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Syzygies of the secant variety of a curve
Jessica Sidman and Peter Vermeire

We show the secant variety of a linearly normal smooth curve of degree at least
2g+ 3 is arithmetically Cohen–Macaulay, and we use this information to study
the graded Betti numbers of the secant variety.

1. Introduction

We work throughout over an algebraically closed field of characteristic 0. A well-
known result dating back to Castelnuovo states that if C ⊂ Pn is a linearly normal
curve of genus g with deg C ≥ 2g+ 1, then C is projectively normal and hence is
arithmetically Cohen–Macaulay (ACM). Our main result is this:

Theorem 1. If C ⊂ Pn is a smooth linearly normal curve of genus g and degree
d ≥ 2g+ 3, then its secant variety 6 is ACM.

Using the Auslander–Buschbaum theorem [Eisenbud 1995, §19], this tells us
that a minimal free resolution of the coordinate ring of 6, S6 , has length equal
to codim6, and the remainder of this paper is devoted to studying the syzygies
among the defining equations of 6.

To describe our results on syzygies more precisely, we set up some notation.
Let S = k[x0, . . . , xn]. Any finitely generated S-module M has a minimal free
resolution

0→
⊕

S(− j)βr, j → · · · →
⊕

S(− j)β1, j →
⊕

S(− j)β0, j → M→ 0,

where the graded Betti numbers βi, j are uniquely determined by minimality. It is
convenient to display the βi, j in a graded Betti diagram in which the (i, j) entry is
βi,i+ j .

0 1 2 3

0 β0,0 β1,1 · · ·

1 β0,1 β1,2 · · ·

2 β0,2 β1,3 · · ·

MSC2000: primary 13D02; secondary 14N05, 14H99, 14F05.
Keywords: syzygies, secant varieties, projective curves, graded Betti numbers.
Sidman is partially supported by NSF grant DMS 0600471 and the Clare Boothe Luce Program.
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As in [Eisenbud 2005] we say that the Betti numbers βi,i+k in the i th row of the
Betti diagram form the degree k + 1 linear strand if M = S/I for some homo-
geneous ideal I . In this case, β1,k+1 is the number of minimal generators of I in
degree k + 1. (For an arbitrary module, M , it might make more sense to call this
the degree k linear strand.)

It is useful to recast several notions from the geometric literature in terms of the
graded Betti diagram. Suppose that a variety X ⊂ Pn is projectively normal with
an ideal generated by quadrics. Then for p ≥ 1 it satisfies Green’s condition Np

[Green 1984] if for all i ≤ p, βi j = 0 unless j = i + 1. Eisenbud et al. [2005]
extended this notion to a variety X with ideal generated in degree k, so that X
satisfies Nk,p if for all i ≤ p, βi j = 0 unless j = i + k−1. Thus, the only nonzero
entries in columns one through p of a Betti diagram of a variety satisfying Nk,p are
in row k − 1. The Castelnuovo–Mumford regularity [Mumford 1966], or simply
regularity, of a module can also be defined in terms of graded Betti numbers. A
module is m-regular if βi,m+i = 0 for all i > 0, which is equivalent to stating that
its Betti diagram is zero in all rows greater than m.

If C ⊂Pn is a linearly normal curve of genus g and degree d ≥ 2g+3, we obtain
several results as consequences of the Cohen–Macaulay condition. In Corollary 3.9
we show that if reg I6 < 5, then C is rational and reg I6 = 3. We give explicit
formulas for several graded Betti numbers in Corollary 4.1 and Proposition 4.4,
showing that

• β1,3 =
(n+1

3

)
− (d − 2)n− 3g+ 1.

• β2,4 = β1,4+β1,3(n+ 1)−
(n+4

n

)
+ P6(4).

• βn−3,n+1 =
(g+1

2

)
.

Note that via Theorem 1 there are exactly n− 3 syzygy modules in the resolution
of S6 , and if g ≥ 1, then Corollary 3.9 implies that the final syzygy module is
generated by elements of degree ≤ n+1. Thus, βn−3,n+1 is the bottom right corner
of the graded Betti diagram, and it depends only on the genus of the curve.

We compute the Hilbert polynomial of S6 by relating it to the Hilbert polynomial
of a curve of degree D and genus G gotten by intersecting 6 with a plane of
codimension 2.

Theorem 1.1. The Hilbert polynomial of S6 agrees with its Hilbert function for
all positive integers and is given by

D
(

m+ 2
3

)
+ (1−G)

(
m+ 1

2

)
+α1m+α0,

where α1=
(n+2

2

)
−(n+1)−3D−2(1−G) and α0=−

(n+2
2

)
+2(n+1)+2D+1−G.
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We also obtain a nonvanishing result on the graded Betti numbers of higher
secant varieties.

Theorem 1.2. Let C be a smooth curve of genus g embedded into Pn via a line
bundle L of degree d ≥ 2g+ 2k + p+ 1 and 6k be its variety of secant k-planes.
Suppose that L= L1⊗L2 where |L1|= s≤|L2|= t . If s+1≥ k+2, then the length
of the degree k+2 linear strand of S6k is at least s+t−2k−1. In particular, if L is
a general line bundle of degree d ≥ 2g+2k+ p+1, then βs+t−2k−1,s+t−k(6k) 6= 0.

We briefly sketch part of the picture of what is known about syzygies of high
degree curves to put our results in context. The homogeneous coordinate ring
of a curve of degree at least 2g + 1 is 1-regular if g = 0 and has regularity two
otherwise. From [Green 1984; Green and Lazarsfeld 1985; 1988] we know that
if d ≥ 2g+ 1+ p, then the curve satisfies Np. By a result of Schreyer [Eisenbud
2005, Theorem 8.17], we know that βp+bg/2c,p+bg/2c+1 is nonzero. Furthermore,
as a consequence of duality, the “last” graded Betti number is βn−1,n+1 = g. (See
[Eisenbud 2005, Chapter 8] for a nice discussion.)

Based on what we have seen we extend and refine the conjectures in [Vermeire
2008b] as follows:

Conjecture 1.3. Suppose that C ⊂ Pn is a smooth linearly normal curve of genus
g and degree d ≥ 2g+ 2k+ 1+ p, where p, k ≥ 0. Then

(1) 6k is ACM and has regularity (2k+ 2) unless g = 0, in which case the regu-
larity is k+ 1.

(2) βn−2k−1,n+1 =
(g+k

k+1

)
.

(3) 6k satisfies Nk+2,p.

