth model Px/O of the parahoric sub-
group associated to x [Bruhat and Tits 1984, section 5.2]. As an O-group scheme,
Px is isomorphic to G×k O, and we have an identification Px(O) = Px . The star
Lx is the spherical building of Px ×O k ∼= G; see [Bruhat and Tits 1984, section
5.1.32]. Set for convenience I = Ix . By Lemma 2.6, Lx ∩Q is identified with AI

in the spherical building B(G). Furthermore, the chamber x+C identifies with C.
The inclusion 0x . (Lx ∩ Q) ⊂ Lx is clear. Let us prove the reverse inclusion.

By definition, there exists λ ∈ S∗ ∩ Q such that x = λ. Define gλ = λ(1/t)−1
=

λ(t) ∈ S(K ). Since x = gλ . φ by (2-8) above, we have

Px = gλPφg−1
λ . (2-9)

Thus Px(O)∼= Px = gλG(O)g−1
λ ⊂ G(K ). In view of Lemma 2.7(2), it will suffice

to establish the following.

Claim 2.9. The image of the composite map

0x ⊂ Px −→ (Px ×O k)(k)∼= G(k)

contains PI (k).

The group L I (k) commutes with gλ inside G(k(t)), and it is therefore included
in the image in question (as we have already observed in Proposition 2.5). So it
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is enough to check that gλU(k)g−1
λ ⊂ 0x , or equivalently that gλU(k)g−1

λ ⊂ 0.
This can be verified by working over the field k̃ and checking the inclusion for the
subgroups Ub(k̃) of U(k̃) for b ∈8+. To verify this, we use that the product map
induces a decomposition (with the notation of page 395)∏

ã∈8̃b,
ã|S×k k̃=b

Ũã(k̃) .
∏

ã∈8̃b,
ã|S×k k̃=2b

Ũã(k̃) ∼−→ Ub(k̃).

For ã ∈ 8̃b and s ∈ k̃, we have

gλ Uã(s) g−1
λ =

{Ũã(t 〈b,λ〉s) if ã|S×k k̃= b,

Ũã(t2 〈b,λ〉s) if ã|S×k k̃= 2b.

Hence gλ Uã(s) g−1
λ ⊂ 0̃. This establishes Claim 2.9. The proof of Lemma 2.8 is

now complete. �

End of the proof of Theorem 2.1.

Two distinct points of Q are not equivalent under 0. Since two different points of
Q̃ are not equivalent under 0̃ [Soulé 1979, 1.3], it follows that two distinct points
in Q are not equivalent under 0.

A point of T of type 0 is equivalent to a point of Q. We denote by M⊂ S(K )= S∗⊗
K× the subgroup generated by the λ(t) for λ running over S∗. We denote by M+⊂
M the semigroup generated by the λ(t) for λ satisfying 〈b, λ〉 ≥ 0 for all b ∈1.
By a result of Raghunathan [1994, Theorem 3.4],4 we have the decomposition

G(K )= 0 . M . G(O).

Again, since NG(S)(k) maps onto W(k) and W(k).M+ = M , we have actually a
decomposition

G(K )= 0 . M+ . G(O).

Since G(K )/G(O) is the set of points of type 0 of T, this shows that every such
point of T is 0-conjugated to a point of M . φ. But M+ . φ ⊂ Q, so we conclude
that every such point of T is 0-conjugated to a point of Q.

Every point of T is equivalent to a point of Q. Let y be a point of T. Let F be a
chamber of T containing y. Then F contains a (unique) point x whose type is that
of φ. By the preceding step, we can assume that x ∈ Q. Then y belongs to Lx and
Lemma 2.8 shows that y is equivalent under 0 to a point of Q.

From the above it follows that T= 0 . Q, as stated in Theorem 2.1. �

4This reference presupposes that the base field k is infinite, but this assumption is not necessary;
see [Gille 1994, III.3.4.2] for details.
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3. Applications

We give two applications of Theorem 2.1. The notation and assumptions are as in
the previous section. We begin by recalling some basic facts about direct limits of
groups.

Direct limits of groups. Direct limits of groups occur in geometric group theory
[Serre 1977]. In what follows we will repeatedly encounter the following situation:
We are given a family of subgroups (Hλ)λ∈3 of a group H (indexed by some
set 3) and we wish to consider the group that is the direct limit of the groups
(Hλ, Hλ∩Hµ)λ,µ∈3 where the only transition maps are the inclusions Hλ∩Hµ⊂Hλ
and Hλ ∩ Hµ ⊂ Hµ. We call the resulting group the direct limit of the family
(Hλ)λ∈3 with respect to their intersections.5

Let T be an abstract simplicial complex, E the set of its vertices, and 8 the set
of its simplexes. Denote by X the geometric realization of T . Let H be a group that
acts in a simplicial way on T, and for which there exists a simplicial fundamental
domain T ′. Recall that T ′ is a subcomplex of T such that if E ′ (respectively 8′)
denotes the set of vertices (respectively simplexes) of T ′, then for every s ∈ 8,
there exists a unique s ′ ∈8′ such that s ∈ H . s ′.

The isotropy subgroup of H corresponding to an element z (respectively a sub-
set M) of either T or X will be denoted by Hz (respectively HM ).

Theorem 3.1 [Soulé 1973]. Let T , X , H , T ′ be as above. Assume that X is
connected and simply connected and that the geometric realization X ′ of T ′ is
connected. Then the group H is the direct limit of the family of isotropy subgroups
(HM)M∈E ′ with respect to their intersections.

Chebotarëv [1982] has established higher-dimensional generalizations of this
result. As pointed out by one of the referees, when X has additional structures
there are other presentations, which are useful in practice.

Proposition 3.2. Under the hypothesis of Theorem 3.1, assume that X is equipped
with a distance d such that

(i) for any two points x and y, there is a unique geodesic linking x and y;

(ii) for any x ∈ X , there is an open neighborhood Dx of x such that Dx ∩ F 6=∅
implies x ∈ F for any simplex F of X ;

(iii) H acts isometrically on X.

Furthermore, we assume that

5Another terminology, which is a slight abuse of language, is that H is the sum of the HM
amalgamated over their intersections [Serre 1977, II.1.7].



404 Benedictus Margaux

(iv) for each simplex F of X , the stabilizer of F (as a set) coincides with the
isotropy group (pointwise stabilizer) of F.

Then

(1) The group H is the direct limit of the family (HM∩HN )M,N∈E ′ with transition
maps HM ∩ HN → HM and HM ∩ HN → HN for M, N belonging to an edge
of X ′.6

(2) The group H is the direct limit of the family of isotropy subgroups (Hx)x∈X ′

with respect to their intersections.

Note that when X is a tree, the first statement of the proposition allows us to
recover a classical result [Serre 1977, section 4.5, théorème 10].

Remark 3.3. Note that the first statement of the proposition is different than that
of Theorem 3.1. The point is that two vertices of X ′ do not necessarily belong to a
common edge. In other words, the presentation of H given by Proposition 3.2(1)
has fewer relations than the one given by Theorem 3.1.

Proof. We prove both statements at the same time. We denote by H † the first limit
and by H ] the second one. We have an obvious surjective map H †

→ H , while the
inclusion E ′ ⊂ X gives rise to a map H→ H ]. We denote by ξ : H †

→ H→ H ]

the composition of these two maps. It is enough then to show that H → H ] is
surjective, and to produce a section θ : H ]

→ H † of ξ .
If x ∈ X , we denote by Fx ⊂ X the (open) simplex attached to x . Since every

Fx contains in its closure a vertex M , our hypothesis on stabilizers implies that
Hx ⊂ HM . It follows that H → H ] is surjective.

To define the splitting θ : H ]
→ H †, we proceed as follows. We are given x ∈ X ,

and M ∈ E ′ such that M ∈ F x . Since the action is simplicial, we have Hx = HFx .
By our hypothesis on the stabilizers, we have then the inclusion Hx ⊂ HM ⊂ H .

Step 1: The composite map θx,M : Hx → HM → H † does not depend of the choice
of M. We note that two distinct choices M and N of vertices of F x define an edge
of X ′, so that the maps Hx → HM → H † and Hx → HM → H † agree since they
agree on HM ∩ HN . This establishes this step and defines a map θx : Hx → H ].

Step 2: If y ∈ F x , then θx and θy agree on the subgroup Hx of Hy . Since F y ⊂ F x ,
we can pick a vertex M ∈ F y . By definition θx,M and θy,M agree on Hy . Hence θx

and θy agree on Hy by the first step.

Step 3: Connectedness argument. We are given x, y ∈ X and we want to show that
θx and θy agree on Hx ∩ Hy . Since Hx ∩ Hy acts trivially on the geodesic [x, y],

6By taking M = N in E ′ we see that the groups HM are part of our family. Observe that if M, N
are vertices of a common edge F , then HN ∩ HM is nothing but the isotropy group of F .
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we have Hx ∩ Hy ⊂ Hz for all z ∈ [x, y]. We consider then the restrictions
2z : Hx ∩ Hy ⊂ Hz→ H † of θz to Hx ∩ Hy for z running over [x, y].

Recall that Dz is the open neighborhood of z ∈ X given by hypothesis (ii).
Step 4: If z ∈ [x, y], then 2z = 2z′ for all z′ ∈ Dz ∩ [x, y]. Since z′ ∈ Fz′ ∩ Dz ,
assumption (ii) implies that z ∈ F z′ . Step 2 shows that θz and θz′ agree on Hz′ ⊂ Hz;
hence 2z =2z′ .

We now finish the proof of the proposition. Since the Dz∩[x, y] define an open
covering of the connected space [x, y], Step 3 implies that2z does not depend on z.
In particular θx and θy agree on Hx ∩ Hy . By the universal property defining H ],
we obtain a map θ : H ]

→ H †. By construction θ ◦ ξ = idH† . �

For future use we record the following.

Lemma 3.4. Let H be a group that is the direct limit of a family of subgroups
(Hα)α∈3 of H with respect to their intersections.

(1) Let 3′ ⊂3 be a directed subset, that is, for all α, β ∈3′, there exists γ ∈3′

such that Hα ⊂ Hγ and Hβ ⊂ Hγ . Then the direct limit of the family (Hα)α∈3′
with respect to their intersections is canonically isomorphic to the subgroup⋃
α∈3′ Hα of H.

(2) Let 3 =
⊔

j∈J 3 j be a partition of 3 in directed subsets. For j ∈ J , denote
by H j :=

⋃
α∈3 j

Hα the subgroup of H associated to 3 j . Then H is the
direct limit of the family of subgroups (H j ) j∈J of H with respect to their
intersections.

Proof. (1) Note that
⋃
α∈3′ Hα is a subgroup of H since 3′ is directed. For any

group M we have

Homgr(H ′,M)= lim
←−
α∈3′

Homgr(Hα,M),

whence the statement.

(2) Denote by H̃ the direct limit of the family of subgroups (H j ) j∈J of H with
respect to their intersections. The inclusion maps H j ⊂ H agree over their inter-
sections and hence give rise to a natural map ξ : H̃→ H . For defining the reverse
map, denote by α 7→ j (α) the map 3→ J that maps α to the unique index j such
that α ∈3 j . We then get maps

Hα ↪→ H j (α)→ H̃ for α ∈3.

Since these maps agree over their intersections, they yield a map η : H→ H̃ . Given
that the images of the Hα generate H (respectively H̃ ), we get that η◦ξ = idH̃ and
ξ ◦ η = idH . �
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The group G(k[t]) as a direct limit. Theorem 3.1 yields this:

Corollary 3.5. Let V be the set of vertices of Q. The group 0 = G(k[t]) is the
direct limit of the family (0x)x∈V with respect to their intersections. �

From the corollary we see that 0 is generated by the 0x . By Proposition 2.5(1),
0x consists of products of elements of G(k) and elements of U(k[t]), where U
stands for the unipotent radical of the minimal parabolic subgroup attached to S
and 1.

Corollary 3.6. G(k[t])= 〈G(k),U(k[t])〉. �

Another presentation of 0 is given by means of Proposition 3.2(2).

Corollary 3.7. The group 0=G(k[t]) is the direct limit of the family (0x)x∈Q with
respect to their intersections.

Proof. We have to check that hypotheses (i) through (iv) of Proposition 3.2 are
satisfied for the action of 0 on the Bruhat–Tits building T, which is a metric space.

(i) Any two points of T are linked by a unique geodesic [Bruhat and Tits 1972,
section 2.5].

(ii) By [ibidem, lemme 2.5.11], for any x ∈ X there exists an open ball Dx of center
x such that for any simplex F of X , Dx ∩ F 6=∅ implies x ∈ F .

(iii) The group G(K ) acts isometrically on T (ibidem).

(iv) Since G is simply connected, the stabilizer of a simplex F of T (or facet with
the terminology of Bruhat and Tits) under 0⊂G(K ) is also its pointwise stabilizer
[Bruhat and Tits 1984, proposition 4.6.32] and also of F [Bruhat and Tits 1972,
proposition 2.4.13].

The corollary now follows from Proposition 3.2. �

We shall now give a nicer presentation of 0. Given a subset I ⊂ 1, define
QI := {x ∈ Q | Ix = I }. It is a subcone of Q, that is, zQI ⊂ QI for all z > 0. Define
the subgroup 0I = UI (k[t])o L I (k).

Lemma 3.8. (1) The (0x)x∈QI form a directed family of subgroups of 0.

(2) 0I is the direct limit of the 0x for x ∈ QI .

Proof. (1) The sector Q is equipped with the partial order x ≤ y if y− x ∈ Q. By
restriction, we get a partial order on QI that is directed. Indeed, given x, y ∈ QI ,
we have x + y ∈ QI and x + y ≥ x and x + y ≥ y.

Let x, y be elements of QI such that x ≤ y. Then b(y) ≥ b(x) for all b ∈ [I ]+;
hence m y(b)≤ mx(b) for all b ∈ [I ]+. It follows that for b ∈ [I ]+ we have

Ub,mx (b) .U2b,mx (2b) ⊂Ub,m y(b) .U2b,m y(2b).
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Now Proposition 2.5(2) shows that 0x ⊂ 0y . Since QI is a directed subset of Q,
we conclude that the (0x)x∈QI form a directed family of subgroups of 0.

(2) By Lemma 3.4(1), it is enough to show that⋃
x∈QI

0x = 0I . (3-1)

Proposition 2.5(1) shows that the inclusion ⊂ holds. Conversely, suppose we are
given an element g ∈ 0I . Let x ∈ QI . By Proposition 2.5(3) there is a real number
z ≥ 1 such that g ∈ 0zx . Since zx ∈ QI , g belongs to the left side of (3-1). �

Theorem 3.9. The group 0 = G(k[t]) is the direct limit of the family of subgroups
(0I )I⊂1 with respect to their intersections

Proof. Lemma 3.8(2) shows that 0I is the limit of the directed family of subgroups
(0x)x∈QI . To finish the proof we apply Lemma 3.4(2) to the decomposition Q =⊔

I⊂1 QI of Q into directed subsets. �

Application to Whitehead groups. Let G(k)+ be the (normal) subgroup of G(k)
generated by the (Ru P)(k) for P running over all parabolic k-subgroups of G. If
card(k) ≥ 4, Tits [1964] has shown that every proper normal subgroup of G(k)+

is central. The quotient W (k, G)= G(k)/G(k)+ is the Whitehead group of G by
[Tits 1978]. By Tits’s result this group detects whether G(k) is projectively simple.

It turns out that the Whitehead group admits another characterization. Denote
by H G(k) the (normal) subgroup of G(k) composed of elements g ∈ G(k) for
which there exists an element h ∈ 0 = G(k[t]) such that h(0) = e and h(1) = g.
We denote by π0(k, G)= G(k)/H G(k) this naive group of connected components
of G.

Theorem 3.10. There is a canonical isomorphism W (k, G) ∼−→ π0(k, G).

Proof. The unipotent radical V of a k-parabolic subgroup Q of G is a split uni-
potent group, so it satisfies H(V )(k) = V (k). Hence we have G(k)+ ⊂ H G(k)
and a surjection G(k)/G(k)+ → π0(k, G) = G(k)/H G(k). It remains to show
that H G(k)⊂ G(k)+. Let g ∈ H G(k), and choose h ∈ G(k[t]) satisfying h(0)= e
and h(1)= g. According to Corollary 3.6, the element h can be written in the form

h = g1u1g2u2 · · · gnun

with gi ∈ G(k) and ui ∈ U(k[t]), where U is the unipotent radical of a minimal
parabolic k-subgroup of G. We can assume that ui (0)=e, so the condition h(0)=e
reads g1 · · · gn = e. It follows that

h = g′1u1g′−1
1 · · · g

′

nung′−1
n ,
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with g′1 = g1, g′2 = g1g2 and so on up to g′n = g1 · · · gn = e ∈ G(k). Hence, as
desired

g = h(1)= g′1u1(1)g′
−1
1 · · · g

′
nun(1)g′

−1
n ∈ G(k)+. �
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On some crystalline representations of
GL2(Qp)

Vytautas Paškūnas

We show that the universal unitary completion of certain locally algebraic rep-
resentation of G := GL2(Qp) with p > 2 is nonzero, topologically irreducible,
admissible and corresponds to a 2-dimensional crystalline representation with
nonsemisimple Frobenius via the p-adic Langlands correspondence for G.

1. Introduction

Let G := GL2(Qp) and B be the subgroup of upper-triangular matrices in G. Let
L be a finite extension of Qp.

Theorem 1.1. Assume that p> 2, let k ≥ 2 be an integer, and let χ :Q×p → L× be
a smooth character with χ(p)2 pk−1

∈ o×L . Assume there exists a G-invariant norm
‖·‖ on (IndG

B χ ⊗χ | · |
−1)⊗Symk−2 L2. Then the completion E is a topologically

irreducible, admissible Banach space representation of G. If we let E0 be the unit
ball in E , then

Vk,2χ(p)−1 ⊗ (χ |χ |)∼= L ⊗oL lim
←−

V(E0/$ n
L E0),

where V is Colmez’s Montreal functor and Vk,2χ(p)−1 is a 2-dimensional irreducible
crystalline representation of GQp , the absolute Galois group of Qp, with Hodge–
Tate weights (0, k− 1) and the trace of crystalline Frobenius equal to 2χ(p)−1.

As we explain in Section 5, the existence of such G-invariant norm follows from
[Colmez 2008]. Our result addresses [Berger and Breuil 2007, remarque 5.3.5]. In
other words, the completion E fits into the p-adic Langlands correspondence for
GL2(Qp).

The idea is to approximate (IndG
B χ⊗χ | · |

−1)⊗Symk−2 L2 with representations
(IndG

B χδx ⊗ χδx−1 | · |
−1)⊗ Symk−2 L2, where δx : Q×p → L× is an unramified

character with δx(p)= x ∈ 1+ pL . If x2
6= 1, then χδx 6= χδx−1 and the analogue

of Theorem 1.1 is a result of Berger and Breuil [2007]. This allows to deduce
admissibility. This approximation process relies on the results of [Vignéras 2008].

MSC2000: primary 22E50; secondary 11S37, 11S20.
Keywords: p-adic Langlands, universal completion, unitary Banach space representation.
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Using Colmez’s functor V, we may then transfer the question of irreducibility to
the Galois side. Here, we use the fact that for p> 2 the representation Vk,±2p(k−1)/2

sits in the p-adic family studied by Berger, Li and Zhu [2004].

2. Notation

We fix an algebraic closure Qp of Qp. We let val be the valuation on Qp such that
val(p)= 1, and we set |x | := p−val(x). Let L be a finite extension of Qp contained
in Qp, let oL be the ring of integers of L , let $L be a uniformizer, and let pL be
the maximal ideal of oL . Given a character χ : Q×p → L×, we consider χ as a
character of the absolute Galois group GQp of Qp via the local class field theory
by sending the geometric Frobenius to p.

Let G := GL2(Qp), and let B be the subgroup of upper-triangular matrices.
Given two characters χ1, χ2 :Q

×
p → L×, we consider χ1⊗χ2 as a character of B

sending a matrix
(

a b
0 d

)
to χ1(a)χ2(d). Let Z be the centre of G. Define

K := GL2(Zp), Km :=

(
1+ pmZp pmZp

pmZp 1+ pmZp

)
for m ≥ 1,

I :=
(

Z×p Zp

pZp Z×p

)
, Im :=

(
1+ pmZp pm−1Zp

pmZp 1+ pmZp

)
for m ≥ 1.

Let K0 be the G-normalizer of K , so that K0= K Z , and let K1 be the G-normalizer
of I , so that K1 is generated as a group by I and5 :=

( 0 1
p 0
)
. We note that if m≥ 1,

then Km is normal in K0 and Im is normal in K1. We denote s :=
(

0 1
1 0

)
.

3. Diagrams

Let R be a commutative ring, (typically R = L , oL or oL/p
n
L ). By a diagram D of

R-modules, we mean the data (D0, D1, r), where D0 is an R[K0]-module, D1 is an
R[K1]-module and r : D1→ D0 is a K0∩K1 = I Z -equivariant homomorphism of
R-modules. A morphism α between two diagrams D and D′ is given by (α0, α1),
where α0 : D0→ D′0 is a morphism of R[K0]-modules, α1 : D1→ D′1 is a morphism
of R[K1]-modules, and the diagram

D0
α0 // D′0

D1

r

OO

α1 // D′1

r ′

OO
(1)

commutes in the category of R[I Z ]-modules. The condition (1) is important, since
one can have two diagrams of R-modules D and D′, such that D0 ∼= D′0 as R[K0]-
modules and D1 ∼= D′1 as R[K1]-modules, but D 6∼= D′ as diagrams. The diagrams
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of R-modules with the above morphisms form an abelian category. To a diagram D
one may associate a complex

c-IndG
K1

D1⊗ δ
∂
−→ c-IndG

K0
D0 (2)

of G-representations, where δ : K1 → R× is the character δ(g) := (−1)val(det g);
c-IndG

Ki
Di denotes the space of functions f : G → Di such that f (kg) = k f (g)

for k ∈ Ki and g ∈ G, and f is supported only on finitely many cosets Ki g. To
describe ∂ , we note that Frobenius reciprocity gives

HomG(c-IndG
K1

D1⊗ δ, c-IndG
K0

D0)∼= HomK1(D1⊗ δ, c-IndG
K0

D0);

now IndK1
I Z D0 is a direct summand of the restriction of c-IndG

K0
D0 to K1, and

HomK1(D1⊗ δ, IndK1
I Z D0)∼= HomI Z (D1, D0),

since δ is trivial on I Z . Composition of the maps above yields a map

HomI Z (D1, D0)→ HomG(c-IndG
K1

D1⊗ δ, c-IndG
K0

D0).

We let ∂ be the image of r . We define H0(D) to be the cokernel of ∂ and H1(D)
to be the kernel of ∂ . So we have this exact sequence of G-representations:

0→ H1(D)→ c-IndG
K1

D1⊗ δ
∂
→ c-IndG

K0
D0→ H0(D)→ 0 (3)

Further, if r is injective then one may show that H1(D) = 0; see [Vignéras 2008,
Proposition 0.1]. To a diagram D one may associate a G-equivariant coefficient
system V of R-modules on the Bruhat–Tits tree; see [Paškūnas 2004, Section 5].
Then H0(D) and H1(D) compute the homology of the coefficient system V, and
the map ∂ has a natural interpretation. Assume that R = L (or any field of char-
acteristic 0), and let π be a smooth irreducible representation of G on an L-vector
space, so that for all v ∈ π the subgroup {g ∈ G : gv = v} is open in G. Since
the action of G is smooth, there exists an m ≥ 0 such that π Im 6= 0. To π we
may associate a diagram D := (π Im ↪→ πKm ). As a very special case of a result
by Schneider and Stuhler [1997, Theorem V.1; 1993, Section 3], we obtain that
H0(D)∼= π .

