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Equivariant Hilbert series
Frank Himstedt and Peter Symonds

We consider a finite group acting on a graded module and define an equivariant
degree that generalizes the usual nonequivariant degree. The value of this degree
is a module for the group, up to a rational multiple. We investigate how this
behaves when the module is a ring and apply our results to reprove some results
of Kuhn on the cohomology of groups.

1. Introduction

We consider a finitely generated graded module M over a graded ring R that is
finitely generated over some base field k and such that R0 is finite-dimensional
over k. We suppose that there is a finite group G that acts on M , preserving the
grading and commuting with R.

To this data we associate a formal Laurent series [M] in t in which the coefficient
of tr is the homogeneous part Mr , considered as a kG-module. The difficulty
of the theory depends on whether we wish to keep track of these modules up to
isomorphism (that is, in the Green ring) or only up to composition factors (in the
representation ring). We develop both cases.

This series [M] is shown to satisfy a form of the Hilbert–Serre Theorem (in
particular it is a rational function, or at least a sum of them in the Green ring case).
We define the equivariant degree degG M to be the coefficient of the leading term
when we expand [M] as a Laurent series in 1−t . This is a kG-module up to rational
multiple, although there is sometimes a problem of whether it is well defined in
the Green ring case. The dimension of this module agrees with the usual definition
of the degree in the nonequivariant case.

We investigate various properties of the equivariant degree; Theorem 6.4, in
particular, lists several equivalent characterizations.

In Section 7, we go on to consider the case of the homogeneous coordinate ring
on a projective variety and show that in this case the degree is always defined and
it is a permutation module that can be easily described in terms of the geometry.

MSC2000: primary 13D40; secondary 20C20.
Keywords: Hilbert series, group action, ring, degree, equivariant.
This project was supported by the Deutsche Forschungsgemeinschaft under the project KE 964/1-1
(“Invariantentheorie endlicher und algebraischer Gruppen”).
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Finally, in Section 8, this theory is applied to the variety associated to the coho-
mology of a group to reprove a result of Nick Kuhn on the action of the outer
automorphism group of a p-group G on the cohomology H∗(G; Fp).

2. General setup

Let R =
⊕
∞

j=0 R j be a commutative graded algebra over a field k. We suppose
that R is a finitely generated k-algebra and that R0 is finite-dimensional over k,
so all the homogeneous components R j are also finite-dimensional vector spaces
over k. Let G be a finite group and let M =

⊕
∞

i=N Mi a finitely generated graded
left RG-module, where the action of G preserves the grading and each Mi is a
finite-dimensional k-vector space.

We recall some facts about the Hilbert series H(M, t) =
∑
∞

i=N dimk(Mi ) t i of
M . The graded version of Noether normalization [Benson 1993, Theorem 2.2.7]
guarantees the existence of homogeneous elements d1, d2, . . . , dn of positive de-
grees in R that generate a polynomial subring k[d1, . . . , dn] of R and such that R is
finitely generated as a k[d1, . . . , dn]-module. We write |di | := deg di for the degree
of di . The number n is equal to the Krull dimension of R. By the Hilbert–Serre
Theorem [Benson 1993, 2.1.1] the Hilbert series H(M, t) is of the form

H(M, t)=
f (M, t)∏n

i=1(1− t |di |)
,

where f (M, t) is a Laurent polynomial with integer coefficients. As in [Benson
1993, Section 2.4], for example, the rational number deg M is defined by the Lau-
rent expansion of H(M, t) about t = 1:

H(M, t)=
deg M
(1− t)n

+ O
(

1
(1− t)n−1

)
. (2-1)

Obviously the definition of the degree deg M ignores the action of G on M . In
the next two sections, we shall define an equivariant analogue degG M , which also
incorporates the group action.

First, we define the degree of certain Laurent series. Let p(t) be a Laurent series
of the form

p(t)=
∞∑

i=N

ai t i
=

g(t)∏n
i=1(1− t |di |)

,

where the ai are rational numbers and g(t) is a Laurent polynomial with rational
coefficients. We define the rational number deg p(t) to be the coefficient of 1

(1−t)n

in the Laurent expansion of p(t) about t = 1 and we call deg p(t) the degree
of p(t). If we want to emphasize the dependency on n, we write degn p(t) instead
of deg p(t). In particular, we have deg H(M, t)= deg M with deg M as in (2-1).
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3. Equivariant degree over the Green ring

As usual, the Green ring a(kG) is defined to be the ring with generators the
isomorphism classes |V | of kG-modules, and relations |V | + |W | = |V ⊕ W |,
|V | · |W | = |V ⊗k W |. We set a(kG)Q := Q⊗Z a(kG). The representation ring
R(kG) is defined to be the quotient of a(kG) by the ideal generated by the elements
|V2| − |V1| − |V3|, where 0→ V1 → V2 → V3 → 0 is a short exact sequence of
kG-modules. We set R(kG)Q :=Q⊗Z R(kG).

We will consider two versions of the equivariant degree: one is an element of
a(kG)Q, but is not always defined; the other is a weaker one, which is an element
of R(kG)Q, but it is always defined. The main tool used in the definition of the
former is the following Weak Structure Theorem 3.1, so-called because it is a
generalization of the Structure Theorem of [Symonds 2007].

Theorem 3.1. For any finitely generated graded k[d1, . . . , dn]G-module M ,

M ∼=
⊕

U∈Indecomp(M)

⊕
I⊆{1,...,n}

k[dI ]⊗k XU,I ,

as a kG-module, where XU,I is a finite-dimensional graded kG-module that is a
sum of U’s (ignoring grading) and k[dI ] = k[di | i ∈ I ]. The map from right to left
is given by multiplication.