As described above, the full conjecture is known to hold for k = 0. Further, by
[Graf von Bothmer and Hulek 2004] and [Fisher 2006] it holds for g ≤ 1. In this
work, we show that parts (1) and (2) hold for k = 1. After the completion of this
work, progress on part (3) was made for k = 1 [Vermeire 2008a]. We illustrate the
behavior that we have seen with the example below.

Example 1.4. At the suggestion of D. Eisenbud we used ideas of F. Schreyer to
compute the ideal of a genus 2 curve embedded in P7. Let C be a plane curve of
degree 5 with 4 nodes. If we blow up the four nodes in P2 and consider the linear
system |5H − 26Ei |, where H is the proper transform of a hyperplane and the
Ei are the exceptional divisors of the blow-up, the restriction of this system to the
proper transform C of C has degree 9= 2g+ 5, and embeds C ⊂ P7 as a smooth
curve of genus 2. Using Macaulay 2 [Grayson and Stillman] we can write down
a basis of |5H − 26Ei | over the rationals. We display the Betti diagram of the
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coordinate ring, where “−” denotes a zero entry.

0 1 2 3 4 5 6

0 1 − − − − − −
1 − 19 58 75 44 5 −
2 − − − − − 6 2

Note that the quadratic strand of the resolution has length 5 but that the curve
satisfies N4 but not N5.

Using code developed for [Sidman and Sullivant 2006], we computed the ideal
of 6. From the Betti diagram we see that the cubic strand of the resolution has
length 2 and that β4,8 = 3 as predicted by Conjecture 1.3.

0 1 2 3 4

0 1 − − − −
1 − − − − −
2 − 12 16 − −
3 − − − 4 −
4 − − − 4 3

Comparing the diagram to the statement of Corollary 4.7, we see that the three
unknowns at the tail of the resolution are all zero here as in Example 4.8. �

We give a brief outline of the structure of the paper. The ACM condition is
treated in §3. To understand the ACM condition, we work geometrically to show
that cohomology groups vanish. The key observation is that there is a desingu-
larization 6̃ → 6 such that 6̃ is a P1-bundle over the symmetric square of C ,
which we denote by S2C , and hence the cohomology of the structure sheaf of 6̃
is the same as that of S2C , which is easier to understand. As 6 has nonrational
singularities, the higher direct image sheaves of the ideal of 6̃ do not vanish, but
there is another divisor whose ideal sheaf has the same direct image and whose
higher direct images do vanish. (See Lemma 2.4). Making the exact relationships
between these objects precise is the bulk of our work. The technical preliminaries
are summarized in Section 2. We examine the graded Betti diagram of S6 in
Section 4.

To improve readability we have written out some arguments which are surely
well-known to experts, but are perhaps not easily available in the standard refer-
ences.

2. Setup and notation

Suppose that X ⊂Pn is a variety. We let OX and IX denote the structure sheaf and
ideal sheaf of X . The homogeneous coordinate ring of Pn is S= k[x0, . . . , xn]. We
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let IX =
⊕

H 0(Pn,IX (d)) and SX = S/IX . We let H denote a general hyperplane
in Pn and its pullback under a morphism. We write O(k) for O(k H) when no
confusion will arise. We may write H i (F) for H i (X,F) and hi (F) for hi (X,F)

if the meaning is clear.
Let C be a smooth curve of genus g. Throughout, L is a very ample line bundle

on C embedding it as a linearly normal curve in Pn
= P(H 0(C, L)) with degree

d = deg L .
A line bundle L on a smooth curve C is said to separate k points if

h0(C, L(−Z))= h0(C, L)− k for all Z ∈ SkC,

where SkC is the kth symmetric product of C . We let 6k denote the variety of
(k+ 1)-secant k-planes to C and write 6 for the variety 61.

We recall the first stages of a construction of Aaron Bertram which provides the
geometric framework for our results.

Theorem 2.1 [Bertram 1992, Theorem 1]. Suppose that L separates 4 points. Let
g : B1→ B0 = Pn be the blowup of B0 along C with 6̃ the proper transform of 6.
Let h : B2→ B1 be the blowup of B1 along 6̃ and Ei be the proper transform in
Bi of each exceptional divisor. We further let f = g ◦ h.

Then 6̃ ⊂ B1 is smooth and irreducible, and transverse to E1, so in particular
B2 is smooth. Moreover, by Terracini recursiveness, if x ∈ 6 \C , then f −1(x) ∼=
P(H 0(C, L(−2V ))), where V is the unique divisor of degree 2 whose span con-
tains x. If x ∈ C , then f −1(x) is isomorphic to the blowup of P(H 0(C, L(−2x)))
along the image of C embedded by L(−2x). �

Remark 2.2. Bertram’s construction continues, blowing up the strict transform of
each 6k successively, so that a fiber over a point of C of the composition is Pn−2

in which we have blown up copies of 6i for i = 0, . . . , k − 1 and the degree of
60 = C is two less than the degree of the original embedding. We will abuse
notation in the hopes of highlighting the recursive nature of the construction and
denote the restriction of Ei to a fiber F of the composition using the notation of
our setup relative to the blowing up that has occurred within F . For example, if
x ∈ C and F = f −1(x), we will write OB2(E2)|F = OF (E1), keeping in mind that
“E1 ⊂ F” is the exceptional divisor of Pn−2 blown up at C where the degree has
already dropped by two.

A key point in what follows is that 6̃ is a resolution of singularities of 6, and
is a P1-bundle over S2C in a natural way. We summarize this relationship:

Lemma 2.3. The variety 6̃ ⊂ B1 is a resolution of singularities g : 6̃→ 6 with
the following properties:

(1) g∗O6̃ = O6 .
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(2) Z := E1 ∩ 6̃ ∼= C ×C.

(3) The restriction g : C ×C→ C is projection onto one factor.

(4) The restriction of the linear system |2H−E1| to 6̃ yields a morphism π : 6̃→
S2C realizing 6̃ as a P1-bundle over S2C. The restriction of this morphism
to Z ∼= C ×C is the canonical double cover d : C ×C→ S2C.

(5) If we define δ by d∗OS2C
(
δ
2

)
= OC×C(1), then d∗OC×C = OS2C ⊕OS2C

(
−
δ
2

)
.

(6) If F is a fiber of the P1-bundle π : 6̃→ S2C , then

OF (aH − bE1)= OP1(a− 2b).