We are going to compute such diagrams D, attached to smooth principal series
representations of G on L-vector spaces. Given smooth characters θ1, θ2 :Z

×
p→ L×

and λ1, λ2 ∈ L×, we define a diagram D(λ1, λ2, θ1, θ2) as follows. Let c≥ 1 be an
integer such that θ1 and θ2 are trivial on 1+pcZp. Set Jc := (K∩B)Kc= (I∩B)Kc,
so that Jc is a subgroup of I . Let θ : Jc→ L× be the character θ

(
a b
c d

)
:=θ1(a)θ2(d).

Let D0 := IndK
Jc
θ , and let p ∈ Z act on D0 by a scalar λ1λ2, so that D0 is a

representation of K0. Set D1 := D Ic
0 , so that D1 is naturally a representation of I Z .
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We are going to put an action of 5 on D1, so that D1 is a representation of K1. Let

V1 := { f ∈ D1 : Supp f ⊆ I }, Vs := { f ∈ D1 : Supp f ⊆ Jcs I }. (4)

Since I contains K1, we have Jcs I = (B ∩ K )s I = I s I ; hence D1 = V1⊕Vs . For
all f1 ∈ V1 and fs ∈ Vs , we define 5 · f1 ∈ Vs and 5 · fs ∈ V1 such that

[5· f1](sg) :=λ1 f1(5
−1g5), [5· fs](g)=λ2 fs(s5g5−1) for all g ∈ I. (5)

Every f ∈ D1 can be written uniquely as f = f1+ fs , with f1 ∈ V1 and fs ∈ Vs ,
and we define 5 · f :=5 · f1+5 · fs .

Lemma 3.1. Equation (5) defines an action of K1 on D1. We denote the diagram
D1 ↪→ D0 by D(λ1, λ2, θ1, θ2). Let π := IndG

B χ1⊗χ2 be a smooth principal series
representation of G, with

χ1(p)= λ1, χ2(p)= λ2, χ1|Z×p = θ1, χ2|Z×p = θ2.

There exists an isomorphism of diagrams D(λ1, λ2, θ1, θ2) ∼= (π
Ic ↪→ πKc). In

particular, we have a G-equivariant isomorphism H0(D(λ1, λ2, θ1, θ2))∼= π .

Proof. We note that p ∈ Z acts on π by a scalar λ1λ2. Since G = BK , we
have π |K ∼= IndK

B∩K θ , and so the map f 7→ [g 7→ f (g)] induces an isomorphism
ι0 : π

Kc ∼= IndK
Jc
θ = D0. Let

F1 := { f ∈ π : Supp f ⊆ B I } and Fs := { f ∈ π : Supp f ⊆ Bs I }.

Iwasawa decomposition gives G = B I ∪ Bs I ; hence π = F1 ⊕Fs . If f1 ∈ F1,
then Supp(5 f1)= (Supp f1)5

−1
⊆ B I5−1

= Bs I . Moreover,

[5 f1](sg)= f1(sg5)= f1(s5(5−1g5))

= χ1(p) f1(5
−1g5) for all g ∈ I.

(6)

Similarly, if fs ∈ Fs , then Supp(5 fs)= (Supp fs)5
−1
⊆ Bs I5−1

= B I , and

[5 fs](g)= f1(g5)= f1((5s)s(5−1g5))

= χ2(p) fs(s(5−1g5)) for all g ∈ I.
(7)

Now π Ic =FIc
1 ⊕FIc

s ⊂ π
Kc . Let ι1 be the restriction of ι0 to π Ic . Then it is imme-

diate that ι1(F
Ic
1 )= V1 and ι1(FI1

s )= Vs , where V1 and Vs are as above. Moreover,
if f ∈ D1 and5· f is given by (5), then5· f = ι1(5ι−1

1 ( f )). Since K1 acts on π Ic ,
Equation (5) defines an action of K1 on D1 such that ι1 is K1-equivariant. Hence,
(ι0, ι1) is an isomorphism of diagrams (π Ic ↪→ πKc)∼= (D1 ↪→ D0). �
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4. The main result

Lemma 4.1. Let U be a finite dimensional L-vector space with subspaces U1,U2

such that U =U1⊕U2. For x ∈ L define a map φx :U→U by φx(v1+v2)= xv1+v2

for all v1 ∈ U1 and v2 ∈ U2. Let M be an oL -lattice in V . Then there exists an
integer a ≥ 1 such that φx(M)= M for x ∈ 1+ pa

L .

Proof. Let N denote the image of M in U/U2. Then N contains (M ∩U1)+U2,
and both are lattices in U/U2. Define a ≥ 1 to be the smallest integer such that
p−a

L (M ∩U1)+U2 contains N . Suppose that x ∈ 1+ pa
F and v ∈ M . We may

write v = λv1 + v2, with v1 ∈ M ∩ U1, v2 ∈ U2 and λ ∈ p−a
L . Now φx(v) =

v+λ(x−1)v1 ∈ M . Hence we get φx(M)⊆ M and φx−1(M)⊆ M . Applying φx−1

to the first inclusion gives M ⊆ φx−1(M). �

We fix an integer k ≥ 2 and set W := Symk−2 L2, an algebraic representa-
tion of G. Let π := π(χ1, χ2) := IndG

B χ1 ⊗ χ2 be a smooth principal series
L-representation of G. We say that π ⊗ W admits a G-invariant norm if there
exists a norm ‖·‖ on π ⊗W with respect to which π ⊗W is a normed L-vector
space such that ‖gv‖ = ‖v‖ for all v ∈ π ⊗W and g ∈ G.

Let c ≥ 1 be an integer such that both χ1 and χ2 are trivial on 1+ pcZp. Let D
be the diagram π Ic ⊗W ↪→ πKc ⊗W . Since H0(π

Ic ↪→ πKc) ∼= π , by tensoring
(2) with W we obtain H0(D)∼= π ⊗W . Assume that π ⊗W admits a G-invariant
norm ‖·‖, and set (π ⊗W )0 := {v ∈ π ⊗W : ‖v‖ ≤ 1}. Then we may define a
diagram D= (D1 ↪→ D0) of oL -modules by

D := ((π Ic ⊗W )∩ (π ⊗W )0 ↪→ (πKc ⊗W )∩ (π ⊗W )0).

In this case Vignéras [2008] has shown that the inclusion D ↪→ D induces a
G-equivariant injection H0(D) ↪→ H0(D) such that H0(D)⊗oL L = H0(D) and
H1(D)= 0. Moreover, H0(D) does not contain an oL -submodule isomorphic to L;
see [Vignéras 2008, Proposition 0.1]. Since H0(D) is an L-vector space of count-
able dimension, this implies that H0(D) is a free oL -module. By tensoring (2) with
oL/p

n
L , we obtain

H0(D)⊗oL oL/p
n
L
∼= H0(D⊗oL oL/p

n
L). (8)

Proposition 4.2. Let π = π(χ1, χ2) be a smooth principal series representation,
assume that π ⊗W admits a G-invariant norm, and let D be as above. Then there
exists an integer a ≥ 1 such that for all x ∈ 1+ pb

F , with b ≥ a, there exists both
a finitely generated oL [G]-module M in π(χ1δx−1, χ2δx)⊗ W that is free as an
oL -module, and a G-equivariant isomorphism

M ⊗oL oL/p
b
L
∼= H0(D)⊗oL oL/p

b
L ,

where δx :Q
×
p → L× is an unramified character with δx(p)= x.
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Proof. Apply Lemma 4.1 to U = D1, U1 = V1⊗W , U2 = Vs ⊗W and M = D1,
where V1 and Vs are given by (4). We get an integer a ≥ 1 such that φx(D1)=D1

for all x ∈ 1+ pa
L . It is immediate that φx is I Z -equivariant. We define a new

action ? of5 on D1 by5?v := φx(5φ
−1
x (v)). This gives us a new diagram D(x),

so that D(x)0 = D0 as a representation of K0, D(x)1 = D1 as a representation of
I Z , the I Z -equivariant injection D(x)1 ↪→ D(x)0 is equal to the I Z -equivariant
injection D1 ↪→ D0, but the action of 5 on D1 is given by ?, (here by = we really
mean an equality, not an isomorphism). If f1 ∈ V1 and fs ∈ Vs then

5? ( f1⊗w)= f ′s ⊗ (5w), 5 ? ( fs ⊗w)= f ′1⊗ (5w) for all w ∈W,

where f ′s ∈ Vs , f ′1 ∈ V1 and for all g ∈ I we have

f ′s (sg)= x−1
[5 · f1](sg)= x−1λ1 f1(5

−1g5), (9)

f ′1(g)= x[5 · fs](g)= xλ2 fs(s5g5−1). (10)

Hence, we have an isomorphism of diagrams D(x) ∼= D(x−1λ1, xλ2, θ1, θ2), and
so Lemma 3.1 gives H0(D(x))∼=π(χ1δx−1, χ2δx)⊗W . Now let b≥a be an integer
and suppose that x ∈ 1+ pb

L . Since 5 ·D1 = φx(D1)= φ
−1
x (D1)= D1, we get

5? (D0 ∩ D1)=5?D1 = φx(5φ
−1
x (D1))= D1.

So if we let D(x)0 := D0 and D(x)1 := D(x)0 ∩ D(x)1, where 5 acts on D(x)1
by ?, then the diagram D(x) := (D(x)1 ↪→D(x)0) is an integral structure in D(x)
in the sense of [Vignéras 2008]. The results of Vignéras cited above imply that
M := H0(D(x)) is a finitely generated oL [G]-submodule of π(χ1δx−1, χ2δx)⊗W ,
which is free as an oL -module, and M ⊗oL L ∼= π(χ1δx−1, χ2δx)⊗W . Moreover,
since φx is the identity modulo pb

L , we have 5 ? v ≡ 5 · v (mod $ b
L D1) for all

v ∈D1, and so the identity map D(x)0→D0 induces an isomorphism of diagrams
D(x)⊗oL oL/p

b
L
∼=D⊗oL oL/p

b
L . Now (8) gives H0(D)⊗oL oL/p

b
L
∼=M⊗oL oL/p

b
L .
�

Let k ≥ 2 be an integer and ap ∈ pL . Following [Breuil 2003] we define a
filtered ϕ-module Dk,ap as the following data: a 2-dimensional L-vector space D
with basis {e1, e2}, an L-linear automorphism ϕ : D→ D given by

ϕ(e1)= pk−1e2 and ϕ(e2)=−e1+ ape2,

and a decreasing filtration (Fili D)i∈Z by L-subspaces such that if i ≤ 0 then
Fili D= D, if 1≤ i ≤ k−1 then Fili D= Le1, and if i ≥ k then Fili D= 0. We set
Vk,ap :=Homϕ,Fil·(Dk,ap , Bcris). Then Vk,ap is a 2-dimensional L-linear absolutely
irreducible crystalline representation of GQp := Gal(Qp/Qp) with Hodge–Tate
weights 0 and k−1. We denote by χk,ap the trace character of Vk,ap . Since GQp is
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compact and the action is continuous, GQp stabilizes some oL -lattice in Vk,ap , and
so χk,ap takes values in oL .

Proposition 4.3. Let m be the largest integer such that m ≤ (k − 2)/(p− 1). Let
ap, a′p ∈ pL , and assume that val(ap) > m and val(a′p) > m. Let n ≥ em be an
integer, where e := e(L/Qp) is the ramification index. Suppose ap≡a′p (mod pn

L).
Then χk,ap(g)≡ χk,a′p(g) (mod pn−em

L ) for all g ∈ GQp .

Proof. This a consequence of a result of Berger, Li and Zhu [Berger et al. 2004],
where the authors construct GQp -invariant lattices Tk,ap in Vk,ap . The assumption
ap ≡ a′p (mod pn

L) implies Tk,ap ⊗oL oL/p
n−em
L
∼= Tk,a′p ⊗oL oL/p

n−em
L ; see their

[Remark 4.1.2(2)]. This implies the congruences of characters. �

Let k ≥ 2 be an integer and choose λ1, λ2 ∈ L such that λ1 + λ2 = ap and
λ1λ2 = pk−1 (enlarge L if necessary). Assume val(λ1)≥ val(λ2) > 0. Let χ1, χ2 :

Q×p→ L× be unramified characters, with χ1(p)= λ
−1
1 and χ2(p)= λ

−1
2 . Let M be

a finitely generated oL [G]-module in π(χ1, χ2|·|
−1)⊗W , where W :=Symk−2 L2.

In the case λ1 6=λ2, Berger and Breuil have shown that the unitary L-Banach space
representation

Ek,ap := L ⊗oL lim
←−

M/$ n
L M

of G is nonzero, topologically irreducible, admissible in the sense of [Schneider
and Teitelbaum 2002], and contains π(χ1, χ2| · |

−1)⊗W as a dense G-invariant
subspace [Berger and Breuil 2007, Section 5.3]. Moreover, the dual of Ek,ap is
isomorphic to the representation of Borel subgroup B constructed from the (ϕ, 0)-
module of Vk,ap .

Let RepoL
G be the category of finite length oL [G]-modules with a central char-

acter such that the action of G is smooth (that is, the stabilizer of a vector is an open
subgroup of G). Let RepoL

GQp be the category of continuous representations of
GQp on oL -modules of finite length. Colmez [2008, IV.2.14] has defined an exact
covariant functor V : RepoL

G → RepoL
GQp . The constructions in [Berger and

Breuil 2007] and [Colmez 2008] are mutually inverse to one another. This means
if we assume λ1 6= λ2 and let M be as above, then

Vk,ap
∼= L ⊗oL lim

←−
V(M/$ n

L M). (11)

That M/$ n
L M is an oL [G]-module of finite length follows from [Berger 2005,

Theorem A].

Theorem 4.4. Assume that p > 2. Let λ = ±p(k−1)/2, and let χ : Q×p → L×

be a smooth character with χ(p)= λ−1. Assume there exists a G-invariant norm
‖·‖ on π(χ, χ | · |−1) ⊗ W , where W := Symk−2 L2. Let E be the completion
of π(χ, χ | · |−1) ⊗ W with respect to ‖·‖. Then E is a nonzero, topologically
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irreducible, admissible Banach space representation of G. If we let E0 be the unit
ball in E , then Vk,2λ⊗ (χ |χ |)∼= L ⊗oL lim

←−
V(E0/$ n

L E0).

Proof. Since the character χ |χ | is integral, by twisting we may assume that χ is
unramified. We denote the diagram

π(χ, χ | · |−1)I1 ⊗W ↪→ π(χ, χ | · |−1)K1 ⊗W

by D = (D1 ↪→ D0). Let D = (D1 ↪→ D0) be the diagram of oL -modules with
D1 = D1 ∩ E0 and D0 = D0 ∩ E0. Let a ≥ 1 be the integer Proposition 4.2 gives.
For each j ≥ 0, we fix x j ∈ 1+ p

a+ j
L with x j 6= 1 and a finitely generated oL [G]-

submodule M j in π(χδx−1
j
, χδx j | · |

−1)⊗W (which is then a free oL -module) such
that

H0(D)⊗oL oL/p
a+ j
L
∼= M j ⊗oL oL/p

a+ j
L .

This is possible by Proposition 4.2. To ease the notation we set M := H0(D).
Let ap( j) := λx−1

j + λx j , let ap := 2λ, and let m be the largest integer such that
m ≤ (k− 2)/(p− 1). Since p > 2, x j + x−1

j is a unit in oL , we have val(ap( j))=
val(ap) = (k − 1)/2 > m. (Here we really need p > 2.) Moreover, we have
ap ≡ ap( j) (mod p

j+a+em
L ), where e := e(L/Qp) is the ramification index. Now

since x j 6= 1 we get that λx j 6=λx−1
j , and hence we may apply the results of Berger

and Breuil to π(χδx−1
j
, χδx j | · |

−1)⊗W . By (11),

Tk,ap( j) := lim
←−

V(M j/$
n
L M j )

is a GQp -invariant lattice in Vk,ap( j). Since M⊗oL oL/p
a+ j
L
∼= M j ⊗oL oL/p

a+ j
L we

get

V(M/$ a+ j
L M)∼= V(M j/$

a+ j
L M j )∼= Tk,ap( j)⊗oL oL/p

a+ j
L . (12)

Set V := L ⊗oL lim
←−

V(M/$ n
L M). Then (12) implies that V is a 2-dimensional

L-vector space. Let χV be the trace character of V . Then it follows from (12)
that χV ≡ χk,ap( j) (mod p

a+ j
L ). Since ap ≡ ap( j) (mod p

a+ j+em
L ), Proposition

4.3 says that χk,ap ≡ χk,ap( j) (mod p
a+ j
L ). We obtain χV ≡ χk,ap (mod p

a+ j
L ) for

all j ≥ 0. This gives us χV = χk,ap . Since Vk,ap is irreducible, the equality of
characters implies V ∼= Vk,ap .

Set M̂ := lim
←−

M/$ n
L M , and E ′ := M̂ ⊗oL L . Since M is a free oL -module, we

get an injection M ↪→ M̂ . In particular, E ′ contains π(χ, χ |·|−1)⊗W as a dense G-
invariant subspace. We claim that E ′ is a topologically irreducible and admissible
G-representation. Now Theorem 4.1.1 and Proposition 4.1.4 of [Berger et al. 2004]
say that the semisimplification of Tk,ap( j)⊗oL kL is irreducible if p+ 1 - k− 1 and
is otherwise isomorphic to



On some crystalline representations of GL2(Qp) 419(
µ√
−1 0

0 µ
−
√
−1

)
⊗ω(k−1)/(p+1),

where µ
±
√
−1 is the unramified character sending arithmetic Frobenius to ±

√
−1,

and ω is the cyclotomic character. Then [Berger 2005, Theorem A] implies that if
p+ 1 - k− 1, then M j ⊗oL kL is an irreducible supersingular representation of G,
and if p + 1 | k − 1, then the semisimplification of M j ⊗oL kL is a direct sum
of two irreducible principal series. The irreducibility of principal series follows
from [Barthel and Livné 1994, Theorem 33], since

√
−1 6= ±1, as p > 2. Since

M ⊗oL kL ∼= M j ⊗oL kL , we get that M ⊗oL kL is an admissible representation
of G (so that for every open subgroup U of G, the space of U-invariants is finite
dimensional). This implies that E ′ is admissible.

Suppose that E1 is a closed G-invariant subspace of E ′ with E ′ 6= E1. Let
E0

1 := E1 ∩ M̂ . We obtain a G-equivariant injection E0
1 ⊗oL kL ↪→ M ⊗oL kL . If

E0
1 ⊗oL kL = 0 or M ⊗oL kL , then Nakayama’s lemma gives E0

1 = 0 or E0
1 = M̂ ,

respectively. If p + 1 - k − 1, then M ⊗oL kL is irreducible and we are done. If
p+1 |k−1, then E0

1⊗oL kL is an irreducible principal series, and so V(E0
1⊗oL kL) is

one-dimensional [Colmez 2008, IV.4.17]. But then V1 := L⊗oL lim
←−

V(E0
1/$

n
L E0

1)

is a 1-dimensional subspace of Vk,ap stable under the action of GQp . Since Vk,ap is
irreducible we obtain a contradiction.

Since E ′ is a completion of π(χ, χ | · |−1)⊗W with respect to a finitely gen-
erated oL [G]-submodule, E ′ is in fact the universal completion; see for example
[Emerton 2005, Proposition 1.17]. In particular, we obtain a nonzero G-equivariant
map of L-Banach space representations E ′→ E , but since E ′ is irreducible and
π(χ, χ | · |−1)⊗W is dense in E , this map is an isomorphism. �

Corollary 4.5. Assume that p > 2, and let χ :Q×p → L× be a smooth charac-
ter such that χ(p)2 pk−1

= 1. Assume that there is a G-invariant norm ‖·‖ on
π(χ, χ | · |−1) ⊗ W , where W := Symk−2 L2. Then every bounded G-invariant
oL -lattice in π(χ, χ | · |−1)⊗W is finitely generated as an oL [G]-module.

Proof. The existence of a G-invariant norm implies that the universal completion is
nonzero. It follows from Theorem 4.4 that the universal completion is topologically
irreducible and admissible. The assertion follows from the proof of [Berger and
Breuil 2007, Corollary 5.3.4]. �

For the purposes of [Paškūnas 2008] we record the following corollary to the
proof of Theorem 4.4.

Corollary 4.6. Assume p > 2, and let χ :Q×p → L× be a smooth character such
that χ2(p)pk−1 is a unit in oL . Assume there exists a unitary L-Banach space
representation (E, ‖·‖) of G containing (IndG

B χ ⊗ χ | · |
−1) ⊗ Symk−2 L2 as a

dense G-invariant subspace and satisfying ‖E‖⊆ |L|. Then there exists x ∈ 1+pL
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with x2
6= 1 and a unitary completion Ex of (IndG

B χδx⊗χδx−1 | · |
−1)⊗Symk−2 L2

such that E0
⊗oL kL ∼= E0

x ⊗oL kL , where E0
x is the unit ball in Ex and E0 is the

unit ball in E.

Proof. Let π := IndG
B χ ⊗ χ | · |

−1 and M := (π ⊗W )∩ E0. Now M ∩$L E0
=

(π ⊗ W ) ∩ $L E0
= $L M . So ι : M/$L M ↪→ E0/$L E0 is a G-equivariant

injection. We claim that ι is a surjection. Let v ∈ E0. Since π ⊗ W is dense
in E , there exists a sequence {vn}n≥1 in π⊗W such that lim vn = v. We also have
lim‖vn‖ = ‖v‖. Since ‖E‖ ⊆ |L| ∼= Z, there exists an m ≥ 0 such that vn ∈ M for
all n ≥ m. This implies the surjectivity of ι. So we get M ⊗oL kL ∼= E0

⊗oL kL .
By Corollary 4.5 we may find u1, . . . , un ∈ M that generate M as an oL [G]-

module. Further, ui =
∑mi

j=1 vi j ⊗wi j with vi j ∈ π and wi j ∈ W . Since π is a
smooth representation of G, there exists an integer c ≥ 1 such that vi j is fixed by
Kc for all 1≤ i ≤ n and 1≤ j ≤ mi . Set

D :=
(
(π Ic ⊗W )∩M ↪→ (πKc ⊗W )∩M

)
, D :=

(
π Ic ⊗W ↪→ πKc ⊗W

)
and let M ′ be the image of H0(D) ↪→ H0(D) ∼= π ⊗W . It follows from (3) that
M ′ is generated by (πKc ⊗W ) ∩ M as an oL [G]-module. Hence, M ′ ⊆ M . By
construction (πKc ⊗W ) ∩ M contains u1, . . . un , and so M ⊆ M ′. In particular,
H0(D)⊗oL kL ∼= M ⊗oL kL . The claim follows from the proof of Theorem 4.4. �

5. Existence

Recent results of Colmez, which appeared after the first version of this note, im-
ply the existence of a G-invariant norm on (IndG

B χ ⊗ χ | · |
−1)⊗ Symk−2 L2 for

χ2(p)pk−1
∈ o×L , thus making our results unconditional. We briefly explain this.

