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ALGEBRA AND NUMBER THEORY 3:5(2009)

T-adic exponential sums over finite fields
Chunlei Liu and Daqing Wan

We introduce T -adic exponential sums associated to a Laurent polynomial f .
They interpolate all classical pm-power order exponential sums associated to f .
We establish the Hodge bound for the Newton polygon of L-functions of T -adic
exponential sums. This bound enables us to determine, for all m, the Newton
polygons of L-functions of pm-power order exponential sums associated to an f
that is ordinary for m = 1. We also study deeper properties of L-functions of
T -adic exponential sums. Along the way, we discuss new open problems about
the T -adic exponential sum itself.

1. Introduction

Classical exponential sums. We first recall the definition of classical exponential
sums over finite fields of characteristic p with values in a p-adic field.

Let p be a fixed prime number, Zp the ring of p-adic integers, Qp the field of
p-adic numbers, and Qp a fixed algebraic closure of Qp. Let q = pa be a power
of p, Fq the finite field of q elements, Qq the unramified extension of Qp with
residue field Fq , and Zq the ring of integers of Qq .

Fix a positive integer n. Let f (x) ∈ Zq [x±1
1 , x±1

2 , . . . , x±1
n ] be a Laurent poly-

nomial in n variables of the form

f (x)=
∑

u

au xu, where au ∈ µq−1 and xu
= xu1

1 · · · x
un
n ;

here µk denotes the group of k-th roots of unity in Qp.

Definition 1.1. Let ψ be a locally constant character of Zp of order pm with values
in Qp, and let πψ = ψ(1)− 1. The sum

S f,ψ(k)=
∑

x∈µn
qk−1

ψ(TrQqk /Qp( f (x)))

is called a pm-power order exponential sum on the n-torus Gn
m over Fqk . The
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Keywords: T -adic sum, exponential sum, L-function, Newton polygon.
Liu is supported by NSFC grant number 10671015.

489



490 Chunlei Liu and Daqing Wan

generating function

L f,ψ(s)= L f,ψ(s; Fq)= exp
( ∞∑

k=1

S f,ψ(k)
sk

k

)
∈ 1+ sZp[πψ ][[s]]

is the L-function of pm-power order exponential sums over Fq associated to f (x).

For m ≥ 1 this is still an exponential sum over a finite field, since we are just
summing over the subset of roots of unity (corresponding to the elements of a finite
field via the Teichmüller lifting), not over the whole finite residue ring Zq/pmZq .
The exponential sum over the whole finite ring Zq/pmZq and its generating func-
tion as m varies is the subject of Igusa’s zeta function [1978].

In general, L f,ψ(s) is rational in s. However, L f,ψ(s)(−1)n−1
is a polynomial

if f is nondegenerate, as shown in [Adolphson and Sperber 1989; 1987] for ψ of
order p, and in [Liu and Wei 2007] for all ψ . By a result of [Gel’fand et al. 1994],
if p is large enough, then f is generically nondegenerate. For nondegenerate f ,
the location of the zeros of L f,ψ(s)(−1)n−1

becomes an important issue. The p-adic
theory of such L-functions was developed by Dwork [1960], Bombieri [1966],
Adolphson and Sperber [1989; 1987], the second author [Wan 1993; 2004], and
Blache [2008] forψ of order p. Recently, the initial part of the theory was extended
to all ψ by Liu and Wei [2007] and Liu [2007].

The p-adic theory of the above exponential sum for n = 1 and ψ of order p has
a long history and has been studied extensively in the literature. For instance, in
the simplest case that f (x) = xd , the exponential sum was studied by Gauss; see
[Berndt and Evans 1981] for a comprehensive survey. By the Hasse–Davenport
relation for Gauss sums, the L-function is a polynomial whose zeros are given
by roots of Gauss sums. Thus, the slopes of the L-function are completely deter-
mined by the Stickelberger theorem for Gauss sums. The roots of the L-function
have explicit p-adic formulas in terms of p-adic 0-function via the Gross–Koblitz
formula [1979]. These ideas can be extended to treat the so-called diagonal f case
for general n; see [Wan 2004]. These elementary cases have been used as building
blocks to study the deeper nondiagonal f (x) via various decomposition theorems,
which are the main ideas of Wan [1993; 2004]. In the case n= 1 and ψ of order p,
more facts about the slopes of the L-function were found in [Zhu 2003; 2004a;
Blache and Férard 2007; Liu 2008].

T-adic exponential sums. We now define the T -adic exponential sum, state our
main results, and put forward some new questions.

Definition 1.2. For a positive integer k, the T -adic exponential sum of f over Fqk

is the sum
S f (k, T )=

∑
x∈µn

qk−1

(1+ T )
TrQqk /Qp ( f (x))

∈ Zp[[T ]].
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The T -adic L-function of f over Fq is the generating function

L f (s, T )= L f (s, T ; Fq)= exp
( ∞∑

k=1

S f (k, T )s
k

k

)
∈ 1+ sZp[[T ]][[s]].

The T -adic exponential sum interpolates classical exponential sums of pm-order
over finite fields for all positive integers m. In fact, we have

S f (k, πψ)= S f,ψ(k).

Similarly, one can recover the classical L-function of the pm-order exponential
sum from the T -adic L-function by the formula

L f (s, πψ)= L f,ψ(s).

We view L f (s, T ) as a power series in the single variable s with coefficients in
the complete discrete valuation ring Qp[[T ]] with uniformizer T .

Definition 1.3. The T -adic characteristic function of f over Fq , or C-function of
f for short, is the generating function

C f (s, T )= exp
( ∞∑

k=1

−(qk
− 1)−n S f (k, T )s

k

k

)
∈ 1+ sZp[[T ]][[s]].

The C-function C f (s, T ) and the L-function L f (s, T ) determine each other.
They are related by

L f (s, T )=
n∏

i=0

C f (q i s, T )(−1)n−i−1(n
i), C f (s, T )(−1)n−1

=

∞∏
j=0

L f (q j s, T )(
n+ j−1

j ).

In Section 4, we prove:

Theorem 1.4 (analytic continuation). The C-function C f (s, T ) is T -adic entire
in s. As a consequence, the L-function L f (s, T ) is T -adic meromorphic in s.

This theorem tells us that the C-function behaves T -adically better than the
L-function. In fact, in the T -adic setting, the C-function is a more natural object
than the L-function. Thus, we shall focus more on the C-function.

Knowing the analytic continuation of C f (s, T ), we are then interested in the
location of its zeros. More precisely, we would like to determine the T -adic Newton
polygon of this entire function C f (s, T ). This is expected to be a complicated
problem in general. It is open even in the simplest case n = 1, and f (x)= xd is a
monomial if p 6≡ 1 (mod d). What we can do is to give an explicit combinatorial
lower bound depending only on q and1, called the q-Hodge bound HPq(1). This
polygon will be described in detail in Section 3.
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Let NPT ( f ) denote the T -adic Newton polygon of the C-function C f (s, T ). In
Section 5, we prove this:

Theorem 1.5 (Hodge bound). NPT ( f )≥ HPq(1).

This theorem shall give several new results on classical exponential sums, as we
shall see in Section 2. In particular, this extends in one stroke all known ordinar-
iness results for ψ of order p to all ψ of any p-power order. It demonstrates the
significance of the T -adic L-function. It also gives rise to a definition:

Definition 1.6. A Laurent polynomial f that satisfies NPT ( f )=HPq(1) is called
T -adically ordinary.

We shall show that a classically ordinary f is T -adically ordinary, but it is
possible that a nonordinary f is T -adically ordinary. Thus, it remains interesting
to study exactly when f is T -adically ordinary. For this reason, in Section 6, we
extend the facial decomposition theorem in [Wan 1993] to the T -adic case. Let
1 be the convex closure in Rn of the origin and the exponents of the nonzero
monomials in the Laurent polynomial f (x). For any closed face σ of 1, we let fσ
denote the sum of monomials of f whose exponent vectors lie in σ .

Theorem 1.7 (T -adic facial decomposition). A Laurent polynomial f is T -adically
ordinary if and only if for every closed face σ of1 of codimension 1 not containing
the origin, the restriction fσ is T -adically ordinary.

In Section 7, we briefly discuss the variation of the C-function C f (s, T ) and
its Newton polygon when the reduction of f moves in an algebraic family over a
finite field. The main questions concern generic ordinariness, the generic Newton
polygon, the analogue of the Adolphson–Sperber conjecture [1989], Wan’s limit-
ing conjecture [2004], and Dwork’s unit root conjecture [1973] in the T -adic and
πψ -adic case. We shall give an overview about what can be proved and what is
unknown, including a number of conjectures. In summary, a lot can be proved in
the ordinary case, and a lot remain to be proved in the nonordinary case.

2. Applications

In this section, we give several applications of the T -adic exponential sum to class-
ical exponential sums.

Theorem 2.1 (integrality theorem). We have

L f (s, T ) ∈ 1+ sZp[[T ]][[s]] and C f (s, T ) ∈ 1+ sZp[[T ]][[s]].

Proof. Let |Gn
m | be the set of closed points of Gn

m over Fq , and let a 7→ â be the
Teichmüller lifting. It is easy to check that the T -adic L-function has the Euler
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product expansion

L f (s, T )=
∏

x∈|Gn
m |

1

(1−(1+T )
TrQqdeg x /Qp ( f (x̂))

sdeg x)
∈ 1+ sZp[[T ]][[s]],

where x̂ = (x̂1, . . . , x̂n). The theorem now follows. �

This proof shows that the L-function L f (s, T ) is the L-function L(s, ρ f ) of the
continuous (p, T )-adic representation of the arithmetic fundamental group given
by

ρ f : π
arith
1 (Gn

m/Fq)→ GL1(Zp[[T ]]), Frobx 7→ (1+ T )
TrQqdeg x /Qp ( f (x̂))

.

The rank one representation ρ f is transcendental in nature. Its L-function L(s, ρ f )

seems to be beyond the reach of `-adic cohomology, where ` is a prime different
from p. However, the specialization of ρ f at the special point T =πψ is a character
of finite order. Thus, the specialization

L(s, ρ f )|T=πψ = L f,ψ(s)

can indeed be studied using Grothendieck’s `-adic trace formula [1965]. This gives
another proof that the L-function L f,ψ(s) is a rational function in s. But the T -adic
L-function L f (s, T ) itself is certainly out of the reach of `-adic cohomology as it
is truly transcendental.

Let NPπψ ( f ) denote the πψ -adic Newton polygon of the C-function C f (s, πψ).
The integrality of C f (s, T ) immediately gives the following theorem, whose proof
is obvious.

Theorem 2.2 (rigidity bound). If ψ is nontrivial, then NPπψ ( f )≥ NPT ( f ).

A natural question is to ask when NPπψ ( f ) coincides with its rigidity bound.

Theorem 2.3 (transfer theorem). If NPπψ ( f )=NPT ( f ) holds for one nontrivialψ ,
then it holds for all nontrivial ψ .

Proof. By the integrality of C f (s, T ), the T -adic Newton polygon of C f (s, T )
coincides with the πψ -adic Newton polygon of C f (s, πψ) if and only if for every
vertex (i, e) of the T -adic Newton polygon of C f (s, T ), the coefficients of si in
C f (s, T ) differs from T e by a unit in Zp[[T ]]×. It follows that if the coincidence
happens for one nontrivial ψ , it happens for all nontrivial ψ . �

Definition 2.4. We call f rigid if NPπψ ( f )= NPT ( f ) for one (and hence for all)
nontrivial ψ .

In [Liu et al. 2008], the first author showed in cooperation with his students that
f is generically rigid if n = 1 and p is sufficiently large. So the rigid bound is the
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best possible bound. In contrast, the weaker Hodge bound HPq(1) is only the best
possible if p ≡ 1 (mod d), where d is the degree of f .

We now pause to describe the relationship between the Newton polygons of
C f (s, πψ) and L f,ψ(s)(−1)n−1

. We need the following definitions.

Definition 2.5. A convex polygon with initial point (0, 0) is called algebraic if it
is the graph of a Q-valued function defined on N or on an interval of N, and its
slopes are of finite multiplicity and of bounded denominator.

Definition 2.6. For an algebraic polygon with slopes {λi }, we define its slope series
to be

∑
i tλi .

It is clear that an algebraic polygon is uniquely determined by its slope series.
So the slope series embeds the set of algebraic polygons into the ring lim Ed Z[[t1/d

]].
The image is lim Ed N[[t1/d

]] and is closed under addition and multiplication. There-
fore one can define addition and multiplication on the set of algebraic polygons.

Lemma 2.7. Suppose that f is nondegenerate. Then the q-adic Newton polygon
of C f (s, πψ ; Fq) is the product of the q-adic Newton polygon of L f,ψ(s; Fq)

(−1)n−1

and the algebraic polygon 1/(1− t)n .

Proof. The C-value C f (s, πψ) and the L-function L f,ψ(s) determine each other.
They are related by

L f,ψ(s)=
n∏

i=0

C f (q i s, πψ)(−1)n−i−1(n
i), C f (s, πψ)(−1)n−1

=

∞∏
j=0

L f,ψ(q j s)(
n+ j−1

j ).

Suppose that L f,ψ(s)(−1)n−1
=
∏d

i=1(1−αi s). Then

C f (s, πψ)=
∞∏
j=0

d∏
i=1

(1−αi q j s)(
n+ j−1

j ).

Let λi be the q-adic order of αi . Then the q-adic order of αi q j is λi + j . So the
slope series of the q-adic Newton polygon of L f,ψ(s)(−1)n−1

is S(t) =
∑d

i=1 tλi ,
and the slope series of the q-adic Newton polygon of C f (s, πψ) is

+∞∑
j=0

d∑
i=0

(n+ j−1
j

)
tλi+ j

=
1

(1−t)n
S(t). �

The next theorem, whose proof is obvious, combines the rigidity bound and the
Hodge bound.

Theorem 2.8. If ψ is nontrivial, then NPπψ ( f )≥ NPT ( f )≥ HPq(1).
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If we drop the middle term, we arrive at the Hodge bound

NPπψ ( f )≥ HPq(1)

of [Adolphson and Sperber 1987] and [Liu and Wei 2007].

Theorem 2.9. If NPπψ ( f ) = HPq(1) holds for one nontrivial ψ , then f is rigid,
T -adically ordinary, and the equality holds for all nontrivial ψ .

Proof. Suppose that NPπψ0
( f ) = HPq(1) for a nontrivial ψ0. Then, by the last

theorem, we have
NPπψ0

( f )= NPT ( f )= HPq(1).

So f is rigid and T -adically ordinary, and NPπψ ( f ) = NPT ( f ) = HPq(1) holds
for all nontrivial ψ . �

Definition 2.10. We call f ordinary if NPπψ ( f ) = HPq(1) holds for one (and
hence for all) nontrivial ψ .

The notion of ordinariness now carries much more information than we had
known before. From this, we see that the T -adic exponential sum provides a new
framework to study all pm-power order exponential sums simultaneously. Instead
of the usual way of extending the methods forψ of order p to cases of higher order,
the T -adic exponential sum has the novel feature that it can sometimes transfer a
known result for one nontrivial ψ to all nontrivial ψ . This philosophy is carried
out further in [Liu et al. 2008].

Example 2.11. Let

f (x)= x1+ x2+ · · ·+ xn +
α

x1x2 · · · xn
for α ∈ µq−1.

Then, by the result of [Sperber 1980] and our new information on ordinariness, we
have NPπψ ( f )= HPq(1) for all nontrivial ψ .

3. The q-Hodge polygon

Here, we describe explicitly the q-Hodge polygon mentioned in the introduction.
Recall that f (x) ∈ Zq [x±1

1 , x±1
2 , . . . , x±1

n ] is a Laurent polynomial in n variables
of the form

f (x)=
∑
u∈Zn

au xu, where au ∈ Zq and aq
u = au .

We stress that the nonzero coefficients of f (x) are roots of unity in Zq , and thus
correspond uniquely to Teichmüller liftings of elements of the finite field Fq . If the
coefficients of f (x) are arbitrary elements in Zq , much of the theory still holds,
but it is more complicated to describe the results. In this paper, we make the
simplifying assumption that the nonzero coefficients are always roots of unity.
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Let 1 be the convex polyhedron in Rn associated to f , which is generated by
the origin and the exponent vectors of the nonzero monomials of f . Let C(1) be
the cone in Rn generated by 1. Define the degree function u 7→ deg u on C(1) so
that deg u= 1 when u lies on a codimensional 1 face of1 that does not contain the
origin, and so that deg(ru)=r deg u for r ∈R≥0 and u ∈C(1); we call it the degree
function associated to1. We have deg(u+v)≤ deg u+deg v for u, v ∈C(1), and
the equality holds if and only if u and v are cofacial. In other words, the number

c(u, v) := deg u+ deg v− deg(u+ v)

is 0 if u, v ∈ C(1) are cofacial, and is positive otherwise. We call c(u, v) the
cofacial defect of u and v. Let

M(1) := C(1)∩Zn

be the set of lattice points in the cone C(1). Let D be the denominator of the degree
function, which is the smallest positive integer such that deg M(1)⊂ (1/D)Z. For
every natural number k, we define

W (k) :=W1(k)= #{u ∈ M(1) | deg u = k/D}

to be the number of lattice points of degree k/D in M(1). For prime power q= pa ,
the q-Hodge polygon of f is the polygon with vertices (0, 0) and( i∑

j=0

W ( j), a(p− 1)
i∑

j=0

j
D

W ( j)
)

for i = 0, 1, . . . .

It is also called the q-Hodge polygon of 1 and denoted by HPq(1). It depends
only on q and1. It has a side of slope a(p−1)( j/D) with horizontal length W ( j)
for each nonnegative integer j .

4. Analytic continuation

Here we prove the T -adic analytic continuation of the C-function C f (s, T ). The
idea is to employ Dwork’s trace formula in the T -adic case.

Note that the Galois group Gal(Qq/Qp) is cyclic of order a= logp q. There is an
element σ in the Galois group whose restriction to µq−1 is the p-power morphism.
It is of order a, and is called the Frobenius element.

We define a new variable π by the relation E(π)= 1+ T , where

E(π)= exp
( ∞∑

i=0

π pi

pi

)
∈ 1+πZp[[π ]]
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is the Artin–Hasse exponential series. Thus, π and T are two different uniformizers
of the T -adic local ring Qp[[T ]]. It is clear that

E(πα) ∈ 1+πZq [[π ]] for α ∈ Zq ,

E(π)β ∈ 1+πZp[[π ]] for β ∈ Zp.

The Galois group Gal(Qq/Qp) can act on Zq [[π ]] but keep π fixed. The Artin–
Hasse exponential series has a kind of commutativity, which we express through
the following lemma.

Lemma 4.1 (commutativity). We have the following commutative diagram:

µq−1
E(π · ) //

Tr
��

Zq [[π ]]

Norm
��

µp−1
E(π)• // Zp[[π ]]

That is, if x ∈ µq−1, then E(π)x+x p
+···+x p(a−1)

= E(πx)E(πx p) · · · E(πx pa−1
).

Proof. Since
∑a−1

j=0 x p j
=
∑a−1

j=0 x p j+i
for x ∈ µq−1, we have

E(π)x+x p
+···+x p(a−1)

= exp
( ∞∑

i=0

π pi

pi

a−1∑
j=0

x p j+i
)

= E(πx)E(πx p) · · · E(πx pa−1
). �

Definition 4.2. Let π1/D be a fixed D-th root of π . Define

L(1)=
{ ∑

u∈M(1)

buπ
deg u xu

: bu ∈ Zq [[π
1/D
]]

}
,

B =
{ ∑

u∈M(1)

buπ
deg u xu

∈ L(1), ordT (bu)→+∞ if deg u→+∞
}
.

The spaces L(1) and B are T -adic Banach algebras over the ring Zq [[π
1/D
]].

The monomials πdeg u xu for u ∈ M(1) form an orthonormal basis of B and a
formal basis L(1). The algebra B is contained in the larger Banach algebra L(1).
If u ∈1, it is clear that E(πxu) ∈ L(1). Write

E f (x) :=
∏

au 6=0

E(πau xu) if f (x)=
∑
u∈Zn

au xu .

This is an element of L(1) since L(1) is a ring.
The Galois group Gal(Qq/Qp) can act on L(1), while keeping π1/D as well as

the xi fixed. From the commutativity of the Artin–Hasse exponential series, one
can infer the following lemma.
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Lemma 4.3 (Dwork’s splitting lemma). If x ∈ µqk−1, then

E(π)
TrQqk /Qp ( f (x))

=

ak−1∏
i=0

Eσ
i

f (x
pi
),

where a is the order of Gal(Qq/Qp).

Proof. We have

E(π)
TrQqk /Qp ( f (x))

=

∏
au 6=0

E(π)
TrQqk /Qp (au xu)

=

∏
au 6=0

ak−1∏
i=0

E(π(au xu)pi
)=

ak−1∏
i=0

Eσ
i

f (x
pi
). �

Definition 4.4. We define a map

ψp : L(1)→ L(1),
∑

u∈M(1)

bu xu
7→

∑
u∈M(1)

bpu xu .

It is clear that the composition map ψp ◦ E f sends B to B.

Lemma 4.5. Write E f (x)=
∑

u∈M(1) αu( f )πdeg u xu . Then

ψp ◦ E f (π
deg u xu)=

∑
w∈M(1)

αpw−u( f )π c(pw−u,u)π (p−1) degwπdegwxw

for u ∈ M(1), where c(pw− u, u) is the cofacial defect of pw− u and u.

Proof. This follows directly from the definition of ψp and E f (x). �

Definition 4.6. Define ψ := σ−1
◦ψp ◦ E f : B→ B, and its a-th iterate

ψa
= ψa

p ◦

a−1∏
i=0

Eσ
i

f (x
pi
).

Note that ψ is linear over Zp[[π
1/D
]], but semilinear over Zq [[π

1/D
]]. On the

other hand, ψa is linear over Zq [[π
1/D
]]. By the last lemma, ψa is completely

continuous in the sense of [Serre 1962].

Theorem 4.7 (Dwork’s trace formula). For every positive integer k,

(qk
− 1)−n S f (k, T )= TrB/Zq [[π1/D]](ψ

ak).

Proof. Let g(x) ∈ B. We have

ψak(g)= ψak
p (g

ak−1∏
i=0

Eσ
i

f (x
pi
)).
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Write
∏ak−1

i=0 Eσ
i

f (x
pi
)=

∑
u∈M(1) βu xu . One computes that

ψak(πdeg vxv)=
∑

u∈M(1)

βqku−vπ
deg vxu .

Thus, Tr(ψak
| B/Zq [[π

1/D
]]) =

∑
u∈M(1) β(qk−1)u . But, by Dwork’s splitting

lemma, we have

(qk
− 1)−n S f (k, T )= (qk

− 1)−n
∑

x∈µn
qk−1

ak−1∏
i=0

Eσ
i

f (x
pi
)=

∑
u∈M(1)

β(qk−1)u . �

Theorem 4.8 (analytic trace formula). We have

C f (s, T )= det(1−ψas | B/Zq [[π
1/D
]]).

In particular, the T -adic C-function C f (s, T ) is T -adic analytic in s.

Proof. It follows from the last theorem and the well-known identity

det(1−ψas)= exp
(
−

∞∑
k=1

Tr(ψak)
sk

k

)
. �

This theorem gives another proof that the coefficients of C f (s, T ) and L f (s, T )
as power series in s are T -adically integral.

Corollary 4.9. For each nontrivial ψ , the C-value C f (s, πψ) is p-adic entire in s
and the L-function L f,ψ(s) is rational in s.

5. The Hodge bound

The analytic trace formula in the previous section reduces the study of C f (s, T )
to the study of the operator ψa . We consider ψ first. Note that ψ operates on B
and is linear over Zp[[π

1/D
]].

Theorem 5.1. The T -adic Newton polygon of det(1−ψs | B/Zp[[π
1/D
]]) lies above

the polygon with vertices (0, 0) and(
a

i∑
k=0

W (k), a(p− 1)
i∑

k=0

k
D

W (k)
)

for i = 0, 1, . . . .

Proof. Let ξ1, ξ2, . . . , ξa be a normal basis of Qq over Qp. Write

(ξ jαpw−u( f ))σ
−1
=

a−1∑
i=0

α(i,w),( j,u)( f )ξi for α(i,w),( j,u)( f ) ∈ Zp[[π
1/D
]].
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Then

ψ(ξ jπ
deg u xu)=

a−1∑
i=0

∑
w∈M(1)

α(i,w),( j,u)( f )π c(pw−u,u)π (p−1) degwξiπ
degwxw.

That is, the matrix of ψ over Zp[[π
1/D
]] with respect to the orthonormal basis

{ξ jπ
deg u xu

}0≤ j<a,u∈M(1) is

A =
(
α(i,w),( j,u)( f )π c(pw−u,u)π (p−1) degw)

(i,w),( j,u).

The claim follows. �

We are now ready to prove the Hodge bound for the Newton polygon.

Theorem 5.2. NPT ( f )≥ HPq(1).

Proof. By the theorem above, it suffices to prove that the T -adic Newton polygon
of det

(
1−ψasa

| B/Zq [[π
1/D
]]
)

coincides with that of det
(
1−ψs | B/Zp[[π

1/D
]]
)
.

Note that

det
(
1−ψas | B/Zp[[π

1/D
]]
)
= Norm

(
det
(
1−ψas | B/Zq [[π

1/D
]]
))
,

where the norm map is the norm from Zq [[π
1/D
]] to Zp[[π

1/D
]]. The theorem now

follows from the equality∏
ζ a=1

det
(
1−ψζ s | B/Zp[[π

1/D
]]
)
= det

(
1−ψasa

| B/Zp[[π
1/D
]]
)
. �

6. Facial decomposition

In this section, we extend the facial decomposition theorem in [Wan 1993]. Recall
that the operator ψ = σ−1

◦ (ψp ◦ E f ) is only semilinear over Zq [[π
1/D
]]. But its

second factor ψp ◦ E f is clearly linear, and so det
(
1− (ψp ◦ E f )s | B/Zq [[π

1/D
]]
)

is well defined. We begin with the following theorem.

Theorem 6.1. The T -adic Newton polygon of C f (s, T ) coincides with HPq(1)

if and only if the T -adic Newton polygon of det
(
1− (ψp ◦ E f )s | B/Zq [[π

1/D
]]
)

coincides with the polygon with vertices (0, 0) and( i∑
k=0

W (k), (p− 1)
i∑

k=0

k
D

W (k)
)

for i = 0, 1, . . . .

Proof. In the proof of Theorem 5.2, we showed that the T -adic Newton polygon
of C f (sa, T ) coincides with that of det

(
1−ψs | B/Zp[[π

1/D
]]
)
. Note that

det
(
1− (ψp ◦ E f )s | B/Zp[[π

1/D
]]
)
=Norm

(
det
(
1− (ψp ◦ E f )s | B/Zq [[π

1/D
]]
))
,
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where the norm map is the norm from Zq [[π
1/D
]] to Zp[[π

1/D
]]. The theorem is

equivalently stated that the T -adic Newton polygon of det
(
1−ψs | B/Zp[[π

1/D
]]
)

coincides with the polygon with vertices (0, 0) and( i∑
k=0

aW (k), a(p− 1)
i∑

k=0

k
D

W (k)
)

for i = 0, 1, . . .

if and only if the T -adic Newton polygon of det
(
1− (ψp ◦ E f )s | B/Zp[[π

1/D
]]
)

does. Therefore it suffices to show that the determinant of the matrix

(α(i,w),( j,u)( f )π c(pw−u,u))0≤i, j<a, degw,deg u≤k/D

is not divisible by T in Zp[[π
1/D
]] if and only if the determinant of the matrix

(αpw−u( f )π c(pw−u,u))degw,deg u≤k/D

is not divisible by T in Zq [[π
1/D
]]. The theorem now follows from the fact that the

former determinant is the norm of the latter from Qq [[π
1/D
]] to Qp[[π

1/D
]] up to a

sign. �

We now define the open facial decomposition F(1). It is the decomposition of
C(1) into a disjoint union of relatively open cones generated by the relatively open
faces of 1 whose closure does not contain the origin. Note that every relatively
open cone generated by cofacial vectors in C(1) is contained in a unique element
of F(1).

Lemma 6.2. Let σ ∈ F(1), and u ∈ σ . Then αu( fσ̄ )≡ αu( f ) (modπ1/D), where
fσ̄ is the sum of monomials of f whose exponent vectors lie in the closure σ̄ of σ .

Proof. Let v1, . . . , v j be exponent vectors of monomials of f such that a1v1+· · ·+

a jv j = u, with a1 > 0, . . . , a j > 0. It suffices to show that either v1, . . . v j lie in
the closure of σ , or their contribution to αu( f ) is ≡ 0 (modπ1/D). Suppose their
contribution to αu( f ) is 6≡ 0 (modπ1/D). Then v1, . . . , v j must be cofacial. So
the interior of the cone generated by those vectors is contained in a unique element
of F(1). Since that interior has a common point u with σ , it must be σ . It follows
that v1, . . . v j lie in the closure of σ . �

Lemma 6.3. Let σ, τ ∈ F(1) be distinct. Let w ∈ σ and u ∈ τ . Suppose that the
dimension of σ is no greater than that of τ . Then pw− u and u are not cofacial,
that is, c(pw− u, u) > 0.

Proof. Suppose that pw − u and u are cofacial. Then the interior of the cone
generated by pw− u and u is contained in a unique element of F(1). Since that
interior has a common point w with σ , it must be σ . It follows that u lies in the
closure of σ . Since σ and τ are distinct, u lies in the boundary of σ . This implies
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that the dimension of τ is less than that of σ , which is a contradiction. Therefore
pw− u and u are not cofacial. �

For σ ∈ F(1), we define M(σ ) = M(1)∩ σ = Zn
∩ σ to be the set of lattice

points in the cone σ .

Theorem 6.4 (open facial decomposition). The T-adic Newton polygon of C f (s,T )
coincides with HPq(1) if and only if for every σ ∈ F(1), the determinants of the
matrices

{αpw−u( fσ̄ )π c(pw−u,u)
}w,u∈M(σ ), degw,deg u≤k/D for k = 0, 1, . . .

are not divisible by T in Zq [[π
1/D
]], where σ̄ is the closure of σ .

Proof. By Theorem 6.1, the T -adic Newton polygon of C f (s, T ) coincides with
the q-Hodge polygon of f if and only if the determinants of the matrices

A(k) = {αpw−u( f )π c(pw−u,u)
}w,u∈M(1), degw,deg u≤k/D for k = 0, 1, . . .

are not divisible by T in Zq [[π
1/D
]]. Write

A(k)σ,τ = {αpw−u( f )π c(pw−u,u)
}w∈M(σ ), u∈M(τ ), degw,deg u≤k/D.

The facial decomposition shows that A(k) has the block form (A(k)σ,τ )σ,τ∈F(1). The
last lemma shows that the block form modulo π1/D is triangular if we order the
cones in F(1) by increasing dimension. It follows that det A(k) is not divisible
by T in Zq [[π

1/D
]] if and only if for all σ ∈ F(1), det A(k)σ,σ is not divisible by T

in Zq [[π
1/D
]]. By Lemma 6.2, modulo π1/D , A(k)σ,σ is congruent to the matrix

{αpw−u( fσ̄ )π c(pw−u,u)
}w,u∈M(σ ), degw,deg u≤k/D.

So det A(k)σ,σ is not divisible by T in Zq [[π
1/D
]] if and only if the determinant of the

matrix
{αpw−u( fσ̄ )π c(pw−u,u)

}w,u∈M(σ ), degw,deg u≤k/D

is not divisible by T in Zq [[π
1/D
]]. �

The closed facial decomposition Theorem 1.7 follows from the open decompo-
sition theorem and the fact that

F(1)=
⋃

σ∈F(1)
dim σ=dim1

F(σ̄ ).

