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The goal of this paper is to study irreducible families W t−1
t,t (b; a) of codimen-

sion 4, arithmetically Gorenstein schemes X ⊂ Pn defined by the submaximal
minors of a t × t homogeneous matrix A whose entries are homogeneous forms
of degree a j−bi . Under some numerical assumption on a j and bi , we prove that
the closure of W t−1

t,t (b; a) is an irreducible component of Hilbp(x)(Pn), show that
Hilbp(x)(Pn) is generically smooth along W t−1

t,t (b; a), and compute the dimen-
sion of W t−1

t,t (b; a) in terms of a j and bi . To achieve these results we first prove
that X is determined by a regular section of IY /I

2
Y (s) where s = deg(det A) and

Y ⊂ Pn is a codimension-2, arithmetically Cohen–Macaulay scheme defined by
the maximal minors of the matrix obtained deleting a suitable row of A.

1. Introduction

In this paper we deal with determinantal schemes. A scheme X ⊂Pn of codimen-
sion c is called determinantal if its homogeneous saturated ideal can be generated
by the r×r minors of a homogeneous p×q matrix with c= (p−r+1)(q−r+1).
When r = min(p, q) we say that X is standard determinantal. Given integers
r ≤ p≤ q, a1 ≤ a2 ≤ . . .≤ ap, and b1 ≤ b2 ≤ . . .≤ bq , we denote by W r

p,q(b; a)⊂
Hilbp(x)(Pn) the locus of determinantal schemes X ⊂ Pn of codimension c =
(p− r + 1)(q − r + 1) defined by the r × r minors of a p× q matrix ( f j i )

i=1,...,q
j=1,...,p

where f j i ∈ k[x0, x1, . . . , xn] is a homogeneous polynomial of degree a j − bi .
The study of determinantal schemes has received considerable attention in the

literature [Bruns and Vetter 1988; Hochster and Eagon 1971; Eagon and Northcott
1962; Miró-Roig 2008]. Some classical schemes that can be constructed in this
way are the Segre varieties, rational normal scrolls, and the Veronese varieties. This
paper contributes to the classification of determinantal schemes, and addresses, in
the case p = q = t , r = t − 1, three fundamental problems:

(1) determining the dimension of W r
p,q(b; a) in terms of a j and bi ,

MSC2000: primary 14M12, 14C05, 14H10, 14J10; secondary 14N05.
Keywords: Hilbert scheme, arithmetically Gorenstein, determinantal schemes.
Miró-Roig was partially supported by MTM2007-61104.
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(2) determining whether the closure of W r
p,q(b; a) is an irreducible component of

Hilbp(x)(Pn), and

(3) determining when Hilbp(x)(Pn) is generically smooth along W r
p,q(b; a).

The first important contribution to these problems was made by Ellingsrud [1975],
who proved that every arithmetically Cohen–Macaulay, closed subscheme X of
codimension 2 of Pn is unobstructed (that is, the corresponding point in the Hilbert
scheme Hilbp(x)(Pn) is smooth) provided n ≥ 3. He also computed the dimension
of the Hilbert scheme at (X).

Recall that the homogeneous ideal of an arithmetically Cohen–Macaulay closed
subscheme of codimension 2 of Pn is given by the maximal minors of a (t−1)× t
homogeneous matrix, the Hilbert–Burch matrix; that is, such a scheme is stan-
dard determinantal. The purpose of this work is to extend Ellingsrud’s Theorem,
viewed as a statement on standard determinantal schemes of codimension 2, to
arbitrary determinantal schemes. The case of codimension-3 standard determinan-
tal schemes was mainly solved in [Kleppe et al. 2001, Proposition 1.12], and the
case of standard determinantal schemes of arbitrary codimension was studied and
partially solved in [Kleppe and Miró-Roig 2005]. In [Kleppe and Miró-Roig 2007],
we treated the case of codimension-3 determinantal schemes X ⊂ Pn defined by
the submaximal minors of a symmetric homogeneous matrix. In our opinion, it
is difficult to solve the above three questions in full generality, and, in this paper,
we will focus our attention on the first unsolved case; that is, we will deal with
codimension-4 determinantal schemes X ⊂ Pn , n ≥ 5, defined by the submaximal
minors of a homogeneous square matrix. As in [Kleppe et al. 2001; Kleppe and
Miró-Roig 2005; Kleppe and Miró-Roig 2007], we prove our results by considering
the smoothness of the Hilbert flag scheme of pairs, or, more generally, the Hilbert
flag scheme of chains of closed subschemes obtained by deleting suitable rows,
and its natural projections into the usual Hilbert schemes. We wonder if a similar
strategy could facilitate the study of the general case.

Here we outline the structure of the paper. In Section 2, we recall the basic facts
about local cohomology and deformation theory needed in what follows. In Section
3, we describe the deformations of the codimension-4 arithmetically Gorenstein
schemes X ⊂Pn defined as the degeneracy locus of a regular section of the twisted
conormal sheaf IY /I

2
Y (s) of a codimension-2, arithmetically Cohen–Macaulay

scheme Y ⊂ Pn of dimension ≥ 3. Section 4 is the heart of the paper. There we
determine the dimension of W t−1

t,t (b; a) in terms of bi and a j provided ai ≥ bi+3

for 1≤ i ≤ t − 3 (and a1 ≥ bt if t ≤ 3), at > at−1+ at−2− b1 and dim X ≥ 1. We
also prove that, under this numerical restriction, Hilbp(x)(Pn) is generically smooth
along W t−1

t,t (b; a), and that the closure of W t−1
t,t (b; a) is an irreducible component

of Hilbp(x)(Pn) (see Theorem 4.6).
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The key point in proving our result is the fact that any codimension-4, deter-
minantal scheme X ⊂ Pn defined by the submaximal minors of a homogeneous
square matrix A is arithmetically Gorenstein and determined by a regular section
of IY /I

2
Y (s) where s = deg(det A) and Y ⊂Pn is a codimension-2, arithmetically

Cohen–Macaulay scheme defined by the maximal minors of the matrix N obtained
deleting a suitable row of A (see Proposition 4.3). Conversely, any codimension-4,
arithmetically Gorenstein scheme X = Proj A⊂ Pn defined by a regular section σ
of IY /I

2
Y (s) where Y = Proj B ⊂ Pn is a codimension-2, arithmetically Cohen–

Macaulay scheme, fits into an exact sequence

0−→ K B(n+ 1− 2s)−→ NB(−s)
σ ∗
−→ B −→ A −→ 0,

and is determined by the submaximal minors of a t × t homogeneous matrix A

obtained by adding a suitable row to the Hilbert–Burch matrix of Y (see Proposition
4.3). In Section 5, we include some examples which illustrate that the numerical
hypothesis in Theorem 4.6, at > at−1+ at−2− b1, cannot be avoided.

Notation. Throughout this paper k will be an algebraically closed field k, R =
k[x0, x1, . . . , xn], m = (x0, . . . , xn) and Pn

= Proj R. As usual, the sheafification
of a graded R-module M will be denoted by M̃ and the support of M by Supp M .

Given a closed subscheme X of Pn of codimension c, we denote by IX its ideal
sheaf, by NX its normal sheaf, and by I (X) = H 0

∗
(Pn,IX ) its saturated homoge-

neous ideal unless X =∅, in which case we let I (X)=m . If X is equidimensional
and Cohen–Macaulay of codimension c, we set ωX = Extc

OPn (OX ,OPn )(−n−1) to
be its canonical sheaf.

In the sequel, for any graded quotient A of R of codimension c, we let IA =

ker(R � A), NA =HomR(IA, A) be the normal module. If A is Cohen–Macaulay
of codimension c, we let K A=ExtcR(A, R)(−n−1) be its canonical module. When
we write X =Proj A, we let A= R/I (X) and K X =K A. If M is a finitely generated
graded A-module, let depthJ M denote the length of a maximal M-sequence in
a homogeneous ideal J and let depth M = depthm M . If 0J (−) is the functor of
sections with support in Spec(A/J ), we denote by H i

J (−) the right derived functor
of 0J (−).