Proof. The only difference between this theorem and Proposition 4.4 of [Symonds
2007] is that there Indecomp(M) is supposed to be finite. But the same proof
works, although it is better to keep the different indecomposables separate by using
the double summation, as in the statement above, rather than combining them as
X̄ I =

⊕
U∈Indecomp(M) XU,I as in [Symonds 2007]. �

Next we describe the definition of the degree with values in a(kG)Q. For each i ,
the kG-module Mi defines an element |Mi | of a(kG).

Definition 3.2. We call the Laurent series

[M] :=
∞∑

i=N

|Mi | t i (3-1)

with coefficients in a(kG) the equivariant Hilbert series of M with coefficients in
the Green ring.

Clearly, if G = {1} is the trivial group, we can identify |Mi | with the dimension of
Mi as a k-vector space. So in this situation [M] coincides with the usual Hilbert
series of M . The equivariant Hilbert series has the following basic properties:



426 Frank Himstedt and Peter Symonds

Lemma 3.3. Suppose M ′ =
⊕
∞

i=N ′ M ′i is another finitely generated graded left
RG-module, such that the action of G preserves the grading and every M ′i is a
finite-dimensional k-vector space. Then

[M ⊕M ′] = [M] + [M ′] and [M ⊗k M ′] = [M] · [M ′].

Proof. Clear. �

Besides the Hilbert series H(M, t), we can consider a Hilbert series that counts
the multiplicity of some isomorphism class of indecomposable summands. Let
Indecomp(M) be a set of representatives for the isomorphism classes of all inde-
composable kG-modules which occur as a direct summand of some Mi and let
mU,i be the multiplicity of U ∈ Indecomp(M) as a direct summand of Mi . We
set HU (M, t) :=

∑
∞

i=N mU,i t i . The Laurent series HU (M, t) can be written as a
rational function too.

Proposition 3.4. For each U ∈ Indecomp(M), the Laurent series HU (M, t) can
be written as

HU (M, t)=
fU (M, t)∏n

i=1(1− t |di |)
,

where fU (M, t) is a Laurent polynomial in t with integer coefficients.

Proof. This is a consequence of the Weak Structure Theorem 3.1. �

Let F be an arbitrary finite subset of Indecomp(M). We consider the Laurent
series with integer coefficients q(t) := H(M, t)−

∑
U∈F dimk(U )HU (M, t). By

definition of the Hilbert series, all the coefficients of q(t) are nonnegative integers,
and q(t) is of the form

q(t)=
g(t)∏n

i=1(1− t |di |)

for some Laurent polynomial g(t)with integer coefficients since something similar
holds for H(M, t) and HU (M, t) by Proposition 3.4. So we can take degrees and
obtain

deg M =
(∑

U∈F

dimk(U ) deg HU (M, t)
)
+ deg q(t). (3-2)

It turns out that all the degrees occurring in (3-2) are nonnegative with bounded
denominators by the following result.

Lemma 3.5. Suppose that

p(t)=
h(t)∏n

i=1(1− t |di |)
=

∞∑
i=N

ai t i ,

where h(t) is a Laurent polynomial with rational coefficients and the ai ’s are non-
negative integers. Then deg p(t)≥ 0. If all the coefficients of h(t) are integers then
deg p(t) is of the form deg p(t)= d

/∏n
i=1 |di | for some nonnegative integer d.
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Proof. We compute

deg p(t)= lim
t→1

(1− t)n p(t)= lim
t→1

h(t)∏n
i=1(1+ t + · · ·+ t |di |−1)

=
h(1)∏n
i=1 |di |

.

We still have to show that deg p(t)≥ 0. Since multiplication with
n∏

i=1

(1+ t + · · ·+ t |di |−1)

and a suitable power of t does not affect the sign of the degree or the sign of the ai ,
we may assume that p(t) is a Laurent polynomial in 1−t with rational coefficients,
that is that

p(t)=
b−n

(1− t)n
+

b1−n

(1− t)n−1 + · · ·+ bm−1(1− t)m−1
+ bm(1− t)m

for some rational numbers bi and a nonnegative integer m. In particular, b−n =

deg p(t). Expanding the negative powers (1− t)− j as power series in t and com-
paring the coefficients of t i we see that there exists a polynomial r(i) in i of degree
at most n− 2 (or r(i)= 0 if n = 1) with coefficients depending on n and the b j ’s
such that ai = (1/(n− 1)!) bn in−1

+ r(i) for all large enough i . So the condition
ai ≥ 0 implies that deg p(t)= b−n ≥ 0. �

Corollary 3.6. There are only finitely many U ∈ Indecomp(M) with

deg HU (M, t) 6= 0

and we have ∑
U

dimk(U ) deg HU (M, t)≤ deg M,

where the sum means the sum over all U ∈ Indecomp(M) with deg HU (M, t) 6= 0.

Proof. This follows from (3-2) and Lemma 3.5. �

We can now define the equivariant degree with values in the Green ring.

Definition 3.7. We say that dega(kG) M is defined if∑
U

dimk(U ) deg HU (M, t)= deg M.

In this case we call dega(kG) M :=
∑

U deg(HU (M, t)) |U | ∈ a(kG)Q the equivari-
ant degree of M (in the Green ring). If we want to emphasize the dependency on
n, we write degn

a(kG) M instead of dega(kG) M .

The existence of the degree in the Green ring can be characterized as follows.

Lemma 3.8. For R, G, M as above the following statements are equivalent.
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(1) dega(kG) M is defined.

(2) There is a finite set F of indecomposable kG-modules such that∑
U∈F

dimk(U ) deg HU (M, t)= deg M.

(3) There is a finite set F of indecomposable kG-modules such that

deg
∑
U 6∈F

dimk(U )HU (M, t)= 0.