A similar πψ -adic facial decomposition theorem for C f (s, πψ) can be proved in a
similar way. Alternatively, it follows from the transfer theorem together with the
πψ -adic facial decomposition in [Wan 1993] for ψ of order p.
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7. Variation of C-functions in a family

Fix an n-dimensional integral convex polytope 4 in Rn containing the origin. For
each prime p, let P(1, Fp) denote the parameter space of all Laurent polynomials
f (x) over Fp such that 1( f ) = 1. This is a connected rational variety defined
over Fp. For each f ∈ P(1, Fp)(Fq), the Teichmüller lifting gives a Laurent
polynomial f̃ whose nonzero coefficients are roots of unity in Zq . The C-function
C f̃ (s, T ) is then defined and T -adically entire. For simplicity of notation, we shall
just write C f (s, T ) for C f̃ (s, T ) and similarly L f (s, T ) for L f̃ (s, T ). Thus, our
C-function and L-function are now defined for Laurent polynomials over finite
fields via the Teichmüller lifting. We would like to study how C f (s, T ) varies
when f varies in the algebraic variety P(1, Fp).

Recall that for a closed face σ ∈1, fσ denotes the restriction of f to σ . That
is, fσ is the sum of those nonzero monomials in f whose exponents are in σ .

Definition 7.1. A Laurent polynomial f ∈ P(1, Fp) is called nondegenerate if for
every closed face σ of 1 of arbitrary dimension that does not contain the origin,
the system

∂ fσ
∂x1
= · · · =

∂ fσ
∂xn
= 0

has no common zeros with x1 · · · xn 6= 0 over the algebraic closure of Fp.

The nondegeneracy condition is a geometric condition that insures the associated
Dwork cohomology can be calculated. In particular, it implies that if ψ is of
order pm , then the L-function L f,ψ(s)(−1)n−1

is a polynomial in s whose degree is
precisely n!Vol(1)pn(m−1); see [Liu and Wei 2007]. Consequently:

Theorem 7.2. Let f ∈ P(1, Fp)(Fq). Write

L f (s, T )(−1)n−1
=

∞∑
k=0

L f,k(T )sk for L f,k(T ) ∈ Zp[[T ]].

Assume that f is nondegenerate. Then for every positive integer m and all positive
integers k > n!Vol(1)pn(m−1), we have the congruence

L f,k(T )≡ 0 (mod((1+ T )pm
− 1)/T ) in Zp[[T ]].

Proof. Write ((1+ T )pm
− 1)/T =

∏
(T − ξ). The nondegeneracy assumption

implies that

L f (s, ξ)(−1)n−1
=

∞∑
j=0

L f, j (ξ)s j ,

is a polynomial in s of degree ≤ n!Vol(1)pn(m−1) < k. It follows that L f,k(ξ)= 0
for all ξ . That is, L f,k(T ) is divisible by (T − ξ) for ξ . �
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Definition 7.3. Let N (1, Fp) denote the subset of all nondegenerate Laurent poly-
nomials f ∈ P(1, Fp).

The subset N (1, Fp) is Zariski open in P(1, Fp). It can be empty for some
pair (1, Fp). But, N (1, Fp) for a given 1 is Zariski open dense in P(1, Fp) for
all primes p except for possibly finitely many primes depending on 1. It is an
interesting and independent question to classify the primes p for which N (1, Fp)

is nonempty. This is related to the GKZ discriminant [Gel’fand et al. 1994]. For
simplicity, we shall only consider nondegenerate f in the following.

Generic ordinariness. The first question is, How often f is T -adically ordinary
when f varies in the nondegenerate locus N (1, Fp)? Let Up(1, T ) be the subset
of f ∈ N (1, Fp) such that f is T -adically ordinary, and Up(1) the subset of
f ∈ N (1, Fp) such that f is ordinary. One can prove this:

Lemma 7.4. The set Up(1) is Zariski open in N (1, Fp).

Is Up(1, T ) also Zariski open in N (1, Fp)? We do not know the answer.
For which p are Up(1) and Up(1, T ) Zariski dense in N (1, Fp)? The rigidity

bound as well as the Hodge bound imply that Up(1)⊆Up(1, T ). It follows that
if Up(1) is Zariski dense in N (1, Fp), then Up(1, T ) is also Zariski dense in
N (1, Fp).

The Adolphson–Sperber conjecture [1989] says that if p ≡ 1 (mod D), then
Up(1) is Zariski dense in N (1, Fp). This conjecture was proved to be true in
[Wan 1993; 2004] if n ≤ 3, which implies this:

Theorem 7.5. If p ≡ 1 (mod D) and n ≤ 3, then Up(1, T ) is Zariski dense in
N (1, Fp).

For n ≥ 4, it was shown in [Wan 1993; 2004] that there is an effectively com-
putable positive integer D∗(1) depending only on 1 such that Up(1) is Zariski
dense in N (1, Fp) if p ≡ 1 (mod D∗(1)).

Theorem 7.6. For each 1, there exists an effectively computable positive integer
D∗(1) such that Up(1, T ) is Zariski dense in N (1, Fp) if p ≡ 1 (mod D∗(1)).

The smallest possible D∗(1) is rather subtle to compute in general, and it can be
much larger than D. We now state a conjecture giving reasonably precise estimates
of D∗(1).

Definition 7.7. Let S(4) be the monoid generated by the degree 1 lattice points
in M(1), that is, those lattice points on the codimension 1 faces of1 not containing
the origin. Define the exponent of 4 by

I (4)= inf{d ∈ Z>0 | d M(1)⊆ S(4)}.
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If u ∈ M(1), then the degree of Du will be integral, but Du may not be a non-
negative integral combination of degree 1 elements in M(1); thus DM(1) may
not be a subset of S(1). It is not hard to show that I (1)≥ D. In general they are
different but they are equal if n ≤ 3. This explains why the Adolphson–Sperber
conjecture is true if n ≤ 3 but may be false if n ≥ 4. The following conjecture is a
modified form, and it is a consequence of [Wan 1993, Conjecture 9.1].

Conjecture 7.8. If p ≡ 1 mod I (4), then Up(1) is Zariski dense in N (1, Fp).
In particular, Up(1, T ) is Zariski dense in N (1, Fp) for such p.

By the facial decomposition theorem, it suffices in proving this conjecture to
assume that 1 has only one codimension 1 face not containing the origin.

Generic Newton polygon. In the case that Up(1, T ) is empty, we expect the ex-
istence of a generic T -adic Newton polygon. For this purpose, we need to rescale
the uniformizer. For f ∈ N (1, Fp)(Fpa ), the T a(p−1)-adic Newton polygon of
C f (s, T ; Fpa ) is independent of the choice of a for which f is defined over Fpa .
We call this the absolute T -adic Newton polygon of f .

Conjecture 7.9. There is a Zariski open dense subset G p(1, T ) of N (1, Fp) such
that the absolute T -adic Newton polygon of f is constant for all f ∈ G p(1, T ).
Denote this common polygon by GNPT (1, p), and call it the generic Newton poly-
gon of (4, T ).

More generally, one expects that much of the classical theory for finite rank
F-crystals extends to a certain nuclear infinite rank setting. This includes the
classical Dieudonne–Manin isogeny theorem, the Grothendieck specialization the-
orem, the Katz isogeny theorem [1979]. All these are essentially understood in the
ordinary infinite rank case, but open in the nonordinary infinite rank case.

Similarly, for each nontrivialψ there is a Zariski open dense subset G p(1,ψ) of
N (1, Fp) with the property that the πa(p−1)

ψ -adic Newton polygon of the C-value
C f (s, πψ ; Fpa ) is constant for all f ∈ G p(1,ψ). Denote this common polygon
by GNPp(1,ψ), and call it the generic Newton polygon of (4, ψ). The existence
of G p(1,ψ) can be proved, since the nondegeneracy assumption implies that the
C-function C f (s, πψ) is determined by a single finite rank F-crystal via a Dwork
type cohomological formula for L f,ψ(s). In the T -adic case, we are not aware of
any such finite rank reduction.

Clearly, we have the relation

GNPp(1,ψ)≥ GNPT (1, p).

Conjecture 7.10. If p is sufficiently large, then

GNPp(1,ψ)= GNPT (1, p).
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This conjecture is proved in the case n = 1 in [Liu et al. 2008].
Let HP(1) denote the absolute Hodge polygon with vertices (0, 0) and( i∑

k=0

W (k),
i∑

k=0

k
D

W (k)
)

for i = 0, 1, . . . .

Note that HP(1) depends only on 1, and no longer on q . It is rescaled from the
q-Hodge polygon HPq(1). Clearly, we have

GNPp(1,ψ)≥ GNPT (1, p)≥ HP(1).

Conjecture 7.8 says that if p ≡ 1 (mod I (4)), then both GNPp(1,ψ) and
GNPT (1, p) are equal to HP(1). In general, the generic Newton polygon lies
above HP(1), but for many 1 it should get closer and closer to HP(1) as p goes
to infinity. We now make this more precise. Let E(1) be the monoid generated by
the lattice points in 1. This is a subset of M(1). We may generalize the limiting
[Wan 2004, Conjecture 1.11] for ψ of order p:

Conjecture 7.11. If the difference M(1) − E(1) is a finite set, then for each
nontrivial ψ , we have

lim
p→∞

GNPp(1,ψ)= HP(1).

In particular, limp→∞GNPT (1, p)= HP(1).

This conjecture is equivalent to the existence of the limit. This is because for
all primes p ≡ 1 (mod D∗(1)), we already have by Theorem 7.6 the equality
GNPp(1,ψ)=HP(1). A stronger version of this conjecture (namely, [Wan 2004,
Conjecture 1.12]) has been proved by Zhu [2003; 2004a; 2004b] in the case m = 1
and n = 1; see also [Blache and Férard 2007; Blache et al. 2008] and [Liu 2008]
for related further work in the case m = 1 and n = 1; see [Hong 2001; 2002] and
[Yang 2003] for more specialized one variable results. For n ≥ 2, the conjecture is
clearly true for any1 for which both D≤ 2 and the Adolphson–Sperber conjecture
holds, because then GNPp(1,ψ)=HP(1) for every p> 2. There are many such
higher-dimensional examples [Wan 2004]. Using free products of polytopes and
the examples above, one can construct further examples [Blache 2008].

T-adic Dwork conjecture. In this final subsection, we describe the T -adic version
of Dwork’s conjecture [1973] on pure slope zeta functions.

Let 3 be a quasiprojective subvariety of N (1, Fp) defined over Fp. Let fλ be
a family of Laurent polynomials parameterized by λ ∈ 3. For each closed point
λ∈3, the Laurent polynomial fλ is defined over the finite field Fpdeg λ . The T -adic



T-adic exponential sums over finite fields 507

entire function C fλ(s, T ) has the pure slope factorization

C fλ(s, T )=
∏
α∈Q≥0

Pα( fλ, s),

where each Pα( fλ, s)∈ 1+sZp[[T ]][s] is a polynomial in s whose reciprocal roots
all have T deg λ(p−1)-slope equal to α.

Definition 7.12. For α ∈Q≥0, the T -adic pure slope L-function of the family f3
is defined to be the infinite Euler product

Lα( f3, s)=
∏
λ∈|3|

1
Pα( fλ, sdeg λ)

∈ 1+ sZp[[T ]][[s]],

where |3| denotes the set of closed points of 3 over Fp.

Dwork’s conjecture then has a T -adic version:

Conjecture 7.13. For α ∈ Q≥0, the T -adic pure slope L-function Lα( f3, s) is
T -adic meromorphic in s.

In the ordinary case, this conjecture can be proved using the methods from
[Wan 2000a; 2000b; 1999]. It would be interesting to prove this conjecture in
the general case. The πψ -adic version of this conjecture is essentially Dwork’s
original conjecture, which can be proved as it reduces to finite rank F-crystals.
The difficulty of the T -adic version is that we have to work with infinite rank
objects, where much less is known in the nonordinary case.
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Dress induction and the Burnside quotient
Green ring

Ian Hambleton, Laurence R. Taylor and Bruce Williams

We define and study the Burnside quotient Green ring of a Mackey functor, intro-
duced in our 1990 MSRI preprint. Some refinements of Dress induction theory
are presented, together with applications to computation results for K -theory
and L-theory of finite and infinite groups.

1. Introduction

Induction theory began with Artin and Brauer’s work in representation theory, was
continued by Swan [1970] and Lam [1968] for K -theory, and was put in its most
abstract and elegant setting by Green [1971] and Dress [1973; 1975]. The theory
sets up a convenient framework for computing the value of a Mackey functor on
some finite group G, given suitable generation results for a Green ring which acts
on the Mackey functor. (See [tom Dieck 1987; Lindner 1976; Thévenaz 1990;
Thévenaz and Webb 1995] for some subsequent developments.)

The main examples in this theory are (i) the Swan Green ring SW (G,Z) [Swan
1970], which leads to the Brauer–Berman–Witt induction theorem for represen-
tations of finite groups, and computation results for Quillen K -theory Kn(RG),
and (ii) the Dress Green ring GU (G,Z) [Dress 1975], which leads to computation
results for the oriented surgery obstruction groups Ln(ZG) of Wall [1976].

In Section 2 we define the Burnside quotient Green ring AM for a Mackey func-
tor M : D(G)→ Ab, where D(G) denotes the category of finite G-sets, and Ab
the category of abelian groups. This Green ring AM is the smallest quotient of
the Burnside ring which is a Green ring, and still acts on the Mackey functor. As
defined, it has many convenient naturality properties, and generation results for
AM will lead as usual to computation results for M. We define the concept of a
Dress generating set X for a Green ring in Definition 3.5. The main result (see
Theorem 3.6) is:

MSC2000: primary 20C15; secondary 18F25, 57R67, 19A22.
Keywords: Dress induction, Mackey functors, surgery obstruction groups.
Research partially supported by NSERC Discovery Grant A4000 and the NSF..

511



512 Ian Hambleton, Laurence R. Taylor and Bruce Williams

Theorem A. A finite G-set X is a Dress generating set for a Green ring G if and
only if it is a Dress generating set for the Burnside quotient Green ring AG.

The naturality of the Burnside quotient Green rings can now be used to obtain
computability results for sub- or quotient Mackey functors (see Theorem 3.8). We
also point out a useful refinement of Dress induction in Theorem 3.10. We use
the Burnside quotient Green ring in Section 5 to study additive functors out of
the categories RG-Morita defined in our paper of 1990, henceforth abbreviated
[HTW 1990]; here R is a commutative ring with unit. The main examples of
such functors include K -theory, Hochschild homology and cyclic homology [HTW
1990, 1.A.12]. We define a bifunctor d :D(G)→ RG-Morita in 5.4 and prove the
following computability result (see Theorem 5.5):

Theorem B. Any additive functor F : RG-Morita→ Ab gives a Mackey functor
on D(G) by composition with d : D(G)→ RG-Morita. Any such Mackey functor
is hyperelementary computable.

This is a refinement of [Oliver 1988, 11.2], and Theorem A provides the key new
ingredient in the proof. The extra generality is useful for studying functors such as
the Dade group and the units in the Burnside ring [Bouc 2007; Bouc 2008].

The Burnside quotient Green ring has been applied to study the permutation
representations of finite groups in [Hambleton and Taylor 1999], free actions of
finite groups on products of spheres in [Hambleton 2006], and to the computation
of Bass nilgroups in [Hambleton and Lück 2007]. This theory was surveyed and
used in [Hambleton and Taylor 2000]. Our results also apply to the computation of
K and L-theory for infinite groups, based on an idea of Farrell and Hsiang [1981].

We introduce Mackey prefunctors and pseudo-Mackey functors in Section 6.
A Mackey prefunctor is a just prebifunctor D(G)→ Ab, and a pseudo-Mackey
functor is a Mackey prefunctor which admits a finite filtration by Mackey functors.
Such structures have been observed in a number of different contexts: the main
examples include the higher Whitehead groups Whn(ZG), and the structure set of
a compact manifold in surgery theory [Wall 1999, Chapter 9].

It turns out that the general scheme of Dress induction theory can be extended
to pseudo-Mackey functors as well. In Section 7, we combine this idea with
the Burnside quotient Green ring to study additive functors out of the category
(RG, ω)-Morita [HTW 1990, 1C]. We have the corresponding computability result
(see Theorem 7.2):

Theorem C. Let F : (RG, ω)-Morita → Ab be an additive functor. Then the
composite M= F ◦ d : D(G)→Ab is a Mackey prefunctor. Moreover:

(i) The 2-adic completion of M is 2-hyperelementary computable.

(ii) If M is a Mackey functor, then M is hyperelementary computable.
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As an application, we conclude from part (i) that the surgery obstruction groups
Ln(ZG, ω), with arbitrary orientation character ω : G → {±1}, are 2-hyperele-
mentary computable after 2-adic completion (see Example 7.3 for the meaning of
computability in this setting). This computability result was certainly expected
to be true, but the argument presented here seems to be the first actual proof in
the nonoriented case. In the oriented case, where ω is trivial, part (ii) applies to
L-theory and the computability is just [Dress 1975, Theorem 1]. For nontrivial
ω, the surgery obstruction group Ln(ZG, ω) is a Mackey functor if and only if it
has exponent two (see [Taylor 1973], and see [Wall 1976, 5.2.5] for an example
where the L-groups do not have exponent two). In Lemma 7.1 we give a general
necessary and sufficient condition on F for part (ii) to apply to M.

2. Dress induction

We will first recall some definitions Dress used in his formulation of induction
theory [Dress 1975, page 301].

2A. Mackey functors. Let G be a finite group, and let D(G) denote the category
whose objects are finite, left G-sets and whose morphisms are G-maps. A Mackey
functor is a bifunctor M= (M∗,M∗) :D(G)→Ab, where Ab denotes the category
of abelian groups and groups homomorphisms, such that M∗(S)=M∗(S) for each
object S ∈ D(G), and the following two properties hold:

(M1) For any pullback diagram of finite G-sets

S
9 //

8
��

S1

ϕ

��
S2

ψ // T

the induced maps give an commutative diagram

M(S)
9M // M(S1)

M(S2)
ψM //

8M

OO

M(T )

ϕM

OO

Here we denote the covariant maps by ψM and the contravariant maps by
ϕM.

(M2) The embeddings of S1 and S2 into the disjoint union S1 t S2 define an iso-
morphism M∗(S1 t S2)→M∗(S1)⊕M∗(S2). Let M(∅)= 0.

The property (M1) is the usual double coset formula, and (M2) gives additivity.
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We remark that for any bifunctor satisfying (M1), the composition

M∗(S1)⊕M∗(S2) → M∗(S1 t S2)=M∗(S1 t S2)

→ M∗(S1)⊕M∗(M2)=M∗(S1)⊕M∗(S2)

is just the identity matrix. It follows that any subbifunctor of a Mackey functor is
Mackey.

Definition 2.1. If M and N are Mackey functors, then a homomorphism M→ N

of Mackey functors is a natural transformation of bifunctors 2 :M→N such that
for each object S ∈ D(G) the function 2S :M(S)→ N(S) is a homomorphism of
abelian groups. It is easy to check that the kernel, ker2, the image, Im2, and the
cokernel of 2 are all sub- or quotient Mackey functors of M or N.

2B. Pairings and Green functors. If M, N, and L are Mackey functors, then a
pairing is a family of bilinear maps

M(S)×N(S)→ L(S)

indexed by the objects of D(G), such that for any G-map ϕ : S→ T the following
formulas hold:

ϕL(x · y)= ϕM(x) ·ϕN(y) for x ∈M(T ), y ∈ N(T ),

x ·ϕN(y)= ϕL(ϕ
M(x) · y) for x ∈M(T ), y ∈ N(S),

ϕM(x) · y = ϕL(x ·ϕN (y)) for x ∈M(S), y ∈ N(T ).

A Green ring is a Mackey functor G together with a pairing G×G→ G, and a
collection of elements {1S ∈G(S)} such that the pairing defines an associative ring
structure on each G(S) with unit 1S , and ϕG(1T )= 1S for every G-map ϕ : S→ T .

A homomorphism of Green rings 2 : G→ K is a homomorphism of Mackey
functors such that for each object S ∈ D(G) the function 2S : G(S)→ K(S) is a
unital ring homomorphism. If 2S is injective for each object S ∈ D(G), we say
that G is a sub-Green ring of K. If 2S is surjective for each object S ∈D(G), then
we say that K is a quotient Green ring of G. Similarly, we define subquotient Green
rings.

If M is a Mackey functor, then M is a Green module over a Green ring G if there
exists a pairing G×M→M such that M(S) becomes a left G(S)-module from the
pairing, and 1S · x = x for all x ∈M(S).

Example 2.2. If G→ K is a homomorphism of Green rings, then K is a Green
module over G under the pairing G×K→ K induced by the homomorphism.
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2C. The Burnside ring. For any left G-set S, we let DS(G) denote the category
with objects (X, f ), where X is a left G-set and f : X → S is a G-map. The
morphisms F : (X1, f1)→ (X2, f2) are G-maps F : X1→ X2 such that f2 ◦ F= f1.
We define a bifunctor

A : D(G)→Ab

by setting A(S)= K0(DS(G)). If ϕ : S→ T is a G-map, then ϕA :A(S)→A(T ) is
the map induced on K0 by the composition (X, f ) 7→ (X, ϕ◦ f ). The contravariant
map ϕA

:A(T )→A(S) is induced by the pullback construction applied to

S
ϕ
−→ T

f
←− Y,

where (Y, f ) is an object in DT (G). Conditions (M1) and (M2) are easy to check,
and A is a Mackey functor. There is also a pairing A×A→A defined by pullback:
let (X1, f1) and (X2, f2) represent elements of A(S), and form the pullback

X1
f1
−→ S

f2
←− X2

considered as a G-set over S. This object in DS(G) represents the product, and
each A(S) becomes an associative ring with unit element represented by id : S→ S.
The resulting Green ring is called the Burnside ring. Dress also remarks that the
Burnside ring is the “universal” Green ring, since it acts on any Mackey functor
M. The required pairing A×M→ M is defined by pairing an element of A(S)
represented by a G-set (X, f ) over S, and an element x ∈M(S), to get fM( f M(x))∈
M(S). It is not hard to check that M(S) is a unital A(S)-module under this bilinear
pairing, so M is a Green module over A.

We remark that a homomorphism M→ N of Mackey functors is compatible
with the A-module action, so gives a map of A-Green modules.

If G is a Green ring, the same checks show that G is an A-algebra, implying in
particular that a · (x · y)= (a · x) · y for all a ∈A(S) and all x, y ∈ G(S). It follows
that the map ι : A→ G defined by a 7→ a · 1S , for all a ∈ A(S), is a (unital) ring
homomorphism. Indeed

(a · 1S) · (b · 1S)= a · (1S · (b · 1S))= a · (b · 1S)= (a · b) · 1S

for all a, b ∈ A(S), since G(S) is a A(S)-algebra. It is easy to check from the
pairing formulas that ι :A→ G is also a homomorphism of Green rings.

2D. Ideals and quotient Green rings. There is a natural notion of a (left) Green
ideal in a Green ring G, namely a subbifunctor I ⊂ G such that I (S) ⊂ G(S) is
a left ideal in the ring G(S). Similarly, we have right ideals and two-sided ideals.
If I ⊂ G is a two-sided Green ideal, then the quotient functor G/I , defined by
S 7→ G(S)/I (S), is a Green ring under the quotient pairing inherited from G.
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If G×M→ M is a Green module structure on a Mackey functor M, then we
define the Green ideal IM ⊂ G as the subbifunctor of G with

IM(S)=
{
a ∈ G(S)

∣∣ ϕG(a) · y = 0, ψG(a) · z = 0
}

for all ϕ : S→ T , ψ : U → S, and all y ∈ M(T ), z ∈ M(U ). Note that elements
of IM(S) satisfy additional conditions (both “up” and “down”) beyond just acting
trivially on M(S).

The pairing formulas show directly that IM(S) is a two-sided ideal in the ring
G(S), for every finite G-set S. We will check that IM is a subbifunctor of G by
looking at the operations induced by G-maps µ : V → S and λ : S → W on an
arbitrary element a ∈ IM(S).

First we consider λG(a) ∈ G(W ). Let ϕ : W → T and ψ : U → W be any
G-maps. We have

ϕG(λG(a)) · y = (ϕ ◦ λ)G(a) · y = 0

by definition of IM(S). Let

X
λ̃ //

ψ̃
��

U

ψ

��
S

λ // W

be the pullback square, and from (M1) we get

ψG(λG(a)) · z = λ̃G(ψ̃
G(a)) · z = λ̃G(ψ̃

G(a) · λ̃M(z))= 0

so λG(a) ∈ IM(W ).
Similarly, we must check that µG(a) ∈ IM(V ). Let ϕ : V → T and ψ :U → V

be G-maps, and note that

ϕG(µ
G(a)) · y = ϕM(µ

G(a) ·ϕM(y))= 0

and ψG(µG(a)) · z = (µ ◦ψ)G(a) · z = 0.
We have now checked that IM ⊂ G is a subbifunctor, and therefore IM is a

Mackey functor and a two-sided Green ideal in G. We define the quotient Green
ring GM=G/IM to be the bifunctor whose value on objects is given by the quotient
rings GM(S)= G(S)/IM(S). It is straightforward to check that GM is a Green ring,
since the formulas above show that the pairing G × G→ G restricts to pairings
IM×G→ IM and G× IM→ IM of Mackey functors. By construction, M is also a
Green module over GM.

Definition 2.3. Let M be a Mackey functor. The Burnside quotient Green ring of
M is the Green ring AM := A/IM. Let ιM : A→ AM denote the epimorphism of
Green rings given by the natural quotient map.
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Remark 2.4. For G a Green ring, the map ι :A→ G defined above by a 7→ a · 1S

factors through ιG : A→ AG, and we obtain a canonical induced homomorphism
of Green rings AG→G. The next result shows that in fact AG= Im ι, which gives a
quick alternate definition of AG. (For this observation, compare [Dress 1973, page
207; Oliver 1988, page 253; Hambleton and Taylor 2000, page 711; Bak 1995,
page 236].)

Lemma 2.5. Let G be a Green ring. Then the canonical homomorphism of Green
rings, AG→ G is injective.

Proof. For each G-set S, the natural transformation of bifunctors in the statement
maps AG(S) → G(S) by the ring homomorphism a 7→ a · 1S , where a ∈ A(S)
and 1S ∈ G(S) is the unit. If a · 1S = 0, and ϕ : S → T , ψ : U → S are G-
maps, then it follows as above that ϕA(a) · 1T = 0 and ψA(a) · 1U = 0, Therefore
{a ∈ A(S) | a · 1S = 0} ⊂ IG(S), and the ring homomorphism AG(S)→ G(S) is
injective. �

We will explore Definition 2.3 by considering the Burnside quotient Green rings
for filtrations of Mackey functors.

Definition 2.6. If M and N are Mackey functors, we say that M is a subfunctor of
N (respectively N is a quotient functor of M) if there is a natural transformation
2 : M→ N such that for each object S ∈ D(G) the function 2S : M(S)→ N(S)
is an injective (respectively, surjective) homomorphism of abelian groups. We
say that M is a subquotient of N if there is a finite sequence of Mackey functors
M = L0,L1, . . . ,Lr = N such that each Li is either a subfunctor or a quotient
functor of Li+1, for i = 0, . . . , r −1. Note that the relation “M is a subquotient of
N” is a transitive relation.

Example 2.7. If2 :G→K is a homomorphism of Green rings, then we can regard
K as a Green module over G. Furthermore, ker2= IK⊂G, and there is an induced
homomorphism GK→ K of Green rings. If K is a quotient Green ring of G, then
K= GK = G/IK.

Lemma 2.8. Let G be a Green ring and M a Green module over G. Then the Burn-
side quotient Green ring AM is a quotient of AG, and isomorphic to a subquotient
of G.

Proof. Since AG is a sub-Green ring of G, we just need to check that AM is a
quotient Green ring of AG under the natural projection from A. This is equivalent
to the statement that IG ⊂ IM. Let a ∈ IG(S), and consider G-maps ϕ : S→ T and
ψ :U → S. For any y ∈M(T ),

ϕA(a) · y = ϕA(a) · (1T · y)= (ϕA(a) · 1T ) · y = 0,
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since 1T ∈ G(T ). Similarly, for any z ∈M(U ),

ψA(a) · z = ψA(a) · 1U · z = 0,

and we see that a ∈ IM(S). �

Lemma 2.9. Let M and N be Mackey functors, with M a subquotient of N. Then
there is a surjective homomorphism of Green rings f :AN→AM such that f ◦ ιN=

ιM.

Proof. We will establish this result for subfunctors and quotient functors, and note
that the general subquotient case follows by an inductive argument on the length
of the chain joining M to N.

Suppose first that2 :M→N is a natural transformation, with2S :M(S)→N(S)
injective for all finite G-sets S. Let a ∈ IN(S) and let ϕ : S→ T , ψ : U → S be
G-maps. Then for any y ∈ M(T ), 2T (ϕA(a) · y) = ϕA(a) · (2T (y)) = 0 since
2 is a A-Green module map. Similarly, for any z ∈ M(U ), 2U (ψ

A(a) · z) =
ψA(a) · (2U (z)) = 0. Since 2T and 2U are injective, it follows that a ∈ IM(S),
and IN ⊂ IM so that AN maps onto AM.

Next suppose that2 :N→M is a natural transformation, with2S :N(S)→M(S)
surjective for all finite G-sets S. If a ∈ IN(S), we check that ϕA(a) · y = 0 and
ψA(a) · z = 0, for all y ∈M(T ) and all z ∈M(U ), by using the surjectivity of 2T

and 2U , and the compatibility of 2 with the A-module structures on M and N.
Therefore IN ⊂ IM. �

In general, if M is a sub-Mackey functor of N it is not true that IM⊂ IN, so there
is no natural map in the other direction from AM onto AN, but here is one more
situation that works.

We say that M is a full lattice in N if there is a natural transformation 2 :M→
N such that the induced maps 2∗S : Hom(N(S),N(S))→ Hom(M(S),N(S)) are
injective for all finite G-sets S. Note that M need not be a sub-Mackey functor of
N for this condition to hold.

Lemma 2.10. Let M and N be Mackey functors, with M be a full lattice in N. Then
there exists a surjective homomorphism of Green rings g : AM → AN such that
g ◦ ιM = ιN . If M is also a subfunctor of N, then g is an isomorphism and the
inverse to the f :AN→AM described previously.

Proof. Let ϕ : S→ T be a G-map. For each a ∈A(S) we can consider the action
map y 7→ϕA(a)·y as an element of Hom(N(T ),N(T )). However if a ∈ IM(a), this
homomorphism is zero on the image of 2T , and therefore it vanishes identically.
Similarly, we check that ψA(a) ·z= 0 for all z ∈N(U ) and any G-map ψ :U→ S.
Therefore IM ⊂ IN. �
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2E. Amitsur complexes. Dress proves computation results for Mackey functors
via the contractibility of certain chain complexes. Let X , Y be finite G-sets,
and define a semisimplicial set Am(X, Y ) inductively. Let Am0(X, Y ) = Y and
Amr (X, Y )= X × Amr−1(X, Y ) for r ≥ 1. There are G-maps

dr
i : Amr (X, Y )→ Amr−1(X, Y )

for 0≤ i < r , defined by setting dr
0 as the projection

X × Amr−1(X, Y )→ Amr−1(X, Y ),

and for i > 0 by dr
i = 1X × dr−1

i−1 .

Definition 2.11. Let M be a Mackey functor. For given finite G-sets X , Y , the
Amitsur complex M

(
Am(X, Y )

)
is the chain bicomplex whose chain group in di-

mension r is M
(

Amr (X, Y )
)
, with boundary operators ∂r =

∑
(−1)i [dr

i ]M and
δr
=
∑
(−1)i [dr

i ]
M for r ≥ 0. and zero otherwise.

This construction has certain naturality properties.

Lemma 2.12. Let M be a Mackey functor. The Amitsur complex gives a bifunctor

M(Am(_ , _)) : D(G)×D(G)→ Chain(Ab)

where Chain(Ab) denotes the category of chain complexes of abelian groups.

