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Dress induction and the Burnside quotient
Green ring

lan Hambleton, Laurence R. Taylor and Bruce Williams

We define and study the Burnside quotient Green ring of a Mackey functor, intro-
duced in our 1990 MSRI preprint. Some refinements of Dress induction theory
are presented, together with applications to computation results for K-theory
and L-theory of finite and infinite groups.

1. Introduction

Induction theory began with Artin and Brauer’s work in representation theory, was
continued by Swan [1970] and Lam [1968] for K -theory, and was put in its most
abstract and elegant setting by Green [1971] and Dress [1973; 1975]. The theory
sets up a convenient framework for computing the value of a Mackey functor on
some finite group G, given suitable generation results for a Green ring which acts
on the Mackey functor. (See [tom Dieck 1987; Lindner 1976; Thévenaz 1990;
Thévenaz and Webb 1995] for some subsequent developments.)

The main examples in this theory are (i) the Swan Green ring SW (G, Z) [Swan
1970], which leads to the Brauer—-Berman—Witt induction theorem for represen-
tations of finite groups, and computation results for Quillen K-theory K,(RG),
and (ii) the Dress Green ring GU (G, Z) [Dress 1975], which leads to computation
results for the oriented surgery obstruction groups L,(ZG) of Wall [1976].

In Section 2 we define the Burnside quotient Green ring o 4 for a Mackey func-
tor M : D(G) — b, where D(G) denotes the category of finite G-sets, and b
the category of abelian groups. This Green ring sy is the smallest quotient of
the Burnside ring which is a Green ring, and still acts on the Mackey functor. As
defined, it has many convenient naturality properties, and generation results for
A will lead as usual to computation results for M. We define the concept of a
Dress generating set X for a Green ring in Definition 3.5. The main result (see
Theorem 3.6) is:
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Theorem A. A finite G-set X is a Dress generating set for a Green ring G if and
only if it is a Dress generating set for the Burnside quotient Green ring .

The naturality of the Burnside quotient Green rings can now be used to obtain
computability results for sub- or quotient Mackey functors (see Theorem 3.8). We
also point out a useful refinement of Dress induction in Theorem 3.10. We use
the Burnside quotient Green ring in Section 5 to study additive functors out of
the categories RG-Morita defined in our paper of 1990, henceforth abbreviated
[HTW 1990]; here R is a commutative ring with unit. The main examples of
such functors include K -theory, Hochschild homology and cyclic homology [HTW
1990, 1.A.12]. We define a bifunctor d : 9(G) — RG-Morita in 5.4 and prove the
following computability result (see Theorem 5.5):

Theorem B. Any additive functor F : RG-Morita — b gives a Mackey functor
on D(G) by composition with d : 9(G) — RG-Morita. Any such Mackey functor
is hyperelementary computable.

This is a refinement of [Oliver 1988, 11.2], and Theorem A provides the key new
ingredient in the proof. The extra generality is useful for studying functors such as
the Dade group and the units in the Burnside ring [Bouc 2007; Bouc 2008].

The Burnside quotient Green ring has been applied to study the permutation
representations of finite groups in [Hambleton and Taylor 1999], free actions of
finite groups on products of spheres in [Hambleton 2006], and to the computation
of Bass nilgroups in [Hambleton and Liick 2007]. This theory was surveyed and
used in [Hambleton and Taylor 2000]. Our results also apply to the computation of
K and L-theory for infinite groups, based on an idea of Farrell and Hsiang [1981].

We introduce Mackey prefunctors and pseudo-Mackey functors in Section 6.
A Mackey prefunctor is a just prebifunctor 9(G) — b, and a pseudo-Mackey
functor is a Mackey prefunctor which admits a finite filtration by Mackey functors.
Such structures have been observed in a number of different contexts: the main
examples include the higher Whitehead groups Wh, (ZG), and the structure set of
a compact manifold in surgery theory [Wall 1999, Chapter 9].

It turns out that the general scheme of Dress induction theory can be extended
to pseudo-Mackey functors as well. In Section 7, we combine this idea with
the Burnside quotient Green ring to study additive functors out of the category
(RG, w)-Morita [HTW 1990, 1C]. We have the corresponding computability result
(see Theorem 7.2):

Theorem C. Let F : (RG, w)-Morita — b be an additive functor. Then the
composite M = F od : D(G) — Ab is a Mackey prefunctor. Moreover:

(1) The 2-adic completion of M is 2-hyperelementary computable.
(i1) If M is a Mackey functor, then M is hyperelementary computable.



Dress induction and the Burnside quotient Green ring 513

As an application, we conclude from part (i) that the surgery obstruction groups
L, (ZG, w), with arbitrary orientation character w : G — {%1}, are 2-hyperele-
mentary computable after 2-adic completion (see Example 7.3 for the meaning of
computability in this setting). This computability result was certainly expected
to be true, but the argument presented here seems to be the first actual proof in
the nonoriented case. In the oriented case, where w is trivial, part (ii) applies to
L-theory and the computability is just [Dress 1975, Theorem 1]. For nontrivial
o, the surgery obstruction group L,(ZG, w) is a Mackey functor if and only if it
has exponent two (see [Taylor 1973], and see [Wall 1976, 5.2.5] for an example
where the L-groups do not have exponent two). In Lemma 7.1 we give a general
necessary and sufficient condition on F for part (ii) to apply to JL.

2. Dress induction

We will first recall some definitions Dress used in his formulation of induction
theory [Dress 1975, page 301].

2A. Mackey functors. Let G be a finite group, and let @(G) denote the category
whose objects are finite, left G-sets and whose morphisms are G-maps. A Mackey
functor is a bifunctor M = (M, M*) : D(G) — Ab, where b denotes the category
of abelian groups and groups homomorphisms, such that . (S) = AL*(S) for each
object S € 9(G), and the following two properties hold:

(M1) For any pullback diagram of finite G-sets

s—Yo s,
(Dl L(ﬂ
52—W>T

the induced maps give an commutative diagram

A(S) — (sy)

(I)Vtt T T (p-»%

M(S2) —> U(T)

Here we denote the covariant maps by 4 and the contravariant maps by
o'

(M2) The embeddings of S| and §; into the disjoint union S; U S, define an iso-
morphism M*(S; L S7) — M*(S1) & M*(S,). Let M(D) = 0.

The property (M1) is the usual double coset formula, and (M2) gives additivity.
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We remark that for any bifunctor satisfying (M1), the composition

M (S1) @ Mi(S2) — M (S1US2) = M*(S1US)
— MF(S)) B MF (M) = M (S)) & M, (S2)

is just the identity matrix. It follows that any subbifunctor of a Mackey functor is
Mackey.

Definition 2.1. If Al and N are Mackey functors, then a homomorphism M — N
of Mackey functors is a natural transformation of bifunctors ® : M — N such that
for each object S € @(G) the function Oy : M(S) — N(S) is a homomorphism of
abelian groups. It is easy to check that the kernel, ker ©, the image, Im @, and the
cokernel of ® are all sub- or quotient Mackey functors of Jl or N

2B. Pairings and Green functors. If i, N, and £ are Mackey functors, then a
pairing is a family of bilinear maps

M(S) x N(S) — L(S)

indexed by the objects of @(G), such that for any G-map ¢ : S — T the following
formulas hold:

ol (x-y)=¢"(x) - 9" (y) forx e (T),y e N(T),
x5 (y) = pa(p™(x) - y) forx € M(T), y € N(S),
pu(x)-y=pz(x 9" (y)) forxeM(S),yeN(T).

A Green ring is a Mackey functor % together with a pairing 4 x ¢ — ¢, and a
collection of elements {15 € 94(S)} such that the pairing defines an associative ring
structure on each (S) with unit 1g, and p“(17) = 1 for every G-map ¢ : S — T.

A homomorphism of Green rings ® : 4 — ¥ is a homomorphism of Mackey
functors such that for each object S € ¥ (G) the function Og : G(S) — H(S) is a
unital ring homomorphism. If @y is injective for each object S € 9(G), we say
that § is a sub-Green ring of X. If @y is surjective for each object S € @(G), then
we say that K is a quotient Green ring of 4. Similarly, we define subquotient Green
rings.

If M is a Mackey functor, then Jl is a Green module over a Green ring % if there
exists a pairing G x Al — Jl such that M(S) becomes a left 4(S)-module from the
pairing, and 1 - x = x for all x € JL(S).