Let Hilbp(x)(Pn) be the Hilbert scheme parameterizing closed subschemes X
of Pn with Hilbert polynomial p(x) ∈ Q[x] [Grothendieck 1966]. By abuse of
notation we will write (X) ∈ Hilbp(x)(Pn) for the k-point which corresponds to a
closed subscheme X ⊂Pn . The Hilbert polynomial of X is sometimes denoted by
pX . By definition X is called unobstructed if Hilbp(x)(Pn) is smooth at (X).

The pullback of the universal family on Hilbp(Pn) via a morphism ψ : W −→
Hilbp(Pn) yields a flat family over W , and we will write (X)∈W for a member of
that family as well. Suppose that W is irreducible. Then, by definition, a general
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(X) ∈ W has a certain property if there is a nonempty open subset U of W such
that all members of U have this property. Moreover, we say that (X) is general in
W if it belongs to a sufficiently small open subset U of W (so any (X) in U has
all the openness properties that we want to require).

Finally we let D = D(pX , pY ) be the Hilbert flag scheme parameterizing pairs
of closed subschemes (X ′ ⊂ Y ′) of Pn with Hilbert polynomials pX ′ = pX and
pY ′ = pY , respectively.

2. Preliminaries

For the convenience of the reader we include in this section the background and
basic results on local cohomology and deformation theory needed in the sequel.

2.1. Local cohomology. Let B = R/IB be a graded quotient of the polynomial
ring R, let M and N be finitely generated graded B-modules and let J ⊂ B be
an ideal. We say that M (assumed nonzero) is Cohen–Macaulay if depth M =
dim M and maximal Cohen–Macaulay if depth M = dim B. Equivalently, since
depthJ M ≥ r is equivalent to H i

J (M) = 0 for i < r , the module M is Cohen–
Macaulay (resp. maximal Cohen–Macaulay) if H i

m(M) = 0 for all i 6= dim M
(resp. i < dim B). If B is Cohen–Macaulay, we know by Gorenstein duality that
the v-graded piece of H i

m(M) satisfies

vH i
m(M)' −vExtdim B−i

B (M, K B)
∨.

Let Z be closed in Y :=Proj B and let U =Y−Z . Then we have an exact sequence

0→ H 0
I (Z)(M)→ M→ H 0

∗
(U, M̃)→ H 1

I (Z)(M)→ 0

and isomorphisms H i
I (Z)(M) ' H i−1

∗
(U, M̃) for i ≥ 2, where as usual we write

H i
∗
(U, M̃)=

⊕
t H i (U, M̃(t)). More generally, if depthI (Z) N ≥ i +1, there is an

exact sequence

0ExtiB(M, N ) ↪→ ExtiOU
(M̃ |U , Ñ |U )

→ 0HomB(M, H i+1
I (Z)(N ))→ 0Exti+1

B (M, N )→ · · · (2-1)

by [Grothendieck 1968, exposé VI], where the middle form comes from a spectral
sequence also treated in the same source.

2.2. Basic deformation theory. To use deformation theory, we will need to con-
sider the (co)homology groups of algebras H2(R, B, B) and H 2(R, B, B). Let us
recall their definition. We consider

· · · → F2 :=

µ2⊕
j=1

R(−n2, j )→ F1 :=

µ⊕
i=1

R(−n1,i )→ R→ B→ 0, (2-2)
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a minimal graded free R-resolution of B and let H1 = H1(IB) be the first Koszul
homology built on a set of minimal generators of IB . Then we may take the exact
sequence

0→ H2(R, B, B)→ H1→ F1⊗R B→ IB/IB
2
→ 0 (2-3)

as a definition of the second algebra homology H2(R, B, B) [Vasconcelos 1994],
and the dual sequence

→ vHomB(F1⊗ B, B)→ vHomB(H1, B)→ vH 2(R, B, B)→ 0,

as a definition of graded second algebra cohomology H 2(R, B, B). If B is gener-
ically a complete intersection, then it is well known that [André 1974, Proposition
16.1]:

Ext1B(IB/I 2
B, B)' H 2(R, B, B).

We also know that H 0(Y,NY ) is the tangent space of Hilbp(x)(Pn) in general, while
H 1(Y,NY ) contains the obstructions of deforming Y ⊂Pn in the case in which Y is
locally a complete intersection (l.c.i.) [Grothendieck 1966]. If 0HomR(IB, H 1

m(B))
vanishes (for example if depthm B≥2), we have by (2-1) that 0HomB(IB/I 2

B, B)'
H 0(Y,NY ) and 0 H 2(R, B, B) ↪→ H 1(Y,NY ) is injective in the l.c.i. case, and
that 0 H 2(R, B, B) contains the obstructions of deforming Y ⊂ Pn [Kleppe 1979,
Remark 3.7]. Thus 0 H 2(R, B, B) = 0 suffices for the unobstructedness of an
l.c.i. arithmetically Cohen–Macaulay subscheme Y of Pn of dim Y ≥ 1. For this
conclusion we may even entirely skip “l.c.i.” by slightly extending the argument,
as done in [Kleppe 1979].

2.3. Useful exact sequences. In the last part of this section, we collect some exact
sequences frequently used in this paper, in the case that B = R/IB is a gener-
ically complete intersection codimension-2 CM quotient of R. First, applying
HomR(−, R) to the minimal graded free R-resolution of B,

0→ F2 :=
⊕µ−1

j=1 R(−n2, j )→ F1 :=
⊕µ

i=1 R(−n1,i )→ R→ B→ 0, (2-4)

we get a minimal graded free R-resolution of K B :

0→ R→
⊕

R(n1,i )→
⊕

R(n2, j )→ K B(n+ 1)→ 0. (2-5)

If we apply Hom(−, B) to (2-5) we get the exactness on the left in the exact se-
quence

0→ K B(n+ 1)∗→
⊕

B(−n2, j )→
⊕

B(−n1,i )→ IB/I 2
B→ 0, (2-6)

which splits into two short exact sequences via
⊕

B(−n2, j )� H1 ↪→
⊕

B(−n1,i ),
one of which is (2-3) with H2(R, B, B)= 0. Indeed since H1 is Cohen–Macaulay
by [Avramov and Herzog 1980], we get H2(R, B, B)= 0 by (2-3). Moreover since
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Ext1R(IB, IB)' NB we showed in [Kleppe and Peterson 2001, page 788] that there
is an exact sequence of the form

0→ F∗1 ⊗R F2→
(
(F∗1 ⊗R F1)⊕(F∗2 ⊗R F2)

)
/R→ F∗2 ⊗R F1→ NB→ 0, (2-7)

where F∗i = HomR(Fi , R). Indeed this sequence is deduced from the exact se-
quence

0→ R→
⊕

IB(n1,i )→
⊕

IB(n2, j )→ NB→ 0,

which we get by applying HomR(−, IB) to (2-4) [Kleppe and Peterson 2001, (26)].
Similarly applying HomR(−, IB/I 2

B) to (2-4), and noting that

HomR(IB, IB/I 2
B)' HomB(IB/I 2

B, IB/I 2
B),

we get the exact sequence

0→ HomB(IB/I 2
B, IB/I 2

B)→
⊕

IB/I 2
B(n1,i )→

⊕
IB/I 2

B(n2, j )→ NB→ 0.
(2-8)

Finally we recall the following frequently used exact sequence [Vasconcelos 1994]:

0→
∧2(⊕ R(−n2, j )

)
→
(⊕

R(−n1,i )
)
⊗
(⊕

R(−n2, j )
)

→ S2
(⊕

R(−n1,i )
)
→ I 2

B→ 0 . (2-9)

3. Deformations of quotients of regular sections

In [Kleppe 2007] the first author studied deformations of a scheme X := Proj A
defined as the degeneracy locus of a regular section of a “nice” sheaf M̃ on an
arithmetically Cohen–Macaulay (ACM) scheme Y = Proj B. Recall that if we take
a regular section of the anticanonical sheaf K̃ ∗B(s) and Y is an l.c.i. of positive
dimension, then we get an exact sequence

0→ K B(−s)→ B→ A→ 0,

in which A is Gorenstein. Indeed the mapping cone construction leads to a resolu-
tion of A from which we easily see that A is Gorenstein. In [Kleppe and Peterson
2001], we generalized this way of constructing Gorenstein algebras to sheaves of
higher rank and, in [Kleppe 2007], we studied the deformations of this “construc-
tion”, notably in the rank 2 case which we now recall.

