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Monodromy arguments and deformation-and-specialization are used to prove
existence of a pencil of Enriques surfaces with no section and index 1. The same
technique “completes” the strategy from Graber et al. (2005) proving that the
family of witness curves for dimension d depends on the integer d .

1. Introduction

This paper uses monodromy and deformation-and-specialization to answer some
questions related to [Graber et al. 2005].

Theorem 1.1. There exists a positive integer t (which the reader can readily com-
pute) such that the following holds. Let k be any algebraically closed field with
char(k) 6= 2, 3 whose transcendence degree over the prime field is ≥ t . This
holds, for instance, if k is uncountable. There exists a flat, projective k-morphism
π : X→ P1

k with the following properties.

(i) The geometric generic fiber of π is a smooth Enriques surface.

(ii) The invertible sheaf π∗[ω⊗2
π ] has degree 6.

(iii) For the function field K of P1
k and the generic fiber X K of π , the residue field

of each closed point of X K has degree ≥ 3 as an extension of K . Moreover,
there exists at least one closed point of degree 3 and at least one closed point
of degree 4. So the greatest common divisor of all degrees of closed points
equals 1.

Moreover every “very general” Enriques surface over k is a fiber of such a family.

What is the relevance of this result? First of all, in [Graber et al. 2005, Corol-
lary 1.4] it was proved that there exists an Enriques surface X defined over the func-
tion field K =C(B) of some complex curve B such that X has no K-rational points.
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This answered a question which Serre asked [Colmez and Serre 2001, page 153].
Next, shortly after the results of [Graber et al. 2005] were proved, Lafon [2004]
even gave an explicit pencil of Enriques surfaces defined over (Z[1/2])[t][1/ f (t)]
for an explicit monic polynomial f (t) such that for every field k of characteristic
6= 2, the base change of the Enriques surface to K = k(t) has no K-rational point.

Motivated by this, Hélène Esnault posed to Joe Harris the important question
of whether or not these examples can be somehow explained “cohomologically”.
In particular, she posited that the Enriques surfaces from [Graber et al. 2005] have
the stronger property that every 0-cycle has degree divisible by 4. Similarly, for
Lafon’s Enriques surface, every 0-cycle has even degree. This suggests that these
examples, and by extension, perhaps all examples, can be understood in terms of
obstructions which are defined as elements in Galois cohomology groups of the
fraction field K of the base B. These obstructions are compatible with restriction
and corestriction for finite, separable field extensions L/K . In concrete terms what
this implies is that the order of the obstruction (as an element in the appropriate
torsion Galois cohomology group) divides the degree over K of the residue field
L of every closed point of X (for which L/K is separable). Thus, if one of these
obstructions is nonzero, then the greatest common divisor of the degrees of all
(separable) closed points is > 1. Therefore, since the greatest common divisor of
all (separable) closed points is > 1 in the Enriques surfaces of [Graber et al. 2005]
and [Lafon 2004], perhaps there is a cohomological explanation for those Enriques
surfaces.

In Theorem 1.1, the degree 3 and degree 4 points are separable (since the char-
acteristic is not 2, 3), and gcd(3, 4) equals 1. Therefore nonexistence of rational
points is not due to a cohomological obstruction as above. Of course there may be
a cohomological obstruction defined in a different way which does “explain” the
nonexistence of rational points of these varieties.

For comparison, note that the greatest common divisor of degrees of closed
points in Lafon’s example equals 2. Although I am not certain, I expect that also in
the examples from [Graber et al. 2005] (which are defined only in a very indirect
manner), the greatest common divisor is again > 1.

Proposition 1.2. Let k be an algebraically closed field having infinite transcen-
dence degree over its prime subfield, for example, an uncountable algebraically
closed field. Let B be an integral, normal, projective k-scheme of dimension ≥ 2.
Let M be an integral quasiprojective k-variety. And let C ⊂ M ×k B be a closed
subscheme which is flat of relative dimension 1 over M with irreducible geometric
fibers and which dominates B, that is, (M,C) is a family (Cm)m∈M of irreducible
curves Cm in B such that ∪m∈M Cm contains a dense open subset of B. For all
integers n which are sufficiently positive, there exists a projective, dominant mor-
phism of integral k-schemes π : X→ B having relative dimension n and whose
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restriction to each geometric fiber of C→M has a section, but whose restriction to
some smooth curve in B has no section. In the language of [Graber et al. 2005], this
means that for every family of curves (M,C), for all sufficiently positive integers
n, the family is not a witness family for relative dimension n.

This proposition completes the sketch given in [Graber et al. 2005, Section 7.3].
Just to repeat, the significance is that there does not exist a family of curves in B
which is simultaneously for all integers n a witness family for relative dimension n.

In proving Theorem 1.1 and Proposition 1.2 it will be useful to recall the defi-
nition of the index.

Definition 1.3. Let X be a finite type scheme, algebraic space, algebraic stack, etc.
over a field K . The index and the minimal degree are,

I (K , X) = gcd{[L : K ]|X (L) 6=∅},
M(K , X) = min{[L : K ]|X (L) 6=∅}.

