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Christine Bessenrodt

In 1956, Brauer showed that there is a partitioning of the p-regular conjugacy
classes of a group according to the p-blocks of its irreducible characters with
close connections to the block theoretical invariants. In a previous paper, the
first explicit block splitting of regular classes for a family of groups was given
for the 2-regular classes of the symmetric groups. Based on this work, the cor-
responding splitting problem is investigated here for the 2-regular classes of the
alternating groups. As an application, an easy combinatorial formula for the
elementary divisors of the Cartan matrix of the alternating groups at p = 2 is
deduced.

1. Introduction

Richard Brauer [1956] introduced the idea of not only distributing characters into
p-blocks but also of associating p-regular conjugacy classes to p-blocks. He
showed that it is possible to distribute the p-regular classes into blocks in a way
that fits with the blocks of irreducible Brauer characters (and suitable subsets of
ordinary irreducible characters in the blocks); this is to say that the determinant of
the corresponding block part of the Brauer character table (or a suitable part of the
ordinary character table) is not congruent to 0 modulo p (a prime ideal over p).
Given such a splitting of p-regular classes into blocks, Brauer showed that the
elementary divisors of the Cartan matrix of a block are then exactly the p-parts in
the orders of the centralizers of elements in the classes corresponding to the block.
He also observed that in general there may be several such block splittings, and
there did not seem to be any natural choice for a given finite group.

But while it is well known how to determine the p-blocks of irreducible char-
acters, for the p-regular classes only the existence of such a block splitting is
known by Brauer’s work — concrete examples for providing such a distribution for
families of groups were not known for a long time. Only recently, such an explicit
block splitting in the sense of Brauer was exhibited for the conjugacy classes of
odd order elements and the 2-blocks of the symmetric groups [Bessenrodt 2007];
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in fact, in this case the 2-block splitting of the 2-regular classes is unique. The
proof exploited detailed information on the double covers of the symmetric groups,
in particular results on the 2-powers in the spin character values of these groups
[Bessenrodt and Olsson 2000] as well as on the 2-block distribution of the spin
characters [Bessenrodt and Olsson 1997] turned out to be important ingredients.

Based on these results, the present paper investigates the corresponding problem
of constructing a 2-block splitting of the 2-regular classes for the alternating groups.
We provide a basic set of characters for the alternating groups, and find a natural
choice for a block splitting of the classes. As an application, we deduce an easy
combinatorial description of the invariants of the Cartan matrices for the 2-blocks
of the alternating groups.

Here is a brief outline of the sections. In Section 2, we recall Brauer’s results
on block splittings for finite groups which motivated the present work. Then, in
Section 3, some combinatorial notations needed in the representation theory of the
symmetric groups is introduced, and we state some results from [Bessenrodt 2007]
on the block splitting of 2-regular classes for the symmetric groups that are the
basis for the new results on alternating groups. In particular, the class labels for
the 2-block splitting of Sn are recalled. In Section 4, we first collect the necessary
information on characters of the alternating groups, and prove some preliminary
results towards the construction of a class splitting for the alternating groups. In
the main Theorem 4.7 properties of the determinants of the corresponding block
character tables are proved which imply that the construction gives indeed a block
splitting of the classes. By Brauer’s Theorem, our result then implies an easy
combinatorial description of the Cartan invariants for the 2-blocks of the alternating
groups (Corollary 4.9).

2. Brauer’s block splitting

Let G be a finite group, p a prime, (K, R, F) a p-modular splitting system for G,
and p a maximal ideal of R lying over p. Let `(G) be the cardinality of the set
Clp′(G) of p-regular conjugacy classes in G. For each K ∈ Clp′(G) we let xK

denote an element in K . A defect group of K is a Sylow p-subgroup of CG(x) for
some x ∈ K ; if this has order pd , then d is called the p-defect of K . We let IBr(G)
denote the set of modular irreducible characters of G; then

8G = (ϕ(xK )) ϕ∈IBr(G)
K∈Clp′ (G)

is the Brauer character table of G. It is well known by Brauer’s work that the
Brauer character table is nonsingular modulo p, that is,

det8G 6≡ 0 (mod p) .
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Furthermore, we let D= (dχϕ)χ∈ Irr(G), ϕ∈ IBr(G) denote the p-decomposition matrix
for G, and we let C = Dt D denote its Cartan matrix. Let Blp(G) be the set of
p-blocks of G. For B ∈Blp(G), Irr(B) is the set of ordinary irreducible characters
in B, IBr(B) is the set of modular irreducible characters in B, `(B) = | IBr(B)|,
D(B)= (dχϕ)χ∈ Irr(B), ϕ∈ IBr(B) denotes the p-decomposition matrix for B and C(B)
is the Cartan matrix for B.

Then C resp. D are the block direct sums of the matrices C(B) resp. D(B),
B ∈ Blp(G).

The following result was proved by Brauer.