Let M be a maximal Cohen–Macaulay B-module of rank r = 2 such that M̃ |U
is locally free and

∧2 M̃ |U ' K̃ B(t)|U in an open set U := Y − Z of Y satisfying
depthI (Z) B ≥ 2. Then a regular section σ of M̃∗(s)|U defines an arithmetically
Gorenstein scheme X = Proj A given by the exact sequence

0→ K B(t − 2s)→ M(−s)
σ ∗
→ B→ A→ 0, (3-1)
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and M 'HomB(M, K B(t)) by Theorem 8 of [Kleppe and Peterson 2001]. In this
paper we consider and further develop the case where M = NB and dim B = n−1
(n+1= dim R, n ≥ 5). By Proposition 13 of the same reference, NB is a maximal
Cohen–Macaulay B-module and we have the exact sequence

0→ K B(n+1−2s)→ NB(−s)→ IA/B→0, where IA/B :=ker(B→ A). (3-2)

Example 3.1. Set R=k[x0, . . . , x5] and let B= R/IB be a codimension-2 quotient
with minimal resolution

0→ R(−3)2→ R(−2)3→ R→ B→ 0,

and suppose Y = Proj B is an l.c.i. in P5. Let A be given by a regular section of

ĨB/I 2
B(s), s ≥ 3. Thanks to the exact sequences (2-5) and (2-7) and the mapping

cone construction applied to both (3-2) and 0→ IA/B→ B→ A→ 0, we get the
following resolution of the Gorenstein algebra A:

0→ R(−2s)→ R(2−2s)3 ⊕ R(−1−s)6→ R(3−2s)2 ⊕ R(−s)12
⊕ R(−3)2

→ R(1−s)6 ⊕ R(−2)3→ R→ A→ 0 .

Indeed X=Proj A is an arithmetically Gorenstein curve of degree d=3s2
−10s+9

and arithmetic genus g = 1+ d(s− 3) in P5 [Kleppe 2007, Example 43].

With M and A as above, it turns out that [Kleppe 2007, Theorems 1 and 25]
describes the deformations space, GradAlg R, of the graded quotient A and com-
putes the dimension of GradAlg R in terms of a number δ := δ(K B)t−2s−δ(M)−s ,
where

δ(N )v := vhomB(IB/I 2
B, N )− vext1B(IB/I 2

B, N ). (3-3)

Here we have used small letters for the k-dimension of vExtiB(−,−) and of sim-
ilar groups. If we suppose M = NB , depthI (Z) B ≥ 4 and char k 6= 2, then the
conditions of parts A and B of [Kleppe 2007, Theorem 25] are satisfied provided
0Ext2B(NB, NB) = 0 or −sExt1B(IB/I 2

B, NB) = 0, respectively. In both cases X is
unobstructed and

dim(X) Hilbp(x)(Pn)=

dim(NB)0+ dim(IB/I 2
B)s − 0homB(IB/I 2

B, IB/I 2
B)+ dim(K B)t−2s + δ, (3-4)

where t = n+ 1 [Kleppe 2007, Corollary 41 and its proof and Remark 42]. Using
the exact sequence (2-7) we get −sExt1B(IB/I 2

B, NB) = 0 for s > 2 max n2, j −

min n1,i which led to Corollary 41 of [Kleppe 2007] which we slightly generalize
in Corollary 3.2(i) below. The A-part was considered in [Kleppe 2007, Remark
42]. By the proof of [Kleppe 2007, Theorem 25] we may replace the vanishing of
0Ext2B(NB, NB) by the vanishing of the subgroup t Ext2B(S

2(IA/B(s)), K B) and still
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get all conclusions of the A-part. Therefore, we can also prove (ii) of the following
corollary to [Kleppe 2007, Theorem 25].

Corollary 3.2. Let B = R/IB be a codimension-2 CM quotient of R, let U =
Proj B − Z ↪→ Pn be an l.c.i., and suppose depthI (Z) B ≥ 4. Let A be given by a
regular section of ÑB

∗
(s) on U , let η(v) := dim(IB/I 2

B)v, and put

ε := η(s)+
µ−1∑
j=1

η(n2, j )−

µ∑
i=1

η(n1,i ).

(i) Let j0 satisfy n2, j0 = max n2, j . If s > n2, j0 + max j 6= j0 n2, j − min n1,i and
char k 6= 2, then X is a pY -generic unobstructed arithmetically Gorenstein
subscheme of Pn of codimension 4 and dim(X) Hilbp(x)(Pn)= ε.

(ii) If sExt1B(NB, A)= 0, char k = 0, s >max n2, j/2 and (X ⊂ Y ) is general, then
X is unobstructed, dim(X) Hilbp(x)(Pn) = ε + δ and the codimension of the
stratum in Hilbp(x)(Pn) of subschemes given by (3-1) is 0ext1B(IB/I 2

B, IA/B).
Moreover if s >max n2, j+max n1,i−min n1,i we have 0ext1B(IB/I 2

B, IA/B)=

−sext1B(IB/I 2
B, NB)= δ, while if s >max n2, j we have 0ext1B(IB/I 2

B, IA/B)=

−sext1B(IB/I 2
B, NB).

Here IA/B = ker(B → A) and “X is pY -generic” if there is an open subset of
Hilbp(x)(Pn) containing (X) whose members X ′ are subschemes of some closed
Y ′ with Hilbert polynomial pY . The stratum in Hilbp(x)(Pn) of subschemes given
by (3-1) around (X) is defined by functorially varying both B, M and the regular
section around (B→ A) [Kleppe 2007, the definition before Theorem 25]. Indeed
it is proved in [Kleppe 2007, Lemma 2.9] that pairs of closed subschemes (X ′⊂Y ′)
of Pn , X ′ = Proj A′ and Y ′ = Proj B ′, obtained as in (3-1), contain an open subset
U 3 (X ⊂ Y ) in the Hilbert flag scheme D, and taking such a U small enough,
we may define the mentioned stratum to be p(U ) where p : D→ Hilbp(x)(Pn) is
the projection morphism induced by (X ′ ⊂ Y ′)→ (X ′). Thus “X is pY -generic”
essentially means that the codimension of the stratum of subschemes given by (3-1)
around (X) is zero.

Note also that “(X ⊂ Y ) is general” means that it is the general member of an
irreducible (nonembedded) component of the Hilbert flag scheme D. Since we, in
Corollary 3.2 suppose depthI (Z) B ≥ 4 and hence depthm A ≥ 2, this is equivalent
to saying that (B → A) is the general member of an irreducible (nonembedded)
component of the “Hilbert flag scheme” parameterizing pairs of quotients of R
with fixed Hilbert functions. Indeed we can replace the schemes GradAlg R of
[Kleppe 2007] by Hilbp(x)(Pn) because we work with algebras of depth at least 2
at m [Ellingsrud 1975; Kleppe 1979, Remark 3.7].
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Proof. By the text before (3-4), in order to prove (i) it is sufficient to show that
−sExt1B(IB/I 2

B, NB)= 0. To see it we observe that

Ext1B(IB/I 2
B, NB)' Ext1B(TB, K B(n+ 1)),

where TB :=HomB(IB/I 2
B, IB/I 2

B) by [Kleppe 2007, Remark 42]. We consider the
exact sequence (2-8) and we define F := ker(

⊕
IB/I 2

B(n2, j )→ NB). Since NB is
a maximal CM B-module and IB/I 2

B has codepth 1 (that is, ExtiB(IB/I 2
B, K B)= 0

for i ≥ 2) by [Avramov and Herzog 1980] or (2-9), we get Ext2B(F, K B) = 0. It
follows that

Ext1B
(⊕

IB/I 2
B(n1,i ), K B(n+ 1)

)
→ Ext1B(TB, K B(n+ 1))

is surjective. Since

Ext1B(IB/I 2
B, K B(n+ 1))' Ext3R(IB/I 2

B, R)' Ext2R(I
2
B, R) ,

it suffices to show −sExt2R(I
2
B(n1,i ), R)= 0 for any i . Looking to (2-9) it is enough

to see that −sHom
(∧2(⊕ R(−n2, j )

)
(n1,i ), R

)
= 0. Since, however, n2, j +n2, j ′−

n1,i − s < 0 for any i, j, j ′, j 6= j ′ by assumption, we easily get this vanishing for
any i and hence −sExt1B(IB/I 2

B, NB) = 0. Finally, the dimension formula follows
from (3-4) and (2-8) since we get (K B)t−2s = 0 and δ = 0 from the proof of (ii).