The proofs of Theorem 1.1 and Proposition 1.2 both use the same technique;
here is a brief description for Theorem 1.1. Over P1 a family of reducible surfaces
is given whose monodromy group acts as the full group of symmetries of the dual
graph of the geometric generic fiber. This dual graph is the 2-skeleton of a cube.
There is an action of Z/2Z acting fiberwise on the family. The quotient by this
action is a pencil X/P1 of degenerate Enriques surfaces, that is, the geometric
generic fiber deforms to a smooth Enriques surface. The 8 vertices of the cube
give a degree 4 multisection of the pencil. The 6 faces of the cube give a degree 3
multisection of the pencil. By monodromy considerations every multisection of X
has degree≥3. The pencil X together with the degree 3 and degree 4 multisections
deforms to a pencil of surfaces whose geometric generic fiber is a smooth Enriques
surface. For such a deformation which is sufficiently general, M(K , X K ) equals 3
and I (K , X K ) equals 1.

2. The construction for hypersurfaces

Let n−1 be a positive integer. The goal of this section is to construct the morphism
π of relative dimension n − 1 satisfying the condition from Proposition 1.2. The
morphism is constructed as a family of hypersurfaces in Pn of degree d > n pa-
rameterized by B, that is, X will be constructed as a closed subscheme of B×k Pn

k
whose fibers over B, considered as closed subschemes of Pn , are hypersurfaces
of degree d. Of course this is equivalent to giving a rational transformation from
B to the Hilbert scheme HilbPd (t)

Pn
k/k of degree d hypersurfaces in Pn (where Pd(t)

is the appropriate Hilbert polynomial). This Hilbert scheme is itself a projective
space P

Nd,n
k , where Nd,n equals

(n+d
n

)
− 1. The goal of this section is to construct
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1-parameter families of degree d hypersurfaces in Pn with no section, and then
explain why some smooth curves in B give such 1-parameter families.

The parameter space for degree d hypersurfaces. Let k be a field. For simplicity
assume that k is algebraically closed. Let d, n> 0 be integers. Let V be a k-vector
space of dimension n + 1 so that P(V ) is isomorphic to Pn

k . For keeping track
of the dense notation, it is simpler to use P(V ) throughout rather than Pn

k . There
seem to be different conventions as to the meaning of P(V ). Thus to make precise,
P(V ) is defined here to be

P(V ) := Proj
⊕
i≥0

Symi
k(V
∨).

In particular, there exists an invertible sheaf OP(V )(−1) and a monomorphism of
coherent sheaves,

u : OP(V )(−1)→ V ⊗k OP(V )

whose restriction over every sufficiently small Zariski open subset of P(V ) is a split
monomorphism. Moreover, the triple (P(V ),OP(V )(−1), u) is universal among all
such triples of a k-scheme, an invertible sheaf, and a locally split monomorphism of
coherent sheaves. This is the universal property of projective space used here. (Of
course, by taking adjoint maps, it is equivalent to the property appearing elsewhere
which uses locally split epimorphisms to an invertible sheaf.)

There is a minor positive characteristic issue that merits some discussion. The
symmetric product Symd(V∨) is the maximal k-vector space quotient of

⊗d
k (V

∨),
which is invariant for the natural k-linear action of the symmetric group Sd , that is,
Symd(V∨) is the space of Sd -coinvariants. In particular,

⊕
i≥0 Symi (V∨) is the

ring of polynomial functions from V to k. The adjoint of the coinvariant quotient
map gives a canonical k-vector space isomorphism between the dual k-vector space
of Symd(V∨) and the subspace Sytd(V ) of Sd -invariants in

⊗d
k (V

∨), that is,

Homk(Symd(V∨), k)= Sytd(V ).

Of course if char(k) is > d , then the induced map from invariants to coinvariants,

Sytd(V )→ Symm(V ),

is an isomorphism of k-vector spaces. But since Proposition 1.2 involves integers
d which are arbitrarily large, it is important to distinguish between the invariants
and coinvariants.

Degree d hypersurfaces in P(V ) are parametrized by the projective space,

P Symd(V∨)= Proj
⊕
i≥0

Symi (Sytd(V )).
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To be precise, there is a closed subscheme Y ⊂ P Symd(V∨)× P(V ) such that
the projection to P Symd(V∨) is flat with geometric fibers being degree d hyper-
surfaces in P(V ). And the pair (P Symd(V∨),Y) represents the Hilbert functor
of P(V ) for the appropriate Hilbert polynomial Pd,n(t) of degree d hypersurfaces,
that is, for

Pd,n(t)=
(

n+t
n

)
−

(
n+t−d

n

)
.

Covers of P1 by P1. As an intermediate step, we will construct pencils of unions
of d hyperplanes. To be a little more precise, for a parameter curve B (which we
will assume to be P1 for simplicity), a pencil of unions of d hyperplanes over B
is a closed subscheme Z ⊂ B ×k P(V ) such that the projection Z → B is flat
and the geometric generic fiber is a union of d hyperplanes in P(V ). Consider
the normalization (Z)nor of Z. The Stein factorization of the associated morphism
(Z)nor → B is a finite morphism C → B. To construct the closed subscheme
Z ⊂ B ×k P(V ), we will first construct the morphism C → B. For simplicity,
we will construct it so that both B and C are smooth, proper, connected curves of
genus 0. Thus, let B and C be given k-curves isomorphic to P1

k .

