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We introduce T -adic exponential sums associated to a Laurent polynomial f .
They interpolate all classical pm-power order exponential sums associated to f .
We establish the Hodge bound for the Newton polygon of L-functions of T -adic
exponential sums. This bound enables us to determine, for all m, the Newton
polygons of L-functions of pm-power order exponential sums associated to an f
that is ordinary for m = 1. We also study deeper properties of L-functions of
T -adic exponential sums. Along the way, we discuss new open problems about
the T -adic exponential sum itself.

1. Introduction

Classical exponential sums. We first recall the definition of classical exponential
sums over finite fields of characteristic p with values in a p-adic field.

Let p be a fixed prime number, Zp the ring of p-adic integers, Qp the field of
p-adic numbers, and Qp a fixed algebraic closure of Qp. Let q = pa be a power
of p, Fq the finite field of q elements, Qq the unramified extension of Qp with
residue field Fq , and Zq the ring of integers of Qq .

Fix a positive integer n. Let f (x) ∈ Zq [x±1
1 , x±1

2 , . . . , x±1
n ] be a Laurent poly-

nomial in n variables of the form

f (x)=
∑

u

au xu, where au ∈ µq−1 and xu
= xu1

1 · · · x
un
n ;

here µk denotes the group of k-th roots of unity in Qp.

Definition 1.1. Let ψ be a locally constant character of Zp of order pm with values
in Qp, and let πψ = ψ(1)− 1. The sum

S f,ψ(k)=
∑

x∈µn
qk−1

ψ(TrQqk /Qp( f (x)))

is called a pm-power order exponential sum on the n-torus Gn
m over Fqk . The
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generating function

L f,ψ(s)= L f,ψ(s; Fq)= exp
( ∞∑

k=1

S f,ψ(k)
sk

k

)
∈ 1+ sZp[πψ ][[s]]

is the L-function of pm-power order exponential sums over Fq associated to f (x).

For m ≥ 1 this is still an exponential sum over a finite field, since we are just
summing over the subset of roots of unity (corresponding to the elements of a finite
field via the Teichmüller lifting), not over the whole finite residue ring Zq/pmZq .
The exponential sum over the whole finite ring Zq/pmZq and its generating func-
tion as m varies is the subject of Igusa’s zeta function [1978].

In general, L f,ψ(s) is rational in s. However, L f,ψ(s)(−1)n−1
is a polynomial

if f is nondegenerate, as shown in [Adolphson and Sperber 1989; 1987] for ψ of
order p, and in [Liu and Wei 2007] for all ψ . By a result of [Gel’fand et al. 1994],
if p is large enough, then f is generically nondegenerate. For nondegenerate f ,
the location of the zeros of L f,ψ(s)(−1)n−1

becomes an important issue. The p-adic
theory of such L-functions was developed by Dwork [1960], Bombieri [1966],
Adolphson and Sperber [1989; 1987], the second author [Wan 1993; 2004], and
Blache [2008] forψ of order p. Recently, the initial part of the theory was extended
to all ψ by Liu and Wei [2007] and Liu [2007].

The p-adic theory of the above exponential sum for n = 1 and ψ of order p has
a long history and has been studied extensively in the literature. For instance, in
the simplest case that f (x) = xd , the exponential sum was studied by Gauss; see
[Berndt and Evans 1981] for a comprehensive survey. By the Hasse–Davenport
relation for Gauss sums, the L-function is a polynomial whose zeros are given
by roots of Gauss sums. Thus, the slopes of the L-function are completely deter-
mined by the Stickelberger theorem for Gauss sums. The roots of the L-function
have explicit p-adic formulas in terms of p-adic 0-function via the Gross–Koblitz
formula [1979]. These ideas can be extended to treat the so-called diagonal f case
for general n; see [Wan 2004]. These elementary cases have been used as building
blocks to study the deeper nondiagonal f (x) via various decomposition theorems,
which are the main ideas of Wan [1993; 2004]. In the case n= 1 and ψ of order p,
more facts about the slopes of the L-function were found in [Zhu 2003; 2004a;
Blache and Férard 2007; Liu 2008].

T-adic exponential sums. We now define the T -adic exponential sum, state our
main results, and put forward some new questions.

Definition 1.2. For a positive integer k, the T -adic exponential sum of f over Fqk

is the sum
S f (k, T )=

∑
x∈µn

qk−1

(1+ T )
TrQqk /Qp ( f (x))

∈ Zp[[T ]].
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The T -adic L-function of f over Fq is the generating function

L f (s, T )= L f (s, T ; Fq)= exp
( ∞∑

k=1

S f (k, T )s
k

k

)
∈ 1+ sZp[[T ]][[s]].

The T -adic exponential sum interpolates classical exponential sums of pm-order
over finite fields for all positive integers m. In fact, we have

S f (k, πψ)= S f,ψ(k).

Similarly, one can recover the classical L-function of the pm-order exponential
sum from the T -adic L-function by the formula

L f (s, πψ)= L f,ψ(s).

We view L f (s, T ) as a power series in the single variable s with coefficients in
the complete discrete valuation ring Qp[[T ]] with uniformizer T .

Definition 1.3. The T -adic characteristic function of f over Fq , or C-function of
f for short, is the generating function

C f (s, T )= exp
( ∞∑

k=1

−(qk
− 1)−n S f (k, T )s

k

k

)
∈ 1+ sZp[[T ]][[s]].

The C-function C f (s, T ) and the L-function L f (s, T ) determine each other.
They are related by

L f (s, T )=
n∏

i=0

C f (q i s, T )(−1)n−i−1(n
i), C f (s, T )(−1)n−1

=

∞∏
j=0

L f (q j s, T )(
n+ j−1

j ).