Example 2.2. If ¢ — ¥ is a homomorphism of Green rings, then ¥ is a Green
module over ¢ under the pairing § x ¥ — K induced by the homomorphism.
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2C. The Burnside ring. For any left G-set S, we let Z5(G) denote the category
with objects (X, f), where X is a left G-set and f : X — S is a G-map. The
morphisms F : (X1, f1) = (X2, f2) are G-maps F : X| — X, such that f, o F = f.
We define a bifunctor

A:D(G) — dAb

by setting A(S) = Ko(@s(G)). If 9 : S — T is a G-map, then g4 : A(S) — A(T) is
the map induced on K by the composition (X, f)+> (X, o f). The contravariant
map ¢ : A(T) — s4(S) is induced by the pullback construction applied to

sthriy,
where (Y, f) is an object in @7 (G). Conditions (M1) and (M2) are easy to check,
and o is a Mackey functor. There is also a pairing 4 x s§ — s defined by pullback:
let (X1, f1) and (X3, f>) represent elements of 4(.S), and form the pullback

x,Lslx,

considered as a G-set over S. This object in @5(G) represents the product, and
each 4(§) becomes an associative ring with unit element represented by id: S — S.
The resulting Green ring is called the Burnside ring. Dress also remarks that the
Burnside ring is the “universal” Green ring, since it acts on any Mackey functor
M. The required pairing s4 x J — M is defined by pairing an element of ()
represented by a G-set (X, f) over S, and an element x € JL(S), to get fu(f*(x)) e
M(S). Tt is not hard to check that JL(S) is a unital s¢(S)-module under this bilinear
pairing, so J is a Green module over .

We remark that a homomorphism M — N of Mackey functors is compatible
with the s{-module action, so gives a map of s{-Green modules.

If 4 is a Green ring, the same checks show that % is an s{-algebra, implying in
particular that a - (x - y) = (a-x) -y for all a € $4(S) and all x, y € 4(S). It follows
that the map 7 : s — %4 defined by a +— a - 1g, for all a € A(S), is a (unital) ring
homomorphism. Indeed

(a-l1s)-(b-lg)y=a-(lg-(b-1s))=a-(b-15)=(a-b)- 15

for all a, b € A(S), since 4(S) is a A (S)-algebra. It is easy to check from the
pairing formulas that 7 : ¢ — 4 is also a homomorphism of Green rings.

2D. Ideals and quotient Green rings. There is a natural notion of a (left) Green
ideal in a Green ring 4, namely a subbifunctor I C % such that 7(S) C 9(S) is
a left ideal in the ring %(S). Similarly, we have right ideals and two-sided ideals.
If I C %4 is a two-sided Green ideal, then the quotient functor /I, defined by
S+ %(S)/1(S), is a Green ring under the quotient pairing inherited from .
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If 9 x M — J is a Green module structure on a Mackey functor Jl, then we
define the Green ideal I C %9 as the subbifunctor of ¢ with

Lu(S) ={a €4(S) | ps(a) -y =0, y*(a) -z =0}

forallp: S — T,y :U — S,and all y € M(T), z € M(U). Note that elements
of 1,(S) satisfy additional conditions (both “up” and “down”) beyond just acting
trivially on JL(S).

The pairing formulas show directly that 7 (S) is a two-sided ideal in the ring
4(S), for every finite G-set S. We will check that Iy is a subbifunctor of ¢ by
looking at the operations induced by G-maps ¢ : V — Sand 4 : § — W on an
arbitrary element a € Iy(S).

First we consider Ag(a) € Y(W). Let o : W — T and w : U — W be any
G-maps. We have

pg(2g(a)) -y =(pod)g(a)-y=0
by definition of 7 (S). Let
X U
1k

s> w
be the pullback square, and from (M1) we get

y9(2g(a)) -z = de(y(a)) -z = dg(y (@) - 2'(2)) =0

SO ﬂ(q(a) S IM(W).
Similarly, we must check that x“(a) € Iy(V). Letgp:V — T and y : U — V
be G-maps, and note that

(@) - y = pu(®(@) - 9" () =0

and y4(u%(@a))-z=(uoy)(a) - z=0.

We have now checked that I, C 9 is a subbifunctor, and therefore I, is a
Mackey functor and a two-sided Green ideal in 6. We define the quotient Green
ring G =%/ 1 to be the bifunctor whose value on objects is given by the quotient
rings 9 (S) =94(S)/ Ly (S). It is straightforward to check that 4 is a Green ring,
since the formulas above show that the pairing G x 4§ — % restricts to pairings

7
E—

Iy x%9— Iy and 9 x Iy — Iy of Mackey functors. By construction, J is also a
Green module over %9 .

Definition 2.3. Let .l be a Mackey functor. The Burnside quotient Green ring of
M is the Green ring oAy := A/ 1y. Let 1y : A — Ay denote the epimorphism of
Green rings given by the natural quotient map.
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Remark 2.4. For ¢ a Green ring, the map 1 : s{ — < defined above by a+>a - 15
factors through i : s — ¢, and we obtain a canonical induced homomorphism
of Green rings s{«¢ — 9. The next result shows that in fact sd¢ = Imz, which gives a
quick alternate definition of sdy. (For this observation, compare [Dress 1973, page
207; Oliver 1988, page 253; Hambleton and Taylor 2000, page 711; Bak 1995,
page 236].)

Lemma 2.5. Let § be a Green ring. Then the canonical homomorphism of Green
rings, Aq — G is injective.

Proof. For each G-set S, the natural transformation of bifunctors in the statement
maps Ag(S) — 9(S) by the ring homomorphism a + a - 15, where a € H(S)
and Ig € 9(S) isthe unit. If a-1g=0,and ¢ : S > T, vy : U — § are G-
maps, then it follows as above that p4(a) - 17 =0 and w*'(a) - 1y = 0, Therefore
{fa € A(S)|a-1g =0} C Ig(S), and the ring homomorphism sdg(S) — 4(S) is
injective. U

We will explore Definition 2.3 by considering the Burnside quotient Green rings
for filtrations of Mackey functors.

Definition 2.6. If Jl and N are Mackey functors, we say that J is a subfunctor of
N (respectively N is a quotient functor of M) if there is a natural transformation
® : M — N such that for each object S € @(G) the function Oy : M(S) — N(S)
is an injective (respectively, surjective) homomorphism of abelian groups. We
say that M is a subquotient of N if there is a finite sequence of Mackey functors
M=%y, £1,...,E, = N such that each &; is either a subfunctor or a quotient
functor of &; 1, fori =0, ..., r — 1. Note that the relation “/l is a subquotient of
N”’ is a transitive relation.

Example 2.7. If ® : ¢ — ¥ is a homomorphism of Green rings, then we can regard
K as a Green module over 4. Furthermore, ker ® = Iy C %, and there is an induced
homomorphism %y — I of Green rings. If K is a quotient Green ring of %4, then
H=%y=9/Iy.

Lemma 2.8. Let § be a Green ring and M a Green module over 4. Then the Burn-
side quotient Green ring Ay is a quotient of g, and isomorphic to a subquotient
of é.

Proof. Since s is a sub-Green ring of %, we just need to check that sy is a
quotient Green ring of s under the natural projection from &{. This is equivalent
to the statement that I C Iy. Let a € I4(S), and consider G-maps ¢ : S — T and
w :U — S. For any y € M(T),

ga(a)-y=pala)-(Ir-y) = (pa(a)-1r)-y =0,
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since 17 € 4(T). Similarly, for any z € M(U),
ph@)-z=y" @) 1y-2=0,
and we see that a € Ly (S). (]

Lemma 2.9. Ler M and N be Mackey functors, with M a subgquotient of N. Then
there is a surjective homomorphism of Green rings {: Ay — Ay such that § o 1y =

L.

Proof. We will establish this result for subfunctors and quotient functors, and note
that the general subquotient case follows by an inductive argument on the length
of the chain joining Jl to N

Suppose first that ® : M — N is a natural transformation, with @ : M(S) — N(S)
injective for all finite G-sets S. Leta € Iy(S) andletg : S — T, w : U — S be
G-maps. Then for any y € M(T), Or(pg(a)-y) = ¢py(a) - (Or(y)) = 0 since
® is a s-Green module map. Similarly, for any z € M(U), Oy (y(a) - z) =
w(a) - (Oy(z)) = 0. Since O®7 and Oy are injective, it follows that a € I;(S),
and Iy C Iy so that sy maps onto o .

Next suppose that @ : N'— il is a natural transformation, with @ : N(S) — AM(S)
surjective for all finite G-sets S. If a € I(S), we check that py(a) - y = 0 and
w4 (a)-z=0, forall y € M(T) and all z € M(U), by using the surjectivity of O
and @y, and the compatibility of ® with the s{-module structures on Jil and N
Therefore Iy C Iy. O

In general, if M is a sub-Mackey functor of N it is not true that Iy C Iy, so there
is no natural map in the other direction from oy onto sdy, but here is one more
situation that works.