We continue to assume that p>2, that k≥2 is an integer and that ap=2p(k−1)/2.
The representation Vk,ap of GQp sits in the p-adic family of Berger, Li and Zhu,
[2004, 3.2.5]. Moreover, all the other points in the family correspond to the crys-
talline representations with distinct Frobenius eigenvalues, to which the theory
of [Berger and Breuil 2007] applies. Hence [Colmez 2008, II.3.1 and IV.4.11]
imply that there exists an irreducible unitary L-Banach space representation 5 of
GL2(Qp) such that V(5) ∼= Vk,ap . If p ≥ 5 or p = 3 and k 6≡ 3 (mod 8) and
k 6≡ 7 (mod 8), the existence of such 5 also follows from [Kisin 2008]. It follows
from [Colmez 2008, VI.6.46] that the set of locally algebraic vectors 5alg of 5 is
isomorphic to

(IndG
B χ ⊗χ | · |

−1)⊗Symk−2 L2,

where χ :Q×p→ L× is an unramified character with χ(p)= p−(k−1)/2. The restric-
tion of the G-invariant norm of5 to5alg solves the problem. Also, if δ :Q×p→ L×

is a unitary character, then we also obtain a G-invariant norm on 5alg
⊗ δ ◦ det.
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Equivariant Hilbert series
Frank Himstedt and Peter Symonds

We consider a finite group acting on a graded module and define an equivariant
degree that generalizes the usual nonequivariant degree. The value of this degree
is a module for the group, up to a rational multiple. We investigate how this
behaves when the module is a ring and apply our results to reprove some results
of Kuhn on the cohomology of groups.

1. Introduction

We consider a finitely generated graded module M over a graded ring R that is
finitely generated over some base field k and such that R0 is finite-dimensional
over k. We suppose that there is a finite group G that acts on M , preserving the
grading and commuting with R.

To this data we associate a formal Laurent series [M] in t in which the coefficient
of tr is the homogeneous part Mr , considered as a kG-module. The difficulty
of the theory depends on whether we wish to keep track of these modules up to
isomorphism (that is, in the Green ring) or only up to composition factors (in the
representation ring). We develop both cases.

This series [M] is shown to satisfy a form of the Hilbert–Serre Theorem (in
particular it is a rational function, or at least a sum of them in the Green ring case).
We define the equivariant degree degG M to be the coefficient of the leading term
when we expand [M] as a Laurent series in 1−t . This is a kG-module up to rational
multiple, although there is sometimes a problem of whether it is well defined in
the Green ring case. The dimension of this module agrees with the usual definition
of the degree in the nonequivariant case.

We investigate various properties of the equivariant degree; Theorem 6.4, in
particular, lists several equivalent characterizations.

In Section 7, we go on to consider the case of the homogeneous coordinate ring
on a projective variety and show that in this case the degree is always defined and
it is a permutation module that can be easily described in terms of the geometry.

MSC2000: primary 13D40; secondary 20C20.
Keywords: Hilbert series, group action, ring, degree, equivariant.
This project was supported by the Deutsche Forschungsgemeinschaft under the project KE 964/1-1
(“Invariantentheorie endlicher und algebraischer Gruppen”).
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Finally, in Section 8, this theory is applied to the variety associated to the coho-
mology of a group to reprove a result of Nick Kuhn on the action of the outer
automorphism group of a p-group G on the cohomology H∗(G; Fp).

2. General setup

Let R =
⊕
∞

j=0 R j be a commutative graded algebra over a field k. We suppose
that R is a finitely generated k-algebra and that R0 is finite-dimensional over k,
so all the homogeneous components R j are also finite-dimensional vector spaces
over k. Let G be a finite group and let M =

⊕
∞

i=N Mi a finitely generated graded
left RG-module, where the action of G preserves the grading and each Mi is a
finite-dimensional k-vector space.

We recall some facts about the Hilbert series H(M, t) =
∑
∞

i=N dimk(Mi ) t i of
M . The graded version of Noether normalization [Benson 1993, Theorem 2.2.7]
guarantees the existence of homogeneous elements d1, d2, . . . , dn of positive de-
grees in R that generate a polynomial subring k[d1, . . . , dn] of R and such that R is
finitely generated as a k[d1, . . . , dn]-module. We write |di | := deg di for the degree
of di . The number n is equal to the Krull dimension of R. By the Hilbert–Serre
Theorem [Benson 1993, 2.1.1] the Hilbert series H(M, t) is of the form

H(M, t)=
f (M, t)∏n

i=1(1− t |di |)
,

where f (M, t) is a Laurent polynomial with integer coefficients. As in [Benson
1993, Section 2.4], for example, the rational number deg M is defined by the Lau-
rent expansion of H(M, t) about t = 1:

H(M, t)=
deg M
(1− t)n

+ O
(

1
(1− t)n−1

)
. (2-1)

Obviously the definition of the degree deg M ignores the action of G on M . In
the next two sections, we shall define an equivariant analogue degG M , which also
incorporates the group action.

First, we define the degree of certain Laurent series. Let p(t) be a Laurent series
of the form

p(t)=
∞∑

i=N

ai t i
=

g(t)∏n
i=1(1− t |di |)

,

where the ai are rational numbers and g(t) is a Laurent polynomial with rational
coefficients. We define the rational number deg p(t) to be the coefficient of 1

(1−t)n

in the Laurent expansion of p(t) about t = 1 and we call deg p(t) the degree
of p(t). If we want to emphasize the dependency on n, we write degn p(t) instead
of deg p(t). In particular, we have deg H(M, t)= deg M with deg M as in (2-1).
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3. Equivariant degree over the Green ring

As usual, the Green ring a(kG) is defined to be the ring with generators the
isomorphism classes |V | of kG-modules, and relations |V | + |W | = |V ⊕ W |,
|V | · |W | = |V ⊗k W |. We set a(kG)Q := Q⊗Z a(kG). The representation ring
R(kG) is defined to be the quotient of a(kG) by the ideal generated by the elements
|V2| − |V1| − |V3|, where 0→ V1 → V2 → V3 → 0 is a short exact sequence of
kG-modules. We set R(kG)Q :=Q⊗Z R(kG).

We will consider two versions of the equivariant degree: one is an element of
a(kG)Q, but is not always defined; the other is a weaker one, which is an element
of R(kG)Q, but it is always defined. The main tool used in the definition of the
former is the following Weak Structure Theorem 3.1, so-called because it is a
generalization of the Structure Theorem of [Symonds 2007].

Theorem 3.1. For any finitely generated graded k[d1, . . . , dn]G-module M ,

M ∼=
⊕

U∈Indecomp(M)

⊕
I⊆{1,...,n}

k[dI ]⊗k XU,I ,

as a kG-module, where XU,I is a finite-dimensional graded kG-module that is a
sum of U’s (ignoring grading) and k[dI ] = k[di | i ∈ I ]. The map from right to left
is given by multiplication.

Proof. The only difference between this theorem and Proposition 4.4 of [Symonds
2007] is that there Indecomp(M) is supposed to be finite. But the same proof
works, although it is better to keep the different indecomposables separate by using
the double summation, as in the statement above, rather than combining them as
X̄ I =

⊕
U∈Indecomp(M) XU,I as in [Symonds 2007]. �

Next we describe the definition of the degree with values in a(kG)Q. For each i ,
the kG-module Mi defines an element |Mi | of a(kG).

Definition 3.2. We call the Laurent series

[M] :=
∞∑

i=N

|Mi | t i (3-1)

with coefficients in a(kG) the equivariant Hilbert series of M with coefficients in
the Green ring.

Clearly, if G = {1} is the trivial group, we can identify |Mi | with the dimension of
Mi as a k-vector space. So in this situation [M] coincides with the usual Hilbert
series of M . The equivariant Hilbert series has the following basic properties:
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Lemma 3.3. Suppose M ′ =
⊕
∞

i=N ′ M ′i is another finitely generated graded left
RG-module, such that the action of G preserves the grading and every M ′i is a
finite-dimensional k-vector space. Then

[M ⊕M ′] = [M] + [M ′] and [M ⊗k M ′] = [M] · [M ′].

Proof. Clear. �

Besides the Hilbert series H(M, t), we can consider a Hilbert series that counts
the multiplicity of some isomorphism class of indecomposable summands. Let
Indecomp(M) be a set of representatives for the isomorphism classes of all inde-
composable kG-modules which occur as a direct summand of some Mi and let
mU,i be the multiplicity of U ∈ Indecomp(M) as a direct summand of Mi . We
set HU (M, t) :=

∑
∞

i=N mU,i t i . The Laurent series HU (M, t) can be written as a
rational function too.

Proposition 3.4. For each U ∈ Indecomp(M), the Laurent series HU (M, t) can
be written as

HU (M, t)=
fU (M, t)∏n

i=1(1− t |di |)
,

where fU (M, t) is a Laurent polynomial in t with integer coefficients.

Proof. This is a consequence of the Weak Structure Theorem 3.1. �

Let F be an arbitrary finite subset of Indecomp(M). We consider the Laurent
series with integer coefficients q(t) := H(M, t)−

∑
U∈F dimk(U )HU (M, t). By

definition of the Hilbert series, all the coefficients of q(t) are nonnegative integers,
and q(t) is of the form

q(t)=
g(t)∏n

i=1(1− t |di |)

for some Laurent polynomial g(t)with integer coefficients since something similar
holds for H(M, t) and HU (M, t) by Proposition 3.4. So we can take degrees and
obtain

deg M =
(∑

U∈F

dimk(U ) deg HU (M, t)
)
+ deg q(t). (3-2)

It turns out that all the degrees occurring in (3-2) are nonnegative with bounded
denominators by the following result.

Lemma 3.5. Suppose that

p(t)=
h(t)∏n

i=1(1− t |di |)
=

∞∑
i=N

ai t i ,

where h(t) is a Laurent polynomial with rational coefficients and the ai ’s are non-
negative integers. Then deg p(t)≥ 0. If all the coefficients of h(t) are integers then
deg p(t) is of the form deg p(t)= d

/∏n
i=1 |di | for some nonnegative integer d.



Equivariant Hilbert series 427

Proof. We compute

deg p(t)= lim
t→1

(1− t)n p(t)= lim
t→1

h(t)∏n
i=1(1+ t + · · ·+ t |di |−1)

=
h(1)∏n
i=1 |di |

.

We still have to show that deg p(t)≥ 0. Since multiplication with
n∏

i=1

(1+ t + · · ·+ t |di |−1)

and a suitable power of t does not affect the sign of the degree or the sign of the ai ,
we may assume that p(t) is a Laurent polynomial in 1−t with rational coefficients,
that is that

p(t)=
b−n

(1− t)n
+

b1−n

(1− t)n−1 + · · ·+ bm−1(1− t)m−1
+ bm(1− t)m

for some rational numbers bi and a nonnegative integer m. In particular, b−n =

deg p(t). Expanding the negative powers (1− t)− j as power series in t and com-
paring the coefficients of t i we see that there exists a polynomial r(i) in i of degree
at most n− 2 (or r(i)= 0 if n = 1) with coefficients depending on n and the b j ’s
such that ai = (1/(n− 1)!) bn in−1

+ r(i) for all large enough i . So the condition
ai ≥ 0 implies that deg p(t)= b−n ≥ 0. �

Corollary 3.6. There are only finitely many U ∈ Indecomp(M) with

deg HU (M, t) 6= 0

and we have ∑
U

dimk(U ) deg HU (M, t)≤ deg M,

where the sum means the sum over all U ∈ Indecomp(M) with deg HU (M, t) 6= 0.

Proof. This follows from (3-2) and Lemma 3.5. �

We can now define the equivariant degree with values in the Green ring.

Definition 3.7. We say that dega(kG) M is defined if∑
U

dimk(U ) deg HU (M, t)= deg M.

In this case we call dega(kG) M :=
∑

U deg(HU (M, t)) |U | ∈ a(kG)Q the equivari-
ant degree of M (in the Green ring). If we want to emphasize the dependency on
n, we write degn

a(kG) M instead of dega(kG) M .

The existence of the degree in the Green ring can be characterized as follows.

Lemma 3.8. For R, G, M as above the following statements are equivalent.
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(1) dega(kG) M is defined.

(2) There is a finite set F of indecomposable kG-modules such that∑
U∈F

dimk(U ) deg HU (M, t)= deg M.

(3) There is a finite set F of indecomposable kG-modules such that

deg
∑
U 6∈F

dimk(U )HU (M, t)= 0.

Here we have set
∑

U 6∈F
dimk(U )HU (M, t) :=H(M, t)−

∑
U∈F

dimk(U )HU (M, t).

Proof. This is clear from the definition of dega(kG) M . �

Certainly the equivariant degree dega(kG) M is defined if M has only finitely
many isomorphism types of indecomposable summands. For example, this is the
case if k is a finite field, M a polynomial ring in n variables over k, G a finite
group acting on this polynomial ring by homogeneous linear substitutions and R=
MG the ring of invariants [Karagueuzian and Symonds 2007, Theorem 17.1]. The
following example shows that there are situations where dega(kG) M is not defined:

Example (see Example 4.4 in [Karagueuzian and Symonds 2004]). Let k be a field
of two elements and R = k[x, y] a polynomial ring in two variables over k. The
Klein four group G = 〈α, β〉 ∼= Z2×Z2 acts on M = k[x, y]〈1, z〉 by α : z 7→ z+ x
and β : z 7→ z+ y. We can regard M as a subset of k[x, y, z] or as a free R-module
of rank two.

If we attach a grading to R and the module M by assigning x, y and z grading 1,
then M is the direct sum M=

⊕
∞

i=0 Mi . It is shown in [Karagueuzian and Symonds
2004] that Mi ∼= �

i k as kG-modules, where �i k is the i-th Heller translate of
the trivial kG-module k. In particular, the Mi ’s are indecomposable and pairwise
nonisomorphic.

We have n = 2, Indecomp(M) = {�i k | i ∈ N0} and H�i k(M, t) = t i . So we
obtain deg H�i k(M, t)= 0 for all i . On the other hand we have

H(M, t)=
∞∑

i=0

dimk(Mi ) t i
=

∞∑
i=0

(2i + 1)t i
=

2
(1− t)2

−
1

1− t
,

and thus deg M = 2. So dega(kG) M is not defined in this example.

4. Equivariant degree in the representation ring

One way to construct an equivariant degree which is defined for every module M
(satisfying the assumptions in Section 2) is to work over the representation ring. In
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this section we will define the equivariant degree with values in the representation
ring.

The first steps are very similar to those for the Green ring. Let R, G and M be
as in Section 2. For each i , the kG-module Mi defines an element |Mi | of R(kG).

Definition 4.1. We call the Laurent series [M] :=
∑
∞

i=N |Mi | t i with coefficients
in R(kG) the equivariant Hilbert series of M with coefficients in the representation
ring.

Clearly Lemma 3.3 carries over to equivariant Hilbert series with coefficients in
the representation ring.

For each irreducible kG-module V , let mV,i be the multiplicity of V as a com-
position factor of Mi . We set HV (M, t) :=

∑
∞

i=N mV,i t i .We choose a polynomial
subring k[d1, . . . , dn] of R as in Section 2. In fact the Laurent series HV (M, t) can
be written as a rational function.

Lemma 4.2. For each irreducible kG-module V , the Laurent series HV (M, t) can
be written as

HV (M, t)=
fV (M, t)∏n

i=1(1− t |di |)
,

where fV (M, t) is a Laurent polynomial in t with rational coefficients. If k is a
splitting field for V , then all the coefficients of fV (M, t) are integers.

Proof. Let PV be a projective cover of V . The graded k[d1, . . . , dn]-module

HomkG(PV ,M)

is a direct summand of the graded k[d1, . . . , dn]-module HomkG(kG,M) ∼= M .
This implies that HomkG(PV ,M) is finitely generated as a k[d1, . . . , dn]-module.
Therefore, by the Hilbert–Serre Theorem [Benson 1993, 2.1.1], the Hilbert series
H(HomkG(PV ,M), t) has the form

f̃V (t)∏n
i=1(1− t |di |)

for some Laurent polynomial f̃V (t) with integer coefficients. Since

dimk(HomkG(PV ,Mi ))= dimk(EndkG(V )) ·mV,i

we get

HV (M, t)=
1

dimk(EndkG(V ))
H(HomkG(PV ,M), t)

=
1

dimk(EndkG(V ))
·

f̃V (t)∏n
i=1(1− t |di |)

. (4-1)

If k is a splitting field for V then dimk(EndkG(V ))= 1. �
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Corollary 4.3. The equivariant Hilbert series [M] with coefficients in the repre-
sentation ring is of the form

[M] =
[ f ](M, t)∏n
i=1(1− t |di |)

,

where [ f ](M, t) is a Laurent polynomial with coefficients in R(kG)Q. If k is a
splitting field for G then all the coefficients of [ f ](M, t) are elements of R(kG).

Proof. This follows from Lemma 4.2. �

Now we can define the equivariant degree with values in the representation ring:

Definition 4.4. We call degR(kG) M :=
∑

V deg(HV (M, t)) |V | ∈ R(kG)Q the
equivariant degree of M (in the representation ring). Here the sum varies over
a set of representatives for the isomorphism classes of irreducible kG-modules. If
we want to emphasize the dependency on n, we also write degn

R(kG) M instead of
degR(kG) M .

We use the same notation for the two degrees, specifying the ring in which the
values lie explicitly when necessary. In any case the two versions are compatible
in the following sense. Let π : a(kG)Q � R(kG)Q denote the canonical map.

Proposition 4.5. The map π takes the equivariant degree of M in the Green ring
to the equivariant degree of M in the representation ring whenever the former is
defined.

Proof. Suppose that dega(kG) M is defined. For each U ∈ Indecomp(M) and each
irreducible kG-module V , let µU,V be the multiplicity of V as a composition factor
of U and choose a finite subset F of Indecomp(M) as in Lemma 3.8. We set∑

U 6∈F

dimk(U )HU (M, t) := H(M, t)−
∑
U∈F

dimk(U )HU (M, t),

∑
U 6∈F

µU,V HU (M, t) := HV (M, t)−
∑
U∈F

µU,V HU (M, t).

By Lemma 3.8 we get∑
V

(
dimk(V ) deg

∑
U 6∈F

µU,V HU (M, t)
)
= deg

∑
U 6∈F

dimk(U )HU (M, t)= 0, (4-2)

where the first sum runs over a set of representatives for the isomorphism classes of
the irreducible kG-modules. By Lemma 3.5 all degrees occurring in (4-2) are non-
negative. Hence deg

(∑
U 6∈F µU,V HU (M, t)

)
= 0 for all irreducible kG-modules

V . The epimorphism π maps the equivariant degree

dega(kG) M =
∑
U∈F

deg(HU (M, t))|U | ∈ a(kG)Q
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to∑
V

∑
U∈F

deg(HU (M, t))µU,V |V |

=

∑
V

∑
U∈F

deg(µU,V HU (M, t)) |V |

=

∑
V

(∑
U∈F

deg(µU,V HU (M, t))+ deg
∑
U 6∈F

µU,V HU (M, t)
)
|V |

=

∑
V

deg(HV (M, t)) |V |,

which is, by definition, the equivariant degree of M over the representation ring. �

5. Basic properties of the equivariant degree

In this section we collect some of the basic properties of the equivariant degree. We
always assume that R, G and M are as in Section 2 and that M ′ and M ′′ are finitely
generated graded left RG-modules, where the action of G preserves the grading
and every homogeneous component is finite dimensional as a k-vector space. We
choose a polynomial subring k[d1, . . . , dn] of R as in Section 2.

We begin with a trivial observation showing that the equivariant degree coincides
with the usual degree if there is “no group action”:

Lemma 5.1. If G = {1} is the trivial group then dega(kG) M is defined and

dega(kG) M = deg(M) |k|

where k is the trivial kG-module. A similar statement holds for degR(kG) M.

Proof. This is clear from the definition of the degree. �

From now on G is again an arbitrary finite group. The next lemma holds both
for the equivariant degree taking values in the Green ring as well as for the degree
taking values in the representation ring.

Lemma 5.2. If dega(kG) M is defined, then there is a positive integer c such that
c·dega(kG) M is a genuine module, that is, it is of the form |V | for some kG-module
V . A similar statement holds for degR(kG) M.

Proof. By the definition of dega(kG) M and Lemma 3.5, we can take c :=
∏n

i=1 |di |

for the degree with values in the Green ring. In the case of the representation ring,
c :=

(∏
V dimk EndkG(V )

)
·
(∏n

i=1 |di |
)

does the job (where V runs through a set
of representatives for the isomorphism classes of irreducible kG-modules). �
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Lemma 5.3. If M ′ ↪→ M � M ′′ is a short exact sequence of finitely generated
graded RG-modules that is split over kG, then dega(kG) M is defined if and only if
both dega(kG) M ′ and dega(kG) M ′′ are defined. If this is the case then

dega(kG) M = dega(kG) M ′+ dega(kG) M ′′.

The same formula with dega(kG) replaced by degR(kG) holds for any short exact
sequence.

Proof. Let U ∈ Indecomp(M). Then HU (M, t)= HU (M ′, t)+HU (M ′′, t) because
of the splitting. Thus∑
U∈F

dimk(U ) deg HU (M, t)

=

∑
U∈F

dimk(U ) deg HU (M ′, t)+
∑
U∈F

dimk(U ) deg HU (M ′′, t) (5-1)

with F as in Lemma 3.8. By additivity of the nonequivariant degree we have
deg M = deg M ′+deg M ′′. Since all these degrees are nonnegative by Lemma 3.5
we get that dega(kG) M is defined if and only if dega(kG) M ′ and dega(kG) M ′′ are
defined. In this case we get

dega(kG) M =
∑
U∈F

deg(HU (M, t)) |U |

=

∑
U∈F

deg(HU (M ′, t)) |U | +
∑
U∈F

deg(HU (M ′′, t)) |U |

= dega(kG) M ′+ dega(kG) M ′′.

(5-2)

The statement about the degree over the representation ring follows from

HV (M, t)= HV (M ′, t)+ HV (M ′′, t)

for every irreducible kG-module V . �

For W,W ′ ∈ R(kG)Q we write W ≤ W ′ if W ′ − W is a linear combination
of isomorphism classes of kG-modules with nonnegative rational coefficients. We
write W ≥W ′ if W ′ ≤W .

Corollary 5.4. For a finitely generated graded RG-module M , as at the begin-
ning of this section, the following properties hold for the degree with values in the
representation ring.

(1) If M ′ is a graded RG-submodule of M then degR(kG) M ′ ≤ degR(kG) M.

(2) If M ′ is a graded RG-epimorphic image of M then degR(kG) M≥degR(kG) M ′.

Proof. This follows from Lemmas 5.2 and 5.3. �
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For an integer d we write M[d] for M with a degree shift of d , so that M[d]i =
Mi+d . For a positive integer q let R[q] be the graded k-algebra obtained from R
by multiplying all degrees by q , that is, (R[q])iq = Ri and (R[q])i = 0 for all i
not divisible by q. Analogously, we can construct a graded R[q]G-module M [q]

with G-action from M by multiplying all degrees by q, that is, (M [q])iq = Mi and
(M [q])i = 0 for all i not divisible by q .

Lemma 5.5. With the above notation, the equivariant degree has the following
properties.

(1) If the Krull dimension of M is at most n − 1 then dega(kG) M is defined and
both dega(kG) M and degR(kG) M are equal to 0.