In Section 4, we prove:

Theorem 1.4 (analytic continuation). The C-function C f (s, T ) is T -adic entire
in s. As a consequence, the L-function L f (s, T ) is T -adic meromorphic in s.

This theorem tells us that the C-function behaves T -adically better than the
L-function. In fact, in the T -adic setting, the C-function is a more natural object
than the L-function. Thus, we shall focus more on the C-function.

Knowing the analytic continuation of C f (s, T ), we are then interested in the
location of its zeros. More precisely, we would like to determine the T -adic Newton
polygon of this entire function C f (s, T ). This is expected to be a complicated
problem in general. It is open even in the simplest case n = 1, and f (x)= xd is a
monomial if p 6≡ 1 (mod d). What we can do is to give an explicit combinatorial
lower bound depending only on q and1, called the q-Hodge bound HPq(1). This
polygon will be described in detail in Section 3.
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Let NPT ( f ) denote the T -adic Newton polygon of the C-function C f (s, T ). In
Section 5, we prove this:

Theorem 1.5 (Hodge bound). NPT ( f )≥ HPq(1).

This theorem shall give several new results on classical exponential sums, as we
shall see in Section 2. In particular, this extends in one stroke all known ordinar-
iness results for ψ of order p to all ψ of any p-power order. It demonstrates the
significance of the T -adic L-function. It also gives rise to a definition:

Definition 1.6. A Laurent polynomial f that satisfies NPT ( f )=HPq(1) is called
T -adically ordinary.

We shall show that a classically ordinary f is T -adically ordinary, but it is
possible that a nonordinary f is T -adically ordinary. Thus, it remains interesting
to study exactly when f is T -adically ordinary. For this reason, in Section 6, we
extend the facial decomposition theorem in [Wan 1993] to the T -adic case. Let
1 be the convex closure in Rn of the origin and the exponents of the nonzero
monomials in the Laurent polynomial f (x). For any closed face σ of 1, we let fσ
denote the sum of monomials of f whose exponent vectors lie in σ .

Theorem 1.7 (T -adic facial decomposition). A Laurent polynomial f is T -adically
ordinary if and only if for every closed face σ of1 of codimension 1 not containing
the origin, the restriction fσ is T -adically ordinary.

In Section 7, we briefly discuss the variation of the C-function C f (s, T ) and
its Newton polygon when the reduction of f moves in an algebraic family over a
finite field. The main questions concern generic ordinariness, the generic Newton
polygon, the analogue of the Adolphson–Sperber conjecture [1989], Wan’s limit-
ing conjecture [2004], and Dwork’s unit root conjecture [1973] in the T -adic and
πψ -adic case. We shall give an overview about what can be proved and what is
unknown, including a number of conjectures. In summary, a lot can be proved in
the ordinary case, and a lot remain to be proved in the nonordinary case.

2. Applications

In this section, we give several applications of the T -adic exponential sum to class-
ical exponential sums.

Theorem 2.1 (integrality theorem). We have

L f (s, T ) ∈ 1+ sZp[[T ]][[s]] and C f (s, T ) ∈ 1+ sZp[[T ]][[s]].

Proof. Let |Gn
m | be the set of closed points of Gn

m over Fq , and let a 7→ â be the
Teichmüller lifting. It is easy to check that the T -adic L-function has the Euler
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product expansion

L f (s, T )=
∏

x∈|Gn
m |

1

(1−(1+T )
TrQqdeg x /Qp ( f (x̂))

sdeg x)
∈ 1+ sZp[[T ]][[s]],

where x̂ = (x̂1, . . . , x̂n). The theorem now follows. �

This proof shows that the L-function L f (s, T ) is the L-function L(s, ρ f ) of the
continuous (p, T )-adic representation of the arithmetic fundamental group given
by

ρ f : π
arith
1 (Gn

m/Fq)→ GL1(Zp[[T ]]), Frobx 7→ (1+ T )
TrQqdeg x /Qp ( f (x̂))

.

The rank one representation ρ f is transcendental in nature. Its L-function L(s, ρ f )

seems to be beyond the reach of `-adic cohomology, where ` is a prime different
from p. However, the specialization of ρ f at the special point T =πψ is a character
of finite order. Thus, the specialization

L(s, ρ f )|T=πψ = L f,ψ(s)

can indeed be studied using Grothendieck’s `-adic trace formula [1965]. This gives
another proof that the L-function L f,ψ(s) is a rational function in s. But the T -adic
L-function L f (s, T ) itself is certainly out of the reach of `-adic cohomology as it
is truly transcendental.

Let NPπψ ( f ) denote the πψ -adic Newton polygon of the C-function C f (s, πψ).
The integrality of C f (s, T ) immediately gives the following theorem, whose proof
is obvious.

Theorem 2.2 (rigidity bound). If ψ is nontrivial, then NPπψ ( f )≥ NPT ( f ).

A natural question is to ask when NPπψ ( f ) coincides with its rigidity bound.

Theorem 2.3 (transfer theorem). If NPπψ ( f )=NPT ( f ) holds for one nontrivialψ ,
then it holds for all nontrivial ψ .

Proof. By the integrality of C f (s, T ), the T -adic Newton polygon of C f (s, T )
coincides with the πψ -adic Newton polygon of C f (s, πψ) if and only if for every
vertex (i, e) of the T -adic Newton polygon of C f (s, T ), the coefficients of si in
C f (s, T ) differs from T e by a unit in Zp[[T ]]×. It follows that if the coincidence
happens for one nontrivial ψ , it happens for all nontrivial ψ . �

Definition 2.4. We call f rigid if NPπψ ( f )= NPT ( f ) for one (and hence for all)
nontrivial ψ .