Lemma 2.1. For every integer d ≥ 2, there exists a degree d, separably-generated
k-morphism f :C→ B such that Gal(k(C)/k(B)) is the full symmetric group Sd .

Proof. One can prove this in many ways. The following proof is simple, but is only
valid when char(k) is not 2. The proofs I know for characteristic 2 are considerably
longer. One such proof constructs the cover f as a general deformation of a degree
d , finite, flat, local complete intersection morphism C → B of nodal curves of
genus 0 such that every component Ci of C maps to its image B j in B as either an
isomorphism or as a degree 2 cover,

P1
→ P1, [X0, X1] 7→ [X2

0, X2
1 − X0 X1],

where the ramification points, resp. branch points, are smooth points of C , resp.
B, that is, the total map is not ramified at the nodes of C . In characteristic 2, notice
that the map above is an Artin–Schreier map. By analyzing the combinatorics of
the associated set map from the dual graph of C to the dual graph of B “decorated”
by the information of the degree of Ci→ B j , one can show that for a general such
morphism, every sufficiently general deformation is a morphism as in the lemma.
So the result reduces to a small amount of combinatorial analysis. On the other
hand, the following argument involves no combinatorial analysis.

Choose an isomorphism of C with P1 and let vd : C → Pd
k be the associated

d-uple Veronese morphism. Let B be a general line in the dual projective plane,
B ⊂ (Pd

k )
∨. Let 0 ⊂ C ×k B be the corresponding pencil of degree d divisors in

C parameterized by B. By [Deligne and Katz 1973, Théorème XVII.2.5], this is a
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Lefschetz pencil. Thus the base locus is transverse to C . Since C is 1-dimensional,
this means the base locus is empty. Therefore the projection 0 → C is an iso-
morphism. In other words, 0 equals the graph of a morphism f : C→ B, that is,
0 = 0 f . Since 0 is a pencil of degree d divisors in C , the morphism f has degree
d . Since this is a Lefschetz pencil, every ramification point ci of f is an ordinary
double point and the images bi = f (ci ) are all distinct points of B. Since char(k)
is not 2, this means that f is a tamely ramified cover. By Riemann–Hurwitz for
tamely ramified morphisms, there are 2d − 2 branch points b1, . . . , b2d−2.

Denote U = B \ {b1, . . . , b2d−2}. Denote by u a geometric point of U . The
morphism f : f −1(U )→ U is a finite étale morphism of degree d . Therefore it
defines a group homomorphism from the tamely ramified fundamental group

φ : π t
1(U, u)→Sd ,

which is well-defined up to inner automorphism of Sd . By the description of the
tamely ramified fundamental group in [Grothendieck 1962, Corollaire XIII.2.12],
π t

1(U, u) is topologically generated by elements σ1, . . . , σ2d−2 such that the image
of σi is a topological generator of the inertia group at bi . Because f is simply
ramified over bi , the image φ(σi ) is a transposition in Sd . Since f −1(U ) is irre-
ducible, Image(φ) is a transitive subgroup of Sd . Since Image(φ) is a transitive
subgroup of Sd which is generated by transpositions, Image(φ) equals all of Sd .
Thus the Galois group of k(C)/k(B) is the full symmetric group Sd . �

Norm sheaves and norm maps. Given a degree d cover f : C→ B as in Lemma
2.1, and given a k-morphism from g : C → P(V∨) from C to P(V∨), the pa-
rameter space of hyperplanes in P(V ), there is an associated k-morphism from B
to P(Symd(V∨)) sending a geometric point b of B to the reducible hypersurface
which is the union over the d points c of f −1(b) of the corresponding hyperplane.
This is made precise using norm sheaves and norm maps.

For simplicity, let g : C → P(V∨) be a closed immersion whose image is a
rational normal curve of degree n, for example,

P1
→ Pn, [X0, X1] 7→ [Xn

0 , Xn−1
0 X1, . . . , Xn−i

0 X i
1, . . . , X0 Xn−1

1 , Xn
1 ].

Consider the pullback under g of the tautological surjection, V ⊗k OC → g∗O(1).
Of course V ⊗k OC is canonically isomorphic to f ∗(V ⊗k OB). By adjointness of
f ∗ and f∗, there is an associated morphism of OB-modules,

β : V ⊗k OB→ f∗(g∗O(1)).

Now for every locally free OC -module E there is the associated norm sheaf on
B, defined as

Nm f (E)= HomOB

(∧d
( f∗OC),

∧d
( f∗E)

)
.
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There is also the associated norm map α′E :
d⊗
( f∗E)→ Nm f (E) of OB-modules,

defined by

e1⊗ · · ·⊗ ed 7→ (c1 ∧ · · · ∧ cd 7→ (c1 · e1)∧ · · · ∧ (cd · ed)) ,

for e1⊗· · ·⊗ed ∈
⊗d( f∗E) and c1∧· · ·∧cd ∈

∧d
( f∗OB). In fact we will only need

the restriction to the subsheaf of symmetric tensors, which we denote as follows

αE : Sytd( f∗E)→ Nm f (E).

In particular, observe that Nm f (OC) equals OB and that for every local section b
of f∗OC , the norm αOC (b⊗ · · ·⊗ b) ∈ OB is the usual norm of b.