Proof. The first is [Vermeire 2002, 3.2], the second and third are [Vermeire 2001,
3.7], the fourth is [Vermeire 2001, 3.8]. Part (5) follows from [Barth et al. 2004,
V.22]. For (6), note that each fiber F is the proper transform of a secant line, hence
the intersection with a hyperplane is 1, while the intersection with the exceptional
divisor is 2 (since each secant or tangent line intersects C in a scheme of length
two). �

Lemma 2.4. With hypotheses and notation as above:

(1) 6 ⊂ B0 is normal and is smooth away from C.

(2) f∗OB2 = OB0 and R j f∗OB2 = 0 for j ≥ 1.

(3) Ri f∗OB2(−E2)=


I6 i = 0,

H 1(C,OC)⊗OC i = 2,

0 i 6= 0, 2.

(4) Ri g∗OB1(−m E1)= Ri h∗OB2(−m E2)= 0 for i > 0 and m ≥ 0.

(5) Ri g∗I6̃ = Ri f∗OB2(−E2).

(6) Ri f∗OB2(−E1− E2)= I6/Pn for i = 0 and is zero otherwise.

Proof. The first two can be found in [Vermeire 2002, 3.2], while the third is [Ver-
meire 2008b, Proposition 9] and the fourth is [Lazarsfeld 2004, Lemma 4.3.16].
Part (5) follows immediately from (4) and a degenerate case of Grothendieck’s
composition of functors spectral sequence [Grothendieck 1957].

For the sixth item, we compute sheaves Ri f∗OE1(−E2) and use them to show
the claim via

0→ OB2(−E1− E2)→ OB2(−E2)→ OE1(−E2)→ 0.

Since E1→C is flat, the locally free sheaf OE1(−E2) is also flat over C . Thus,
we can compute higher direct images via cohomology along the fibers of f re-
stricted to E1 by [Hartshorne 1977, Corollary III.12.9]. By the Terracini recursive-
ness portion of Theorem 2.1, if x ∈ C , a fiber F = f −1(x) is the blowup of C in
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PH 0(C, L(−2x)) and E2 intersects F in the exceptional divisor E1 of this blowup.
As H i (F,OF (−E1)) = H i (P(H 0(C, L(−2x))),IC), H i (F,OF (−E1)) vanishes
for i = 0, 1, and h2(P(H 0(C, L(−2x))),IC)= h1(C,OC)= g. We conclude that
Ri f∗OE1(−E2)= 0 for i = 0, 1 and that for i = 2 it is locally free of rank g. Note
that by part (5), R2 f∗OB2(−E2) is also locally free of rank g. Therefore, if the map
between them is a surjection, it is an isomorphism.

To get the surjectivity above we show R3 f∗OB2(−E1− E2)= 0 by looking at

0→ OB2(−E1− E2)→ OB2(−E1)→ OE2(−E1)→ 0. (1)

Applying h∗, the projection formula and the observation that E2→ 6̃ is a projective
bundle, we see that

0→ I6̃(−E1)→ OB1(−E1)→ O6̃(−E1)→ 0

is exact and all higher direct images vanish. If we apply g∗ we get

→ R2g∗O6̃(−E1)→ R3g∗I6̃(−E1)→ R3g∗OB1(−E1)→,

where the left-hand term vanishes because 6̃→6 has fibers of dimension at most
one, and the right-hand term vanishes by (4). �

We will use Lemma 2.5 to show that H 1(6,O6(2))= 0 in Theorem 3.3.

Lemma 2.5. Let L be a very ample line bundle on a variety X with H i (X, L)= 0
for i > 0, E a locally free sheaf on X. Let ϕ : X → Pn

= P(H 0(X, L)) be the
induced morphism.

(1) H i (X × X, (L � E)⊗I1)= H i (X, ϕ∗�1
Pn ⊗ L ⊗ E).

(2) H i (X × X, (L � E)⊗I2
1)= H i (X, N ∗X/Pn ⊗ L ⊗ E).

Proof. Applying (π2)∗ to the exact sequence

0→ (L � E)⊗I1→ L � E→ (L � E)⊗O1→ 0

yields a twist of the Euler sequence on X :

0→ ϕ∗�1
Pn ⊗ L ⊗ E→ H 0(X, L)⊗ E→ L ⊗ E→ 0

Note that the hypothesis H i (X, L) = 0 and the fact that L is globally generated
imply that all higher direct images vanish, and part (1) follows immediately.

As O1⊗I1 = N ∗1 =�
1
X ; applying (π2)∗ to the exact sequence

0→ (L � E)⊗I2
1→ (L � E)⊗I1→ (L � E)⊗ N ∗1→ 0

yields a twist of the conormal sequence on X :

0→ N ∗X/Pn ⊗ L ⊗ E→ ϕ∗�1
Pn ⊗ L ⊗ E→�1

X ⊗ L ⊗ E→ 0
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Note that the hypothesis H i (X, L)= 0 and the fact that L is very ample imply that
all higher direct images vanish, and part (2) follows similarly. �

3. 6 is ACM

The main goal of this section is the proof of Theorem 1. As a consequence of our
work we get Corollary 3.4 showing that 6 is projectively normal. We will work
throughout with the following hypothesis.

Hypothesis 3.1. Let C ⊂ Pn be a smooth linearly normal curve of genus g and
degree d ≥ 2g+ 3.

Using the Serre–Grothendieck correspondence between local and global coho-
mology, the depth of the maximal ideal on the homogeneous coordinate ring of
6⊂Pn can be measured by vanishings of global cohomology groups. We see that
6 is ACM if and only if H i (Pn,I6(k)) = 0 for all k and for 0 < i ≤ dim6 (for
example, [Eisenbud 1995, Example 18.16]). In light of [Vermeire 2008b] where it
is shown that I6 is 5-regular, in order to show that 6 is ACM we are left to show
that H i (6,O6(k)) = 0 for i = 1, 2 and all k ≤ 3− i . In what follows we handle
the required cohomological vanishing cases individually.

3A. Vanishings for k < 0. The vanishings needed for k < 0 follow easily from
Kawamata–Viehweg vanishing together with part (3) of Lemma 2.4. We write the
5-term sequence associated to the Leray spectral sequence (applying Theorem 2.1)
to the map g : 6̃→ 6 as it will be crucial in what follows (note that the first and
fourth terms follow by part (1) of Lemma 2.3).

0→ H 1(6,O6(k))→ H 1(6̃,O6̃(k))→ H 0(6, R1g∗O6̃(k))

→ H 2(6,O6(k))→ H 2(6̃,O6̃(k)) (2)

Theorem 3.2. If C satisfies Hypothesis 3.1, then H i (6,O6(k))= 0 for k < 0 and
i = 1, 2.