For any Mackey functor M, and any finite G-set S, let MS denote the Mackey
functor defined by MS(T ) = M(S× T ), for any finite G-set T . There are natural
transformations and2M

S :M→MS and2S
M :MS→M of Mackey functors induced

by the projection maps S× T → T . Dress says that M is S-injective (respectively
S-projective) if 2M

S is split-injective (respectively 2S
M is split surjective).

Lemma 2.13 [Dress 1975, Proposition 1.1′]. A Mackey functor M is S-injective if
and only if it is S-projective.

Proof. Suppose that M is S-projective, so that2S
M is split-injective. Let8 :M→MS

be a natural transformation such that 2S
M ◦8= I dM (the identity natural transfor-

mation on M). If 1 : S→ S× S denotes the diagonal map and p : S× T → T the
second factor projection, we notice that

S× T
1×1
−−→ S× S× T

1×p
−−→ S× T

is just the identity map on S× T . It follows that

2S
M(T ) ◦ (1× 1)M ◦8S×T ◦2

M(T )
S = I dM(T )

for any finite G-set T . One can check that the formula

8̃(T ) :=2S
M(T ) ◦ (1× 1)M ◦8S×T
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defines a natural transformation of bifunctors splitting 2M
S and hence M is S-

injective. The converse is similar. �

Dress now proves that, for any finite G-set Y and whenever M is S-injective or
S-projective, both Amitsur complexes (M∗(Am(S, Y ), ∂) and (M∗(Am(S, Y ), δ)
are contractible (we say M is S-computable). In particular, for Y = • there are
exact sequences

. . . ∂3 // M(S× S)
∂2 // M(S)

∂1 // M( •) // 0

0 // M( •)
δ1 // M(S)

δ2 // M(S× S)
δ3 // . . .

which exhibit M( •) as a limit of induction or restriction maps respectively.

Here is the main theorem of Dress induction theory:

Proposition 2.14 [Dress 1975, Proposition 1.2]. Let G be a Green ring and S be a
finite G-set. Then the following conditions are equivalent:

(1) The map ϕG :G(S)→G( •) associated to the projection ϕ : S→ • is surjective.

(2) G is S-injective.

(3) All G-modules are S-injective.

This result focuses attention on the task of finding a suitable Green ring which acts
on M, and then checking property (i). We remark that the Burnside ring A acts on
any Mackey functor, but A is S-injective only if • ⊂ S. Hence the Burnside ring
itself has no useful induction properties.

3. Dress generating sets

In the classical Mackey setting of G-functors given by Green [1971], computation
is expressed in terms of families. A family of subgroups F of G is a collection of
subgroups closed under conjugation and taking subgroups. For any finite G-set X
let F(X) denote the family generated by the isotropy subgroups of X . For example,
the family F( •)= {All}. Conversely, given a family F of subgroups, we can form
the disjoint union X (F) of G-sets G/H , one for each conjugacy class of maximal
elements in F, under the partial ordering from subgroup inclusion. For example,
X ({All})= • . We say that a family of subgroups F contracts a Mackey functor M

if and only if M is X (F)-projective or X (F)-injective.
We have seen that a good strategy for computing a Mackey functor M is to study

the Green rings acting on M. We will apply this strategy to the Burnside quotient
Green ring AM of M.

Definition 3.1. Let G be a Green ring. A finite G-set X is a generating set for G if
the natural map G(X)→G( •) is surjective (equivalently, if 1 • ∈ Im{G(X)→G( •)}).
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By [Dress 1975, Proposition 1.2], X is a generating set for G if and only if G is X -
injective or X -projective. It is not true in general that a generating set for a Green
ring G is also a generating set for the sub-Green ring AG. To obtain generation for
AG it is usually necessary to enlarge the generating set.

For H a finite group and p a prime, let

O p(H)=
⋂
{H0 G H | H/H0 is a p-group}

Notice that O p(H) is a characteristic subgroup of p-power index in H , and

O p((O p(H)
)
= O p(H).

Definition 3.2. Let F be a family of subgroups of G and p a prime. Then hyperp-F
is the family consisting of all subgroups H in G such that O p(H) ∈ F. If S is a
G-set, then hyperp-S is the corresponding G-set to hyperp-F(S). This construction
is due to Dress [1975, page 307].

It is easy to check that hyperp-F is closed under taking subgroups and conjugation,
so we obtain a family of subgroups. By construction, there is a G-map X →
hyperp-X for any X and hyperp-hyperp-X =hyperp-X . One of Dress’s main results
is the following:

Theorem 3.3 [Dress 1973, page 207]. Let M be a Mackey functor. For any prime
p and for any finite G-set Y , let K(Y ) = ker

(
M( •)⊗ Z(p) → M(Y )⊗ Z(p)

)
and

I(Y )= Im
(
M(hyperp-Y )⊗Z(p)→M( •)⊗Z(p)

)
. Then M( •)⊗Z(p)=K(Y )+I(Y ).

If Y is a finite G-set, we will use the notation 〈Y 〉 for the equivalence class of Y in
the category D(G). One useful consequence is:

Lemma 3.4. Let G0 be a sub-Green ring of G1. For any prime p, and any finite
G-set Y with 〈Y 〉 = 〈hyperp-Y 〉, the natural map G0(Y )⊗Z(p)→ G0( •)⊗Z(p) is
surjective if and only if G1(Y )⊗Z(p)→ G1( •)⊗Z(p) is surjective.

Proof. For any Green ring G and any finite G-set Y , the image of G(Y )⊗Z(p) in
G( •)⊗ Z(p) is an ideal. Hence either map is onto if and only if 1Gi ( • ) is in the
image. Since 1G0( • ) goes to 1G1( • ), this proves the first implication.

For the converse, the surjectivity of G1(Y )⊗Z(p)→G1( •)⊗Z(p) implies that the
Amitsur complex is contractible for the restriction maps induced by the transfor-
mation Y → • . In particular, G1( •)⊗Z(p)→ G1(Y )⊗Z(p) is injective. Therefore
G0( •)⊗Z(p)→G0(Y )⊗Z(p) is injective, and from Theorem 3.3 we conclude that
G0(hyperp-Y )⊗Z(p)→ G0( •)⊗Z(p) is surjective. �

Suppose that G is a Green ring which acts on a Mackey functor M. For many
applications of induction theory, the “best” Green ring for M is the Burnside quo-
tient Green ring AG. This is a Green ring which acts on M, and by construction
AG is a sub-Green ring of G. In particular, the natural map AG→G is an injection.
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Definition 3.5. A finite G-set X is a Dress generating set for a Green ring G,
provided that G(hyperp-X)⊗Z(p)→ G( •)⊗Z(p) is surjective for each prime p.

By Theorem 3.3, any finite G-set X such that the natural map G( •)→ G(X) is
injective is a Dress generating set for G. Notice that a Dress generating set for G is
also a Dress generating set for any quotient Green ring of G. The following result
(Theorem A) is the main step in handling sub-Green rings.

Theorem 3.6. A finite G-set X is a Dress generating set for a Green ring G if and
only if it is a Dress generating set for the Burnside quotient Green ring AG.

Proof. We apply the result above to Y = hyperp-X , for each prime p, and note that
AG is a sub-Green ring of G. �

The Burnside quotient Green ring can be used to compute Mackey functors ob-
tained by subquotients.

Definition 3.7. A finite G-set X is a Dress generating set for a Mackey functor M,
provided that X is a Dress generating set for the Burnside quotient Green ring AM

of M.

This is consistent with our previous Definition 3.5 for a Green ring.

Theorem 3.8. Let G be a Green ring and M, N Mackey functors.

(i) If M is a G-module and X is a Dress generating set for G, then X is a Dress
generating set for M.

(ii) If N is a subquotient of M and X is a Dress generating set for M, then X is a
Dress generating set for N.

(iii) If M is a full lattice in N and X is a Dress generating set for M, then X is a
Dress generating set for N.

Proof. Under the first assumption, AM is a subquotient of G. In the other parts, AN

is a quotient of AM. �

We can translate this into a computability statement as follows:

Corollary 3.9. Let p be a prime and G be a Green ring. Suppose that F is a
hyperp-closed family of subgroups of G. Then G⊗ Z(p) is F-computable if and
only if AG⊗Z(p) is F-computable.

The advantage of AG over G is that AG acts on Mackey functors which are sub-
functors or quotient functors of M but G does not in general. For example, G never
acts on AG unless they are equal. We next point out another good feature of the
Burnside quotient Green ring.
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Theorem 3.10 [Hambleton 2006, Theorem 1.8]. Suppose that G is a Green ring
which acts on a Mackey functor M, and F is a hyperp-closed family of subgroups
of G. If G⊗Z(p) is F-computable, then every x ∈M(G)⊗Z(p) can be written as

x =
∑
H∈F

aH IndG
H
(
ResH

G (x)
)

for some coefficients aH ∈ Z(p), where the aH are the same for all x.

Proof. Since G ⊗ Z(p) is F-computable, we know that AG ⊗ Z(p) is also F-
computable. Therefore, we can write 1 =

∑
K∈F bK IndG

K (yK ) for some yK ∈

AG(K )⊗Z(p) and bK ∈ Z(p). For any x ∈M(G)⊗Z(p) we now have the formula

x = 1 · x =
∑
K∈F

bK IndG
K
(
yK ·ResK

G (x)
)
.

But each yK ∈ AG(K )⊗ Z(p) can be represented by a sum
∑

cK H [K/H ], with
cK H ∈ Z(p), under the surjection A(K )→AG(K ). Therefore

x =
∑

K∈F bK
∑

H⊆K cK H IndG
K
(
[K/H ] ·ResK

G (x)
)

=
∑

K∈F bK
∑

H⊆K cK H IndG
K
(
IndK

H
(
ResH

K

(
ResK

G (x)
)))

=
∑

K∈F bK
∑

H⊆K cK H IndG
H
(
ResH

G (x)
)

We now define aH =
∑

K∈F bK cK H , and the formula becomes

x =
∑
H∈F

aH IndG
H
(
ResH

G (x)
)
. �

Example 3.11 (Representation theory). Recall that a p-(hyper)elementary group is
a (semi)direct product CoP , where P is a p-group and C is cyclic of order prime to
p. A Dress generating set for a Green ring G need not be a generating set for G. For
example, let E denote the finite G-set, E=

∐
G/H , where we have one H for each

p-elementary subgroup of G. It is known that E is a generating set for the complex
representation ring RC(G), but not in general for the rational representation ring
RQ(G). On the other hand, complex representations are detected by characters, so
any G-set with isotropy containing the cyclic family is a Dress generating set for
RC(G), or for the sub-Green ring RQ(G) by Theorem 3.8 (ii). It follows that the
hyperelementary family H gives a generating set XH for RQ(G). This implies the
Brauer–Berman–Witt induction theorem for rational representations.

Example 3.12 (The Swan ring). The Swan ring is one of the main examples of
Green rings in the classical setting of induction theory [Swan 1970]. For any finite
group, let SW (G,Z) denote the Grothendieck group of isomorphism classes of
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finitely-generated left ZG-modules, with [L] = [L ′] + [L ′′] whenever there is a
short exact sequence

0→ L ′→ L→ L ′′→ 0

of such ZG-modules. The operation L⊗Z L ′ gives a ring structure on this Grothen-
dieck group, so we obtain a commutative ring. The usual induction and restriction
operations for such modules give the Swan ring the structure of a Mackey functor.
We let

SWG : D(G)→Ab

denote the Green ring (in the sense of Dress) defined by SWG(G/H) := SW (H,Z),
and extended to D(G) by additivity. Since SW (G,Z) is hyperelementary com-
putable by Swan’s induction theorem [Dress 1973, page 211], we see that any
Mackey functor on which this Green ring acts is hyperelementary computable.

It follows that the Burnside quotient Green ring of the Swan ring, denoted ASW ,
also has the hyperelementary set XH as a Dress generating set (or more precisely,
any G-set whose isotropy contains the cyclic family is a Dress generating set).
In this case, ASW (G/H) ⊂ SWG(G/H) is the subring P(H,Z) ⊂ SW (H,Z)
generated by the permutation modules Z[H/K ], for all subgroups K ⊆ H .

4. Computation techniques

Dress generating sets can also be used to compute exact sequences of Mackey
functors or filtrations of Mackey functors by subfunctors. We say that

M0
a
−→M1

b
−→M2

is an exact sequence of Mackey functors if a and b are homomorphisms of Mackey
functors, such that the sequence M0(S)→M1(S)→M2(S) is exact for each finite
G-set S. We define long exact sequences in a similar way.

Proposition 4.1. Suppose that M0 → M1 → M2 is an exact sequence of Mackey
functors. Then X is a Dress generating set for M1 whenever X is a Dress generat-
ing set for M0 and M2.

Proof. We may assume that M0→M1 is injective, and that M1→M2 is surjective,
and the projections from A induce a natural transformation θ :AM1→AM0⊕AM2 of
Green rings. By exactness, Iθ (S) := ker θS is a nilpotent ideal (of nilpotence index
2). Let ĀM1 = AM1/Iθ denote the quotient Mackey functor. Since this Mackey
functor is mapped injectively by θ into AM0⊕AM2 , X is a Dress generating set for
ĀM1 . It follows that ĀM1(hyperp-X)⊗Z(p)→ĀM1( •)⊗Z(p) is surjective for every
prime p. But an element in AM1( •)⊗Z(p) hitting 1 • ∈ Ā( •)⊗Z(p) has the form
1+u, where u ∈ Iθ ( •)⊗Z(p). Since u2

=0, 1+u is invertible and (1+u)−1
=1−u.

If pX : X → • denotes the projection map, and (pX )∗(a) = 1+ u, then we have
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(pX )∗
(
(pX )

∗(1 • − u) · a
)
= (1 • − u) · (pX )∗(a) = 1 • and hence X is a Dress

generating set for AM1 . �

Remark 4.2. In the proof of Proposition 4.1, we have shown for each prime p,
there exists an element a ∈ A(hyperp-X)⊗Z(p) such that a 7→ 1 • in each of the
Burnside quotient Green rings AMi ( •) ⊗ Z(p), for i = 0, 1, 2. The same argu-
ment extends by induction to finite filtrations of a Mackey functor by sub-Mackey
functors.

Corollary 4.3. Let 0 = N0 ⊂ · · · ⊂ Nr =M be a filtration of a Mackey functor by
sub-Mackey functors. Then X is a Dress generating set for M if and only if X is a
Dress generating set for each quotient Ni/Ni−1, for 1≤ i ≤ r .

A finite length chain complex of Mackey functors is a sequence (Ni , ∂i ) of Mackey
functors Ni , 0≤ i ≤ r , and natural transformations ∂i :Ni→Ni−1, 1≤ i ≤ r , such
that (N(S), ∂∗) is a chain complexes of abelian groups for each finite G-set S. A
chain complex N of Mackey functors has homology groups Hi (N), 0 ≤ i ≤ r ,
which are subquotient Mackey functors of Ni .

Corollary 4.4. Suppose that N is a finite length chain complex of Mackey functors.
If X is a Dress generating set for each Ni , 0≤ i ≤ r , then X is a Dress generating
set for each of the homology Mackey functors Hi (N), 0≤ i ≤ r .

Another useful construction is completion.

Theorem 4.5. Let M be a Mackey functor, and let F denote a (possibly infinite)
filtration

M= F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊇ · · ·

of M by sub-Mackey functors. A finite G-set X is a Dress generating set for
M̂F= lim

←−
M/Fr if and only if X is a Dress generating set for each quotient Mackey

functor Fr−1/Fr , r ≥ 1.

Proof. Since each Fr−1/Fr is a subquotient of M̂F, the necessity follows from
the results above. For sufficiency, we first note by Corollary 4.3 that X is Dress
generating set for each quotient M/Fr . It is enough to prove that X generates
the inverse limit lim

←−
AM/Fr of the Burnside quotient Green rings for the sequence

{M/Fr }. Suppose that X is a Dress generating set for each AM/Fr , r ≥ 1, and set
Y = hyperp-X . If {ar } is a sequence of elements in AM/Fr (Y ) hitting 1r

• , we can
use the contractibility of the Y -Amitsur complex for AM/Fr+1 inductively, to adjust
each ar+1 by an element of AM/Fr+1(Y × Y ), so that ar+1 7→ ar . This gives us
an element in the inverse limit lim

←−
AM/Fr (Y ) hitting 1 • ∈ lim

←−
AM/Fr ( •) := G( •),

and hence the Green ring G acts on M̂F with X as a Dress generating set. Since
AG � AM̂F

is surjective, it follows that M̂F has X as a Dress generating set. �
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Example 4.6. Here is an important special case. Let G be a Green ring acting on a
Mackey functor M. If I⊂G is a Green ideal, we may filter M by the subbifunctors
Fr = Ir M and then M̂F is the I-adic completion of M.

In particular, for a given Mackey functor M we could take I=〈IM, 2〉, and then
M̂I is just the 2-adic completion of the Mackey functor M. Note that if M(X) is
finitely generated, then M̂I(X)∼=M(X)⊗ Ẑ2.

5. Mackey functors and RG-Morita

To prove Theorem B we need to define the bifunctor d : D(G) → RG-Morita
used in its statement. This involves some definitions and elementary properties
of categories with bisets as morphisms, which are well-known to the experts. We
include this material for the reader’s convenience.

In [HTW 1990, 1.A.4] we introduced the category RG-Morita whose basic ob-
jects are finite groups H isomorphic to some subquotient of G, and whose mor-
phisms were defined by a Grothendieck group construction on the isomorphism
classes of finite H2-H1 bisets X , for which the order of the left stabilizer

H2 I (x)= {h ∈ H2 | hx = x}

is a unit in R, for all x ∈ X . Here R is a commutative ring with unit. We set
X ∼ X ′ if R X is isomorphic to R X ′ as RH2-RH1 bimodules. The balanced product
X×H2 Y of an H3-H2 biset X and an H2-H1 biset Y is a H3-H1 biset. This defines
the composition for morphisms. The Add-construction [MacLane 1971, page 194]
is then applied to complete the definition. Many functors arising in algebraic K -
theory and topology are actually functors out of RG-Morita, so it is of interest to
recognize when these are Mackey functors.

To relate Mackey functors and RG-Morita, we will need the G-Burnside cate-
gory, A(G), whose objects are subgroups H ⊂ G, and where HomA(G)(H1, H2) is
the Grothendieck construction applied to the isomorphism classes of finite bifree
H2-H1 bisets (meaning both left and right actions are free). Because of the Groth-
endieck group construction, A(G) is an Ab–category, the morphism sets are abelian
groups and the compositions are bilinear [MacLane 1971, I.8, page 28]. Let

u : A(G)→ A • (G)

denote the associated universal free additive category, and the universal inclusion
[MacLane 1971, VII.2, problem 6, page 194].

The morphisms in A(G) are defined by the Grothendieck group construction
with addition operation the disjoint union of bisets. By convention, the empty biset
∅ represents the zero element. Composition comes from the balanced product:

H3
X H2 ◦ H2

X H1 = (H3
X H2)×H2 (H2

X H1).
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The reader should check that this is well–defined on isomorphism classes of bisets
and “bilinear” in that(

H3
XH2 t H3

YH2

)
◦ H2

XH1
∼=
(

H3
XH2 ◦ H2

XH1

)
t
(

H3
YH2 ◦ H2

XH1

)
,

with a similar formula for disjoint union on the right. The morphisms in A • (G)
are matrices of morphisms in A(G).

Definition 5.1. We define a contravariant involution τ : A(G) → A(G), by the
identity on objects, and on morphisms it is the map induced on the Grothendieck
construction by the function which takes the finite bifree H2 -H1 biset H2

X H1 to
the finite bifree H1 -H2 biset H1

X H2 which is X as a set and h1 · x ·h2 is defined to
be h−1

2 xh−1
1 .

The reader needs to check that isomorphic bisets are isomorphic after reversing
the order, and should also check that the transpose conjugate of a disjoint union
is isomorphic to the disjoint union of the conjugate transposes of the pieces. This
means that τ is a functor which induces a homomorphism of Hom–sets. It is clearly
an involution, not just up to natural equivalence. Since τ is a homomorphism on
Hom-sets, it induces an additive contravariant involution τ • : A • (G)→ A • (G),
called conjugate transpose, which commutes with the functor u. By definition, τ •

acts on a matrix of morphisms by applying τ to each entry, and then transposing
the matrix. There is a functor

a : A • (G)→ RG-Morita

given by the inclusion on objects and morphisms (but the equivalence relation on
morphisms is different in RG-Morita).

There is a functor A • (G)→ R-Morita, called the R-group ring functor, where
R-Morita has objects R-algebras and morphisms defined by stable isomorphism
classes of bimodules [HTW 1990, 1.A.1]. This functor factors through RG-Morita:
it sends H 7→ RH on objects, and X 7→ R X on morphisms.

We will define the following diagram of categories and functors:

(5.2)

A • (G)

a
��

R-group ring

''
D(G) d //

j

88

RG-Morita // R-Morita

To complete the definition of the functors in this diagram, we need to introduce
another category. Let D∗(G) denote the category whose objects are pairs (X,b),
consisting of a finite G-space X and an ordered collection b= (b1, . . . , bn) of base-
points, one for each G-orbit of X . The morphisms are the G-maps (not necessarily
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base-point preserving). There is a functor

µ : D∗(G)→ D(G)

defined by forgetting the base-points. Since every object of D(G) is isomorphic to
the image µ(X,b) of an object of D∗(G), and µ induces a bijection on morphism
sets, it follows that µ gives an equivalence between the categories D∗(G) and
D(G), with inverse functor µ′ [MacLane 1971, IV.4, Theorem 1, page 91].

We can now define two functors

( j• , j • ) : D∗(G)→ A • (G).

The covariant functor j• is the additive extension of the functor which sends an ob-
ject (G/H, eH) to the isotropy subgroup H , and sends the G map f :G/H→G/K
to the biset K Kg−1 Hg, where f (eH) = gK . If we change the coset representative
and write f (eH)= g1K , then the map

(5.3) ψ : K Kg−1 Hg→ K Kg−1
1 Hg1

defined by ψ(k)= k(g−1g1) gives an bijection of K -K bisets.
Note that 1G/H : G/H → G/H goes to H HH , which is the identity. Check that if
f1 : G/H1→ G/H2 and f2 : G/H2→ G/H3 are G-maps and if f1(eH1)= g1 H2

and f2(eH2)= g2 H3 then f2 ◦ f1(eH1)= (g1g2)H3 and

H3
(H3)g−1

2 H2g2
×H2 H2

(H2)g−1
1 H1g1

is isomorphic to H3
(H3)(g1g2)−1 H1(g1g2) by the map (h3, h2) 7→ h3g−1

2 h2g2.
The contravariant functor j • agrees with j• on objects, but sends the G map

f : G/H → G/K to the biset g−1 Hg KK , where f (eH)= gK . Rather than check-
ing the identity and composition directly, just note that g−1 Hg KK is isomorphic to
τ(K Kg−1 Hg) by the function which sends k to k−1, so j • = τ ◦ j• and hence j • is
a contravariant functor.

Definition 5.4. We define the bifunctor

j : D(G)→ A • (G)

as the composition j = ( j • , j• ) ◦µ′. Let

d = a ◦ j : D(G)→ RG-Morita

denote the composition in diagram (5.2). �

For any additive functor F :A • (G)→Ab, the composition F ◦ j :D(G)→Ab
is a Mackey functor [HTW 2008]. Our main application is the following:
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Theorem 5.5. Any additive functor F : RG-Morita→Ab gives a Mackey functor
on D(G) by composition with d : D(G)→ RG-Morita. Any such Mackey functor
is hyperelementary computable.

Proof. The functor d : D(G)→ RG-Morita factors through A • (G), so we obtain
Mackey functors by composition. We will show that any such Mackey functor, M,
is a Green module over the Burnside quotient Green ring ASW of the Swan ring,
and then apply Example 3.12. Let L =Z[H/K ] denote a permutation module, for
some subgroups K ⊂ H of G, and let X denote an H -H -biset, which is free as a
left H -set. Then H/K × X is again an H -H -biset by the formula h1(hK , x)h2 =

(h1hK , h1xh2), for all h, h1, h2 ∈ H and all x ∈ X . Note that R[H/K × X ] =
L⊗Z R X as RH -RH bimodules, so this construction applied to X= H HH , sending
Z[H/K ] 7→ H/K × H , gives a well-defined homomorphism

P(H,Z)→ HomRG-Morita(H, H)

from the Grothendieck group of permutation modules, for each subgroup H ⊂ G.
The adjoints of these homomorphisms give a pairing ASW×M→M, and the Green
module properties follow easily from bimodule identities (compare [Oliver 1988,
11.2]). Since ASW is hyperelementary computable, we conclude that any Mackey
functor out of R-Morita is hyperelementary computable. �

Remark 5.6. As mentioned in the Introduction, this is a refinement of an earlier
result of Oliver [1988, 11.2]. Oliver establishes hyperelementary computability for
functors of the form X (R[G]), where X is an additive functor from the category
of R-orders in semisimple K -algebras with bimodule morphisms to the category
of abelian groups. Here R is a Dedekind domain with quotient field K of charac-
teristic zero.

There are two points of comparison: it should first be noted that Oliver [1988,
page 246] is dealing with Mackey functors defined on the category of finite groups
and monomorphisms, so the statement that any such functor X (R[G]) is a Mackey
functor is straight-forward. In our case, relating RG-Morita to Mackey functors
defined on finite G-sets in the sense of Dress [1975, page 301] involves some
work (for example, in constructing the bifunctor d). The translation between the
two versions of Mackey functors is also well-known to the experts [Dress 1975,
Section 1], but in this paper we preferred to work only with the Dress G-set theory.

The second point of comparison is that Oliver’s proof uses an action of the
Swan ring on the Mackey functors X (R[G]), but the Swan ring does not act on
our functors in any obvious way. The key new ingredient in our proof is the Burn-
side quotient Green ring of the Swan ring. Apart from this additional input, the
argument is essentially the same. However, the extra generality can be useful since
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there are functors out of RG-Morita which do not appear to extend to the setting
of Oliver [1988, 11.2]. �

Example 5.7 (Controlled topology). The bounded categories CM,G(R) of [Ham-
bleton and Pedersen 1991, §4], and the continuously controlled categories BG(X×
[0, 1); R) of [Hambleton and Pedersen 2004, §6] are functors out of A • (G), for
any finite group G, and hence any additive functor from these categories to abelian
groups gives a Mackey functor on D(G).

Example 5.8 (Farrell–Hsiang induction). There is a useful extension of induction
theory to (possibly) infinite groups, due to Farrell and Hsiang [1977]. Given any
representation pr : 0 → G, with G finite, we get a new R-group ring functor
A(G) → R-Morita by sending G/H 7→ R[0H ], where 0H = pr−1(H) is the
preimage of H in0. We have a generating set for the morphisms HomA(G)(H1, H2)

consisting of the bisets H2×K H1, where K ⊂ H2×H1 is a subgroup [HTW 1990,
1.A.9]. We send the biset H2 ×K H1 to the bimodule R[0H2] ⊗R[0K ] R[0H1].
By composition with any additive functor F : R-Morita→ Ab, we again obtain
Mackey functors. Since the Swan ring acts on R-Morita (by tensor product as
above), any such Mackey functor is a Green module over the Swan ring, and we
obtain hyperelementary computation as before. The main examples are listed in
[HTW 1990, 1.A.12], including Quillen K -theory Kn(R[0]).

Remark 5.9. An alternate (and slightly sharper) formulation of this example could
be given by defining R0-Morita for any discrete group 0: the objects are finite
groups H isomorphic to some subquotient H ∼= 01/00 of 0, where 00 G 01 and
01 is finite index in 0. The morphisms are H2-H1 bisets as before. Then from
any representation pr : 0→ G, where G is finite, we get a functor d : D(G)→
R0-Morita and Theorem 5.5 holds in this new setting.

Example 5.10 (Cohomotopy). Example 2.1 and Remark 2.4 (pages 108–109) of
[Lam 1968] show that (ordinary or Tate) cohomology with twisted coefficients
H i (?;M) is a Mackey functor on D(G) where M is a fixed G-module. Since
the cohomotopy Green ring H 7→ π0(B H) acts on this Mackey functor, it is Sy-
low computable. If pr : 0→ G is a homomorphism and M is a 0-module, then
H i (pr−1(?);M) is also a Mackey functor on D(G) with the cohomotopy Green
ring acting. An interesting example of this situation is Galois cohomology.

6. Pseudo-Mackey functors and pseudo-complexes

We wish to apply the computation strategy described above to a more general
situation, namely to study functors which have induction and restriction but are
not known to be Mackey. The main examples of interest are the higher Whitehead
groups Whn(ZG) and the nonoriented surgery obstruction groups Ln(ZG, ω).
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Definition 6.1. A covariant prefunctor f : D→ E between two categories is just
a function S 7→ ob( f )(S) on objects, and a function

hom( f ) : HomD(S1, S2)→ HomE(ob( f )(S1), ob( f )(S2))

on Hom-sets. A functor is a prefunctor which preserves identities and compo-
sitions. Similarly, we define a contravariant prefunctor, and a prebifunctor then
consists of a pair ( f∗, f ∗) of prefunctors, where f∗ is covariant, f ∗ is contravariant,
and ob( f∗)= ob( f ∗). We call these Mackey prefunctors if D=D(G) and E=Ab.

A prenatural transformation T : f1→ f2 is a function

S 7→ T (S) ∈ HomE(ob( f1)(S), ob( f2)(S)) .

A natural transformation of (covariant) prefunctors is a prenatural transformation
T : f1→ f2 such that the diagram

ob( f1)(S1)
hom( f1)(φ)//

T (S1)

��

ob( f1)(S2)

T (S2)

��
ob( f2)(S1)

hom( f2)(φ)// ob( f2)(S2)

commutes for all pairs of objects S1, S2 ∈ D and all φ ∈ HomD(S1, S2). There is
a similar definition for (pre)natural transformations of contravariant prefunctors,
and a natural transformation of prebifunctors is a single function which is natu-
ral transformation for both the covariant and contravariant parts of the bifunctor.
A prepairing between three Mackey prefunctors M, N and L is a collection of
functions µ(S) : M(S)× N(S)→ L(S). Finally, if M→ N is an injective nat-
ural transformation of Mackey prefunctors, then we say that M is a sub-Mackey
prefunctor of N.

Note that if M :D(G)→Ab is a Mackey prefunctor, we can apply M to any of the
Amitsur complexes Am(X, Y ), and obtain ∂r and δr maps as usual, but we can not
be sure that ∂r ◦ ∂r+1 = 0 or δr+1

◦ δr
= 0. We call M(Am(X, Y )) a pre-Amitsur

complex. This construction gives a prefunctor D(G)×D(G)→ Chain(Ab).

Definition 6.2. A Mackey prefunctor M is called a pseudo-Mackey functor pro-
vided that there exists a finite collection of Mackey prefunctors 0 = N0 ⊂ N1 ⊂

· · · ⊂ Nr = M such that the quotient prebifunctors Ni/Ni−1 are actually Mackey
functors, for 1 ≤ i ≤ r . The collection {Ni/Ni−1 | 1 ≤ i ≤ r} will be called the
associated graded Mackey functor to M.

A natural transformation M→ N of pseudo-Mackey functors is a natural trans-
formation of Mackey prefunctors which preserves the filtrations. Notice that the
Burnside ring A acts on a Mackey prefunctor via the usual formula (which gives a
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prepairing). The action of A on a pseudo-Mackey functor M preserves the filtration,
and the induced action on the subquotients Ni/Ni−1 is the usual action.

We say that a finite G-set X is a Dress generating set for a pseudo-Mackey
functor M provided X is a Dress generating set for each of the Mackey functors
Ni/Ni−1 in its associated filtration. This agrees with our previous definitions if M

is a Mackey functor filtered by Mackey subfunctors. Notice that the image of the
natural map of Green rings A→

⊕r
i=1 ANi/Ni−1 is a Green ring with X as a Dress

generating set. It follows that there exists an element a ∈ A(hyperp-X)⊗ Z(p),
for each prime p, whose image in A( •) ⊗ Z(p) acts as 1 • on each subquotient
Ni/Ni−1( •)⊗Z(p), 1≤ i ≤ r .