Here we have set
∑

U 6∈F
dimk(U )HU (M, t) :=H(M, t)−

∑
U∈F

dimk(U )HU (M, t).

Proof. This is clear from the definition of dega(kG) M . �

Certainly the equivariant degree dega(kG) M is defined if M has only finitely
many isomorphism types of indecomposable summands. For example, this is the
case if k is a finite field, M a polynomial ring in n variables over k, G a finite
group acting on this polynomial ring by homogeneous linear substitutions and R=
MG the ring of invariants [Karagueuzian and Symonds 2007, Theorem 17.1]. The
following example shows that there are situations where dega(kG) M is not defined:

Example (see Example 4.4 in [Karagueuzian and Symonds 2004]). Let k be a field
of two elements and R = k[x, y] a polynomial ring in two variables over k. The
Klein four group G = 〈α, β〉 ∼= Z2×Z2 acts on M = k[x, y]〈1, z〉 by α : z 7→ z+ x
and β : z 7→ z+ y. We can regard M as a subset of k[x, y, z] or as a free R-module
of rank two.

If we attach a grading to R and the module M by assigning x, y and z grading 1,
then M is the direct sum M=

⊕
∞

i=0 Mi . It is shown in [Karagueuzian and Symonds
2004] that Mi ∼= �

i k as kG-modules, where �i k is the i-th Heller translate of
the trivial kG-module k. In particular, the Mi ’s are indecomposable and pairwise
nonisomorphic.

We have n = 2, Indecomp(M) = {�i k | i ∈ N0} and H�i k(M, t) = t i . So we
obtain deg H�i k(M, t)= 0 for all i . On the other hand we have

H(M, t)=
∞∑

i=0

dimk(Mi ) t i
=

∞∑
i=0

(2i + 1)t i
=

2
(1− t)2

−
1

1− t
,

and thus deg M = 2. So dega(kG) M is not defined in this example.

4. Equivariant degree in the representation ring

One way to construct an equivariant degree which is defined for every module M
(satisfying the assumptions in Section 2) is to work over the representation ring. In
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this section we will define the equivariant degree with values in the representation
ring.

The first steps are very similar to those for the Green ring. Let R, G and M be
as in Section 2. For each i , the kG-module Mi defines an element |Mi | of R(kG).

Definition 4.1. We call the Laurent series [M] :=
∑
∞

i=N |Mi | t i with coefficients
in R(kG) the equivariant Hilbert series of M with coefficients in the representation
ring.

Clearly Lemma 3.3 carries over to equivariant Hilbert series with coefficients in
the representation ring.

For each irreducible kG-module V , let mV,i be the multiplicity of V as a com-
position factor of Mi . We set HV (M, t) :=

∑
∞

i=N mV,i t i .We choose a polynomial
subring k[d1, . . . , dn] of R as in Section 2. In fact the Laurent series HV (M, t) can
be written as a rational function.

Lemma 4.2. For each irreducible kG-module V , the Laurent series HV (M, t) can
be written as

HV (M, t)=
fV (M, t)∏n

i=1(1− t |di |)
,

where fV (M, t) is a Laurent polynomial in t with rational coefficients. If k is a
splitting field for V , then all the coefficients of fV (M, t) are integers.

Proof. Let PV be a projective cover of V . The graded k[d1, . . . , dn]-module

HomkG(PV ,M)

is a direct summand of the graded k[d1, . . . , dn]-module HomkG(kG,M) ∼= M .
This implies that HomkG(PV ,M) is finitely generated as a k[d1, . . . , dn]-module.
Therefore, by the Hilbert–Serre Theorem [Benson 1993, 2.1.1], the Hilbert series
H(HomkG(PV ,M), t) has the form

f̃V (t)∏n
i=1(1− t |di |)

for some Laurent polynomial f̃V (t) with integer coefficients. Since

dimk(HomkG(PV ,Mi ))= dimk(EndkG(V )) ·mV,i

we get

HV (M, t)=
1

dimk(EndkG(V ))
H(HomkG(PV ,M), t)

=
1

dimk(EndkG(V ))
·

f̃V (t)∏n
i=1(1− t |di |)

. (4-1)

If k is a splitting field for V then dimk(EndkG(V ))= 1. �
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Corollary 4.3. The equivariant Hilbert series [M] with coefficients in the repre-
sentation ring is of the form

[M] =
[ f ](M, t)∏n
i=1(1− t |di |)

,

where [ f ](M, t) is a Laurent polynomial with coefficients in R(kG)Q. If k is a
splitting field for G then all the coefficients of [ f ](M, t) are elements of R(kG).

Proof. This follows from Lemma 4.2. �

Now we can define the equivariant degree with values in the representation ring:

Definition 4.4. We call degR(kG) M :=
∑

V deg(HV (M, t)) |V | ∈ R(kG)Q the
equivariant degree of M (in the representation ring). Here the sum varies over
a set of representatives for the isomorphism classes of irreducible kG-modules. If
we want to emphasize the dependency on n, we also write degn

R(kG) M instead of
degR(kG) M .

We use the same notation for the two degrees, specifying the ring in which the
values lie explicitly when necessary. In any case the two versions are compatible
in the following sense. Let π : a(kG)Q � R(kG)Q denote the canonical map.

Proposition 4.5. The map π takes the equivariant degree of M in the Green ring
to the equivariant degree of M in the representation ring whenever the former is
defined.

Proof. Suppose that dega(kG) M is defined. For each U ∈ Indecomp(M) and each
irreducible kG-module V , let µU,V be the multiplicity of V as a composition factor
of U and choose a finite subset F of Indecomp(M) as in Lemma 3.8. We set∑

U 6∈F

dimk(U )HU (M, t) := H(M, t)−
∑
U∈F

dimk(U )HU (M, t),

∑
U 6∈F

µU,V HU (M, t) := HV (M, t)−
∑
U∈F

µU,V HU (M, t).