Proof. We know that g∗O6(1)=O6̃(1) is big and nef on 6̃; hence H i (6̃,O6̃(k)) is
0 for k<0 and i<3 by Kawamata–Viehweg vanishing. Using the sequence (2), we
have the claimed vanishing for i = 1 immediately. As R1g∗O6̃ ∼= H 1(C,OC)⊗OC

by Lemma 2.4 (3–5), we have H 0(6, R1g∗O6̃(k))=H 1(C,OC)⊗H 0(C,OC(k))=
0, and the vanishing for i = 2 also follows. �

3B. Vanishings of H1(6, O6(k)) for k > 0. All of the remaining vanishings ex-
ploit the structure of 6̃ as a P1-bundle over S2C . Given work of the second author
in [Vermeire 2008b], the projective normality of 6 follows by exploiting Terracini
recursion as a corollary of the next result.

Theorem 3.3. If C satisfies Hypothesis 3.1, then H 1(6,O6(2))= 0.
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Proof. We show that H 2(Pn,I6(2))= 0.
Since O(2H−E) is trivial along the fibers of π : 6̃→ S2C , O6̃(2H − E)= π∗M

for some line bundle M on S2C [Hartshorne 1977, Exercise III.12.4]. We know
from [Vermeire 2002, 3.6] that

O6̃(2H − E)⊗OZ ∼= π
∗M ⊗OZ ∼= L � L ⊗OZ (−21).

Further restricting π to the double cover d : C × C → S2C , by the projection
formula and part (5) of Lemma 2.3 we have

H i (Z , L � L ⊗OZ (−21))= H i (S2C,M)⊕ H i
(

S2C,M ⊗OS2C

(
−
δ

2

))
.

Again by the projection formula, we know that H i (6̃,O(2H−E))= H i (S2C,M).
By Lemma 2.5, we have H i (Z , L � L ⊗ OZ (−21)) ∼= H i (C, N ∗C(2)). Thus
we immediately have H 2(Z , L � L ⊗ OZ (−21)) = 0, but this in turn implies
H 2(S2C,M)= H 2(6̃,O(2H − E))= 0.

Let LL be the line bundle on S2C such that d∗LL = L � L (see [Kouvidakis
2002, §2.1], for example). Now, as L � L ⊗ OZ (−1) = d∗

(
LL ⊗ OS2C

(
−
δ
2

))
, we

know that

d∗
(
(L � L)⊗OZ (−1)

)
=

[
LL ⊗OS2C

(
−
δ
2

)]
⊕

[
LL ⊗OS2C

(
−2δ

2

)]
=

[
LL ⊗OS2C

(
−
δ
2

)]
⊕M.

Again by Lemma 2.5 we know that

H 1(C ×C, L � L ⊗OZ (−1))= H 1(C, �1
Pn (2)⊗OC)= 0,

where the vanishing comes from quadratic normality of the embedding of C . Thus
H 1(S2C,M)= H 1(6̃,O6̃(2H − E))= 0.

We see immediately that H 2(B1,I6̃(2H)) = H 1(6̃,O6̃(2H)), and from the
sequence

0→ O6̃(2H − E)→ O6̃(2H)→ O6̃(2H)⊗OE → 0

and the (just proved) fact that H i (6̃,O6̃(2H−E))= 0 for i = 1, 2 implies further
that H 2(B1,I6̃(2))= H 1(6̃,O6̃(2)⊗OE). A straightforward computation gives

h1(6̃,O6̃(2H)⊗OE)= h1(C ×C, L2�OC)

= h0(C, L2) · h1(C,OC)

= h0(C, H 1(C,OC)⊗ L2)

= h0(Pn, R2g∗I6̃(2)).

Therefore, h2(B1,I6̃(2))= h0(Pn, R2g∗I6̃(2)).
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Interpreting what we have just shown in terms of the Leray–Serre spectral se-
quence associated to g∗I6̃(2), we have h2(B1,I6̃(2))= dim E0,2

2 . We also know
that R1g∗I6̃(2) = 0 by the projection formula and Lemma 2.4 (3) and (5). Thus,
at the E2 level, where we have

0→ E0,1
2

d2
→ E2,0

2 → 0 and 0→ E0,2
2

d2
→ E2,1

2 → 0,

we see that E2,0
2 = E2,0

∞
and E0,2

2 = E0,2
∞

because H i (Pn, R1g∗I6̃(2))= 0. Recall
[Weibel 1994, 5.2.6] that H 2

:= H 2(B1,I6̃(2)) has a finite filtration

0= F3 H 2
⊆ F2 H 2

⊆ F1 H 2
⊆ F0 H 2

= H 2,

where F2 H 2 ∼= E2,0
∞

and H 2/F1 H 2 ∼= E0,2
∞

.
Now, because dim H 2

= dim E0,2
2 = dim E0,2

∞
, we have F1 H 2

= 0, but this
implies that F2 H 2

= E2,0
∞
= 0, and hence that E2,0

2 = 0. �

In [Vermeire 2008b] it was shown that for the general embedding of degree at
least 2g+3,6 is projectively normal; the only vanishing that could not be shown to
always hold was H 1(Pn,I6(2))=0. Theorem 3.3 allows us remove the hypothesis
that the embedding must be general. The idea in [Vermeire 2008b] was to obtain
a vanishing statement for direct image sheaves, and then to use those vanishings
along with [Mumford 1966, p. 52, Corollary 1 1

2 ] to show that the cohomology
groups along the fibers vanish. Of course, to make this work, we must find a flat
morphism and a locally free sheaf so that the restriction of the sheaf to the fiber
is precisely the vanishing statement we want. This is done using Theorem 2.1.
However, note that in the proof we need to increase the degree of the embedding
to at least 2g+ 5, so that curves of degree 2g+ 3 occur in the fibers.

Corollary 3.4. Let C ⊂ Pn be a smooth curve embedded by a line bundle L of
degree at least 2g+ 3. Then 6 is projectively normal.

Proof. We know by combining [Vermeire 2008b, Proposition 12] with [Wahl 1997,
1.16] that H 1(Pn,I6(k))= 0 for k = 1, 3, and by [Vermeire 2008b, Corollary 11]
that H 1(Pn,I6(k)) = 0 for k ≥ 4. Clearly, H 1(6,O6(2)) = H 2(Pn,I6(2)). As
these vanish by Theorem 3.3, we note that by Lemma 2.4 we have

H 2(B2,O(2H − E1− E2))= 0.