(ii) By (2-5) we have (K B)t−2s = 0, provided 2s > max n2, j . By the discussion
before Corollary 3.2 we must prove t Ext2B(S

2(IA/B(s)), K B)= 0. Using the proof
of [Kleppe 2007, Lemma 28] there is an exact sequence

0→ t Ext2B(S
2(IA/B(s)), K B)→t Ext2B(S

2(NB), K B)→ sExt2B(NB, B),

induced by (3-2), where we have

t Ext2B(S
2(NB), K B)' 0Ext2B(NB, NB)' 0Ext2B(NB, IA/B(s)),

by (2-1), (3-2), and the fact that NB is a maximal CM B-module. Indeed

t Ext2B(S
2(NB), K B)' Ext2OU

(S̃2(NB)|U , K̃ B |U (t))

' Ext2OU
(ÑB |U , ÑB

∗
⊗ K̃ B |U (t))' 0Ext2B(NB, NB),

by (2-1). Since Ext1B(NB, B)= 0 by (2-1) and (2-9), it follows that

t Ext2B(S
2(IA/B(s)), K B)' sExt1B(NB, A),

which vanishes by assumption.
It remains to prove the final statement. If we apply Hom(−, K B) to (2-2) and we

use (2-5), we get −2sExtiR(IB, K B(t)) = 0 and hence −2sExtiB(IB/I 2
B, K B(t)) = 0

for i = 0, 1 provided s > max n2, j . Similarly we use Hom(−, NB) and (2-7) to
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show that −sHom(IB, NB) = 0 provided s > max n2, j +max n1,i −min n1,i . We
conclude by applying HomB(IB/I 2

B,−) to (3-2). �

Remark 3.3. If depthI (Z) B ≥ 4 and char k 6= 2, we showed in [Kleppe 2007,
Remark 42] that

0Ext2B(NB, NB) ' 0HomB(IB/I 2
B, H 3

I (Z)(IB/I 2
B)) ' 0HomB(IB/I 2

B, H 4
I (Z)(I

2
B)) .

In a similar way one can show that Ext2B(NB, B) ' H 4
I (Z)(I

2
B). Hence the group

sExt1B(NB, A) of Corollary 3.2 is isomorphic to the kernel of the natural map

0HomB(IB/I 2
B, H 4

I (Z)(I
2
B))→ s H 4

I (Z)(I
2
B),

induced by the regular section σ . This sometimes allows us to verify that

sExt1B(NB, A)= 0.

Remark 3.4. The first author takes the opportunity to point out a missing as-
sumption in [Kleppe 2007] as well as in [Kleppe 2006]. In these papers there are
several theorems involving the codimension of a stratum in which the assumption
“(B→ A) is general” or “(B) general” is missing. The main result [Kleppe 2006,
Theorem 5] (and hence [Kleppe 2007, Theorem 15]) uses generic smoothness in
its proof and refers to [Kleppe et al. 2001, Proposition 9.14] where the generality
assumption occurs, as it should. In the proof of [Kleppe 2006, Theorem 5] we need
(B→ A) to be general to compute the dimension of the stratum. It is easily seen
from the proof that what we really need is that (B→ A) be general, in the sense
that, for a given (B→ A), 0homR(IB, IA/B) attains its least possible value in the
irreducible components of GradAlg(HB, HA) to which (B→ A) belongs. Thus in
[Kleppe 2006, Theorem 5, Proposition 13, Theorem 16] (and hence [Kleppe 2007,
Theorem 23]), for the codimension statement we should assume that (B) is general
or at least that −shomR(IB, K B) attains its least possible value in the irreducible
component of GradAlg(HB) to which (B) belongs. If we apply our results in a
setting where these hom-numbers vanish (this is what we almost always do), we
don’t need to assume that (B) or (B→ A) is general.

So Remark 3.4 gives the reason for including the assumption that (X ⊂ Y ) is
general in Corollary 3.2(ii), even though this assumption does not occur in the
codimension statements of the A-part of [Kleppe 2007, Theorems 1 and 25].

4. Ideals generated by submaximal minors of square matrices

Let X = Proj A ⊂ Pn be a codimension-4, determinantal scheme defined by the
submaximal minors of a t× t homogeneous matrix. In this section we compute the
dimension of Hilbp(x)(Pn) for n ≥ 5 at (X) in terms of the corresponding degree
matrix. The proof requires a proposition (valid for n ≥ 3) on how A is determined
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by a locally regular section of IB/I 2
B(s) where B = R/IB is a codimension-2 CM

quotient. Let us first fix the notation we will use throughout this section.
Given a homogeneous matrix A, that is, a matrix representing a degree 0 mor-

phism φ of free graded R-modules, we denote by I (A) (or I (φ)) the ideal of R
generated by the maximal minors of A and by I j (A) (or I j (φ)) the ideal generated
by the j × j minors of A.

Definition 4.1. A codimension-c subscheme X ⊂ Pn is called a determinantal
scheme if there exist integers r , p and q such that c = (p− r + 1)(q − r + 1) and
I (X)= Ir (A) for some p×q homogeneous matrix A. X ⊂Pn is called a standard
determinantal scheme if r = min(p, q). The corresponding rings R/Ir (A) are
called determinantal (resp. standard determinantal) rings.

Let X ⊂Pn be a codimension-4, determinantal scheme defined by the vanishing
of the submaximal minors of a t× t homogeneous matrix A= ( f j i )i, j=1,...,t where
f j i ∈ k[x0, . . . , xn] are homogeneous polynomials of degree a j−bi with b1≤ b2≤

. . . ≤ bt and a1 ≤ a2 ≤ . . . ≤ at . We assume without loss of generality that A is
minimal; that is, f j i = 0 for all i, j with bi = a j . If we let u j i = a j − bi for all
j = 1, . . . , t and i = 1, . . . , t , the matrix U = (u j i )i, j=1,...,t is called the degree
matrix associated to X .

We denote by W t−1
t,t (b; a) ⊂ Hilbp(x)(Pn) the locus of determinantal schemes

X ⊂ Pn of codimension 4 defined by the submaximal minors of a homogeneous
square matrix A= ( f j i )i, j=1,...,t as above. Notice that W t−1

t,t (b; a) 6=∅ if and only
if ui−1,i = ai−1− bi > 0 for i = 2, . . . , t .

Let N be the matrix obtained by deleting the last row, let IB = It−1(N) be
the ideal defined by the maximal minors of N, and let IA = It−1(A) be the ideal
generated by the submaximal minors of A. Set A= R/IA= R/I (X) and B= R/IB .

Remark 4.2. If the entries of A and N are sufficiently general polynomials of
degree ai − b j , 1 ≤ i, j ≤ t , and ai−1 − bi > 0 for 2 ≤ i ≤ t , then B is a graded
Cohen–Macaulay quotient of codimension 2 and A is a graded Gorenstein quotient
of codimension 4.

The goal of this section is to compute, in terms of a j and bi , the dimension
of the determinantal locus W t−1

t,t (b; a) ⊂ Hilbp(x)(Pn), where p(x) ∈ Q[x] is the
Hilbert polynomial of X . Note that the Hilbert polynomial of X can be computed
explicitly using the minimal free R-resolution of R/I (X) given by Gulliksen and
Negȧrd [1972], see (4-5). We will also analyze whether the closure of W t−1

t,t (b; a)
in Hilbp(x)(Pn) is a generically smooth, irreducible component of Hilbp(x)(Pn).

To this end, we consider

F :=
t⊕

i=1
R(bi )

φ
−→ G :=

t⊕
j=1

R(a j ),
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the morphism induced by the matrix A, and

F
φt
−→ G t :=

t−1⊕
j=1

R(a j ),

the morphism induced by the matrix N obtained by deleting the last row of A. The
determinant of A is a homogeneous polynomial of degree s =

∑t
j=1 a j−

∑t
i=1 bi ,

and the degrees of the maximal minors of N are s + bi − at ; that is, IB has the
minimal free R-resolution

0−→ G∗t (at − s)
t N
−→ F∗(at − s)

β
−→ IB −→ 0. (4-1)

Proposition 4.3. Suppose char k = 0.