The family of unions of hyperplanes. Denote by γ the composition,

Sytd(V )⊗k OB
Sytd (β)
−−−−→ Sytd( f∗g∗O(1))

αg∗O(1)
−−−→ Nm f (g∗O(1)).

Because β is surjective, also γ is surjective. Because f is finite, there exists a
Zariski open covering {Ui } of B such that g∗O(1) is trivial on each open f −1(Ui ).
Thus

Nm f (g∗O(1))

is locally isomorphic to Nm f (OC), that is, to OB . So Nm f (g∗O(1)) is an invertible
OB-module and γ is locally a split epimorphism. Therefore, by the universal prop-
erty of projective space, there is an induced morphism h : B→ P Symd(V∨). Let
b be a geometric point of B whose fiber f −1(b) is a reduced set {c1, . . . , cd}. For
every i = 1, . . . , d , the image g(ci ) equals [L i ] for a linear functional L i ∈ V∨.
And then h(b) equals [L1×· · ·×Ld ]. The degree of Nm f (g∗O(1)) equals n. Thus
h∗O(1) is an invertible OB-module of degree n.

Denote by Yh ⊂ B ×P(V ) the preimage under (h, Id) of the universal hyper-
surface Y in P Symd(V∨)×P(V ). And denote by π :Yh→ B the projection. Let
m =min(d, n) and let Sd,n ⊂ Z≥0 denote the additive semigroup generated by

(d
i

)
for i = 1, . . . ,m. Denote k(B) by K and denote by Yh,K the generic fiber of π .

Proposition 2.2. For every irreducible multisection of π , there exists an integer
i = 1, . . . ,m such that the degree of the multisection is divisible by

(d
i

)
. The degree

of every multisection is in the semigroup Sd,n . In particular, if d is greater than n
then M(K ,Yh,K ) equals d and I (K ,Yh,K ) is divisible by gcd

(
d,
(d

2

)
, . . . ,

(d
n

))
.

Proof. Denote by U ⊂ B the largest open subset over which f is étale and define
W = f −1(U ). For each i = 1, . . . ,m, denote by Wi/U the relative Hilbert scheme
Hilbi

W/U . Because W is étale over U , the fiber of f over a geometric point b of
B is a set of d distinct points, f −1(b) = {c1, . . . , cd}, and the fiber of Hilbi

W/U is
the set of subsets of f −1(b) of size i . Every geometric fiber of Yh ×B U → U is
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a union of d hyperplanes. Denote by

Yh ×B U = Y1
h tY2

h t · · · tYn
h

the locally closed stratification where Yi
h is the set of points x in precisely i irre-

ducible components of the geometric fiber Yh ⊗OB κ(π(x)).
Because every finite subset of distinct closed points on a rational normal curve

over an algebraically closed field is in linearly general position, Yi
h is empty for

all i >m. In particular every geometric fiber of Yh×B U→U is a simple normal
crossings variety. For each i = 1, . . . ,m the morphism Yi

h → U factors as an
An−i -bundle over Wi over U .

For each irreducible multisection of π , there exists an integer i ≤m (depending
on the multisection) such that the generic point of the multisection is contained
in Yi

h . Because Gal(k(C)/k(B)) is the full symmetric group Sd , in particular
it is i-transitive. Thus Wi is irreducible. Therefore the degree of the multisec-
tion is divisible by deg(k(Wi )/k(U )) which equals

(d
i

)
. So the degree of every

multisection, irreducible or not, is in Sd,n . In particular, the degree is ≥ d, that
is, M(K ,Yh,K ) ≥ d . Conversely, the intersection of Xh,K with a general line in
P(V ⊗k K ) is a degree d multisection. Therefore M(K ,Yh,K ) equals d. �

Denote by Hom(B,P Symd(V∨)) the Hom scheme [Grothendieck 1961, 4.c,
p. 19]. And denote by Hn ⊂ Hom(B,P Symd(V∨)) the irreducible component
parameterizing those morphisms of degree n. Denote the universal morphism by

χ : Hn ×k B→ P Symd(V∨).

Denote by Yχ ⊂ Hn×k B×k P(V ) the pullback under χ × IdP(V ) of the universal
degree d hypersurface Y ⊂ P Symd(V∨)×k P(V ). For every field k ′ and every
[ j] ∈ Hn(k ′), denote by Y j the restriction of Yχ to Spec (k ′)× B. Also denote by
K ′ the function field k ′(B), and denote by Y j,K ′ the fiber of Y j over the generic
point Spec (K ′) of k ′(B).

Corollary 2.3. Assume d>n. In Hn there is a countable intersection of open dense
subsets such that for every [ j] in this set, M(K ′,Y j,K ′) = d and I (K ′,Y j,K ′) is
divisible by gcd(d, . . . ,

(d
n

)
). In particular this holds when [ j] equals the geometric

generic point of Hn .