In [Liu et al. 2008], the first author showed in cooperation with his students that
f is generically rigid if n = 1 and p is sufficiently large. So the rigid bound is the
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best possible bound. In contrast, the weaker Hodge bound HPq(1) is only the best
possible if p ≡ 1 (mod d), where d is the degree of f .

We now pause to describe the relationship between the Newton polygons of
C f (s, πψ) and L f,ψ(s)(−1)n−1

. We need the following definitions.

Definition 2.5. A convex polygon with initial point (0, 0) is called algebraic if it
is the graph of a Q-valued function defined on N or on an interval of N, and its
slopes are of finite multiplicity and of bounded denominator.

Definition 2.6. For an algebraic polygon with slopes {λi }, we define its slope series
to be

∑
i tλi .

It is clear that an algebraic polygon is uniquely determined by its slope series.
So the slope series embeds the set of algebraic polygons into the ring lim Ed Z[[t1/d

]].
The image is lim Ed N[[t1/d

]] and is closed under addition and multiplication. There-
fore one can define addition and multiplication on the set of algebraic polygons.

Lemma 2.7. Suppose that f is nondegenerate. Then the q-adic Newton polygon
of C f (s, πψ ; Fq) is the product of the q-adic Newton polygon of L f,ψ(s; Fq)

(−1)n−1

and the algebraic polygon 1/(1− t)n .

Proof. The C-value C f (s, πψ) and the L-function L f,ψ(s) determine each other.
They are related by

L f,ψ(s)=
n∏

i=0

C f (q i s, πψ)(−1)n−i−1(n
i), C f (s, πψ)(−1)n−1

=

∞∏
j=0

L f,ψ(q j s)(
n+ j−1

j ).

Suppose that L f,ψ(s)(−1)n−1
=
∏d

i=1(1−αi s). Then

C f (s, πψ)=
∞∏
j=0

d∏
i=1

(1−αi q j s)(
n+ j−1

j ).

Let λi be the q-adic order of αi . Then the q-adic order of αi q j is λi + j . So the
slope series of the q-adic Newton polygon of L f,ψ(s)(−1)n−1

is S(t) =
∑d

i=1 tλi ,
and the slope series of the q-adic Newton polygon of C f (s, πψ) is

+∞∑
j=0

d∑
i=0

(n+ j−1
j

)
tλi+ j

=
1

(1−t)n
S(t). �

The next theorem, whose proof is obvious, combines the rigidity bound and the
Hodge bound.

Theorem 2.8. If ψ is nontrivial, then NPπψ ( f )≥ NPT ( f )≥ HPq(1).
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If we drop the middle term, we arrive at the Hodge bound

NPπψ ( f )≥ HPq(1)

of [Adolphson and Sperber 1987] and [Liu and Wei 2007].

Theorem 2.9. If NPπψ ( f ) = HPq(1) holds for one nontrivial ψ , then f is rigid,
T -adically ordinary, and the equality holds for all nontrivial ψ .

Proof. Suppose that NPπψ0
( f ) = HPq(1) for a nontrivial ψ0. Then, by the last

theorem, we have
NPπψ0

( f )= NPT ( f )= HPq(1).

So f is rigid and T -adically ordinary, and NPπψ ( f ) = NPT ( f ) = HPq(1) holds
for all nontrivial ψ . �

Definition 2.10. We call f ordinary if NPπψ ( f ) = HPq(1) holds for one (and
hence for all) nontrivial ψ .

The notion of ordinariness now carries much more information than we had
known before. From this, we see that the T -adic exponential sum provides a new
framework to study all pm-power order exponential sums simultaneously. Instead
of the usual way of extending the methods forψ of order p to cases of higher order,
the T -adic exponential sum has the novel feature that it can sometimes transfer a
known result for one nontrivial ψ to all nontrivial ψ . This philosophy is carried
out further in [Liu et al. 2008].

Example 2.11. Let

f (x)= x1+ x2+ · · ·+ xn +
α

x1x2 · · · xn
for α ∈ µq−1.

Then, by the result of [Sperber 1980] and our new information on ordinariness, we
have NPπψ ( f )= HPq(1) for all nontrivial ψ .

3. The q-Hodge polygon

Here, we describe explicitly the q-Hodge polygon mentioned in the introduction.
Recall that f (x) ∈ Zq [x±1

1 , x±1
2 , . . . , x±1

n ] is a Laurent polynomial in n variables
of the form

f (x)=
∑
u∈Zn

au xu, where au ∈ Zq and aq
u = au .

We stress that the nonzero coefficients of f (x) are roots of unity in Zq , and thus
correspond uniquely to Teichmüller liftings of elements of the finite field Fq . If the
coefficients of f (x) are arbitrary elements in Zq , much of the theory still holds,
but it is more complicated to describe the results. In this paper, we make the
simplifying assumption that the nonzero coefficients are always roots of unity.
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Let 1 be the convex polyhedron in Rn associated to f , which is generated by
the origin and the exponent vectors of the nonzero monomials of f . Let C(1) be
the cone in Rn generated by 1. Define the degree function u 7→ deg u on C(1) so
that deg u= 1 when u lies on a codimensional 1 face of1 that does not contain the
origin, and so that deg(ru)=r deg u for r ∈R≥0 and u∈C(1); we call it the degree
function associated to1. We have deg(u+v)≤ deg u+deg v for u, v ∈C(1), and
the equality holds if and only if u and v are cofacial. In other words, the number

c(u, v) := deg u+ deg v− deg(u+ v)

is 0 if u, v ∈ C(1) are cofacial, and is positive otherwise. We call c(u, v) the
cofacial defect of u and v. Let