(2) dega(kG)(M[d]) is defined if and only if dega(kG) M is defined. If this is the
case then dega(kG)(M[d]) = dega(kG) M. We always have degR(kG)(M[d]) =
degR(kG) M.

(3) dega(kG)(M
[q]) is defined if and only if dega(kG) M is defined. If this is the case

then dega(kG)(M
[q]) = q−n dega(kG) M. We always have degR(kG)(M

[q]) =

q−n degR(kG) M.

Proof. (1) follows from the corresponding property of the nonequivariant degree
[Benson 1993, 2.4.1]. (2) and (3) are clear. �

Sometimes it is convenient to add an element z in degree 1 to R. Then R[z]⊗k M
is finitely generated over R[z], which has dimension n+ 1.

Lemma 5.6. The degree degn+1
a(kG)(R[z]⊗R M) is defined if and only if degn

a(kG) M
is defined, and if this is the case then they are both equal. Equality always holds
when dega(kG) is replaced by degR(kG).

Proof. Clear. �

Sometimes it is convenient to change the field k.

Lemma 5.7. Let ` be a field extension of k.

(1) If dega(kG) M is defined then so is dega(`G)(`⊗k M) and dega(`G)(`⊗k M)=
`⊗k dega(kG) M.

(2) If `/k is finite and L is a finitely generated graded (`⊗k RG)-module such
that dega(`G) L is defined then dega(kG)(L ↓

`
k)= (dega(`G) L) ↓`k .

(3) If `/k is finite and if dega(`G)(`⊗k M) is defined then so is dega(kG) M and
we have dega(kG) M = |` : k|−1(dega(`G)(`⊗k M)) ↓`k .

Proof. Only (3) needs any comment. Since (`⊗k M) ↓`k∼= M |`/k|, then by (2) we
get (dega(`G)(`⊗k M)) ↓`k= dega(kG)

(
M |`/k|

)
. But then dega(kG) M is defined and

the formula holds, by 5.3. �
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6. Further results

In this section R = k[d1, . . . , dn] is a graded polynomial ring with generators in
positive degrees. Unless otherwise stated the degree will always take values in the
Green ring.

We say that a map of R-modules dominates when the cokernel has dimension
strictly less than n. This is not consistent with the customary use of dominant in
algebraic geometry, but it is very convenient for us here.

Proposition 6.1. The degree dega(kG) M of a finitely generated graded RG-module
M is defined if and only if there is a finite-dimensional graded kG-submodule
X ⊆ M such that the multiplication map R⊗k X → M is injective and dominant
and the image is a summand over kG. If this holds then dega(kG) M = deg R · |X |.

Proof. Suppose that such an X exists; then dega(kG)(M/(R ⊗k X)) is defined
and equal to 0 by hypothesis (take F = ∅). We claim that dega(kG)(R ⊗k X) =
deg R · |X |.

It is easy to see that H(R⊗ X, t)= H(R, t)H(X, t), so

dega(kG)(R⊗k X)= lim
t→1

(
(1− t)n H(R, t)H(X, t)

)
= deg R · |X |.

By additivity (Lemma 5.3), dega(kG) M is defined and is equal to deg R · |X |.
Conversely, suppose that dega(kG) M is defined using a finite set F ⊆ Indecomp M .
Then, using the notation of the Weak Structure Theorem 3.1, we must have

deg
(⊕

U 6∈F

⊕
I⊆{1,...,n}

k[dI ]⊗k XU,I

)
= 0.

Thus we can take X =
⊕

U∈F XU,{1,...,n}. �

A lot of our work is made easier by the next easy, but surprising, result.

Proposition 6.2. If M is a finitely generated graded RG-module and X is a finite
dimensional graded kG-submodule such that the multiplication map R⊗k X→ M
is injective and dominates then the image is a summand over kG, so in particular
dega(kG) M is defined and is equal to deg R · |X |.

Proof. There is a homogeneous element z ∈ R that annihilates the cokernel. Con-
sider the composition of maps

R⊗k X −→ M
z
−→ zM ⊆ R⊗k X.

The image is z R⊗k X , and since z R is a k-summand of R it follows that the image
is a kG-summand of R⊗k X . Thus the image of R⊗k X in M is also a summand.

�
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Given a graded commutative ring S, let Q(S) denote the graded ring of fractions,
where we invert all the homogeneous elements. It is a Z-graded ring and Q(S)0
is a field. Q(S) = Q(S)0[z, z−1

], where z is an element of Q(S) of least positive
degree. Q(S) is flat over S.

Notice that if M is a finitely generated graded RG-module then Q(R)⊗R M is a
finitely generated Q(R)-module and in each degree it is a finite-dimensional vector
space over Q(R)0. In addition, Q(R)⊗R M = 0 if and only if dim M < dim R.

Proposition 6.3. Let M be a finitely generated graded RG-module. Then the
degree dega(kG) M is defined if and only if there is a finite-dimensional graded
kG-submodule X ⊆ Q(R)⊗R M such that Q(R)⊗R M = Q(R)⊗k X. If this is
the case then dega(kG) M = deg R · |X |.

Proof. If dega(kG) M is defined, we have a short exact sequence R⊗k X ↪→ M �
M/(R ⊗k X) with dim(M/(R ⊗k X)) < dim R, by Proposition 6.1. If we tensor
this with Q(R), we obtain Q(R)⊗k X ↪→ Q(R)⊗R M � Q(R)⊗R (M/(R⊗k X)).
But the last term must be 0.

Conversely, suppose that we have an X satisfying the conditions of the statement
of the proposition. Let {xi } be a k-basis for X and write xi =

∑
j (ai, j/bi, j )m j ,

where ai, j , bi, j ∈ R and m j ∈ M , all homogeneous. Let b̄ be the product of all the
bi, j . Then b̄X ⊆ M , and we have a short exact sequence

R⊗k b̄X ↪→ M � M/(R⊗k b̄X).

But when we tensor with Q(R) the first arrow becomes an isomorphism, so we
must have Q(R)⊗R (M/(R⊗k b̄X)) = 0 and thus dim(M/(R⊗k b̄X)) < dim R,
as required by 6.2. �

We now summarize the equivalent characterizations of the equivariant degree.

Theorem 6.4. Let M be a finitely generated graded RG-module. The following
conditions on M are equivalent.

(1) dega(kG) M is defined.

(2) There is a finite-dimensional graded kG-submodule X ⊆ M such that the
multiplication map R⊗k X→ M dominates and is split injective over kG.

(3) There is a finite-dimensional graded kG-submodule Y ⊆ M such that the
multiplication map R⊗k Y → M dominates and is injective.

(4) There is a finite-dimensional graded kG-submodule Z ⊆ Q(R)⊗R M such
that Q(R)⊗R M = Q(R)⊗k Z.

When these conditions hold we have |X | = |Y | = |Z | = 1
deg R

dega(kG) M.

Proof. Just combine 6.1, 6.2 and 6.3. �
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Lemma 6.5. Let R and R′ be polynomial rings in n and n′ variables respectively
and let M and M ′ be finitely generated graded RG- and R′G-modules respectively.
Let L be a finitely generated graded RH-module and let H be a subgroup of G.
The degree commutes with the following operations (when the quantity on the right
hand side is defined):

(1) tensor product: degn+n′
a(kG)(M ⊗k M ′)= degn

a(kG)(M) · degn′
a(kG)(M

′).

(2) restriction: dega(k H)(M ↓
G
H )= (dega(kG) M) ↓G

H .

(3) induction: dega(kG)(L ↑
G
H )= (dega(k H) L) ↑G

H .

(4) fixed points: dega(kG/H) M H
= (dega(kG) M)H if H is a normal subgroup

of G.

Proof. These all follow easily from property 6.4(3). �

In the remainder of this section we consider how Theorem 6.4 and Lemma 6.5
can be reformulated for the degree with values in the representation ring. Clearly
if one of the conditions in Theorem 6.4 is satisfied then Proposition 4.5 implies
that |X | = |Y | = |Z | = (1/ deg R) dega(kG) M also holds for the degree over the
representation ring. The analogue of Lemma 6.5 is the following lemma.

Lemma 6.6. With the same hypotheses as in the previous lemma, the degree with
values in the representation ring commutes with the following operations:

(1) tensor product: degn+n′
a(kG)(M ⊗k M ′)= degn

a(kG)(M) · degn′
a(kG)(M

′).

(2) restriction: dega(k H)(M ↓
G
H )= (dega(kG) M) ↓G

H .

(3) induction: dega(kG)(L ↑
G
H )= (dega(k H) L) ↑G

H .

Proof. This is straightforward and left to the reader. �

7. Rings

Throughout this section, S will be a graded ring in nonnegative degrees that is
finitely generated over the field k and such that S0 is finite-dimensional over k. We
suppose that a finite group G acts on S by graded k-algebra automorphisms.

Geometrically, G acts as a group of automorphisms of the projective variety
V = Proj(S), defined over k. Conversely, S could be the homogeneous coordinate
ring of a variety over k on which G acts.

The invariant subring SG is necessarily Noetherian and S is finitely generated
over SG [Benson 1993, 1.3.1]. By Noether normalization, we can find a graded
polynomial subring R ≤ SG such that SG is finitely generated over R [Benson
1993, 2.2.7]. Thus S is finitely generated over R, and S and R have the same
dimension. We need this ring R to exist in order for the preceding theory to apply,
but it does not matter which ring R we choose.



Equivariant Hilbert series 437

Proposition 7.1. If S is an integral domain and G acts faithfully, then dega(kG) S
is defined and

dega(kG) S =
deg S
|G|
· kG

and the same equality holds with dega(kG) S replaced by degR(kG) S.

Proof. In [Symonds 2000], a graded submodule F ≤ S is produced such that
F ∼= kG and such that the multiplication map SG

⊗k F ↪→ S dominates and is split
over kG. It follows from the Additivity Lemma 5.3 that

dega(kG) S = dega(kG)(S
G
⊗ F)= deg SG

· kG.

The proof for the degree with values in the representation ring is analogous.
There is an alternative proof that we sketch here. By Lemma 5.6, we may assume

that R contains an element z of degree 1. But S is an integral domain, so it injects
into Q(S), thus G acts faithfully on Q(S). Since Q(S) = Q(S)0[z, z−1

] and G
acts trivially on z, G must act faithfully on Q(S)0. By the Normal Basis Theorem
there is a basis {xg}g∈G for Q(S)0 over Q(S)G0 that is freely permuted by G.

But Q(S)0 is a finite-dimensional vector space over Q(R); let {yi } be a basis. If
we let X be the k-span of the set {yi xg}, then this is the module that we require. �

Let P0 denote the (finite) set of prime ideals in S of height 0.

Lemma 7.2. The natural map S→
⊕

p∈P0
S/p dominates and has rad S as kernel.

Proof. The radical is equal to the intersection of all the prime ideals, which is equal
to the intersection of the minimal ones.

We prove the claim of domination by labeling the distinct prime ideals of height
0 as p1, . . . , pm and showing by induction on r that the map S →

⊕r
i=1 S/pi

dominates.
This is clearly true when r = 1, and the induction step follows from considering

the following diagram with exact rows and columns.

S
/⋂r+1

i=1 pi −−−→ S
/⋂r

i=1 pi ⊕ S/pr+1 −−−→ S
/(⋂r

i=1 pi + pr+1
)∥∥∥ y y

S
/⋂r+1

i=1 pi −−−→
⊕r+1

i=1 S/pi −−−→ Xy y
Y Y

The induction hypothesis applied to the middle column shows that dim Y <

dim S, and dim S/
(⋂r

i=1 pi +pr+1
)
< dim S by construction. Thus dim X < dim S

and the middle row yields the next stage in the induction. �
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Given a prime p < S, let Gp denote the stabilizer in G of p and let Ḡp be the
pointwise stabilizer of S/p. We can now state a decomposition theorem for the
degree of S.

Theorem 7.3. If S contains no nilpotent elements then dega(kG) S is defined and

dega(kG) S =
∑

p∈P0/G
dim S/p=dim S

deg S/p
|Gp/Ḡp|

· k[G/Ḡp]

and the same equality holds with dega(kG) S replaced by degR(kG) S.

Proof. In view of Proposition 7.1, Lemma 7.2 and Theorem 6.4, all we need to do
is to show that dega(kG)

(⊕
p∈P0

S/p
)

is equal to the expression shown.
But ⊕

p∈P0

S/p∼=
⊕

p∈P0/G

⊕
q∼Gp

S/q∼=
⊕

p∈P0/G

IndG
Gp

S/p.

So

dega(kG)(
⊕
p∈P0

S/p)∼=
⊕

p∈P0/G

degG IndG
Gp

S/p

∼=

⊕
p∈P0/G

IndG
Gp

degGp
S/p by Lemma 6.5(3)

∼=

⊕
p∈P0/G

IndG
Gp

deg S/p
|Gp/Ḡp|

· k[Gp/Ḡp] by Proposition 7.1

∼=

⊕
p∈P0/G

deg S/p
|Gp/Ḡp|

· k[G/Ḡp].

We can omit from the sum the primes p for which dim S/p 6= dim S, since for these
deg S/p= 0. �

Geometrically, the permutation modules that occur in the statement of the theo-
rem correspond to the way that the group permutes the irreducible components of
maximum dimension of the projective variety Proj(S).

Now suppose that the action of G on S can be written over a finite field Fq . Recall
from Lemma 5.5 that the operation of multiplying all degrees by q gives us a new
ring S[q] with G-action and degR(kG) S[q] = q−n degR(kG) S and dega(kG) S[q] =
q−n dega(kG) S. Let Sq < S denote the subring of q-th powers. There is a surjection
S[q]→ Sq and this is an isomorphism if rad S = 0.

Lemma 7.4. We have degR(kG) Sq
≤q−n degR(kG) S and if S contains no nilpotents

then dega(kG) Sq
= q−n dega(kG) S.

Proof. This follows from the preceding remarks and the Additivity Lemma 5.3. �
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8. Group cohomology

In this section we apply some of the theory that we have developed to a problem
in group cohomology considered by Nick Kuhn [2008]. We fix a prime p and a
finite group P (we do not yet require P to be a p-group). Then G = Aut(P) acts
on the graded commutative ring H∗(P)= H∗(P; Fp).

By the Evens–Venkov theorem (see [Benson 1991, 3.10, 4.2], for example),
H∗(P) is Noetherian, hence so is H∗(P)G , thus H∗(P) is certainly finitely gener-
ated over some commutative polynomial ring R such that the action of G commutes
with that of R; we can assume that dim R = dim H∗(P).

Given a p-group P and a simple G-module V , Martino and Priddy [1992]
asked whether the dimension of V as a composition factor of H∗(P) is equal
to dim H∗(P) (see also [Kuhn 2008]). It was already known from [Diethelm and
Stammbach 1984; Harris and Kuhn 1988; Symonds 1999] that V does occur in
H∗(P).

Theorem 8.1 [Kuhn 2008]. For p odd, the dimension of V as a composition factor
of H∗(P) is equal to the dimension of H∗(P).

The case of p = 2 is still undecided. Kuhn’s methods used the nilpotent filtration
of the category of unstable modules over the Steenrod algebra. We will show how
this theorem can be proved using the equivariant degree. Clearly what we need to
do is to show that V occurs as a composition factor of degR(FpG) H∗(P).

For any finite elementary abelian p-group E , let F∗(E)= H∗(E)/ rad, which is
just the symmetric algebra Fp[E] = S∗(E∗), where E∗ =Hom(E, Fp) is in degree
2 (or degree 1 if p = 2).

In general, let
F∗(P)= lim

←−
E∈Ap(P)

F∗(E),

where Ap(P) denotes the category with objects the elementary abelian subgroups
of P and morphisms the inclusions between them. G acts naturally on this.

Quillen [1971] (see also [Benson 1991, 5.6]) showed that the natural map in-
duced by restrictions, r : H∗(P)→ F∗(P)P is a purely inseparable isogeny (or
uniform F-isomorphism): that is that the kernel is nilpotent and there is an integer
N such that (F∗(P)P)pN

⊆ Im(r). From this he deduced that dim H∗(P) is equal
to the p-rank of P , which we will denote by n.

Consider what this means for the degree with values in the representation ring.
We have degR(FpG) H∗(P) ≥ degR(FpG) Im(r) ≥ degR(FpG)

(
(F∗(P)P)pN )

using
Lemma 5.3. By Lemma 7.4 we have

dega(FpG)
(
(F∗(P)P)pN )

=
1

pNn dega(FpG) F∗(P)P ,
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since F∗(P) contains no nilpotent elements.
Now we see that dega(FpG) F∗(P)P

=
(
dega(FpG) F∗(P)

)
P by Lemma 6.5(4).

We conclude that it is sufficient to show that dega(FpG) F∗(P) contains every
simple G-module as a submodule. But the Decomposition Theorem 7.3 tells us
that

dega(FpG) F∗(P)=
∑

E∈Ap(P)/G
rank E=n

deg S/pE

|NG(E)/CG(E)|
· Fp[G/CG(E)],

where pE denotes the ideal corresponding to E . Since each E in the sum has
maximal rank, deg(S/pE) 6= 0. Suppose that some CG(E) is a p-group. Then

HomG(V, Fp[G/CG(E)])∼= HomCG(E)(V, Fp) 6= 0,

so V does occur in dega(FpG) F∗(P) and we are done. That this always happens
when p is odd is the content of the next lemma, which appears as [Kuhn 2008,
2.3], although we first learnt it from Benson (private communication) in 1996. We
include the proof for the convenience of the reader.

Lemma 8.2. If p is odd and E is maximal then CG(E) is a p-group.

Proof. Consider the composition of homomorphisms

CG(E)
α
→ Aut(CP(E))

β
→ Aut(E).

The composition is trivial, so it suffices to prove that the kernel of each map is
a p-group. For β we use the result that if p is odd and Q is a p-group then the
kernel of the map Aut(Q)→Aut(�1(Q)) is a p-group [Gorenstein 1968, 5.3.10].
(This is the only place in this section where the argument requires p to be odd.)

For α we use Thompson’s A×B Lemma [Gorenstein 1968, 5.3.4], which states
that for any p-group P , if A× B ⊆ Aut(P) with A a p′-group and B a p-group
such that A acts trivially on CP(B), then A = 1. We apply this with A some p′-
subgroup of Ker(α) and B the image of E in G. �

9. Further results on the degree with values in the representation ring

We assume that k is a splitting field for the group G, but we do not need R to be
polynomial.

Let V be a simple kG-module and let M be a finitely generated graded RG-
module. Let MV denote the part of M that is generated by submodules isomorphic
to V .

Lemma 9.1. HomkG(V,M)⊗k V ∼= MV by the map f ⊗ v 7→ f (v).
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Proof. Since HomkG(V,M)∼=HomkG(V,MV ) we may assume that M =MV . But
now the claimed isomorphism is additive in MV , and MV is just a direct sum of
submodules isomorphic to V , so we are reduced to the case where MV = V . But
now it holds by the assumption that k is a splitting field, so EndkG(V )∼= k [Curtis
and Reiner 1981, 7.14]. �

The next result is an equivariant analogue of [Hartshorne 1977, I 7.4].

Proposition 9.2. Let M be a finitely generated graded RG-module. Then M has
a finite filtration 0= M0 ≤ M1 ≤ · · · ≤ Mm = M by graded RG-submodules such
that Mi/Mi−1 ∼= R/pi [`i ] ⊗k Vi , where pi is a homogeneous prime ideal of R and
Vi is a simple kG-module.

(1) The minimal elements among the pi occurring are the minimal primes for M.

(2) For each minimal prime p of M , let k(p) denote the quotient field of R/p. For
each simple kG-module V , the number of times that R/p⊗k V occurs as a
composition factor of the filtration is equal to the number of times that the sim-
ple RpG-module k(p)⊗k V occurs as a composition factor of the localization
Mp, hence is independent of the filtration.

Proof. Let p be an associated prime of HomRG(V,M), so it is the annihilator
of some φ : V → M . Thus we have an injection of graded RG-modules R/p ↪→
HomRG(V,M), r 7→rφ and hence an injection R/p⊗kV ↪→HomRG(V,M)⊗V .

By Lemma 9.1 this leads to an injection R/p⊗k V ↪→ M ; denote its image by
M1.

Now repeat the process with M/M1, and let M2 be the inverse image in M of
the resulting submodule. In this way we obtain an ascending sequence of graded
RG-submodules of M , which must terminate since M is Noetherian.

Notice that this filtration can be refined to a nonequivariant one by filtering the
V . Thus (1) follows from the nonequivariant case.

For (2), let q be a minimal prime and consider what happens when we localize
at q. If pi 6= q then (R/pi )q = 0, since q is minimal in {p1, . . . , pm}. If pi = q then
(R/q)q = k(q) and (R/q⊗k V )q = k(q)⊗k V . This is a simple SqG-module since
k is a splitting field. �

Write m(p, V,M) for the number of times that R/p⊗kV occurs as a factor in a
filtration of M of the type considered in the proposition above.

Corollary 9.3. degR(kG) M =
∑

dim R/p=dim M

m(p, V,M) deg(R/p) · |V |.

There are some straightforward reduction methods for calculating the degree
with values in the representation ring.
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Lemma 9.4. Let f ∈ R be homogeneous and let M be a finitely generated graded
RG-module of dimension m. Suppose that the dimension of the kernel of the mul-
tiplication map φ f : M → M, m 7→ f m, has dimension at most m − 2. Then
degm−1

R(kG)(M/ f M)= | f | degm
R(kG) M.

Proof. There is a short exact sequence ker(φ f )→ M
φ f [| f |]
→ f M

[
| f |
]
, where

[
| f |
]

denotes the degree shift needed to make all the maps degree preserving. Thus[
f M[| f |]

]
= [M] + O((1−t)−(m−2)) as a Laurent series in 1−t and so [ f M] =

t | f |[M] + O((1−t)−(m−2)).
There is also a short exact sequence f M → M → M/ f M , so [M/ f M] =
[M] − [ f M].

Combining, we find that [M/ f M] = [M] − t | f |[M] + O((1−t)−(m−2)). Thus

degm−1
R(kG)[M/ f M] = lim

t→1
(1− t)m−1

· (1− t | f |)[M]

= lim
t→1

1− t | f |

1− t
· (1− t)m[M] = | f | degm

R(kG) M. �

Our last result follows by repeated use of this lemma.

Proposition 9.5. Let M be a finitely generated graded RG-module of dimension
m and suppose that f1, . . . , fr ∈ R is an M-regular sequence of homogeneous
elements. Then

degm
R(kG) M =

∏
| fi | · degm−r

R(kG)

(
M/( f1, . . . , fr )M

)
.
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Syzygies of the secant variety of a curve
Jessica Sidman and Peter Vermeire

We show the secant variety of a linearly normal smooth curve of degree at least
2g+ 3 is arithmetically Cohen–Macaulay, and we use this information to study
the graded Betti numbers of the secant variety.

1. Introduction

We work throughout over an algebraically closed field of characteristic 0. A well-
known result dating back to Castelnuovo states that if C ⊂ Pn is a linearly normal
curve of genus g with deg C ≥ 2g+ 1, then C is projectively normal and hence is
arithmetically Cohen–Macaulay (ACM). Our main result is this:

Theorem 1. If C ⊂ Pn is a smooth linearly normal curve of genus g and degree
d ≥ 2g+ 3, then its secant variety 6 is ACM.

Using the Auslander–Buschbaum theorem [Eisenbud 1995, §19], this tells us
that a minimal free resolution of the coordinate ring of 6, S6 , has length equal
to codim6, and the remainder of this paper is devoted to studying the syzygies
among the defining equations of 6.

