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On some crystalline representations of

GL,(D,)

Vytautas Paskunas

We show that the universal unitary completion of certain locally algebraic rep-
resentation of G := GL,(Q,) with p > 2 is nonzero, topologically irreducible,
admissible and corresponds to a 2-dimensional crystalline representation with
nonsemisimple Frobenius via the p-adic Langlands correspondence for G.

1. Introduction

Let G := GL2(Q)) and B be the subgroup of upper-triangular matrices in G. Let
L be a finite extension of Q,,.

Theorem 1.1. Assume that p > 2, let k > 2 be an integer, and let y : Q) — L™ be
a smooth character with y (p)?p*~' € o 1. Assume there exists a G-invariant norm
|l on (Indg rxl-™H® Symk_2 L?. Then the completion E is a topologically
irreducible, admissible Banach space representation of G. If we let E° be the unit
ball in E, then

Vk,l){(p)*l ® (X|X|) =L ®0L 1(21 V(EO/‘(D'ZEO),

where V is Colmez’s Montreal functor and Vi 5, (,)-1 is a 2-dimensional irreducible
crystalline representation of Gq,,, the absolute Galois group of Q, with Hodge—
Tate weights (0, k — 1) and the trace of crystalline Frobenius equal to 2y (p)~'.

As we explain in Section 5, the existence of such G-invariant norm follows from
[Colmez 2008]. Our result addresses [Berger and Breuil 2007, remarque 5.3.5]. In
other words, the completion E fits into the p-adic Langlands correspondence for

The idea is to approximate (Indg 2 ®x1-17"®Sym*~2 L? with representations
(Ind§ 43, ® yo,.1]-I™H ® Sym‘~2 L2, where J, : Q@ — L* is an unramified

character with 6, (p) =x € 1 +p;. If x2 # 1, then yJ, # yJ,-1 and the analogue
of Theorem 1.1 is a result of Berger and Breuil [2007]. This allows to deduce
admissibility. This approximation process relies on the results of [Vignéras 2008].
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Using Colmez’s functor V, we may then transfer the question of irreducibility to
the Galois side. Here, we use the fact that for p > 2 the representation Vj 15,12
sits in the p-adic family studied by Berger, Li and Zhu [2004].

2. Notation

We fix an algebraic closure @, of @,. We let val be the valuation on @,, such that
val(p) = 1, and we set |x| := p~¥3®)_ Let L be a finite extension of Q p» contained
in Q@ p» let o, be the ring of integers of L, let @y, be a uniformizer, and let p; be
the maximal ideal of o;. Given a character y : @) — L*, we consider y as a
character of the absolute Galois group g, of Q, via the local class field theory
by sending the geometric Frobenius to p.

Let G := GL»(Q,), and let B be the subgroup of upper-triangular matrices.
Given two characters y,, y, : @, — L™, we consider y; ® x, as a character of B
sending a matrix (& 5) to x,(a)x,(d). Let Z be the centre of G. Define

1+ p"Z p"z
K :=GL,(Z K, = p P f > 1
GL(Z)), m ( Pz, 14z, orm > 1,

7* 7 1+ p"z, p"'7
P P P S p p >
I (pr Z;)’ I ( "z, 1+p"Z, form = 1.

Let K¢ be the G-normalizer of K, so that Ry = K Z, and let K be the G-normalizer
of 1, so that g is generated as a group by / and II := (2 (1)) We note that if m > 1,
then K, is normal in R and I, is normal in &;. We denote s := ({}).