By Lemma 3.8 we get∑
V

(
dimk(V ) deg

∑
U 6∈F

µU,V HU (M, t)
)
= deg

∑
U 6∈F

dimk(U )HU (M, t)= 0, (4-2)

where the first sum runs over a set of representatives for the isomorphism classes of
the irreducible kG-modules. By Lemma 3.5 all degrees occurring in (4-2) are non-
negative. Hence deg

(∑
U 6∈F µU,V HU (M, t)

)
= 0 for all irreducible kG-modules

V . The epimorphism π maps the equivariant degree

dega(kG) M =
∑
U∈F

deg(HU (M, t))|U | ∈ a(kG)Q



Equivariant Hilbert series 431

to∑
V

∑
U∈F

deg(HU (M, t))µU,V |V |

=

∑
V

∑
U∈F

deg(µU,V HU (M, t)) |V |

=

∑
V

(∑
U∈F

deg(µU,V HU (M, t))+ deg
∑
U 6∈F

µU,V HU (M, t)
)
|V |

=

∑
V

deg(HV (M, t)) |V |,

which is, by definition, the equivariant degree of M over the representation ring. �

5. Basic properties of the equivariant degree

In this section we collect some of the basic properties of the equivariant degree. We
always assume that R, G and M are as in Section 2 and that M ′ and M ′′ are finitely
generated graded left RG-modules, where the action of G preserves the grading
and every homogeneous component is finite dimensional as a k-vector space. We
choose a polynomial subring k[d1, . . . , dn] of R as in Section 2.

We begin with a trivial observation showing that the equivariant degree coincides
with the usual degree if there is “no group action”:

Lemma 5.1. If G = {1} is the trivial group then dega(kG) M is defined and

dega(kG) M = deg(M) |k|

where k is the trivial kG-module. A similar statement holds for degR(kG) M.

Proof. This is clear from the definition of the degree. �

From now on G is again an arbitrary finite group. The next lemma holds both
for the equivariant degree taking values in the Green ring as well as for the degree
taking values in the representation ring.

Lemma 5.2. If dega(kG) M is defined, then there is a positive integer c such that
c·dega(kG) M is a genuine module, that is, it is of the form |V | for some kG-module
V . A similar statement holds for degR(kG) M.

Proof. By the definition of dega(kG) M and Lemma 3.5, we can take c :=
∏n

i=1 |di |

for the degree with values in the Green ring. In the case of the representation ring,
c :=

(∏
V dimk EndkG(V )

)
·
(∏n

i=1 |di |
)

does the job (where V runs through a set
of representatives for the isomorphism classes of irreducible kG-modules). �
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Lemma 5.3. If M ′ ↪→ M � M ′′ is a short exact sequence of finitely generated
graded RG-modules that is split over kG, then dega(kG) M is defined if and only if
both dega(kG) M ′ and dega(kG) M ′′ are defined. If this is the case then

dega(kG) M = dega(kG) M ′+ dega(kG) M ′′.

The same formula with dega(kG) replaced by degR(kG) holds for any short exact
sequence.

Proof. Let U ∈ Indecomp(M). Then HU (M, t)= HU (M ′, t)+HU (M ′′, t) because
of the splitting. Thus∑
U∈F

dimk(U ) deg HU (M, t)

=

∑
U∈F

dimk(U ) deg HU (M ′, t)+
∑
U∈F

dimk(U ) deg HU (M ′′, t) (5-1)

with F as in Lemma 3.8. By additivity of the nonequivariant degree we have
deg M = deg M ′+deg M ′′. Since all these degrees are nonnegative by Lemma 3.5
we get that dega(kG) M is defined if and only if dega(kG) M ′ and dega(kG) M ′′ are
defined. In this case we get

dega(kG) M =
∑
U∈F

deg(HU (M, t)) |U |

=

∑
U∈F

deg(HU (M ′, t)) |U | +
∑
U∈F

deg(HU (M ′′, t)) |U |

= dega(kG) M ′+ dega(kG) M ′′.

(5-2)

The statement about the degree over the representation ring follows from

HV (M, t)= HV (M ′, t)+ HV (M ′′, t)

for every irreducible kG-module V . �

For W,W ′ ∈ R(kG)Q we write W ≤ W ′ if W ′ − W is a linear combination
of isomorphism classes of kG-modules with nonnegative rational coefficients. We
write W ≥W ′ if W ′ ≤W .

Corollary 5.4. For a finitely generated graded RG-module M , as at the begin-
ning of this section, the following properties hold for the degree with values in the
representation ring.

(1) If M ′ is a graded RG-submodule of M then degR(kG) M ′ ≤ degR(kG) M.

(2) If M ′ is a graded RG-epimorphic image of M then degR(kG) M≥degR(kG) M ′.

Proof. This follows from Lemmas 5.2 and 5.3. �
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For an integer d we write M[d] for M with a degree shift of d , so that M[d]i =
Mi+d . For a positive integer q let R[q] be the graded k-algebra obtained from R
by multiplying all degrees by q , that is, (R[q])iq = Ri and (R[q])i = 0 for all i
not divisible by q. Analogously, we can construct a graded R[q]G-module M [q]

with G-action from M by multiplying all degrees by q, that is, (M [q])iq = Mi and
(M [q])i = 0 for all i not divisible by q .

Lemma 5.5. With the above notation, the equivariant degree has the following
properties.

(1) If the Krull dimension of M is at most n − 1 then dega(kG) M is defined and
both dega(kG) M and degR(kG) M are equal to 0.

(2) dega(kG)(M[d]) is defined if and only if dega(kG) M is defined. If this is the
case then dega(kG)(M[d]) = dega(kG) M. We always have degR(kG)(M[d]) =
degR(kG) M.