We further have H i (B2,O(2H − E1− E2))= 0 for i ≥ 3 by 5-regularity of I6 .
By Lemma 2.4, along the fibers of E1→C we are computing H i (Pn−2,IC(1));

thus Ri f∗OE1(2H − E1− E2) = 0 for i ≥ 0. Hence H i (B2,OE1(2H − E1− E2))

vanishes, showing that H i (B2,O(2H − 2E1− E2))= 0 for i ≥ 2.
Fixing a point p ∈ C , and applying an extension of Theorem 2.1 to L(2p)

(which now separates 6 points as L is nonspecial), we may blow up three times
to get a resolution of 62. In the notation of [Vermeire 2008b, Theorem 15], the
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previous paragraph gives Ri f∗OE1(k H −2E1−2E2− E3)= 0 for i ≥ 2, since the
restriction of OE1(k H−2E1−2E2−E3) to a fiber of E1→C is O(2H − 2E1− E2)

using the convention of Remark 2.2. It was shown in [Vermeire 2008b, Theorem
15] that R1 f∗OE1(k H − 2E1 − 2E2 − E3) = 0, and so we know that H 1 along
the fibers vanishes by [Mumford 1966, page 52, Corollary 1 1

2 ]. Thus we have
H 1(B2,O(2H − 2E1− E2))= 0 and so, as above,

H 1(B2,O(2H − E1− E2))= H 1(Pn,I6(2))= 0. �

Theorem 3.5. If C satisfies Hypothesis 3.1, then H i (6,O6(1))= 0 for i = 1, 2.

Proof. For i=1, 2, we have hi (6,O6(1))=hi+1(Pn,I6(1)) and H i+1(Pn,I6(1))
is isomorphic to H i+1(B2,OB2(H − E1 − E2)) by the last part of Lemma 2.4.
Using Equation (1) twisted by H , the projection formula gives Ri h∗(OE2(H −
E1)) = Ri h∗(OE2)⊗ O6̃(H − E1). By part (6) of Lemma 2.3 the restriction of
O(H−E1) to the fibers of 6̃→ S2C is isomorphic to OP1(−1), hence hi (6̃,O(H−
E1))= 0 for all i, which implies that hi (E2,OE2(H−E1))= 0. We therefore have
hi+1(B2,OB2(H − E1− E2))= hi+1(B2,OB2(H − E1)).

We see that Ri f∗(OB2(H−E1))= 0 for i ≥ 1 and f∗(OB2(H−E1))=IC(1) by
[Bertram et al. 1991, 1.2,1.4]. Thus hi+1(B2,OB2(H−E1))=hi+1(Pn,IC(1))=0.

�

Remark 3.6. In the case of a canonical curve, we have

h0(6, R1g∗O6̃(H))= h1(C,OC) · h0(C,OC(1))= g2

while

h1(6̃,O6̃(H))= h1(OC) · h0(OC(1))+ h0(OC) · h1(OC(1))= g2
+ 1.

Therefore using the 5-term sequence (2) again we see that h1(6,O6(1)) ≥ 1 (in
fact, equality can be shown to hold). Thus the secant variety to a canonical curve
of Clifford index at least 3 (for example, the generic curve of genus ≥ 7) is never
ACM.

Note the secant variety of a canonical curve C ⊂P4 is a hypersurface of degree
16, hence is ACM, but such curves have Clifford index ≤ 2.

3C. Vanishings for k = 0. We now consider the vanishing of H i (6,O6) where
i = 1, 2.

Proposition 3.7. If C satisfies Hypothesis 3.1, then H 1(6,O6)= 0.

Proof. Associated to the morphism g : B1→ Pn we have
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��

0

��

0

��
0 // H 1(g∗O6̃)

��

// H 1(O6̃)

α

��

γ // H 0(R1g∗O6̃)

��

//

0 // H 1(g∗OZ ) // H 1(OZ )
β // H 0(R1g∗OZ ) // 0

where the horizontal maps come from 5-term exact sequences.
As Z ∼=C×C , we see that the inclusion and projection in the bottom row come

from the Künneth formula. The map α :H 1(O6̃)→H 1(OZ ) is an inclusion because
it is the diagonal mapping α : H 1(OS2C)→ H 1(C,OC)⊕ H 1(C,OC) induced by
the pull-back of d : Z → S2C to 6̃. We conclude that the composition β ◦ α
is an isomorphism. Moreover, as H 0(R1g∗O6̃) → H 0(R1g∗OZ ) is an isomor-
phism, we see that γ is an isomorphism by commutativity of the diagram. Hence,
H 1(g∗O6̃)= H 1(6,O6)= 0. �

Proposition 3.8. If C satisfies Hypothesis 3.1, then H 2(6,O6)= 0.

Proof. We note that hi (6,O6)= hi+1(Pn,I6) for i = 1, 2. Moreover, by part (6)
of Lemma 2.4 we have h j (Pn,I6)=h j (B2,OB2(−E1−E2)). Therefore, the result
follows if we can show that h2(B2,OB2(−E1 − E2)) = h3(B2,OB2(−E1 − E2)),
since we know by Proposition 3.7 that h2(B2,OB2(−E1− E2))= 0.

To this end, consider the long exact sequence associated to Equation (1) on
page 451. The result will follow if h2(B2,OB2(−E1)) = h2(E2,OE2(−E1)) is
equal to g and h1(E2,OE2(−E1))= h3(B2,OB2(−E1))= 0.

From the sequence 0→ OB2(−E1)→ OB2→ OE1→ 0 we see immediately that
hi (B2,OB2(−E1)) = g if i = 2 and is zero otherwise as R j f∗OB2 = 0 for j > 0
from Lemma 2.4 (2) and h j (OE1)= h j (OC) for all j .

We compute the cohomology of OE2(−E1) using Equation (1). Using the pro-
jection formula and part (4) of Lemma 2.4, we see that Ri h∗OE2(−E1) = 0 for
i > 0. Thus, H i (OE2(−E1))∼= H i (O6̃(−E1)).

To compute H i (O6̃(−E1)), observe that

0→ π∗O6̃(−E1)→ π∗O6̃→ π∗OZ → R1π∗O6̃(−E1)→ 0

with all remaining higher direct images vanishing by parts (2) and (4) of Lemma
2.3 and π∗O6̃(−E1)= 0 by part (6).