3. Diagrams

Let R be a commutative ring, (typically R = L, oz or oz /p’). By a diagram D of
R-modules, we mean the data (Dy, D1, r), where Dy is an R[Ry]-module, D is an
R[R ]-module and r : D; — Dy is a 9 N K| = I Z-equivariant homomorphism of
R-modules. A morphism a between two diagrams D and D’ is given by (ag, 1),
where ag : Dy — D, is a morphism of R[£o]-modules, | : D| — D is a morphism
of R[R;]-modules, and the diagram

rT Tr’ (1)
aq /
Dy —— D)

commutes in the category of R[I Z]-modules. The condition (1) is important, since
one can have two diagrams of R-modules D and D’, such that Dy = D6 as R[Ro]-
modules and Dy = D) as R[R;]-modules, but D Z D’ as diagrams. The diagrams
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of R-modules with the above morphisms form an abelian category. To a diagram D
one may associate a complex

c-Ind§, Dy ®6 —%> c-Ind%, Dy @)

of G-representations, where J : &) — R* is the character J(g) := (—1)"aldets),
c—Ind% D; denotes the space of functions f : G — D; such that f(kg) = kf(g)
for k € R; and g € G, and f is supported only on finitely many cosets £;g. To
describe 0, we note that Frobenius reciprocity gives

Homg (C-Ind% DI ®4, C—Indg0 Dy) = Homg, (D ® 9, C—Indg0 Dy);
now Indg Dy is a direct summand of the restriction of c—Indg0 Dy to K1, and

Homg, (D1 ® 8, Ind}y Do) = Hom,z(Dy, Dy),
since d is trivial on / Z. Composition of the maps above yields a map
Hom;z (D, Dy) — Homg (C-Ind% D ®9, c—Indgo Dy).

We let 0 be the image of r. We define Hy(D) to be the cokernel of 6 and H; (D)
to be the kernel of 0. So we have this exact sequence of G-representations:

0— Hy(D) — c-Ind%, Dy ® 6 > c-nd, Dy — Ho(D) — 0 3)

Further, if r is injective then one may show that H; (D) = 0; see [Vignéras 2008,
Proposition 0.1]. To a diagram D one may associate a G-equivariant coefficient
system " of R-modules on the Bruhat-Tits tree; see [Paskiinas 2004, Section 5].
Then Hy(D) and H;(D) compute the homology of the coefficient system V', and
the map 0 has a natural interpretation. Assume that R = L (or any field of char-
acteristic 0), and let 7 be a smooth irreducible representation of G on an L-vector
space, so that for all v € = the subgroup {g € G : gv = v} is open in G. Since
the action of G is smooth, there exists an m > 0 such that 7/» £ 0. To 7 we
may associate a diagram D := (7 < 7%n). As a very special case of a result
by Schneider and Stuhler [1997, Theorem V.1; 1993, Section 3], we obtain that
H()(D) =.

We are going to compute such diagrams D, attached to smooth principal series
representations of G on L-vector spaces. Given smooth characters 6, 0,: 2 — L*
and 11, A, € L™, we define a diagram D(41, 42, 61, 6,) as follows. Let ¢ > 1 be an
integer such that &, and 0, are trivial on 14+-p“Z,,. Set J.:=(KNB)K.=(INB)K,,
so that J. is asubgroup of /. Let @ : J. — L* be the character 8 (‘g 3 ) =01(a)0(d).
Let Dy := Indfr 6, and let p € Z act on Dy by a scalar 4145, so that Dy is a
representation of Ky. Set D := Dé“, so that D is naturally a representation of / Z.
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We are going to put an action of I1 on Dy, so that D is a representation of K. Let
Vii={feD:Suppf I}, Vi:={feDy:Suppf CJsl}. “4)

Since I contains Ky, we have J.sI = (BN K)sI = IsI; hence D; =V, & V,. For
all f1 € Vi and f; € Vi, we define I1- f; € Vs and I1 - f; € V] such that

[T1- f1l(sg) := A AT D),  [II- £,1(g) = A2 fs (sTIgIT™") forallgel. (5)

Every f € D can be written uniquely as f = f; + f5, with f; € V] and f; € V,,
and we define I1- f :=11- f1 + 11 - f.

Lemma 3.1. Equation (5) defines an action of &1 on Dy. We denote the diagram
Dy Dyby D(A1,2,01,0;). Let w := Indg X1 ® x, be a smooth principal series
representation of G, with

x1(P) =4, xa(p) = Ao, X1|ZE:91, ){2|Z,§=92.