Proof. The subset H good
n ⊂ Hn where gcd

(
d, . . . ,

(d
n

))
divides I (K ′,Xh,K ′) and

where M(K ′,XK ′) is at least d is a countable intersection of open subsets by stan-
dard Hilbert scheme arguments: the complement of this set is the union indexed
by the countably many Hilbert polynomials P(t) of multisections of degree which
are either less than d or which are not divisible by gcd(d, . . . ,

(d
n

)
) of the closed

image in Hn of the relative Hilbert scheme HilbP(t)
X/Hn

. By Proposition 2.2 H good
n is

nonempty. Therefore it is a countable intersection of open dense subsets. Of course
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the intersection of Yh,K ′ with a general line in P(V ⊗k K ′) gives a multisection
of degree d . Therefore H good

n is actually the set where M(K ′,XK ′) equals d and
where gcd(d, . . . ,

(d
n

)
) divides I (K ′,Xh,K ′). �

2.1. Proof of Proposition 1.2. Let k be an algebraically closed field having infinite
transcendence degree over its prime subfield. The main case of Proposition 1.2 is
actually the special case where B equals P1

k ×k P1
k and where the family of curves

(M,C) is the complete linear system |O(a, b)| for some integers a, b ≥ 0.
Assume first that one of a or b equals 0, say b = 0. Let f : Y → P1

k be a finite,
separably-generated morphism of irreducible curves of degree > 1, and let X be
Y ×P1 with projection π = ( f, Id). Every divisor in |O(a, 0)| is a union of fibers
of pr1, so the restriction of π has a section. The restriction of π over every fiber
of pr2 is just f , and so has no rational section.

Thus assume next that both a and b are positive. Define n = 4ab and define
d = n−1. Let V be a k-vector space of dimension n+1 as above. Let C ⊂P1

×P1

be a smooth curve in the linear system |O(1, 2b)|. By Corollary 2.3, there exists a
closed immersion of degree n, j : C→ P Symd(V∨), such that M(k(C),Y j,k(C))

equals d , which is > 1. Of course j extends to a closed immersion

j : P1
×P1

→ P Symd(V∨)

such that j∗O(1) is O(2a− 1, 2b). Indeed the restriction map

H 0(P1
×P1,O(2a− 1, 2b))→ H 0(C,OC(n))

is surjective. Define π : X→ P1
×P1 to be the pullback under j × IdP(V ) of the

universal hypersurface Y⊂P Symd(V∨)×k P(V ). By construction, the restriction
over C has no section.

Every divisor in |O(a, b)|maps under j to a curve in P Symd(V∨) whose degree
with respect to O(1) is ≤ n−b. Moreover, if the degree equals n−b, then j maps
the divisor birationally to its image. Thus the arithmetic genus pa of the image is
at least the geometric genus of the divisor, that is, pa ≥ (a − 1)(b− 1). A curve
of arithmetic genus pa and degree δ spans a linear space of (projective) dimension
≤ δ − pa . Thus the span of the image of the divisor is either ≤ n − b − 1 (if
δ≤ n−b−1) or ≤ n−b−(a−1)(b−1) which is again ≤ n−b−1 (when δ equals
n − b). The span is a linear system of hypersurfaces in P(V ). Since n − b − 1
is ≤ n, this linear system has a nonempty base locus. But every point in the base
locus gives a section of the corresponding family of hypersurfaces. Thus it also
gives a section of the restriction of X over the divisor. This proves the main case of
Proposition 1.2, that is, the case when B equals P1

×P1 and when M is a complete
linear system |O(a, b)|.
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Next let B be an arbitrary normal, projective variety of dimension≥ 2 and let M
be an irreducible family of irreducible curves dominating B. There exists a smooth
open subset U ⊂ B whose complement has codimension ≥ 2, and there exists a
dominant morphism g : U → P1

×P1. Intersecting U with general hyperplanes,
there exists an irreducible closed subset Z ⊂ U such that g|Z : Z → P1

× P1 is
generically finite of some degree e> 0. For the geometric generic point of M , the
intersection of the corresponding curve with U is nonempty, and the closure of the
image under f is a divisor in the linear system |O(a′, b′)| for some nonnegative
integers a′, b′. Let a ≥ a′, and b ≥ b′ be integers such that 4ab > e+ 1. There
exists a projective, dominant morphism π : X→ P1

×P1 whose restriction over
every divisor in |O(a, b)| has a section, but whose restriction over a general divisor
in |O(1, 2b)| has minimal degree 4ab− 1.

Define XB ⊂ B × X to be the closure of U ×P1×P1 X. Then πB : XB → B
is a projective dominant morphism. For the geometric generic point of M , the
restriction of πB to the curve has a section because the restriction of π to the
image in P1

×P1 has a section. Let CB ⊂ Z be the preimage of a general curve
C in |O(1, 2b)|. The morphism CB → C has degree e < 4ab− 1. Because every
multisection of π over C has degree ≥ 4ab− 1, πB has no section over CB .

3. The construction for Enriques surfaces

Next let k be a field of characteristic 6= 2, 3 whose transcendence degree over
the prime subfield is “sufficiently large”. In fact, let us simply assume that k is
uncountable. It is straightforward to trace through the following arguments to find
an integer N such that everything remains valid if the transcendence degree over
the prime subfield is ≥ N . However, we think this extra bookkeeping would only
distract from the proof, which is already burdened by heavy notation.

We will make use of one particular construction of Enriques surfaces over k.
To that end, let V+ and V− be three-dimensional k-vector spaces. Denote V =
V+⊕V− and denote V ′=Sym2(V∨

+
)⊕Sym2(V∨

−
). Denote by G the Grassmannian

Grass(3, V ′) parametrizing three-dimensional subspaces of V ′. This is a parameter
space for Enriques surfaces, as we shall explain.