(i) Let A= R/It−1(A) be a determinantal ring of codimension 4 where A is a t×t
homogeneous matrix, and let B = R/It−1(N) be the standard determinantal
ring associated to N where N is the matrix obtained by deleting the last row
of A. Moreover, let Z ⊂ Proj B be a closed subset such that Proj B− Z ↪→Pn

is an l.c.i., and suppose depthI (Z) B ≥ 2. Then there is a regular section σ of
( ĨB/ Ĩ 2

B(s))|Proj B−Z , where s = deg det A, whose zero locus precisely defines
A as a quotient of B (that is, σ extends to a map σ : B −→ IB/I 2

B(s) such that
A = B/ im σ ∗).

(ii) Conversely, let B = R/It−1(N) be a standard determinantal ring of codimen-
sion 2, let Z ⊂Proj B be a closed subset such that Proj B−Z ↪→Pn is an l.c.i.
and depthI (Z) B ≥ 2, and furthermore let A′ be defined by a regular section σ
of ( ĨB/ Ĩ 2

B(s))|Proj B−Z , that is, given by

0−→ K B(n+ 1− 2s)−→ NB(−s)
σ ∗
−→ B −→ A′ −→ 0 (4-2)

for some integer s. Then, there is a t × t homogeneous matrix A′ obtained by
adding a row to N such that IA′ = It−1(A

′).

Proof. To define σ , we consider the commutative diagram

0

0 - G∗t (at−s)
? t N - F∗(at−s)

β - IB - 0

G∗(at−s)
α?

φ∗(at−s)- F∗(at−s)

www
- (cokerφ∗)(at−s)

?
- 0

R(−s)
?

0
?
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where α : G∗t (at − s) ↪→ G∗(at − s) is the natural inclusion defined by

α

 f1
...

ft−1

=


f1
...

ft−1

0

 ,
and β is given by multiplication with the maximal minors of the matrix N. The
snake Lemma yields the exact sequence

R(−s) ·
detφ
−→ IB −→ (cokerφ∗)(at − s)−→ 0, (4-3)

and hence

(cokerφ∗)(at)' IB(s)/ detφ. (4-4)

If we tensor R(−s) ·
detφ
−→ IB with B(s), we get a section σ of IB/I 2

B(s). Before
proving that the zero locus of σ defines precisely A as a quotient of B via im σ ∗=

IA/B , we claim that any locally regular section σ ′ of IB/I 2
B(s) defining A′ via

A′ = B/ im σ ′∗ gives rise to a homogeneous matrix A′ and a corresponding map
φ′ such that (4-3) and (4-4) hold with φ′ instead of φ. Indeed, given a section σ ′

of IB/I 2
B(s), there exists a map σ ′′ fitting into a commutative diagram

F∗(at)⊗ B

����

B
σ ′

//

σ ′′
::uuuuuuuuuu

IB/I 2
B(s)

and we denote by σR ∈ HomR(F, R(at)) the map which corresponds to σ ′′(1).
Since HomR(F, R(at))=Hom

(⊕t
i=1 R(bi ), R(at)

)
, the morphism σR determines

a 1× t row g = (g1, . . . , gt) where gi is a homogeneous form of degree at − bi ,
1≤ i ≤ t and we define

A′ =
(

N
g

)
.

Since the vertical map in the above diagram is induced by β described above, we
may assume that det(φ′)= σ ′(1) modulo I 2

B(s) and we get the claim.
It remains to show that im σ ∗= IA/B , where IA= It−1(A), and that σ is a locally

regular section. Note that this will also show that im σ ′∗ = IA′/B , where IA′ =

It−1(A
′); that is, we get the converse. Moreover, looking at the exact sequence

(4-2) with A instead of A′ and recalling that

NB ' K B(n+ 1)⊗ IB/I 2
B,
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we see that im σ ∗ = coker(σ (−2s)⊗ id) where id : K B(n+ 1) −→ K B(n+ 1) is
the identity map and σ is induced by detφ. Since we get

F(s− at)−→ G t(s− at)−→ K B(n+ 1)−→ 0

by dualizing the exact sequence (4-1), we see that the cokernel above is the same
as the twisted cokernel of the composition

γ : G t(−at)−→ K B(n+ 1− s)
σ(−s)⊗id
−→ NB .

Hence, we must prove that coker(γ )= IA/B(s) where IA = It−1(A).
By [Gulliksen and Negȧrd 1972, Theorem 2] and [Ile 2004, Theorem 2], we

have an exact sequence

ker
[
Hom(F, F)⊕Hom(G,G)

j
−→ R

]
−→ Hom(F,G)−→ IA(s)−→ 0, (4-5)

where j (ρ0, ρ1)= tr ρ0− tr ρ1 is the difference between trace maps. The map

Hom(F,G)−→ IA(s)

is given by γ 7→ tr(γψ), where ψ is the matrix of cofactors; that is, this map is
given by the submaximal minors of A while the map Hom(F,F)⊕Hom(G,G)

η
−→

Hom(F,G) is given as a difference of the obvious compositions with φ, that is,
η(ρ0, ρ1)= ρ1φ−φρ0. Since we have

Hom(F, F)⊕Hom(G,G)
η
−→ Hom(F,G)−→ IA(s)

(id, 0) 7−→ t · detφ

and since there is a commutative diagram

0

ker j
?

- Hom(F,G) - IA(s) - 0
‖

Hom(F, F)⊕Hom(G,G)
?

η- Hom(F,G) - coker η
?

- 0

R
?

we get an exact sequence

R ·
t detφ
−→ IA(s)−→ coker η −→ 0.

Hence, coker(η)' IA(s)/ detφ (char k = 0) and the following sequence is exact:

Hom(F, F)⊕Hom(G,G)
η
−→ Hom(F,G)−→ IA(s)/ detφ −→ 0.
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Now we look at the commutative diagram

Hom(R(−at ),G∗)

'

��

// Hom(R(−at ), F∗)

'

��

// IB(s)/ detφ

��

// 0

Hom(G, R(at ))

(0,·)
��

// Hom(F, R(at ))

��
Hom(F, F)⊕Hom(G,G)

(id,α∗1 )

��

η // Hom(F,G)

α∗2
��

// IA(s)/ detφ

��

// 0

Hom(F, F)⊕Hom(G,G t )
ηt // Hom(F,G t ) // coker(ηt ) // 0

where α∗1 and α∗2 are induced by α in a natural way and ηt is a difference of the
obvious compositions, that is, ηt(ρ0, ρ

′

1)= ρ
′

1φ−φtρ0. We see, in particular, that
the ideal IA/B = IA/IB is given by an exact sequence

Hom(F, F)⊕Hom(G,G t)
ηt
−→ Hom(F,G t)−→ IA/B(s)−→ 0,

where the rightmost map is given by the submaximal minors of the matrix A which
do not belong to IB .

On the other hand, by (2-7), there is an exact sequence

Hom(G∗t ,G∗t )⊕Hom(F∗, F∗)−→ Hom(G∗t , F∗)−→ NB −→ 0,

or, equivalently,

Hom(F, F)⊕Hom(G t ,G t)
η′

−→ Hom(F,G t)−→ NB −→ 0,

where η′ is given by η′(ρ0, ρ2)= ρ2φt −φtρ0. Using again the exact sequence

0−→ R(at)−→ G
α∗
−→ G t −→ 0,

we get a commutative diagram

Hom(F, F)⊕Hom(G t ,G t)

(id,α3)

��

η′ // Hom(F,G t) // NB

��

// 0

Hom(F, F)⊕Hom(G,G t)

��

ηt // Hom(F,G t) // IA/B(s) // 0

Hom(R(at),G t)

where α3 is induced by α. Hence we get an exact sequence

Hom(R(at),G t)
γ
−→ NB −→ IA/B(s)−→ 0.
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This proves that coker(γ )= IA/B(s), that is, im σ ∗ = IA/B as required. Finally
note that the above codimension and depth relations imply that σ is a regular sec-
tion on U := Proj B− Z because (im σ̃ ∗)|U must locally on U be generated by two
regular elements (to get that (B/ im σ̃ ∗)|U is a codimension-2 Cohen–Macaulay
quotient of B̃|U ). This completes the proof of Proposition 4.3. �

This proposition seems to be known in special cases. For instance, Ellingsrud
and Peskine [1993, before Proposition 6] state that the Artinian Gorenstein ring
associated to an invertible sheaf OS(C) on a surface S in P3, where C is an arith-
metically CM curve, is given by the submaximal minors of a square matrix which
extends the Hilbert–Burch matrix associated to C in P3. Since we get (3-1) with
M = NB by applying H 0

∗
(−) to the exact sequence

0→ NC/S(−s)→ NC(−s)→ NS|C(−s)' OC → 0,

of normal sheaves, it is clear that their Gorenstein ring (see their construction 2) is
essentially the same as ours in the Artinian case. However, we have given a proof
of the proposition suited to our applications.