As HomOS2C

(
OS2C ,OS2C

(
−
δ
2

))
is trivial, this gives rise to the natural inclusion

π∗O6̃
∼= OS2C ↪→ OS2C ⊕OS2C

(
−
δ

2

)
∼= π∗OZ ,
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and we see that H i (6̃,O6̃) ↪→ H i (Z ,OZ ). In fact, using the long exact sequence
on 6̃, these inclusions imply that H i (Z ,OZ )∼= H i (6̃,O6̃)⊕H i+1(6̃,O6̃(−E1)).

As h1(S2C,OS2C)= g and h2(S2C,OS2C)=
(g

2

)
by [Macdonald 1962], using the

sequence 0→ O6̃(−E1)→ O6̃→ OZ→ 0 together with the Künneth formula and
that H i (6̃,O6̃)

∼= H i (S2C,OS2C), implies that h2(E2,OE2(−E1)) = g, and that
h3(E2,OE2(−E1))=

(g+1
2

)
. Further, we see immediately that H 1(6̃,O6̃(−E1)) is

0, since H 0(Z ,OZ )∼= H 0(6̃,O6̃)⊕ H 1(6̃,O6̃(−E1)). �

Proof of Theorem 1. As explained at the beginning of the section, in order to show
that 6 is ACM we are left to show that H i (6,O6(k)) = 0 for i = 1, 2 and all
k ≤ 3− i .

The vanishings for k < 0 were shown in Theorem 3.2. The vanishing for i = 1
and k = 0 is Proposition 3.7, while i = 2 and k = 0 is Proposition 3.8. Both
vanishings for k = 1 are found in Theorem 3.5. Finally, the vanishing for i = 1 and
k = 2 is found in Theorem 3.3. �

As an immediate consequence of the proof of Proposition 3.8 we get a sharpen-
ing of the regularity result of the second author in [Vermeire 2008b].

Corollary 3.9. If C satisfies Hypothesis 3.1, then I6 has regularity 3 if C is ratio-
nal and regularity 5 otherwise.

Proof. Running the long exact sequence associated to Equation (1) in the proof of
Proposition 3.8 shows that h4(Pn,I6)=

(g+1
2

)
. �

4. Betti diagrams

In this section we attempt to paint a picture of the shape of the Betti diagram of
S6 that parallels the discussion of the Betti diagram of a high degree curve in
Chapter 8 of [Eisenbud 2005]. In Section 4A we use the fact that 6 is ACM to use
duality and algebraic techniques to compute the extremal nontrival Betti numbers,
β1,3 (Proposition 4.4) and βn−3,n+1 (Corollary 4.1) as well as the Hilbert poly-
nomial. Independent of the Cohen–Macaulay property, we prove a nonvanishing
result about the length of the degree (k+2) linear strand of S6k using determinantal
methods and Koszul homology (Proposition 4.10 and Theorem 1.2) in Section 4B.

4A. Computing Betti numbers. We begin with a simple consequence of duality.
As6 is ACM, dualizing a resolution of S6 and shifting by−n−1 gives a resolution
of the canonical module, which is defined to be ω6 = Extn−3(S6, S(−n − 1)) =⊕

d∈Z H 0(6, ω◦6 ⊗ Ld) where ω◦6 = Extn−3
Pn (O6,OPn (−n − 1)) is the dualizing

sheaf of 6. Therefore, the last few Betti numbers of S6 are the first few of ω6 .
As an immediate consequence of Corollary 3.9 we see that the number of minimal
generators of ω6 in degree 0 is

(g+1
2

)
and hence depends only on g, independent

of the embedding (as long as the degree is at least 2g+ 3).
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Corollary 4.1. If C satisfies Hypothesis 3.1, then βn−3,n+1 =
(g+1

2

)
.

Proof. If g = 0, we know that βn−3,n+1 = 0. If g > 0, then Corollary 3.9 shows
that reg S6 = 4. Hence, the a-invariant of S6 is 0, so h0(ω◦6) = β0,0(ω6) =

βn−3,n+1(S6). By Serre duality,

h0(6, ω◦6)= h3(6,O6)= h4(Pn,I6)=

(
g+ 1

2

)
. �

Knowing βn−3,n+1 allows us to compute the Hilbert polynomial of S6 and to
gather information about other Betti numbers inductively. To begin this process,
fix general linear forms H1, H2, H3, H4 ∈ S. Let X be the intersection of 6 with
the hyperplanes determined by H1 and H2 and M = S6/〈H1, H2, H3, H4〉. Using
Corollary 4.1 we may compute the genus of X from which formulae for the Hilbert
polynomial of S6 and β1,3 follow. First we gather together basic facts about X .

Lemma 4.2. If C satisfies Hypothesis 3.1, the variety X is a smooth curve of degree
D =

(d−1
2

)
− g embedded in Pn−2 via the complete linear series associated to a

line bundle A and SX = S6/〈H1, H2〉.

Proof. All the statements follow immediately from the fact that 6 is ACM. The
only thing that may not be immediate to the reader is that deg(6) =

(d−1
2

)
− g,

though this is certainly well-known to experts.
To see this, take a generic L = Pn−3

⊂ Pn and consider the induced projection
π : Pn 99K P2. Every point of intersection of L with 6 corresponds to a node of
π(C). It is well-known that the number of nodes is

(d−1
2

)
− g. �

We will denote the genus of X by G. To compute G we compare the Hilbert
function of SX to that of successive quotients by H1 and H2.

Proposition 4.3. If C satisfies Hypothesis 3.1, the genus of X is

G = 1
2(d − 2)(d + 2g− 3).

Proof. Since SX is 4-regular, h0(X, Am)= m D−G+ 1 for m ≥ 3. We also know
that the ideal of 6 is empty in degree less than three, since a quadric hypersurface
vanishing on 6 must vanish twice on C , but this is not possible since C is nonde-
generate. Therefore, we can fill in the table of Hilbert functions below where each
entry in the first two columns of the table is the sum of the entries directly above
and to the right.

S6/〈H1, H2〉 S6/〈H1, H2, H3〉 M

2
(n

2

) (n−1
2

) (n−2
2

)
3 3D−G+1 3D−G+1−

(n
2

)
3D−G+1−

(n
2

)
−
(n−1

2

)
4 4D−G+1 D G−2D−1+

(n
2

)
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But computing graded Betti numbers via Koszul homology as in Proposition 2.7
in [Eisenbud 2005] shows that dim M4 = βn−3,n+1 =

(g+1
2

)
. Substituting n= d−g

and simplifying G = 2D+ 1−
(d−g

2

)
+
(g+1

2

)
gives the desired result. �

The computation of the Hilbert polynomial P6(m) follows easily.