M(1) := C(1)∩Zn

be the set of lattice points in the cone C(1). Let D be the denominator of the degree
function, which is the smallest positive integer such that deg M(1)⊂ (1/D)Z. For
every natural number k, we define

W (k) :=W1(k)= #{u ∈ M(1) | deg u = k/D}

to be the number of lattice points of degree k/D in M(1). For prime power q= pa ,
the q-Hodge polygon of f is the polygon with vertices (0, 0) and( i∑

j=0

W ( j), a(p− 1)
i∑

j=0

j
D

W ( j)
)

for i = 0, 1, . . . .

It is also called the q-Hodge polygon of 1 and denoted by HPq(1). It depends
only on q and1. It has a side of slope a(p−1)( j/D) with horizontal length W ( j)
for each nonnegative integer j .

4. Analytic continuation

Here we prove the T -adic analytic continuation of the C-function C f (s, T ). The
idea is to employ Dwork’s trace formula in the T -adic case.

Note that the Galois group Gal(Qq/Qp) is cyclic of order a= logp q . There is an
element σ in the Galois group whose restriction to µq−1 is the p-power morphism.
It is of order a, and is called the Frobenius element.

We define a new variable π by the relation E(π)= 1+ T , where

E(π)= exp
( ∞∑

i=0

π pi

pi

)
∈ 1+πZp[[π ]]
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is the Artin–Hasse exponential series. Thus, π and T are two different uniformizers
of the T -adic local ring Qp[[T ]]. It is clear that

E(πα) ∈ 1+πZq [[π ]] for α ∈ Zq ,

E(π)β ∈ 1+πZp[[π ]] for β ∈ Zp.

The Galois group Gal(Qq/Qp) can act on Zq [[π ]] but keep π fixed. The Artin–
Hasse exponential series has a kind of commutativity, which we express through
the following lemma.

Lemma 4.1 (commutativity). We have the following commutative diagram:

µq−1
E(π · ) //

Tr
��

Zq [[π ]]

Norm
��

µp−1
E(π)• // Zp[[π ]]

That is, if x ∈ µq−1, then E(π)x+x p
+···+x p(a−1)

= E(πx)E(πx p) · · · E(πx pa−1
).

Proof. Since
∑a−1

j=0 x p j
=
∑a−1

j=0 x p j+i
for x ∈ µq−1, we have

E(π)x+x p
+···+x p(a−1)

= exp
( ∞∑

i=0

π pi

pi

a−1∑
j=0

x p j+i
)

= E(πx)E(πx p) · · · E(πx pa−1
). �

Definition 4.2. Let π1/D be a fixed D-th root of π . Define

L(1)=
{ ∑

u∈M(1)

buπ
deg u xu

: bu ∈ Zq [[π
1/D
]]

}
,

B =
{ ∑

u∈M(1)

buπ
deg u xu

∈ L(1), ordT (bu)→+∞ if deg u→+∞
}
.

The spaces L(1) and B are T -adic Banach algebras over the ring Zq [[π
1/D
]].

The monomials πdeg u xu for u ∈ M(1) form an orthonormal basis of B and a
formal basis L(1). The algebra B is contained in the larger Banach algebra L(1).
If u ∈1, it is clear that E(πxu) ∈ L(1). Write

E f (x) :=
∏

au 6=0

E(πau xu) if f (x)=
∑
u∈Zn

au xu .

This is an element of L(1) since L(1) is a ring.
The Galois group Gal(Qq/Qp) can act on L(1), while keeping π1/D as well as

the xi fixed. From the commutativity of the Artin–Hasse exponential series, one
can infer the following lemma.
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Lemma 4.3 (Dwork’s splitting lemma). If x ∈ µqk−1, then

E(π)
TrQqk /Qp ( f (x))

=

ak−1∏
i=0

Eσ
i

f (x
pi
),

where a is the order of Gal(Qq/Qp).

Proof. We have

E(π)
TrQqk /Qp ( f (x))

=

∏
au 6=0

E(π)
TrQqk /Qp (au xu)

=

∏
au 6=0

ak−1∏
i=0

E(π(au xu)pi
)=

ak−1∏
i=0

Eσ
i

f (x
pi
). �

Definition 4.4. We define a map

ψp : L(1)→ L(1),
∑

u∈M(1)

bu xu
7→

∑
u∈M(1)

bpu xu .

It is clear that the composition map ψp ◦ E f sends B to B.

Lemma 4.5. Write E f (x)=
∑

u∈M(1) αu( f )πdeg u xu . Then

ψp ◦ E f (π
deg u xu)=

∑
w∈M(1)

αpw−u( f )π c(pw−u,u)π (p−1) degwπdegwxw

for u ∈ M(1), where c(pw− u, u) is the cofacial defect of pw− u and u.

Proof. This follows directly from the definition of ψp and E f (x). �

Definition 4.6. Define ψ := σ−1
◦ψp ◦ E f : B→ B, and its a-th iterate

ψa
= ψa

p ◦

a−1∏
i=0

Eσ
i

f (x
pi
).

Note that ψ is linear over Zp[[π
1/D
]], but semilinear over Zq [[π

1/D
]]. On the

other hand, ψa is linear over Zq [[π
1/D
]]. By the last lemma, ψa is completely

continuous in the sense of [Serre 1962].