We say that Jl is a full lattice in N if there is a natural transformation © : M —
N such that the induced maps ©% : Hom(N'(S), N(S)) — Hom(A(S), N(S)) are
injective for all finite G-sets S. Note that Jl need not be a sub-Mackey functor of
N for this condition to hold.

Lemma 2.10. Let M and N be Mackey functors, with M be a full lattice in N. Then
there exists a surjective homomorphism of Green rings g : Ay — Ay such that
g o 1y =1y. If M is also a subfunctor of N, then g is an isomorphism and the
inverse to the | : Ay — Ay described previously.

Proof. Let ¢ : S — T be a G-map. For each a € 4(S) we can consider the action
map y — @y (a)-y as an element of Hom(N'(T'), N(T)). However if a € Iy (a), this
homomorphism is zero on the image of @7, and therefore it vanishes identically.
Similarly, we check that y*(a)-z =0 forall z € N(U) and any G-map y : U — S.
Therefore Iy C Iy. O
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2E. Amitsur complexes. Dress proves computation results for Mackey functors
via the contractibility of certain chain complexes. Let X, Y be finite G-sets,
and define a semisimplicial set Am (X, Y) inductively. Let Amy(X,Y) =Y and
Am,.(X,Y)=X x Am,_(X,Y) for r > 1. There are G-maps

d’ :Am.(X,Y) — Am,_1(X,Y)
for 0 <i <r, defined by setting d; as the projection
XxAm,_1(X,Y)— Am,_1(X,Y),
and fori > 0by d = 1y xd/ /.

Definition 2.11. Let Al be a Mackey functor. For given finite G-sets X, Y, the
Amitsur complex Jl/t(Am(X ,Y )) is the chain bicomplex whose chain group in di-
mension r is Jl/L(Amr (X, Y)), with boundary operators 0, = Z(—l)i[dir]M and
0 = Z(—l)i[di’]M for r > 0. and zero otherwise.

This construction has certain naturality properties.

Lemma 2.12. Let M be a Mackey functor. The Amitsur complex gives a bifunctor
M(Am(C, ) : D(G) x D(G) — Chain(sib)
where Chain(db) denotes the category of chain complexes of abelian groups.

For any Mackey functor Jl, and any finite G-set S, let lg denote the Mackey
functor defined by Ms(T) = M(S x T), for any finite G-set T'. There are natural
transformations and ®§“ M — Mg and ® fu : Ms — M of Mackey functors induced
by the projection maps S x T — T. Dress says that Jl is S-injective (respectively
S-projective) if @g“ is split-injective (respectively ®34 is split surjective).

Lemma 2.13 [Dress 1975, Proposition 1.1']. A Mackey functor M is S-injective if
and only if it is S-projective.

Proof. Suppose that [l is S-projective, so that ® fm is split-injective. Let @ : M — JMg
be a natural transformation such that ®j4 o ® = Idy (the identity natural transfor-
mation on J). If A : S — S x § denotes the diagonal map and p: S x T — T the
second factor projection, we notice that

SxT 2L sxsxT 2B sxT
is just the identity map on S x 7. It follows that
057y 0 (A x ' o dsur 0@ = Idyr)
for any finite G-set T. One can check that the formula

O(T) := O )0 (A x )" o Dgyr
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defines a natural transformation of bifunctors splitting @g"" and hence Jl is S-
injective. The converse is similar. (]

Dress now proves that, for any finite G-set ¥ and whenever Jl is S-injective or
S-projective, both Amitsur complexes (M, (Am(S,Y), 0) and (M*(Am(S,Y), J)
are contractible (we say Jl is S-computable). In particular, for Y = « there are
exact sequences

A

01

B (S x S) 2 (S) M(+) 0

51 52

0 M(e) M(S) M(S x S) B

which exhibit JL(+) as a limit of induction or restriction maps respectively.

Here is the main theorem of Dress induction theory:

Proposition 2.14 [Dress 1975, Proposition 1.2]. Let G be a Green ring and S be a
finite G-set. Then the following conditions are equivalent:

(1) The map ¢4 :6(S) — G(+) associated to the projection ¢ : S — « is surjective.
(2) G is S-injective.
(3) All 6-modules are S-injective.

This result focuses attention on the task of finding a suitable Green ring which acts
on ., and then checking property (i). We remark that the Burnside ring s{ acts on
any Mackey functor, but & is S-injective only if « C S. Hence the Burnside ring
itself has no useful induction properties.

3. Dress generating sets

In the classical Mackey setting of G-functors given by Green [1971], computation
is expressed in terms of families. A family of subgroups % of G is a collection of
subgroups closed under conjugation and taking subgroups. For any finite G-set X
let #(X) denote the family generated by the isotropy subgroups of X. For example,
the family %(+) = {All}. Conversely, given a family & of subgroups, we can form
the disjoint union X (%) of G-sets G/H, one for each conjugacy class of maximal
elements in %, under the partial ordering from subgroup inclusion. For example,
X ({All}) = ». We say that a family of subgroups % contracts a Mackey functor Jtl
if and only if M is X (%)-projective or X (%)-injective.

We have seen that a good strategy for computing a Mackey functor Jl is to study
the Green rings acting on Jl. We will apply this strategy to the Burnside quotient
Green ring oy of J.

Definition 3.1. Let ¢ be a Green ring. A finite G-set X is a generating set for 4 if
the natural map 4(X) — () is surjective (equivalently, if 1, € Im{G(X) — 4(+)}).
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By [Dress 1975, Proposition 1.2], X is a generating set for % if and only if 4 is X-
injective or X-projective. It is not true in general that a generating set for a Green
ring % is also a generating set for the sub-Green ring s¢. To obtain generation for
A it is usually necessary to enlarge the generating set.

For H a finite group and p a prime, let

OP(H)=(\{Ho<H | H/H is a p-group}
Notice that O” (H) is a characteristic subgroup of p-power index in H, and
O ((O”(H)) = O"(H).

Definition 3.2. Let & be a family of subgroups of G and p a prime. Then hyper,-%
is the family consisting of all subgroups H in G such that OP(H) e &. If Sis a
G-set, then hyper,-S is the corresponding G-set to hyper,-%(S). This construction
is due to Dress [1975, page 307].

It is easy to check that hyper,-F is closed under taking subgroups and conjugation,
so we obtain a family of subgroups. By construction, there is a G-map X —
hyper,-X for any X and hyper,-hyper,-X = hyper,-X. One of Dress’s main results
is the following:

Theorem 3.3 [Dress 1973, page 207]. Let M be a Mackey functor. For any prime
p and for any finite G-set Y, let X(Y) = ker(Jl/L(-) QL — MY)® Z(p)) and
$(Y) =Im(M(hypery-Y)RZp) — M(+)RZ(p)). Then M(+)QZ ) =H(Y)+I(Y).

If Y is a finite G-set, we will use the notation (Y') for the equivalence class of Y in
the category &(G). One useful consequence is:

Lemma 3.4. Let 4y be a sub-Green ring of 4,. For any prime p, and any finite
G-set Y with (Y) = (hyper,-Y), the natural map 4o(Y) ® Zy) — %o(*) @ Zp) is
surjective if and only if ‘61(Y) @ Z(,) — 41(+) @ Z,) is surjective.

Proof. For any Green ring % and any finite G-set Y, the image of 4(Y) ® Z(,) in
%(+) ® Z(p) is an ideal. Hence either map is onto if and only if l,(.) is in the
image. Since lg,(.) goes to lg, (4), this proves the first implication.

For the converse, the surjectivity of 41 (Y)®Z,) — 91(*)®Z(,) implies that the
Amitsur complex is contractible for the restriction maps induced by the transfor-
mation ¥ — «. In particular, 9 (+) ® Z(,) — 41 (Y) ® Z(,) is injective. Therefore
G (*)®Zp) — Go(Y)®Zp) is injective, and from Theorem 3.3 we conclude that
Yo (hypery-Y) @ Z(py — 9Go(+) ® Z(p) is surjective. U

Suppose that % is a Green ring which acts on a Mackey functor Jl. For many
applications of induction theory, the “best” Green ring for A is the Burnside quo-
tient Green ring d«. This is a Green ring which acts on J(, and by construction
A is a sub-Green ring of 4. In particular, the natural map sd¢ — % is an injection.
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Definition 3.5. A finite G-set X is a Dress generating set for a Green ring 4,
provided that G(hyper,-X) ® Z,) — 4(+) ® Z,) is surjective for each prime p.