Lemma 6.3. Suppose that M0→M1 and M1→M2 are natural transformations of
Mackey prefunctors, such that M0(Y )→M1(Y )→M2(Y ) is exact for every finite
G-set Y . If M0 and M2 are pseudo-Mackey functors, then M1 is a pseudo-Mackey
functor. Moreover, if X is a Dress generating set for M0 and M2, then X is a Dress
generating set for M1.

Proof. The preimage of the associated filtration for M2 gives a filtration N0 ⊂

N1 ⊂ · · · ⊂ Nr = M1, with M0 ⊂ Ni for 0 ≤ i ≤ r . Since a subbifunctor of
a Mackey functor is Mackey, we see that the quotient prefunctors Ni/Ni−1 are
actually Mackey functors (and they all have Dress generating set X by Theorem
3.8). Now we extend this filtration by adjoining the associated filtration for M0.
Since each of the subquotients in this extended filtration have Dress generating set
X , the result follows. �

We also get a computational result for pseudo-Mackey functors. The Amit-
sur precomplex (M∗(Am(X, Y ), ∂∗) is now a pseudo-complex, meaning that the
boundary maps ∂∗ are filtration-preserving (and the associated graded is an actual
complex). It will be called pseudo-contractible if it is equipped with degree +1
filtration-preserving natural transformations

sr :M(Amr (X, Y ))→M(Amr+1(X, Y ))

of prefunctors, for r ≥ 0, which contract the Amitsur complexes for the associ-
ated graded Mackey functors to M. The collection s∗ = {sr } is called a pseudo-
contraction. We make a similar definition for the cochain Amitsur complex and
the degree -1 cochain pseudo-contractions σ r .

We can construct pseudo-contractions by using any element a ∈A(X) such that
a acts as 1 • ∈ on each subquotient Ni/Ni−1( •)⊗Z(p), 1 ≤ i ≤ r , to build chain
homotopies sr (a) and cochain homotopies σ r (a). These are pseudo-contractions
in the above sense.
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Proposition 6.4. Let M be a pseudo-Mackey functor, and X , Y finite G-sets. If
(M∗(Am(X, Y ), ∂∗) is pseudo-contractible with pseudo-contraction s∗, then there
are canonical filtration-preserving natural transformations (∂ ′

∗
, s ′
∗
) for which s ′

∗
is

a chain contraction and (M∗(Am(X, Y ), ∂ ′
∗
) is a chain complex. If the pseudo-

complex was already a complex, ∂ ′
∗
= ∂∗, and if in addition s∗ was already a

contraction, then s ′
∗
= s∗.

Proof. Let (Ci , ∂i , si ) be our data, where ∂i and si are natural transformations. We
assume that for i<r , ∂i◦∂i+1=0, ∂i+1=∂i+1◦si◦∂i+1, and si−1◦∂i+∂i+1◦si =1Ci .
For r ≤ 0 these identities clearly hold. We proceed to show how these conditions
may be achieved for i = r by modifying ∂r+1 and sr (if necessary). Throughout
the inductive construction, we do not change the maps induced by (∂∗, s∗) on the
Amitsur complex for the associated graded Mackey functor to M. We also note
that the process does not change the given ∂1 : C1→ C0, but may change s0 in the
first step.

First, let ∂ ′r+1 = ∂r+1− sr−1 ◦ ∂r ◦ ∂r+1. Then ∂r ◦ ∂
′

r+1 = 0 and if ∂r ◦ ∂r+1 = 0
we have ∂ ′r+1 = ∂r+1. Note that both ∂ ′r+1 and ∂r+1 preserve the induced filtration
from M, and induce the same map on the Amitsur complexes for the associated
graded Mackey functor to M.

Next, we modify sr . Let ψr = sr−1◦∂r+∂
′

r+1◦sr . By construction, ψr preserves
the filtration and induces the identity on the associated graded. Hence,ψr =1Cr+u,
where u is nilpotent, andψr is invertible. Since ∂r◦ψr =∂r , we can set s ′r = sr◦ψ

−1
r

and obtain sr−1 ◦ ∂r + ∂
′

r+1 ◦ s ′r = 1Cr by precomposing with ψr . Notice that if sr

was already part of a chain contraction, then we do not alter it. It follows that
∂ ′r+1 = ∂

′

r+1 ◦ s ′r ◦∂
′

r+1 and the induction step is complete. The naturality of ∂ ′r and
ψr follow inductively from the explicit formulas. The naturality of ψr implies the
naturality of s ′r for use at the next step of the induction. Since no choices were
involved in the construction of (∂ ′

∗
, s ′
∗
), the new maps are canonically determined

by the original data (∂∗, s∗). �

Remark 6.5. After this process, the new contractible complex gives an expression
for M(Y ) as a direct summand of M(X×Y ), with respect to the original induction
map ∂1 :M(X×Y )→M(Y ), and the new restriction map s ′0 :M(Y )→:M(X × Y ),
since ∂1 ◦ s ′0 = id. In this situation, we say that M(Y ) is computed from the family
F(X). If M was actually a Mackey functor, computability is this sense would agree
with the notion previously defined. Similar remarks apply to the contravariant
version M∗(Am(X, Y ), δ∗).

We will also need a slight extension of this result. A filtered precomplex (C, ∂)
is a precomplex of abelian groups equipped with a filtration

C = F0C ⊃ F1C ⊃ F2C ⊃ · · ·
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where each Fi C is a presubcomplex of (C, ∂), meaning that ∂r (Fi Cr )⊆ Fi Cr−1, for
all i, r . We say that (C, ∂) is a pseudo-complex if the additional relation ∂r◦∂r+1=0
holds, for all r , on each subquotient Fi C/Fi+1C . We say that a pseudo-complex
has a pseudo-contraction s∗= (sr ) provided that sr (Fi Cr )⊆ Fi Cr+1, and s∗ induces
an actual contraction on each subquotient complex Fi C/Fi+1C .

A pseudo-complex (C, ∂) has a natural completion

(C, ∂) −→ lim
←−

C/Fi C := (Ĉ, ∂̂)

given by the inverse limit precomplex with respect to the natural projections C→
C/Fi C , i ≥ 0. A pseudo-contraction s∗ of (C, ∂) induces a precontraction ŝ∗ of
(Ĉ, ∂̂).

Proposition 6.6. Let (C, ∂) be a pseudo-complex with filtration {Fi C | i ≥ 0}. If
(C, ∂) admits a filtered pseudo-contraction s∗, then there exists canonical data for
which (Ĉ, ∂ ′

∗
, s ′
∗
) is a contracted chain complex. If the pseudo-complex was already

a complex, ∂ ′
∗
= ∂̂∗, and if in addition s∗ was already a contraction, then s ′

∗
= ŝ∗.

Proof. The proof follows the same outline as for Proposition 6.4, but we notice
that the map ψr = 1Cr +u has the additional property that ui+1

= 0 on the quotient
Cr/Fi Cr . This follows by induction from the exact sequences

0→ Fi+1C/Fi C→ F0C/Fi+1C→ F0C/Fi C→ 0

of pseudo-contractible complexes. Thenψr induces an invertible map on Cr/Fi Cr ,
for each i ≥ 0. We define s ′r = sr ◦ψ

−1
r on Cr/Fi Cr as before. By induction, we

have constructed contraction data (C/Fi C, ∂ ′, s ′), for each i ≥ 0. In addition, this
contraction data is compatible with the projections C/Fi+1C→ C/Fi , and hence
induce contraction data (Ĉ, ∂ ′, s ′) for the inverse limit complex. �

Remark 6.7. Once again, this process doesn’t change ∂1, so the new contractible
complex gives an expression for Ĉ0 as a direct summand of Ĉ1, with respect to
completion of the original boundary map ∂1 : C1→ C0.

Example 6.8 (Whitehead groups). Define the Whitehead groups, Whn(ZG), as the
homotopy groups of the spectrum which is the cofibre of the Loday assembly map

BG+ ∧ K (Z)→ K (ZG).

The Loday assembly map is a map of bifunctors [Nicas 1987, Main Theorem,
page 223], and the Whitehead groups are bifunctors. Furthermore, the Whn , n ≤
3, are Mackey functors, but it is not obvious from this description that the other
higher Whitehead groups are actually Mackey functors. However, from the long
exact sequence in homotopy theory we see that they are pseudo-Mackey functors.
From Example 3.12, Example 5.10 and Proposition 6.4, we see that the Whn(ZG)
are computed by the hyperelementary family. Similarly, the Whn(ZG)⊗Z(p) are
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computed by the p-hyperelementary family. See [Swan 1970; Lam 1968; Nicas
1987] for partial results in this direction).

Example 6.9 (Tate cohomology). The Tate cohomology of Whn or Quillen’s Kn

are bifunctors which are subquotients of Whn or Kn , and hence are computed
by the hyperelementary family. The localization maps Whn → Whn ⊗ Z(2) and
Kn→ Kn⊗Z(2) induce isomorphisms on Tate cohomology. Hence the Tate coho-
mology is computed by the 2-hyperelementary family. Given any pseudo-Mackey
subfunctor of Whn or Kn which is invariant under the involution, we can form the
Tate cohomology and this Tate cohomology functor is computed by any family
which contains the 2-hyperelementary family. �

7. Surgery obstruction groups

Dress [1975, Theorem 1] claims computability results for “any of the L-functors
defined by C. T. C. Wall” (in [Wall 1976]). However, the nonoriented L-groups
Ln(ZG, ω) are not always Mackey functors, and so the techniques described in
[Dress 1975] do not appear to be adequate to prove the result in this generality.
The point is that an inner automorphism by an element g ∈ G with ω(g)=−1 in-
duces multiplication by −1 (which may not be the identity) on Ln(ZG, ω) [Taylor
1973]. One of the main applications of our more general techniques is to supply
a proof that nonoriented L-theory is hyperelementary computable, in the sense
that Ln(ZG, ω) is the limit of restrictions or inductions involving hyperelementary
subgroups of G.

Fix a finite group G, and the geometric antistructure for which θ = id and b= e∈
G [HTW 1990, 1.B.3]. Let ω : G→ {±1} be a fixed orientation homomorphism,
and for each subgroup H ⊂ G let ωH = ω|H . We define the following categories:

(1) A(G, ω), with objects finite groups H isomorphic to some subgroup of G,
and morphisms given by a Grothendieck group construction on finite biset
forms (X, ωX ) (see [HTW 1990, page 256] for the definition). We construct
A • (G, ω) by taking the additive completion.

(2) (R,−)-Morita, with objects and morphisms as defined in [HTW 1990, 1.B.2],
and the quotient category (R,−)-Witt from [HTW 1990, 1.C.2], for any com-
mutative ring R with unit.

(3) (RG, ω)-Morita, with objects H isomorphic to some subquotient K/N of
G, with N ⊂ kerω, and morphisms given by the Grothendieck group con-
struction on finite biset forms (X, ωX ), modulo an equivalence relation, as
defined in [HTW 1990, 1.B.3]. We can define the analogous quotient category
(RG, ω)-Witt by setting metabolic forms to zero in the morphisms [HTW
1990, page 254].
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Notice that by forgetting the orientation map ω we get functors into the categories
discussed in Section 5. The construction of Definition 5.4 gives a prebifunctor

j : D(G)→ A • (G, ω)

extending the prefunctor Or(G)→A • (G, ω) out of the orbit category, defined on
objects by G/H 7→ H and on morphisms by sending the G-map f :G/H→G/K ,
given by f (eH)= gK , to the biset form (K K g−1 K g, ωK ). This definition depends
on the choice of coset representative g for the morphism f in Or(G), since this
time, if x ∈ K and ω(x) = −1, the two morphisms eH 7→ gK and eH 7→ gx K
are sent to different biset forms.

Lemma 7.1. In A • (G, ω), the morphism
[

H H x−1 H x, ωH
]
=ω(x)·id for all x ∈ H.

If F : A • (G, ω)→Ab is an additive functor, then

F ◦ j : A • (G, ω)→Ab

is a Mackey prefunctor, which is a Mackey functor if and only if all the inner
automorphism morphisms F(H Hx−1 H x , ωH )= id, for all x ∈ H.

Proof. The identity morphism in A • (G, ω) is represented by the biset form

(H H H, ωH ).

The map ψ :H HH → H Hx H x−1 of biset forms defined by ψ(h)= hx−1, see (5.3),
induces an isometry of biset forms (H H x−1 H x, ωH )∼= (H H H, ω(x)·ωH ) and hence[

H H x−1 H x, ωH
]
= ω(x) · id

in the Grothendieck group of morphisms of A • (G, ω).
The property (M1) depends on conjugations acting trivially, or in other words,

should induce F(ψ)= id for all x ∈ H (including those with ω(x)=−1). �

The R-group ring functor of [HTW 1990, 1.B.4] induces a functor from A • (G,ω)
to (RG, ω)-Morita or further into (R,−)-Witt. The required formulas are in sec-
tion 1.B of [HTW 1990], including the remark that since our morphisms are formed
via a Grothendieck construction, we are entitled to equate metabolics on isomor-
phic modules. There is a functor a : A • (G, ω)→ (RG, ω)-Morita as before, and
we let

d : D(G)→ (RG, ω)-Morita

be the prebifunctor d = a ◦ j . There is a homomorphism from the Dress ring

GU (H,Z)→ Hom(R,−)-Morita(H, H)

given by tensor product (see [Dress 1975] where it is asserted that GU (G,Z)
acts on L-theory, or [Hambleton, Ranicki and Taylor 1987, page 143] for explicit
formulas). Dress [1975] showed that the hyperelementary family contracts the
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Dress ring. We observe that the same formulas give an action of the Burnside
quotient Green ring AGU on (RG, ω)-Morita.

Theorem 7.2. Let F : (RG, ω)-Morita→Ab be an additive functor. Then

F ◦ d : D(G)→Ab

is a Mackey prefunctor, and the 2-adic completion of any such Mackey prefunctor
is 2-hyperelementary computable. If M = F ◦ d is a Mackey functor, then M is
hyperelementary computable.

Proof. In the oriented case (ω≡ 1) the prefunctor M is actually a Mackey functor,
by Lemma 7.1. More generally, whenever M= F ◦d is a Mackey functor the result
follows as in Theorem 5.5, since M is a Green module over AGU . By [Dress 1975,
Theorem 3], and Theorem 3.6, the Burnside quotient Green ring of the Dress ring
is hyperelementary computable.

In the nonoriented case, we define a filtration Fi = 2i F , i ≥ 0, with F0 = F ,
and note that the subquotients (Fi/Fi+1) ◦ d are Mackey functors. Now we let
(C, ∂) denote the filtered Amitsur pseudo-complex for F∗ ◦ d with respect to 2-
hyperelementary induction, and the result follows from Proposition 6.6. Notice that
the passage from a pseudo-contractible pseudo-complex to a contractible complex
does not change the first boundary map, so F ◦d is 2-adically detected (generated)
by the given restriction (induction) maps to the 2-hyperelementary subgroups. �

Example 7.3 (Nonoriented L-theory). The main example for us is the surgery
obstruction group Ln(ZG, ω). It is a foundational result of Wall [1974] that the
surgery obstruction groups for finite groups are finitely-generated, with 2-primary
torsion exponent. Theorem 7.2 computes Ln(ZG, ω) ⊗ Ẑ2 as a limit (and as a
colimit) over the 2-hyperelementary subgroups H ⊂ G, H ∈ H. These limits use
the standard induction or restriction maps, for example, for induction we have the
surjective map

∂1 :
⊕
H∈H

Ln(ZH, ω)⊗ Ẑ2→ Ln(ZG, ω)⊗ Ẑ2

and our contraction data gives the relation subgroup ker ∂1 = Im ∂ ′2.
We conclude that Ln(ZG, ω) is also effectively 2-hyperelementary computable:

the torsion subgroup is isomorphic to that of Ln(ZG, ω)⊗ Ẑ2, and the divisibil-
ity of the signatures is computable since the kernel and cokernel of the natural
transformation

Ln(ZG, ω)→ Ln(RG, ω)

of pseudo-Mackey functors are both 2-primary torsion groups [Wall 1974, 7.3, 7.4].
The groups Ln(RG, ω) were computed explicitly in [Wall 1976, 2.2.1] in terms of
the irreducible characters of G. The proof of computability given here applies in



538 Ian Hambleton, Laurence R. Taylor and Bruce Williams

the oriented case (ω ≡ 1), but in that case the L-group is a Mackey functor and
the argument is essentially the same as the one given by Dress. Other important
examples were listed in [HTW 1990, 1.B.8].

Example 7.4 (L-theory with decorations). Let R be a commutative ring with unit,
and consider any L-group L B

n (RG, ω) for RG with antiinvolution given by ω :
G→{±1} with decoration in any involution invariant subbifunctor, B, of Ki (ZG)
or Whi (ZG), i ≤ 1; see [Hambleton, Ranicki and Taylor 1987] for a summary of
the definitions. It was checked in Theorem 5.3, Corollary 5.5 and Example 5.14
of that same reference that the corresponding round L-theories are functors out
of (ZG, ω)-Morita. Hence these L-theories are pseudo-Mackey functors and are
contracted by the hyperelementary family. It was also checked in Proposition 5.6,
Corollary 5.7 and Example 5.14 of the same paper that the corresponding ordinary
L-theories are functors out of (ZG, ω)-Morita, so the same computation result
holds.

Example 7.5 (Localization). Dress [1975] shows that the Dress ring GU is con-
tracted by any family containing the 2-hyperelementary and p-elementary families.
More precisely, he showed that the 2-localization of the Dress ring is contracted
by the 2-hyperelementary family, and the p-localization, p odd, is contracted by
the p-elementary family.

Proposition 6.4 and a standard mixing argument shows that this smaller family
suffices to contract the L B functors described above. For subbifunctors B closed
under the action of the Dress ring, this was proved by Dress [1975] and Wall [1976].
A similar argument shows that the odd-dimensional L B-groups are contracted by
the 2-hyperelementary family alone.

Example 7.6 (Symmetric, hyper-quadratic and lower L-theory). The Ranicki sym-
metric and hyper-quadratic L-theories [Ranicki 1992] are also functors out of
(ZG, ω)-Morita and hence are contracted by the hyperelementary family. The
hyper-quadratic theory is a 2-torsion group with an exponent so it is contracted
by the 2-hyperelementary family (as above, we note that the 2-localization map
induces an isomorphism on this functor and use the 2-local contraction of functors
out of (Z,−)-Morita by the 2-hyperelementary family). The lower L-theories for a
ring with antistructure can be defined in terms of the L-theory of the ring with some
Laurent variables adjoined [Ranicki 1992] and hence are functors out of (ZG, ω)-
Morita. Therefore L-theories with decorations in sub-Mackey functors of Ki for
i<0 are contracted by the hyperelementary family. The higher L-theories of Weiss
and Williams [1989] should also be amenable to these techniques.

Example 7.7 (Farrell–Hsiang induction). The technique of Farrell and Hsiang
[1977, §§1–2] was originally introduced to apply induction theory to the L-groups
of an infinite group 0. Let pr : 0 → G be a homomorphism to a finite group
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G, and define an orientation character for 0 by the composition ω ◦ pr, where
ω : G → {±1} is an orientation character for G. Then L B

∗
(R0,ω) is an additive

functor (RG, ω)-Witt→Ab, which defines a pseudo-Mackey functor as above. To
check this, note that we again have a generating set for the morphisms consisting
of the bisets X = H2×K H1, where K ⊂ H2× H1 is a subgroup. To produce the
needed biform on X , we adapt the formulas in [HTW 1990, 1.B] with θX = id. If
ω≡ 1, it follows that these L-groups can be computed in terms of the L-theory of
the various subgroups 0H = pr−1(H), H ⊂ G. In particular, it is enough to use
the hyperelementary subgroups H of G.
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Vanishing of trace forms in low
characteristics

Skip Garibaldi
Appendix by Alexander Premet

Every finite-dimensional representation of an algebraic group G gives a trace
symmetric bilinear form on the Lie algebra of G. We give criteria in terms
of root system data for the existence of a representation such that this form is
nonzero or nondegenerate. As a corollary, we show that a Lie algebra of type E8

over a field of characteristic 5 does not have a “quotient trace form”, answering
a question posed in the 1960s.

Let G be an algebraic group over a field F , acting on a finite-dimensional vector
space V via a homomorphism ρ : G→GL(V ). The differential dρ of ρ maps the
Lie algebra Lie(G) of G into gl(V ), and we put Trρ for the symmetric bilinear
form

Trρ(x, y) := trace(dρ(x) dρ(y)) for x, y ∈ Lie(G).

We call Trρ a trace form of G. Such forms appear, for example, in the hypotheses
for the Jacobson–Morozov Theorem [Carter 1985, 5.3.1], in Richardson’s proof
that there are finitely many conjugacy classes of nilpotent elements in the Lie
algebra of a semisimple algebraic group as in [Jantzen 2004, §2] or [Humphreys
1995, §§3.8, 3.9], and in the “explicit” construction of a Springer isomorphism in
[Bardsley and Richardson 1985, §9.3]. We prove:

Theorem A. Let G be a split and almost simple linear algebraic group over a
field F.

(1) There is a representation ρ of G with Trρ nondegenerate if and only if the
characteristic of F is very good for G.

(2) There is a representation ρ of G with Trρ nonzero if and only if the character-
istic of F is as indicated in Table I.

A weaker version (up to isogeny) of the “if” direction of part (1) is standard; see
for example [Springer and Steinberg 1970, I.5.3] or [Carter 1985, 1.16]. (After this
paper was released as a preprint, I learned that Alexander Premet had previously

MSC2000: primary 20G05; secondary 17B50, 17B25.
Keywords: trace form, E8, Richardson’s condition, Dynkin index.
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Every ρ has Trρ Every ρ has Trρ
G degenerate if charF zero if charF

SLn/µm with m odd divides n divides gcd(m, n/m)
SLn/µm with m even divides n divides 2 gcd(m, n/m)

Sp2n equals 2 [does not occur]
SOn , Spinn , PSOn with n ≥ 7,

HSpin4n for n ≥ 3, PSp2n

}
equals 2 equals 2

E6 adjoint, G2 equals 2 or 3 equals 2
E6 simply connected, E7, F4 equals 2 or 3 equals 2 or 3

E8 equals 2, 3, or 5 equals 2, 3, or 5

Table I. Primes where Trρ is degenerate or zero for every ρ. The
middle column lists the primes that are not very good for G. For
simply connected G, the right column lists the torsion primes for
G as defined in, for example, [Steinberg 1975, 1.13].

proved the “only if” direction of part (1) for groups not of type An , but his proof
has not been published [Premet 1995, p. 80].)

Both directions of part (1) are deduced from part (2). The crux of the proof of
part (2) is a formula for the trace form Trρ , given in Proposition 4.1 below.

We remark that the characteristics in part (1) of the theorem depend only on
the isogeny class of G, whereas the characteristics in part (2) of the theorem are
more sensitive. For example, Sp2n has a representation with nonzero trace form
over every field, whereas its quotient PSp2n has such only in characteristic different
from 2; this is no surprise because PSp2n has fewer representations than Sp2n . But
the opposite phenomenon also occurs: a simply connected group of type E6 has a
representation with nonzero trace form only in characteristics 6= 2, 3, whereas its
quotient the adjoint E6 has one over every field of characteristic 6= 2. This opposite
phenomenon is related to the number E(G) defined in Section 3 below.

For G of type E8, we can strengthen Theorem A. Given a representation ψ of
the Lie algebra Lie(G) of G, one can define a trace form Trψ on Lie(G) by setting
(x, y) 7→ trace(ψ(x) ψ(y)). We prove

Theorem B. If F has characteristic 2, 3, or 5 and G is of type E8, then the trace
form of every representation of Lie(G) is zero.

This is a strengthening of Theorem A because many representationsψ of Lie(G)
are not differentials of representations of G. The proof of Theorem B is given in
11.3; it amounts to a combination of Theorem A and a result generously provided
by Premet, presented in the Appendix. The converse of Theorem B is of course
true; in characteristic 6= 2, 3, 5, the Killing form is nondegenerate.
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In characteristic 5, Theorem B easily gives an apparently stronger statement,
namely that Lie(G) has no quotient trace form, see Corollary 11.4. This answers
a question posed in the early 1960s, see for example [Block 1962, p. 554], [Block
and Zassenhaus 1964, p. 543], or [Seligman 1967, p. 48].

From the point of view of Lie algebras, this paper addresses the existence of
restricted representations with nonzero or nondegenerate trace forms on Lie al-
gebras of almost simple algebraic groups. These algebras are approximately the
simple Lie algebras of classical type. For fields of characteristic≥5 and simple Lie
algebras of other types (necessarily Cartan or Melikian by Block–Premet–Strade–
Wilson, see [Strade 2004] or [Mathieu 2000], every representation has zero trace
form by Block [1962, Corollary 3.1].

Notation. All algebraic groups discussed here are linear. Such a group G over a
field F is almost simple if it is semisimple and has no proper connected, closed,
normal subgroups defined over F . In case F is separably closed, the almost simple
algebraic groups are the semisimple groups whose Dynkin diagrams are connected.

PSOn denotes the adjoint group of the (split) special orthogonal group SOn;
when n is odd it is the same as SOn . Similarly, PSp2n is the adjoint group of type
Cn; it can be viewed as Sp2n/µ2. The groups SOn , Spinn , and PSOn for n = 3, 5,
and 6 are isogenous to SL2, Sp4, or SL4 and appear in Table I in that alternative
form. For n ≥ 3, we write HSpin4n for the nontrivial quotient of Spin4n that is
neither SO4n nor adjoint.

1. The number N(G) and the Dynkin index

1.1. Fix a simple root system R. We write P for its weight lattice and 〈 , 〉 for
the canonical pairing between P and its dual. Fix a long root α ∈ R and write α∨

for the associated coroot. For each subset X of P that is invariant under the Weyl
group, we put

N (X) := 1
2

∑
x∈X

〈x, α∨〉2 ∈ Z
[1

2

]
.

The number N (X) does not depend on the choice of α because the long roots are
conjugate under the Weyl group.

Furthermore, N (X) is an integer. To see this, note that the reflection s in the
hyperplane orthogonal to α satisfies 〈sx, α∨〉 = 〈x, sα∨〉 = −〈x, α∨〉, so in the
definition of N (X), the sum can be taken to run over those x satisfying x 6= sx .
For such x , we have 〈x, α∨〉2+〈sx, α∨〉2 = 2〈x, α∨〉2, proving the claim.

Example 1.2. The computations in [Springer and Steinberg 1970, pp. 180, 181]
show that N (R)= 2h∨, where h∨ denotes the dual Coxeter number of R, which is
defined as follows. Fix a set of simple roots 1 of R. Write α̃ for the highest root;
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the corresponding coroot α̃∨ is

α̃∨ =
∑
δ∈1

m∨δ δ
∨

for some natural numbers m∨δ . The dual Coxeter number h∨ is defined by

h∨ := 1+
∑

m∨δ .

In case all the roots of R have the same length, it is the (usual) Coxeter number h
and is given in the tables in [Bourbaki 2002].

Suppose that there are two different root lengths in R; we write L for the set
of long roots and S for the set of short roots. The arguments in [Springer and
Steinberg 1970] are easily adapted to show that

N (L)= 2
(

1+
∑
δ∈1∩L

m∨δ

)
and N (S)= 2

∑
δ∈1∩S

m∨δ .

We obtain the following numbers:

type of R h h∨ N (L) N (S)

Bn (n ≥ 2) 2n 2n− 1 4(n− 1) 2
Cn (n ≥ 2) 2n n+ 1 4 2(n− 1)

G2 6 4 6 2
F4 12 9 12 6

Definition 1.3. Fix a split almost simple linear algebraic group G over F . Fix also
a pinning of G with respect to some maximal torus T ; this includes a root system
R and a set of simple roots 1 of G with respect to T . For a representation ρ of G
over F , one defines

N (ρ) :=
∑

dominant
weights λ

(
multiplicity of λ
as a weight of ρ

)
· N (Wλ) ∈ Z.

For example, the adjoint representation Ad has N (Ad)= 2h∨ by Example 1.2. The
number N (ρ) is the Dynkin index of the representation ρ defined in [Dynkin 1952,
p. 130] and studied in [Merkurjev 2003]. The Dynkin index of the fundamental
irreducible representations of G (over C) are listed in [Laszlo and Sorger 1997,
Proposition 2.6] or [McKay et al. 1990, pp. 36–44], correcting some small errors
in Dynkin’s calculations.

We put

N (G) := gcd N (ρ), (1.4)
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where the gcd runs over the representations of G defined over F . Because the map
ρ 7→ N (ρ) depends only on the weights of ρ with multiplicity, it is compatible
with short exact sequences

0 −−−→ ρ ′ −−−→ ρ −−−→ ρ/ρ ′ −−−→ 0 (1.5)

in the sense that

N (ρ)= N (ρ ′)+ N (ρ/ρ ′).

Writing RG for the representation ring of G, we obtain a homomorphism of abelian
groups N : RG→ Z with image N (G) ·Z.

In the definition of N (G), it suffices to let the gcd run over generators of RG,
for example, the irreducible representations of G. For an irreducible representation
ρ, the highest weight λ has multiplicity 1 and all the other weights of ρ are lower
in the partial ordering. Inducting on the partial ordering, we find

N (G)= gcd
{

N (Wλ) | λ ∈ T ∗
}
.

In particular, N (G) depends only on the root system R and the lattice T ∗, and not
on the field F .

Example 1.6. When G is simply connected, the number N (G) is known as the
Dynkin index of G and its value is listed in [Laszlo and Sorger 1997], for example.
Examining the list of values, one finds that the primes dividing N (G) (for G simply
connected) are the torsion primes of G.

Example 1.7. Write Spinn and SOn for the spin and special orthogonal groups of
an n-dimensional nondegenerate quadratic form of maximal Witt index. For n≥ 7,
these groups are split and almost simple of type Bl (with l ≥ 3) or Dl (with l ≥ 4).
The Dynkin index N (Spinn) is 2; it obviously divides N (SOn). On the other hand,
the natural n-dimensional representation ρ of SOn has N (ρ)= 2, so N (SOn)= 2.

Example 1.8. We claim that

N (PSp2n)=

{
2 if n is even,
4 if n is odd,

for n ≥ 2. The number N (PSp2n) divides 4 and 2(n−1) by Example 1.2. Further,
N (PSp2n) is even by [Merkurjev 2003, 14.2]. This shows that N (PSp2n) is 2 or 4,
and is 2 in case n is even.

Suppose that n is odd. We must show that N (Wλ) is divisible by 4 for every
element λ of the root lattice of PSp2n . We use the same notation as [Merkurjev
2003, §14] for the weights of PSp2n: they are a sum

∑n
i=1 xi ei such that

∑
xi is

even. The Weyl group W is a semidirect product of (Z/2Z)n (acting by flipping
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the signs of the ei ) and the symmetric group on n letters (acting by permuting the
ei ). Taking X for the (Z/2Z)n-orbit of

∑
xi ei , we have

1
2

∑
x∈X

〈∑
i

xi ei , (2en)
∨

〉2
= 2r−1x2

n (1.9)

where r denotes the number of nonzero xi ’s; see [Merkurjev 2003, proof of Lemma
14.2]. If r = 1, then the unique nonzero xi is even, and we find that for r 6= 2, the
sum — hence also N (W

∑
xi ei )— is divisible by 4. Suppose that x1, x2 are the

only nonzero xi ; then by (1.9) we have

N (W (x1e1+ x2e2))=

{
2(n− 1)(x2

1 + x2
2) if x1 6= ±x2,

2(n− 1)x2
1 if x1 =±x2.

As n is odd, N (W (x1e1 + x2e2)) is divisible by 4, which completes the proof of
the claim.