(3) dega(kG)(M
[q]) is defined if and only if dega(kG) M is defined. If this is the case

then dega(kG)(M
[q]) = q−n dega(kG) M. We always have degR(kG)(M

[q]) =

q−n degR(kG) M.

Proof. (1) follows from the corresponding property of the nonequivariant degree
[Benson 1993, 2.4.1]. (2) and (3) are clear. �

Sometimes it is convenient to add an element z in degree 1 to R. Then R[z]⊗k M
is finitely generated over R[z], which has dimension n+ 1.

Lemma 5.6. The degree degn+1
a(kG)(R[z]⊗R M) is defined if and only if degn

a(kG) M
is defined, and if this is the case then they are both equal. Equality always holds
when dega(kG) is replaced by degR(kG).

Proof. Clear. �

Sometimes it is convenient to change the field k.

Lemma 5.7. Let ` be a field extension of k.

(1) If dega(kG) M is defined then so is dega(`G)(`⊗k M) and dega(`G)(`⊗k M)=
`⊗k dega(kG) M.

(2) If `/k is finite and L is a finitely generated graded (`⊗k RG)-module such
that dega(`G) L is defined then dega(kG)(L ↓

`
k)= (dega(`G) L) ↓`k .

(3) If `/k is finite and if dega(`G)(`⊗k M) is defined then so is dega(kG) M and
we have dega(kG) M = |` : k|−1(dega(`G)(`⊗k M)) ↓`k .

Proof. Only (3) needs any comment. Since (`⊗k M) ↓`k∼= M |`/k|, then by (2) we
get (dega(`G)(`⊗k M)) ↓`k= dega(kG)

(
M |`/k|

)
. But then dega(kG) M is defined and

the formula holds, by 5.3. �
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6. Further results

In this section R = k[d1, . . . , dn] is a graded polynomial ring with generators in
positive degrees. Unless otherwise stated the degree will always take values in the
Green ring.

We say that a map of R-modules dominates when the cokernel has dimension
strictly less than n. This is not consistent with the customary use of dominant in
algebraic geometry, but it is very convenient for us here.

Proposition 6.1. The degree dega(kG) M of a finitely generated graded RG-module
M is defined if and only if there is a finite-dimensional graded kG-submodule
X ⊆ M such that the multiplication map R⊗k X → M is injective and dominant
and the image is a summand over kG. If this holds then dega(kG) M = deg R · |X |.

Proof. Suppose that such an X exists; then dega(kG)(M/(R ⊗k X)) is defined
and equal to 0 by hypothesis (take F = ∅). We claim that dega(kG)(R ⊗k X) =
deg R · |X |.

It is easy to see that H(R⊗ X, t)= H(R, t)H(X, t), so

dega(kG)(R⊗k X)= lim
t→1

(
(1− t)n H(R, t)H(X, t)

)
= deg R · |X |.

By additivity (Lemma 5.3), dega(kG) M is defined and is equal to deg R · |X |.
Conversely, suppose that dega(kG) M is defined using a finite set F ⊆ Indecomp M .
Then, using the notation of the Weak Structure Theorem 3.1, we must have

deg
(⊕

U 6∈F

⊕
I⊆{1,...,n}

k[dI ]⊗k XU,I

)
= 0.

Thus we can take X =
⊕

U∈F XU,{1,...,n}. �

A lot of our work is made easier by the next easy, but surprising, result.

Proposition 6.2. If M is a finitely generated graded RG-module and X is a finite
dimensional graded kG-submodule such that the multiplication map R⊗k X→ M
is injective and dominates then the image is a summand over kG, so in particular
dega(kG) M is defined and is equal to deg R · |X |.

Proof. There is a homogeneous element z ∈ R that annihilates the cokernel. Con-
sider the composition of maps

R⊗k X −→ M
z
−→ zM ⊆ R⊗k X.

The image is z R⊗k X , and since z R is a k-summand of R it follows that the image
is a kG-summand of R⊗k X . Thus the image of R⊗k X in M is also a summand.

�
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Given a graded commutative ring S, let Q(S) denote the graded ring of fractions,
where we invert all the homogeneous elements. It is a Z-graded ring and Q(S)0
is a field. Q(S) = Q(S)0[z, z−1

], where z is an element of Q(S) of least positive
degree. Q(S) is flat over S.

Notice that if M is a finitely generated graded RG-module then Q(R)⊗R M is a
finitely generated Q(R)-module and in each degree it is a finite-dimensional vector
space over Q(R)0. In addition, Q(R)⊗R M = 0 if and only if dim M < dim R.

Proposition 6.3. Let M be a finitely generated graded RG-module. Then the
degree dega(kG) M is defined if and only if there is a finite-dimensional graded
kG-submodule X ⊆ Q(R)⊗R M such that Q(R)⊗R M = Q(R)⊗k X. If this is
the case then dega(kG) M = deg R · |X |.

Proof. If dega(kG) M is defined, we have a short exact sequence R⊗k X ↪→ M �
M/(R ⊗k X) with dim(M/(R ⊗k X)) < dim R, by Proposition 6.1. If we tensor
this with Q(R), we obtain Q(R)⊗k X ↪→ Q(R)⊗R M � Q(R)⊗R (M/(R⊗k X)).
But the last term must be 0.

Conversely, suppose that we have an X satisfying the conditions of the statement
of the proposition. Let {xi } be a k-basis for X and write xi =

∑
j (ai, j/bi, j )m j ,

where ai, j , bi, j ∈ R and m j ∈ M , all homogeneous. Let b̄ be the product of all the
bi, j . Then b̄X ⊆ M , and we have a short exact sequence

R⊗k b̄X ↪→ M � M/(R⊗k b̄X).