To describe our results on syzygies more precisely, we set up some notation.
Let S = k[x0, . . . , xn]. Any finitely generated S-module M has a minimal free
resolution

0→
⊕

S(− j)βr, j → · · · →
⊕

S(− j)β1, j →
⊕

S(− j)β0, j → M→ 0,

where the graded Betti numbers βi, j are uniquely determined by minimality. It is
convenient to display the βi, j in a graded Betti diagram in which the (i, j) entry is
βi,i+ j .

0 1 2 3

0 β0,0 β1,1 · · ·

1 β0,1 β1,2 · · ·

2 β0,2 β1,3 · · ·

MSC2000: primary 13D02; secondary 14N05, 14H99, 14F05.
Keywords: syzygies, secant varieties, projective curves, graded Betti numbers.
Sidman is partially supported by NSF grant DMS 0600471 and the Clare Boothe Luce Program.
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As in [Eisenbud 2005] we say that the Betti numbers βi,i+k in the i th row of the
Betti diagram form the degree k + 1 linear strand if M = S/I for some homo-
geneous ideal I . In this case, β1,k+1 is the number of minimal generators of I in
degree k + 1. (For an arbitrary module, M , it might make more sense to call this
the degree k linear strand.)

It is useful to recast several notions from the geometric literature in terms of the
graded Betti diagram. Suppose that a variety X ⊂ Pn is projectively normal with
an ideal generated by quadrics. Then for p ≥ 1 it satisfies Green’s condition Np

[Green 1984] if for all i ≤ p, βi j = 0 unless j = i + 1. Eisenbud et al. [2005]
extended this notion to a variety X with ideal generated in degree k, so that X
satisfies Nk,p if for all i ≤ p, βi j = 0 unless j = i + k−1. Thus, the only nonzero
entries in columns one through p of a Betti diagram of a variety satisfying Nk,p are
in row k − 1. The Castelnuovo–Mumford regularity [Mumford 1966], or simply
regularity, of a module can also be defined in terms of graded Betti numbers. A
module is m-regular if βi,m+i = 0 for all i > 0, which is equivalent to stating that
its Betti diagram is zero in all rows greater than m.

If C ⊂Pn is a linearly normal curve of genus g and degree d ≥ 2g+3, we obtain
several results as consequences of the Cohen–Macaulay condition. In Corollary 3.9
we show that if reg I6 < 5, then C is rational and reg I6 = 3. We give explicit
formulas for several graded Betti numbers in Corollary 4.1 and Proposition 4.4,
showing that

• β1,3 =
(n+1

3

)
− (d − 2)n− 3g+ 1.

• β2,4 = β1,4+β1,3(n+ 1)−
(n+4

n

)
+ P6(4).

• βn−3,n+1 =
(g+1

2

)
.

Note that via Theorem 1 there are exactly n− 3 syzygy modules in the resolution
of S6 , and if g ≥ 1, then Corollary 3.9 implies that the final syzygy module is
generated by elements of degree ≤ n+1. Thus, βn−3,n+1 is the bottom right corner
of the graded Betti diagram, and it depends only on the genus of the curve.

We compute the Hilbert polynomial of S6 by relating it to the Hilbert polynomial
of a curve of degree D and genus G gotten by intersecting 6 with a plane of
codimension 2.

Theorem 1.1. The Hilbert polynomial of S6 agrees with its Hilbert function for
all positive integers and is given by

D
(

m+ 2
3

)
+ (1−G)

(
m+ 1

2

)
+α1m+α0,

where α1=
(n+2

2

)
−(n+1)−3D−2(1−G) and α0=−

(n+2
2

)
+2(n+1)+2D+1−G.
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We also obtain a nonvanishing result on the graded Betti numbers of higher
secant varieties.

Theorem 1.2. Let C be a smooth curve of genus g embedded into Pn via a line
bundle L of degree d ≥ 2g+ 2k + p+ 1 and 6k be its variety of secant k-planes.
Suppose that L= L1⊗L2 where |L1|= s≤|L2|= t . If s+1≥ k+2, then the length
of the degree k+2 linear strand of S6k is at least s+t−2k−1. In particular, if L is
a general line bundle of degree d ≥ 2g+2k+ p+1, then βs+t−2k−1,s+t−k(6k) 6= 0.

We briefly sketch part of the picture of what is known about syzygies of high
degree curves to put our results in context. The homogeneous coordinate ring
of a curve of degree at least 2g + 1 is 1-regular if g = 0 and has regularity two
otherwise. From [Green 1984; Green and Lazarsfeld 1985; 1988] we know that
if d ≥ 2g+ 1+ p, then the curve satisfies Np. By a result of Schreyer [Eisenbud
2005, Theorem 8.17], we know that βp+bg/2c,p+bg/2c+1 is nonzero. Furthermore,
as a consequence of duality, the “last” graded Betti number is βn−1,n+1 = g. (See
[Eisenbud 2005, Chapter 8] for a nice discussion.)

Based on what we have seen we extend and refine the conjectures in [Vermeire
2008b] as follows:

Conjecture 1.3. Suppose that C ⊂ Pn is a smooth linearly normal curve of genus
g and degree d ≥ 2g+ 2k+ 1+ p, where p, k ≥ 0. Then

(1) 6k is ACM and has regularity (2k+ 2) unless g = 0, in which case the regu-
larity is k+ 1.

(2) βn−2k−1,n+1 =
(g+k

k+1

)
.

(3) 6k satisfies Nk+2,p.

As described above, the full conjecture is known to hold for k = 0. Further, by
[Graf von Bothmer and Hulek 2004] and [Fisher 2006] it holds for g ≤ 1. In this
work, we show that parts (1) and (2) hold for k = 1. After the completion of this
work, progress on part (3) was made for k = 1 [Vermeire 2008a]. We illustrate the
behavior that we have seen with the example below.

Example 1.4. At the suggestion of D. Eisenbud we used ideas of F. Schreyer to
compute the ideal of a genus 2 curve embedded in P7. Let C be a plane curve of
degree 5 with 4 nodes. If we blow up the four nodes in P2 and consider the linear
system |5H − 26Ei |, where H is the proper transform of a hyperplane and the
Ei are the exceptional divisors of the blow-up, the restriction of this system to the
proper transform C of C has degree 9= 2g+ 5, and embeds C ⊂ P7 as a smooth
curve of genus 2. Using Macaulay 2 [Grayson and Stillman] we can write down
a basis of |5H − 26Ei | over the rationals. We display the Betti diagram of the
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coordinate ring, where “−” denotes a zero entry.

0 1 2 3 4 5 6

0 1 − − − − − −
1 − 19 58 75 44 5 −
2 − − − − − 6 2

Note that the quadratic strand of the resolution has length 5 but that the curve
satisfies N4 but not N5.

Using code developed for [Sidman and Sullivant 2006], we computed the ideal
of 6. From the Betti diagram we see that the cubic strand of the resolution has
length 2 and that β4,8 = 3 as predicted by Conjecture 1.3.

0 1 2 3 4

0 1 − − − −
1 − − − − −
2 − 12 16 − −
3 − − − 4 −
4 − − − 4 3

Comparing the diagram to the statement of Corollary 4.7, we see that the three
unknowns at the tail of the resolution are all zero here as in Example 4.8. �

We give a brief outline of the structure of the paper. The ACM condition is
treated in §3. To understand the ACM condition, we work geometrically to show
that cohomology groups vanish. The key observation is that there is a desingu-
larization 6̃ → 6 such that 6̃ is a P1-bundle over the symmetric square of C ,
which we denote by S2C , and hence the cohomology of the structure sheaf of 6̃
is the same as that of S2C , which is easier to understand. As 6 has nonrational
singularities, the higher direct image sheaves of the ideal of 6̃ do not vanish, but
there is another divisor whose ideal sheaf has the same direct image and whose
higher direct images do vanish. (See Lemma 2.4). Making the exact relationships
between these objects precise is the bulk of our work. The technical preliminaries
are summarized in Section 2. We examine the graded Betti diagram of S6 in
Section 4.

To improve readability we have written out some arguments which are surely
well-known to experts, but are perhaps not easily available in the standard refer-
ences.

2. Setup and notation

Suppose that X ⊂Pn is a variety. We let OX and IX denote the structure sheaf and
ideal sheaf of X . The homogeneous coordinate ring of Pn is S= k[x0, . . . , xn]. We



Syzygies of the secant variety of a curve 449

let IX =
⊕

H 0(Pn,IX (d)) and SX = S/IX . We let H denote a general hyperplane
in Pn and its pullback under a morphism. We write O(k) for O(k H) when no
confusion will arise. We may write H i (F) for H i (X,F) and hi (F) for hi (X,F)

if the meaning is clear.
Let C be a smooth curve of genus g. Throughout, L is a very ample line bundle

on C embedding it as a linearly normal curve in Pn
= P(H 0(C, L)) with degree

d = deg L .
A line bundle L on a smooth curve C is said to separate k points if

h0(C, L(−Z))= h0(C, L)− k for all Z ∈ SkC,

where SkC is the kth symmetric product of C . We let 6k denote the variety of
(k+ 1)-secant k-planes to C and write 6 for the variety 61.

We recall the first stages of a construction of Aaron Bertram which provides the
geometric framework for our results.

Theorem 2.1 [Bertram 1992, Theorem 1]. Suppose that L separates 4 points. Let
g : B1→ B0 = Pn be the blowup of B0 along C with 6̃ the proper transform of 6.
Let h : B2→ B1 be the blowup of B1 along 6̃ and Ei be the proper transform in
Bi of each exceptional divisor. We further let f = g ◦ h.

Then 6̃ ⊂ B1 is smooth and irreducible, and transverse to E1, so in particular
B2 is smooth. Moreover, by Terracini recursiveness, if x ∈ 6 \C , then f −1(x) ∼=
P(H 0(C, L(−2V ))), where V is the unique divisor of degree 2 whose span con-
tains x. If x ∈ C , then f −1(x) is isomorphic to the blowup of P(H 0(C, L(−2x)))
along the image of C embedded by L(−2x). �

Remark 2.2. Bertram’s construction continues, blowing up the strict transform of
each 6k successively, so that a fiber over a point of C of the composition is Pn−2

in which we have blown up copies of 6i for i = 0, . . . , k − 1 and the degree of
60 = C is two less than the degree of the original embedding. We will abuse
notation in the hopes of highlighting the recursive nature of the construction and
denote the restriction of Ei to a fiber F of the composition using the notation of
our setup relative to the blowing up that has occurred within F . For example, if
x ∈ C and F = f −1(x), we will write OB2(E2)|F = OF (E1), keeping in mind that
“E1 ⊂ F” is the exceptional divisor of Pn−2 blown up at C where the degree has
already dropped by two.

A key point in what follows is that 6̃ is a resolution of singularities of 6, and
is a P1-bundle over S2C in a natural way. We summarize this relationship:

Lemma 2.3. The variety 6̃ ⊂ B1 is a resolution of singularities g : 6̃→ 6 with
the following properties:

(1) g∗O6̃ = O6 .
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(2) Z := E1 ∩ 6̃ ∼= C ×C.

(3) The restriction g : C ×C→ C is projection onto one factor.

(4) The restriction of the linear system |2H−E1| to 6̃ yields a morphism π : 6̃→
S2C realizing 6̃ as a P1-bundle over S2C. The restriction of this morphism
to Z ∼= C ×C is the canonical double cover d : C ×C→ S2C.

(5) If we define δ by d∗OS2C
(
δ
2

)
= OC×C(1), then d∗OC×C = OS2C ⊕OS2C

(
−
δ
2

)
.

(6) If F is a fiber of the P1-bundle π : 6̃→ S2C , then

OF (aH − bE1)= OP1(a− 2b).

Proof. The first is [Vermeire 2002, 3.2], the second and third are [Vermeire 2001,
3.7], the fourth is [Vermeire 2001, 3.8]. Part (5) follows from [Barth et al. 2004,
V.22]. For (6), note that each fiber F is the proper transform of a secant line, hence
the intersection with a hyperplane is 1, while the intersection with the exceptional
divisor is 2 (since each secant or tangent line intersects C in a scheme of length
two). �

Lemma 2.4. With hypotheses and notation as above:

(1) 6 ⊂ B0 is normal and is smooth away from C.

(2) f∗OB2 = OB0 and R j f∗OB2 = 0 for j ≥ 1.

(3) Ri f∗OB2(−E2)=


I6 i = 0,

H 1(C,OC)⊗OC i = 2,

0 i 6= 0, 2.

(4) Ri g∗OB1(−m E1)= Ri h∗OB2(−m E2)= 0 for i > 0 and m ≥ 0.

(5) Ri g∗I6̃ = Ri f∗OB2(−E2).

(6) Ri f∗OB2(−E1− E2)= I6/Pn for i = 0 and is zero otherwise.

Proof. The first two can be found in [Vermeire 2002, 3.2], while the third is [Ver-
meire 2008b, Proposition 9] and the fourth is [Lazarsfeld 2004, Lemma 4.3.16].
Part (5) follows immediately from (4) and a degenerate case of Grothendieck’s
composition of functors spectral sequence [Grothendieck 1957].

For the sixth item, we compute sheaves Ri f∗OE1(−E2) and use them to show
the claim via

0→ OB2(−E1− E2)→ OB2(−E2)→ OE1(−E2)→ 0.

Since E1→C is flat, the locally free sheaf OE1(−E2) is also flat over C . Thus,
we can compute higher direct images via cohomology along the fibers of f re-
stricted to E1 by [Hartshorne 1977, Corollary III.12.9]. By the Terracini recursive-
ness portion of Theorem 2.1, if x ∈ C , a fiber F = f −1(x) is the blowup of C in
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PH 0(C, L(−2x)) and E2 intersects F in the exceptional divisor E1 of this blowup.
As H i (F,OF (−E1)) = H i (P(H 0(C, L(−2x))),IC), H i (F,OF (−E1)) vanishes
for i = 0, 1, and h2(P(H 0(C, L(−2x))),IC)= h1(C,OC)= g. We conclude that
Ri f∗OE1(−E2)= 0 for i = 0, 1 and that for i = 2 it is locally free of rank g. Note
that by part (5), R2 f∗OB2(−E2) is also locally free of rank g. Therefore, if the map
between them is a surjection, it is an isomorphism.

To get the surjectivity above we show R3 f∗OB2(−E1− E2)= 0 by looking at

0→ OB2(−E1− E2)→ OB2(−E1)→ OE2(−E1)→ 0. (1)

Applying h∗, the projection formula and the observation that E2→ 6̃ is a projective
bundle, we see that

0→ I6̃(−E1)→ OB1(−E1)→ O6̃(−E1)→ 0

is exact and all higher direct images vanish. If we apply g∗ we get

→ R2g∗O6̃(−E1)→ R3g∗I6̃(−E1)→ R3g∗OB1(−E1)→,

where the left-hand term vanishes because 6̃→6 has fibers of dimension at most
one, and the right-hand term vanishes by (4). �

We will use Lemma 2.5 to show that H 1(6,O6(2))= 0 in Theorem 3.3.

Lemma 2.5. Let L be a very ample line bundle on a variety X with H i (X, L)= 0
for i > 0, E a locally free sheaf on X. Let ϕ : X → Pn

= P(H 0(X, L)) be the
induced morphism.

(1) H i (X × X, (L � E)⊗I1)= H i (X, ϕ∗�1
Pn ⊗ L ⊗ E).

(2) H i (X × X, (L � E)⊗I2
1)= H i (X, N ∗X/Pn ⊗ L ⊗ E).

Proof. Applying (π2)∗ to the exact sequence

0→ (L � E)⊗I1→ L � E→ (L � E)⊗O1→ 0

yields a twist of the Euler sequence on X :

0→ ϕ∗�1
Pn ⊗ L ⊗ E→ H 0(X, L)⊗ E→ L ⊗ E→ 0

Note that the hypothesis H i (X, L) = 0 and the fact that L is globally generated
imply that all higher direct images vanish, and part (1) follows immediately.

As O1⊗I1 = N ∗1 =�
1
X ; applying (π2)∗ to the exact sequence

0→ (L � E)⊗I2
1→ (L � E)⊗I1→ (L � E)⊗ N ∗1→ 0

yields a twist of the conormal sequence on X :

0→ N ∗X/Pn ⊗ L ⊗ E→ ϕ∗�1
Pn ⊗ L ⊗ E→�1

X ⊗ L ⊗ E→ 0
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Note that the hypothesis H i (X, L)= 0 and the fact that L is very ample imply that
all higher direct images vanish, and part (2) follows similarly. �

3. 6 is ACM

The main goal of this section is the proof of Theorem 1. As a consequence of our
work we get Corollary 3.4 showing that 6 is projectively normal. We will work
throughout with the following hypothesis.

Hypothesis 3.1. Let C ⊂ Pn be a smooth linearly normal curve of genus g and
degree d ≥ 2g+ 3.

Using the Serre–Grothendieck correspondence between local and global coho-
mology, the depth of the maximal ideal on the homogeneous coordinate ring of
6⊂Pn can be measured by vanishings of global cohomology groups. We see that
6 is ACM if and only if H i (Pn,I6(k)) = 0 for all k and for 0 < i ≤ dim6 (for
example, [Eisenbud 1995, Example 18.16]). In light of [Vermeire 2008b] where it
is shown that I6 is 5-regular, in order to show that 6 is ACM we are left to show
that H i (6,O6(k)) = 0 for i = 1, 2 and all k ≤ 3− i . In what follows we handle
the required cohomological vanishing cases individually.

3A. Vanishings for k < 0. The vanishings needed for k < 0 follow easily from
Kawamata–Viehweg vanishing together with part (3) of Lemma 2.4. We write the
5-term sequence associated to the Leray spectral sequence (applying Theorem 2.1)
to the map g : 6̃→ 6 as it will be crucial in what follows (note that the first and
fourth terms follow by part (1) of Lemma 2.3).

0→ H 1(6,O6(k))→ H 1(6̃,O6̃(k))→ H 0(6, R1g∗O6̃(k))

→ H 2(6,O6(k))→ H 2(6̃,O6̃(k)) (2)

Theorem 3.2. If C satisfies Hypothesis 3.1, then H i (6,O6(k))= 0 for k < 0 and
i = 1, 2.

Proof. We know that g∗O6(1)=O6̃(1) is big and nef on 6̃; hence H i (6̃,O6̃(k)) is
0 for k<0 and i<3 by Kawamata–Viehweg vanishing. Using the sequence (2), we
have the claimed vanishing for i = 1 immediately. As R1g∗O6̃ ∼= H 1(C,OC)⊗OC

by Lemma 2.4 (3–5), we have H 0(6, R1g∗O6̃(k))=H 1(C,OC)⊗H 0(C,OC(k))=
0, and the vanishing for i = 2 also follows. �

3B. Vanishings of H1(6, O6(k)) for k > 0. All of the remaining vanishings ex-
ploit the structure of 6̃ as a P1-bundle over S2C . Given work of the second author
in [Vermeire 2008b], the projective normality of 6 follows by exploiting Terracini
recursion as a corollary of the next result.

Theorem 3.3. If C satisfies Hypothesis 3.1, then H 1(6,O6(2))= 0.
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Proof. We show that H 2(Pn,I6(2))= 0.
Since O(2H−E) is trivial along the fibers of π : 6̃→ S2C , O6̃(2H − E)= π∗M

for some line bundle M on S2C [Hartshorne 1977, Exercise III.12.4]. We know
from [Vermeire 2002, 3.6] that

O6̃(2H − E)⊗OZ ∼= π
∗M ⊗OZ ∼= L � L ⊗OZ (−21).

Further restricting π to the double cover d : C × C → S2C , by the projection
formula and part (5) of Lemma 2.3 we have

H i (Z , L � L ⊗OZ (−21))= H i (S2C,M)⊕ H i
(

S2C,M ⊗OS2C

(
−
δ

2

))
.

Again by the projection formula, we know that H i (6̃,O(2H−E))= H i (S2C,M).
By Lemma 2.5, we have H i (Z , L � L ⊗ OZ (−21)) ∼= H i (C, N ∗C(2)). Thus
we immediately have H 2(Z , L � L ⊗ OZ (−21)) = 0, but this in turn implies
H 2(S2C,M)= H 2(6̃,O(2H − E))= 0.

Let LL be the line bundle on S2C such that d∗LL = L � L (see [Kouvidakis
2002, §2.1], for example). Now, as L � L ⊗ OZ (−1) = d∗

(
LL ⊗ OS2C

(
−
δ
2

))
, we

know that

d∗
(
(L � L)⊗OZ (−1)

)
=

[
LL ⊗OS2C

(
−
δ
2

)]
⊕

[
LL ⊗OS2C

(
−2δ

2

)]
=

[
LL ⊗OS2C

(
−
δ
2

)]
⊕M.

Again by Lemma 2.5 we know that

H 1(C ×C, L � L ⊗OZ (−1))= H 1(C, �1
Pn (2)⊗OC)= 0,

where the vanishing comes from quadratic normality of the embedding of C . Thus
H 1(S2C,M)= H 1(6̃,O6̃(2H − E))= 0.

We see immediately that H 2(B1,I6̃(2H)) = H 1(6̃,O6̃(2H)), and from the
sequence

0→ O6̃(2H − E)→ O6̃(2H)→ O6̃(2H)⊗OE → 0

and the (just proved) fact that H i (6̃,O6̃(2H−E))= 0 for i = 1, 2 implies further
that H 2(B1,I6̃(2))= H 1(6̃,O6̃(2)⊗OE). A straightforward computation gives

h1(6̃,O6̃(2H)⊗OE)= h1(C ×C, L2�OC)

= h0(C, L2) · h1(C,OC)

= h0(C, H 1(C,OC)⊗ L2)

= h0(Pn, R2g∗I6̃(2)).

Therefore, h2(B1,I6̃(2))= h0(Pn, R2g∗I6̃(2)).
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Interpreting what we have just shown in terms of the Leray–Serre spectral se-
quence associated to g∗I6̃(2), we have h2(B1,I6̃(2))= dim E0,2

2 . We also know
that R1g∗I6̃(2) = 0 by the projection formula and Lemma 2.4 (3) and (5). Thus,
at the E2 level, where we have

0→ E0,1
2

d2
→ E2,0

2 → 0 and 0→ E0,2
2

d2
→ E2,1

2 → 0,

we see that E2,0
2 = E2,0

∞
and E0,2

2 = E0,2
∞

because H i (Pn, R1g∗I6̃(2))= 0. Recall
[Weibel 1994, 5.2.6] that H 2

:= H 2(B1,I6̃(2)) has a finite filtration

0= F3 H 2
⊆ F2 H 2

⊆ F1 H 2
⊆ F0 H 2

= H 2,

where F2 H 2 ∼= E2,0
∞

and H 2/F1 H 2 ∼= E0,2
∞

.
Now, because dim H 2

= dim E0,2
2 = dim E0,2

∞
, we have F1 H 2

= 0, but this
implies that F2 H 2

= E2,0
∞
= 0, and hence that E2,0

2 = 0. �

In [Vermeire 2008b] it was shown that for the general embedding of degree at
least 2g+3,6 is projectively normal; the only vanishing that could not be shown to
always hold was H 1(Pn,I6(2))=0. Theorem 3.3 allows us remove the hypothesis
that the embedding must be general. The idea in [Vermeire 2008b] was to obtain
a vanishing statement for direct image sheaves, and then to use those vanishings
along with [Mumford 1966, p. 52, Corollary 1 1

2 ] to show that the cohomology
groups along the fibers vanish. Of course, to make this work, we must find a flat
morphism and a locally free sheaf so that the restriction of the sheaf to the fiber
is precisely the vanishing statement we want. This is done using Theorem 2.1.
However, note that in the proof we need to increase the degree of the embedding
to at least 2g+ 5, so that curves of degree 2g+ 3 occur in the fibers.