By Theorem 3.3, any finite G-set X such that the natural map 94(¢) — 9(X) is
injective is a Dress generating set for 9. Notice that a Dress generating set for 4 is
also a Dress generating set for any quotient Green ring of 4. The following result
(Theorem A) is the main step in handling sub-Green rings.

Theorem 3.6. A finite G-set X is a Dress generating set for a Green ring § if and
only if it is a Dress generating set for the Burnside quotient Green ring .

Proof. We apply the result above to Y = hyper,-X, for each prime p, and note that
A 1s a sub-Green ring of . O

The Burnside quotient Green ring can be used to compute Mackey functors ob-
tained by subquotients.

Definition 3.7. A finite G-set X is a Dress generating set for a Mackey functor J,
provided that X is a Dress generating set for the Burnside quotient Green ring o
of JM.

This is consistent with our previous Definition 3.5 for a Green ring.
Theorem 3.8. Let 4 be a Green ring and M, N Mackey functors.
1) If M is a §-module and X is a Dress generating set for 94, then X is a Dress
generating set for J.

(1) If N is a subquotient of M and X is a Dress generating set for M, then X is a
Dress generating set for N.

(iii) If M is a full lattice in N and X is a Dress generating set for M, then X is a
Dress generating set for N.

Proof. Under the first assumption, & y is a subquotient of 4. In the other parts, o v
is a quotient of o . U

We can translate this into a computability statement as follows:

Corollary 3.9. Let p be a prime and 6 be a Green ring. Suppose that F is a
hyper,-closed family of subgroups of G. Then 4 @ ZLp) is F-computable if and
only if Ag ® Lp) is F-computable.

The advantage of sdg over ¥ is that slg acts on Mackey functors which are sub-
functors or quotient functors of JiL but % does not in general. For example, % never
acts on s unless they are equal. We next point out another good feature of the
Burnside quotient Green ring.
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Theorem 3.10 [Hambleton 2006, Theorem 1.8]. Suppose that 4 is a Green ring
which acts on a Mackey functor M, and F is a hyper,-closed family of subgroups
of G. If §® ZLp) is F-computable, then every x € M(G) @ Z(, can be written as

X = z ay Ind$ (Resg(x))

He%

for some coefficients ay € Ly, where the ay are the same for all x.

Proof. Since 4 ® Z(,) is F-computable, we know that slg ® Z(,) is also F-
computable. Therefore, we can write 1 = >, 4 bk Ind,G( (yk) for some yg €
Ag(K) ®Zpy and bg € Z(p). For any x € M(G) ® Z(,) we now have the formula

x=1-x= z by Indg(yK -Resg(x)).

Ke%

But each yx € s4(K) ® Z(,) can be represented by a sum > cxnlK/H], with
¢k H € Z(p), under the surjection 4(K) — sd4(K). Therefore

X = kegbk X pck cxn Indg ([K/H]-Resf (x))
=2 kes bk 2pck CkH Ind§ (Indfj (Res (Resg (v))))
=D keg bk ZHgK CKH Indg (Resg (x))

We now define ay = > ¢ < bk ck . and the formula becomes

X = z ap Ind¥ (Resf (x)). O

He%

Example 3.11 (Representation theory). Recall that a p-(hyper)elementary group is
a (semi)direct product C x P, where P is a p-group and C is cyclic of order prime to
p. A Dress generating set for a Green ring % need not be a generating set for . For
example, let E denote the finite G-set, E =] [ G/H, where we have one H for each
p-elementary subgroup of G. It is known that E is a generating set for the complex
representation ring Rc(G), but not in general for the rational representation ring
Rq@(G). On the other hand, complex representations are detected by characters, so
any G-set with isotropy containing the cyclic family is a Dress generating set for
Rc(G), or for the sub-Green ring Rq(G) by Theorem 3.8 (ii). It follows that the
hyperelementary family ¥ gives a generating set Xy for RQ(G). This implies the
Brauer-Berman—Witt induction theorem for rational representations.

Example 3.12 (The Swan ring). The Swan ring is one of the main examples of
Green rings in the classical setting of induction theory [Swan 1970]. For any finite
group, let SW(G, Z) denote the Grothendieck group of isomorphism classes of
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finitely-generated left ZG-modules, with [L] = [L'] 4+ [L"] whenever there is a
short exact sequence
0L ->L—>L"—0

of such ZG-modules. The operation L ®z L’ gives a ring structure on this Grothen-
dieck group, so we obtain a commutative ring. The usual induction and restriction
operations for such modules give the Swan ring the structure of a Mackey functor.
We let

SWs : 9(G) — Ab

denote the Green ring (in the sense of Dress) defined by SWs(G/H):=SW(H, Z),
and extended to 9(G) by additivity. Since SW (G, Z) is hyperelementary com-
putable by Swan’s induction theorem [Dress 1973, page 211], we see that any
Mackey functor on which this Green ring acts is hyperelementary computable.

It follows that the Burnside quotient Green ring of the Swan ring, denoted A gy,
also has the hyperelementary set Xy as a Dress generating set (or more precisely,
any G-set whose isotropy contains the cyclic family is a Dress generating set).
In this case, dsw(G/H) C SWs(G/H) is the subring P(H,Z) C SW(H,Z)
generated by the permutation modules Z[H /K], for all subgroups K C H.

4. Computation techniques

Dress generating sets can also be used to compute exact sequences of Mackey
functors or filtrations of Mackey functors by subfunctors. We say that

Mo My >ty

is an exact sequence of Mackey functors if a and b are homomorphisms of Mackey
functors, such that the sequence Jly(S) — M1 (S) — M2 (S) is exact for each finite
G-set S. We define long exact sequences in a similar way.

Proposition 4.1. Suppose that Mg — My — My is an exact sequence of Mackey
functors. Then X is a Dress generating set for M| whenever X is a Dress generat-
ing set for My and M.

Proof. We may assume that /Mo — Jl; is injective, and that Al; — JL; is surjective,
and the projections from s induce a natural transformation 6 : Ay, — 4 4, DA, of
Green rings. By exactness, Iy(S) := ker 6 is a nilpotent ideal (of nilpotence index
2). Let A i, = A, /lp denote the quotient Mackey functor. Since this Mackey
functor is mapped injectively by € into o 4, ® d.4,, X is a Dress generating set for
Ay, Tt follows that sd.y, (hyper,-X) ® Z ) — i, (+) ®Z(p) is surjective for every
prime p. But an element in oy, (¢) ® Z(,) hitting 1, € A(s) ® Z ;) has the form
1+u, where u € Iy(«) ®Zp). Since u>=0, 1+u is invertible and (14+u) "' =1—u.
If px : X — « denotes the projection map, and (px).(a) = 1 + u, then we have
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(px)«((px)*(1e —u) -a) = (1. —u) - (px)+(a) = 1. and hence X is a Dress
generating set for o y, . (|

Remark 4.2. In the proof of Proposition 4.1, we have shown for each prime p,
there exists an element a € d(hyper,-X) ® Z(,) such that a — 1, in each of the
Burnside quotient Green rings sy, (+) ® Z(,), for i = 0,1,2. The same argu-
ment extends by induction to finite filtrations of a Mackey functor by sub-Mackey
functors.

Corollary 4.3. Let 0 =Ny C --- C N, = M be a filtration of a Mackey functor by
sub-Mackey functors. Then X is a Dress generating set for J if and only if X is a
Dress generating set for each quotient N; /N;_1, for 1 <i <r.

A finite length chain complex of Mackey functors is a sequence (N;, 6;) of Mackey
functors N;, 0 <i <r, and natural transformations o; : N; = N;_;, 1 <i <r, such
that (N'(S), 6,) is a chain complexes of abelian groups for each finite G-set S. A
chain complex N of Mackey functors has homology groups H;(N), 0 <i <r,
which are subquotient Mackey functors of N;.

Corollary 4.4. Suppose that N is a finite length chain complex of Mackey functors.
If X is a Dress generating set for each Nj, 0 <i <r, then X is a Dress generating
set for each of the homology Mackey functors H;(N),0 <i <r.

Another useful construction is completion.

Theorem 4.5. Let M be a Mackey functor, and let & denote a (possibly infinite)
filtration

M=F2F2-2F 2

of M by sub-Mackey functors. A finite G-set X is a Dress generating set for
Mg = l(iLnJl/t/ F, if and only if X is a Dress generating set for each quotient Mackey
functor F,_1/F,,r > 1.