Theorem 4.7 (Dwork’s trace formula). For every positive integer k,

(qk
− 1)−n S f (k, T )= TrB/Zq [[π1/D]](ψ

ak).

Proof. Let g(x) ∈ B. We have

ψak(g)= ψak
p (g

ak−1∏
i=0

Eσ
i

f (x
pi
)).
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Write
∏ak−1

i=0 Eσ
i

f (x
pi
)=

∑
u∈M(1) βu xu . One computes that

ψak(πdeg vxv)=
∑

u∈M(1)

βqku−vπ
deg vxu .

Thus, Tr(ψak
| B/Zq [[π

1/D
]]) =

∑
u∈M(1) β(qk−1)u . But, by Dwork’s splitting

lemma, we have

(qk
− 1)−n S f (k, T )= (qk

− 1)−n
∑

x∈µn
qk−1

ak−1∏
i=0

Eσ
i

f (x
pi
)=

∑
u∈M(1)

β(qk−1)u . �

Theorem 4.8 (analytic trace formula). We have

C f (s, T )= det(1−ψas | B/Zq [[π
1/D
]]).

In particular, the T -adic C-function C f (s, T ) is T -adic analytic in s.

Proof. It follows from the last theorem and the well-known identity

det(1−ψas)= exp
(
−

∞∑
k=1

Tr(ψak)
sk

k

)
. �

This theorem gives another proof that the coefficients of C f (s, T ) and L f (s, T )
as power series in s are T -adically integral.

Corollary 4.9. For each nontrivial ψ , the C-value C f (s, πψ) is p-adic entire in s
and the L-function L f,ψ(s) is rational in s.

5. The Hodge bound

The analytic trace formula in the previous section reduces the study of C f (s, T )
to the study of the operator ψa . We consider ψ first. Note that ψ operates on B
and is linear over Zp[[π

1/D
]].

Theorem 5.1. The T -adic Newton polygon of det(1−ψs | B/Zp[[π
1/D
]]) lies above

the polygon with vertices (0, 0) and(
a

i∑
k=0

W (k), a(p− 1)
i∑

k=0

k
D

W (k)
)

for i = 0, 1, . . . .

Proof. Let ξ1, ξ2, . . . , ξa be a normal basis of Qq over Qp. Write

(ξ jαpw−u( f ))σ
−1
=

a−1∑
i=0

α(i,w),( j,u)( f )ξi for α(i,w),( j,u)( f ) ∈ Zp[[π
1/D
]].
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Then

ψ(ξ jπ
deg u xu)=

a−1∑
i=0

∑
w∈M(1)

α(i,w),( j,u)( f )π c(pw−u,u)π (p−1) degwξiπ
degwxw.

That is, the matrix of ψ over Zp[[π
1/D
]] with respect to the orthonormal basis

{ξ jπ
deg u xu

}0≤ j<a,u∈M(1) is

A =
(
α(i,w),( j,u)( f )π c(pw−u,u)π (p−1) degw)

(i,w),( j,u).

The claim follows. �

We are now ready to prove the Hodge bound for the Newton polygon.

Theorem 5.2. NPT ( f )≥ HPq(1).

Proof. By the theorem above, it suffices to prove that the T -adic Newton polygon
of det

(
1−ψasa

| B/Zq [[π
1/D
]]
)

coincides with that of det
(
1−ψs | B/Zp[[π

1/D
]]
)
.

Note that

det
(
1−ψas | B/Zp[[π

1/D
]]
)
= Norm

(
det
(
1−ψas | B/Zq [[π

1/D
]]
))
,

where the norm map is the norm from Zq [[π
1/D
]] to Zp[[π

1/D
]]. The theorem now

follows from the equality∏
ζ a=1

det
(
1−ψζ s | B/Zp[[π

1/D
]]
)
= det

(
1−ψasa

| B/Zp[[π
1/D
]]
)
. �

6. Facial decomposition

In this section, we extend the facial decomposition theorem in [Wan 1993]. Recall
that the operator ψ = σ−1

◦ (ψp ◦ E f ) is only semilinear over Zq [[π
1/D
]]. But its

second factor ψp ◦ E f is clearly linear, and so det
(
1− (ψp ◦ E f )s | B/Zq [[π

1/D
]]
)

is well defined. We begin with the following theorem.

Theorem 6.1. The T -adic Newton polygon of C f (s, T ) coincides with HPq(1)

if and only if the T -adic Newton polygon of det
(
1− (ψp ◦ E f )s | B/Zq [[π

1/D
]]
)

coincides with the polygon with vertices (0, 0) and( i∑
k=0

W (k), (p− 1)
i∑

k=0

k
D

W (k)
)

for i = 0, 1, . . . .

Proof. In the proof of Theorem 5.2, we showed that the T -adic Newton polygon
of C f (sa, T ) coincides with that of det

(
1−ψs | B/Zp[[π

1/D
]]
)
. Note that

det
(
1− (ψp ◦ E f )s | B/Zp[[π

1/D
]]
)
=Norm

(
det
(
1− (ψp ◦ E f )s | B/Zq [[π

1/D
]]
))
,
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where the norm map is the norm from Zq [[π
1/D
]] to Zp[[π

1/D
]]. The theorem is

equivalently stated that the T -adic Newton polygon of det
(
1−ψs | B/Zp[[π

1/D
]]
)

coincides with the polygon with vertices (0, 0) and( i∑
k=0

aW (k), a(p− 1)
i∑

k=0

k
D

W (k)
)

for i = 0, 1, . . .