Corollary 3.4. Let C ⊂ Pn be a smooth curve embedded by a line bundle L of
degree at least 2g+ 3. Then 6 is projectively normal.

Proof. We know by combining [Vermeire 2008b, Proposition 12] with [Wahl 1997,
1.16] that H 1(Pn,I6(k))= 0 for k = 1, 3, and by [Vermeire 2008b, Corollary 11]
that H 1(Pn,I6(k)) = 0 for k ≥ 4. Clearly, H 1(6,O6(2)) = H 2(Pn,I6(2)). As
these vanish by Theorem 3.3, we note that by Lemma 2.4 we have

H 2(B2,O(2H − E1− E2))= 0.

We further have H i (B2,O(2H − E1− E2))= 0 for i ≥ 3 by 5-regularity of I6 .
By Lemma 2.4, along the fibers of E1→C we are computing H i (Pn−2,IC(1));

thus Ri f∗OE1(2H − E1− E2) = 0 for i ≥ 0. Hence H i (B2,OE1(2H − E1− E2))

vanishes, showing that H i (B2,O(2H − 2E1− E2))= 0 for i ≥ 2.
Fixing a point p ∈ C , and applying an extension of Theorem 2.1 to L(2p)

(which now separates 6 points as L is nonspecial), we may blow up three times
to get a resolution of 62. In the notation of [Vermeire 2008b, Theorem 15], the
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previous paragraph gives Ri f∗OE1(k H −2E1−2E2− E3)= 0 for i ≥ 2, since the
restriction of OE1(k H−2E1−2E2−E3) to a fiber of E1→C is O(2H − 2E1− E2)

using the convention of Remark 2.2. It was shown in [Vermeire 2008b, Theorem
15] that R1 f∗OE1(k H − 2E1 − 2E2 − E3) = 0, and so we know that H 1 along
the fibers vanishes by [Mumford 1966, page 52, Corollary 1 1

2 ]. Thus we have
H 1(B2,O(2H − 2E1− E2))= 0 and so, as above,

H 1(B2,O(2H − E1− E2))= H 1(Pn,I6(2))= 0. �

Theorem 3.5. If C satisfies Hypothesis 3.1, then H i (6,O6(1))= 0 for i = 1, 2.

Proof. For i=1, 2, we have hi (6,O6(1))=hi+1(Pn,I6(1)) and H i+1(Pn,I6(1))
is isomorphic to H i+1(B2,OB2(H − E1 − E2)) by the last part of Lemma 2.4.
Using Equation (1) twisted by H , the projection formula gives Ri h∗(OE2(H −
E1)) = Ri h∗(OE2)⊗ O6̃(H − E1). By part (6) of Lemma 2.3 the restriction of
O(H−E1) to the fibers of 6̃→ S2C is isomorphic to OP1(−1), hence hi (6̃,O(H−
E1))= 0 for all i, which implies that hi (E2,OE2(H−E1))= 0. We therefore have
hi+1(B2,OB2(H − E1− E2))= hi+1(B2,OB2(H − E1)).

We see that Ri f∗(OB2(H−E1))= 0 for i ≥ 1 and f∗(OB2(H−E1))=IC(1) by
[Bertram et al. 1991, 1.2,1.4]. Thus hi+1(B2,OB2(H−E1))=hi+1(Pn,IC(1))=0.

�

Remark 3.6. In the case of a canonical curve, we have

h0(6, R1g∗O6̃(H))= h1(C,OC) · h0(C,OC(1))= g2

while

h1(6̃,O6̃(H))= h1(OC) · h0(OC(1))+ h0(OC) · h1(OC(1))= g2
+ 1.

Therefore using the 5-term sequence (2) again we see that h1(6,O6(1)) ≥ 1 (in
fact, equality can be shown to hold). Thus the secant variety to a canonical curve
of Clifford index at least 3 (for example, the generic curve of genus ≥ 7) is never
ACM.

Note the secant variety of a canonical curve C ⊂P4 is a hypersurface of degree
16, hence is ACM, but such curves have Clifford index ≤ 2.

3C. Vanishings for k = 0. We now consider the vanishing of H i (6,O6) where
i = 1, 2.

Proposition 3.7. If C satisfies Hypothesis 3.1, then H 1(6,O6)= 0.

Proof. Associated to the morphism g : B1→ Pn we have
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��

0

��

0

��
0 // H 1(g∗O6̃)

��

// H 1(O6̃)

α

��

γ // H 0(R1g∗O6̃)

��

//

0 // H 1(g∗OZ ) // H 1(OZ )
β // H 0(R1g∗OZ ) // 0

where the horizontal maps come from 5-term exact sequences.
As Z ∼=C×C , we see that the inclusion and projection in the bottom row come

from the Künneth formula. The map α :H 1(O6̃)→H 1(OZ ) is an inclusion because
it is the diagonal mapping α : H 1(OS2C)→ H 1(C,OC)⊕ H 1(C,OC) induced by
the pull-back of d : Z → S2C to 6̃. We conclude that the composition β ◦ α
is an isomorphism. Moreover, as H 0(R1g∗O6̃) → H 0(R1g∗OZ ) is an isomor-
phism, we see that γ is an isomorphism by commutativity of the diagram. Hence,
H 1(g∗O6̃)= H 1(6,O6)= 0. �

Proposition 3.8. If C satisfies Hypothesis 3.1, then H 2(6,O6)= 0.

Proof. We note that hi (6,O6)= hi+1(Pn,I6) for i = 1, 2. Moreover, by part (6)
of Lemma 2.4 we have h j (Pn,I6)=h j (B2,OB2(−E1−E2)). Therefore, the result
follows if we can show that h2(B2,OB2(−E1 − E2)) = h3(B2,OB2(−E1 − E2)),
since we know by Proposition 3.7 that h2(B2,OB2(−E1− E2))= 0.

To this end, consider the long exact sequence associated to Equation (1) on
page 451. The result will follow if h2(B2,OB2(−E1)) = h2(E2,OE2(−E1)) is
equal to g and h1(E2,OE2(−E1))= h3(B2,OB2(−E1))= 0.

From the sequence 0→ OB2(−E1)→ OB2→ OE1→ 0 we see immediately that
hi (B2,OB2(−E1)) = g if i = 2 and is zero otherwise as R j f∗OB2 = 0 for j > 0
from Lemma 2.4 (2) and h j (OE1)= h j (OC) for all j .

We compute the cohomology of OE2(−E1) using Equation (1). Using the pro-
jection formula and part (4) of Lemma 2.4, we see that Ri h∗OE2(−E1) = 0 for
i > 0. Thus, H i (OE2(−E1))∼= H i (O6̃(−E1)).

To compute H i (O6̃(−E1)), observe that

0→ π∗O6̃(−E1)→ π∗O6̃→ π∗OZ → R1π∗O6̃(−E1)→ 0

with all remaining higher direct images vanishing by parts (2) and (4) of Lemma
2.3 and π∗O6̃(−E1)= 0 by part (6).

As HomOS2C

(
OS2C ,OS2C

(
−
δ
2

))
is trivial, this gives rise to the natural inclusion

π∗O6̃
∼= OS2C ↪→ OS2C ⊕OS2C

(
−
δ

2

)
∼= π∗OZ ,
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and we see that H i (6̃,O6̃) ↪→ H i (Z ,OZ ). In fact, using the long exact sequence
on 6̃, these inclusions imply that H i (Z ,OZ )∼= H i (6̃,O6̃)⊕H i+1(6̃,O6̃(−E1)).

As h1(S2C,OS2C)= g and h2(S2C,OS2C)=
(g

2

)
by [Macdonald 1962], using the

sequence 0→ O6̃(−E1)→ O6̃→ OZ→ 0 together with the Künneth formula and
that H i (6̃,O6̃)

∼= H i (S2C,OS2C), implies that h2(E2,OE2(−E1)) = g, and that
h3(E2,OE2(−E1))=

(g+1
2

)
. Further, we see immediately that H 1(6̃,O6̃(−E1)) is

0, since H 0(Z ,OZ )∼= H 0(6̃,O6̃)⊕ H 1(6̃,O6̃(−E1)). �

Proof of Theorem 1. As explained at the beginning of the section, in order to show
that 6 is ACM we are left to show that H i (6,O6(k)) = 0 for i = 1, 2 and all
k ≤ 3− i .

The vanishings for k < 0 were shown in Theorem 3.2. The vanishing for i = 1
and k = 0 is Proposition 3.7, while i = 2 and k = 0 is Proposition 3.8. Both
vanishings for k = 1 are found in Theorem 3.5. Finally, the vanishing for i = 1 and
k = 2 is found in Theorem 3.3. �

As an immediate consequence of the proof of Proposition 3.8 we get a sharpen-
ing of the regularity result of the second author in [Vermeire 2008b].

Corollary 3.9. If C satisfies Hypothesis 3.1, then I6 has regularity 3 if C is ratio-
nal and regularity 5 otherwise.

Proof. Running the long exact sequence associated to Equation (1) in the proof of
Proposition 3.8 shows that h4(Pn,I6)=

(g+1
2

)
. �

4. Betti diagrams

In this section we attempt to paint a picture of the shape of the Betti diagram of
S6 that parallels the discussion of the Betti diagram of a high degree curve in
Chapter 8 of [Eisenbud 2005]. In Section 4A we use the fact that 6 is ACM to use
duality and algebraic techniques to compute the extremal nontrival Betti numbers,
β1,3 (Proposition 4.4) and βn−3,n+1 (Corollary 4.1) as well as the Hilbert poly-
nomial. Independent of the Cohen–Macaulay property, we prove a nonvanishing
result about the length of the degree (k+2) linear strand of S6k using determinantal
methods and Koszul homology (Proposition 4.10 and Theorem 1.2) in Section 4B.

4A. Computing Betti numbers. We begin with a simple consequence of duality.
As6 is ACM, dualizing a resolution of S6 and shifting by−n−1 gives a resolution
of the canonical module, which is defined to be ω6 = Extn−3(S6, S(−n − 1)) =⊕

d∈Z H 0(6, ω◦6 ⊗ Ld) where ω◦6 = Extn−3
Pn (O6,OPn (−n − 1)) is the dualizing

sheaf of 6. Therefore, the last few Betti numbers of S6 are the first few of ω6 .
As an immediate consequence of Corollary 3.9 we see that the number of minimal
generators of ω6 in degree 0 is

(g+1
2

)
and hence depends only on g, independent

of the embedding (as long as the degree is at least 2g+ 3).
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Corollary 4.1. If C satisfies Hypothesis 3.1, then βn−3,n+1 =
(g+1

2

)
.

Proof. If g = 0, we know that βn−3,n+1 = 0. If g > 0, then Corollary 3.9 shows
that reg S6 = 4. Hence, the a-invariant of S6 is 0, so h0(ω◦6) = β0,0(ω6) =

βn−3,n+1(S6). By Serre duality,

h0(6, ω◦6)= h3(6,O6)= h4(Pn,I6)=

(
g+ 1

2

)
. �

Knowing βn−3,n+1 allows us to compute the Hilbert polynomial of S6 and to
gather information about other Betti numbers inductively. To begin this process,
fix general linear forms H1, H2, H3, H4 ∈ S. Let X be the intersection of 6 with
the hyperplanes determined by H1 and H2 and M = S6/〈H1, H2, H3, H4〉. Using
Corollary 4.1 we may compute the genus of X from which formulae for the Hilbert
polynomial of S6 and β1,3 follow. First we gather together basic facts about X .

Lemma 4.2. If C satisfies Hypothesis 3.1, the variety X is a smooth curve of degree
D =

(d−1
2

)
− g embedded in Pn−2 via the complete linear series associated to a

line bundle A and SX = S6/〈H1, H2〉.

Proof. All the statements follow immediately from the fact that 6 is ACM. The
only thing that may not be immediate to the reader is that deg(6) =

(d−1
2

)
− g,

though this is certainly well-known to experts.
To see this, take a generic L = Pn−3

⊂ Pn and consider the induced projection
π : Pn 99K P2. Every point of intersection of L with 6 corresponds to a node of
π(C). It is well-known that the number of nodes is

(d−1
2

)
− g. �

We will denote the genus of X by G. To compute G we compare the Hilbert
function of SX to that of successive quotients by H1 and H2.

Proposition 4.3. If C satisfies Hypothesis 3.1, the genus of X is

G = 1
2(d − 2)(d + 2g− 3).

Proof. Since SX is 4-regular, h0(X, Am)= m D−G+ 1 for m ≥ 3. We also know
that the ideal of 6 is empty in degree less than three, since a quadric hypersurface
vanishing on 6 must vanish twice on C , but this is not possible since C is nonde-
generate. Therefore, we can fill in the table of Hilbert functions below where each
entry in the first two columns of the table is the sum of the entries directly above
and to the right.

S6/〈H1, H2〉 S6/〈H1, H2, H3〉 M

2
(n

2

) (n−1
2

) (n−2
2

)
3 3D−G+1 3D−G+1−

(n
2

)
3D−G+1−

(n
2

)
−
(n−1

2

)
4 4D−G+1 D G−2D−1+

(n
2

)
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But computing graded Betti numbers via Koszul homology as in Proposition 2.7
in [Eisenbud 2005] shows that dim M4 = βn−3,n+1 =

(g+1
2

)
. Substituting n= d−g

and simplifying G = 2D+ 1−
(d−g

2

)
+
(g+1

2

)
gives the desired result. �

The computation of the Hilbert polynomial P6(m) follows easily.

Proof of Theorem 1.1. Using [Eisenbud 2005, Theorem 4.2], the Hilbert polyno-
mial and Hilbert function of S6 agree for m≥ reg S6+proj-dim S6−n≥ 4−3= 1.
Write

P6(m)=
3∑

i=0

αi

(
m+ i − 1

i

)
.

As X is gotten by cutting down by a regular sequence of two hyperplanes, PX (m)=
P6(m)− P6(m − 1)− P6(m − 2) = α3m + α2. Since X is a curve of degree D
and genus, G, we see that α3 = D and α2 = 1−G. Since the ideal of 6 is empty
in degrees 1and 2, we see that P6(1) = n + 1 and P6(2) =

(n+2
2

)
and the result

follows. �

We compute β1,3 and get a relationship on Betti numbers at the beginning of the
resolution.

Proposition 4.4. If C satisfies Hypothesis 3.1, we have

β1,3=

(
n+ 1

3

)
−(d−2)n−3g+1 and β2,4=β1,4+β1,3(n+1)−

(
n+ 4

n

)
+P6(4).

Proof. As observed above, the Hilbert polynomial and function of SX agree in
degree 3 and higher. Since β1,3=

(n+1
3

)
−(SX )3 we get β1,3=

(n+1
3

)
−3D+G−1,

and this simplifies to the given formula.
By [Eisenbud 2005, Corollary 1.10] we get a formula for the Hilbert function

of S6 in terms of graded Betti numbers:

(S6)m =
∑

i≥0, j∈Z

(−1)iβi, j

(
n+m− j

n

)
.

When m = 4, we must have j ≤ 4 for βi, j to contribute to the sum. As we know
that the ideal of X does not contain any forms of degree < 3, the result follows. �

Remark 4.5. In the formula for β2,4 we have an explicit formula for each term
except β1,4, which is the number of quartic minimal generators of I6 . For large d ,
we know β1,4 = 0, as the ideal of 6 is generated by cubics [Vermeire 2008a].

Using duality, we get a similar result for the tail of the resolution.
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Theorem 4.6. If C satisfies Hypothesis 3.1, the tail of the graded Betti diagram of
S6 has the form

n− 5 n− 4 n− 3

0 − − −

1 − −. −

2 ∗ ∗ A
3 ∗ A+ B+

(g+1
2

)(n
2

)
−
(g

2

)
(n− 3)(n− 1)−G C

4 B C +
(g

2

)
(n− 3)

(g+1
2

)
Proof. Let A=βn−3,n−1, B=βn−5,n−1 and C=βn−3,n . We know that the canonical
module ωX is

⊕
n∈Z H 0(K X ⊗ An), where K X is the canonical line bundle of X .

By duality, βi, j (ωX )= βn−3−i,n−1− j (S6).
By [Eisenbud 2005, Corollary 1.10] we get a formula for the Hilbert function

of ωX in terms of graded Betti numbers:

h0(K X ⊗ Am)=
∑

i≥0, j∈Z

(−1)iβi, j (ωX )

(
n− 2+m− j

n− 2

)
.

By Serre duality and Riemann–Roch h0(K X ⊗ A−1) = h1(A) = g(d − 2). Thus,
g(d−2)= (n−1)

(g+1
2

)
+C−βn−4,n , which gives the desired satement. The second

statement follows from the equation

G =
(

g+ 1
2

)(
n
2

)
−

(
g
2

)
(n− 3)(n− 1)+ B−βn−4,n−1+ A. �

In particular, if g = 2, we have the following immediate corollary.

Corollary 4.7. If C satisfies Hypothesis 3.1 and g = 2, the tail has the form

n− 5 n− 4 n− 3

0 − − −

1 − − −

2 ∗ ∗ A
3 ∗ A+ B+ d − 5 C
4 B C + d − 5

(g+1
2

)
Based on Example 1.4 and the following example, we expect A = B = C = 0.

Example 4.8. Suppose C is a genus 2 curve of degree 12 in P10. We use Example
(c) of [Eisenbud et al. 1988] to compute the ideal of the curve determinantally
in Macaulay 2 over the field of rational numbers. We then used the code created
to implement ideas in [Sidman and Sullivant 2006] to compute the least degree
pieces of the ideals of the secant varietes. Computing the degree, dimension, and
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projective dimension of the resulting ideals showed that we had actually computed
the secant ideals.

0 1 2 3 4 5 6 7 8 9
total: 1 43 222 558 840 798 468 147 17 2

0: 1 - - - - - - - - -
1: - 43 222 558 840 798 468 147 8 -
2: - - - - - - - - 9 2

The Betti diagrams for S61 and S62 are

0 1 2 3 4 5 6 7 0 1 2 3 4 5
total: 1 70 283 483 413 155 14 3 total: 1 41 94 61 11 4

0: 1 - - - - - - - 0: 1 - - - - -
1: - - - - - - - - 1: - - - - - -
2: - 70 283 483 413 155 - - 2: - - - - - -
3: - - - - - - 7 - 3: - 41 94 61 - -
4: - - - - - - 7 3 4: - - - - - -

5: - - - - 6 -
6: - - - - 5 4

4B. The length of the first nonzero strand. We now turn to the consideration of
a lower bound on the length of the minimal degree linear strand of the ideal of
6k , essentially following Chapter 8B.2 of [Eisenbud 2005], building on Green and
Lazarsfeld’s proof of nonvanishing for curves. In this section we will assume the
following:

Hypothesis 4.9. C is a smooth curve of genus g and degree d embedded into Pn

via a line bundle L that factors as L = L1⊗ L2, where |L1| = s and |L2| = t , with
1≤ s ≤ t .

First note that part of the proof of [Eisenbud 2005, Theorem 8.12] which is given
in the case k = 0 goes through for arbitrary k and allows us to see easily that the
degree k+ 2 linear strand of the Betti diagram of 6k has length at least p.

Proposition 4.10. Under the conditions of Hypothesis 4.9, if d ≥ 2g+2k+1+ p,
then βp,k+1+p 6= 0.

Proof. Factor L so that deg L1≥g+k+1 and deg L2=g+k+p. By Riemann–Roch
h0(C, L1)≥ k+2 and h0(C, L2)≥ k+ p+1. Thus multiplication of sections gives
rise to a 1-generic matrix of linear forms with at least (k+2) rows and (k+1+ p)
columns. Delete rows and columns to get a (k+ 2)× (k+ 1+ p) matrix which is
still 1-generic as an equation making a generalized entry of the smaller matrix zero
also makes a generalized entry of the larger matrix zero. The maximal minors of
the smaller matrix are resolved by an Eagon–Northcott complex of length p. The
resolution of this ideal is a subcomplex of the ideal of 6k . The result follows. �
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We can get a better lower bound by exhibiting an explicit nontrivial cycle in the
Koszul homology of S6k to show that βs+t−2k−1,s+t−k does not vanish.

In [Eisenbud 2005, Theorem 8.15], the following result is stated for k = 1:

Theorem 4.11 [Eisenbud 2005, Theorem 8.15]. If I ⊂ S is a homogenous ideal
which contains no forms of degree less than or equal to k, then βi,i+k 6=0 if and only
if there exists γ ∈∧i Sn+1(−i) of degree i + k whose image under the differential
of the Koszul complex is nonzero and lies in I ⊗∧i−1Sn+1(−i + 1).

Proof. The proof goes through as in [Eisenbud 2005], replacing one by k every-
where. �

We show that [Eisenbud 2005, Theorem 8.13] can be extended to the case of
minors of arbitrary size.

Theorem 4.12. Suppose that A is an (s+ 1)× (t + 1) matrix of linear forms with
s+ 1≥ k+ 2. If the s+ t + 1 elements in the union of the entries of the zeroth row
and column are linearly independent and some (k + 2) minor involving the zeroth
row or column does not vanish, then βs+t−2k−1,s+t−k(S/Ik+2) does not vanish.

Proof. By Theorem 4.11 it suffices to construct an explicit cycle

γ ∈∧s+t−2k−1Sn+1(−s− t + 2k+ 1)

of degree s + t − k whose image under the differential is a nonzero element of
Ik+1⊗∧s+t−2k−2Sn+1(−s− t + 2k+ 2). To do this we set some notation.

By our hypotheses, the matrix A has the form

A =


a0,0 a0,1 · · · a0,t

a1,0 a1,1 · · · a1,t

·

as,0 as,1 · · · as,t

=


x0 x1 · · · xt

x1+t a1,1 · · · x1,t

·

xs+t as,1 · · · as,t

 .
Since the xi are linearly independent they may be chosen as part of a basis for S1,
and we may choose a basis {ei } for Sn+1 so that ∂(ei )= xi for i = 0, . . . , s+ t .

Let σ ⊂ {1, . . . , s} and τ ⊂ {0, . . . , t} be sets of size k + 1 and σt denote the
set gotten by adding t to each element of σ . Let eσt ,τ be the wedge product of
{e0, . . . , es+t }\(σt ∪ τ) in the standard order. Note that eσt ,τ ∈∧

s+t−2k−2Sn+1.
We define an element γ which will serve as our nonzero cycle. Informally, it is

the signed sum of all of the (k+1)-minors of A which do not involve the top row,
each indexed by an element eσt ,τ in a natural way. More precisely,

γ =
∑
σ,τ

(−1)(σ+τ)+t (k+1) det(σ |τ)eσt ,τ ,

where we define σ + τ to be the sum of the union of the elements in σ and τ and
det(σ |τ) is the minor of A gotten by using the rows in σ and the columns in τ .
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To complete the proof we need to show that the coefficients of ∂(γ ) are all
of the (k + 2)-minors of A involving the zeroth row or column. The only basis
elements which can have nonzero coefficients are eσ ′t ,τ , where σ ′ ⊂ {1, . . . , s} and
|σ ′| = k+ 2 and eσt ,τ ′ where τ ′ ⊂ {0, . . . , t} also has size k+ 2.