There exists an isomorphism of diagrams D(L1, A, 01,0,) = (! — %), In
particular, we have a G-equivariant isomorphism Hy(D(A1, 42,01, 6)) = x.

Proof. We note that p € Z acts on © by a scalar 1;4;. Since G = BK, we
have 7 |y = Indgm( 6, and so the map f — [g— f(g)] induces an isomorphism
10 ke = Indfﬂ 0 = Dy. Let

Fr:={fenm:SuppfCBI} and F;:={f ex:Supp f < Bsl}.

Iwasawa decomposition gives G = BI U Bsl; hence 7 = F| @ F;. If f1 € &Fy,
then Supp(I1f1) = (Supp f)II~! € BITI~! = BsI. Moreover,

[T1£11(sg) = fi(sgIl) = fi(sTI(IT "' gII))

. (6)
=1 (p) fill” gIl) forallg e[
Similarly, if f; € %,, then Supp(I1f;) = (Supp f;)I1~! € BsITI™' = BI, and
[T1£1(g) = f1(gTl) = fi((Ts)s(IT~"gIT)) -

= 0 (p) fi(s(IT'gI)) forall g el.

Now 7 fe = @{" &) %ﬁ" c wXe. Let 17 be the restriction of 1y to 7 . Then it is imme-
diate that 11(9?{") = V) and 11(9'731.1) = V;, where V| and V; are as above. Moreover,
if f € Dy and I1- f is given by (5), then II- f =11(H11_1(f)). Since R acts on 7 ',
Equation (5) defines an action of &; on D; such that 7; is K;-equivariant. Hence,
(10, 11) is an isomorphism of diagrams (7 ’c < 7 %) = (D; < Dy). O
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4. The main result

Lemma 4.1. Let U be a finite dimensional L-vector space with subspaces Uy, U,
suchthat U =U®U,. For x € L define amap ¢, :U — U by ¢ (v1+02) =x01+0>
for all vy € Uy and vy € U,y. Let M be an oy -lattice in V. Then there exists an
integer a > 1 such that ¢ (M) = M for x € 1 + p].

Proof. Let N denote the image of M in U/U,. Then N contains (M NU;) + Us,
and both are lattices in U/U;. Define a > 1 to be the smallest integer such that
p,“(M NU;)+ U, contains N. Suppose that x € 1+ p% and v € M. We may
write v = Av; + vz, with oy € M N Uy, vy € Uz and 1 € p;“. Now ¢, (v) =
v+ A(x —1)o; € M. Hence we get ¢, (M) S M and ¢,—1 (M) € M. Applying ¢, -1
to the first inclusion gives M C ¢,—1(M). U

We fix an integer k > 2 and set W := Sym*~2 L2, an algebraic representa-
tion of G. Let 7 = 7 (x,, x,) = Indg X1 ® x, be a smooth principal series
L-representation of G. We say that 7 ® W admits a G-invariant norm if there
exists a norm ||-|| on # ® W with respect to which # ® W is a normed L-vector
space such that ||gv| = |lvo|| forallv e z @ W and g € G.

Let ¢ > 1 be an integer such that both y, and y, are trivial on 1+ pZ,,. Let D
be the diagram 7% @ W < 7% @ W. Since Hy(n ' — %) = 7, by tensoring
(2) with W we obtain Hy(D) = 7 @ W. Assume that 7 ® W admits a G-invariant
norm ||-||, and set (t ® W)? :={v e 7 ® W : ||lo|| < 1}. Then we may define a
diagram & = (9| < %) of oz-modules by

G :=((@l@W)NE@Z W)’ = X @wW)n (@ @ w)).