Proof. Since each F,_|/F;, is a subquotient of JT/Lg, the necessity follows from
the results above. For sufficiency, we first note by Corollary 4.3 that X is Dress
generating set for each quotient Jl/F,. It is enough to prove that X generates
the inverse limit l(iLn.ﬂ u,F, of the Burnside quotient Green rings for the sequence
{AL/F,}. Suppose that X is a Dress generating set for each oy, fr,, r > 1, and set
Y = hyper,-X. If {a,} is a sequence of elements in sy, (Y) hitting 1’,, we can
use the contractibility of the ¥ -Amitsur complex for sy, F,,, inductively, to adjust
each a,1 by an element of sly ., (Y x Y), so that a, 1 — a,. This gives us
an element in the inverse limit LiLn‘Sﬂ/J\WFr (Y) hitting 1, € l(iLnsﬂM/F,(-) = 9(o),
and hence the Green ring % acts on Jlg with X as a Dress generating set. Since
A — g, 1s surjective, it follows that Mz has X as a Dress generating set. [
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Example 4.6. Here is an important special case. Let ¢ be a Green ring acting on a
Mackey functor J. If $ C 4 is a Green ideal, we may filter . by the subbifunctors
F, = 9" M and then J]?Lg; is the $-adic completion of JlL.

In particular, for a given Mackey functor Jl we could take $ = ($ 4, 2), and then
My is just the 2-adic completion of the Mackey functor Jil. Note that if M(X) is
finitely generated, then Ay X =MX)® 7.

5. Mackey functors and R G-Morita

To prove Theorem B we need to define the bifunctor d : 9(G) — RG-Morita
used in its statement. This involves some definitions and elementary properties
of categories with bisets as morphisms, which are well-known to the experts. We
include this material for the reader’s convenience.

In [HTW 1990, 1.A.4] we introduced the category RG-Morita whose basic ob-
jects are finite groups H isomorphic to some subquotient of G, and whose mor-
phisms were defined by a Grothendieck group construction on the isomorphism
classes of finite H,-H; bisets X, for which the order of the left stabilizer

mI(x) = {h € Hy | hx = x)

is a unit in R, for all x € X. Here R is a commutative ring with unit. We set
X ~ X' if RX isisomorphic to RX’ as R H,-R H; bimodules. The balanced product
X xp,Y of an Hz-H; biset X and an H,-H) biset Y is a H3-H; biset. This defines
the composition for morphisms. The Add-construction [MacLane 1971, page 194]
is then applied to complete the definition. Many functors arising in algebraic K-
theory and topology are actually functors out of RG-Morita, so it is of interest to
recognize when these are Mackey functors.

To relate Mackey functors and RG-Morita, we will need the G-Burnside cate-
gory, A(G), whose objects are subgroups H C G, and where Homy ) (H1, H) is
the Grothendieck construction applied to the isomorphism classes of finite bifree
H,-H, bisets (meaning both left and right actions are free). Because of the Groth-
endieck group construction, A(G) is an Ab—category, the morphism sets are abelian
groups and the compositions are bilinear [MacLane 1971, 1.8, page 28]. Let

u:AG) = A.(G)

denote the associated universal free additive category, and the universal inclusion
[MacLane 1971, VIL.2, problem 6, page 194].

The morphisms in A(G) are defined by the Grothendieck group construction
with addition operation the disjoint union of bisets. By convention, the empty biset
& represents the zero element. Composition comes from the balanced product:

Hy X Hy © 1, XHy = (i, XH,) X 1y (g X 11,)-
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The reader should check that this is well-defined on isomorphism classes of bisets
and “bilinear” in that

(H3XH2 = H3YH2) o HZXHI = (H3XH2 ° HZXHl) u (H3YH2 o HZXH1)7
with a similar formula for disjoint union on the right. The morphisms in A, (G)
are matrices of morphisms in A(G).

Definition 5.1. We define a contravariant involution 7 : A(G) — A(G), by the
identity on objects, and on morphisms it is the map induced on the Grothendieck
construction by the function which takes the finite bifree H,-H; biset HZX H, to
the finite bifree H; - H, biset H X, which is X as a set and hy - x - hy is defined to

be hz_lxhl_l.

The reader needs to check that isomorphic bisets are isomorphic after reversing
the order, and should also check that the transpose conjugate of a disjoint union
is isomorphic to the disjoint union of the conjugate transposes of the pieces. This
means that 7 is a functor which induces a homomorphism of Hom-sets. It is clearly
an involution, not just up to natural equivalence. Since 7 is a homomorphism on
Hom-sets, it induces an additive contravariant involution 7° : A, (G) — A.(G),
called conjugate transpose, which commutes with the functor #. By definition, 7 *
acts on a matrix of morphisms by applying 7 to each entry, and then transposing
the matrix. There is a functor

a:A.(G) — RG-Morita

given by the inclusion on objects and morphisms (but the equivalence relation on
morphisms is different in R G-Morita).

There is a functor A, (G) — R-Morita, called the R-group ring functor, where
R-Morita has objects R-algebras and morphisms defined by stable isomorphism
classes of bimodules [HTW 1990, 1.A.1]. This functor factors through R G-Morita:
it sends H — R H on objects, and X — RX on morphisms.

We will define the following diagram of categories and functors:

A.(G)

(5.2) / L“ &Oupring

D(G) LN RG-Morita — R-Morita

To complete the definition of the functors in this diagram, we need to introduce
another category. Let 9,(G) denote the category whose objects are pairs (X, b),
consisting of a finite G-space X and an ordered collectionb= (b4, ..., b;,) of base-
points, one for each G-orbit of X. The morphisms are the G-maps (not necessarily
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base-point preserving). There is a functor
1 94(G) = 9(G)

defined by forgetting the base-points. Since every object of 9(G) is isomorphic to
the image (X, b) of an object of ¥,(G), and x induces a bijection on morphism
sets, it follows that i gives an equivalence between the categories 9,(G) and
%(G), with inverse functor x' [MacLane 1971, IV.4, Theorem 1, page 91].

We can now define two functors

(Jo, J*) 1 94(G) > AL (G).

The covariant functor j, is the additive extension of the functor which sends an ob-
ject (G/H, eH) to the isotropy subgroup H, and sends the G map f:G/H — G/K
to the biset , K,-15,, where f(eH) = gK. If we change the coset representative
and write f(eH) = g K, then the map

(5.3) Y gKe-1gg — KKgl_ng1

defined by w (k) = k(g~'g1) gives an bijection of K-K bisets.

Note that 1,y : G/H — G/H goes to , H,,, which is the identity. Check that if
fi:G/H, — G/Hp and f, : G/H, — G/Hj3 are G-maps and if f1(eH,) = g1 H>
and f>(eH,) = g2 Hj then f> 0 fi(eH) = (g182) H3 and

H; (H3)g{1Hzgz X Hy Hz(Hz)glelgl

is isomorphic to H (H3) (g, 4,)1 Hy (g1 9>) DY the map (h3, ha) > h3g2_1h2g2.

The contravariant functor j* agrees with j. on objects, but sends the G map
f:G/H — G/K to the biset 415, K, where f(eH) = gK. Rather than check-
ing the identity and composition directly, just note that -1, K g is isomorphic to
7 (x K41 1,) by the function which sends & to k1,50 j* =70 j. and hence j* is
a contravariant functor.

Definition 5.4. We define the bifunctor
Jj:9(G) = A.(G)
as the composition j = (j*, j.)o u’. Let
d=aoj:9(G)—> RG-Morita
denote the composition in diagram (5.2). ([

For any additive functor F : A, (G) — b, the composition F o j :D(G) — b
is a Mackey functor [HTW 2008]. Our main application is the following:
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Theorem 5.5. Any additive functor F : RG-Morita — db gives a Mackey functor
on 9(G) by composition with d : 9(G) — RG-Morita. Any such Mackey functor
is hyperelementary computable.

Proof. The functor d : 9(G) — RG-Morita factors through A, (G), so we obtain
Mackey functors by composition. We will show that any such Mackey functor, Jd,
is a Green module over the Burnside quotient Green ring sdswy of the Swan ring,
and then apply Example 3.12. Let L = Z[H /K] denote a permutation module, for
some subgroups K C H of G, and let X denote an H-H -biset, which is free as a
left H-set. Then H/K x X is again an H-H-biset by the formula i (hK, x)h, =
(h hK, hixhy), for all h, hi,hy € H and all x € X. Note that R[H/K x X] =
L®z RX as RH-R H bimodules, so this construction applied to X = g Hy, sending
Z[H/K]+— H/K x H, gives a well-defined homomorphism

P(H: Z) - HomRG—Morita(H, H)

from the Grothendieck group of permutation modules, for each subgroup H C G.
The adjoints of these homomorphisms give a pairing dsw x M — Jl, and the Green
module properties follow easily from bimodule identities (compare [Oliver 1988,
11.2]). Since dgw is hyperelementary computable, we conclude that any Mackey
functor out of R-Morita is hyperelementary computable. O

Remark 5.6. As mentioned in the Introduction, this is a refinement of an earlier
result of Oliver [1988, 11.2]. Oliver establishes hyperelementary computability for
functors of the form X (R[G]), where X is an additive functor from the category
of R-orders in semisimple K-algebras with bimodule morphisms to the category
of abelian groups. Here R is a Dedekind domain with quotient field K of charac-
teristic zero.