Proof of Theorem 1.1. Using [Eisenbud 2005, Theorem 4.2], the Hilbert polyno-
mial and Hilbert function of S6 agree for m≥ reg S6+proj-dim S6−n≥ 4−3= 1.
Write

P6(m)=
3∑

i=0

αi

(
m+ i − 1

i

)
.

As X is gotten by cutting down by a regular sequence of two hyperplanes, PX (m)=
P6(m)− P6(m − 1)− P6(m − 2) = α3m + α2. Since X is a curve of degree D
and genus, G, we see that α3 = D and α2 = 1−G. Since the ideal of 6 is empty
in degrees 1and 2, we see that P6(1) = n + 1 and P6(2) =

(n+2
2

)
and the result

follows. �

We compute β1,3 and get a relationship on Betti numbers at the beginning of the
resolution.

Proposition 4.4. If C satisfies Hypothesis 3.1, we have

β1,3=

(
n+ 1

3

)
−(d−2)n−3g+1 and β2,4=β1,4+β1,3(n+1)−

(
n+ 4

n

)
+P6(4).

Proof. As observed above, the Hilbert polynomial and function of SX agree in
degree 3 and higher. Since β1,3=

(n+1
3

)
−(SX )3 we get β1,3=

(n+1
3

)
−3D+G−1,

and this simplifies to the given formula.
By [Eisenbud 2005, Corollary 1.10] we get a formula for the Hilbert function

of S6 in terms of graded Betti numbers:

(S6)m =
∑

i≥0, j∈Z

(−1)iβi, j

(
n+m− j

n

)
.

When m = 4, we must have j ≤ 4 for βi, j to contribute to the sum. As we know
that the ideal of X does not contain any forms of degree < 3, the result follows. �

Remark 4.5. In the formula for β2,4 we have an explicit formula for each term
except β1,4, which is the number of quartic minimal generators of I6 . For large d ,
we know β1,4 = 0, as the ideal of 6 is generated by cubics [Vermeire 2008a].

Using duality, we get a similar result for the tail of the resolution.
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Theorem 4.6. If C satisfies Hypothesis 3.1, the tail of the graded Betti diagram of
S6 has the form

n− 5 n− 4 n− 3

0 − − −

1 − −. −

2 ∗ ∗ A
3 ∗ A+ B+

(g+1
2

)(n
2

)
−
(g

2

)
(n− 3)(n− 1)−G C

4 B C +
(g

2

)
(n− 3)

(g+1
2

)
Proof. Let A=βn−3,n−1, B=βn−5,n−1 and C=βn−3,n . We know that the canonical
module ωX is

⊕
n∈Z H 0(K X ⊗ An), where K X is the canonical line bundle of X .

By duality, βi, j (ωX )= βn−3−i,n−1− j (S6).
By [Eisenbud 2005, Corollary 1.10] we get a formula for the Hilbert function

of ωX in terms of graded Betti numbers:

h0(K X ⊗ Am)=
∑

i≥0, j∈Z

(−1)iβi, j (ωX )

(
n− 2+m− j

n− 2

)
.

By Serre duality and Riemann–Roch h0(K X ⊗ A−1) = h1(A) = g(d − 2). Thus,
g(d−2)= (n−1)

(g+1
2

)
+C−βn−4,n , which gives the desired satement. The second

statement follows from the equation

G =
(

g+ 1
2

)(
n
2

)
−

(
g
2

)
(n− 3)(n− 1)+ B−βn−4,n−1+ A. �

In particular, if g = 2, we have the following immediate corollary.

Corollary 4.7. If C satisfies Hypothesis 3.1 and g = 2, the tail has the form

n− 5 n− 4 n− 3

0 − − −

1 − − −

2 ∗ ∗ A
3 ∗ A+ B+ d − 5 C
4 B C + d − 5

(g+1
2

)
Based on Example 1.4 and the following example, we expect A = B = C = 0.

Example 4.8. Suppose C is a genus 2 curve of degree 12 in P10. We use Example
(c) of [Eisenbud et al. 1988] to compute the ideal of the curve determinantally
in Macaulay 2 over the field of rational numbers. We then used the code created
to implement ideas in [Sidman and Sullivant 2006] to compute the least degree
pieces of the ideals of the secant varietes. Computing the degree, dimension, and
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projective dimension of the resulting ideals showed that we had actually computed
the secant ideals.

0 1 2 3 4 5 6 7 8 9
total: 1 43 222 558 840 798 468 147 17 2

0: 1 - - - - - - - - -
1: - 43 222 558 840 798 468 147 8 -
2: - - - - - - - - 9 2

The Betti diagrams for S61 and S62 are

0 1 2 3 4 5 6 7 0 1 2 3 4 5
total: 1 70 283 483 413 155 14 3 total: 1 41 94 61 11 4

0: 1 - - - - - - - 0: 1 - - - - -
1: - - - - - - - - 1: - - - - - -
2: - 70 283 483 413 155 - - 2: - - - - - -
3: - - - - - - 7 - 3: - 41 94 61 - -
4: - - - - - - 7 3 4: - - - - - -

5: - - - - 6 -
6: - - - - 5 4

4B. The length of the first nonzero strand. We now turn to the consideration of
a lower bound on the length of the minimal degree linear strand of the ideal of
6k , essentially following Chapter 8B.2 of [Eisenbud 2005], building on Green and
Lazarsfeld’s proof of nonvanishing for curves. In this section we will assume the
following:

Hypothesis 4.9. C is a smooth curve of genus g and degree d embedded into Pn

via a line bundle L that factors as L = L1⊗ L2, where |L1| = s and |L2| = t , with
1≤ s ≤ t .

First note that part of the proof of [Eisenbud 2005, Theorem 8.12] which is given
in the case k = 0 goes through for arbitrary k and allows us to see easily that the
degree k+ 2 linear strand of the Betti diagram of 6k has length at least p.

Proposition 4.10. Under the conditions of Hypothesis 4.9, if d ≥ 2g+2k+1+ p,
then βp,k+1+p 6= 0.