As a nice application of Proposition 4.3 we have:

Proposition 4.4. Let X ⊂ Pn , n ≥ 4, be a codimension-4 scheme defined by the
submaximal minors of a t × t homogeneous square matrix A. Then X is in the
Gorenstein liaison class of a complete intersection, that is, X is glicci.

Proof. By [Gulliksen and Negȧrd 1972, Theorem 2] (see also Proposition 4.3),
X is arithmetically Gorenstein and hence glicci [Casanellas et al. 2005, Theorem
7.1]. �

Remark 4.5. This proposition has been recently generalized by Gorla, who proved
[2008, Theorem 3.1] that any codimension-(t − r + 1)2 ACM scheme X ⊂ Pn

defined by the r × r minors of a t × t homogeneous square matrix A is glicci.
For an introduction to glicciness, see [Kleppe et al. 2001].

We are now ready to compute dim W t−1
t,t (b; a) and dim(X) Hilbp(x) Pn , n ≥ 5,

in terms of a1, . . . , at and b1, · · · , bt . Note that if t = 2 then a general X is a
complete intersection in which case these dimensions are well known.

Theorem 4.6. Assume char k = 0. Fix integers a1 ≤ a2 ≤ · · · ≤ at and b1 ≤ b2 ≤

· · · ≤ bt . Assume t > 2, ai ≥ bi+3 for 1 ≤ i ≤ t − 3 (and a1 ≥ bt if t = 3),
at > at−1 + at−2 − b1 and n ≥ 5. Then W t−1

t,t (b; a) is irreducible. Moreover,
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if (X) is general in W t−1
t,t (b; a), then X is unobstructed, and

dim W t−1
t,t (b; a)= dim(X) Hilbp(x)(Pn)

=

∑
1≤i, j≤t

(
a j−bi+n

n

)
−

∑
1≤i≤t−1

1≤ j≤t

(
a j−ai+n

n

)

−

∑
1≤i, j≤t

(
bi−b j+n

n

)
+

∑
1≤i≤t

1≤ j≤t−1

(
bi−a j+n

n

)

−

∑
1≤ j≤t

1≤i≤k≤t

(
at−s−bi−bk+a j+n

n

)
+

∑
1≤i, j≤t

1≤k≤t−1

(
at−s−bi−ak+a j+n

n

)

−

∑
1≤i<k≤t−1

1≤ j≤t

(
at−s−ai−ak+a j+n

n

)
+

∑
2≤i≤t

(
at−s+bi−2b1+n

n

)
. (4-6)

Proof. Let X ⊂ Pn be an arithmetically Gorenstein scheme of codimension 4 de-
fined by the submaximal minors of a homogeneous square matrix A= ( f j i )

i=1,...,t
j=1,...,t

where f j i ∈ k[x0, . . . , xn] is a sufficiently general homogeneous polynomial of
degree a j − bi , and let Y ⊂ Pn be a codimension-2 subscheme defined by the
maximal minors of the matrix N obtained deleting the last row of A (see Remark
4.2). So, the homogeneous ideal IB = I (Y ) of Y has the minimal free R-resolution

0−→ F2 =
t−1⊕
j=1

R(at − s− a j )
t N
−→ F1 =

t⊕
i=1

R(at − s− bi )−→ IB −→ 0. (4-7)

By Proposition 4.3, X is the zero locus of a suitable regular section of ĨB/ Ĩ 2
B(s)

where s = deg(det A) and W t−1
t,t (b; a) is irreducible by [Kleppe 2007, Corollary

41]. Since the hypothesis at > at−1+ at−2− b1 is equivalent to

s > s+ a j0 − at + max
1≤ j≤t−1

j 6= j0

(s+ a j − at)− min
1≤i≤t

(s+ bi − at),

where s+a j0−at =max1≤ j≤t−1(s+a j−at); and since ai ≥ bi+3 for 1≤ i ≤ t−3
(and a1≥bt if t=3) implies that B := R/IB given by (4-7) satisfies depthI (Z) B≥4
[Kleppe and Miró-Roig 2005, Remark 2.7], we can apply Corollary 3.2 and we get
that X is unobstructed and

dim W t−1
t,t (b; a)= dim(X) Hilbp(x)(Pn)= η(s)+

t−1∑
j=1
η(n2, j )−

t∑
i=1
η(n1,i ),

where η(t) = dim(I (Y )/I (Y )2)t = dim I (Y )t − dim I (Y )2t , n2, j = s + a j − at ,
1≤ j ≤ t−1, and n1,i = s+bi −at , 1≤ i ≤ t . By (2-9), I (Y )2 has a minimal free
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R-resolution of the following type:

0−→
∧2 F2 =

⊕
1≤i< j≤t−1

R(−ai−a j+2at−2s)

−→ F1⊗F2 =
⊕

1≤i≤t
1≤ j≤t−1

R(−bi−a j+2at−2s)

−→ S2 F1 =
⊕

1≤i≤ j≤t
R(−bi−b j+2at−2s)−→ I (Y )2 −→ 0. (4-8)

Using (4-7) and (4-8), we obtain

η(s)=
∑

1≤i≤t

(
at−bi+n

n

)
−

∑
1≤i≤t−1

(
at−ai+n

n

)
−

∑
1≤i≤ j≤t

(
2at−s−bi−b j+n

n

)

+

∑
1≤i≤t

1≤ j≤t−1

(
2at−s−bi−a j+n

n

)
−

∑
1≤i< j≤t−1

(
2at−s−ai−a j+n

n

)
.

Using again (4-7) and (4-8), we get

t−1∑
j=1

η(n2, j )−

t∑
i=1

η(n1,i ) =
∑

1≤i≤t
1≤ j≤t−1

(
a j−bi+n

n

)
−

∑
1≤i≤t−1
1≤ j≤t−1

(
a j−ai+n

n

)

−

∑
1≤ j≤t−1
1≤i≤k≤t

(
at−s−bi−bk+a j+n

n

)
+

∑
1≤i≤t

1≤ j,k≤t−1

(
at−s−bi−ak+a j+n

n

)

−

∑
1≤i<k≤t−1

1≤ j≤t−1

(
at−s−ai−ak+a j+n

n

)
−

∑
1≤i≤t
1≤ j≤t

(
bi−b j+n

n

)

+

∑
1≤i≤t

1≤ j≤t−1

(
bi−a j+n

n

)
+

∑
1≤i≤t

1≤ j≤k≤t

(
at−s+bi−b j−bk+n

n

)

−

∑
1≤i,k≤t

1≤ j≤t−1

(
at−s+bi−bk−a j+n

n

)
+

∑
1≤k< j≤t−1

1≤i≤t

(
at−s+bi−ak−a j+n

n

)
.

Since ai−1>bi and ai ≥bi+3 for 1≤ i≤ t−3 (and a1≥bt if t=3), by hypothesis,
the last two sums of binomials vanish. Indeed, to see that at − s+bi −bk−a j < 0
for 1 ≤ i, k ≤ t and 1 ≤ j ≤ t − 1, it suffices to show that bt − b1− a1 < s− at =

a1 + a2 + · · · + at−1 − b1 − b2 − · · · − bt , which is straightforward. Similarly,
showing that at − s+bi −ak −a j < 0 for 1≤ i ≤ t and 1≤ k < j ≤ t −1 reduces
to showing that bt − a1− a1 < s− at = a1+ a2+ · · · + at−1− b1− b2− · · · − bt ,
which is straightforward too.
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The same type of argument applies to see that at − s + bi − b j − bk < 0 for all
1≤ i ≤ t and 1≤ j < k ≤ t and we can replace the summand∑

1≤i≤t
1≤ j≤k≤t

(
at−s+bi−b j−bk+n

n

)
by

∑
2≤i≤t

(
at−s+bi−2b1+n

n

)
.