In fact there are two descriptions of the universal family, each useful. First,
let πZ : Z → P(V+)× P(V−) be the projective bundle of the locally free sheaf
pr∗
+

OP(V+)(−2)⊕ pr∗
−

OP(V−)(−2). A general complete intersection of three divi-
sors in |OZ (1)| is an Enriques surface. Because H 0(Z ,OZ (1))= V ′, the parameter
space for these complete intersections is G. Second, G parametrizes complete in-
tersections in P(V ) of three quadric divisors that are invariant under the involution
ι of P(V ) whose (−1)-eigenspace is V− and whose (+1)-eigenspace is V+. A
general such complete intersection is a K3 surface on which ι acts as a fixed-point-
free involution. The quotient by ι is an Enriques surface.
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These two descriptions are equivalent. The involution extends to an involution
ι̃ on the blowing up P̃(V ) of P(V ) along P(V+) ∪ P(V−) and the quotient is Z .
Denote by X→G the universal family of Enriques surfaces, and denote by Y→G
the universal family of K3 covers.

As in the proof of Corollary 2.3, the one-parameter family of Enriques sur-
faces in Theorem 1.1 will be a general deformation of a one-parameter family of
reducible surfaces. As in Proposition 2.2, the one-parameter family of reducible
surfaces will be constructed using a particular cover of P1 by P1. Thus let B,C, D
be k-curves isomorphic to P1

k . By a result similar to Lemma 2.1, there exists a
degree 2, separably-generated morphism g : D → C and a degree 3, separably-
generated morphism f : C → B such that Gal(k(D)/k(B)) is the full wreath
product W3,2, that is, the semidirect product (S2)

3 o S3. In characteristic 0, this
holds whenever g and f have simple branching and the branch points of g are in
distinct, reduced fibers of f . There is an involution ιD of D commuting with g.

Now we will construct the family of reducible surfaces using norms as in Section
2. Let j : D→P(V∨) be a closed immersion equivariant for ιD and ι whose image
is a rational normal curve of degree 5. By the construction in Section 2, there is
an associated morphism i : C→ P Sym2(V∨). Because j is equivariant, i factors
through P(V ′). In the rest of this paragraph we will compute that

i∗O(1)= Nmg( j∗O(1))∼= OC(5).

Indeed, j∗O(1) has degree 5 on D by construction. And g has degree 2. Thus
j∗O(1)⊗ g∗OC(−3) has degree −1, hence has both h0

= 0 and h1
= 0. Since g

is affine, g∗ is exact on OD-modules and Ri g∗ is zero on OD-modules for i > 0.
Thus, by a Leray spectral sequence, g∗ j∗O(1) ⊗OC OC(−3) is a rank 2 locally
free sheaf with h0

= 0 and h1
= 0. By Grothendieck’s lemma, this sheaf is a

direct sum of two invertible sheaves. And the condition on h0 and h1 implies that
g∗ j∗O(1)⊗OC OC(−3) is isomorphic to Oc(−1)⊕2. Thus g∗ j∗O(1) is isomorphic to
OC(2)⊕2, which has determinant OC(4). Again by considering h0 and h1 and using
Grothendieck’s lemma, g∗OD is isomorphic to OC⊕OC(−1), which has determinant
OC(−1). Thus Nmg( j∗O(1)) is isomorphic to HomOC (OC(−1),OC(4)), i.e., OC(5).

The pushforward by f∗ of the pullback by i∗ of the tautological surjection is a
surjection (V ′)∨⊗OB→ f∗i∗O(1). The sheaf f∗i∗O(1) is locally free of rank 3. By
the same type of analysis of h0 and h1 as in the previous paragraph, f∗OC(5)⊗OB

OB(−2) is isomorphic to OB(−1)⊕3. Thus f∗i∗O(1), that is, f∗i∗OC(5), is iso-
morphic to OB(1)3. So there is an induced morphism h : B → G. Denote by
πh :Xh→ B and ρh :Yh→ B the base-change by h of X and Y. Denote K = k(B)
and denote by Xh,K the generic fiber of πh .

Proposition 3.1. Every irreducible multisection of πh has degree divisible by 3 or
4. In particular M(K ,Xh,K )= 3.
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Proof. This is a combinatorial analysis, of precisely the sort we avoided in the
proof of Lemma 2.1. Unfortunately here it seems necessary. Denote by U ⊂ B the
open set over which f ◦g is étale, and denote by W ⊂ D the preimage of U . Denote
by c : W̃ → U the Galois closure of W/U . Then c∗ f∗OC |U ∼= OW̃ {a1, a2, a3} for
idempotents ap, p=1, 2, 3. And c∗g∗ f∗OD|U ∼=OW̃ {b1,1, b1,2, b2,1, b2,2, b3,1, b3,2}

for idempotents bp,q , p= 1, 2, 3, q = 1, 2. Of course ap 7→ bp,1+bp,2, p= 1, 2, 3.
The action of the Galois group W3,2 on ap is by the symmetric group S3, and the
action on bp,q is the standard representation of the wreath product. In the next
paragraph, every index p corresponds to an index p of ap. As here, these induces
are permuted by W3,2 through its quotient S3. And in the next paragraph, every
index (p, q) corresponds to an index (p, q) of bp,q . The action of W3,2 on these
indices is the standard representation of the wreath product.