Example 1.10. For G adjoint of type E7, we have N (G)= 12. To see this, we note
that N (G) is divisible by N (G̃), where G̃ is the universal covering of G, that is, 12
divides N (G). Also, N (G) divides 2h∨ = 36 by Example 1.2. For the minuscule
representation ρ of G̃, we have dim ρ = 56 and N (ρ) = 12. The representation
ρ⊗2 of G̃ factors through G and by the derivation formula

N (ρ1⊗ ρ2)= (dim ρ1) · N (ρ2)+ (dim ρ2) · N (ρ1)

(see for example [Merkurjev 2003, p. 122]) we have

N (ρ⊗2)= 2(dim ρ)N (ρ)= 26
· 3 · 7.

It follows that N (G) equals 12, as claimed.

2. The Lie algebra of G

2.1. Let G be a split almost simple algebraic group over F ; we fix a pinning for it.
If GZ is a split group over Z with the same root datum as G, the pinning identifies
G with the group obtained from GZ by the base change Z→ F and the maximal
torus T in G (from the pinning) with the base change of a maximal torus TZ in GZ.
We have a root space decomposition of the Lie algebra of GZ

Lie(GZ)= Lie(TZ)⊕
⊕
α∈R

Zxα (2.2)

and

Lie(TZ)= {h ∈ Lie(TC) | µ(h) ∈ Z for all µ ∈ T ∗}, (2.3)
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see [Steinberg 1968, p. 64]. Because Lie(GZ) is a free Z-module, the Lie algebra
Lie(G) of G is naturally identified with Lie(GZ)⊗Z F , and similarly for Lie(T );
see [Demazure and Gabriel 1970, II.4.4.8].

2.4. Write G̃ for the universal covering of G; we use the obvious analogues of
the notations in 2.1 for G̃. The group G acts on G̃ by conjugation, hence also on
Lie(G̃). If the kernel of the map G̃→ G is étale, then the representation Lie(G̃)
is equivalent to the adjoint representation on Lie(G). In any case, the natural map
Lie(G̃)→ Lie(G) is an isomorphism on the F-span of the xα.

2.5. We claim that Lie(G̃) is a Weyl module for G in the sense of [Jantzen 2003,
p. 183], that is, its character is given by Weyl’s formula and it is generated as a G-
module by a highest weight vector. The first condition holds by (2.2), so it suffices
to check the second.

To check that the submodule Gxα̃ generated by the highest weight vector xα̃ is
all of Lie(G̃), one quickly reduces to checking that Gxα̃ contains Lie(T̃Z). Equation
(2.3) gives a natural isomorphism Z[R∨]

∼
−→Lie(T̃Z) where T̃Z is the maximal torus

in G̃Z mapping onto TZ. We write (as is usual) hα for the image of α∨ under this
map. As [xα, x−α] = hα, the claim is proved.

2.6. See [Hiss 1984], [Hogeweij 1982, especially Corollary 2.7a], or [Steinberg
1961, §2] for descriptions of the composition series of Lie(G̃). They immediately
give: If the characteristic of F is very good for G, then Lie(G) is a simple Lie
algebra. If additionally F is infinite then Lie(G) is an irreducible G(F)-module.

3. The number E(G)

Definition 3.1. Maintain the notation of the preceding section. The Killing form
on Lie(G̃Z) is divisible by 2h∨ [Gross and Nebe 2004] and dividing by 2h∨ gives
an indivisible even symmetric bilinear form b̃ on Lie(G̃Z) such that

b̃(hα, hα)= 2 and b̃(xα, x−α)= 1 (3.2)

for long roots α; see [Springer and Steinberg 1970, p. 181] or [Bourbaki 2002,
Lemma VIII.2.4.3]. For a short root β, we have: b̃(hβ, hβ)=2c and b̃(xβ, x−β)=c,
where c is the square-length ratio of α to β. For example, G = SLn has Lie algebra
the trace zero n-by-n matrices, and the form b̃ is the usual trace bilinear form
(x, y) 7→ trace(xy); see [Bourbaki 2002, Exercise VIII.13.12].

The natural map Lie(G̃Z)→ Lie(GZ) is an inclusion and extending scalars to
Q gives an isomorphism. Therefore, b̃ gives a rational-valued symmetric bilinear
form on Lie(GZ). We define E(G) to be the smallest positive rational number
such that E(G) · b̃ is integer-valued on Lie(GZ); we write b for this form. Note
that E(G) is an integer by (3.2).
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Clearly, E(G) depends only on the root system of G and the character lattice
T ∗ viewed as a sublattice of the weight lattice, and not on the field F .

3.3. Write Ḡ for the adjoint group of G; we use the obvious analogues of the
notations in 2.1 for Ḡ. We have a commutative diagram

Q∨
∼
−−−→ Lie(T̃Z)y y

P∨
∼
−−−→ Lie(T̄Z)

where Q∨ and P∨ are the root and weight lattices of the dual root system. The
form b̃ restricts to be an inner product on Q∨ such that the square-length of a short
coroot α∨ is 2. This inner product extends to a rational-valued inner product on
P∨, and E(Ḡ) is the smallest positive integer such that E(Ḡ) · b̃ is integer-valued
on P∨.

Example 3.4. Consider the case where G is PSp2n for some n ≥ 2, that is, adjoint
of type Cn . In the notation of the tables in [Bourbaki 2002], the form b̃ is twice the
usual scalar product, b̃(ei , e j ) = 2δi j (Kronecker delta). The fundamental weight
ωn has b̃(ωn, ωn) = n/2. Checking b̃(ωi , ω j ) for all i, j , shows that E(Ḡ) is 1 if
n is even and 2 if n is odd.

Example 3.5. Suppose that all the roots of G have the same length, so that we
may identify the root system R with its dual and normalize lengths so that 〈 , 〉 is
symmetric and equals b̃ on Q∨.

(1) E(Ḡ) is the exponent of P/Q, the weight lattice modulo the root lattice.
Indeed, the isomorphism between P and Lie(T̄Z) shows that E(Ḡ) is the
smallest natural number such that E(Ḡ) · 〈 , 〉 is integer-valued on P × P ,
equivalently, the smallest natural number e such that eP is contained in Q;
this is the exponent of P/Q.

(2) The bilinear form

b̃: Lie(G̃Z)×Lie(ḠZ)→Q

has image Z and identifies Lie(ḠZ) with HomZ(Lie(G̃Z),Z). (On the span of
the xα, this is clear from (3.2). On the Cartan subalgebras, it amounts to the
statement that 〈 , 〉 identifies P with Hom(Q,Z).) It follows that Lie(Ḡ), as
a G-module, is the dual of Lie(G̃), that is, Lie(Ḡ) is the module denoted by
H 0(α̃) in [Jantzen 2003].

Example 3.6. For n = 3 or n ≥ 5, we claim that E(SOn)= 1.
For n odd, SOn is adjoint of type Bl for l = (n − 1)/2, and we compute as

in 3.3 and Example 3.4. The dual root system is of type Cl , and the form b̃ is
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the usual scalar product, that is, b̃(ei , e j ) = δi j . The fundamental weight ωi is
e1+ e2+ · · ·+ ei , so E(SO2l+1)= 1.

For n even, SOn has type Dl for l = n/2. The character group T ∗ of a maximal
torus in SOn consists of the weights whose restriction to the center of Spinn is 0 or
agrees with the vector representation, that is, the weights

∑
ciωi such that cl−1+cl

is even. It follows that the cocharacter lattice T∗ is generated by the (co)root lattice
and

ω1 = α1+α2+ · · ·+αl−2+
1
2(αl−1+αl).

We have
b̃(ω1, ω1)= 〈ω1, ω1〉 = 1,

so the form b̃ is integer-valued on T∗ and E(SO2l)= 1.

Example 3.7. Let HSpin4n denote the image of Spin4n under the irreducible repre-
sentation with highest weight ωl for l := 2n; it is a half-spin group. The character
lattice T ∗ consists of weights

∑
ciωi such that c1+ cl−1 is even. The lattice gen-

erated by Q and

ω1+ωl−1 =
1
2(3α1+ 4α2+ · · ·+ lαl−2)+

1
4(l + 2)αl−1+

1
4 lαl

contains Q with index 2 and is contained in T∗, hence equals T∗. Since

b̃(ω1+ωl−1, ω1+ωl−1)= 〈ω1+ωl−1, ω1+ωl−1〉 =
3
2 +

1
4(l + 2)= 1

2 n+ 2,

we conclude that

E(HSpin4n)=

{
1 if n is even,
2 if n is odd.

4. Formula for the trace

The integer-valued symmetric bilinear form b on Lie(GZ) defined in 3.1 gives by
scalar extension a symmetric bilinear form on Lie(G) which we denote by bF .

Proposition 4.1. Let ρ be a representation of a split and almost simple algebraic
group G over F.

(1) E(G) divides N (ρ).

(2) Trρ =
N (ρ)
E(G)

bF .

Proof. We first suppose that F is the complex numbers. Write π : G̃→ G for the
universal covering of G as in Section 2. We compute Trρπ . If we decompose the
representation ρ with respect to the action of T̃ and write Vµ for the eigenspace
relative to the weight µ, then hα acts on Vµ by scalar multiplication by 〈µ, α∨〉,



552 Skip Garibaldi

hence Trρ(hα, hα) =
∑

dim(Vµ)〈µ, α∨〉
2. By putting together the µ in an orbit

Wλ (where λ is dominant) and taking α to be a long root, one gets

Trρπ (hα, hα)= 2 N (ρ). (4.2)

The representation Lie(G̃Z)⊗C is irreducible and has a nondegenerate G̃C-invariant
symmetric bilinear form, so by Schur’s Lemma we have

HomG̃C

(
Lie(G̃)⊗C, (Lie(G̃)∗)⊗C

)
= C.

In particular, Trρπ equals z b̃ for some complex number z and

2N (ρ)= Trρπ (hα, hα)= z b̃(hα, hα)= 2z.

Hence Trρπ = N (ρ) b̃. (This argument can be viewed as restating pages 130–
131 of [Dynkin 1952].) The Lie algebra Lie(GZ)⊗C is naturally identified with
Lie(G̃Z)⊗C, and (2) follows from the equation E(G) b̃ = b in the case F = C.

Now allow F to be arbitrary but suppose that ρ is a Weyl module. There is a Z-
form ρZ of ρ, and the form TrρZ

is the restriction of TrρC
on Lie(GC) to Lie(GZ).

Because (2) holds over the complex numbers, it holds over the integers, and by
scalar extension it holds over the field F as well. Clearly the form TrρZ

is integer
valued; as b is indivisible, it follows that E(G) divides N (ρ).

We now treat the case of an arbitrary representation ρ. The number N (ρ) de-
pends only on the class of ρ in the representation ring RG. As the Weyl modules
generate RG as an abelian group and E(G) divides N (ψ) for every Weyl module
ψ , (1) follows.

For (2), we note that the map ρ 7→ Trρ −
(
N (ρ)/E(G)

)
bF is compatible with

exact sequences like (1.5) in the sense that Trρ = Trρ′+Trρ/ρ′ . We obtain a homo-
morphism of abelian groups

RG→ symmetric bilinear forms on Lie(G)

that vanishes on the Weyl modules, hence is zero. �

4.3. Because b is indivisible (as a form over Z), the form bF is not zero. Part (2)
of Proposition 4.1 immediately gives:

Fact 4.4. Let ρ be a representation of a split and almost simple algebraic group G
over F. Then Trρ is zero if and only if the characteristic of F divides N (ρ)/E(G).

Furthermore, we defined N (G) to be gcd N (ρ) as ρ varies over the representations
of G. We have proved:

Fact 4.5. Let G be split and almost simple. The trace Trρ is zero for every represen-
tation ρ of G if and only if the characteristic of F divides the integer N (G)/E(G).
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We have now finished half of the proof of Theorem A(2); it remains to check that
the primes dividing N (G)/E(G) are the primes in the rightmost column of Table I.

5. The ratio N(G)/E(G) for G = SLn/µm

In this section, we fix natural numbers m and n with m dividing n, and we prove

Proposition 5.1. For G=SLn/µm , the primes dividing N (G)/E(G) are precisely
the primes dividing {

gcd(m, n/m) if m is odd,
2 gcd(m, n/m) if m is even.

Here µm denotes the group scheme of m-th roots of unity, identified with the
corresponding scalar matrices in SLn .

In the important special cases where G is simply connected (m=1), G is adjoint
(m = n), or n is square-free, the gcd in the proposition is 1, and we have that
N (G)/E(G) is 1 if m is odd and 2 if m is even.

Lemma 5.2.
E(SLn/µm)=

m
gcd(m, n/m)

.

Proof. Use the notation from [Bourbaki 2002] for the simple roots and fundamental
weights of the root system An−1 of SLn . Let 3 denote the lattice generated by the
root lattice Q and

β :=
n
m
ωn−1 =

1
m
(α1+ 2α2+ · · ·+ (n− 1)αn−1) .

We claim that 3 is identified with the cocharacter lattice T∗ for a pinning of
SLn/µm . Certainly, 3/Q is cyclic of order m, so it suffices to check that the set
of inner products 〈3, T ∗〉 consists of integers. But T ∗ is the collection of weights∑

ciωi with ci ∈ Z such that
∑n−1

i=1 ici is divisible by m. We have〈
β,
∑

ciωi

〉
=

∑
i

1
m

ici ,

which is an integer when
∑

ciωi is in T ∗, so T∗ =3 as claimed.
Finally, we compute

〈β, αn−1〉 =
n
m
∈ Z and 〈β, β〉 =

〈 1
m

∑
iαi ,

n
m
ωn−1

〉
=

n(n− 1)
m2 .

Since m divides n, it is relatively prime to n−1, so the minimum multiplier of 〈 , 〉
that takes integer values on T∗ is m/gcd(m, n/m), as claimed. �
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5.3. Weights of representations of SLn/µm . Fix the usual pinning of SLn , where
the torus T consists of diagonal matrices and the dominant weights are the maps t1

. . .
tn

 7→ n−1∏
i=1

tei
i ,

where e1≥e2≥· · ·≥en−1≥0. Such a weight restricts to x 7→ x
∑

ei on the center of
SLn; in particular, m divides

∑
ei for every dominant weight λ of a representation

of SLn/µm . The proof of [Merkurjev 2003, Lemma 11.4] shows that m divides
N (Wλ), hence m divides N (SLn/µm).

5.4. We recall how to compute N (Wλ) from [Merkurjev 2003, p. 136]. Write
a1 > a2 > · · · > ak−1 > ak = 0 for the distinct values of the exponents ei in λ,
where ai appears ri times, so that n =

∑
ri . We have

N (Wλ)=
(n− 2)!

r1! r2! · · · rk !

[
n
(∑

i

ri a2
i

)
−

(∑
i

ri ai

)2
]
. (5.5)

The dominant weight λ with e1 = m and ei = 0 for i > 1 vanishes on µm and has
N (Wλ)= m2 by (5.5), so N (SLn/µm) divides m2.

Example 5.6. Let λ be a dominant weight of G and let ri , ai be as in the preceding
paragraph. Suppose that

v2

(∑
ri ai

)
≥ v2(n) > 0,

where v2(x) is the 2-adic valuation of x , that is, the exponent of the largest power
of 2 dividing x . We claim that

v2(N (Wλ)) > v2(n). (5.7)

Write
∑

ri ai = 2θ t and n = 2νu where θ = v2(
∑

ri ai ) and ν = v2(n). Our
hypothesis is that 0< ν ≤ θ . We rewrite (5.5) as

N (Wλ)=
(n− 2)!

r1! r2! · · · rk !

[
u
(∑

i

ri a2
i

)
− 22θ−ν t2

]
· 2ν . (5.8)

Write l for the minimum of v2(ri ), and fix an index j such that v2(r j ) = l. Note
that since

∑
ri = n, we have l ≤ ν ≤ 2θ − ν.

The first term on the right side of (5.8) has 2-adic value ≥−l [Merkurjev 2003,
p. 137]. The term in brackets has value ≥ l. Therefore, to prove claim (5.7), it
suffices to consider the case where v2

(∑
ri a2

i

)
= l and the first term on the right

side of (5.8) has value −l; this latter condition implies that

s2(n− 1)= s2(r1)+ · · ·+ s2(r j−1)+ s2(r j − 1)+ s2(r j+1)+ · · ·+ s2(rk), (5.9)
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where s2 denotes the number of 1’s appearing in the binary representation of the in-
teger [Merkurjev 2003, p. 137]. That is, when adding up the numbers r1, . . . , r j−1,

r j−1, r j+1, . . . , rk in base 2 (to get n−1), there are no carries. We check that this
is impossible.

Suppose first that l <ν. Equation (5.9) implies that there are exactly two indices,
say, j, j ′ with v2(r j )= v2(r j ′)= l. As 2l+1 divides

∑
ri ai , it also divides r j a j +

r j ′a j ′ , hence a j and a j ′ have the same parity. It follows that 2l+1 divides r j a2
j +

r j ′a2
j ′ , contradicting the hypothesis that v2

(∑
ri a2

i

)
= l.

We are left with the case where l = ν. By (5.9), r j is the unique ri with 2-adic
valuation l. As v2

(∑
ri a2

i

)
= l, the number a j is odd and we have l= v2

(∑
ri ai

)
=

θ . Hence both u ·
(∑

ri a2
i

)
and 22θ−ν t have 2-adic valuation l. It follows that the

term in brackets in (5.8) has 2-adic valuation strictly greater than l, and claim (5.7)
is proved.

Proof of Proposition 5.1. We write G for SLn/µm . Paragraphs 5.3 and 5.4 give
the bounds: m divides N (G) divides m2. Also, N (G) divides 2n by Example 1.2.
Applying Lemma 5.2 shows that gcd(m, n/m) divides N (G)/E(G), which in turn
divides gcd(m, n/m) gcd(m, 2n/m). This completes the proof for m odd.

Clearly, an odd prime divides N (G)/E(G) if and only if it divides gcd(m, n/m).
So suppose that m is even and 2 does not divide gcd(m, n/m), that is, v2(m) =
v2(n). Then every dominant weight of a representation of G satisfies the hy-
potheses of Example 5.6, hence v2(N (G)) > v2(n) = v2(m). By Lemma 5.2,
v2(E(G))= v2(m), so 2 divides N (G)/E(G). This completes the proof. �

6. Conclusion of proof of Theorem A(2)

For a split and almost simple algebraic group G, we now verify that the primes
dividing N (G)/E(G) are those in the last column of Table I. Together with 4.5,
this will prove Theorem A(2).

For G simply connected, E(G) is 1 and N (G) is divisible precisely by the
torsion primes of G, see 1.6. We assume that G is not simply connected and write
G̃ for the universal covering of G; obviously N (G̃) divides N (G).

For G = PSp2n , SOn , or adjoint of type E7, one combines Examples 1.8 and
3.4, 1.7 and 3.6, or 1.10 and 3.5, respectively.

For G adjoint of type Dn , we have E(G) = 2 by Example 3.5. Also, 4 divides
N (G) by [Merkurjev 2003, 15.2]. On the other hand, the spinor representations
of G̃ have Dynkin index 2n−3 [Laszlo and Sorger 1997], and it is easy to use this
as in Example 1.10 to construct a representation ρ of G with N (ρ) a power of 2.
This shows that N (G)/E(G) is a power of 2 and is not 1.

Now let G = HSpin4n for some n ≥ 3. The dual of the center of Spin4n is the
Klein four-group, and we write χ for the unique nonzero element that vanishes
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on the kernel of the map Spin4n→ HSpin4n . The gcd of N (Wλ) as λ varies over
the weights that restrict to χ (respectively, 0) on the center of Spin4n is 22n−3

(respectively, divisible by 4) by [Merkurjev 2003, p. 146], hence N (G) is a power
of 2 and at least 4. On the other hand, E(HSpin4n) is 1 or 2. We conclude that
N (G)/E(G) is a power of 2 and is not 1.

For G adjoint of type E6, the number N (G) is divisible by N (G̃) = 6 and
divides 2h∨ = 24 by Example 1.2. By Example 3.5, N (G)/E(G) is 2, 4, or 8.
This completes the proof of Theorem A(2). �

Example 6.1. Suppose that the characteristic of F is an odd prime p, and let
n be a natural number divisible by p2. Every trace form of SLn/µp is zero by
Theorem A(2), even though the universal covering SLn and adjoint group PGLn

have representations with nonzero trace forms.

7. Proof of Theorem A(1)

We now prove Theorem A(1); we show that the following three statements are
equivalent:

(a) The characteristic of F is very good for G.

(b) Lie(G) is a simple algebra and there is a representation ρ of G with Trρ
nonzero.

(c) There is a representation ρ of G with Trρ nondegenerate.

Suppose (a) holds. Then Lie(G) is simple, as in 2.6. The existence of a repre-
sentation ρ with nonzero trace follows from Theorem A(2), so (b) holds. It is easy
to check that for a representation ψ of Lie(G), Trψ([x, y], z)= Trψ(x, [y, z]) for
all x, y, z ∈ Lie(G). So the radical of a trace form on Lie(G) is an ideal, and (b)
implies (c).

Now suppose that (a) fails; we check that (c) also fails. By Theorem A(2),
we only need to consider those cases where the characteristic of F appears in the
middle column of Table I and not in the right column, namely the cases:

(i) G has type G2 and charF = 3, or G is Sp2n and charF = 2, or G is SLn/µm

and charF is odd and divides n/m but not m.

(ii) G is adjoint of type E6 and charF = 3, or G is SLn/µm and charF divides m
but not n/m.

We write π : G̃→G for the universal covering of G. In case (i), the kernel of π
is étale, so Lie(G) is a Weyl module by 2.5. For all three of the types listed, Lie(G)
has a nontrivial submodule M , namely the subalgebra generated by the short roots
(for G2) or the center (in the other two cases). It follows that M is contained in
the radical of Trρ — see [Garibaldi 2008, 6.2], for example — hence (c) fails.
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In case (ii), every representation ρ of G gives a representation ρπ of G̃ whose
trace form Trρπ vanishes on Lie(G̃) by Theorem A(2) (for E6) or 5.3 (for SLn).
Hence the image of dπ is a totally isotropic subspace for Trρ . As

dim(im dπ)= dim G̃− dim(ker dπ)= dim G− 1

is strictly greater than half the dimension of G, the form Trρ is degenerate and (c)
fails. This concludes the proof of Theorem A(1). �

8. Richardson’s condition

In the literature, the weak version of the “if” direction of Theorem A(1) is used
to deduce Richardson’s condition from [Richardson 1967, p. 3]. Our slightly finer
version of the “if” direction gives a slightly finer version of Richardson’s condition;
we state it here for the convenience of the reader. As in Theorem A, G is a split
almost simple algebraic group over a field F .

Proposition 8.1. If the characteristic of F is very good for G, then there is a
representation ρ : G→ GL(V ) such that dρ is an injection Lie(G) ↪→ gl(V ) and
there is a subspace M of V such that gl(V ) = dρ(Lie(G))⊕M , IdV is in M , and
Ad(ρ(G))M ⊆ M.

Proof. Theorem A(1) gives a representation ρ so that Trρ is nondegenerate. In
particular, the restriction of the symmetic bilinear form (x, y) 7→ trace(xy) on
gl(V ) to dρ(Lie(G)) is nondegenerate. (And obviously dρ must be injective.)

Take M to be the space of x ∈ gl(V ) such that trace(dρ(Lie(G))x) = 0. Triv-
ially, M is invariant under Ad(ρ(G)). Nondegeneracy of Trρ shows that M meets
dρ(Lie(G)) only at 0, and dimension count shows that V = dρ(Lie(G))⊕M . As
G is semisimple, the image ρ(G) is contained in SL(V ), hence dρ(Lie(G)) lies in
sl(V ), that is, IdV belongs to M . �

The proposition is essentially known, but the usual argument as in [Richardson
1967, §5], [Jantzen 2004, 2.6], [Humphreys 1995, p. 48], or [Springer and Stein-
berg 1970, p. 184] is different. For example, the usual approach to treating an
adjoint group G of type Cn or Dn replaces G with its covering G ′ = Sp2n or SO2n

and then gives a representation of G ′ with the desired properties.

9. Complements: Characteristic 2

In characteristic 2, one might prefer to consider, instead of the symmetric bilinear
form Trρ , the quadratic form

sρ : x 7→ − trace
(
∧2dρ(x)

)
,
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which gives the negative of the degree 2 coefficient of the characteristic polynomial
of dρ(x). (Because dρ(Lie(G)) consists of trace zero matrices, sρ is the map x 7→
trace(dρ(x)2)/2; our definition has the advantage that it obviously makes sense
in characteristic 2 as well.) The bilinear form derived from sρ , that is, (x, y) 7→
sρ(x + y)− sρ(x)− sρ(y), is Trρ .

Theorem A(2) is easy to extend. In case G is simply connected, Lie(G) is a
Weyl module by 2.5 and sρ is zero if and only if Trρ is zero by [Garibaldi 2008,
Proposition 6.4(1)]. That is, the conditions in Theorem A(2) are equivalent to:
For every representation ρ of G, the quadratic form sρ is zero. (This is true in all
characteristics but is only nontrivial in characteristic 2.)

Alternatively, one can proceed as follows. The bilinear form b̃ on Lie(G̃Z) is
even [Gross and Nebe 2004, Proposition 4], so it is the bilinear form derived from
a unique quadratic form q̃ on Lie(G̃Z). The form q̃ extends to a rational-valued
quadratic form on Lie(GZ) and we write Eq(G) for the smallest positive rational
number such that Eq(G) q̃ is integer-valued on Lie(GZ). The number Eq(G) is
E(G) or 2E(G), and both cases can occur. (For example, take G = G̃ or SO2l ,
respectively.) The statements and proofs of 4.4 and 4.5 go through if we replace
Trρ , E(G), and b with sρ , Eq(G), and Eq(G) q̃ respectively.

10. Complements: Nonsplit groups

We can extend our results above to the case where G is not split, that is, we can
replace the hypotheses “G is split and almost simple” with “G is absolutely almost
simple”. Indeed, suppose that G is absolutely almost simple over F , that is, there
is a split and almost simple group G ′ over F and an isomorphism f : G ′ → G
defined over a separable closure Fsep of F . Fix a pinning for G ′ and write b′ for
the indivisible bilinear form on Lie(G ′Z) defined in 3.1. Clearly, the automorphism
group of G ′, which is an affine group scheme over Z, leaves b′ invariant, so it
maps into the orthogonal group of b′. Galois descent (via f ) gives a G-invariant
symmetric bilinear form bF on Lie(G) such that the differential d f identifies b′F⊗
Fsep with bF ⊗ Fsep.

Given a representation ρ of G over F , we get a representation ρ f of G ′ over
Fsep and an integer N (ρ f ) defined in 1.3; put N (ρ) := N (ρ f ). (In the special case
where G is split over F , this agrees with our previous definition.) We define N (G)
as in (1.4); it is the gcd of N (ρ) as ρ varies over the representations of G defined
over F . Obviously, N (G) is divisible by N (G Fsep), that is, N (G ′), and it depends
on the field F .

We put E(G) := E(G ′). It does not depend on the field F .
With these definitions for N (G) and E(G), conclusions (1) and (2) of Propo-

sition 4.1 hold for absolutely almost simple G. Indeed, it suffices to check them
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over Fsep, where they hold by the original version of the proposition. It follows
immediately that the conclusions of 4.4 and 4.5 hold for every absolutely almost
simple group G.

We now extend Theorem A. Recall that there is a natural action of the absolute
Galois group Gal(F) of F on the Dynkin diagram 1 of G [Tits 1966, 2.3]. As in
[Tits 1966, p. 54], we say, for example, that G has type 3D4 if 1 has type D4 and
the image of the map Gal(F)→Aut(1) has order 3. We say that the characteristic
of F is not very good for G if and only if it is not very good for the corresponding
split group G ′; these primes are listed in the middle column of Table I.

Theorem A′. Let G be an absolutely almost simple algebraic group over a field
F.

(1) Every representation ρ of G over F has Trρ degenerate if and only if the
characteristic of F

divides 2n if G has type 2An−1 for some odd n ≥ 3;

is 2 or 3 if G has type 3D4 or 6D4;

is not very good for G otherwise.

(2) Suppose G is not simply connected and not of type A. Every representation of
G has Trρ zero if and only if the characteristic of F is as in the table:

type of G charF

Bn (n ≥ 3); Cn (n ≥ 2); 1Dn or 2Dn (n ≥ 4); or E6 2
3D4, 6D4, E7 2 or 3

Regarding the omitted cases in part (2), for G simply connected, the number
E(G) is 1, so every representation ρ of G has Trρ zero if and only if the char-
acteristic divides N (G) by 4.5; this number (using that G is simply connected) is
calculated in [Merkurjev 2003, §§11–16]. We leave the type A case of (2) as an
exercise for the reader.

Proof of Theorem A′. To prove (2), by 4.5 it remains to show that the primes in the
table are those dividing N (G)/E(G). As N (G ′) divides N (G) and E(G ′) equals
E(G), we have the trivial equation

N (G)
E(G)

=
N (G)
N (G ′)

N (G ′)
E(G ′)

(10.1)

where all three terms are integers. The primes dividing N (G ′)/E(G ′) are listed in
Table I, so it suffices to check which primes divide N (G)/N (G ′) and are not in
that table.
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For G adjoint of type E6, the proof that N (G)/E(G) is a power of 2 from the
end of Section 6 goes through without change.
The proof of [Merkurjev 2003, 10.11] shows that every prime dividing N (G)/N (G ′)
divides the exponent of P/Q (the weight lattice modulo the root lattice) or the order
of the image of Gal(F)→ Aut(1). For G of type Bn (n ≥ 3), Cn (n ≥ 2), 1Dn or
2Dn (n ≥ 4), or E7, the exponent of P/Q is 2 and the image of Gal(F)→Aut(1)
has order at most 2. As 2 divides N (G ′)/E(G ′), part (2) is proved for these groups.

For G adjoint of type 3D4 or 6D4, write G̃ → G for the universal covering of
G. The number N (G̃) is 6 or 12 by [Merkurjev 2003, 16.5] and divides N (G). As
E(G) is 2 by Example 3.5, N (G)/E(G) is divisible by 3. Part (2) of the theorem
is proved.

(We remark that applying the argument from the two previous paragraphs in the
case where G has type An−1 shows that every prime dividing N (G)/N (G ′) divides
2n. If n is odd and ≥ 3 and G has type 2An−1, then 2 divides N (G̃) by [Merkurjev
2003, 12.6] hence also N (G), yet E(G) is odd by Lemma 5.2, so N (G)/E(G) is
even.)

We now prove part (1) by imitating Section 7. We replace (a) with the condition
that the characteristic of F is not as in the statement of Theorem A′(1); we denote
this condition by (a)′.

Suppose that (a)′ holds. The characteristic is very good for G and Lie(G)⊗Fsep

is simple as in 2.6, hence Lie(G) is simple. If G is neither simply connected nor
of type A, then there is a representation ρ of G with Trρ nonzero by part (2) and
(b) holds. If G is simply connected, then checking [Merkurjev 2003] verifies that
N (G) is not divisible by the characteristic and again (b) holds. In the remaining
case where G has type A, the characteristic does not divide N (G ′) by 5.4 nor does
it divide N (G)/N (G ′) by the discussion above; by (10.1), we find that (b) holds.

As in Section 7, (b) trivially implies (c).
Finally, suppose that (a)′ fails; we will show that (c) fails. We assume that the

characteristic is very good, otherwise (c) fails because it does so over Fsep. That
is, we are in one of the cases

(i) charF = 3 and G has type 3D4 or 6D4; or

(ii) charF = 2 and G has type 2An−1 for some odd n.

But in these cases the characteristic divides N (G)/E(G) by the proof of part (2)
above, and (c) fails. �

Example 10.2. Let F be a field of prime characteristic p with a central division
F-algebra A of degree p. Take G to be the group SL(A) whose F-points are the
elements of A with determinant 1. This group is simply connected, so N (G)/E(G)
is p by [Merkurjev 2003, 11.5]. That is, Trρ is zero for every representation ρ of G
over F . On the other hand, N (G Fsep) is 1, so there are representations of G defined
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over Fsep (for example, the natural representation of SLn) that have a trace form
that is not zero.