But when we tensor with Q(R) the first arrow becomes an isomorphism, so we
must have Q(R)⊗R (M/(R⊗k b̄X)) = 0 and thus dim(M/(R⊗k b̄X)) < dim R,
as required by 6.2. �

We now summarize the equivalent characterizations of the equivariant degree.

Theorem 6.4. Let M be a finitely generated graded RG-module. The following
conditions on M are equivalent.

(1) dega(kG) M is defined.

(2) There is a finite-dimensional graded kG-submodule X ⊆ M such that the
multiplication map R⊗k X→ M dominates and is split injective over kG.

(3) There is a finite-dimensional graded kG-submodule Y ⊆ M such that the
multiplication map R⊗k Y → M dominates and is injective.

(4) There is a finite-dimensional graded kG-submodule Z ⊆ Q(R)⊗R M such
that Q(R)⊗R M = Q(R)⊗k Z.

When these conditions hold we have |X | = |Y | = |Z | = 1
deg R

dega(kG) M.

Proof. Just combine 6.1, 6.2 and 6.3. �
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Lemma 6.5. Let R and R′ be polynomial rings in n and n′ variables respectively
and let M and M ′ be finitely generated graded RG- and R′G-modules respectively.
Let L be a finitely generated graded R H-module and let H be a subgroup of G.
The degree commutes with the following operations (when the quantity on the right
hand side is defined):

(1) tensor product: degn+n′
a(kG)(M ⊗k M ′)= degn

a(kG)(M) · degn′
a(kG)(M

′).

(2) restriction: dega(k H)(M ↓
G
H )= (dega(kG) M) ↓G

H .

(3) induction: dega(kG)(L ↑
G
H )= (dega(k H) L) ↑G

H .

(4) fixed points: dega(kG/H) M H
= (dega(kG) M)H if H is a normal subgroup

of G.

Proof. These all follow easily from property 6.4(3). �

In the remainder of this section we consider how Theorem 6.4 and Lemma 6.5
can be reformulated for the degree with values in the representation ring. Clearly
if one of the conditions in Theorem 6.4 is satisfied then Proposition 4.5 implies
that |X | = |Y | = |Z | = (1/ deg R) dega(kG) M also holds for the degree over the
representation ring. The analogue of Lemma 6.5 is the following lemma.

Lemma 6.6. With the same hypotheses as in the previous lemma, the degree with
values in the representation ring commutes with the following operations:

(1) tensor product: degn+n′
a(kG)(M ⊗k M ′)= degn

a(kG)(M) · degn′
a(kG)(M

′).

(2) restriction: dega(k H)(M ↓
G
H )= (dega(kG) M) ↓G

H .

(3) induction: dega(kG)(L ↑
G
H )= (dega(k H) L) ↑G

H .

Proof. This is straightforward and left to the reader. �

7. Rings

Throughout this section, S will be a graded ring in nonnegative degrees that is
finitely generated over the field k and such that S0 is finite-dimensional over k. We
suppose that a finite group G acts on S by graded k-algebra automorphisms.

Geometrically, G acts as a group of automorphisms of the projective variety
V = Proj(S), defined over k. Conversely, S could be the homogeneous coordinate
ring of a variety over k on which G acts.

The invariant subring SG is necessarily Noetherian and S is finitely generated
over SG [Benson 1993, 1.3.1]. By Noether normalization, we can find a graded
polynomial subring R ≤ SG such that SG is finitely generated over R [Benson
1993, 2.2.7]. Thus S is finitely generated over R, and S and R have the same
dimension. We need this ring R to exist in order for the preceding theory to apply,
but it does not matter which ring R we choose.
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Proposition 7.1. If S is an integral domain and G acts faithfully, then dega(kG) S
is defined and

dega(kG) S =
deg S
|G|
· kG

and the same equality holds with dega(kG) S replaced by degR(kG) S.

Proof. In [Symonds 2000], a graded submodule F ≤ S is produced such that
F ∼= kG and such that the multiplication map SG

⊗k F ↪→ S dominates and is split
over kG. It follows from the Additivity Lemma 5.3 that

dega(kG) S = dega(kG)(S
G
⊗ F)= deg SG

· kG.

The proof for the degree with values in the representation ring is analogous.
There is an alternative proof that we sketch here. By Lemma 5.6, we may assume

that R contains an element z of degree 1. But S is an integral domain, so it injects
into Q(S), thus G acts faithfully on Q(S). Since Q(S) = Q(S)0[z, z−1

] and G
acts trivially on z, G must act faithfully on Q(S)0. By the Normal Basis Theorem
there is a basis {xg}g∈G for Q(S)0 over Q(S)G0 that is freely permuted by G.

But Q(S)0 is a finite-dimensional vector space over Q(R); let {yi } be a basis. If
we let X be the k-span of the set {yi xg}, then this is the module that we require. �

Let P0 denote the (finite) set of prime ideals in S of height 0.

Lemma 7.2. The natural map S→
⊕

p∈P0
S/p dominates and has rad S as kernel.

Proof. The radical is equal to the intersection of all the prime ideals, which is equal
to the intersection of the minimal ones.

We prove the claim of domination by labeling the distinct prime ideals of height
0 as p1, . . . , pm and showing by induction on r that the map S →

⊕r
i=1 S/pi

dominates.
This is clearly true when r = 1, and the induction step follows from considering

the following diagram with exact rows and columns.

S
/⋂r+1

i=1 pi −−−→ S
/⋂r

i=1 pi ⊕ S/pr+1 −−−→ S
/(⋂r

i=1 pi + pr+1
)∥∥∥ y y

S
/⋂r+1

i=1 pi −−−→
⊕r+1

i=1 S/pi −−−→ Xy y
Y Y

The induction hypothesis applied to the middle column shows that dim Y <

dim S, and dim S/
(⋂r

i=1 pi +pr+1
)
< dim S by construction. Thus dim X < dim S

and the middle row yields the next stage in the induction. �
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Given a prime p < S, let Gp denote the stabilizer in G of p and let Ḡp be the
pointwise stabilizer of S/p. We can now state a decomposition theorem for the
degree of S.