There are two points of comparison: it should first be noted that Oliver [1988,
page 246] is dealing with Mackey functors defined on the category of finite groups
and monomorphisms, so the statement that any such functor X (R[G]) is a Mackey
functor is straight-forward. In our case, relating RG-Morita to Mackey functors
defined on finite G-sets in the sense of Dress [1975, page 301] involves some
work (for example, in constructing the bifunctor d). The translation between the
two versions of Mackey functors is also well-known to the experts [Dress 1975,
Section 1], but in this paper we preferred to work only with the Dress G-set theory.

The second point of comparison is that Oliver’s proof uses an action of the
Swan ring on the Mackey functors X (R[G]), but the Swan ring does not act on
our functors in any obvious way. The key new ingredient in our proof is the Burn-
side quotient Green ring of the Swan ring. Apart from this additional input, the
argument is essentially the same. However, the extra generality can be useful since
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there are functors out of RG-Morita which do not appear to extend to the setting
of Oliver [1988, 11.2]. O

Example 5.7 (Controlled topology). The bounded categories €, g (R) of [Ham-
bleton and Pedersen 1991, §4], and the continuously controlled categories B (X x
[0, 1); R) of [Hambleton and Pedersen 2004, §6] are functors out of A, (G), for
any finite group G, and hence any additive functor from these categories to abelian
groups gives a Mackey functor on @(G).

Example 5.8 (Farrell-Hsiang induction). There is a useful extension of induction
theory to (possibly) infinite groups, due to Farrell and Hsiang [1977]. Given any
representation pr : I' — G, with G finite, we get a new R-group ring functor
A(G) — R-Morita by sending G/H — R[['yg], where 'y = pr_l(H) is the
preimage of H in I". We have a generating set for the morphisms Homy () (H1, H>)
consisting of the bisets Hy x ¢ Hy, where K C H, x Hj is a subgroup [HTW 1990,
1.A.9]. We send the biset H, xx H; to the bimodule R[I'm,] ®riry] RII 1]
By composition with any additive functor F : R-Morita — (b, we again obtain
Mackey functors. Since the Swan ring acts on R-Morita (by tensor product as
above), any such Mackey functor is a Green module over the Swan ring, and we
obtain hyperelementary computation as before. The main examples are listed in
[HTW 1990, 1.A.12], including Quillen K -theory K,(R[I']).

Remark 5.9. An alternate (and slightly sharper) formulation of this example could
be given by defining RI'-Morita for any discrete group I': the objects are finite
groups H isomorphic to some subquotient H = I'y/ g of I', where 'y < I'; and
I'; is finite index in I'. The morphisms are H,-H; bisets as before. Then from
any representation pr : ' — G, where G is finite, we get a functor d : 9(G) —
RT'-Morita and Theorem 5.5 holds in this new setting.

Example 5.10 (Cohomotopy). Example 2.1 and Remark 2.4 (pages 108-109) of
[Lam 1968] show that (ordinary or Tate) cohomology with twisted coefficients
H(?; M) is a Mackey functor on %(G) where M is a fixed G-module. Since
the cohomotopy Green ring H — z°(BH) acts on this Mackey functor, it is Sy-
low computable. If pr: I' — G is a homomorphism and M is a ['-module, then
Hi(pr~!(?); M) is also a Mackey functor on %(G) with the cohomotopy Green
ring acting. An interesting example of this situation is Galois cohomology.

6. Pseudo-Mackey functors and pseudo-complexes

We wish to apply the computation strategy described above to a more general
situation, namely to study functors which have induction and restriction but are
not known to be Mackey. The main examples of interest are the higher Whitehead
groups Wh,,(ZG) and the nonoriented surgery obstruction groups L, (ZG, ).
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Definition 6.1. A covariant prefunctor f : %9 — € between two categories is just
a function S — ob(f)(S) on objects, and a function

hom(f) : Homg (81, S2) — Homg (0b(f)(S1), 0b(f)(S2))

on Hom-sets. A functor is a prefunctor which preserves identities and compo-

sitions. Similarly, we define a contravariant prefunctor, and a prebifunctor then

consists of a pair (fx, f*) of prefunctors, where f, is covariant, f* is contravariant,

and ob(fy) = ob(f™). We call these Mackey prefunctors if @ = 9(G) and € = Hb.
A prenatural transformation T : fi — f» is a function

S+ T(S) € Homg (0b(f1)(S), 0b(f2)(S)) -

A natural transformation of (covariant) prefunctors is a prenatural transformation
T : fi — f> such that the diagram

ob(£1) () "D ob(£1)(52)

T(Sl)l lT(Sz)
ob(£)(S) D ob(£2)(52)

commutes for all pairs of objects S, S» € @ and all ¢ € Homg,(S1, S»). There is
a similar definition for (pre)natural transformations of contravariant prefunctors,
and a natural transformation of prebifunctors is a single function which is natu-
ral transformation for both the covariant and contravariant parts of the bifunctor.
A prepairing between three Mackey prefunctors A, N and &£ is a collection of
functions u(S) : M(S) x N(S) — £(S). Finally, if Ml — N is an injective nat-
ural transformation of Mackey prefunctors, then we say that .t is a sub-Mackey
prefunctor of N

Note that if M : D(G) — b is a Mackey prefunctor, we can apply JI to any of the
Amitsur complexes Am (X, Y), and obtain ¢, and " maps as usual, but we can not
be sure that 6, 06,41 =0 or & Tl o = 0. We call M(Am(X,Y)) a pre-Amitsur
complex. This construction gives a prefunctor %(G) x @(G) — Chain(sb).

Definition 6.2. A Mackey prefunctor Jl is called a pseudo-Mackey functor pro-
vided that there exists a finite collection of Mackey prefunctors 0 = Ny C N| C
-+« C N, = M such that the quotient prebifunctors N;/N;_; are actually Mackey
functors, for 1 <i < r. The collection {N;/N;_; |1 <i < r} will be called the
associated graded Mackey functor to J.

A natural transformation M — N of pseudo-Mackey functors is a natural trans-
formation of Mackey prefunctors which preserves the filtrations. Notice that the
Burnside ring & acts on a Mackey prefunctor via the usual formula (which gives a
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prepairing). The action of s on a pseudo-Mackey functor Jl preserves the filtration,
and the induced action on the subquotients N; /N;_; is the usual action.

We say that a finite G-set X is a Dress generating set for a pseudo-Mackey
functor Jl provided X is a Dress generating set for each of the Mackey functors
Ni/Ni_1 in its associated filtration. This agrees with our previous definitions if Jl
is a Mackey functor filtered by Mackey subfunctors. Notice that the image of the
natural map of Green rings st — @;_, sy, ,_, is a Green ring with X as a Dress
generating set. It follows that there exists an element a € sd(hyper,-X) ® Z,),
for each prime p, whose image in A(+) ® Zp) acts as 1, on each subquotient
Ni/Ni21($)®Zp), 1 <i <r.

Lemma 6.3. Suppose that Mo — My and My — My are natural transformations of
Mackey prefunctors, such that Mo(Y) — M (Y) — M (Y) is exact for every finite
G-set Y. If Mg and My are pseudo-Mackey functors, then M is a pseudo-Mackey
functor. Moreover, if X is a Dress generating set for My and M3, then X is a Dress
generating set for J ;.

Proof. The preimage of the associated filtration for M, gives a filtration Ng C
Ny C--- C N, =My, with Mg C N; for 0 <i < r. Since a subbifunctor of
a Mackey functor is Mackey, we see that the quotient prefunctors N;/N;_; are
actually Mackey functors (and they all have Dress generating set X by Theorem
3.8). Now we extend this filtration by adjoining the associated filtration for Jly.
Since each of the subquotients in this extended filtration have Dress generating set
X, the result follows. (]

We also get a computational result for pseudo-Mackey functors. The Amit-
sur precomplex (M,(Am(X,Y), d,) is now a pseudo-complex, meaning that the
boundary maps 0, are filtration-preserving (and the associated graded is an actual
complex). It will be called pseudo-contractible if it is equipped with degree +1
filtration-preserving natural transformations

spc M(AmM (X, Y)) = M(Am, 41 (X, Y))

of prefunctors, for r > 0, which contract the Amitsur complexes for the associ-
ated graded Mackey functors to (. The collection s, = {s,} is called a pseudo-
contraction. We make a similar definition for the cochain Amitsur complex and
the degree -1 cochain pseudo-contractions o’ .