Putting all together we obtain (4-6). �

5. Examples

We will end this work with some examples where we use Theorem 4.6. Moreover,
these examples show that the hypothesis at > at−1+at−2−b1 cannot be avoided!
To handle such cases, we state a proposition which estimates the codimension of
the stratum in Hilbp(x)(Pn) of subschemes given by the exact sequence (3-1).

Example 5.1. Let R= k[x0, . . . , x5] and let X =Proj A⊂P5
=Proj R be a general

arithmetically Gorenstein curve defined by the submaximal minors of a 4×4 matrix
whose first 3 rows are linear forms and whose last row are forms of degree s − 3
(s ≥ 4), that is, bi = 0 for 1 ≤ i ≤ 4, a j = 1 for 1 ≤ j ≤ 3 and a4 = s − 3. Then,
Theorem 4.6 applies provided s > 5 and we get that X is unobstructed and

dim W 3
4,4(0; 1, 1, 1, s−3)

= dim(X) Hilbp(x)(P5)

= 12
(6

5

)
+4
(s+2

5

)
−9
(5

5

)
−3
(s+1

5

)
−16

(5
5

)
−10

(s−1
5

)
+12

(s−2
5

)
−3
(s−2

5

)
= 2s3

− 10s2
+ 13s + 48.

Moreover, deleting the last row and taking maximal minors, we get a threefold
Y = Proj B with resolution

0−→ R(−4)3 −→ R(−3)4 −→ R −→ B −→ 0, (5-1)

leading to

HB(ν)=
(ν+3

3

)
+ 2

(ν+2
3

)
+ 3

(ν+1
3

)
= pY (ν) for ν ≥ 0.

Since A is given by (3-1) with t = 6 and M = NB , we get OX 'ωX (2s−6). Hence
h1(OX (s − 3)) = h0(OX (s − 3)) and the Hilbert polynomial of X must be of the
form pX (ν)= dν+ 1− g = d(ν− s+ 3). Looking to (5-1) we get

pX (s− 2)= h0(OX (s− 2))− h0(OX (s− 4))

= h0(OY (s− 2))− h0(OY (s− 4))= 6s2
− 28s+ 36,

that is, d = deg X = 6s2
− 28s+ 36 and g = 1+ d(s− 3).
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Note that Theorem 4.6 takes care of all cases except for s=4 and s=5. For these
two values of s, we can, however, use Corollary 3.2(ii) to find dim(X) Hilbp(x)(P5)

because

0Ext2B(NB, NB)' 0Hom(IB/I 2
B, H 4

m(I
2
B))= 0,

by (5-1) and Remark 3.3. Indeed 3 H 4
m(I

2
B) ↪→ 3 H 6

m(R(−8)3)= 0 by (2-9). Hence
X is unobstructed,

dim(X) Hilbp(x)(P5)= 2s3
− 10s2

+ 13s+ 48+ δ,

where δ= δ(K B)6−2s−δ(NB)−s , and moreover, if s= 5, then δ is the codimension
of the closure of W 3

4,4 :=W 3
4,4(0; 1, 1, 1, s− 3) in Hilbp(x)(P5). We claim that

(δ(K B)6−2s, δ(NB)−s)=

{
(−3,−15) for s = 4,
(0,−12) for s = 5,

that is, δ = 12 in both cases.
To find δ(K B)6−2s we apply HomB(−, K B(6)) to (2-3) and we get

−2sHomB(IB/I 2
B,K B(6))= 0, −2sExt1B(IB/I 2

B,K B(6))=−2sHom(H1,K B(6)).

Since the rank of H1 is 2, we have

Hom(H1, K B(6))' H1
(∑

i
n1,i

)
= H1(12) (5-2)

by [Avramov and Herzog 1980] or [Kleppe and Peterson 2001, Theorem 8], see the
isomorphism accompanying (3-1). Using (2-6) or, more precisely, the exactness of

∧2(R(−3)4)−→ R(−4)3 −→ H1 −→ 0 (5-3)

[Avramov and Herzog 1980], we get

δ(K B)6−2s =− dim H1(12)−2s =

{
−3 for s = 4,

0 for s = 5.

It remains to compute δ(NB)−s . If we dualize the exact sequence (2-3) we get

0−→ NB −→ B(3)4 −→ H∗1 −→ 0,

to which we apply −sHom(IB/I 2
B,−). Combining with

−sHom(IB/I 2
B, H∗1 )' −sHom(IB/I 2

B ⊗ K B(6), H∗1 ⊗ K B(6))

' −sHom(NB, H1(12)),

where again we have used (5-2), we get

δ(NB)−s = 4 dim(NB)3−s − dim(−sHom(NB(−12), H1)).
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Using (2-6), we see that

0→ −sHom(NB(−12), K B(6)∗)

→ −sHom(NB(−12), B(−4)3)→ −sHom(NB(−12), H1)→ 0

is exact because we have Ext1B(IB/I 2
B⊗K B, K ∗B)=0 by Lemma 4.9 of [Kleppe and

Miró-Roig 2005]. Using (4.17) of the same reference we also get the surjectivity
of the natural map K ∗B ⊗ B(−4)4 −→ HomB(IB/I 2

B ⊗ K B, K ∗B). Since we may
use (5-3) to see that (H1)ν ' R(−4)3ν ' B(−4)3ν for ν ≤ 5, we get K B(6)∗ν = 0 for
ν ≤ 5 by (2-6) and hence

−sHom(NB(−12), K ∗B(−6))' −sHom(IB/I 2
B ⊗ K B(6), K ∗B(6))= 0,

for s ≥ 4. It follows that

−sHom(NB(−12), H1)' (IB/I 2
B)

3
8−s,

for s ≥ 4, which implies (by (2-7) and (2-9)) that

δ(NB)−s =

{
4 dim(NB)−2− 3 dim(IB)3 =−12 for s = 5,
4 dim(NB)−1− 3 dim(IB)4 =−15 for s = 4.

Putting all together we get

dim(X) Hilbp(x)(P5)=


2s3
− 10s2

+ 13s+ 48= dim W 3
4,4 for s > 5,

125 for s = 5,
80 for s = 4.

Moreover, applying Corollary 3.2(ii), we get codimHilbp(x)(P5) W 3
4,4(0; 1, 1, 1, 2)=

12 in the case s = 5. Finally, for s = 4, using a Macaulay 2 program [Grayson
and Stillman] we have computed the dimension 0hom(IB, IA/B)= 3 for (B→ A)
general and hence codimHilbp(x)(P5) W 3

4,4(0; 1)= 0hom(IB, IA/B)+ δ = 15.

If at ≤ at−1 + at−2 − b1 we see in the example above that W t−1
t,t (b; a) is a

proper closed irreducible subset, that is, the generic curve of the component of
Hilbp(x)(P5) to which W t−1

t,t (b; a) belongs is not defined by submaximal minors
of a matrix of forms of degree a j − bi . The converse inequality always implies
dim W t−1

t,t (b; a) = dim(X) Hilbp(x)(Pn) by Theorem 4.6. The pattern above for
small at may be typical, but is in general rather difficult to prove. We illustrate this
by two more examples.

Example 5.2. Let X = Proj A ⊂ P5 be a general arithmetically Gorenstein curve
defined by the submaximal minors of a 3× 3 matrix whose first 2 rows are linear
forms and whose last row are forms of degree s − 2 (s ≥ 3), that is, bi = 0 for
1 ≤ i ≤ 3, a j = 1 for 1 ≤ j ≤ 2 and a3 = s − 2. Thanks to Proposition 4.3, the
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analysis of [Kleppe 2007, Example 43] immediately transfers to our case. Hence,
for s > 4 (at > at−1+ at−2− b1), we see that X is unobstructed and

dim W 2
3,3(0; 1, 1, s− 2)= dim(X) Hilbp(x)(P5)= (s+ 1)(s− 1)2+ 23.

Since by deleting the last row and taking maximal minors we get a threefold Y =
Proj B for which 0Ext2B(NB, NB)= 0, we have the unobstructedness of X also for
s = 3, 4, and

(δ(K B)6−2s, δ(NB)−s)=

{
(−1, 2) for s = 3,
(0,−3) for s = 4.