Theorem 7.3. If S contains no nilpotent elements then dega(kG) S is defined and

dega(kG) S =
∑

p∈P0/G
dim S/p=dim S

deg S/p
|Gp/Ḡp|

· k[G/Ḡp]

and the same equality holds with dega(kG) S replaced by degR(kG) S.

Proof. In view of Proposition 7.1, Lemma 7.2 and Theorem 6.4, all we need to do
is to show that dega(kG)

(⊕
p∈P0

S/p
)

is equal to the expression shown.
But ⊕

p∈P0

S/p∼=
⊕

p∈P0/G

⊕
q∼Gp

S/q∼=
⊕

p∈P0/G

IndG
Gp

S/p.

So

dega(kG)(
⊕
p∈P0

S/p)∼=
⊕

p∈P0/G

degG IndG
Gp

S/p

∼=

⊕
p∈P0/G

IndG
Gp

degGp
S/p by Lemma 6.5(3)

∼=

⊕
p∈P0/G

IndG
Gp

deg S/p
|Gp/Ḡp|

· k[Gp/Ḡp] by Proposition 7.1

∼=

⊕
p∈P0/G

deg S/p
|Gp/Ḡp|

· k[G/Ḡp].

We can omit from the sum the primes p for which dim S/p 6= dim S, since for these
deg S/p= 0. �

Geometrically, the permutation modules that occur in the statement of the theo-
rem correspond to the way that the group permutes the irreducible components of
maximum dimension of the projective variety Proj(S).

Now suppose that the action of G on S can be written over a finite field Fq . Recall
from Lemma 5.5 that the operation of multiplying all degrees by q gives us a new
ring S[q] with G-action and degR(kG) S[q] = q−n degR(kG) S and dega(kG) S[q] =
q−n dega(kG) S. Let Sq < S denote the subring of q-th powers. There is a surjection
S[q]→ Sq and this is an isomorphism if rad S = 0.

Lemma 7.4. We have degR(kG) Sq
≤q−n degR(kG) S and if S contains no nilpotents

then dega(kG) Sq
= q−n dega(kG) S.

Proof. This follows from the preceding remarks and the Additivity Lemma 5.3. �
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8. Group cohomology

In this section we apply some of the theory that we have developed to a problem
in group cohomology considered by Nick Kuhn [2008]. We fix a prime p and a
finite group P (we do not yet require P to be a p-group). Then G = Aut(P) acts
on the graded commutative ring H∗(P)= H∗(P; Fp).

By the Evens–Venkov theorem (see [Benson 1991, 3.10, 4.2], for example),
H∗(P) is Noetherian, hence so is H∗(P)G , thus H∗(P) is certainly finitely gener-
ated over some commutative polynomial ring R such that the action of G commutes
with that of R; we can assume that dim R = dim H∗(P).

Given a p-group P and a simple G-module V , Martino and Priddy [1992]
asked whether the dimension of V as a composition factor of H∗(P) is equal
to dim H∗(P) (see also [Kuhn 2008]). It was already known from [Diethelm and
Stammbach 1984; Harris and Kuhn 1988; Symonds 1999] that V does occur in
H∗(P).

Theorem 8.1 [Kuhn 2008]. For p odd, the dimension of V as a composition factor
of H∗(P) is equal to the dimension of H∗(P).

The case of p = 2 is still undecided. Kuhn’s methods used the nilpotent filtration
of the category of unstable modules over the Steenrod algebra. We will show how
this theorem can be proved using the equivariant degree. Clearly what we need to
do is to show that V occurs as a composition factor of degR(FpG) H∗(P).

For any finite elementary abelian p-group E , let F∗(E)= H∗(E)/ rad, which is
just the symmetric algebra Fp[E] = S∗(E∗), where E∗ =Hom(E, Fp) is in degree
2 (or degree 1 if p = 2).

In general, let
F∗(P)= lim

←−
E∈Ap(P)

F∗(E),

where Ap(P) denotes the category with objects the elementary abelian subgroups
of P and morphisms the inclusions between them. G acts naturally on this.

Quillen [1971] (see also [Benson 1991, 5.6]) showed that the natural map in-
duced by restrictions, r : H∗(P)→ F∗(P)P is a purely inseparable isogeny (or
uniform F-isomorphism): that is that the kernel is nilpotent and there is an integer
N such that (F∗(P)P)pN

⊆ Im(r). From this he deduced that dim H∗(P) is equal
to the p-rank of P , which we will denote by n.

Consider what this means for the degree with values in the representation ring.
We have degR(FpG) H∗(P) ≥ degR(FpG) Im(r) ≥ degR(FpG)

(
(F∗(P)P)pN )

using
Lemma 5.3. By Lemma 7.4 we have

dega(FpG)
(
(F∗(P)P)pN )

=
1

pNn dega(FpG) F∗(P)P ,
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since F∗(P) contains no nilpotent elements.
Now we see that dega(FpG) F∗(P)P

=
(
dega(FpG) F∗(P)

)
P by Lemma 6.5(4).