A similar statement holds for groups of type 3D4 or 6D4 over fields of charac-
teristic 3.

11. Trace forms and Lie algebras

This section collects some results regarding Trψ , where ψ is a representation of the
Lie algebra of an algebraic group G and we do not assume that ψ is the differential
of a representation of G.

11.1. Fix a positive integer n and assume that the characteristic of F is a prime
dividing n and 6= 2, 3. The Lie algebra sln of trace zero n-by-n matrices has center
c the scalar matrices and sln/c is simple [Steinberg 1961, 2.6]. We give a new proof
of:

Proposition 11.2 [Block 1962, Theorem 6.2]. Under the hypotheses of 11.1, every
representation of sln/c has zero trace form.

Proof. For sake of contradiction, suppose that there is an irreducible representa-
tion ψ of sln/c with nonzero trace form. Then ψ is restricted by [Block 1962,
Theorem 5.1], using that F has characteristic 6= 2, 3. The composition of ψ with
sln→ sln/c is a restricted irreducible representation of sln , which is the differential
of a representation ρ of SLn by [Curtis 1960; Steinberg 1963].

By construction Trρ is not zero and dρ vanishes on the scalar matrices. Iden-
tifying the center of SLn with the (nonreduced) group scheme µn identifies the
restriction of ρ to µn with a map x 7→ x l . Our hypothesis on dρ says that l
is divisible by the characteristic p of F , hence ρ factors through the natural map
SLn→SLn/µp. Paragraph 5.3 says that N (ρ) is divisible by p, hence Trρ vanishes
by 4.4, a contradiction.

Since every irreducible representation has zero trace form, the same holds for
every representation like at the end of the proof of Proposition 4.1. �

11.3. Proof of Theorem B. Let G be a group of type E8, and suppose that there
is a representation ψ of Lie(G) such that Trψ is not zero. We may assume that
ψ is irreducible. Then the Block–Premet theorem on page 563 implies that ψ is
restricted, hence is the differential of a representation of G. Theorem A(2) implies
that the characteristic of F is 6= 2, 3, 5. �

We close by proving that over a field of characteristic 5, the Lie algebra of a
group of type E8 has no quotient trace form. For a Lie algebra L over F and a
representation ψ of L , write radψ for the radical of the trace bilinear form Trψ ; it
is an ideal of L .
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Corollary 11.4. For every representation ψ of every Lie algebra L over a field of
characteristic 5, the quotient L/ radψ is not isomorphic to the Lie algebra of an
algebraic group of type E8.

Proof. Suppose the corollary is false. That is, suppose that there is a group G of
type E8 and a Lie algebra L with a representationψ and a surjection π: L→Lie(G)
with kernel the radical of Trψ .

By [Block 1962, Lemma 2.1] — using that the characteristic is 6=2, 3 — we may
assume that the radical of Trψ is contained in the center of L , that is, L is a central
extension of Lie(G). It follows that there is a map f : Lie(G)→ L such that π f
is the identity [Steinberg 1962, Theorem 6.1(c)]. Clearly, the representation ψ f
of Lie(G) has nonzero trace form. As in the proof of Proposition 11.2, we deduce
that G has a representation ρ such that Trρ is not zero, but this is impossible by
Theorem A(2). �
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Appendix: On trace forms of Lie algebras of type E8

by Alexander Premet

All basic notions and results of modular Lie theory used in this appendix can be
found in [Premet 1995] and references therein.

Let G be an algebraic group of type E8 over an algebraically closed field of
characteristic p> 0 and g=Lie(G). It is well known that g is a simple Lie algebra
carrying an (Ad G)-equivariant [p]-th power map x 7→ x [p]. Since the universal
enveloping algebra U (g) is a finite module over its central subalgebra generated
by all x p

− x [p] with x ∈ g, all irreducible g-modules are finite dimensional. Fur-
thermore, for every irreducible g-module M there is a linear function ξ = ξM on g

such that x p
− x [p] acts on M as the scalar operator ξ(x)p IdM . The function ξM is

called the p-character of M . Denote by Iξ the two-sided ideal of U (g) generated
by all elements x p

− x [p]− ξ(x)p, where x ∈ g. The factor-algebra of U (g)/Iξ is
called the reduced enveloping algebra associated with ξ and denoted Uξ (g). It has
dimension pdim g. Clearly, M is a Uξ (g)-module. We say that M is restricted if
ξM = 0.
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For p> 3, the theorem below was first proved in [Block 1962]. The aim of this
appendix is to give a proof valid in any positive characteristic.

Theorem. If ψ : g→ gl(V ) is an irreducible representation with Trψ 6= 0, then V
is a restricted g-module.

Proof. Suppose ψ is not restricted and let χ be the p-character of V . Then χ is a
nonzero linear function on g. We show that Trψ is zero.

Let T be a maximal torus of G and t := Lie(T ). As in sections 1 and 2, we
write R for the root system of G relative to T and hα for the image of the coroot
α∨ in t :=Lie(T ). (In our case, the group G is both adjoint and simply connected.)
Since g is an irreducible (Ad G)-module, every nonzero adjoint G-orbit spans g.
Thus, replacing t by its G-conjugate if necessary, we may assume that χ(hβ) 6= 0
for some β ∈ R.

There are root vectors e±β ∈g±β such that s := Fe−β⊕Fhβ⊕Feβ is isomorphic
to sl2. Replacing t by its conjugate (Ad x−β(λ))(t) for a suitable x−β(λ) in the
unipotent root subgroup U−β of G, we may assume without loss of generality that
χ |s 6= 0 and χ(eβ)= 0. Then every s-composition factor M of V is a baby Verma
module, that is, M ∼= Zξ (a), where ξ = χ |s and a ∈ F is a root of the equation
X p
− X = ξ(hα)p. Note that dim M = p, the operator hβ acts semisimply on M ,

and the hβ-weights of M are a, a− 2, . . . , a− 2(p− 1).
First suppose p> 3. Then traceM(h2

β)=
∑p−1

i=0 (a−2i)2= pa2
−2ap(p−1)+

2
3(p− 1)p(2p− 1) = 0. Since this holds for every s-composition factor M of V ,
we obtain Trψ(hβ, hβ) = 0. As g is a simple Lie algebra and Trψ is g-invariant,
Trψ is a multiple of the form bF from Section 4. Hence Trψ is zero.

Next suppose p = 3. Then the hβ-weights of M are a, a + 1, a − 1, hence
traceM(h2

β)=a2
+(a+1)2+(a−1)2=2. It follows that traceM(h2

β) is independent
of M . Since all s-composition factors of V are three-dimensional, we deduce that
Trψ(hβ, hβ)= 2(dim V )/3. Note that s can be included into a Levi subalgebra of
type A7; call it l. Since s⊂ l, all l-composition factors of V have the same nonzero
p-character. But then the Kac–Weisfeiler conjecture, which thanks to [Premet
1995, Theorem 3.10] holds for sl8 in characteristic 3, implies that all such factors
have dimension divisible by 9. Then 9 divides dim V , forcing Trψ(hβ, hβ) = 0.
As in the p > 3 case, Trψ is zero.

Finally, suppose p = 2. Then the sl2-algebra s = Fe⊕ Fh ⊕ F f is nilpotent
and h lies in the center of s. However, the reduced enveloping algebra Uξ (s) is
semisimple whenever ξ(h) 6= 0. Indeed, Uξ (s) then possesses two nonequivalent
two-dimensional irreducible modules, M and N , induced from one-dimensional
modules over a Borel subalgebra of s. The central element h of s acts on M and N
by different scalars. There are exactly two choices here, namely, a and a+1, where
a is a root of the equation X2

− X = ξ(h)2. As a consequence, Uξ (s) maps onto
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a direct sum of two copies of Mat2(F). Since dim Uξ (s) = 23
= 8, this map is an

isomorphism. Thus, Uξ (s) is semisimple with two isoclasses of simple modules,
both of which are two-dimensional.

Suppose now that we have found two commuting sl2-subalgebras si = Fei ⊕

Fhi ⊕ F fi in g, where i = 1, 2, such that

(a) the sum s1+ s2 is direct;

(b) χ(hi ) 6= 0 for i = 1, 2;

(c) e1 ∈ gγ and f1 ∈ g−γ for some γ ∈ R.

Our preceding remark then would show that V is a semisimple module over the
subalgebra Uχ (s1⊕s2)∼=Uχ (s1)⊗Uχ (s2) of Uχ (g) (to ease notation, we identify
χ with its restriction to si , i = 1, 2). Let M and N be two irreducibles for Uχ (s1)

described earlier. Then V decomposes as a tensor product V = (M⊗P)
⊕
(N⊗Q)

for some semisimple Uχ (s2)-modules P and Q. Therefore,

Trψ(e1, f1)= r dim P + s dim Q,

where r = traceM(e1 f1) and s = traceN (e1 f1). As both P and Q must have even
dimension by our preceding remark, this would yield Trψ(gγ , g−γ ) = 0. Hence
Trψ = 0 by (3.2), using that γ is (trivially) a long root.

So it remains to find two commuting sl2-triples as above. We adopt Bourbaki’s
numbering of simple roots; see [Bourbaki 2002]. Since χ 6= 0 and the adjoint
G-orbit of eα7 spans g by the simplicity of g, we may assume that χ(eα7) 6= 0.
If χ(hα6) 6= 0 and χ(hα8) 6= 0, then we can take s1 = Feα6 ⊕ Fhα6 ⊕ Fe−α6

and s2 = Feα8 ⊕ Fhα8 ⊕ Fe−α8 . If this is not the case, then we replace t by
(Ad xα7(t0))(t) for a suitable xα7(t0) in the unipotent root subgroup Uα7 of G.

There exists b ∈ F× such that for every t ∈ F we have

(Ad xα7(t))(hαi )= hαi + tb[eα7, hαi ] = hαi + tbeα7, i = 6, 8.

As χ(eα7) 6= 0, we can find t0 ∈ F such that

χ(hα6 + t0beα7) 6= 0 and χ(hα8 + t0beα7) 6= 0.

Hence we can take (Ad xα7(t0))(si ), i = 1, 2, as our sl2-triples. This completes the
proof. �
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Compatible associative products and trees
Vladimir Dotsenko

We compute dimensions and characters of the components of the operad of two
compatible associative products and give an explicit combinatorial construction
of the corresponding free algebras in terms of planar rooted trees.

1. Introduction

Description of results. An algebra with two compatible associative products is a
vector space V equipped with two binary operations such that each of them is
an associative product and these two products are compatible (that is, any linear
combination of these products is again an associative product). Such algebras
were recently studied by Odesskii and Sokolov [2006], who classified simple finite-
dimensional algebras of this type. In this paper, we study another extreme case: free
algebras of this type. Namely, we compute dimensions of graded components of
this algebra, and also give an interpretation of operations in terms of combinatorics
of planar rooted trees.

Just as for an arbitrary algebraic structure, to get information about free algebras,
one first computes the Sn-module structure (with respect to the action by permu-
tations of the generators) on the “multilinear part” (that is, the space of elements
in which each of the generators occurs exactly once) of the free algebra with n
generators. Then this information is used in a rather straightforward way to compute
the dimensions of all graded components.

As our computation shows the free 1-generated algebra with two compatible
products has Catalan numbers as dimensions of its graded components. We provide
a materialisation of this formula describing two compatible products on planar
rooted trees and proving that the algebra of planar rooted trees is a free algebra with
two compatible products. (We actually give a more general construction which is
valid for any number of generators.) We use this construction to obtain yet another
proof of the results on the Grossman–Larson algebra of planar rooted trees.

MSC2000: primary 08B20; secondary 18D50, 05C05.
Keywords: operads, Koszul duality, compatible structures.
The author was partially supported by CNRS–RFBR grant no. 07-01-92214, by the President of the
Russian Federation grant no. NSH-3472.2008.2 and by an IRCSET research fellowship.
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Machinery. To compute dimensions and characters for spaces of multilinear ele-
ments, we use Koszul duality for operads and the theory of Koszul operads developed
by V. Ginzburg and M. Kapranov. It turns out that the Koszul dual to the operad of
two compatible products is much simpler than the original operad. For any Koszul
operad, information on the dimensions of its components can be used to obtain
similar information for the dual operad. Namely, the following assertion is true.

Proposition 1.1 [Ginzburg and Kapranov 1994]. Let fO(x) :=
∑
∞

n=1
dim O(n)

n!
xn .

If O is a Koszul operad, then

fO(− fO!(−x))= x .

A similar functional equation holds for the generating functions of characters of
representations of the symmetric groups in the components of an operad.

Example 1.2. For the associative operad As, we have dim As(n) = n! , and thus
fAs(x) = x/(1− x). This operad is Koszul and self-dual, which agrees with the
functional equation

x
1+x

1− x
1+x

= x .

Koszulness of the operad of two compatible products was proved in [Strohmayer
2008], and this result is crucial for us. In our study of free algebras over As2, we
use a simple but very elegant idea [Chapoton 2007; Fresse 1998] which applies in
many cases when one wants to prove that some class of algebras consists of free
algebras.

Outline of the paper. Throughout the paper, we assume that the reader is familiar
with the main notions of operad theory. Still we briefly remind the reader of some
of them when they appear in the text.

In Section 2, we recall some standard definitions of operad theory, define the
operad of two compatible brackets, and list necessary facts about Koszul duality for
operads. In Section 3, we compute the generating functions for the characters of our
operads using functional equations on these generating functions and use them to
identify the corresponding representations. In Section 4, we construct a monomial
basis in the multilinear part of the free algebra with two compatible products. In
Section 5, we prove that free algebras with two compatible products are free as
associative algebras. In Section 6, we relate compatible associative products to
combinatorics of trees. It turns out that the linear span of planar rooted trees has two
compatible associative products and that the resulting algebra is a free algebra with
two compatible products. We also give another proof of the result of [Grossman
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and Larson 1989] on the algebra of planar rooted trees. We conclude with some
remarks and conjectural generalisations for other compatible structures.

All vector spaces and algebras throughout this paper are defined over an arbitrary
field of zero characteristic.

2. Operads: summary

S-modules and operads. An S-module is a collection {V (n), n ≥ 1} of vector
spaces, where each V (k) is an Sk-module. Morphisms, direct sums, tensor products
and duals of such objects are defined in the most straightforward way.

The module Det, where Det(n) is the sign representation of Sn , is an important
example of an S-module. We need the following version of the dual module:
V ∨ = V ∗⊗Det; this is the ordinary dual twisted by the sign representation. In
some cases, we consider differential graded S-modules; all preceding constructions
are defined for them in a similar way. The graded analogue of Det is denoted
by E ; the space E (n)1−n is one-dimensional and is the sign representation of the
symmetric group, while all other spaces E (n)k are zero.

Each S-module V gives rise to a functor from the category Fin of finite sets
(with bijections as morphisms) to the category of vector spaces. Namely, for a set
I of cardinality n let

VI = kHomFin([n], I )⊗kSn V (n).

(Here [n] stands for the “standard” set {1, 2, . . . , n}.) This space is often denoted
by V (I ); we prefer to use a different notation to avoid confusion with free algebras
later.

For S-modules V and W , define the composition V ◦W as

(V ◦W )(n)=
n⊕

m=1

V (m)⊗kSm

( ⊕
f : [n]�[m]

m⊗
l=1

W f −1(l)

)
,

where the sum is taken over all surjections f . This operation equips the category
of S-modules with a structure of a monoidal category. An operad is a monoid in
this category. See [Markl et al. 2002] for a more detailed definition. To simplify
the definitions, we consider in this paper only operads O with O(1)= k.

Let V be a vector space. By definition, the operad EndV of linear mappings is
the collection {EndV (n)= Hom(V⊗n, V ), n ≥ 1} of all multilinear mappings of V
into itself with the obvious composition maps.

Using the operad of linear mappings, we can define an algebra over an operad O;
a structure of such an algebra on a vector space is a morphism of the operad O into
the corresponding operad of linear mappings. Thus an algebra over an operad O
is a vector space W together with a collection O(n)⊗kSn W⊗n

→W of mappings
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with obvious compatibility conditions. The free algebra generated by a vector space
X over an operad O is

O(X) := O ◦ X =
∞⊕

k=1

O(n)⊗kSn X⊗n.

Operads defined by generators and relations. The free operad FG generated by
an S-module G (with G (1) = 0) is defined as follows. A basis in this operad
consists of some species of trees. These trees have a distinguished root (of degree
one). A tree belonging to FG (n) has exactly n leaves, its internal vertices (neither
leaves nor the root) labelled by basis elements of G , any vertex with k siblings
being labelled by an element of G (k). The unique tree whose set of internal vertices
is empty generates the one-dimensional space FG (1). The composition of a tree t
with l leaves and trees t1, . . . , tl glues the roots of t1, . . . , tl to the respective leaves
of t . (In every case, two edges glued together become one edge, and the common
vertex becomes an interior point of this edge.)

Free operads are used to define operads by generators and relations. Let G be
an S-module, and let R be an S-submodule in FG . An (operadic) ideal generated
by R in FG is the linear span of all trees such that at least one internal vertex is
labelled by an element of R. An operad with generators G and relations R is the
quotient of the free operad FG modulo this ideal.

Definition 2.1. The associative operad As is generated by one binary operation
? : a, b 7→ a ? b. The relations in this operad are equivalent to the associativity
condition for every algebra over this operad:

(a ? b) ? c = a ? (b ? c).

The operad of two compatible associative products As2 is generated by two
binary operations (products) ?1 and ?2. The relations in this operad are equivalent to
the following identities in each algebra over this operad: the associativity conditions

(a ?1 b) ?1 c = a ?1 (b ?1 c) and (a ?2 b) ?2 c = a ?2 (b ?2 c)

for products and the four-term relation

(a ?1 b) ?2 c+ (a ?2 b) ?1 c = a ?1 (b ?2 c)+ a ?2 (b ?1 c) (2-1)

between the products.

Koszul duality for operads. Let an operad O be defined by a set of binary operations
B with quadratic relations R (that is, relations involving ternary operations obtained
by compositions from the given binary operations). In this case, O is said to be
quadratic. For quadratic operads, there is an analogue of Koszul duality for quadratic
algebras. To a quadratic operad O , this duality assigns the operad O ! with generators
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B∨ and with the annihilator of R under the natural pairing as the space of relations.
Just as in the case of quadratic algebras, (O !)! ' O .

Example 2.2 [Ginzburg and Kapranov 1994]. The operad As is self-dual:

As! ' As .

The cobar complex C(O) of an operad O is the free operad with generators
{O∗(n), n ≥ 2} equipped with a differential d with d2

= 0 (see [Markl et al. 2002]
for details). Once again we use twisting by the sign, now to get another version
of the cobar complex, D(O) = C(O)⊗ E . The zeroth cohomology of D(O) is
isomorphic to the operad O !.

Definition 2.3. An operad O is said to be Koszul if H i (D(O))= 0 for i 6= 0.

Proposition 2.4 [Strohmayer 2008]. The operad As2 is Koszul.

Generating functions and characters. As we mentioned above, to each operad
(and more generally, to each S-module) O one can assign the formal power series
(the exponential generating function of the dimensions)

fO(x)=
∞∑

n=1

dim O(n)
n!

xn,

and if O is a Koszul operad, then fO(− fO !(−x))= x .
This functional equation is an immediate corollary of a functional equation

relating more general generating functions that will be defined now.
The character of a representation M of the symmetric group Sn can be identified

[Macdonald 1995] with a symmetric polynomial FM(x1, x2, . . . ) of degree n in
infinitely many variables. To each S-module V we assign the element

FV (x1, . . . , xk, . . . )=
∑
n≥1

FV (n)(x1, . . . , xk, . . . )

of the algebra 3 of symmetric functions. This algebra is the completion of the
algebra of symmetric polynomials in infinitely many variables with respect to the
valuation defined by the degree of a polynomial. It is isomorphic to the algebra
of formal power series in Newton power sums p1, . . . , pn, . . . . The series FV is a
generating series for the characters of symmetric groups. Namely, by multiplying the
coefficient of pn1

1 . . . pnk
k by 1n1n1! . . . knk nk !, we obtain the value of the character

of V (n) on a permutation whose decomposition into disjoint cycles contains n1

cycles of length 1, . . . , nk cycles of length k. This definition can be generalised
to the case of differential graded modules; for such a module V =

⊕
i Vi we set

FV =
∑

i (−1)i FVi (the Euler characteristic of V ).
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If V is equipped with an action of a group G commuting with the action of the
symmetric groups, then for each n the group Sn×G acts on the space V (n). In this
case, to V we assign an element of the algebra 3G of symmetric functions over the
character ring of G (or, in other words, a character of G ranging over symmetric
functions). We denote this element by FV (x1, . . . , xn, . . . ; g), where g ∈ G.

Remark 2.5. Further in this text we use the following properties of specialisations
of our generating functions:

(1) fV (x)= FV (p1, . . . )|p1=x, p2=p3=···=0.

(2) FV (p1, . . . )= FV (p1, . . . ; g)|g=e, where e is the identity element of the group
G.

(3) for any finite-dimensional vector space V (considered as an S-module concen-
trated in degree 1),

fV (V )(x)= FV (p1, . . . )|p1=x dim V, p2=x2 dim V, p3=x3 dim V,...,

where V (V )= V ◦ V and fV (V )(x) is the generating function for dimensions
of the (graded) vector space V (V ).

Functional equation for characters.

Definition 2.6. Fix H(x1, x2, . . . ; g)∈3G . The plethysm corresponding to H (the
plethystic substitution of H ) is the algebra homomorphism F 7→ F ◦ H of 3G

into itself that is linear over the character ring of G and is defined on symmetric
functions by pn ◦ H = H(xn

1 , xn
2 , . . . ; g

n).

In particular,

pn ◦ (H(p1, p2, . . . , pk, . . . ; g))= H(pn, p2n, . . . , pkn, . . . ; gn).

Let ε be the involution of 3G linear over the character ring of G and taking pn

to −pn .

Theorem 2.7 [Dotsenko and Khoroshkin 2007]. Suppose that the operad O is
Koszul. Then the following equation holds in 3G :

ε(FO) ◦ ε(FO !)= p1.

3. Calculation of dimensions and characters

Note that the components of As2 and (As2)! are equipped with an action of SL2

(arising from the action on the space of generators of the operad As2), which
commutes with the action of the symmetric groups. All information about these
operads will follow from the functional equation on the characters and the explicit
description of the representation (As2)!(n) of the group SL2×Sn .
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The character ring of SL2 is isomorphic to the ring of Laurent polynomials
in one variable q — for example, the character of the n-dimensional irreducible
representation L(n − 1) is equal to (qn

− q−n)/(q − q−1). The element of 3SL2

corresponding to an S-module V is denoted by FV (p1, . . . , pn, . . . ; q). This
notation differs a little from the one introduced above, but we hope that this will
not lead to confusion. In this case, the plethysm is defined by pn ◦ q = qn .

Theorem 3.1. For the operad of two compatible associative products, we have

fAs2(x)=
∑
n≥1

cnxn, FAs2(p1, . . .)=
∑
n≥1

cn pn
1 ,

FAs2(p1, . . . ; q)=
∑
n≥1

pn
1(q

n−1
+ Nn,1qn−3

+ · · ·+ Nn,kqn−1−2k
+ · · ·),

where cn =
1

n+1

(2n
n

)
and Nn,k =

1
n

(n
k

)( n
k+1

)
are the Catalan and Narayana

numbers.

Proof. Note that the substitution p1 = x transforms the second formula into the
first one, and the substitution q = 1 transforms the third equation into the second
(Narayana numbers refine Catalan numbers; see [Stanley 1999]). Thus, the third
statement implies the other two, so we shall restrict ourselves to proving only the
former. From the results from [Strohmayer 2008] (combined with results from
[Dotsenko and Khoroshkin 2007] on SL2-modules), it follows that as an Sn × SL2-
module,

(As2)!(n)=QSn ⊗ L(n− 1).

Thus, the Sn ×SL2-character of the Koszul dual operad is given by the formula∑
n≥1

qn
− q−n

q − q−1 pn
1 =

p1

(1− qp1)(1− q−1 p1)
.

The functional equation for characters implies that the character

FAs2(p1, . . . , pn, . . . ; q)

satisfies
FAs2

(1+ q FAs2)(1+ q−1 FAs2)
= p1. (3-1)

From this equation it is clear that FAs2(p1, . . . ; q) depends only on p1 (and q).
On the other hand, it is well known (see, for example, [Stanley 1999], which

should be adjusted to our parametrisation of Narayana numbers) that the generating
function

N (t, x)= 1+
∞∑

n=1

n−1∑
k=0

Nn,k tnxk
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of Narayana numbers satisfies the equation

t x N 2(t, x)− t x N (t, x)+ t N (t, x)− N (t, x)+ 1= 0. (3-2)

It is easy to see that the third statement of the theorem is equivalent to the following
equation for generating functions:

N (p1q−1, q2)= 1+ q−1 FAs2(p1, q).

Let
N (p1q−1, q2)= 1+ q−1G(p1, q).

From the functional (3-2) we deduce that G satisfies

p1q(1+ q−1G)2− p1q(1+ q−1G)+
p1

q
(1+ q−1G)− (1+ q−1G)+ 1= 0,

which can be rewritten as

p1(1+ (q + q−1)G+G2)= G.

The latter equation coincides with (3-1), and determines G uniquely; thus G= FAs2 .
�

Corollary 3.2. (1) As Sn-module, As2(n) is free of rank cn .

(2) As Sn ×SL2-module,

As2(n)'QSn ⊗ (L(n− 1)+ L(n− 3)Nn,1−1
+ L(n− 5)N (n,2)−N (n,1)

+ · · ·).

Proof. The SL2-character of the module

L(n− 1)+ L(n− 3)Nn,1−1
+ L(n− 5)N (n,2)−N (n,1)

+ · · ·

is equal to

qn−1
+ Nn,1qn−3

+ Nn,2qn−5
+ · · ·+ Nn,kqn−1−2k

+ · · ·+ Nn,n−1q1−n,

so the second statement follows. The first statement is obtained from the second
one, if we forget about the SL2-action. �

Corollary 3.3. The dimension of the k-th component of As2(V ), the free As2-
algebra generated by a vector space V, is equal to ck(dim V )k . In particular, the
dimension of the k-th graded component of the free As2-algebra with one generator
is equal to the k-th Catalan number.

Proof. This follows immediately from our previous results: we just apply the third
formula of Remark 2.5 to As2(V ). �

Remark 3.4. The relations in As2 do not change the order of arguments of the
operations. This means that this operad is a symmetrisation of a nonsymmetric
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operad, which justifies our observations above that

• As2(n) is free as an Sn-module,

• dim As2(V )k =
dim As2(k)

k!
(dim V )k , and

• FAs2(p1, . . . ; q) depends only on p1 (and q).

(No recourse to the functional equation is necessary, since these observations are
reflections of a general fact on symmetrisations of nonsymmetric operads.)

4. A monomial basis for As2

In this section we describe a monomial basis for the components of the operad
As2. One can compare the methods and structure of this paragraph to the same in
[Dotsenko and Khoroshkin 2007] in the case of the operad of two compatible Lie
brackets. In this section, we prefer to think of components of our operad in terms
of the multilinear elements in free algebras.

Definition 4.1. Given a finite ordered set

A = {a1, a2, . . . , an},

with a1 < a2 < · · · < an , define a family of monomials B(A) in the free algebra
As2(A) recursively. Our recursive definition also assigns to a monomial m its “top
level operation” t (m) ∈ {1, 2}, which is used to define further monomials.

• For A = {a1}, let B(A)= {a1}, and let t (a1)= 1.

• For n > 1, a monomial b belongs to B(A) if and only if it satisfies one of the
two conditions:

(1) b = ak ?1 b′, where 1 ≤ k ≤ n and b′ ∈B(A \ {ak}); in this case we put
t (b)= 1.

(2) b = b1 ?2 b2, where b1 ∈B(A1), b2 ∈B(A2) for some A1 t A2 = A, and
t (b1)= 1; in this case we put t (b)= 2.

Theorem 4.2. The family of monomials B(A) provides a basis for the multilinear
part of the free algebra As2(A).

Proof. We shall prove that this family spans the multilinear part of As2(A), and
that its number of elements is equal to the dimension of this component — that is,
the dimension of As2(|A|). It will follow that it has to be a basis.

Lemma 4.3. The family of monomials B(A) spans the multilinear part of As2(A).

Proof. Consider a monomial m. It is a product of two monomials, and by induction
we can assume that they both belong to families B(A′) for some sets A′⊂ A. Using
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the associativity property for each of the products, we are left with only one case in
which m does not belong to B(A), namely

m = (m1 ?2 m2) ?1 m3

for some m1, m2, m3. In this case, we use the compatibility relation (2-1):

m = m1 ?2 (m2 ?1 m3)+m1 ?1 (m2 ?2 m3)− (m1 ?1 m2) ?2 m3,

which shows that we can proceed by induction: in the first two summands, the
degree of the first factor has decreased, and the last summand has fewer products
of the second type in its first factor. �

Lemma 4.4. The number of elements in B(A) is equal to (2|A|)!/(|A| + 1)!.

Proof. Let βn =|B([n])|. Moreover, for i = 1, 2 let βi,n =|Bi ([n])|, where Bi ([n])
is the set of all monomials b ∈B([n]) with t (b)= i . We use exponential generating
functions again:

β(x)=
∑
l≥1

βl x l

l!
, βi (x)=

∑
l≥1

βi,l x l

l!
,

The first condition implies that β1,n+1 = (n+ 1)βn, which can be rewritten as

β1(x)− x = xβ(x). (4-1)

The definition of B([n]) basically means that on the level of S-modules,

B2(n)= (As ◦B1)(n)

for n ≥ 2, so
β2(x)= ( fAs(x)− x) ◦β1(x).

Let us rewrite this equation using the formulae

β1(x)+β2(x)= β(x) and fAs(x)=
x

1− x
.

We get
β(x)=

β1(x)
1−β1(x)

. (4-2)

This can be rewritten as β1(x)=
β(x)

1+β(x)
. Now we can substitute it into (4-1), and

get the equation
β(x)

1+β(x)
= x(1+β(x)),

which coincides with the functional equation for fAs2(x) obtained from (3-1) by
setting q = 1. This concludes the proof of the lemma and of Theorem 4.2. �
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5. Free algebras over As2

In this section, we prove that any free algebra with two compatible products is
free as an associative algebra. Let us recall a theorem which is one of the main
ingredients in our proof.

A criterion for free algebras. Let P be an operad. Assume that P(1) = Q and
let P+ be the S-module such that P =P(1)⊕P+. Let A be a P-algebra
in the category of S-modules. The structure of a P-algebra on A is given by a
morphism µ : P ◦A →A .

Let us define a decreasing P-algebra filtration of A : for each k ≥ 0 we a define
a subspace A≥k of A . Let A≥0 be A , and for k > 0 let A≥k be the image under µ
of P+

◦A≥k−1.
We will assume that this filtration is separating, which is true, for instance, if A

has a grading concentrated in positive degrees.
Let us define H0(A ) to be the degree 0 component A≥0/A≥1 of the associated

graded P-algebra gr A .
Let us choose a section of H0(A ) in A . Consider P(H0(A )), that is the

free P-algebra generated by H0(A ). Then there exists a unique morphism θ of
P-algebras from P(H0(A )) to A extending the chosen section.

Theorem 5.1 [Chapoton 2007; Fresse 1998]. The morphism θ is surjective. There-
fore, if dimensions (or graded characters) of A and P(H0(A )) are equal, then θ
is an isomorphism.

Free algebras with two compatible products are free.

Theorem 5.2. Free algebras with two compatible brackets are free as associative
algebras.