For each p = 1, 2, 3 and q = 1, 2, denote by jp,q : W̃ → P(V∨) the morphism
obtained by composing the idempotent bp,q : W̃ → W̃ ×U W with the basechange
of j . In particular, ι ◦ jp,1 = jp,2. Denote by 3p,q ⊂ W̃ ×P(V ) the pullback by
( jp,q , Id) of the universal hyperplane. Denote by YW̃ the base-change to W̃ of Yh .
Then

YW̃ =
⋃

(q1,q2,q3)∈{1,2}3
(31,q1 ∩32,q2 ∩33,q3).

There is a locally closed stratification

YW̃ = Y3
W̃ tY4

W̃ tY5
W̃ ,

where Yl
W̃

is the set of points lying in the intersection of precisely l of the 3p,q .
The stratum Y3

W̃
is the union of eight connected open subsets,

3(q1,q2,q3) ⊂ (31,q1 ∩32,q2 ∩33,q3),

for q1, q2, q3 ∈ {1, 2}. Each connected component is a dense open subset of a
P2-bundle over W̃ . The stratum Y4

W̃
is the union of 12 connected open subsets,

3(∗,q2,q3) ⊂ (31,1 ∩31,2)∩32,q2 ∩33,q3,

3(q1,∗,q3) ⊂31,q1 ∩ (32,1 ∩32,2)∩33,q3,

3(q1,q2,∗) ⊂31,q1 ∩32,q2 ∩ (33,1 ∩33,2),

for q1, q2, q3 ∈ {1, 2}. Each connected component is a dense open subset of a
P1-bundle over W̃ . Finally Y5

W̃
is the union of the six connected sets

3(∗,∗,q3) = (31,1 ∩31,2)∩ (32,1 ∩32,2)∩33,q3,

3(∗,q2,∗) = (31,1 ∩31,2)∩32,q2 ∩ (33,1 ∩33,2),

3(q1,∗,∗) =31,q1 ∩ (32,1 ∩32,2)∩ (33,1 ∩33,2),

for q1, q2, q3 ∈ {1, 2}. Each connected component projects isomorphically to W̃ .
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There is a bijection between multisections of Yh over U and Galois invariant
multisections of YW̃ over W̃ . An irreducible multisection of Yh determines a
multisection of YW̃ contained in a single stratum Yl

W̃
. The action of the Galois

group W3,2 on the connected components of Yl
W̃

is the obvious one; in particular,
it acts transitively on the set of connected components. So every Galois invariant
multisection in Y3

W̃
has degree divisible by 8, every Galois invariant multisection

in Y4
W̃

has degree divisible by 12, and every Galois invariant multisection in Y5
W̃

has degree divisible by 6. Therefore every irreducible multisection of Yh has de-
gree divisible by 8 or 6. Because Yh is a double-cover of Xh , every irreducible
multisection of Xh has degree divisible by 4 or 3. In particular, the minimal degree
of a multisection of Xh is 3. �

Because f∗i∗O(1)∼=OB(1)3, the scheme Xh⊂ B×Z is a complete intersection of
three divisors in the linear system | pr∗B OB(1)⊗pr∗Z OZ (1)|. A general deformation
of this complete intersection is a pencil of Enriques surfaces satisfying Theorem 1.1
(i) and (ii) with M(K , X K )≥ 3, I (K , X K ) | 4 (this is valid so long as char(k) 6= 2).
For (iii), it is necessary to deform the pencil together with the degree 3 multisection.
This requires the hypothesis that char(k) 6= 2, 3. We explain the argument below.

The stratum Y5
W̃

is Galois invariant and determines a degree 3 multisection of
Xh . As a W3,2-equivariant morphism to W̃ , Y5

W̃
is just the base-change of D, and

the morphism Y5
W̃
→ P(V ) is Galois invariant. By étale descent it is the base-

change of a morphism j ′ : D→ P(V ). Now j ′ induces a morphism to P̃(V ), the
blowing up of P(V ) along P(V+) ∪ P(V−). Because j ′ is equivariant for ι and
ιD , the quotient morphism D→ Z factors through C , that is, there is an induced
morphism i ′ : C → Z . By a straightforward enumerative geometry computation,
j ′ has degree 5 with respect to OP(V )(1). Therefore i ′ has degree 5 with respect to
OZ (1). The degree 3 multisection of Xh is the image of ( f, i ′) : C→ B× Z .

Lemma 3.2. If f , g and j are general, then (i ′)∗ : H 0(Z ,OZ (1))→ H 0(C,OC(5))
is surjective.

Proof. The condition that (i ′)∗ is surjective is an open condition in families, hence
it suffices to verify (i ′)∗ is surjective for a single choice of f , g and j , even
one for which Gal(k(D)/k(B)) is not W3,2. Choose homogeneous coordinates
[S0, S1] on D, [T0, T1] on C and [U0,U1] on B. Define g([S0, S1]) = [S2

0 , S2
1 ]

and f ([T0, T1])= [T 3
0 , T 3

1 ]. Denote by µ6 the group scheme of 6th roots of unity.
There is an action of µ6 on D by ζ · [S0, S1] = [S0, ζ S1]. This identifies µ6 with
Gal(k(D)/k(B)).