In this case Vignéras [2008] has shown that the inclusion % < D induces a
G-equivariant injection Ho(%) < Hy(D) such that Hy(9) ®,, L = Hy(D) and
H{ (%) = 0. Moreover, Hy(%) does not contain an oz -submodule isomorphic to L;
see [Vignéras 2008, Proposition 0.1]. Since Hy(D) is an L-vector space of count-
able dimension, this implies that Hy(9) is a free o -module. By tensoring (2) with
07/p7, we obtain

Hy(D) ®o, 01/p] = Ho(D ®o, 0L/P7)- (8)

Proposition 4.2. Let m = w(y,, x,) be a smooth principal series representation,
assume that 1 @ W admits a G-invariant norm, and let 9 be as above. Then there
exists an integer a > 1 such that for all x € 1 + p’;,, with b > a, there exists both
a finitely generated o1 [Gl-module M in 7 ()01, x,0x) ® W that is free as an
or-module, and a G-equivariant isomorphism

M®0L OL/pll?, ; HO(@) ®0L UL/pg,

where o : Q — L* is an unramified character with ox(p) = x.



416 Vytautas Paskiinas

Proof. Apply Lemma4.1toU =D, Ui =Vi®W, Uy=V, QW and M =%,
where V| and V; are given by (4). We get an integer a > 1 such that ¢, (%) = 9D
for all x € 1 + p7. It is immediate that ¢, is I Z-equivariant. We define a new
action % of IT on Dy by TT%v := ¢, (I1¢; ! (v)). This gives us a new diagram D(x),
so that D(x)o = Dy as a representation of Ky, D(x); = D; as a representation of
1 Z, the I Z-equivariant injection D(x); < D(x)g is equal to the I Z-equivariant
injection Dj < Dy, but the action of IT on D is given by x, (here by = we really
mean an equality, not an isomorphism). If f; € V| and f; € V; then

Ox(fiew)=fl®([Iw), Ox(f;ew)=f®(lw) forallweW,

where f; € Vi, f{ € Vi and for all g € I we have

fl(sg) =xIT- fil(sg) =x"" 21 A(IT ' gI), )
fi(g) =x[I1- £,1(g) = x A2 fy (sTIgIT ). (10)

Hence, we have an isomorphism of diagrams D(x) = D(x~ 21, x22, 01, 6,), and
so Lemma 3.1 gives Hy(D(x)) =x (x,0,-1, X,0x)®W. Now let b > a be an integer
and suppose that x € 1 +plz. Since IT- %) = ¢ (D)) = ¢ (D)) = Dy, we get

I (%o N Dy) = M x Dy = ¢, (Mg (D)) = Dy

So if we let D(x)g := Do and D(x) := D(x)g N D(x);, where II acts on D(x);
by *, then the diagram % (x) := (9 (x); < D(x)o) is an integral structure in D(x)
in the sense of [Vignéras 2008]. The results of Vignéras cited above imply that
M := Hy(%(x)) is a finitely generated o, [G]-submodule of 7 (0,1, x,0x) @ W,
which is free as an o7 -module, and M ®,, L = w(y,,-1, x,0,) ® W. Moreover,
since ¢, is the identity modulo pﬁ, we have [Txo = I1-v (mod wf‘jbl) for all
v € 91, and so the identity map % (x)g — Do induces an isomorphism of diagrams
D(x) @, 01./P) =D ®q, 01./p] . Now (8) gives Ho(D) o, 01./p§ =M &, 01./p}.

(]

Let k > 2 be an integer and a, € p;. Following [Breuil 2003] we define a
filtered p-module Dy 4, as the following data: a 2-dimensional L-vector space D
with basis {ej, €3}, an L-linear automorphism ¢ : D — D given by

p(e)) = pk_lez and ¢(ex) = —e; +apes,

and a decreasing filtration (Fil' D);cz by L-subspaces such that if i < O then
Fill' D=D,if 1 <i <k—1thenFil' D = Ley, and if i > k then Fil' D =0. We set
Vi.a, == Homy, i (Dk,a,,, Beris). Then Vi.a, is a 2-dimensional L-linear absolutely
irreducible crystalline representation of 4q, = Gal(Q »/Qp) with Hodge-Tate
weights 0 and k£ — 1. We denote by Xk.a, the trace character of Vi.a,- Since ‘Q@p is
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compact and the action is continuous, 9q, stabilizes some o -lattice in Vi 4,, and
SO Xk.a, takes values in oy.