We can construct pseudo-contractions by using any element a € s(X) such that
a acts as 1, € on each subquotient N; /N;_1(*) ® Z,), 1 <i < r, to build chain
homotopies s, (a) and cochain homotopies ¢’ (a). These are pseudo-contractions
in the above sense.
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Proposition 6.4. Let M be a pseudo-Mackey functor, and X, Y finite G-sets. If
(M (Am (X, Y), 04) is pseudo-contractible with pseudo-contraction sy, then there
are canonical filtration-preserving natural transformations (0., s,) for which s is
a chain contraction and (M(Am(X,Y), d,) is a chain complex. If the pseudo-
complex was already a complex, 0, = 0, and if in addition s, was already a
contraction, then s, = Si.

Proof. Let (C;, ¢;, s;) be our data, where ¢; and s; are natural transformations. We
assume that fori <r, 6;00;4+1=0, ;11 =0;+105;00;+1, and s;_100; +0;y108; = 1C,— .
For r < 0 these identities clearly hold. We proceed to show how these conditions
may be achieved for i = r by modifying 6,41 and s, (if necessary). Throughout
the inductive construction, we do not change the maps induced by (0, s4) on the
Amitsur complex for the associated graded Mackey functor to /L. We also note
that the process does not change the given 9; : C; — Cop, but may change sp in the
first step.

First, let 8;_H = 041 — Syr—1 00y 00r4+1. Then 6, o 8;+1 =0andif 6,00,4+1 =0
we have 0/ | = &,11. Note that both &/, and 6, 1 preserve the induced filtration
from M, and induce the same map on the Amitsur complexes for the associated
graded Mackey functor to ..

Next, we modify s,. Let w, =s,_100, —I—&r’ 41087 By construction, y, preserves
the filtration and induces the identity on the associated graded. Hence, y, =1¢, +u,
where u is nilpotent, and y, is invertible. Since 6,0y, =4,, we can sets, =s,oy,” 1
and obtain 5,1 06, + 9., os, = l¢, by precomposing with y,. Notice that if s,
was already part of a chain contraction, then we do not alter it. It follows that
0/, =0,, 05,00, and the induction step is complete. The naturality of 0, and
w, follow inductively from the explicit formulas. The naturality of y, implies the
naturality of s, for use at the next step of the induction. Since no choices were
involved in the construction of (., s,), the new maps are canonically determined
by the original data (0, sx). O

Remark 6.5. After this process, the new contractible complex gives an expression
for AL(Y) as a direct summand of M (X x Y), with respect to the original induction
map 9y : M(X x Y) — M(Y), and the new restriction map s, : M(Y) —: M(X x ¥),
since d; o s, = id. In this situation, we say that .L(Y) is computed from the family
F(X). If M was actually a Mackey functor, computability is this sense would agree
with the notion previously defined. Similar remarks apply to the contravariant
version M*(Am(X, Y), 6%).

We will also need a slight extension of this result. A filtered precomplex (C, 0)
is a precomplex of abelian groups equipped with a filtration

C=FCDOFCDODFCD>---
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where each F;C is a presubcomplex of (C, ), meaning that o, (F;C,) C F;C,_1, for
all i, r. We say that (C, 9) is a pseudo-complex if the additional relation 6,08, 1 =0
holds, for all r, on each subquotient F;C/F;+C. We say that a pseudo-complex
has a pseudo-contraction s, = (s,) provided that s, (F;C,) C F;C,+1, and s, induces
an actual contraction on each subquotient complex F;C/F;;C.

A pseudo-complex (C, d) has a natural completion

(C,0) — limC/F,C:= (C,9)

given by the inverse limit precomplex with respect to the natural projections C —
C/F;C, i > 0. A pseudo-contraction s, of (C, ) induces a precontraction §, of
(C, ).

Proposition 6.6. Let (C, 0) be a pseudo-complex with filtration {F;C |i > 0}. If
(C, 8) admits a filtered pseudo-contraction s, then there exists canonical data for
which (6 , Oy, S..) is a contracted chain complex. If the pseudo-complex was already
a complex, 0, = d,, and if in addition s, was already a contraction, then s, = §,.
Proof. The proof follows the same outline as for Proposition 6.4, but we notice
that the map v, = 1¢, +u has the additional property that u’*! =0 on the quotient
C,/F;C,. This follows by induction from the exact sequences

0— FH_]C/F,'C—> F()C/F,'.;.]C-) F()C/F,'C-)O

of pseudo-contractible complexes. Then y, induces an invertible map on C,./ F; C,,
for each i > 0. We define s, = s, o y,” "on C, /F;C, as before. By induction, we
have constructed contraction data (C/F;C, ', s), for each i > 0. In addition, this
contraction data is compatible with the projections C/F;+1C — C/F;, and hence
induce contraction data (C, &', s") for the inverse limit complex. O

Remark 6.7. Once again, this process doesn’t change d;, so the new contractible
complex gives an expression for Cp as a direct summand of Ci, with respect to
completion of the original boundary map 0; : C; — Cp.

Example 6.8 (Whitehead groups). Define the Whitehead groups, Wh, (ZG), as the
homotopy groups of the spectrum which is the cofibre of the Loday assembly map

BGT AK(Z) - K(ZG).

The Loday assembly map is a map of bifunctors [Nicas 1987, Main Theorem,
page 223], and the Whitehead groups are bifunctors. Furthermore, the Wh,, n <
3, are Mackey functors, but it is not obvious from this description that the other
higher Whitehead groups are actually Mackey functors. However, from the long
exact sequence in homotopy theory we see that they are pseudo-Mackey functors.
From Example 3.12, Example 5.10 and Proposition 6.4, we see that the Wh,, (ZG)
are computed by the hyperelementary family. Similarly, the Wh,, (ZG) ® Z,) are
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computed by the p-hyperelementary family. See [Swan 1970; Lam 1968; Nicas
1987] for partial results in this direction).

Example 6.9 (Tate cohomology). The Tate cohomology of Wh,, or Quillen’s K,
are bifunctors which are subquotients of Wh, or K,, and hence are computed
by the hyperelementary family. The localization maps Wh, — Wh, ® Z) and
K, — K, ® Z(3) induce isomorphisms on Tate cohomology. Hence the Tate coho-
mology is computed by the 2-hyperelementary family. Given any pseudo-Mackey
subfunctor of Wh,, or K,, which is invariant under the involution, we can form the
Tate cohomology and this Tate cohomology functor is computed by any family
which contains the 2-hyperelementary family. ]

7. Surgery obstruction groups

Dress [1975, Theorem 1] claims computability results for “any of the L-functors
defined by C. T. C. Wall” (in [Wall 1976]). However, the nonoriented L-groups
L,(ZG, w) are not always Mackey functors, and so the techniques described in
[Dress 1975] do not appear to be adequate to prove the result in this generality.
The point is that an inner automorphism by an element g € G with w(g) = —1 in-
duces multiplication by —1 (which may not be the identity) on L, (ZG, w) [Taylor
1973]. One of the main applications of our more general techniques is to supply
a proof that nonoriented L-theory is hyperelementary computable, in the sense
that L, (ZG, w) is the limit of restrictions or inductions involving hyperelementary
subgroups of G.

Fix a finite group G, and the geometric antistructure for which@ =idand b=e €
G [HTW 1990, 1.B.3]. Let w : G — {%1} be a fixed orientation homomorphism,
and for each subgroup H C G let oy = w|y. We define the following categories:

(1) A(G, w), with objects finite groups H isomorphic to some subgroup of G,
and morphisms given by a Grothendieck group construction on finite biset
forms (X, wy) (see [HTW 1990, page 256] for the definition). We construct
A. (G, w) by taking the additive completion.

(2) (R, —)-Morita, with objects and morphisms as defined in [HTW 1990, 1.B.2],
and the quotient category (R, —)-Witt from [HTW 1990, 1.C.2], for any com-
mutative ring R with unit.