Proof. Factor L so that deg L1≥g+k+1 and deg L2=g+k+p. By Riemann–Roch
h0(C, L1)≥ k+2 and h0(C, L2)≥ k+ p+1. Thus multiplication of sections gives
rise to a 1-generic matrix of linear forms with at least (k+2) rows and (k+1+ p)
columns. Delete rows and columns to get a (k+ 2)× (k+ 1+ p) matrix which is
still 1-generic as an equation making a generalized entry of the smaller matrix zero
also makes a generalized entry of the larger matrix zero. The maximal minors of
the smaller matrix are resolved by an Eagon–Northcott complex of length p. The
resolution of this ideal is a subcomplex of the ideal of 6k . The result follows. �
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We can get a better lower bound by exhibiting an explicit nontrivial cycle in the
Koszul homology of S6k to show that βs+t−2k−1,s+t−k does not vanish.

In [Eisenbud 2005, Theorem 8.15], the following result is stated for k = 1:

Theorem 4.11 [Eisenbud 2005, Theorem 8.15]. If I ⊂ S is a homogenous ideal
which contains no forms of degree less than or equal to k, then βi,i+k 6=0 if and only
if there exists γ ∈∧i Sn+1(−i) of degree i + k whose image under the differential
of the Koszul complex is nonzero and lies in I ⊗∧i−1Sn+1(−i + 1).

Proof. The proof goes through as in [Eisenbud 2005], replacing one by k every-
where. �

We show that [Eisenbud 2005, Theorem 8.13] can be extended to the case of
minors of arbitrary size.

Theorem 4.12. Suppose that A is an (s+ 1)× (t + 1) matrix of linear forms with
s+ 1≥ k+ 2. If the s+ t + 1 elements in the union of the entries of the zeroth row
and column are linearly independent and some (k + 2) minor involving the zeroth
row or column does not vanish, then βs+t−2k−1,s+t−k(S/Ik+2) does not vanish.

Proof. By Theorem 4.11 it suffices to construct an explicit cycle

γ ∈∧s+t−2k−1Sn+1(−s− t + 2k+ 1)

of degree s + t − k whose image under the differential is a nonzero element of
Ik+1⊗∧s+t−2k−2Sn+1(−s− t + 2k+ 2). To do this we set some notation.

By our hypotheses, the matrix A has the form

A =


a0,0 a0,1 · · · a0,t

a1,0 a1,1 · · · a1,t

·

as,0 as,1 · · · as,t

=


x0 x1 · · · xt

x1+t a1,1 · · · x1,t

·

xs+t as,1 · · · as,t

 .
Since the xi are linearly independent they may be chosen as part of a basis for S1,
and we may choose a basis {ei } for Sn+1 so that ∂(ei )= xi for i = 0, . . . , s+ t .

Let σ ⊂ {1, . . . , s} and τ ⊂ {0, . . . , t} be sets of size k + 1 and σt denote the
set gotten by adding t to each element of σ . Let eσt ,τ be the wedge product of
{e0, . . . , es+t }\(σt ∪ τ) in the standard order. Note that eσt ,τ ∈∧

s+t−2k−2Sn+1.
We define an element γ which will serve as our nonzero cycle. Informally, it is

the signed sum of all of the (k+1)-minors of A which do not involve the top row,
each indexed by an element eσt ,τ in a natural way. More precisely,

γ =
∑
σ,τ

(−1)(σ+τ)+t (k+1) det(σ |τ)eσt ,τ ,

where we define σ + τ to be the sum of the union of the elements in σ and τ and
det(σ |τ) is the minor of A gotten by using the rows in σ and the columns in τ .
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To complete the proof we need to show that the coefficients of ∂(γ ) are all
of the (k + 2)-minors of A involving the zeroth row or column. The only basis
elements which can have nonzero coefficients are eσ ′t ,τ , where σ ′ ⊂ {1, . . . , s} and
|σ ′| = k+ 2 and eσt ,τ ′ where τ ′ ⊂ {0, . . . , t} also has size k+ 2.

To understand the coefficient of eσt ,τ ′ , note that there are k + 2 basis elements
eσt ,τ whose images under the differential could contain eσt ,τ ′ with nonzero coef-
ficient. Since ∂(ei ) = xi for i = 0, . . . , t , we see that the coefficient of eσt ,τ ′ , is
± det(σt ∪{0} | τ ′) where the differential expands the determinant along the zeroth
row.

Similarly, the coefficient of eσ ′t ,τ , is ± det(σ ′t | τ ∪ {0}), the differential expands
the determinant along the zeroth column. (If 0 ∈ τ , we repeat the zeroth column
twice and get coefficient zero.) �

We are now ready to prove Theorem 1.2, which is analogous to [Eisenbud 2005,
Theorem 8.12].

Proof of Theorem 1.2. We will construct a matrix A corresponding to the factoriza-
tion of L = L1⊗L2 by choosing bases carefully as in the proof of [Eisenbud 2005,
Theorem 8.12]. Let Bi be the base locus of L i . Fix a basis β0, . . . , βt of H 0(L2)

so that the divisor of βi is B2+ Di where Di and B2 have disjoint support. Let D
be the divisor consisting of the union of the points in the divisors determined by
β0, . . . , βt . Since L1(−B1) is base-point free, a general element is disjoint from D
and from B1. Therefore we can pick a basis α0, . . . , αs so that the divisor of each
αi is B1+ Ei where Ei is disjoint from D and from B1.

We will show that the s + t + 1 elements in the union of any row and any
column of the corresponding matrix A are linearly independent. Without loss of
generality, consider the top row and leftmost column. We know that the elements
of the column α0β0, α1β0, . . . , αsβ0 are linearly independent, as are the elements
α0β0, α0β1, . . . , α0, βt . Suppose γ is an element in the intersection of the two
vector spaces with these bases. This implies that the divisor of γ contains the
divisor of α0 and of β0. This implies that it must contain D0 and E0 as well as the
base loci B1 and B2. Since γ ∈ H 0(L) and α0β0 ∈ H 0(L), then one is a scalar
multiple of the other. Therefore, we conclude that the union of the elements in the
top row and first column form a set of s+ t + 1 linearly independent elements.

As the matrix A is 1-generic, we know that the ideal generated by its maximal
minors has the expected codimension and hence some (k + 2)-minor does not
vanish. Permuting rows and columns we can assume it is in the upper lefthand
corner. Since Ik+2 ⊆ I6k , the result follows from Theorems 4.11 and 4.12.

If deg L ≥ 2g+2k+ p+1, then L can be factored as the product of line bundles
L1 with degree at least g + k + b(1+ p)/2c and L2 with degree greater than or
equal to deg L1. If L1 and L2 are generic, then each has at least k+2 sections. �
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