if and only if the T -adic Newton polygon of det
(
1− (ψp ◦ E f )s | B/Zp[[π

1/D
]]
)

does. Therefore it suffices to show that the determinant of the matrix

(α(i,w),( j,u)( f )π c(pw−u,u))0≤i, j<a, degw,deg u≤k/D

is not divisible by T in Zp[[π
1/D
]] if and only if the determinant of the matrix

(αpw−u( f )π c(pw−u,u))degw,deg u≤k/D

is not divisible by T in Zq [[π
1/D
]]. The theorem now follows from the fact that the

former determinant is the norm of the latter from Qq [[π
1/D
]] to Qp[[π

1/D
]] up to a

sign. �

We now define the open facial decomposition F(1). It is the decomposition of
C(1) into a disjoint union of relatively open cones generated by the relatively open
faces of 1 whose closure does not contain the origin. Note that every relatively
open cone generated by cofacial vectors in C(1) is contained in a unique element
of F(1).

Lemma 6.2. Let σ ∈ F(1), and u ∈ σ . Then αu( fσ̄ )≡ αu( f ) (modπ1/D), where
fσ̄ is the sum of monomials of f whose exponent vectors lie in the closure σ̄ of σ .

Proof. Let v1, . . . , v j be exponent vectors of monomials of f such that a1v1+· · ·+

a jv j = u, with a1 > 0, . . . , a j > 0. It suffices to show that either v1, . . . v j lie in
the closure of σ , or their contribution to αu( f ) is ≡ 0 (modπ1/D). Suppose their
contribution to αu( f ) is 6≡ 0 (modπ1/D). Then v1, . . . , v j must be cofacial. So
the interior of the cone generated by those vectors is contained in a unique element
of F(1). Since that interior has a common point u with σ , it must be σ . It follows
that v1, . . . v j lie in the closure of σ . �

Lemma 6.3. Let σ, τ ∈ F(1) be distinct. Let w ∈ σ and u ∈ τ . Suppose that the
dimension of σ is no greater than that of τ . Then pw− u and u are not cofacial,
that is, c(pw− u, u) > 0.

Proof. Suppose that pw − u and u are cofacial. Then the interior of the cone
generated by pw− u and u is contained in a unique element of F(1). Since that
interior has a common point w with σ , it must be σ . It follows that u lies in the
closure of σ . Since σ and τ are distinct, u lies in the boundary of σ . This implies
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that the dimension of τ is less than that of σ , which is a contradiction. Therefore
pw− u and u are not cofacial. �

For σ ∈ F(1), we define M(σ ) = M(1)∩ σ = Zn
∩ σ to be the set of lattice

points in the cone σ .

Theorem 6.4 (open facial decomposition). The T-adic Newton polygon of C f (s,T )
coincides with HPq(1) if and only if for every σ ∈ F(1), the determinants of the
matrices

{αpw−u( fσ̄ )π c(pw−u,u)
}w,u∈M(σ ), degw,deg u≤k/D for k = 0, 1, . . .

are not divisible by T in Zq [[π
1/D
]], where σ̄ is the closure of σ .

Proof. By Theorem 6.1, the T -adic Newton polygon of C f (s, T ) coincides with
the q-Hodge polygon of f if and only if the determinants of the matrices

A(k) = {αpw−u( f )π c(pw−u,u)
}w,u∈M(1), degw,deg u≤k/D for k = 0, 1, . . .

are not divisible by T in Zq [[π
1/D
]]. Write

A(k)σ,τ = {αpw−u( f )π c(pw−u,u)
}w∈M(σ ), u∈M(τ ), degw,deg u≤k/D.

The facial decomposition shows that A(k) has the block form (A(k)σ,τ )σ,τ∈F(1). The
last lemma shows that the block form modulo π1/D is triangular if we order the
cones in F(1) by increasing dimension. It follows that det A(k) is not divisible
by T in Zq [[π

1/D
]] if and only if for all σ ∈ F(1), det A(k)σ,σ is not divisible by T

in Zq [[π
1/D
]]. By Lemma 6.2, modulo π1/D , A(k)σ,σ is congruent to the matrix

{αpw−u( fσ̄ )π c(pw−u,u)
}w,u∈M(σ ), degw,deg u≤k/D.

So det A(k)σ,σ is not divisible by T in Zq [[π
1/D
]] if and only if the determinant of the

matrix
{αpw−u( fσ̄ )π c(pw−u,u)

}w,u∈M(σ ), degw,deg u≤k/D

is not divisible by T in Zq [[π
1/D
]]. �

The closed facial decomposition Theorem 1.7 follows from the open decompo-
sition theorem and the fact that

F(1)=
⋃

σ∈F(1)
dim σ=dim1

F(σ̄ ).

A similar πψ -adic facial decomposition theorem for C f (s, πψ) can be proved in a
similar way. Alternatively, it follows from the transfer theorem together with the
πψ -adic facial decomposition in [Wan 1993] for ψ of order p.
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7. Variation of C-functions in a family

Fix an n-dimensional integral convex polytope 4 in Rn containing the origin. For
each prime p, let P(1, Fp) denote the parameter space of all Laurent polynomials
f (x) over Fp such that 1( f ) = 1. This is a connected rational variety defined
over Fp. For each f ∈ P(1, Fp)(Fq), the Teichmüller lifting gives a Laurent
polynomial f̃ whose nonzero coefficients are roots of unity in Zq . The C-function
C f̃ (s, T ) is then defined and T -adically entire. For simplicity of notation, we shall
just write C f (s, T ) for C f̃ (s, T ) and similarly L f (s, T ) for L f̃ (s, T ). Thus, our
C-function and L-function are now defined for Laurent polynomials over finite
fields via the Teichmüller lifting. We would like to study how C f (s, T ) varies
when f varies in the algebraic variety P(1, Fp).