To understand the coefficient of eσt ,τ ′ , note that there are k + 2 basis elements
eσt ,τ whose images under the differential could contain eσt ,τ ′ with nonzero coef-
ficient. Since ∂(ei ) = xi for i = 0, . . . , t , we see that the coefficient of eσt ,τ ′ , is
± det(σt ∪{0} | τ ′) where the differential expands the determinant along the zeroth
row.

Similarly, the coefficient of eσ ′t ,τ , is ± det(σ ′t | τ ∪ {0}), the differential expands
the determinant along the zeroth column. (If 0 ∈ τ , we repeat the zeroth column
twice and get coefficient zero.) �

We are now ready to prove Theorem 1.2, which is analogous to [Eisenbud 2005,
Theorem 8.12].

Proof of Theorem 1.2. We will construct a matrix A corresponding to the factoriza-
tion of L = L1⊗L2 by choosing bases carefully as in the proof of [Eisenbud 2005,
Theorem 8.12]. Let Bi be the base locus of L i . Fix a basis β0, . . . , βt of H 0(L2)

so that the divisor of βi is B2+ Di where Di and B2 have disjoint support. Let D
be the divisor consisting of the union of the points in the divisors determined by
β0, . . . , βt . Since L1(−B1) is base-point free, a general element is disjoint from D
and from B1. Therefore we can pick a basis α0, . . . , αs so that the divisor of each
αi is B1+ Ei where Ei is disjoint from D and from B1.

We will show that the s + t + 1 elements in the union of any row and any
column of the corresponding matrix A are linearly independent. Without loss of
generality, consider the top row and leftmost column. We know that the elements
of the column α0β0, α1β0, . . . , αsβ0 are linearly independent, as are the elements
α0β0, α0β1, . . . , α0, βt . Suppose γ is an element in the intersection of the two
vector spaces with these bases. This implies that the divisor of γ contains the
divisor of α0 and of β0. This implies that it must contain D0 and E0 as well as the
base loci B1 and B2. Since γ ∈ H 0(L) and α0β0 ∈ H 0(L), then one is a scalar
multiple of the other. Therefore, we conclude that the union of the elements in the
top row and first column form a set of s+ t + 1 linearly independent elements.

As the matrix A is 1-generic, we know that the ideal generated by its maximal
minors has the expected codimension and hence some (k + 2)-minor does not
vanish. Permuting rows and columns we can assume it is in the upper lefthand
corner. Since Ik+2 ⊆ I6k , the result follows from Theorems 4.11 and 4.12.

If deg L ≥ 2g+2k+ p+1, then L can be factored as the product of line bundles
L1 with degree at least g + k + b(1+ p)/2c and L2 with degree greater than or
equal to deg L1. If L1 and L2 are generic, then each has at least k+2 sections. �
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The essential dimension
of the normalizer of a maximal torus

in the projective linear group
Aurel Meyer and Zinovy Reichstein

Let p be a prime, k a field of characteristic 6= p and N the normalizer of the
maximal torus in the projective linear group PGLn . We compute the exact value
of the essential dimension edk(N ; p) of N at p for every n ≥ 1.

1. Introduction

Let k be a field, Fieldsk the category of field extensions K/k, and F a covariant
functor from Fieldsk into the category of sets. As usual, for a field extension L/K ,
we denote the image of a ∈ F(K ) under the natural map F(K )→ F(L) by aL .

Given a field extension L/k, an object a ∈ F(L) is said to descend to an inter-
mediate field k ⊆ K ⊆ L if a is in the image of the induced map F(K )→ F(L).
The essential dimension ed(a) of a ∈ F(L) is the minimum of the transcendence
degrees trdegk(K ) taken over all fields k ⊆ K ⊆ L such that a descends to K . The
essential dimension ed(a; p) of a at a prime integer p is the minimum of ed(aL ′),
taken over all finite field extensions L ′/L such that the degree [L ′ : L] is prime
to p.

The essential dimension ed(F) of the functor F (respectively, the essential di-
mension ed(F; p) of F at a prime p) is the supremum of ed(a) (respectively, of
ed(a; p)) taken over all a ∈ F(L) and over all field extensions L/k. Informally
speaking, the essential dimension of a ∈ F(L) can be thought of as the minimal
number of parameters one needs to define a, and ed(F) as the minimal number of
parameters required to define any object in F .

An important example is the Galois cohomology functor FG = H 1(∗,G) send-
ing a field K/k to the set H 1(K ,G) of isomorphism classes of G-torsors over
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Spec(K ), in the fppf topology. Here G is an algebraic group defined over k. The
essential dimension of this functor is a numerical invariant of G, which, informally
speaking, measures the complexity of G-torsors over fields. This number is usu-
ally denoted by edk(G) or, if k is fixed throughout, simply by ed(G). The notion
of essential dimension was originally introduced and has since been extensively
studied in this context; see for example [Buhler and Reichstein 1997; Reichstein
2000; Reichstein and Youssin 2000; Lemire 2004; Chernousov and Serre 2006].
The theory of essential dimension of algebraic groups may be viewed as a natural
extension of the theory of special groups initiated in [Serre 1958]. Over an alge-
braically closed field k special groups are precisely those of essential dimension 0,
these groups were classified in [Grothendieck 1958]. The more general definition
of essential dimension for a covariant functor given above is due to Merkurjev
[Berhuy and Favi 2003; Merkurjev 2007].

The purpose of this paper is to compute the relative essential dimension ed(N ;p),
where N is the normalizer of the (split) maximal torus in the projective linear group
PGLn . Before proceeding to state our main result, we would like to explain why
we are interested in the essential dimension of N .

We begin by recalling that elements of H 1(K ,G) can often be naturally identi-
fied with K -forms of a single “split” algebraic object over k. Here by an algebraic
object we mean a tensor t defined on a finite-dimensional k-vector space V ; the
group G ⊂ GL(V ) then naturally arises as the automorphism group of t [Serre
1997, Chapter III]. Two examples will be of primary interest in the sequel:

H 1(∗,PGLn) : K 7→
{

degree n central simple algebras A/K ,
up to K -isomorphism

}
(1)

and

H 1(∗, N ) : K 7→
{

K -isomorphism classes of pairs (A, L)
}
, (2)

where K is a field extension of k, A is a degree n central simple algebra over K , L
is a maximal étale subalgebra of A, and N is the normalizer of a split maximal torus
in PGLn , as above. For the functor (1) the split central simple k-algebra of degree n
is Mn , its automorphism group is PGLn . Similarly, in the case of the functor (2) the
split pair (A, L) is (Mn,Diagn), where Diagn denotes the subalgebra of diagonal
matrices in Mn(k). The automorphism group of this split pair is N .

Computing the essential dimension of the projective linear group PGLn , or
equivalently, of the functor (1), is a fundamental problem in the theory of central
simple algebras. To the best of our knowledge, it was first raised by C. Procesi, who
showed (using different terminology) that ed(PGLn)≤ n2 [Procesi 1967, Theorem
2.1]. This problem and the related question of computing the relative essential
dimension ed(PGLn; p) at a prime p remain largely open. The best currently
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known lower bound [Reichstein 1999, Theorem 16.1(b); Reichstein and Youssin
2000, Theorem 8.6] is

ed(PGLpr ; p)≥ 2r,

and it falls far below the best known upper bound [Lorenz and Reichstein 2000;
Lorenz et al. 2003, Theorem 1.1; Lemire 2004, Proposition 1.6; Favi and Florence
2008], given by

ed(PGLn)≤

{
1
2(n−1)(n−2) for every odd n ≥ 5,

n2
− 3n+ 1 for every n ≥ 4.

(3)

We remark that the primary decomposition theorem reduces the computation
of ed(PGLn; p) to the case where n is a power of p. That is, if n = pr1

1 . . . prs
s

then ed(PGLn; pi )= ed(PGLp
ri
i
; pi ). The computation of ed(PGLn) also partially

reduces to the prime power case, because

ed(PGLp
ri
i
)≤ ed(PGLn)≤ ed(PGLp

r1
1
)+ · · ·+ ed(PGLprs

s
)

for every i = 1, . . . , s [Reichstein 2000, Proposition 9.8].
Note that the proofs of the upper bounds (3) are not based on a direct analysis

of the functor H 1(∗,PGLn). Instead, one works with the related functor H 1(∗, N )
of (2). This functor is often more accessible than H 1(∗,PGLn) because many of
the standard constructions in the theory of central simple algebras depend on the
choice of a maximal subfield L in a given central simple algebra A/K . Projecting
a pair (A, L) to the first component, we obtain a surjective morphism of functors
H 1(∗, N )→ H 1(∗,PGLn), [Rowen 1980, Corollary 3.1.11]. The surjectivity of
this morphism leads to the inequalities

ed(N )≥ ed(PGLn) and ed(N ; p)≥ ed(PGLn; p); (4)

see [Merkurjev 2007, Proposition 1.3], [Berhuy and Favi 2003, Lemma 1.9] or
[Reichstein 2000, Proposition 4.3].

The inequalities (3) were, in fact, proved as upper bounds on ed(N ) [Lorenz
et al. 2003; Lemire 2004]. It is thus natural to try to determine the exact values of
ed(N ) and ed(N ; p). In addition to being of independent interest, these numbers
represent a limitation on the techniques used in [Lorenz et al. 2003] and [Lemire
2004]. This brings us to the main result of this paper.

Theorem 1.1. Let N the normalizer of a maximal torus in the projective linear
group PGLn defined over a field k with char(k) 6= p. Then:

(a) edk(N ; p)= [n/p], if n is not divisible by p.
(b) edk(N ; p)= 2, if n = p.
(c) edk(N ; p)= n2/p− n+ 1, if n = pr for some r ≥ 2.
(d) edk(N ; p)= pe(n− pe)− n+ 1, in all other cases.
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Here [n/p] is the integer part of n/p and pe is the highest power of p dividing n.

In each part we will prove an upper bound and a lower bound on ed(N ) sepa-
rately. We do not have an a priori reason why the two should match, thus yielding
an exact value of ed(N ; p); the fact that this happens may be viewed as a lucky
coincidence. We also remark that our proof of the upper bounds on edk(N ; p) in
part (c) and (d) does not use the assumption that char(k) 6= p. These bounds are
valid for every base field k.

As we mentioned above, the computation of ed(PGLn; p) reduces to the case
where n is a power of p. A quick glance at the statement of Theorem 1.1 shows
that the computation of ed(N ; p) does not. On the other hand, the proof of part (c),
where n= pr and r ≥ 2, requires the most intricate arguments. Another reason for
our special interest in part (c) is that it leads to a new upper bound on ed(PGLn; p).
More precisely, combining the upper bound in part (c) with (4), and remembering
that the upper bound in part (c) is valid for any the ground field k, we obtain the
following inequality.

Corollary 1.2. Let n = pr be a prime power. Then

edk(PGLn; p)≤ p2r−1
− pr
+ 1

for any field k and for any r ≥ 2. �

Corollary 1.2 fails for r = 1 because

edk(PGLp; p)= 2; (5)

see [Reichstein 2000, Corollary 5.7] or [Reichstein and Youssin 2000, Lemma
8.5.7]. For r = 2, Corollary 1.2 is valid but is not optimal. Indeed, in this
case L. H. Rowen and D. J. Saltman showed that, after a prime-to-p extension
L/K , every degree p2 central simple algebra A/K becomes a (Z/pZ)2-crossed
product [Rowen and Saltman 1992, Corollary 1.3]. The upper bound on the es-
sential dimension of a crossed product given by [Lorenz et al. 2003, Corollary
3.10] then yields the inequality ed(PGLp2; p) ≤ p2

+ 1, which is stronger than
Corollary 1.2 for any p ≥ 3. Merkurjev [2008] recently showed that in fact,
edk(PGLp2; p) = p2

+ 1 for any field k of characteristic different from p. For
r ≥ 3 Corollary 1.2 gives the best currently known upper bound on ed(PGLpr ; p).

We remark that the inequalities of (4) have counterparts for algebraic groups
other than PGLn . Indeed, if G is a linear group defined over k, C is a Cartan
subgroup of G and N (C) is the normalizer of C then by a theorem of T. Springer
the natural map H 1(K , N (C))→ H 1(K ,G) is surjective for every perfect field ex-
tension K/k [Serre 1997, III.4.3, Lemma 6]. Consequently, edk(N (C))≥ edk(G)
if char(k)= 0 and edk(N (C); p)≥ edk(G; p) if char(k) 6= p; compare [Reichstein



The essential dimension of the normalizer of a maximal torus 471

2000, Proposition 4.3]. It would thus be of interest to prove an analogue of Theo-
rem 1.1 in the more general setting, where N is the normalizer of a split maximal
torus in an arbitrary simple (or semisimple) linear algebraic group G. The new
technical difficulty one encounters in this more general setting is that the natural
sequence

1→ T → N →W → 1,

may not split. Here T is a split maximal torus and W = N/T is the Weyl group of
G. The fact that this sequence splits for G = PGLn is an important ingredient in
our proof of the upper bound on ed(N ; p).

A key ingredient in our proofs of the lower bounds in Theorem 1.1(c) and (d)
is a recent theorem of Karpenko and Merkurjev [2008] on the essential dimension
of a p-group, stated as Theorem 7.1 below. To the best of our knowledge, these
lower bounds were not accessible by previous techniques. Corollary 1.2 and the
other parts of Theorem 1.1 do not rely on the Karpenko–Merkurjev theorem.

2. A general strategy

Let G be an algebraic group defined over a field k. Recall that the action of G on
an algebraic variety X defined over k is generically free if the stabilizer subgroup
StabG(x) is trivial for x ∈ X (k) in general position.

Remark 2.1. If G is a finite constant group and X is irreducible then the G-action
on X is generically free if and only if it is faithful.

Indeed, the “only if” is obvious. Conversely, if the G-action on X is faithful
then StabG(x)={1} for any x outside of the closed subvariety

⋃
16=g∈G X 〈g〉, whose

dimension is at most dim X − 1. �

Remark 2.2. Suppose k ′/k is a field extension of degree prime to p. Then the
essential dimension at p does not change if we replace k by k ′ [Merkurjev 2007,
Proposition 1.5(2)]. This happens in particular if char(k) 6= p and k ′ is obtained
from k by adjoining a primitive p-th root of unity. Thus in the course of proving
Theorem 1.1 we may assume without loss of generality that k contains a primitive
p-th root of unity.

In the sequel we will repeatedly encounter the following situation. Suppose we
want to show that

edk(G)= edk(G; p)= d, (6)

where G is a linear algebraic group defined over k. All such assertions will be
proved in two steps:

(i) Construct a generically free linear representation of G over k of dimension
d+dim G. This implies that edk(G)≤ d; see [Reichstein 2000, Theorem 3.4]
or [Berhuy and Favi 2003, Proposition 4.11].
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(ii) Prove the lower bound edk(G; p)≥ d .

Since clearly ed(G; p)≤ ed(G), equality (6) follows from (i) and (ii).
The group G will always be of the form G = D o F , where D is diagonalizable

and F is finite. In the next section we will recall some known facts about represen-
tations of such groups. This will help us in carrying out step (i) and, in the most
interesting cases, step (ii) as well, via the Karpenko–Merkurjev Theorem 7.1.

3. Representation-theoretic preliminaries

We will work over a ground field k which remains fixed throughout. Suppose that
a linear algebraic k-group G contains a diagonalizable (over k) group D and the
quotient G/D is a constant finite group F . Here diagonalizable over k means that D
is a subgroup of the split torus Gd

m defined over k or, equivalently, that every linear
representation of D defined over k decomposes as a direct sum of one-dimensional
subrepresentations.

Denote the group of (multiplicative) characters of D by X (D). Note that since
D is diagonalizable over k, every multiplicative character of D is defined over k.
Consider a linear k-representation G→ GL(V ). Restricting this representation to
D, we decompose V into a direct sum of one-dimensional character spaces. Let
3⊂ X (D) be the set of characters (weights) of D which occur in this decomposi-
tion. Note that here |3| ≤ dim V , and equality holds if and only if each character
from 3 occurs in V with multiplicity 1. The finite group F acts on X (D) and 3
is invariant under this action. Moreover, if the G-action (and hence, the D-action)
on V is generically free then 3 generates X (D) as an abelian group. In summary,
we have proved the following lemma; cf. [Serre 1977, Section 8.1].

Lemma 3.1. Suppose that every F-invariant generating set 3 of X (D) contains
at least d elements. If G→GL(V ) is a generically free k-representation of G then
dim V ≥ d. �

As we explained in the previous section, we are interested in constructing low-
dimensional generically free representations of G. In this section we will prove
simple sufficient conditions for generic freeness for two particular families of rep-
resentations.

Lemma 3.2. Let W be a faithful representation of F and V be a representation
of G whose restriction to D is generically free. Then V ×W is a generically free
representation of G.

Here we view W as a representation of G via the natural projection

G→ G/D = F.
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Proof. For w ∈ W (k) in general position, we have StabG(w)= D by Remark 2.1.
Choosing v in general position in V (k), we see that StabG(v,w) = StabG(v) ∩

StabG(w)= StabD(v)= {1}. �

From now on we will assume that G= Do F is the semidirect product of D and
F . In this case, given an F-invariant generating set 3⊂ X (D), we can construct a
linear k-representation V3 of G so that each character from3 occurs in V3 exactly
once. To do this, we associate a basis element vλ to each λ ∈3. The finite group
F acts on

V3 = Span(vλ | λ ∈3)

by permuting these basis elements in the natural way, that is, via

σ : vλ 7→ vσ(λ) (7)

for any σ ∈ F and any λ ∈3. The diagonalizable group D-acts by the character λ
on each one-dimensional space Span(vλ), that is, via

t : vλ 7→ λ(t)vλ (8)

for any t ∈ D and λ ∈ 3. Extending (7) and (8) linearly to all of V3, we obtain
a linear representation G = D o F → GL(V3). Note that by our construction
dim V3 = |3|.

Our second criterion for generic freeness is a variant of [Lorenz and Reichstein
2000, Lemma 3.1] or [Lemire 2004, Proposition 2.1]. For the sake of completeness
we outline a characteristic-free proof.

Lemma 3.3. Let 3 be an F-invariant subset of X (D) and φ : Z[3] → X (D) be
the natural morphism of Z[F]-modules, taking λ∈3 to itself. Let V3 be the linear
representation of G = D o F defined by (7) and (8), as above. The G-action on
V3 is generically free if and only if

(a) 3 spans X (D) (or equivalently, φ is surjective) and

(b) the F-action on Kerφ is faithful.

Proof. Let U 'Gn
m be the diagonal subgroup of GL(V3), in the basis eλ, where λ∈

3. Here n=|3|=dim V3. The G-action on V induces an F-equivariant morphism
ρ : D → U , which is dual to φ under the usual (antiequivalence) Diag between
finitely generated abelian groups and diagonalizable algebraic groups. Applying
Diag to the exact sequence

(0) - Kerφ - Z[3]
φ- X (D) - Cokerφ - (0)

of finitely generated abelian Z[F]-modules and setting

U = Diag(Z[3]), N = Diag(Cokerφ), Q = Diag(Kerφ),
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we obtain an F-equivariant exact sequence

1 - N - D
ρ- U - Q - 1

of diagonalizable groups; see [Jantzen 2003, I 5.6] or [Demazure and Gabriel 1970,
IV 1.1]. Since U is F-equivariantly isomorphic to a dense open subset of V , the
G-action on V is generically free if and only if the G-action on U is generically
free. On the other hand, the G-action on U is generically free if and only if the
D-action on U is generically free and the F-action on Q is generically free. But
the first of these conditions is equivalent to (a), while the second is equivalent to
(b); see Remark 2.1. �

4. Subgroups of prime-to- p index

Lemma 4.1. Let G ′ be a closed subgroup of a smooth algebraic group G defined
over k. Assume that the index [G : G ′] := dimk k[G/G ′] is finite and prime to p.
Then ed(G; p)= ed(G ′; p).

In the case where G is finite a proof can be found in [Merkurjev 2007, Proposi-
tion 4.10]; the argument below proceeds along similar lines.

Proof. Recall that if G is a linear algebraic group and H is a closed subgroup then

ed(G; p)≥ ed(H ; p)+ dim H − dim G (9)

for any prime p; see [Brosnan et al. 2008, Lemma 2.2] or [Merkurjev 2007, Corol-
lary 4.3]. Since dim G ′ = dim G, this yields ed(G; p)≥ ed(G ′; p).

To prove the opposite inequality, it suffices to show that for any field K/k the
map H 1(K ,G ′)→ H 1(K ,G) induced by the inclusion G ′ ⊂ G is p-surjective,
meaning that for every α ∈ H 1(K ,G) there is a finite field extension L/K of
degree prime to p such that αL is in the image of H 1(L ,G ′)→ H 1(L ,G); see for
example [Merkurjev 2007, Proposition 1.3].

Let X→ Spec(K ) be a G-torsor and X/G ′ be the natural quotient of X by the
action of G ′. Recall that X/G ′ is a K -form of G/G ′ and that it is constructed by
descent [Serre 1962, 1.3.2]. Alternatively, X/G ′ may be viewed as the Galois twist
of G/G ′ by X with respect to the natural G-action on G/G ′ [Milne 1980, p. 134].

For a field L/K and an L-point Spec(L)→ X/G ′ we construct a G ′-torsor Y
as the pullback

Y - X

Spec(L)
?

- X/G ′
?

Spec(K )
?
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In this situation Y ×G ′ G ∼= X L as G-torsors. Thus we have the natural diagram

H 1(L ,G ′) - H 1(L ,G)

[Y ] - [X ]L

[X ]

6

H 1(K ,G)

6

where [X ] and [Y ] denote the classes of X and Y in H 1(K ,G) and H 1(L ,G ′),
respectively. It remains to show the existence of such an L-point, with the degree
[L : K ] prime to p.

Note that G/G ′ is affine, since G and G ′ are of the same dimension and hence
G/G ′∼= (G/G◦)/(G ′/G◦)= Spec k[G/G◦]G

′/G◦ where G◦ is the connected com-
ponent of G (and G ′). Furthermore G/G ′ is smooth [Demazure and Gabriel 1970,
III 3.2.7]. Let Ks be a separable closure of K . Since X is a G-torsor, we have
X Ks
∼= G Ks and (X/G ′)Ks

∼= (G/G ′)Ks which implies that X/G ′ is also affine
[Demazure and Gabriel 1970, III 3.5.6 d)]. Thus, K [X/G ′]⊗Ks ∼= k[G/G ′]⊗Ks

is reduced and its dimension dimK K [X/G ′] = [G : G ′] is not divisible by p by
assumption.

Therefore K [X/G ′] is étale or, equivalently, a product of separable field exten-
sions of K

K [X/G ′] = L1× · · ·× Lr ;

see for example [Bourbaki 1990, V, Theorem 4]. For each L j the projection
K [X/G ′]→ L j is an L j -point of X/G ′ and since dimK K [X/G ′]=

∑r
j=1[L j : K ]

is prime to p, one of the fields L j must be of degree prime to p over K . We now
take L = L j . �

Corollary 4.2. Suppose k is a field of characteristic 6= p. Then edk(Sn; p)=[n/p].

Proof. Let m = [n/p] and let D ' (Z/pZ)m be the subgroup generated by the
disjoint p-cycles

σ1 = (1, . . . , p), . . . , σm =
(
(m− 1)p+ 1, . . . ,mp

)
.