That is, δ =−3 when s = 3, and δ = 3 when s = 4. In both cases,

dim(X) Hilbp(x)(P5)= (s+ 1)(s− 1)2+ 23+ δ.

Thus

dim(X) Hilbp(x)(P5)=

{
36 for s = 3,
71 for s = 4;

see [Kleppe 2007, Example 43] for the computations. Now, applying Corollary
3.2(ii), we get codimHilbp(x)(P5) W 2

3,3(0; 1, 1, 2) = 3 in the case s = 4. Finally, for
s = 3, a Macaulay 2 computation shows 0hom(IB, IA/B)= 3 and hence

codimHilbp(x)(P5) W 2
3,3(0; 1)= 0hom(IB, IA/B)+ δ = 0 !

In the above examples we were able to analyze the case at ≤ at−1+ at−2− b1

through Corollary 3.2(ii) because sExt1B(NB, A)= 0. Since this vanishing may be
rare, we want to improve upon Corollary 3.2(ii), at least to get estimates of the
codimension of the stratum. We prefer to do it in the generality of [Kleppe 2007,
Theorem 25] to extend Theorem 25 in this direction. This leads to the proposition
below. Indeed with assumptions as in Proposition 5.3, one knows that the projec-
tion morphism q : D → HilbpY (Pn) induced by (X ′ ⊂ Y ′)→ (Y ′) is smooth at
(X ⊂Y ) [Kleppe 2007, Theorem 47]. Using the fact that the corresponding tangent
map is surjective, we get Proposition 5.3 and Remark 5.4(a). Since we only use
these results in Example 5.6 and Remark 5.5, we skip the details of the proof which
are rather straightforward once we have the results and proofs of [Kleppe 2007].
Put

c(IA/B) := 0ext1B(IB/I 2
B, IA/B)− t ext2B(S

2(IA/B(s)), K B).

Proposition 5.3. Let B = R/IB be a graded licci quotient of R, let M be a graded
maximal Cohen–Macaulay B-module, and suppose M̃ is locally free of rank 2 in
U := Proj B− Z , that dim B−dim B/I (Z)≥ 2 and that

∧2 M̃ |U ' K̃ B(t)|U . Let
A be defined by a regular section σ of M̃∗(s) on U , as given by (3-1), let X =
Proj A, and suppose sExt1B(M, B) = 0 and dim B ≥ 4. Moreover let char (k) = 0,
let (B → A) be general and suppose (M, B) is unobstructed along any graded
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deformation of B and −sExt2B(IB/I 2
B,M) = 0 . Then the codimension codi of the

stratum in Hilbp(x)(Pn) of subschemes given by (3-1) around (X) satisfies

c(IA/B)≤ codi≤ c(IA/B)+ 0h2(R, A, A)≤ 0ext1B(IB/I 2
B, IA/B),

and codi= c(IA/B)+ 0h2(R, A, A) if and only if X is unobstructed.

Here “(M, B) unobstructed along any graded deformation of B” means that for
every graded deformation (MS, BS) of (M, B), S local and Artinian with residue
field k, there is a graded deformation of MS to any graded deformation BT of BS

for any small Artin surjection T → S [Kleppe 2007, Definition 11]. The important
remark for our application M = NB where the codimension-2 CM quotient B
satisfies depthI (Z) B ≥ 4, is that all assumptions of the proposition are satisfied
provided char k= 0 and (B→ A) is general (see proof of Corollary 41 and Remark
42 of [Kleppe 2007]).

Moreover recall that if we put

δ := −δ(IA/B)0 = 0ext1B(IB/I 2
B, IA/B)− 0homR(IB, IA/B),

and use the exact sequence (3-2), we get δ = δ(K B)t−2s− δ(NB)−s , as previously.

Remark 5.4. (a) With assumptions as in Proposition 5.3, except for (B → A)
being general, we can also show

δ− t ext2B(S
2(IA/B(s)), K B)≤ codi.

(b) If depthI (Z) B ≥ 4, then we show

t Ext2B(S
2(IA/B(s)), K B)' sExt1B(M, A),

exactly as we did for M= NB in the proof of Corollary 3.2. Thus if sExt1B(M, A)=
0, then the lower bound c(IA/B) of Proposition 5.3 is equal to the upper bound and
we essentially get Corollary 3.2(ii)! Moreover, since codi ≥ 0, Corollary 3.2(i)
corresponds to the case where the upper bound is zero!

Remark 5.5. In the case s > max n2, j/2, depthI (Z) B ≥ 4 and char (k) = 0, the
inequalities of Proposition 5.3 lead to

ε+ δ− 0ext1B(NB, A)≤ dim(X) Hilbp(x)(Pn)≤ ε+ δ ,

with ε as in Corollary 3.2.

Example 5.6. Now let X = Proj A ⊂ P5 be a general arithmetically Gorenstein
curve defined by the submaximal minors of a 3×3 matrix whose first (resp. second)
row consists of linear (resp. quadratic) forms and whose last row are forms of
degree s−3 (s ≥ 5), that is, bi = 0 for 1≤ i ≤ 3, a1 = 1, a2 = 2 and a3 = s−3. In
the following we skip a few details which we leave to the reader. Note that the case
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at > at−1+ at−2− b1 or equivalently s > 6, is taken care of by Theorem 4.6. So
we concentrate on the cases s = 5 and 6, which we analyze by using Proposition
5.3 and Remark 5.4. First, we use Remark 3.3 to compute 0ext2B(NB, NB) where
B is obtained by deleting the last row and taking maximal minors. We easily get
0ext2B(NB, NB)= sext1B(NB, A)= 3 by using

0−→ R(−5)⊕ R(−4)−→ R(−3)3 −→ R −→ B −→ 0,

(2-9), and

0Ext2B(NB, NB) ' 0HomB(IB/I 2
B, H 4

m(I
2
B)).

Moreover, dim(K B)6−2s = 0 by (2-5). Now if we apply −2sHom(−, K B(6)) to
(2-3) we get δ(K B)6−2s = 0 and −2sExt1B(IB/I 2

B, K B(6)) = 0 for s ≥ 5 provided
we can show −2sHom(H1, K B(6))= 0. Using (2-3) we get that H1 has rank 1 and
H1 ' K B(−3). Hence −2sHom(H1, K B(6))' B(9)−2s = 0 for s ≥ 5.

It remains to compute δ(NB)−s . We claim that δ(NB)−s = −8 for s = 5 and
δ(NB)−s =−3 for s = 6. Indeed, dualizing the exact sequence (2-3), we get

0−→ NB −→ B(3)3 −→ H∗1 −→ 0 .

If we apply −sHom(IB/I 2
B,−) to this sequence, recalling H1' K B(−3) and hence

−sHom(IB/I 2
B, H∗1 ) ' (IB/I 2

B)9−s , we get an exact sequence which rather easily
proves the claim. It follows that the numbers δ = δ(K B)6−2s − δ(NB)−s and
sext1B(NB, A) appearing in Remark 5.4 are computed. We conclude, for s = 5,
that the codimension codi of the stratum in Hilbp(x)(P5) of subschemes given by
(3-1) around (X) is at least 5-dimensional. In fact a Macaulay 2 computation
shows 0h2(R, A, A) = 0 and 0hom(IB, IA/B) = 1 and hence we have codi =
c(IA/B)+0h2(R, A, A)= 6 by Proposition 5.3. For s= 6 the lower bound for codi
of Remark 5.4(a) is 0. Since a Macaulay 2 computation shows 0hom(IB, IA/B)= 0
the better lower bound of Proposition 5.3 is also 0 while the smallest upper bound
of Proposition 5.3 is 3. The latter is the correct bound for the codimension of the
stratum, provided X is unobstructed. In conclusion, if X belongs to a reduced
component V of Hilbp(x)(P5), then codi = 3, but codi= 0 is possible, in which
case V is nonreduced. We have not been able to fully tell what happens, but we
expect V to be reduced and codi= 3.

The last case of the preceding example illustrates how difficult the analysis of
when codi is positive could be. Cases where at is close to at−1+ at−2− b1 seem
especially difficult to handle. Since it turns out that the lower bounds of Proposition
5.3 and Remark 5.4(a) are often negative (also in the case at > at−1 + at−2 − b1

treated in Theorem 4.6), they are not very helpful. This, however, also indicates
that the conclusions of Theorem 4.6 are rather strong.
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