Recall that for a closed face σ ∈1, fσ denotes the restriction of f to σ . That
is, fσ is the sum of those nonzero monomials in f whose exponents are in σ .

Definition 7.1. A Laurent polynomial f ∈ P(1, Fp) is called nondegenerate if for
every closed face σ of 1 of arbitrary dimension that does not contain the origin,
the system

∂ fσ
∂x1
= · · · =

∂ fσ
∂xn
= 0

has no common zeros with x1 · · · xn 6= 0 over the algebraic closure of Fp.

The nondegeneracy condition is a geometric condition that insures the associated
Dwork cohomology can be calculated. In particular, it implies that if ψ is of
order pm , then the L-function L f,ψ(s)(−1)n−1

is a polynomial in s whose degree is
precisely n!Vol(1)pn(m−1); see [Liu and Wei 2007]. Consequently:

Theorem 7.2. Let f ∈ P(1, Fp)(Fq). Write

L f (s, T )(−1)n−1
=

∞∑
k=0

L f,k(T )sk for L f,k(T ) ∈ Zp[[T ]].

Assume that f is nondegenerate. Then for every positive integer m and all positive
integers k > n!Vol(1)pn(m−1), we have the congruence

L f,k(T )≡ 0 (mod((1+ T )pm
− 1)/T ) in Zp[[T ]].

Proof. Write ((1+ T )pm
− 1)/T =

∏
(T − ξ). The nondegeneracy assumption

implies that

L f (s, ξ)(−1)n−1
=

∞∑
j=0

L f, j (ξ)s j ,

is a polynomial in s of degree ≤ n!Vol(1)pn(m−1) < k. It follows that L f,k(ξ)= 0
for all ξ . That is, L f,k(T ) is divisible by (T − ξ) for ξ . �
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Definition 7.3. Let N (1, Fp) denote the subset of all nondegenerate Laurent poly-
nomials f ∈ P(1, Fp).

The subset N (1, Fp) is Zariski open in P(1, Fp). It can be empty for some
pair (1, Fp). But, N (1, Fp) for a given 1 is Zariski open dense in P(1, Fp) for
all primes p except for possibly finitely many primes depending on 1. It is an
interesting and independent question to classify the primes p for which N (1, Fp)

is nonempty. This is related to the GKZ discriminant [Gel’fand et al. 1994]. For
simplicity, we shall only consider nondegenerate f in the following.

Generic ordinariness. The first question is, How often f is T -adically ordinary
when f varies in the nondegenerate locus N (1, Fp)? Let Up(1, T ) be the subset
of f ∈ N (1, Fp) such that f is T -adically ordinary, and Up(1) the subset of
f ∈ N (1, Fp) such that f is ordinary. One can prove this:

Lemma 7.4. The set Up(1) is Zariski open in N (1, Fp).

Is Up(1, T ) also Zariski open in N (1, Fp)? We do not know the answer.
For which p are Up(1) and Up(1, T ) Zariski dense in N (1, Fp)? The rigidity

bound as well as the Hodge bound imply that Up(1)⊆Up(1, T ). It follows that
if Up(1) is Zariski dense in N (1, Fp), then Up(1, T ) is also Zariski dense in
N (1, Fp).

The Adolphson–Sperber conjecture [1989] says that if p ≡ 1 (mod D), then
Up(1) is Zariski dense in N (1, Fp). This conjecture was proved to be true in
[Wan 1993; 2004] if n ≤ 3, which implies this:

Theorem 7.5. If p ≡ 1 (mod D) and n ≤ 3, then Up(1, T ) is Zariski dense in
N (1, Fp).

For n ≥ 4, it was shown in [Wan 1993; 2004] that there is an effectively com-
putable positive integer D∗(1) depending only on 1 such that Up(1) is Zariski
dense in N (1, Fp) if p ≡ 1 (mod D∗(1)).

Theorem 7.6. For each 1, there exists an effectively computable positive integer
D∗(1) such that Up(1, T ) is Zariski dense in N (1, Fp) if p ≡ 1 (mod D∗(1)).

The smallest possible D∗(1) is rather subtle to compute in general, and it can be
much larger than D. We now state a conjecture giving reasonably precise estimates
of D∗(1).

Definition 7.7. Let S(4) be the monoid generated by the degree 1 lattice points
in M(1), that is, those lattice points on the codimension 1 faces of1 not containing
the origin. Define the exponent of 4 by

I (4)= inf{d ∈ Z>0 | d M(1)⊆ S(4)}.
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If u ∈ M(1), then the degree of Du will be integral, but Du may not be a non-
negative integral combination of degree 1 elements in M(1); thus DM(1) may
not be a subset of S(1). It is not hard to show that I (1)≥ D. In general they are
different but they are equal if n ≤ 3. This explains why the Adolphson–Sperber
conjecture is true if n ≤ 3 but may be false if n ≥ 4. The following conjecture is a
modified form, and it is a consequence of [Wan 1993, Conjecture 9.1].

Conjecture 7.8. If p ≡ 1 mod I (4), then Up(1) is Zariski dense in N (1, Fp).
In particular, Up(1, T ) is Zariski dense in N (1, Fp) for such p.

By the facial decomposition theorem, it suffices in proving this conjecture to
assume that 1 has only one codimension 1 face not containing the origin.