(3) (RG, w)-Morita, with objects H isomorphic to some subquotient K /N of
G, with N C kerw, and morphisms given by the Grothendieck group con-
struction on finite biset forms (X, wy), modulo an equivalence relation, as
defined in [HTW 1990, 1.B.3]. We can define the analogous quotient category
(RG, w)-Witt by setting metabolic forms to zero in the morphisms [HTW
1990, page 254].
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Notice that by forgetting the orientation map @ we get functors into the categories
discussed in Section 5. The construction of Definition 5.4 gives a prebifunctor

Jj:9(G) — A.(G, w)

extending the prefunctor Or(G) — A. (G, o) out of the orbit category, defined on
objects by G/H +— H and on morphisms by sending the G-map f:G/H — G/K,
given by f(eH) = gK, to the biset form (, K 1K wg). This definition depends
on the choice of coset representative g for the morphism f in Or(G), since this
time, if x € K and w(x) = —1, the two morphisms eH > gK and eH — gxK
are sent to different biset forms.

Lemma 7.1. In A. (G, w), the morphism [HHx’le’ a)H] =w(x)-idforall x € H.
If F:A. (G, w) — b is an additive functor, then

Foj:A.(G,®)— db

is a Mackey prefunctor, which is a Mackey functor if and only if all the inner
automorphism morphisms F(gH,-1y,, og) =id, forall x € H.

Proof. The identity morphism in A, (G, w) is represented by the biset form

(HHH’ COH)-

The map v :y Hy — g H, g1 of biset forms defined by y (h) = hx~!, see (5.3),
induces an isometry of biset forms (, H -1, ., ®n) = (, H ,;, ®(x)-oy) and hence

[HHx_le’ a)H] = a)(x) +id

in the Grothendieck group of morphisms of A, (G, w).
The property (M1) depends on conjugations acting trivially, or in other words,
should induce F () =1id for all x € H (including those with o (x) = —1). U

The R-group ring functor of [HTW 1990, 1.B.4] induces a functor from A, (G, )
to (RG, w)-Morita or further into (R, —)-Witt. The required formulas are in sec-
tion 1.B of [HTW 1990], including the remark that since our morphisms are formed
via a Grothendieck construction, we are entitled to equate metabolics on isomor-
phic modules. There is a functor a : A. (G, w) — (RG, w)-Morita as before, and
we let

d:9(G) — (RG, w)-Morita

be the prebifunctor d = a o j. There is a homomorphism from the Dress ring
GU(H, Z) - Hom(R,—)—Morita(H: H)

given by tensor product (see [Dress 1975] where it is asserted that GU(G, Z)
acts on L-theory, or [Hambleton, Ranicki and Taylor 1987, page 143] for explicit
formulas). Dress [1975] showed that the hyperelementary family contracts the
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Dress ring. We observe that the same formulas give an action of the Burnside
quotient Green ring Ay on (RG, w)-Morita.

Theorem 7.2. Let F : (RG, w)-Morita — b be an additive functor. Then
Fod:%(G)— db

is a Mackey prefunctor, and the 2-adic completion of any such Mackey prefunctor
is 2-hyperelementary computable. If M = F o d is a Mackey functor, then M is
hyperelementary computable.

Proof. In the oriented case (w = 1) the prefunctor .l is actually a Mackey functor,
by Lemma 7.1. More generally, whenever Jl = F od is a Mackey functor the result
follows as in Theorem 5.5, since Jl is a Green module over sdgy. By [Dress 1975,
Theorem 3], and Theorem 3.6, the Burnside quotient Green ring of the Dress ring
is hyperelementary computable.

In the nonoriented case, we define a filtration F; = 2'F, i > 0, with Fy = F,
and note that the subquotients (F;/F;;1) o d are Mackey functors. Now we let
(C, 8) denote the filtered Amitsur pseudo-complex for F, o d with respect to 2-
hyperelementary induction, and the result follows from Proposition 6.6. Notice that
the passage from a pseudo-contractible pseudo-complex to a contractible complex
does not change the first boundary map, so F od is 2-adically detected (generated)
by the given restriction (induction) maps to the 2-hyperelementary subgroups. [J

Example 7.3 (Nonoriented L-theory). The main example for us is the surgery
obstruction group L, (ZG, w). It is a foundational result of Wall [1974] that the
surgery obstruction groups for finite groups are finitely-generated, with 2-primary
torsion exponent. Theorem 7.2 computes L,(ZG, ) ® Z> as a limit (and as a
colimit) over the 2-hyperelementary subgroups H C G, H € #. These limits use
the standard induction or restriction maps, for example, for induction we have the
surjective map

o1 P L(ZH, 0) ®Z, > L, (2G, 0) R L
He#

and our contraction data gives the relation subgroup ker ¢; = Im ;.

We conclude that L,,(ZG, w) is also effectively 2-hyperelementary computable:
the torsion subgroup is isomorphic to that of L,(ZG, ) ® Z», and the divisibil-
ity of the signatures is computable since the kernel and cokernel of the natural
transformation

L,(ZG,») — L,(RG, w)

of pseudo-Mackey functors are both 2-primary torsion groups [Wall 1974, 7.3, 7.4].
The groups L, (RG, w) were computed explicitly in [Wall 1976, 2.2.1] in terms of
the irreducible characters of G. The proof of computability given here applies in
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the oriented case (w = 1), but in that case the L-group is a Mackey functor and
the argument is essentially the same as the one given by Dress. Other important
examples were listed in [HTW 1990, 1.B.8].

Example 7.4 (L-theory with decorations). Let R be a commutative ring with unit,
and consider any L-group LZ(RG, w) for RG with antiinvolution given by w :
G — {£1} with decoration in any involution invariant subbifunctor, B, of K;(ZG)
or Wh;(ZG), i < 1; see [Hambleton, Ranicki and Taylor 1987] for a summary of
the definitions. It was checked in Theorem 5.3, Corollary 5.5 and Example 5.14
of that same reference that the corresponding round L-theories are functors out
of (ZG, w)-Morita. Hence these L-theories are pseudo-Mackey functors and are
contracted by the hyperelementary family. It was also checked in Proposition 5.6,
Corollary 5.7 and Example 5.14 of the same paper that the corresponding ordinary
L-theories are functors out of (ZG, w)-Morita, so the same computation result
holds.

Example 7.5 (Localization). Dress [1975] shows that the Dress ring GU is con-
tracted by any family containing the 2-hyperelementary and p-elementary families.
More precisely, he showed that the 2-localization of the Dress ring is contracted
by the 2-hyperelementary family, and the p-localization, p odd, is contracted by
the p-elementary family.

Proposition 6.4 and a standard mixing argument shows that this smaller family
suffices to contract the L? functors described above. For subbifunctors B closed
under the action of the Dress ring, this was proved by Dress [1975] and Wall [1976].
A similar argument shows that the odd-dimensional L2-groups are contracted by
the 2-hyperelementary family alone.

Example 7.6 (Symmetric, hyper-quadratic and lower L-theory). The Ranicki sym-
metric and hyper-quadratic L-theories [Ranicki 1992] are also functors out of
(ZG, w)-Morita and hence are contracted by the hyperelementary family. The
hyper-quadratic theory is a 2-torsion group with an exponent so it is contracted
by the 2-hyperelementary family (as above, we note that the 2-localization map
induces an isomorphism on this functor and use the 2-local contraction of functors
out of (Z, —)-Morita by the 2-hyperelementary family). The lower L-theories for a
ring with antistructure can be defined in terms of the L-theory of the ring with some
Laurent variables adjoined [Ranicki 1992] and hence are functors out of (ZG, w)-
Morita. Therefore L-theories with decorations in sub-Mackey functors of K; for
i <0 are contracted by the hyperelementary family. The higher L-theories of Weiss
and Williams [1989] should also be amenable to these techniques.

Example 7.7 (Farrell-Hsiang induction). The technique of Farrell and Hsiang
[1977, §§1-2] was originally introduced to apply induction theory to the L-groups
of an infinite group I'. Let pr : I' — G be a homomorphism to a finite group
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G, and define an orientation character for I' by the composition @ o pr, where
o : G — {%1} is an orientation character for G. Then LZ(RT, ) is an additive
functor (RG, w)-Witt — sdb, which defines a pseudo-Mackey functor as above. To
check this, note that we again have a generating set for the morphisms consisting
of the bisets X = H, xx H{, where K C Hy x Hj is a subgroup. To produce the
needed biform on X, we adapt the formulas in [HTW 1990, 1.B] with §x =id. If
o = 1, it follows that these L-groups can be computed in terms of the L-theory of
the various subgroups I'y = pr~'(H), H C G. In particular, it is enough to use
the hyperelementary subgroups H of G.
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