Proof. Let us first prove that there exists an S-module G such that the S-modules
As2 and As ◦G are isomorphic. To do that, we apply the above criterion for free
algebras in the case P =As and A =As2, where the P-algebra structure is given
by the second product. This means that we should put G := H0(A ), and in order to
prove our theorem, we only need to prove that graded characters of As2 and As ◦G
are equal. This is guaranteed by the next lemma.

Lemma 5.3. (1) For each component of As2, the part of its monomial basis
consisting of elements b with t (b)= 1 can be taken as a lift θ : G → As2;

(2) fAs2(x)= fAs ◦ fG (x).

Proof. From our proof of the spanning property, it follows that any monomial for
which the top level operation is the second product belongs to the subspace spanned
by all basis elements b with t (b) = 2, so the quotient by the space of all such
monomials is identified with the complementary subspace.



578 Vladimir Dotsenko

Also, the (4-2) is
fAs2(x)= fAs ◦β1(x),

which is exactly what our second statement claims. �

Now we are ready to prove our theorem. For a vector space V ,

As2(V )' As(G (V )),

so the free As2-algebra with generators V is isomorphic to the free associative
algebra with generators G (V ). �

6. Labelled rooted trees and compatible products

A planar rooted tree is an abstract rooted tree with a linear order on the set of
children of every vertex. Alternatively, one can imagine a tree embedded into the
plane in such a way that all children of any vertex v have their y-coordinates less
than the y-coordinate of v (in this case, the linear order appears from reading the
outgoing edges from left to right).

Proposition 6.1 [Stanley 1999]. The number of planar rooted trees with n + 1
vertices is equal to the Catalan number cn .

Thus, if we consider the planar rooted trees with k+ 1 vertices equipped with a
labelling of all nonroot vertices by elements of some finite set S, the number of
these objects is equal to ck(#S)k , which is, by Corollary 3.3, equal to the dimension
of the k-th component of the free As2-algebra generated by S. In the remaining
part of this section, we show that this fact is not a mere coincidence. Namely, we
define two compatible associative products on the linear span of all planar rooted
trees with S-labeled nonroot vertices, and show that this linear span is free as an
As2-algebra.

Denote by RT(S) the collection of all planar rooted trees whose nonroot vertices
are labeled by elements of a finite set S (possibly with repeated labels). We start by
defining several operations on the linear span QRT(S).

Definition 6.2. Let T1, T2 ∈ RT(S). Define the tree T1 · T2 as the tree obtained by
identifying the roots of T1 and T2; the linear ordering of the children of this vertex
is uniquely defined by the condition that all children coming from T1 precede all
children coming from T2. This operation is associative, and every T ∈RT(S) whose
root has k children can be uniquely decomposed as T = T [1] · T [2] · · · · · T [k],
where for each j the root of the tree T [ j] has only one child.

Let us denote by Vertices(T ) the set of all vertices of a tree T ∈RT(S) (including
the root), and by Internal(T ) the set of all internal vertices of T .

Definition 6.3. Let T1, T2 ∈ RT(S). Assume that the root of T1 has k children (as
in Definition 6.2).
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(1) To every mapping f : [k]→Vertices(T2) we assign a new tree T1 ◦
f T2 which

is obtained as follows. For each v ∈ Vertices(T2) we let

f −1(v)= {i1 < · · ·< is},

form a tree T1[i1] · · · · ·T1[is], and identify the root of this tree with the vertex
v (keeping the label of v) in a way that all children of this tree are placed left
of all the children of v in T2.

(2) To every mapping g : [k] → Internal(T2) we assign a new tree T1 ◦g T2 which
is obtained as follows. For each v ∈ Internal(T2) we let

g−1(v)= { j1 < · · ·< jr },

form a tree T1[ j1] · · · · ·T1[ jr ], and identify the root of this tree with the vertex
v (keeping the label of v) in a way that all children of this tree are placed left
of all the children of v in T2.

We now define two products on QRT(S).

Definition 6.4. Let T1, T2 ∈ RT(S). Assume that the root of T1 has k children.
Define the products T1 ?1 T2 and T1 ?2 T2 by

T1 ?1 T2 =
∑

f : [k]→Vertices(T2)

T1 ◦
f T2, (6-1)

T1 ?2 T2 =
∑

g : [k]→Internal(T2)

T1 ◦g T2. (6-2)

Example 6.5. For the trees

T1 =

a

T2 =

b c

the product T1 ?1 T2 is equal to

a b c

+

a

b c

+

a

b c

while the product T1 ?2 T2 is equal to

a b c
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Theorem 6.6. (1) The products ?1 and ?2 are associative and compatible with
each other.

(2) The As2-algebra QRT(S) is isomorphic to the free As2-algebra generated
by S.

Example 6.7. For the trees

T1 =

a

T2 =

b c

T3 =

d
the four products that occur in the compatibility relation (2-1) are as follows.

T1 ?1 (T2 ?2 T3):

a b c d

+

a

b c d

+

a

b c d

+

a

b c d

T1 ?2 (T2 ?1 T3):

a b c d

+

a

b c

d
+

a b c

d
+

a b

c

d

+

a

b

c

d
+

a

b

c d

+

c

a b

d

(T1 ?2 T2) ?1 T3:

a b c d

+

a b c

d
+

a

b c

d
+

b

a c

d
+

c

a b

d
+

c

a b d

+

b

a c d

+

a

b c d

(T1 ?1 T2) ?2 T3:

a b c d

+

a

b c d

+

a

b c d

Thus the compatibility condition is satisfied.

Proof. The associativity conditions for both products are pretty transparent; to show
that all the terms in consecutive product 51 = T1 ?1 (T2 ?1 T3) appear in the product
52 = (T1 ?1 T2) ?1 T3 one should just notice that to obtain the terms in 51 where
subtrees of T1 are attached directly to vertices of T3 (all other terms appear in 52
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for tautological reasons) we should just attach the corresponding subtrees to the root
of T2 when computing T1 ?1 T2 for 52, then we can attach them as required when
computing the final product. The same argument works for the second product.

We shall establish the compatibility condition rewritten in the form

(T1 ?2 T2) ?1 T3− T1 ?2 (T2 ?1 T3)= T1 ?1 (T2 ?2 T3)− (T1 ?1 T2) ?2 T3.

The reason is that for our products both the left hand side and the right hand side
are combinations of trees with nonnegative coefficients, and we can interpret the
summands that appear there in a rather nice and simple way. Namely, the trees
that appear on the left hand side are those for which there exist subtrees of T1

that are attached to some leaves of T3. Obviously, the left hand side has the same
interpretation. Details are simple and we leave them to the reader.

Now we shall prove that the algebra QRT(S) is free as an As2-algebra. Note
that this algebra admits a natural grading by the number of nonroot vertices of a
tree, and the dimensions of graded components are precisely the dimensions of the
graded components of the free As2-algebra generated by S. It remains to show that
our algebra is generated as an As2-algebra by elements of degree 1; it will follow
that it is a quotient of the corresponding free algebra, and since it has the same
dimensions of graded components, these two algebras should be isomorphic. Thus,
it remains to prove the following lemma.

Lemma 6.8. As an As2-algebra, QRT(S) is generated by elements of degree 1.

Proof. We use induction on degree. Assume that all trees of degree at most k are
products of elements of degree 1. We show that the same holds for trees of degree
k + 1. For a tree T , let us call the children of the rightmost child of the root the
principal grandchildren of the root; denote the number of principal grandchildren
by pg(T ). Let us prove the step of induction using the induction on pg(T ).

For pg(T )= 0, the rightmost child of the root is a leaf. Denote by s the label of
that leaf, and by T ′ the tree obtained from T by deleting the rightmost child of the
root. Then

T ′ ?2 T (s)= T,

where T (s) denotes the tree with two vertices whose nonroot vertex is labeled by s.
The degree of T ′ is less, so our statement follows.

For pg(T ) = k, let us denote by T1 the tree obtained from T by deleting all
principal grandchildren of the root (and the trees they are the roots of), but keeping
the rightmost child of the root (and its label). Also, denote by T2 the complementary
tree, that is, the subtree whose root is the rightmost child of the root of T (with its
label deleted). Then the tree expansion of T2 ?1 T1 consists of T and a combination
of other trees T̃ for which pg(T̃ ) < k, so we can proceed by induction. �
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Remark 6.9. Theorem 6.6 can be used to obtain an alternative proof of one of
the main results in [Grossman and Larson 1989]. Namely, since the first product
T1 ?1 T2 is the Grossman–Larson product on QRT(S), it follows from Theorem
5.2 that the Grossman–Larson algebra of planar rooted trees is a free associative
algebra; moreover, from our proofs it is easy to see that as a generating set of this
algebra we can take all trees whose root has only one child. These are exactly the
results of Grossman and Larson.

7. Remarks and open questions

Relation to the Grossman–Larson Hopf algebra structure. Recall that Grossman
and Larson [1989] introduced an algebra of planar rooted trees as a Hopf algebra
with the coproduct defined as follows.

Definition 7.1 [Grossman and Larson 1989]. Define the coproduct

1 : QRT(S)→QRT(S)⊗QRT(S)

by the formula

1(T )=
∑

ItJ=[k]

T [i1] · · · · · T [i p]⊗ T [ j1] · · · · · T [ jq ],

where T = T [1] · · · · · T [k] ∈ QRT(S), and the notation I = {i1 < · · · < i p},
J = { j1 < · · ·< jq} is used.

One could ask what is the relation between this coproduct and the second product
that we introduced.

Proposition 7.2. Consider QRT(S) as an associative algebra with respect to either
of the products ?1, ?2 (and introduce the product on its tensor square accordingly).
Then 1 is an algebra homomorphism.

Proof. For the first product, this statement is proved in [Grossman and Larson 1989].
For the second product, one can use the same proof with some slight modifications
(basically, what should be done is simply forgetting all summands where grafting
to leaves occurs). �

Remark 7.3. It is worth mentioning that although the tensor product of two As2-
algebras can be turned into an As2-algebra in many different ways, two products
on the tensor square of the free algebra that we just described are not compatible;
the family of products

(a1⊗ b1) ?λ,µ (a2⊗ b2)= (λa1 ?1 a2+µa1 ?2 a2)⊗ (λb1 ?1 b2+µb1 ?2 b2)

is a pencil of associative products, but it is not a linear pencil anymore (they
rather resemble pencils of associative products from [Moerdijk 2001]). Thus, the
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relationship between Hopf algebra structure and the structure of an algebra with
two compatible products is yet to be clarified.

Relation to other operads realised by planar trees. The following observation is
due to Loday (private communication).

Remark 7.4. Consider the operad Oq generated by two binary operations ◦ and •
which satisfy the relations

(x ◦ y) ◦ z = x ◦ (y ◦ z),

(x • y) ◦ z+ q(x ◦ y) • z = x • (y ◦ z)+ q x ◦ (y • z),

(x • y) • z = x • (y • z).

Then O0 is the operad Dup of duplicial algebras [Loday 2008], while O1 is the
operad As2.

Also, consider the operad Pt generated by two binary operations ≺ and � which
satisfy the relations

(x ≺ y)≺ z = x ≺ (y ≺ z)+ t x ≺ (y � z),

(x � y)≺ z = x � (y ≺ z),

(x � y)� z+ t (x ≺ y)� z = x � (y � z).

Then P0 is the operad Dup, while P1 is the operad Dend of dendriform algebras
[Loday 2008].

It is known that free algebras over Dend and Dup can be realised by planar
trees. It would be interesting to define in a pure combinatorial way a 2-parameter
family of pairs of binary operations ?1,q,t and ?2,q,t on QRT(S) which have correct
specialisations to q = t = 0 (duplicial case) q = 1, t = 0 (compatible associative
products) and q = 0, t = 1 (dendriform case).

Other Hopf-algebraic families of trees. Some general phenomenon that we think
is worth mentioning here is the existence of compatible associative products for
many other well known algebras where the product is described via combinatorics
of trees. The main idea is very simple. If the product in the linear span of rooted
trees (planar or not) is defined for two trees T1 = T1[1] ·T1[2] · · · · ·T1[k] and T2 as
the sum of all graftings of some type of trees T1[i] to vertices of the tree T2, then
another product over all graftings of the same type but only to internal vertices is
compatible with the first product. For algebras of planar binary trees (which also
often occur in literature) an analogous recipe holds: if a product is defined in terms
of graftings, then graftings only to the “left-going” leaves produce a compatible
product.
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Example 7.5. The Connes–Kreimer Hopf algebra of renormalisation is a polyno-
mial algebra on (abstract) rooted trees, or, in other words, an algebra on the linear
span of forests of rooted trees [Connes and Kreimer 1998]. If we take its dual, and
identify the dual of each forest with the rooted tree having all trees of the forest
grafted at its root vertex, the coproduct of Connes and Kreimer yields a product
on the linear span of rooted trees which is defined in terms of graftings as above.
Thus, this algebra is naturally endowed with another product which is compatible
with the original one.

Example 7.6. Similarly, consider the noncommutative Connes–Kreimer Hopf al-
gebra NCK of Foissy [2002a; 2002b], which is a free associative algebra on planar
rooted trees, or, in other words, an algebra on the linear span of (ordered) forests of
planar rooted trees. If we take its dual, and identify the dual of each forest with
the planar rooted tree having all trees of the forest grafted at its root vertex, the
coproduct of Foissy leads to another product on QRT(S) which is again defined
in terms of graftings. It follows that NCK has a natural structure of an algebra
with two compatible products. Results of Foissy on isomorphisms of Hopf algebras
also produce compatible products on some other algebras on trees, for example, the
Brouder–Frabetti [2003] Hopf algebra of renormalisation in QED.

One can easily check that unlike the case of the Grossman–Larson product, the
dual of the Foissy algebra is not a free algebra with two compatible products; for
example, the ?2-subalgebra of NCK generated by elements of degree 1 (that is,
trees with one leaf) is commutative. We expect that this is in some sense the only
obstruction to freeness.

Conjecture 7.7. As2-subalgebra of NCK generated by elements of degree 1 is a
free algebra over the operad of two compatible associative products one of which is,
in addition, commutative.

The operad that shows up here does not seem to have many good properties. In
particular, it is not Koszul, and not much is known about the growth of dimensions
of its components.

It was pointed out by the referee that our results in Section 6 carry a certain
resemblance with those of Patras and Schocker [2008], who studied the Hopf algebra
structure on the linear span of set compositions (the twisted descent algebra). They
prove that certain combinatorially defined algebras are free; labeled planar trees
(with some restrictions on labels) do appear in their work, they also define two
products on their trees for which the difference of two products is a combination
of trees with nonnegative integer coefficients (just as in our case). However, their
products are not compatible, and we do not know whether there is any relation of
our results to those of Patras and Schocker.
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General compatible structures. It is natural to ask which of our results have ana-
logues for other operads of compatible structures (see [Strohmayer 2008] for the
formal definition of compatible O-structures for any operad O). For the operad
of compatible Lie brackets, we can prove an exact analogue of Theorem 5.2: free
algebras over that operad are free as Lie algebras. The proof is similar to the
proof for compatible associative structures and also makes use of an appropriate
monomial basis. We expect that actually both of these statements are particular
cases of a very general theorem.

The following conjecture consists of two parts. The first part generalises the main
theorem of Strohmayer [2008], while the second one suggests that our theorem also
holds in that generality.

Conjecture 7.8. (1) Let O be a Koszul operad. Then the operad O2 of two
compatible O-structures is also Koszul.

(2) If the operad O is Koszul, then free O2-algebras are free as O-algebras.
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An algorithm for computing
the integral closure

Anurag K. Singh and Irena Swanson

We present an algorithm for computing the integral closure of a reduced ring that
is finitely generated over a finite field.

Leonard and Pellikaan [2003] devised an algorithm for computing the integral
closure of weighted rings that are finitely generated over finite fields. Previous
algorithms proceed by building successively larger rings between the original ring
and its integral closure [de Jong 1998; Seidenberg 1970; 1975; Stolzenberg 1968;
Vasconcelos 1991; 2000]; the Leonard–Pellikaan algorithm instead starts with the
first approximation being a finitely generated module that contains the integral
closure, and successive steps produce submodules containing the integral closure.
The weights in [Leonard and Pellikaan 2003] impose strong restrictions, and play
a crucial role in various steps of their algorithm; see Remark 1.7. We present a
modification of the Leonard–Pellikaan algorithm that works in much greater gen-
erality: it computes the integral closure of a reduced ring that is finitely generated
over a finite field.

We discuss an implementation of the algorithm in Macaulay 2, and provide
comparisons with de Jong’s algorithm [1998].

1. The algorithm

Our main result is the following theorem; see Remark 1.5 for an algorithmic con-
struction of an element D as below when R is a domain, and for techniques for
dealing with the more general case of reduced rings.

Theorem 1.1. Let R be a reduced ring that is finitely generated over a computable
field of characteristic p > 0. Set R to be the integral closure of R in its total ring
of fractions. Suppose D is a nonzerodivisor in the conductor ideal of R, that is, D
is a nonzerodivisor with DR ⊆ R.

MSC2000: primary 13B22; secondary 13P99, 13A35.
Keywords: integral closure, algorithm, prime characteristic.
Singh was supported by NSF grant DMS 0600819.
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(1) Set V0 =
1
D R, and inductively define Ve+1 = { f ∈ Ve | f p

∈ Ve} for e > 0.
Then the modules Ve are algorithmically constructible.

(2) The descending chain V0 ⊇ V1 ⊇ V2 ⊇ V3 ⊇ · · · stabilizes. If Ve = Ve+1, then
Ve equals R.

The prime characteristic enables us to use the Frobenius or pth power map; this
is what makes the modules Ve algorithmically constructible.

Remark 1.2. For each integer e > 0, the module DVe is an ideal of R; we set
Ue = DVe and use this notation in the proof of Theorem 1.1 as well as in the
Macaulay 2 code in the following section. The inductive definition of Ve translates
to U0 = R and Ue+1 = {r ∈Ue | r p

∈ D p−1Ue} for e > 0.

Proof of Theorem 1.1. (1) By Remark 1.2, it suffices to establish that the ideals Ue

are algorithmically constructible. This follows inductively since

Ue+1 =Ue ∩ ker
(
R

F
−−−→ R

π
−−−→ R/D p−1Ue

)
for e > 0,

where F is the Frobenius endomorphism of R, and π the canonical surjection.

(2) By construction, one has Ve+1⊆Ve for each e. Moreover, it is a straightforward
verification that

Ve = { f ∈ V0 | f pi
∈ V0 for each i 6 e}.

Suppose f ∈ R. Then f pi
∈ R for each i > 0, so D f pi

∈ R. It follows that f ∈ Ve

for each e.
If Ve+1 = Ve for some positive integer e, then it follows from the inductive

definition that Ve+i = Ve for each i > 1.
Let v1, . . . , vs : R −→ Z∪ {∞} be the Rees valuations of the ideal DR, that is,

vi are valuations such that for each n ∈ N, the integral closure of the ideal Dn R
equals {r ∈ R | vi (r)> nvi (D) for each i}. Let e be an integer such that pe>vi (D)
for each i . Suppose r/D ∈ Ve. Then (r/D)pe

∈ V0, so r pe
∈ D pe

−1 R. It follows
that pevi (r)>

(
pe
− 1

)
vi (D) for each i , and hence that

vi (r) > vi (D)− vi (D)/pe > vi (D)− 1

for each i . Since vi (r) is an integer, it follows that vi (r) > vi (D) for each i , and
therefore r ∈ DR. But then r belongs to the integral closure of the ideal DR in R.
Since principal ideals are integrally closed in R, it follows that r ∈ DR, whence
r/D ∈ R. �

Remark 1.3. If R is an integral domain satisfying the Serre condition S2, then
each module Ve is S2 as well:

Proceed by induction on e. Without loss of generality, assume R is local. Let
x, y be part of a system of parameters for R. Suppose yv ∈ xVe+1 for an element
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v ∈ Ve+1. Then yv/x ∈ Ve+1, that is, yv/x ∈ Ve and y pv p/x p
∈ Ve, or equivalently,

yv ∈ xVe and y pv p
∈ x pVe. Since Ve is S2 by the inductive hypothesis, it follows

that v ∈ xVe and v p
∈ x pVe, hence v ∈ xVe+1.

Remark 1.4. In the notation of Theorem 1.1, suppose e is an integer such that
Ve = Ve+1. We claim that the integral closure of a principal ideal a R is

{r ∈ R | Dr pi
∈ a pi

R for each i 6 e+ 1}.

To see this, suppose r is an element of the ideal displayed above. Then Dr p
= ga p

for some g ∈ R. Since

D(r/a)pi
∈ R for each i 6 e+ 1,

it follows that
D(g/D)pi

∈ R for each i 6 e.

But then g/D ∈ Ve, which implies that g/D ∈ Vi for each i . Hence D(r/a)pi
∈ R

for each i , equivalently r ∈ a R.

Remark 1.5. Let R be a reduced ring that is finitely generated over a perfect
field K of prime characteristic p. We describe how to algorithmically obtain a
nonzerodivisor D in the conductor ideal of R.

Case 1. Suppose R is an integral domain. Consider a presentation of R over K ,
say R = K [x1, . . . , xn]/( f1, . . . , fm). Set h = height( f1, . . . , fm). Then the de-
terminant of each h × h submatrix of the Jacobian matrix (∂ fi/∂x j ) multiplies R
into R; this may be concluded from the Lipman–Sathaye Theorem [1981] (also
found as Theorem 12.3.10 in [Huneke and Swanson 2006]), as discussed in the
following paragraph. At least one such determinant has nonzero image in R, and
can be chosen as the element D in Theorem 1.1. Other approaches to obtaining
an element D are via the proof of [Huneke and Swanson 2006, Theorem 3.1.3], or
equivalently, via the results from [Stichtenoth 1993].

Let J be the ideal of R generated by the images of the h × h submatrices of
(∂ fi/∂x j ). We claim that J is contained in the conductor of R. By passing to
the algebraic closure, assume K is algebraically closed. After a linear change
of coordinates, assume that the xi are in general position, specifically, that for
any n − h element subset 3 of {x1, . . . , xn}, the extension K [3] ⊆ R is a finite
integral extension, equivalently that K [3] is a Noether normalization of R. By
the Lipman–Sathaye Theorem, the relative Jacobian JR/K [3] is contained in the
conductor ideal. The claim now follows since, as 3 varies, the relative Jacobian
ideals JR/K [3] generate the ideal J .

Even when R is not necessarily an integral domain, the ideal J , as defined
above, is not contained in any minimal prime of R; this follows from the Jacobian
criterion, see, for example, [Huneke and Swanson 2006, Theorem 4.4.9].
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Case 2. In the case where R is a reduced equidimensional ring, one may proceed
as above and choose D to be the determinant of an h× h submatrix of (∂ fi/∂x j ),
and then test to see whether D is a nonzerodivisor. If it turns out that D is a
nonzero zerodivisor, set I1 = (0 :R D) and I2 = (0 :R I1). Then each of R/I1 and
R/I2 is a reduced equidimensional ring, with fewer minimal primes than R, and
R = R/I1× R/I2. Hence R may be computed by computing the integral closure
of each R/Ii .

Case 3. If R is a reduced ring that is not necessarily equidimensional, one may
compute the minimal primes P1, . . . , Pn of R using an algorithm for primary
decomposition—admittedly an expensive step—and then compute R using Case
1 and the fact that R = R/P1× · · ·× R/Pn .

Remark 1.6. Theorem 1.1 may be extended as follows. Suppose a reduced ring R
has an endomorphism ϕ with the property that for each valuation v : R−→Z∪{∞},
there exists an integer k > 2 such that

v(ϕ(r))= kv(r) for each r ∈ R. (1.6.1)

Let D be a nonzerodivisor in the conductor of R. Set V0 =
1
D R and

Ve+1 = { f ∈ Ve | ϕ( f ) ∈ Ve} for e > 0.

Imitating the proof of Theorem 1.1, one sees that the descending chain

V0 ⊇ V1 ⊇ V2 ⊇ V3 ⊇ · · ·

stabilizes at R. If colon ideals and kernels of endomorphisms are computable in
R, then each Ve is algorithmically constructible.

As an example, consider a polynomial ring A= F[x1, . . . , xk] over a field F. Let
R be a subring of A that is generated, as an F-algebra, by finitely many monomials.
Fix an integer k>2. The F-algebra endomorphism of A with xi 7→ xk

i restricts to an
endomorphism ϕ of R satisfying property (1.6.1). Thus, one obtains an algorithm
for computing the integral closure of affine semigroup rings; see Bruns and Koch
[2001] for another algorithm.

Remark 1.7. The Leonard–Pellikaan algorithm [2003] is based on earlier work
of Leonard [2001]. These papers make use of the Frobenius endomorphism along
with a weighted total-degree monomial ordering; this is a monomial ordering under
which there are only finitely many elements preceding any given element, and this
is an essential ingredient in proving the convergence of their algorithm. The affine
domains considered in [Leonard and Pellikaan 2003] are constructed as towers in
the following sense: R0 is a finite field; if R j−1 is given with a weight function
wt j−1, then R j is the integral closure of R j−1[x j ]/(ϕ j (x j )) in F j−1[x j ]/(ϕ j (x j )),
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as computed by their algorithm; here F j−1 is the field of fractions of R j−1, and

ϕ j (x j )= xm j
j + u j

j−1∏
i=1

xαi, j
i + g j (x j , . . . , x1)

is an element of R j−1[x j ] that is irreducible and monic in x j , such that u j is a
nonzero element of R0, and the weight function satisfies

wt j (g j (x j , . . . , x1)) < wt j (x
m j
j )= wt j

( j−1∏
i=1

xαi, j
i

)
,

where wt j is a modification (not a simple extension) of wt j−1 that requires further
technical assumptions on the m j and αi, j . A complexity analysis of some aspects
of the Leonard–Pellikaan algorithm is carried out in [Hu and Maharaj 2008].

2. Implementation and examples

Here is our code in Macaulay 2 [Grayson and Stillman], which uses this algorithm
to compute the integral closure.

Input: An integral domain R that is finitely generated over a finite field, and,
optionally, a nonzero element D of the conductor ideal of R.

Output: A set of generators for R as a module over R.

Macaulay 2 function:

icFracP = method(Options=>{conductorElement => null})
icFracP Ring := List => o -> (R) -> (

P := ideal presentation R;
c := codim P;
S := ring P;
if o.conductorElement === null then (

J := promote(jacobian P,R);
n := 1;
det1 := ideal(0_R);
while det1 == ideal(0_R) do (

det1 = minors(c,J);
n = n+1

);
D := det1_0;

) else D = o.conductorElement;
p := char(R);
K := ideal(1_R);
U := ideal(0_R);
F := apply(generators R, i-> i^p);
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while (U != K) do (
U = K;
L := U*ideal(D^(p-1));
f := map(R/L,R,F);
K = intersect(kernel f, U);

);
U = mingens U;
if numColumns U == 0 then {1_R}
else apply(numColumns U, i-> U_(0,i)/D)
)

Since the Leonard–Pellikaan algorithm uses the Frobenius endomorphism, it is
less efficient when the characteristic of the ring is a large prime. In the examples
that follow, the computations are performed on a MacBook Pro computer with a
2 GHz Intel Core Duo processor; the time units are seconds. The comparisons are
with de Jong’s algorithm [1998] as implemented in the program ICfractions in
Macaulay 2, version 1.1.

Example 2.1. Let F2[x, y, t] be a polynomial ring over the field F2, and set R =
F2[x, y, x2t, y2t]. Then R has a presentation F2[x, y, u, v]/(x2v − y2u), which
shows, in particular, that x2 is an element of the conductor ideal. Setting D = x2,
the algorithm above computes that the integral closure of R is generated, as an R-
module, by the elements 1 and xyt . Tracing the algorithm, one sees that V0 is not
equal to V1, that V1 is not equal to V2, and that V2 = V3. Indeed, these R-modules
are

V0 =
1
x2 R, V1 =

1
x

R+ yt R, Ve = R+ yt R for e > 2.

As is to be expected, the algorithm is less efficient as the characteristic of the
ground field increases:

characteristic p 2 3 5 7 11 13 17 37 97

icFracP 0.04 0.03 0.04 0.04 0.04 0.05 0.05 0.13 0.59
icFractions 0.08 0.09 0.09 0.09 0.14 0.15 0.15 0.15 0.15

Integral closure of Fp[x, y, u, v]/(x2v− y2u).

We remark that R is an affine semigroup ring, so its integral closure may also
be computed using the program normaliz of Bruns and Koch [2001].

Example 2.2. Consider the hypersurface

R = Fp[u, v, x, y, z]/(u2x4
+ uvy4

+ v2z4).

It is readily verified that R is a domain, and that t = ux4/v is integral over R. The
ring R[t] has a presentation Fp[u, v, x, y, z, t]/I , where I is the ideal generated



An algorithm for computing the integral closure 593

by the 2× 2 minors of the matrix(
u t −z4

v x4 t+y4

)
.

Since the entries of the matrix form a regular sequence in Fp[u, v, x, y, z, t], the
ring R[t] is Cohen–Macaulay. Moreover, if p 6= 2, then the singular locus of R[t]
is V (t, y, xz, vz, ux) which has codimension 2, so R[t] is normal.

If p=2 then the ring R[t] is not normal; indeed, in this case, the integral closure
of R is generated, as an R-module, by the elements

1,
√

uv,
ux + z

√
uv

y
,

vz+ x
√

uv
y

,
uxz+ z2√uv

uy
.

For small values of p, these computations may be verified on Macaulay 2 using
either algorithm; some computations times are recorded next. (Here and in the next
table ∗ means that the computation did not terminate within six hours.)

characteristic p 2 3 5 7 11

icFracP 0.07 0.22 9.67 143 12543
icFractions 1.16 ∗ ∗ ∗ ∗

Integral closure of Fp[u, v, x, y, z]/(u2x4
+ uvy4

+ v2z4).

Example 2.3. Consider the hypersurface

R = Fp[u, v, x, y, z]/(u2x p
+ 2uvy p

+ v2z p),

where p is an odd prime. We shall see that R has p+1 generators as an R-module,
but first some comparisons:

characteristic p 3 5 7 11 13 17 19 23

icFracP 0.07 0.09 0.27 1.81 4.89 26 56 225
icFractions 1.49 75.00 4009 ∗ ∗ ∗ ∗ ∗

Integral closure of Fp[u, v, x, y, z]/(u2x p
+ 2uvy p

+ v2z p).

We claim that R is generated, as an R-module, by the elements

1,
√

y2− xz, and ui/pv(p−i)/p for 16 i 6 p− 1. (2.3.1)

It is immediate that these elements are integral over R; to see that they belong to
the fraction field of R, note that√

y2− xz =±
uy p
+ vz p

u(y2− xz)(p−1)/2
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and that, by the quadratic formula, one also has(u
v

)1/p
=
−y±

√
y2− xz

x
. (2.3.2)

Moreover, using (2.3.2), it follows that

v1/p
√

y2− xz =±(xu1/p
+ yv1/p),

and hence the R-module generated by the elements (2.3.1) is indeed an R-algebra.
It remains to verify that the ring

A = R
[√

y2− xz, ui/pv(p−i)/p
| 16 i 6 p− 1

]
is normal. For this, it suffices to verify that

B = R
[√

y2− xz, u1/p, v1/p
]

is normal, since A is a direct summand of B as an A-module: use the grading
on B where deg x = deg y = deg z = 0 and deg u1/p

= 1 = deg v1/p, in which
case A is the pth Veronese subring

⊕
i∈N Bi p. The ring B has a presentation

Fp[x, y, z, d, s, t]/I , where I is generated by the 2× 2 minors of the matrix(
y+d z s

x y−d −t

)
,

and s 7→u1/p, t 7→ v1/p, d 7→
√

y2− xz. But then — after a change of variables —
B is a determinantal ring, and hence normal.
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A general homological Kleiman–Bertini
theorem
Susan J. Sierra

Let G be a smooth algebraic group acting on a variety X . Let F and E be
coherent sheaves on X . We show that if all the higher Tor sheaves of F against
G-orbits vanish, then for generic g ∈ G, the sheaf TorX

j (gF,E) vanishes for all
j ≥ 1. This generalizes a result of Miller and Speyer for transitive group actions
and a result of Speiser, itself generalizing the classical Kleiman–Bertini theorem,
on generic transversality, under a general group action, of smooth subvarieties
over an algebraically closed field of characteristic 0.