Proposition 4.3. Let m be the largest integer such thatm < (k —2)/(p — 1). Let
ap, a, € pr, and assume that val(ap) > m and val(a)) > m. Let n > em be an
integer, where e :=e(L /Q,) is the ramification index. Suppose a, = a:n (mod p7).
Then fk.a,(8) = Xk.a,(8) (mod p7~") for all g € 4q,.

Proof. This a consequence of a result of Berger, Li and Zhu [Berger et al. 2004],
where the authors construct (Q@p -invariant lattices Tk.a, in Vi.a,- The assumption
a, = a;, (mod p7) implies Ty 4, ®o, 0 /p] " = Tie,a;, ®o, or/p] “"; see their
[Remark 4.1.2(2)]. This implies the congruences of characters. O

Let k > 2 be an integer and choose A1, 4> € L such that 1 + 4, = a, and
Ay = pk1 (enlarge L if necessary). Assume val(41) > val(42) > 0. Let x,, x, :
Q, — L* be unramified characters, with y,(p) = 27 and y,(p) = 25" Let M be
a finitely generated o7 [G]-module in 7 (,, x,|- =)@ W, where W :=Sym*~—2 L2,
In the case 4| # A;, Berger and Breuil have shown that the unitary L-Banach space
representation

Ea, =L ®,, l(gn M/w M

of G is nonzero, topologically irreducible, admissible in the sense of [Schneider
and Teitelbaum 2002], and contains 7 (y,, x,| - |=!) ® W as a dense G-invariant
subspace [Berger and Breuil 2007, Section 5.3]. Moreover, the dual of Ey 4, is
isomorphic to the representation of Borel subgroup B constructed from the (¢, I')-
module of Vi.a,-

Let Rep,, G be the category of finite length 0, [G]-modules with a central char-
acter such that the action of G is smooth (that is, the stabilizer of a vector is an open
subgroup of G). Let Rep,, ‘Yg, be the category of continuous representations of
(Q@p on o7 -modules of finite length. Colmez [2008, IV.2.14] has defined an exact
covariant functor V : Rep,, G — Rep,, Yq,. The constructions in [Berger and
Breuil 2007] and [Colmez 2008] are mutually inverse to one another. This means
if we assume 4| £ 4, and let M be as above, then

Via, = L ®o, lim V(M /w] M). (11)

That M /@M is an o [G]-module of finite length follows from [Berger 2005,
Theorem A].

Theorem 4.4. Assume that p > 2. Let i = +p* =D/ and let y : Qy — L~
be a smooth character with y (p) = 2™\, Assume there exists a G-invariant norm
-1l on w(x, x| - I_I) ® W, where W = Symk*2 L?. Let E be the completion
of t(x, x| - 17" ® W with respect to ||-||. Then E is a nonzero, topologically
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irreducible, admissible Banach space representation of G. If we let E° be the unit
ballin E, then Vi 2, @ (x|x|) =L Qo, LiLnV(EO/wZEO).

Proof. Since the character y|y| is integral, by twisting we may assume that y is
unramified. We denote the diagram

xCxl ITH" W a(xl- ITH M ew

by D = (D1 < Dy). Let 9 = (@) < Uy) be the diagram of o;-modules with
%, =D;NE®and @y = DyN EL. Let a > 1 be the integer Proposition 4.2 gives.
For each j > 0, we fix x; € 1 + piﬂ with x; # 1 and a finitely generated o7 [G]-
submodule M; in 7 ( )(éxj_l, X0x; 1 |~1)® W (which is then a free 07 -module) such
that

Ho (@) ®o, 01 /047 = M; ®q, 01, /p .