The inequality ed(Sn; p) ≥ edk(D; p) ≥ [n/p] is well known; see any of [Buhler
and Reichstein 1997, Section 6; Buhler and Reichstein 1999, Section 7; Berhuy
and Favi 2003, Proposition 3.7].

To the best of our knowledge, the opposite inequality was first noticed by J.-
P. Serre (private communication, May 2005) and independently by R. Lötscher
[Lötscher 2008]. The proof is quite easy. However, since it has not previously
appeared in print, we reproduce it below.
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The semidirect product D o Sm , where Sm permutes σ1, . . . , σm , embeds in Sn

with index prime to p. By Lemma 4.1, edk(DoSm; p)= edk(Sn; p) and it suffices
to show that edk(DoSm)≤[n/p]. As we mentioned in Section 2, in order to prove
this, it is enough to construct a generically free m-dimensional representation of
D o Sm defined over k. Moreover, by Remark 2.2 we may assume that ζp ∈ k,
where ζp denotes a primitive p-th root of unity.

To construct a generically free m-dimensional representation of D o Sm , let
σ ∗1 , . . . , σ

∗
m ⊂ X (D) be the “basis” of D dual to σ1, . . . , σm . That is,

σ ∗i (σ j )=

{
ζp if i = j,

1 otherwise.

The Sm-invariant subset3={σ ∗1 , . . . , σ
∗
m} of X (D) gives rise to the m-dimensional

k-representation V3 of D o Sm , as in Section 3. An easy application of Lemma
3.3 shows that this representation is generically free. �

5. First reductions and proof of Theorem 1.1 parts (a) and (b)

Let T 'Gn
m/1 be the diagonal maximal torus in PGLn , where1=Gm is diagonally

embedded into Gn
m . Recall that the normalizer N of T is isomorphic to T o Sn ,

where we identify Sn with the subgroup of permutation matrices in PGLn .
Let Pn be a Sylow p-subgroup of Sn . Lemma 4.1 tells us that

edk(N ; p)= edk(T o Pn; p).

Note also that by Remark 2.2 we may assume without loss of generality that k
contains a primitive p-th root of unity.

Thus in order to prove Theorem 1.1 it suffices to establish the following propo-
sition.

Proposition 5.1. Let T 'Gn
m/1, where1=Gm is diagonally embedded into Gn

m .
Assume that k is of characteristic 6= p, containing a primitive p-th root of unity.
Then:

(a) edk(T o Pn)= edk(T o Pn; p)= [n/p], if n is not divisible by p.

(b) edk(T o Pn)= edk(T o Pn; p)= 2, if n = p.

(c) edk(T o Pn)= edk(T o Pn; p)= n2/p− n+ 1, if n = pr for some r ≥ 2.

(d) edk(T o Pn)= edk(T o Pn; p)= pe(n− pe)− n+ 1, in all other cases.

Here Pn is a Sylow p-subgroup of Sn , [n/p] is the integer part of n/p and pe is
the highest power of p dividing n.

The assumption that k contains a primitive p-th root of unity is only needed for
the proof of the first equality in parts (a) and (b).
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Our proof of each part of this proposition will be based on the strategy outlined
in Section 2, with G= T o Pn . We start by recalling that the character lattice X (T )
is naturally isomorphic to{

(a1, . . . , an) ∈ Zn
| a1+ · · ·+ an = 0

}
,

where we identify the character

(t1, . . . , tn)→ ta1
1 . . . tan

n

of T =Gn
m/1with (a1, . . . , an)∈Zn . Note that (t1, . . . , tn) is viewed as an element

of Gn
m modulo the diagonal subgroup 1, so the above character is well defined if

and only if a1+ · · · + an = 0. An element σ of Sn (and in particular, of Pn ⊂ Sn)
acts on a= (a1, . . . , an) ∈ X (T ) by naturally permuting a1, . . . , an .

For notational convenience, we will denote by ai, j = (a1, . . . , an) ∈ X (T ) the
element such that ai = 1, a j =−1 and ah = 0 for every h 6= i, j .

We also recall that for n = pr the Sylow p-subgroup Pn of Sn can be described
inductively as the wreath product

Ppr ∼= Ppr−1 oZ/p ∼= (Ppr−1)p o Z/p.

For general n, Pn is the direct product of certain Ppr ; see Section 8.

Proof of Proposition 5.1(a). (i) Since n is not divisible by p, we may assume that
Pn is contained in Sn−1, where we identify Sn−1 with the subgroup of Sn consisting
of permutations σ ∈ Sn such that σ(1)= 1.

We will now construct a generically free linear representation V of T o Pn of
dimension n− 1+ [n/p]. This will show that ed(T o Pn)≤ [n/p].

To construct V , let 3 = {a1,i | i = 2, . . . , n} and V3 be as in Section 3 and
let W be an [n/p]-dimensional faithful linear representation of Pn constructed in
the proof of Corollary 4.2. Applying Lemma 3.2, we see that V = V3 × W is
generically free.

(ii) Since the natural projection p : T o Pn → Pn has a section, so does the map
p∗ : H 1(K , T o Pn) → H 1(K , Pn) of Galois cohomology sets. Hence, p∗ is
surjective for every field K/k. This implies that

ed(T o Pn)≥ ed(Pn; p)= [n/p].

Here ed(Pn; p) = ed(Sn; p) by Lemma 4.1 and ed(Sn; p) = [n/p] by Corollary
4.2. �

Remark 5.2. We will now outline a different and perhaps more conceptual proof
of the upper bound ed(N ; p)≤ [n/p] of Theorem 1.1(a). As we pointed out in the
introduction, ed(N ; p) is the essential dimension at p of the functor

H 1(∗, N ) : K 7→
{

K -isomorphism classes of pairs (A, L)
}
,
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where A is a degree n central simple algebra over K and L is a maximal étale
subalgebra of A. Similarly, ed(Sn; p) is the essential dimension at p of the functor

H 1(∗,Sn) : K 7→ {K -isomorphism classes of n-dimensional étale algebras L/K }.

Let α : H 1(∗,Sn)→ H 1(∗, N ) be the map taking an n-dimensional étale algebra
L/K to (EndK (L), L). Here we embed L in EndK (L) ' Mn(K ) via the regular
action of L on itself.

It is easy to see that, in the terminology of [Merkurjev 2007, Section 1.3], α
is p-surjective. That is, for any class (A, L) in H 1(K , N ) there exists a prime-
to-p extension K ′/K such that (A ⊗K K ′, L ⊗K K ′) lies in the image of α. In
fact, any K ′/K of degree prime to p which splits A will do (such an extension
exists because we are assuming that the degree n of A is not divisible by p).
Indeed, by the Skolem–Noether theorem, any two embeddings of L ⊗K K ′ into
Mn(K ′) are conjugate. By [Merkurjev 2007, Proposition 1.3], we conclude that
ed(N ; p) ≤ ed(Sn; p). Combining this with Corollary 4.2 yields the desired in-
equality ed(N ; p)≤ [n/p].
�

Proof of Proposition 5.1(b). Here n= p and Pn 'Z/p is generated by the p-cycle
(1, 2, . . . , n). We follow the strategy outlined in Section 2.

(i) To show that edk(T o Pn)≤ 2, we construct a generically free k-representation
of T o Pn of dimension 2+ dim(T o Pn)= n+ 1.

Let3={a1,2, . . . , ap−1,p, ap,1} and V = V3×L , where L is a one-dimensional
faithful representation of Pn 'Z/p and T o Pn acts on L via the natural projection
T o Pn → Pn . Note that dim V = |3| + 1 = n + 1. Since 3 generates X (T ),
Lemma 3.2 tells us that V is a generically free representation of T o Pn .

(ii) Recall that edk(T o Pn; p)= edk(N ; p) by Lemma 4.1. On the other hand, as
we mentioned in the introduction,

edk(N ; p)≥ edk(PGLp; p)= 2;

see (4) and (5). This completes the proof of Proposition 5.1(b) and of Theorem
1.1(b). �

6. Proof of Theorem 1.1(c): The upper bound

In the next two sections we will prove Proposition 5.1(c), and hence Theorem
1.1(c). We will assume that n = pr for some r ≥ 2 and follow the strategy of
Section 2. In this section we will carry out Step (i). That is, we will construct a
generically free representation V of T o Pn of dimension p2r−1. This will show
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that ed(T o Pn)≤ p2r−1
− pr
+1. Our V will be of the form V3 for a particular Pn-

invariant 3⊂ X (T ), following the recipe of Section 3. Note that this construction
(and thus the above inequality) will not require any assumption on the base field k.

For notational convenience, we will subdivide the integers 1, 2, . . . , pr into p
big blocks B1, . . . , Bp, where each Bi consists of the pr−1 consecutive integers
(i − 1)pr−1

+ 1, (i − 1)pr−1
+ 2, . . . , i pr−1.

We define 3⊂ X (T ) as the Pn-orbit of the element

a1,pr−1+1 = (1, 0, . . . , 0︸ ︷︷ ︸
B1

,−1, 0, . . . , 0︸ ︷︷ ︸
B2

, 0, 0, . . . , 0︸ ︷︷ ︸
B3

, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
Bp

)

in X (T ). Thus, 3 consists of elements aα,β , subject to the condition that if α lies
in the big block Bi then β has to lie in B j , where j − i ≡ 1 modulo p. There are
pr choices for α. Once α is chosen, there are exactly pr−1 further choices for β.
Thus

|3| = pr
· pr−1

= p2r−1.

As described in Section 3, we obtain a linear representation V3 of T o Pn of the
desired dimension

dim V3 = |3| = p2r−1.

It remains to prove that V3 is generically free. By Lemma 3.3 it suffices to show
that

(i) 3 generates X (T ) as an abelian group and

(ii) the Pn action on the kernel of the natural morphism φ : Z[3] → X (T ) is
faithful.

The elements aα,β clearly generate X (T ) as an abelian group, as α and β range
over 1, 2, . . . , pr . Thus in order to prove (i) it suffices to show that SpanZ(3)

contains every element of this form. Suppose α lies in the big block Bi and β in
B j . If j − i ≡ 1 (mod p), then aα,β lies in 3 and there is nothing to prove. If
j − i ≡ 2 (mod p) then choose some γ ∈ Bi+1 (where the subscript i + 1 should
be viewed modulo p) and write

aα,β = aα,γ + aγ,β .

Since both terms on the right are in 3, we see that in this case aα,β ∈ SpanZ(3).
Using this argument recursively, we see that aα,β also lies in SpanZ(3) if j − i ≡
3, . . . , p (mod p), i.e., for all possible i and j . This proves (i).

To prove (ii), denote the kernel of φ by M . Since Pn is a finite p-group, every
normal subgroup of Pn intersects the center of Pn , which we shall denote by Zn .
Thus it suffices to show that Zn acts faithfully on M .
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Recall that Zn is the cyclic subgroup of Pn of order p generated by the product
of disjoint p-cycles

σ1 . . . σpr−1 = (1 · · · p) (p+1 · · · 2p) · · · (pr
−p+1 · · · pr ).

Since |Zn| = p, it either acts faithfully on M or it acts trivially, so we only need to
check that the Zn-action on M is nontrivial. Indeed, Zn does not fix the nonzero
element

a1,pr−1+1+ apr−1+1,2pr−1+1+ · · ·+ a(p−1)pr−1+1,1 ∈ Z[3]

which lies in M . This proves the upper bound of Proposition 5.1(c) and Theorem
1.1(c). �

7. Proof of Theorem 1.1(c): The lower bound

In this section we will continue to assume that n = pr . We will show that

ed(N ; p)≥ p2r−1
− pr
+ 1, (10)

thus completing the proof of Proposition 5.1(c) and Theorem 1.1(c). Let

q := pe,where e ≥ 1 if p is odd and e ≥ 2 if p = 2. (11)

be a power of p. The specific choice of e will not be important in the sequel; in
particular, the reader may assume that q = p if p is odd and q = 4, if p = 2.
Whatever e we choose, q = pe will remain unchanged for the rest of this section.

We now recall that if k ′/k is a field extension then

edk(N ; p)≥ edk′(N ; p),

by [Merkurjev 2007, Proposition 1.5(1)]. Thus for the purpose of proving (10) we
may replace k by k ′. In particular, we may assume that k ′ contains a primitive q-th
root of unity.

Let T(q) = µn
q/µq be the q-torsion subgroup of T = Gn

m/1. Applying the
inequality (9) to G = T o Pn and its finite subgroup H = T(q) o Pn , we obtain

ed(T o Pn; p)≥ ed(T(q) o Pn; p)− pr
+ 1.

Thus it suffices to show that

ed(T(q) o Pn; p)≥ p2r−1. (12)

The advantage of replacing T o Pn by T(q)o Pn is that T(q)o Pn is a finite p-group,
so that we can apply the following result:
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Theorem 7.1 [Karpenko and Merkurjev 2008]. Let G be a finite p-group and k
be a field containing a primitive p-th root of unity. Then edk(G; p) = edk(G)
equals the minimal value of dim V , where V ranges over all faithful linear k-
representations G→ GL(V ).

Now recall that we are assuming that k contains a primitive q-th root of unity and
hence, a primitive p-th root of unity. Hence, Theorem 7.1 applies in our situation.
That is, in order to prove (12) it suffices to show that T(q) o Pn does not have
a faithful linear representation of dimension less than p2r−1. Lemma 3.1 further
reduces this representation-theoretic assertion to the combinatorial statement of
Proposition 7.2 below. Before stating the proposition we recall that the character
lattice of T(q) ' µn

q/µq is

Xn := {(a1, . . . , an) ∈ (Z/qZ)n | a1+ · · ·+ an = 0 in Z/qZ},

where we identify the character

(t1, . . . , tn)→ ta1
1 . . . tan

n

of T(q) with (a1, . . . , an)∈ (Z/qZ)n . Here (t1, . . . , tn) stands for an element of µn
q ,

modulo the diagonally embedded µq , so the character above is well defined if and
only if a1+· · ·+an = 0 in Z/qZ. (This is completely analogous to our description
of the character lattice of T in the previous section.) Note that Xn depends on the
integer q = pe, which we assume to be fixed throughout this section.

Proposition 7.2. Let n = pr and Pn be a Sylow p-subgroup of Sn . If 3 is a Pn-
invariant generating subset of Xn then |3| ≥ p2r−1 for any r ≥ 1.

Our proof relies on the following special case of Nakayama’s Lemma:

Lemma 7.3 [Atiyah and Macdonald 1969, Proposition 2.8]. Let q = pe be a prime
power, M = (Z/qZ)d and 3 be a generating subset of M (as an abelian group).
If we remove from 3 all elements that lie in pM , the remaining set, 3 \ pM , will
still generate M. �

Proof of Proposition 7.2. We argue by induction on r . For the base case, set r = 1.
We need to show that |3| ≥ p. Assume the contrary. In this case Pn is a cyclic
p-group, and every nontrivial orbit of Pn has exactly p elements. Hence, |3|< p
is only possible if every element of 3 is fixed by Pn . Since we are assuming that
3 generates Xn as an abelian group, we conclude that Pn acts trivially on Xn . This
can happen only if p=q=2. Since these values are ruled out by our definition (11)
of q , we have proved the proposition for r = 1.

In the previous section we subdivided the integers 1, 2, . . . , pr into p big blocks
B1, . . . , Bp of length pr−1. Now we will now work with small blocks b1, . . . , bpr−1 ,
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where b j consists of the p consecutive integers

( j − 1)p+ 1, ( j − 1)p+ 2, . . . , j p.

We can identify Ppr−1 with the subgroup of Ppr that permutes the small blocks
b1, . . . , bpr−1 without changing the order of the elements in each block.

For the induction step, assume r ≥2 and consider the homomorphism6 : X pr→

X pr−1 given by

a= (a1, a2, . . . , apr ) 7→ s= (s1, . . . , spr−1), (13)

where si = a(i−1)p+1 + a(i−1)p+2 + · · · + ai p is the sum of the entries of a in the
i-th small block bi . Thus

(i) if 3 generates X pr then 6(3) generates X pr−1 .

(ii) if 3 is a Ppr -invariant subset of X pr then 6(3) is a Ppr−1-invariant subset of
X pr−1 .

Let us remove from 6(3) all elements which lie in pX pr−1 . The resulting set,
6(3)\ pX pr−1 , is clearly Ppr−1-invariant. By Lemma 7.3 this set generates X pr−1 .
Thus by the induction assumption |6(3) \ pX pr−1 | ≥ p2r−3.

We claim that the fiber of each element s= (s1, . . . , spr−1) in 6(3)\ pX pr−1 has
at least p2 elements in 3. If we can show this, then we will be able to conclude
that

|3| ≥ p2
· |6(3) \ pX pr−1 | ≥ p2

· p2r−3
= p2r−1,

thus completing the proof of Proposition 7.2.
Let σi be the single p-cycle, cyclically permuting the elements in the small block

bi . To prove the claim, note that the subgroup

〈σi | i = 1, . . . , pr−1
〉 ' (Z/pZ)pr−1

of Pn acts on each fiber of 6.
To simplify the exposition in the argument to follow, we introduce the following

bit of terminology. Let us say that a∈ (Z/qZ)n is scalar in the small block bi if all
the entries of a in the block bi are the same, that is, if

a(i−1)p+1 = a(i−1)p+2 = · · · = ai p.

We are now ready to prove the claim. Suppose a = (a1, . . . , apr ) ∈ X pr lies in
the preimage of s = (s1, . . . , spr−1), as in (13). If a is scalar in the small block bi

then clearly
si = a(i−1)p+1+ a(i−1)p+2+ · · ·+ ai p ∈ pZ/qZ.

Since we are assuming that s lies in

6(3) \ pX pr−1,
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s must have at least two entries that are not divisible by p, say, si and s j . (Recall
that s1+· · ·+ spr = 0 in Z/qZ, so s cannot have exactly one entry not divisible by
p.) Thus a is nonscalar in the small blocks bi and b j . Consequently, the elements
σ αi σ

β
j (a) are distinct, as α and β range between 0 and p−1. All of these elements

lie in the fiber of s under 6. Therefore we conclude that this fiber contains at least
p2 distinct elements. This completes the proof of the claim and thus of Proposition
7.2, Proposition 5.1(c) and Theorem 1.1(c). �

8. Proof of Theorem 1.1(d)

In this section we assume that n is divisible by p but is not a power of p. We will
modify the arguments of the last two sections to show that

ed(T o Pn)= ed(T o Pn; p)= pe(n− pe)− n+ 1,

where pe is the highest power of p dividing n. This will complete the proof of
Proposition 5.1 and thus of Theorem 1.1.

Write out the p-adic expansion

n = n1 pe1 + n2 pe2 + · · ·+ nu peu , (14)

of n, where 1 ≤ e = e1 < e2 < · · · < eu , and 1 ≤ ni < p for each i . Subdivide
the integers 1, . . . , n into n1+· · ·+nu blocks Bi

j of length pei , for j ranging over
1, 2, . . . , ni . By our assumption there are at least two such blocks. The Sylow
subgroup Pn is a direct product

Pn = (Ppe1 )n1 × · · ·× (Ppeu )nu

where each Ppei acts on one of the blocks Bi
j .

Once again we will use the strategy outlined in Section 2.

(i) We will construct a generically free representation of T o Pn of dimension
pe1(n− pe1). This will prove the upper bound edk(T o Pn) ≤ pe1(n− pe1)− n+
1. Note that this construction (and thus the above inequality) do not require any
assumption on the field k.

To construct this representation, let 3⊂ X (T ) be the union of the Pn-orbits of
the elements

a1, j+1 where j = pe1, . . . , n1 pe1, n1 pe1+pe2, . . . , n−peu ,

i.e., the union of the Pn-orbits of elements of the form (1, 0, . . . , 0,−1, 0, . . . , 0),
where 1 appears in the first position of the first block and −1 appears in the first
position of one of the other blocks. For aα,β in 3 there are pe1 choices for α and
n− pe1 choices for β. Thus

dim V3 = |3| = pe1(n− pe1).
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It is not difficult to see that 3 generates X (T ) as an abelian group. To conclude
with Lemma 3.3 that V3 is a generically free representation of T o Pn , it remains
to show that the Pn-action on the kernel of the natural morphism φ :Z[3]→ X (T )
is faithful when e1 ≥ 1. As in Section 6 we only need to check that the center
Zn of Pn acts faithfully on the kernel. Let σ be a nontrivial element of Zn =

(Z pe1 )n1×· · ·× (Z peu )nu , with each Z pei cyclic of order p. Let h, h′ be in the first
block B1

1 and l, l ′ in some other block B j
i (there are at least two blocks each of

size at least p). The element

a= ah,l − ah,l ′ + ah′,l ′ − ah′,l

lies in the kernel of φ. To fix a, σ must either (1) fix all h, h′, l, l ′ or (2) σ(h) =
h′, σ (h′) = h and σ(l) = l ′, σ (l ′) = l. Since σ is nontrivial we may choose B j

i
such that (1) is not possible and if p 6= 2, (2) is not possible either. If p = 2, by
(14), B j

i is at least of size 4 and we can choose l, l ′ within B j
i such that (2) does

not hold. Therefore σ does not fix a nonzero element of the kernel of φ.

(ii) We now want to prove the lower bound,

ed(T o Pn; p)≥ pe1(n− pe1)− n+ 1.

Arguing as in Section 7 (and using the same notation, with q = p), it suffices to
show that ed(T(p)o Pn; p)≥ pe1(n− pe1). By the Karpenko–Merkurjev Theorem
7.1 this is equivalent to showing that every faithful representation of T(p) o Pn

has dimension at least pe1(n − pe1). By Lemma 3.1 it now suffices to prove the
following lemma.

Lemma 8.1. Let n be a positive integer, Pn be the Sylow subgroup of Sn , pe be the
highest power of p dividing n, and

Xn :=
{
(a1, . . . , an) ∈ (Z/pZ)n | a1+ · · ·+ an = 0 in Z/pZ

}
.

Then every Pn-invariant generating subset of Xn has at least pe(n− pe) elements.

In the statement of the lemma we allow e = 0, to facilitate the induction argu-
ment. For the purpose of proving the lower bound in Proposition 5.1(d) we only
need this lemma for e ≥ 1.

Proof. Once again, we consider the p-adic expansion (14) of n with 0≤ e1 < e2 <

· · ·< eu and 1≤ ni < p. We may assume that n is not a power of p, since otherwise
the lemma is vacuous.

We will argue by induction on e = e1. For the base case, let e1 = 0. Here the
lemma is obvious: since Xn has rank n− 1, every generating set (Pn-invariant or
not) has to have at least n− 1 elements.
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For the induction step, we may suppose e = e1 ≥ 1; in particular, n is divisible
by p. Define 6 : Xn→ Xn/p by sending (a1, . . . , an) to (s1, . . . , sn/p), where

s j = a( j−1)p+1+ · · ·+ a j p

for j = 1, . . . , n/p. Arguing as in Section 7 we see that 6(3) \ pXn/p is a
(Ppe1−1)n1 × · · ·× (Ppeu−1)nu -invariant generating subset of Xn/p and that every

s ∈6(3) \ pXn/p

has at least p2 preimages in 3. By the induction assumption,

|6(3) \ pXn/p| ≥ pe−1
( n

p
− pe−1

)
and thus

|3| ≥ p2
· pe−1

( n
p
− pe−1

)
= pe(n− pe)

This completes the proof of Lemma 8.1 and thus of parts (d) of Proposition 5.1
and of Theorem 1.1. �
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