1. Introduction

All schemes that we consider in this paper are of finite type over a fixed field k;
we make no assumptions on the characteristic of k.

Our starting point is this:

Theorem 1.1 [Miller and Speyer 2008]. Let X be a variety with a transitive left
action of a smooth algebraic group G. Let F and E be coherent sheaves on X , and
for all k-points g ∈ G, let gF denote the push-forward of F along multiplication
by g. Then there is a dense Zariski open subset U of G such that, for all k-rational
points g ∈U and for all j ≥ 1, the sheaf TorX

j (gF,E) is zero.

As Miller and Speyer remark, their result is a homological generalization of the
Kleiman–Bertini theorem: in characteristic 0, if F= OW and E= OY are structure
sheaves of smooth subvarieties of X and G acts transitively on X , then gW and
Y meet transversally for generic g, implying that OgW = gOW and OY have no
higher Tor. Motivated by this, if F and E are quasicoherent sheaves on X with
TorX

j (F,E)= 0 for j ≥ 1, we will say that F and E are homologically transverse;
if E= OY for some closed subscheme Y of X , we will simply say that F and Y are
homologically transverse.

MSC2000: primary 14L30; secondary 16S38.
Keywords: generic transversality, homological transversality, Kleiman’s theorem, group action.
Partially supported by NSF grants DMS-0502170 and DMS-0802935. This paper is part of the
author’s Ph.D. thesis at the University of Michigan under the direction of J. T. Stafford.
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Homological transversality has a geometric meaning if F= OW and E= OY are
structure sheaves of closed subschemes of X . If P is a component of Y ∩W , then
Serre’s formula for the multiplicity of the intersection of Y and W at P [Hartshorne
1977, p. 427] is

i(Y,W ; P)=
∑
j≥0

(−1) j lenP(TorX
j (F,E)),

where the length is taken over the local ring at P . Thus if Y and W are homolog-
ically transverse, their intersection multiplicity at P is simply the length of their
scheme-theoretic intersection over the local ring at P .

It is natural to ask what conditions on the action of G are necessary to conclude
that homological transversality is generic in the sense of Theorem 1.1. In particular,
the restriction to transitive actions is unfortunately strong, as it excludes important
situations such as the torus action on Pn . On the other hand, suppose that F is the
structure sheaf of the closure of a nondense orbit. Then for all k-points g ∈ G,
we have TorX

1 (gF,F) = TorX
1 (F,F) 6= 0, and so the conclusion of Theorem 1.1

fails (as long as G(k) is dense in G). Thus for nontransitive group actions some
additional hypothesis is necessary.

The main result of this paper is that there is a simple condition for homological
transversality to be generic:

Theorem 1.2. Let X be a scheme with a left action of a smooth algebraic group G,
and let F be a coherent sheaf on X. Let k be an algebraic closure of k. Consider
the following conditions:

(1) For all closed points x ∈ X × Spec k, the pull-back of F to X × Spec k is
homologically transverse to the closure of the G(k)-orbit of x.

(2) For all coherent sheaves E on X , there is a Zariski open and dense subset U
of G such that for all k-rational points g ∈ U , the sheaf gF is homologically
transverse to E.

Then (1) implies (2). If k is algebraically closed, then (1) and (2) are equivalent.

If g is not k-rational, the sheaf gF can still be defined; in Section 2 we give this
definition and a generalization of (2) that is equivalent to (1) in any setting (see
Theorem 2.1).

If G acts transitively on X in the sense of [Miller and Speyer 2008], then the
action is geometrically transitive, and so (1) is trivially satisfied. Thus Theorem
1.1 follows from Theorem 1.2. Since transversality of smooth subvarieties in char-
acteristic 0 implies homological transversality, Theorem 1.2 also generalizes the
following result of Robert Speiser:
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Theorem 1.3 [Speiser 1988, Theorem 1.3]. Suppose that k is algebraically closed
of characteristic 0. Let X be a smooth variety, and let G be a (necessarily smooth)
algebraic group acting on X. Let W be a smooth closed subvariety of X. If W is
transverse to every G-orbit in X , then for any smooth closed subvariety Y ⊆ X ,
there is a dense open subset U of G such that if g ∈ U , then gW and Y are
transverse.

Speiser’s result implies that the generic intersection gW ∩ Y , for g ∈U , is also
smooth. We also give a more general homological version of this. For simplicity,
we state it here for algebraically closed fields, although in the body of the paper
(see Theorem 4.2) we remove this assumption.

Theorem 1.4. Assume that k = k. Let X be a scheme with a left action of a smooth
algebraic group G, and let W be a Cohen–Macaulay (alternatively, Gorenstein)
closed subscheme of X such that W is homologically transverse to the G-orbit
closure of every closed point x ∈ X. Then for any Cohen–Macaulay (Gorenstein)
closed subscheme Y of X , there is a dense open subset U ⊆ G so that gW is
homologically transverse to Y and gW ∩ Y is Cohen–Macaulay (Gorenstein) for
all closed points g ∈U.

Theorem 1.2 was proved in the course of an investigation of certain rings, de-
termined by geometric data, that arise in the study of noncommutative algebraic
geometry. Given a variety X , an automorphism σ of X and an invertible sheaf L on
X , Artin and Van den Bergh [1990] construct a twisted homogeneous coordinate
ring B = B(X,L, σ ). The graded ring B is defined via

Bn = H 0(X,L⊗X σ
∗L⊗X · · · ⊗X (σ

n−1)∗L)

with multiplication of sections given by the action of σ . A closed subscheme W of
X determines a graded right ideal I of B, generated by sections vanishing on W .
In [Sierra 2008], we study the idealizer of I ; that is, the maximal subring R of B
such that I is a two-sided ideal of R. It turns out that quite subtle properties of W
and its motion under σ control many of the properties of R; in particular, for R to
be left Noetherian one needs that for any closed subscheme Y , all but finitely many
σ nW are homologically transverse to Y . (For details, we refer the reader to [Sierra
2008].) Thus we were naturally led to ask how often homological transversality
can be considered “generic” behavior, and what conditions on W ensure this.

We make some remarks on notation. If x is any point of a scheme X , we denote
the skyscraper sheaf at x by kx . For schemes X and Y , we will write X × Y for
the product X ×k Y . Finally, if X is a scheme with a (left) action of an algebraic
group G, we will always denote the multiplication map by

µ : G× X→ X.
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2. Generalizations

We begin this section by defining homological transversality more generally. If W
and Y are schemes over a scheme X , with (quasi)coherent sheaves F on W and E

on Y respectively, then for all j ≥ 0 there is a (quasi)coherent sheaf TorX
j (F,E)

on W ×X Y . This sheaf is defined locally. Suppose that X = Spec R, W = Spec S,
and Y = Spec T are affine. Let ( )̃ denote the functor that takes an R-module
(or S- or T -module, respectively) to the associated quasicoherent sheaf on X (or
W or Y ). If F is an S-module and E is a T -module, we define TorX

j (F̃, Ẽ) to be
(TorR

j (F, E))̃ . That these glue properly to give sheaves on W×X Y for general W ,
Y , and X is the result in [Grothendieck 1963, 6.5.3]. As before, we will say that F

and E are homologically transverse if the sheaf TorX
j (F,E) is zero for all j ≥ 1.

We caution the reader that the maps from W and Y to X are implicit in the
definition of TorX

j (F,E); at times we will write TorW→X←Y
j (F,E) to make this

more obvious. We also remark that if Y = X , then TorX
j (F,E) is a sheaf on

W ×X X = W . As localization commutes with Tor, for any w ∈ W lying over
x ∈ X we have in this case that TorX

j (F,E)w = TorOX,x
j (Fw,Ex).

Now suppose that f :W → X is a morphism of schemes and G is an algebraic
group acting on X . Let F be a (quasi)coherent sheaf on W and let g be any point
of G. We will denote the pull-back of F to {g}×W by gF. There is a map

{g}×W // G×W
1× f // G× X

µ // X.

If Y is a scheme over X and E is a (quasi)coherent sheaf on Y , the (quasi)coherent
sheaf Tor{g}×W→X←Y

j (gF,E) on W×X Y×k(g) will be written TorX
j (gF,E). Note

that if W = X and g is k-rational, then gF is simply the push-forward of F along
multiplication by g.

In this context, we prove the following relative version of Theorem 1.2:

Theorem 2.1. Let X be a scheme with a left action of a smooth algebraic group
G, let f :W → X be a morphism of schemes, and let F be a coherent sheaf on W .
We define maps

G×W
ρ //

p
��

X

W ,

where ρ is the map ρ(g, w)= g f (w) induced by the action of G and p is projection
onto the second factor.

The following conditions are equivalent:

(1) For all closed points x ∈ X × Spec k, the pull-back of F to W × Spec k is
homologically transverse to the closure of the G(k)-orbit of x.
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(2) For all schemes r : Y → X and all coherent sheaves E on Y , there is a Zariski
open and dense subset U of G such that for all closed points g ∈U , the sheaf
gF on {g}×W is homologically transverse to E.

(3) The sheaf p∗F on G×W is ρ-flat over X.

A related relative version of Theorem 1.3 is given in [Speiser 1988].
Our general approach to Theorem 2.1 mirrors that of [Speiser 1988], although

the proof techniques are quite different. We first generalize Theorem 1.1 to apply
to any flat map f : W → X ; this is a homological version of [Kleiman 1974,
Lemma 1] and may be of independent interest.

Theorem 2.2. Let X , Y , and W be schemes, let A be a generically reduced scheme,
and suppose that there are morphisms

Y

r
��

W
f //

q
��

X

A.

Let F be a coherent sheaf on W that is f -flat over X , and let E be a coherent sheaf
on Y . For all a ∈ A, let Wa denote the fiber of W over a, and let Fa = F⊗W OWa

be the fiber of F over a.
Then there is a dense open U ⊆ A such that if a ∈ U , then Fa is homologically

transverse to E.

We note that we have not assumed that X , Y , W , or A are smooth.

3. Proofs

In this section we prove Theorems 1.2, 2.1, and 2.2.

Lemma 3.1. Let
X1

α // X2
γ // X3

be morphisms of schemes, and assume that γ is flat. Let G be a quasicoherent sheaf
on X1 that is flat over X3. Let H be any quasicoherent sheaf on X3. Then for all
j ≥ 1, we have TorX2

j (G, γ
∗H)= 0.

Proof. We may reduce to the local case. Thus let x ∈ X1 and let y = α(x) and
z = γ (y). Let S = OX2,y and let R = OX3,z . Then (γ ∗H)y ∼= S⊗R Hz . Since S is
flat over R, we have

TorR
j (Gx ,Hz)∼= TorS

j (Gx , S⊗R Hz)= TorX2
j (G, γ

∗H)x
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by flat base change. The left-hand side is 0 for j ≥ 1 since G is flat over X3. Thus
for j ≥ 1 we have TorX2

j (G, γ
∗H)= 0. �

To prove Theorem 2.2, we show that a suitable modification of the spectral se-
quences used by Miller and Speyer will work in our situation. Our key computation
is the following lemma; compare to [Miller and Speyer 2008, Proposition 2].

Lemma 3.2. Given the notation of Theorem 2.2, there is an open dense U ⊆ A
such that for all a ∈U and for all j ≥ 0 we have

TorW
j (F⊗X E, q∗ka)∼= TorX

j (Fa,E)

as sheaves on W ×X Y .

Note that F⊗X E is a sheaf on W×X Y and thus TorW
j (F⊗X E, q∗ka) is a sheaf

on W ×X Y ×W W =W ×X Y as required.

Proof. Since A is generically reduced, we may apply generic flatness to the mor-
phism q : W → A. Thus there is an open dense subset U of A such that both W
and F are flat over U . Let a ∈ U . Away from q−1(U ), both sides of the equality
we seek to establish are zero, and so the result is trivial. Since F|q−1(U ) is still flat
over X , without loss of generality we may replace W by q−1(U ); that is, we may
assume that both W and F are flat over A.

The question is local, so assume that X = Spec R, Y = Spec T , and W = Spec S
are affine. Let E = 0(Y,E) and let F = 0(W,F). Let Q = 0(W, q∗ka); then
0(W,Fa)= F ⊗S Q. We seek to show that

TorS
j (F ⊗R E, Q)∼= TorR

j (F ⊗S Q, E)

as S⊗R T -modules.
We will work on W × X . For clarity, we lay out the various morphisms and

corresponding ring maps in our situation. We have morphisms of schemes

W × X

p
��

Y

r
��

W

φ

[[

f
// X ,

where p is projection onto the first factor and the morphism φ splitting p is given
by the graph of f . Letting B = S⊗k R, we have corresponding maps of rings

B

φ#

��

T

S

p#

OO

R,

r#

OO

f #
oo
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where p#(s) = s ⊗ 1 and φ#(s ⊗ r) = s · f #(r). We make the trivial observation
that

B⊗R E = (S⊗k R)⊗R E ∼= S⊗k E .

Let K•→ F be a projective resolution of F , considered as a B-module via the
map φ#

: B→ S. As E is an R-module via the map r#
: R→ T , there is a B-action

on S⊗k E ; let L•→ S⊗k E be a projective resolution over B.
Let P•,• be the double complex K•⊗B L•. We claim the total complex of P•,•

resolves F⊗B(S⊗k E). To see this, note that the rows of P•,•, which are of the form
K•⊗B L j , are acyclic, except in degree 0, where the homology is F ⊗B L j . The
degree 0 horizontal homology forms a vertical complex whose homology computes
TorB

j (F, S ⊗k E). But S ⊗k E ∼= B ⊗R E , and B is a flat R-module. Therefore
TorB

j (F, S ⊗k E) ∼= TorB
j (F, B ⊗R E) ∼= TorR

j (F, E) by the formula for flat base
change for Tor. Since F is flat over R, this is zero for all j ≥ 1. Thus, via the
spectral sequence

H v
j (H

h
i P•,•)⇒ Hi+ j Tot P•,•

we see that the total complex of P•,• is acyclic, except in degree 0, where the
homology is F ⊗B S⊗k E ∼= F ⊗R E .

Consider the double complex P•,• ⊗S Q. Since Tot P•,• is a B-projective and
therefore S-projective resolution of F⊗R E , the homology of the total complex of
this double complex computes TorS

j (F ⊗R E, Q).
Now consider the row K•⊗B L j ⊗S Q. As L j is B-projective and therefore B-

flat, the i th homology of this row is isomorphic to TorS
i (F, Q)⊗B L j . Since W and

F are flat over A, by Lemma 3.1 we have TorS
i (F, Q)=0 for all i≥1. Thus this row

is acyclic except in degree 0, where the homology is F ⊗B L j ⊗S Q. The vertical
differentials on the degree 0 homology give a complex whose j th homology is
isomorphic to TorB

j (F⊗S Q, S⊗k E). As before, this is simply TorR
j (F⊗S Q, E).

Thus (via a spectral sequence) we see that the homology of the total complex
of P•,• ⊗S Q computes TorR

j (F ⊗S Q, E). But we have already seen that the
homology of this total complex is isomorphic to TorS

j (F ⊗R E, Q). Thus the two
are isomorphic. �

Proof of Theorem 2.2. By generic flatness, there is no loss of generality in restrict-
ing to W flat over A. Since F and E are coherent sheaves on W and Y respectively,
F⊗X E is a coherent sheaf on W×X Y . Applying generic flatness to the composition
W×X Y→W→ A, we obtain a dense open V ⊆ A such that F⊗X E is flat over V .
Therefore, by Lemma 3.1, if a ∈ V and j ≥ 1, we have TorW

j (F⊗X E, q∗ka)= 0.
We apply Lemma 3.2 to choose a dense open U ⊆ A such that for all j ≥ 1, if

a ∈ U , then TorW
j (F⊗X E, q∗ka) ∼= TorX

j (Fa,E). Thus if a is in the dense open
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set U ∩ V , then for all j ≥ 1 we have

TorX
j (Fa,E)∼= TorW

j (F⊗X E, q∗ka)= 0,

as required. �

We now turn to the proof of Theorem 2.1; for the remainder of this paper, we
will adopt the hypotheses and notation given there.

Lemma 3.3. Let R, R′, S, and T be commutative rings, and let

R′ // T

R

OO

// S

OO

be a commutative diagram of ring homomorphisms such that R′R and TS are flat.
Let N be an R-module. Then for all j ≥ 0, we have that

TorR′
j (N ⊗R R′, T )∼= TorR

j (N , S)⊗S T .

Proof. Let P•→ N be a projective resolution of N . Consider the complex

P•⊗R R′⊗R′ T ∼= P•⊗R T ∼= P•⊗R S⊗S T . (3.4)

Since R′R is flat, P• ⊗R R′ is a projective resolution of N ⊗R R′. Thus the j th
homology of (3.4) computes TorR′

j (N⊗R R′, T ). Since TS is flat, this homology is
isomorphic to H j (P•⊗R S)⊗S T . Thus TorR′

j (N⊗R R′, T )∼=TorR
j (N , S)⊗S T . �

Lemma 3.5. Let x be a closed point of X. Consider the multiplication map

µx : G×{x} → X.

Then for all j ≥ 0 we have

TorX
j (F,OG×{x})∼= TorG×X

j (p∗F, µ∗kx). (3.6)

If k is algebraically closed, then we also have

TorG×X
j (p∗F, µ∗kx)∼= TorX

j (F,OGx)⊗X OG×{x}. (3.7)

All isomorphisms are of sheaves on G×W .

Proof. Note that µx maps G × {x} onto a locally closed subscheme of X , which
we will denote Gx . Since all computations may be done locally, without loss of
generality we may assume that Gx is in fact a closed subscheme of X .
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Let ν : G → G be the inverse map, and let ψ = ν × µ : G × X → G × X .
Consider the commutative diagram

G×W

p
��

1× f // G× X

p
��

G×{x}
ψoo

π

��

µx

yy
W

f
// X Gx,

⊇oo

(3.8)

where π is the induced map and p is projection onto the second factor. Since
ψ2
= IdG×X and µ = p ◦ψ , we obtain µ∗kx ∼= ψ

∗ p∗kx ∼= ψ∗OG×{x}, considered
as sheaves on G × X . Then the isomorphism (3.6) is a direct consequence of the
flatness of p and Lemma 3.3. If k is algebraically closed, then π is also flat, and
so the isomorphism (3.7) also follows from Lemma 3.3. �

Proof of Theorem 2.1. (3) ⇒ (2). Assume (3). Let E be a coherent sheaf on Y .
Consider the maps

Y

r
��

G×W
ρ //

q
��

X

G,

where q is projection on the first factor.
Since G is smooth, it is generically reduced. Thus we may apply Theorem 2.2

to the ρ-flat sheaf p∗F to obtain a dense open U ⊆G such that if g ∈U is a closed
point, then ρ makes (p∗F)g homologically transverse to E. But ρ|{g}×W is the map
used to define TorX

j (gF,E); that is, (p∗F)g ∼= gF as sheaves over X . Thus (2)
holds.

(2)⇒ (3). The morphism ρ factors as

G×W
1× f // G× X

µ // X .

Since the multiplication map µ is the composition of an automorphism of G × X
and a projection, it is flat.

Therefore for any quasicoherent N on X and M on G ×W and for any closed
point z ∈ G×W , we have

TorG×X
j (M, µ∗N)z ∼= TorOX,ρ(z)

j (Mz,Nρ(z)), (3.9)

as in the proof of Lemma 3.1.
If p∗F fails to be flat over X , then flatness fails against the structure sheaf

of some closed point x ∈ X , by the local criterion for flatness [Eisenbud 1995,
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Theorem 6.8]. Thus to check that p∗F is flat over X , it is equivalent to test flatness
against structure sheaves of closed points of X . By (3.9), we see that p∗F is ρ-flat
over X if and only if

TorG×X
j (p∗F, µ∗kx)= 0 for all closed points x ∈ X and for all j ≥ 1. (3.10)

Applying Lemma 3.5, we see that the flatness of p∗F is equivalent to the vanishing

TorX
j (F,OG×{x})= 0 for all closed points x ∈ X and for all j ≥ 1. (3.11)

Assume (2). We will show that (3.11) holds for all x ∈ X . Fix a closed point
x ∈ X and consider the morphism µx : G × {x} → X . By assumption, there is
a closed point g ∈ G such that gF is homologically transverse to OG×{x}. Let
k ′ = k(g) and let g′ be the canonical k ′-point of G × Spec k ′ lying over g. Let
G ′ = G × Spec k ′ and let X ′ = X × Spec k ′. Let F′ be the pull-back of F to
W ′ =W ×Spec k ′. Consider the commutative diagram

G×{x}×Spec k ′
µx×1 //

��

X ′

��

{g′}×k′ W ′
ρoo

∼=

��
G×{x}

µx // X {g}×W .
ρoo

Since the vertical maps are faithfully flat and the left-hand square is a fiber
square, by Lemma 3.3 g′F′ is homologically transverse to

G×{x}×Spec k ′ ∼= G ′×{x}.

By G(k ′)-equivariance, F′ is homologically transverse to (g′)−1G ′×{x}=G ′×{x}.
Since

G ′×{x} // X ′ W ′
foo

is base-extended from

G×{x} // X W ,
foo

we obtain that F is homologically transverse to G×{x}. Thus (3.11) holds.
(1) ⇒ (3). The ρ-flatness of F is not affected by base extension, so without

loss of generality we may assume that k is algebraically closed. Then (3) follows
directly from Lemma 3.5 and the criterion (3.10) for flatness.

(3)⇒ (1). As before, we may assume that k is algebraically closed. Let x be
a closed point of X . We have seen that (3) and (2) are equivalent; by applying (2)
to E= OGx there is a closed point g ∈ G such that gF and Gx are homologically
transverse. By G(k)-equivariance, F and g−1Gx = Gx are homologically trans-
verse. �
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Proof of Theorem 1.2. If F is homologically transverse to orbit closures upon exten-
sion to k, then, using Theorem 2.1(2), for any E there is a dense open U ⊆ G such
that, in particular, for any k-rational g ∈U the sheaves gF and E are homologically
transverse.

The equivalence of (1) and (2) in the case that k is algebraically closed follows
directly from Theorem 2.1. �

Theorem 1.2 is a statement about k-rational points in U ⊆ G. However, the
proof shows that for any extension k ′ of k and any k ′-rational g ∈U ×Spec k ′, gF

will be homologically transverse to E on X × Spec k ′. Further, in many situations
U will automatically contain a k-rational point of G. This holds, in particular, if k
is infinite, G is connected and affine, and either k is perfect or G is reductive, by
[Borel 1991, Corollary 18.3].

4. Singularities of generic intersections

We now specialize to consider generic intersections of two subschemes of X . That
is, let X be a scheme with a left action of a smooth algebraic group G. Let Y
and W be closed subschemes of X . By Theorem 1.3, if k is algebraically closed
of characteristic 0, W is transverse to G-orbit closures, and X , Y , and W are
smooth, then for generic g ∈ G the subschemes gW and Y meet transversally, and
so by definition gW ∩ Y is smooth. Here we remark that a homological version
of this result holds more generally: if W is homologically transverse to G-orbit
closures and Y and W are both Cohen–Macaulay or both Gorenstein, their generic
intersection has the same property. We use the following result from commutative
algebra:

Theorem 4.1. Let A → B be a local homomorphism of Noetherian local rings,
and let m be the maximal ideal of A and F = B/mB. Assume that B is flat over A.
Then B is Cohen–Macaulay (alternatively, Gorenstein) if and only if B and F are
both Cohen–Macaulay (Gorenstein).

Proof. See [Matsumura 1989, Corollary 23.3, Theorem 23.4]. �

Theorem 4.2. Let X be a scheme with a left action of a smooth algebraic group
G. Suppose that f : W → X and r : Y → X are morphisms of schemes and that
W ×Spec k is homologically transverse to the G(k)-orbit of x for all closed points
x ∈ X×Spec k. Further suppose that Y and W are Cohen–Macaulay (alternatively,
Gorenstein). Then there is a dense open subset U ⊆ G so that for all closed points
g ∈U , the scheme {g}×W is homologically transverse to Y and the fiber product
({g}×W )×X Y is Cohen–Macaulay (Gorenstein).

Proof. Let ρ : G ×W → X be the map ρ(g, w) = g f (w) induced by f and the
action of G. Let q : G ×W → G be projection to the first factor. Thus there is a
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commutative diagram

G×W ×X Y
ρ×1 //

1×r
��

Y

r
��

G×W
ρ //

q
��

X

G.
By Theorem 2.1 applied to F= OW , ρ is flat. Now, G×W is Cohen–Macaulay or
Gorenstein, and so by Theorem 4.1, the fibers of ρ have the same property. Since
Y is Cohen–Macaulay (Gorenstein) and ρ×1 is flat, applying Theorem 4.1 again,
we see that G ×W ×X Y is also Cohen–Macaulay (Gorenstein). Now, by generic
flatness and Theorem 2.1, there is a dense open U ⊂ G such that q ◦ (1× r) is flat
over U and {g}×W is homologically transverse to Y for all g ∈U . For g ∈U , the
fiber ({g}×W )×X Y of q ◦ (1×r) is Cohen–Macaulay (Gorenstein), by Theorem
4.1 again. �

We note that, although we did not assume that X is Cohen–Macaulay or Goren-
stein, it follows from the flatness of ρ and from Theorem 4.1.

We also remark that if Y and W are homologically transverse local complete
intersections in a smooth X , it is not hard to show directly that Y ∩W is also a local
complete intersection. We do not know if it is true in general that the homologically
transverse intersection of two Cohen–Macaulay subschemes is Cohen–Macaulay,
although it follows, for example, from [Fulton and Pragacz 1998, Lemma, p. 108]
if X is smooth.

Theorem 1.4 follows directly from Theorem 4.2.
Thus we may refine Theorem 1.1 to obtain a result on transitive group actions

that echoes the Kleiman–Bertini theorem even more closely.

Corollary 4.3. Let X be a scheme with a geometrically transitive left action of
a smooth algebraic group G. Let Y and W be Cohen–Macaulay (alternatively,
Gorenstein) closed subschemes of X. Then there is a dense Zariski open subset
U of G such that gW is homologically transverse to Y and gW ∩ Y is Cohen–
Macaulay (Gorenstein) for all k-rational points g ∈U. �

Acknowledgments

I am grateful to Ezra Miller for his extraordinarily careful reading of an earlier
version of this paper and for several corrections and discussions, to David Speyer
for many informative conversations, and to Mel Hochster, Kyle Hofmann, Gopal
Prasad, and Karen Smith for their suggestions and assistance with references. I
particularly thank Brian Conrad for finding an error in an earlier version of this



A general homological Kleiman–Bertini theorem 609

paper and for several helpful discussions. I also thank Susan Colley and Gary
Kennedy for calling my attention to [Speiser 1988].

References

[Artin and Van den Bergh 1990] M. Artin and M. Van den Bergh, “Twisted homogeneous coordinate
rings”, J. Algebra 133:2 (1990), 249–271. MR 91k:14003 Zbl 0717.14001

[Borel 1991] A. Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics 126,
Springer, New York, 1991. MR 92d:20001 Zbl 0726.20030

[Eisenbud 1995] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad-
uate Texts in Mathematics 150, Springer, New York, 1995. MR 97a:13001 Zbl 0819.13001

[Fulton and Pragacz 1998] W. Fulton and P. Pragacz, Schubert varieties and degeneracy loci, Lecture
Notes in Mathematics 1689, Springer, Berlin, 1998. MR 99m:14092 Zbl 0913.14016

[Grothendieck 1963] A. Grothendieck, “Éléments de géométrie algébrique. III. Étude cohomologi-
que des faisceaux cohérents. II”, Inst. Hautes Études Sci. Publ. Math. 17 (1963), 91. MR 29 #1210
Zbl 0122.16102

[Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer,
New York, 1977. MR 57 #3116 Zbl 0531.14001

[Kleiman 1974] S. L. Kleiman, “The transversality of a general translate”, Compositio Math. 28
(1974), 287–297. MR 50 #13063 Zbl 0288.14014

[Matsumura 1989] H. Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Ad-
vanced Mathematics 8, Cambridge University Press, 1989. MR 90i:13001 Zbl 0603.13001

[Miller and Speyer 2008] E. Miller and D. E. Speyer, “A Kleiman–Bertini theorem for sheaf ten-
sor products”, J. Algebraic Geom. 17:2 (2008), 335–340. MR 2008k:14044 Zbl 1138.14011
arXiv math.AG/0601202

[Sierra 2008] S. J. Sierra, “Geometric idealizers”, preprint, 2008. To appear in Trans. Amer. Math.
Soc. arXiv 0809.3971

[Speiser 1988] R. Speiser, “Transversality theorems for families of maps”, pp. 235–252 in Algebraic
geometry (Sundance, UT, 1986), edited by A. Holme and R. Speiser, Lecture Notes in Math. 1311,
Springer, Berlin, 1988. MR 89k:14005 Zbl 0683.14003

Communicated by David Eisenbud
Received 2009-03-09 Accepted 2009-07-21

sjsierra@math.washington.edu Department of Mathematics, University of Washington,
Seattle, WA 98195, United States
http://www.math.washington.edu/~sjsierra/





Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at the ANT
website.

Originality. Submission of a manuscript acknowledges that the manuscript is original and
and is not, in whole or in part, published or under consideration for publication elsewhere.
It is understood also that the manuscript will not be submitted elsewhere while under con-
sideration for publication in this journal.

Language. Articles in ANT are usually in English, but articles written in other languages
are welcome.

Required items. A brief abstract of about 150 words or less must be included. It should
be self-contained and not make any reference to the bibliography. If the article is not in
English, two versions of the abstract must be included, one in the language of the article
and one in English. Also required are keywords and subject classifications for the article,
and, for each author, postal address, affiliation (if appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties of TEX,
and exceptionally in other formats, are acceptable. Initial uploads should be in PDF format;
after the refereeing process we will ask you to submit all source material.

References. Bibliographical references should be complete, including article titles and
page ranges. All references in the bibliography should be cited in the text. The use of
BibTEX is preferred but not required. Tags will be converted to the house format, however,
for submission you may use the format of your choice. Links will be provided to all
literature with known web locations and authors are encouraged to provide their own links
in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need to submit
the original source files in vector graphics format for all diagrams in your manuscript:
vector EPS or vector PDF files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw, MAT-
LAB, etc.) allow the user to save files in one of these formats. Make sure that what
you are saving is vector graphics and not a bitmap. If you need help, please write to
graphics@mathscipub.org with details about how your graphics were generated.

White Space. Forced line breaks or page breaks should not be inserted in the document.
There is no point in your trying to optimize line and page breaks in the original manuscript.
The manuscript will be reformatted to use the journal’s preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corresponding
author) at a Web site in PDF format. Failure to acknowledge the receipt of proofs or to
return corrections within the requested deadline may cause publication to be postponed.



Algebra & Number Theory
Volume 3 No. 5 2009

489T-adic exponential sums over finite fields
CHUNLEI LIU and DAQING WAN

511Dress induction and the Burnside quotient Green ring
IAN HAMBLETON, LAURENCE R. TAYLOR and BRUCE WILLIAMS

543Vanishing of trace forms in low characteristics
SKIP GARIBALDI and ALEXANDER PREMET

567Compatible associative products and trees
VLADIMIR DOTSENKO

587An algorithm for computing the integral closure
ANURAG K. SINGH and IRENA SWANSON

597A general homological Kleiman–Bertini theorem
SUSAN J. SIERRA

1937-0652(2009)3:5;1-9

A
lgebra

&
N

um
ber

Theory
2009

Vol.3,
N

o.5

Algebra &
Number
Theory

Volume 3

2009
No. 5

mathematical sciences publishers


	cover-front-print
	Masthead and Copyright
	print01
	print02
	print03
	print04
	print05
	print06
	instructions-print
	cover-back-print