This is possible by Proposition 4.2. To ease the notation we set M := Hy(9D).
Let a,(j) := ixj_l + Axj, let a, := 2/, and let m be the largest integer such that
m<(k—2)/(p—1). Since p > 2, x; —|—x;1 is a unit in o7, we have val(a,(j)) =
val(ay) = (k —1)/2 > m. (Here we really need p > 2.) Moreover, we have
ap=a,(j) (mod p]L+a+em), where e := e(L/Q)) is the ramification index. Now
since x; # 1 we get that Ax; # lx;l, and hence we may apply the results of Berger

and Breuil to 7 (-1, xdy,| - I~ ® W. By (11),
J
Tiay(jy »=1im V(M /oy M)
a+j

is a Yg,-invariant lattice in Vi 4,(j)- Since M ®,, 0L/p; " = M; ®,, oL/pfrj we
get

VM /@MY= VM, /o) M) = T ) @, 01/05 . (12)

Set V=L ®,, l(iLnV(M/wz’M). Then (12) implies that V is a 2-dimensional
L-vector space. Let y, be the trace character of V. Then it follows from (12)
that xy, = xka,() (mod ps*). Since a, = a,(j) (mod pi™/ ™), Proposition
4.3 says that k.4, = Xk.a,(j) (mod paL+j). We obtain yy = xx.q, (mod piﬂ) for
all j > 0. This gives us x, = xk.a,- Since Vi 4, is irreducible, the equality of
charactgfs implies V = Vi.a,- R

Set M .= LiLnM/wZM, and E' := M ®,, L. Since M is a free o, -module, we
get an injection M — M. In particular, E’ contains 7 (), y|-|~')®W as a dense G-
invariant subspace. We claim that E’ is a topologically irreducible and admissible
G-representation. Now Theorem 4.1.1 and Proposition 4.1.4 of [Berger et al. 2004]
say that the semisimplification of Ty 4,(j) ®o, kz is irreducible if p+ 11k — 1 and
is otherwise isomorphic to
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N P (aa))
0 wu_y=

where w7 is the unramified character sending arithmetic Frobenius to +V—1,
and o is the cyclotomic character. Then [Berger 2005, Theorem A] implies that if
p+1{k—1,then M; ®,, k;, is an irreducible supersingular representation of G,
and if p +1 [ k — 1, then the semisimplification of M; ®,, k; is a direct sum
of two irreducible principal series. The irreducibility of principal series follows
from [Barthel and Livné 1994, Theorem 33], since /—1 % +1, as p > 2. Since
M ®,, kg = Mj ®,, k., we get that M ®,, k7 is an admissible representation
of G (so that for every open subgroup AU of G, the space of AU-invariants is finite
dimensional). This implies that E’ is admissible.

Suppose that E; is a closed G-invariant subspace of E’ with E’ # Ey. Let
E? =E;N M. We obtain a G-equivariant injection E? Qo kL = M Qq, kr. If
E? ®o, k1, =0 or M ®,, k1, then Nakayama’s lemma gives E? =0or E? = ]\7,
respectively. If p+ 11k — 1, then M ®,, k., is irreducible and we are done. If
p+1]|k—1,then E?®0L kr is an irreducible principal series, and so V(E?@UL kr) is
one-dimensional [Colmez 2008, IV.4.17]. But then V| := L ®,, @V(E?/wi’ E?)
is a 1-dimensional subspace of Vi ,, stable under the action of Gg,,. Since V4, is
irreducible we obtain a contradiction.

Since E’ is a completion of 7 (y, x| -|~!) ® W with respect to a finitely gen-
erated 0, [G]-submodule, E’ is in fact the universal completion; see for example
[Emerton 2005, Proposition 1.17]. In particular, we obtain a nonzero G-equivariant
map of L-Banach space representations E/ — E, but since E’ is irreducible and
7(x, x1-17") ® W is dense in E, this map is an isomorphism. O

Corollary 4.5. Assume that p > 2, and let y : Q5 — L* be a smooth charac-
ter such that y(p)>p*=' = 1. Assume that there is a G-invariant norm ||-|| on
(e, x|l - 17 ® W, where W := Sym*=2 L2, Then every bounded G-invariant
or-lattice inw(y, x|-1~") @ W is finitely generated as an o1 [Gl-module.