Let e+,0, e+,1, e+,2 and e−,0, e−,1, e−,2 be ordered bases of V+ and V− respec-
tively, and let X+,0, X+,1, X+,2 and X−,0, X−,1, X−,2 be the dual ordered bases
of V∨

+
and V∨

−
respectively. There is an action of µ6 on V by
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ζ · [X+,0, X+,1, X+,2, X−,0, X−,1, X−,2]

= [X+,0, ζ 2 X+,1, ζ 4 X+,2, ζ X−,0, ζ 3 X−,1, ζ 5 X−,2]

and a dual action on V∨. Define j : D→ P(V ) with respect to the ordered basis
e+,0, . . . , e−,2 to be the µ6-equivariant morphism

j ([S0, S1])= [S5
0 , S3

0 S2
1 , S0S3

1 , S4
0 S1, S2

0 S3
1 , S5

1 ].

In this case U =D+(U0U1)⊂ B and W̃ =W =D+(S0S1)⊂C . It is straightforward
to compute j ′ with respect to the dual ordered basis X+,0, . . . , X−,2:

j ′([S0, S1])= [S5
1 , S2

0 S3
1 , S4

0 S1, S0S4
1 , S0S4

1 , S3
0 S2

1 , S5
0 ].

As a double-check, observe this is µ6-equivariant. The induced map ( j ′)∗ is

X+,0 X+,0 7→ T 5
1 , X+,0 X+,1 7→T0T 4

1 , X+,0 X+,2 7→T 2
0 T 3

1 ,

X+,1 X+,1 7→T 2
0 T 3

1 , X+,1 X+,2 7→T 3
0 T 2

1 , X+,2 X+,2 7→ T 4
0 T1,

X−,0 X−,0 7→ T0T 4
1 , X−,0 X−,1 7→T 2

0 T 3
1 , X−,0 X−,2 7→T 3

0 T 2
1 ,

X−,1 X−,1 7→T 3
0 T 2

1 , X−,1 X−,2 7→T 4
0 T1, X−,2 X−,2 7→ T 5

0 .

This is surjective by inspection. �

Proof of Theorem 1.1. The subvariety Xh⊂ B×Z is a complete intersection of three
divisors in the linear system | pr∗B OB(1)⊗ pr∗Z OZ (1)|, each containing ( f, i ′)(C).
Denote by I the ideal sheaf of ( f, i ′)(C)⊂ B× Z , and set

I = H 0(B× Z ,I⊗ pr∗B OB(1)⊗ pr∗Z OZ (1)).

The projective space of I is the linear system of divisors on B × Z in the linear
system | pr∗B OB(1)⊗ pr∗Z OZ (1)| that contain ( f, i ′)(C). The Grassmannian G ′ =
Grass(3, I ) is the parameter space for deformations of Xh that contain ( f, i ′)(C).
For the same reason as in Corollary 2.3, in G ′ there is a countable intersection of
dense open subsets parametrizing subvarieties X′⊂ B×Z with M(K ,X′K )≥ 3 and
I (K ,X′K ) | 4. By construction, X′ contains the degree 3 multisection ( f, i ′)(C).
Therefore M(K ,X′K ) = 3 and I (K ,X′K ) = 1. It is straightforward to compute
prB ∗[ω

⊗2
X′/B]

∼= OB(6). So to prove the theorem, it suffices to prove every “very
general” Enriques surface occurs as a fiber of some X′, that is, for a general [X ]∈G,
X occurs as prZ (X

′
∩π−1

B (b)) for some choice of f, g, i and b ∈ B.
A general zero-dimensional, length 3 subscheme of Z occurs as i ′( f −1(b)) for

some choice of f , g, i and b ∈ B. So for a general Enriques surface [X ] ∈ G and
a general choice of zero-dimensional, length 3 subscheme of X , X is a complete
intersection of three divisors in the linear system |OZ (1)| containing i ′( f −1(b)) for
some choice of f , g, i and b. To prove that a general [X ] ∈ G is the fiber over b
of X′ for some f , g, i and [X′] ∈ G ′, it suffices to prove every divisor in the linear
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system |OZ (1)| containing i ′( f −1(b)) is the fiber over b of a divisor in the linear
system |I⊗OB(1)⊗OZ (1)|.

There is a short exact sequence

0→ I⊗ pr∗Z OZ (1)→ pr∗Z OZ (1)→ pr∗Z OZ (1)|C → 0,

giving a short exact sequence

0→ prB,∗(I⊗ pr∗Z OZ (1))→ prB,∗ pr∗Z OZ (1)→ prB,∗(pr∗Z OZ (1)|C)→ 0.

Because (i ′)∗ is surjective, prB,∗(I⊗pr∗Z OZ (1)) is a locally free sheaf with h1
= 0.

So it is ∼= O6
B ⊕ OB(−1)3. Twisting by OB(1), prB,∗(I⊗ pr∗B OB(1)⊗ pr∗Z OZ (1))

is generated by global sections. Therefore every divisor on Z in the linear system
|OZ (1)| containing the scheme i ′( f −1(b)) is the fiber over b of a divisor on B× Z
in the linear system |I⊗ pr∗B OB(1)⊗ pr∗Z OZ (1)|. �
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