Generic Newton polygon. In the case that Up(1, T ) is empty, we expect the ex-
istence of a generic T -adic Newton polygon. For this purpose, we need to rescale
the uniformizer. For f ∈ N (1, Fp)(Fpa ), the T a(p−1)-adic Newton polygon of
C f (s, T ; Fpa ) is independent of the choice of a for which f is defined over Fpa .
We call this the absolute T -adic Newton polygon of f .

Conjecture 7.9. There is a Zariski open dense subset G p(1, T ) of N (1, Fp) such
that the absolute T -adic Newton polygon of f is constant for all f ∈ G p(1, T ).
Denote this common polygon by GNPT (1, p), and call it the generic Newton poly-
gon of (4, T ).

More generally, one expects that much of the classical theory for finite rank
F-crystals extends to a certain nuclear infinite rank setting. This includes the
classical Dieudonne–Manin isogeny theorem, the Grothendieck specialization the-
orem, the Katz isogeny theorem [1979]. All these are essentially understood in the
ordinary infinite rank case, but open in the nonordinary infinite rank case.

Similarly, for each nontrivialψ there is a Zariski open dense subset G p(1,ψ) of
N (1, Fp) with the property that the πa(p−1)

ψ -adic Newton polygon of the C-value
C f (s, πψ ; Fpa ) is constant for all f ∈ G p(1,ψ). Denote this common polygon
by GNPp(1,ψ), and call it the generic Newton polygon of (4, ψ). The existence
of G p(1,ψ) can be proved, since the nondegeneracy assumption implies that the
C-function C f (s, πψ) is determined by a single finite rank F-crystal via a Dwork
type cohomological formula for L f,ψ(s). In the T -adic case, we are not aware of
any such finite rank reduction.

Clearly, we have the relation

GNPp(1,ψ)≥ GNPT (1, p).

Conjecture 7.10. If p is sufficiently large, then

GNPp(1,ψ)= GNPT (1, p).
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This conjecture is proved in the case n = 1 in [Liu et al. 2008].
Let HP(1) denote the absolute Hodge polygon with vertices (0, 0) and( i∑

k=0

W (k),
i∑

k=0

k
D

W (k)
)

for i = 0, 1, . . . .

Note that HP(1) depends only on 1, and no longer on q . It is rescaled from the
q-Hodge polygon HPq(1). Clearly, we have

GNPp(1,ψ)≥ GNPT (1, p)≥ HP(1).

Conjecture 7.8 says that if p ≡ 1 (mod I (4)), then both GNPp(1,ψ) and
GNPT (1, p) are equal to HP(1). In general, the generic Newton polygon lies
above HP(1), but for many 1 it should get closer and closer to HP(1) as p goes
to infinity. We now make this more precise. Let E(1) be the monoid generated by
the lattice points in 1. This is a subset of M(1). We may generalize the limiting
[Wan 2004, Conjecture 1.11] for ψ of order p:

Conjecture 7.11. If the difference M(1) − E(1) is a finite set, then for each
nontrivial ψ , we have

lim
p→∞

GNPp(1,ψ)= HP(1).

In particular, limp→∞GNPT (1, p)= HP(1).

This conjecture is equivalent to the existence of the limit. This is because for
all primes p ≡ 1 (mod D∗(1)), we already have by Theorem 7.6 the equality
GNPp(1,ψ)=HP(1). A stronger version of this conjecture (namely, [Wan 2004,
Conjecture 1.12]) has been proved by Zhu [2003; 2004a; 2004b] in the case m = 1
and n = 1; see also [Blache and Férard 2007; Blache et al. 2008] and [Liu 2008]
for related further work in the case m = 1 and n = 1; see [Hong 2001; 2002] and
[Yang 2003] for more specialized one variable results. For n ≥ 2, the conjecture is
clearly true for any1 for which both D≤ 2 and the Adolphson–Sperber conjecture
holds, because then GNPp(1,ψ)=HP(1) for every p> 2. There are many such
higher-dimensional examples [Wan 2004]. Using free products of polytopes and
the examples above, one can construct further examples [Blache 2008].

T-adic Dwork conjecture. In this final subsection, we describe the T -adic version
of Dwork’s conjecture [1973] on pure slope zeta functions.

Let 3 be a quasiprojective subvariety of N (1, Fp) defined over Fp. Let fλ be
a family of Laurent polynomials parameterized by λ ∈ 3. For each closed point
λ∈3, the Laurent polynomial fλ is defined over the finite field Fpdeg λ . The T -adic
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entire function C fλ(s, T ) has the pure slope factorization

C fλ(s, T )=
∏
α∈Q≥0

Pα( fλ, s),

where each Pα( fλ, s)∈ 1+sZp[[T ]][s] is a polynomial in s whose reciprocal roots
all have T deg λ(p−1)-slope equal to α.

Definition 7.12. For α ∈Q≥0, the T -adic pure slope L-function of the family f3
is defined to be the infinite Euler product

Lα( f3, s)=
∏
λ∈|3|

1
Pα( fλ, sdeg λ)

∈ 1+ sZp[[T ]][[s]],

where |3| denotes the set of closed points of 3 over Fp.

Dwork’s conjecture then has a T -adic version:

Conjecture 7.13. For α ∈ Q≥0, the T -adic pure slope L-function Lα( f3, s) is
T -adic meromorphic in s.

In the ordinary case, this conjecture can be proved using the methods from
[Wan 2000a; 2000b; 1999]. It would be interesting to prove this conjecture in
the general case. The πψ -adic version of this conjecture is essentially Dwork’s
original conjecture, which can be proved as it reduces to finite rank F-crystals.
The difficulty of the T -adic version is that we have to work with infinite rank
objects, where much less is known in the nonordinary case.
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