We conclude that it is sufficient to show that dega(FpG) F∗(P) contains every
simple G-module as a submodule. But the Decomposition Theorem 7.3 tells us
that

dega(FpG) F∗(P)=
∑

E∈Ap(P)/G
rank E=n

deg S/pE

|NG(E)/CG(E)|
· Fp[G/CG(E)],

where pE denotes the ideal corresponding to E . Since each E in the sum has
maximal rank, deg(S/pE) 6= 0. Suppose that some CG(E) is a p-group. Then

HomG(V, Fp[G/CG(E)])∼= HomCG(E)(V, Fp) 6= 0,

so V does occur in dega(FpG) F∗(P) and we are done. That this always happens
when p is odd is the content of the next lemma, which appears as [Kuhn 2008,
2.3], although we first learnt it from Benson (private communication) in 1996. We
include the proof for the convenience of the reader.

Lemma 8.2. If p is odd and E is maximal then CG(E) is a p-group.

Proof. Consider the composition of homomorphisms

CG(E)
α
→ Aut(CP(E))

β
→ Aut(E).

The composition is trivial, so it suffices to prove that the kernel of each map is
a p-group. For β we use the result that if p is odd and Q is a p-group then the
kernel of the map Aut(Q)→Aut(�1(Q)) is a p-group [Gorenstein 1968, 5.3.10].
(This is the only place in this section where the argument requires p to be odd.)

For α we use Thompson’s A×B Lemma [Gorenstein 1968, 5.3.4], which states
that for any p-group P , if A× B ⊆ Aut(P) with A a p′-group and B a p-group
such that A acts trivially on CP(B), then A = 1. We apply this with A some p′-
subgroup of Ker(α) and B the image of E in G. �

9. Further results on the degree with values in the representation ring

We assume that k is a splitting field for the group G, but we do not need R to be
polynomial.

Let V be a simple kG-module and let M be a finitely generated graded RG-
module. Let MV denote the part of M that is generated by submodules isomorphic
to V .

Lemma 9.1. HomkG(V,M)⊗k V ∼= MV by the map f ⊗ v 7→ f (v).
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Proof. Since HomkG(V,M)∼=HomkG(V,MV ) we may assume that M =MV . But
now the claimed isomorphism is additive in MV , and MV is just a direct sum of
submodules isomorphic to V , so we are reduced to the case where MV = V . But
now it holds by the assumption that k is a splitting field, so EndkG(V )∼= k [Curtis
and Reiner 1981, 7.14]. �

The next result is an equivariant analogue of [Hartshorne 1977, I 7.4].

Proposition 9.2. Let M be a finitely generated graded RG-module. Then M has
a finite filtration 0= M0 ≤ M1 ≤ · · · ≤ Mm = M by graded RG-submodules such
that Mi/Mi−1 ∼= R/pi [`i ] ⊗k Vi , where pi is a homogeneous prime ideal of R and
Vi is a simple kG-module.

(1) The minimal elements among the pi occurring are the minimal primes for M.

(2) For each minimal prime p of M , let k(p) denote the quotient field of R/p. For
each simple kG-module V , the number of times that R/p⊗k V occurs as a
composition factor of the filtration is equal to the number of times that the sim-
ple RpG-module k(p)⊗k V occurs as a composition factor of the localization
Mp, hence is independent of the filtration.

Proof. Let p be an associated prime of HomRG(V,M), so it is the annihilator
of some φ : V → M . Thus we have an injection of graded RG-modules R/p ↪→
HomRG(V,M), r 7→rφ and hence an injection R/p⊗kV ↪→HomRG(V,M)⊗V .

By Lemma 9.1 this leads to an injection R/p⊗k V ↪→ M ; denote its image by
M1.

Now repeat the process with M/M1, and let M2 be the inverse image in M of
the resulting submodule. In this way we obtain an ascending sequence of graded
RG-submodules of M , which must terminate since M is Noetherian.

Notice that this filtration can be refined to a nonequivariant one by filtering the
V . Thus (1) follows from the nonequivariant case.

For (2), let q be a minimal prime and consider what happens when we localize
at q. If pi 6= q then (R/pi )q = 0, since q is minimal in {p1, . . . , pm}. If pi = q then
(R/q)q = k(q) and (R/q⊗k V )q = k(q)⊗k V . This is a simple SqG-module since
k is a splitting field. �

Write m(p, V,M) for the number of times that R/p⊗kV occurs as a factor in a
filtration of M of the type considered in the proposition above.

Corollary 9.3. degR(kG) M =
∑

dim R/p=dim M

m(p, V,M) deg(R/p) · |V |.

There are some straightforward reduction methods for calculating the degree
with values in the representation ring.
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Lemma 9.4. Let f ∈ R be homogeneous and let M be a finitely generated graded
RG-module of dimension m. Suppose that the dimension of the kernel of the mul-
tiplication map φ f : M → M, m 7→ f m, has dimension at most m − 2. Then
degm−1

R(kG)(M/ f M)= | f | degm
R(kG) M.

Proof. There is a short exact sequence ker(φ f )→ M
φ f [| f |]
→ f M

[
| f |
]
, where

[
| f |
]

denotes the degree shift needed to make all the maps degree preserving. Thus[
f M[| f |]

]
= [M] + O((1−t)−(m−2)) as a Laurent series in 1−t and so [ f M] =

t | f |[M] + O((1−t)−(m−2)).
There is also a short exact sequence f M → M → M/ f M , so [M/ f M] =
[M] − [ f M].

Combining, we find that [M/ f M] = [M] − t | f |[M] + O((1−t)−(m−2)). Thus

degm−1
R(kG)[M/ f M] = lim

t→1
(1− t)m−1

· (1− t | f |)[M]

= lim
t→1

1− t | f |

1− t
· (1− t)m[M] = | f | degm

R(kG) M. �

Our last result follows by repeated use of this lemma.

Proposition 9.5. Let M be a finitely generated graded RG-module of dimension
m and suppose that f1, . . . , fr ∈ R is an M-regular sequence of homogeneous
elements. Then

degm
R(kG) M =

∏
| fi | · degm−r

R(kG)

(
M/( f1, . . . , fr )M

)
.
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