Proof. The existence of a G-invariant norm implies that the universal completion is
nonzero. It follows from Theorem 4.4 that the universal completion is topologically
irreducible and admissible. The assertion follows from the proof of [Berger and
Breuil 2007, Corollary 5.3.4]. O

For the purposes of [PaSkiinas 2008] we record the following corollary to the
proof of Theorem 4.4.

Corollary 4.6. Assume p > 2, and let y : Q; — L™ be a smooth character such
that x*(p)p*~!
representation (E, ||-||) of G containing (Indg 2 xl- 1™ @SymF2L% as a
dense G-invariant subspace and satisfying || E|| C |L|. Then there exists x € 1 +p

is a unit in op. Assume there exists a unitary L-Banach space
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with x* # 1 and a unitary completion Ey of (Indg 20 @ x0,-1]-17H) @ SymF2 L2
such that E° ®o, ki = ES ®o, ki, where Eg is the unit ball in E, and E° is the
unit ball in E.

Proof. Let 7 :=Ind§ y ® x|- |7 and M := (z @ W) N E°. Now M Nw E* =
T @W)NwE' =w M. So1: M/wiM — E°/w E” is a G-equivariant
injection. We claim that 7 is a surjection. Let v € E°. Since 7 ® W is dense
in E, there exists a sequence {v,},>1 in £ ® W such that limo,, = v. We also have
lim|lv,|| = ||v]|. Since ||E|| € |L| = Z, there exists an m > 0 such that v, € M for
all n > m. This implies the surjectivity of 7. So we get M ®,, k1 = E° ®,, kr.

By Corollary 4.5 we may find uy,...,u, € M that generate M as an o;[G]-
module. Further, u; = Z'j"’zl v;j ® w;; with v;; € 7 and w;; € W. Since 7 is a
smooth representation of G, there exists an integer ¢ > 1 such that v;; is fixed by
K foralll <i<mand1 < j<m;. Set

P = ((77:Ic®W)ﬂMC—> (7TK"®W)DM), D= (7T1"®W<—> 7TK"®W)

and let M’ be the image of Hy(9) — Hy(D) =7 ® W. It follows from (3) that
M’ is generated by (X< ® W) N M as an 0;[G]-module. Hence, M’ € M. By
construction (7 X ® W) N M contains uy, ...u,, and so M € M’. In particular,
Hy(D) ®o, kr =M ®,, k. The claim follows from the proof of Theorem 4.4. [

5. Existence

Recent results of Colmez, which appeared after the first version of this note, im-
ply the existence of a G-invariant norm on (Indg 2 ®xl-17" ®Symt=2 L? for
12(p)ptle 0, , thus making our results unconditional. We briefly explain this.

We continue to assume that p > 2, that k > 2 is an integer and that a,, =2 pk=0/2,
The representation Vi ,, of §q, sits in the p-adic family of Berger, Li and Zhu,
[2004, 3.2.5]. Moreover, all the other points in the family correspond to the crys-
talline representations with distinct Frobenius eigenvalues, to which the theory
of [Berger and Breuil 2007] applies. Hence [Colmez 2008, I1.3.1 and IV.4.11]
imply that there exists an irreducible unitary L-Banach space representation I1 of
GL2(Q,) such that V(IT) = Vi4,. If p > 5o0r p =3 and k # 3 (mod 8) and
k#7 (mod 8), the existence of such IT also follows from [Kisin 2008]. It follows
from [Colmez 2008, V1.6.46] that the set of locally algebraic vectors IT2!2 of IT is
isomorphic to

(Ind§ x ® x|-17") @ Sym* > L?,
where y :@; — L* is an unramified character with y (p) = p~*~1/2, The restric-

tion of the G-invariant norm of IT to IT¥€ solves the problem. Also, if J: Q, — L~
is a unitary character, then we also obtain a G-invariant norm on IT%¢ ® ¢ o det.
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