Theorem 2.1. [Brauer 1956, Section 5] There exists a disjoint decomposition of
Clp′(G) into blocks of p-regular conjugacy classes

Clp′(G)=
⋃

B∈Blp(G)

Clp′(B)

and a selection of characters Irr′(B) ⊆ Irr(B) for each p-block B of G such that
the following conditions are fulfilled:

(i) |Clp′(B)| = | Irr′(B)| = `(B) for all B ∈ Blp(G);

(ii) For X B = (χ(xK )) χ∈Irr′(B)
K∈Clp′ (B)

, we have det X B 6≡ 0 (mod p);

(iii) For 8B = (ϕ(xK )) ϕ∈IBr(B)
K∈Clp′ (B)

, we have det8B 6≡ 0 (mod p);

(iv) For DB = (dχϕ)χ∈Irr′(B)
ϕ∈IBr(B)

, we have det DB 6≡ 0 (mod p).

Furthermore, the elementary divisors of the Cartan matrix C(B) are then exactly
the orders of the p-defect groups of the conjugacy classes in Clp′(B), for all B in
Blp(G).

The properties in (ii)–(iv) are not independent of each other, as X B = DB 8B .
In particular, if we have a suitable choice Irr′(B) of characters that satisfies (iv),
and a suitable choice of classes that satisfies (iii), then these together are a suitable
choice for (ii). If we have a basic set of irreducible characters, that is, a subset
Irr′(G) ⊆ Irr(G) giving a Z-basis for the character restrictions to the p-regular
classes, then the p-block decomposition of this set will give a suitable choice of
sets Irr′(B) satisfying (iv).

3. The 2-block splitting for Sn

Let n ∈N. For the symmetric groups Sn , the corresponding combinatorial notions
and their representation theory, we will follow mostly the usual notation in [James
and Kerber 1981].
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Let P be the set of partitions, P(n) the partitions of n. For a partition λ of n,
the number of its (nonzero) parts is called its length, and is denoted by l(λ). The
complex irreducible character of Sn corresponding to λ is denoted by [λ]. For any
partition µ of n, we choose an element σµ in Sn of cycle type µ.

Let µ= (1m1(µ), 2m2(µ), . . .) be written in exponential notation; then we set

aµ =
∏
i≥1

imi (µ), bµ =
∏
i≥1

mi (µ)! .

Let zµ = |CSn (σµ)|; then zµ = aµbµ.
Let p be a prime; we will soon fix this to p = 2. A partition is called p-regular

if no part is repeated p or more times, and a partition is called p-class regular if
no part is divisible by p.

Let D(n) be the set of partitions of n into distinct parts; this is thus the set
of 2-regular partitions of n. Let O(n) be the set of partitions of n into odd parts
only; this is the set of 2-class regular partitions of n. Let O =

⋃
n∈N O(n) and let

D=
⋃

n∈N D(n). It is well known that

Irr′(Sn)= {[λ], λ ∈ D(n)}

forms a 2-basic set for Sn .
Then the 2-regular character table of the symmetric group Sn is defined to be

Xn = ([λ](σα))λ∈D(n)
α∈O(n)

where the partitions are ordered in a suitable way.
As a special case of a result by Olsson [2003], we know that | det(Xn)| =∏
µ∈O(n) aµ, and thus in particular,

2 - det(Xn) .

The main result in [Bessenrodt 2007] provides a block version of this property, by
distributing not only the characters but also the 2-regular conjugacy classes into
blocks in such a way that the corresponding block parts of the character table have
odd determinants. This block distribution of conjugacy classes provided a block
splitting in the sense of Brauer as described in the previous section.

We recall this 2-block splitting for the symmetric groups below. The reader
is referred to [Bessenrodt 2007] for the full results; these involve more detailed
information on spin characters which we omit here since it would require recalling
a lot of notation on double cover groups and their characters.

For the combinatorics of the p-modular representation theory for Sn , and in
particular the p-block distribution of its characters, we refer to [James and Kerber
1981].
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Let B be a 2-block of Sn , with associated 2-core κ(B); this is then a staircase
partition ρk = (k, k − 1, . . . , 2, 1), k ∈ N0. For any partition λ, we denote by λ(2)
the 2-core of λ. Then we define

DB = {λ ∈ D(n) | λ(2) = κ(B)} .

This is the set of labels of irreducible characters in B in the basic set mentioned
above, and we set

Irr′(B)= {[λ] | λ ∈ DB} .

To define the splitting of the classes we need a few more definitions.
For a partition λ= (λ1, . . . , λm) ∈ D(n) we set

dbl(λ)=
([
λ1+ 1

2

]
,

[
λ1

2

]
,

[
λ2+ 1

2

]
,

[
λ2

2

]
, . . . ,

[
λm + 1

2

]
,

[
λm

2

])
,

the doubling of λ. For example, the staircase ρk = (k, k− 1, . . . , 2, 1) is the dou-
bling of the partition τk = (2k− 1, 2k− 5, . . .).

The most natural way of defining the blocks of classes is based on the Glaisher
map which we consider next.

J. W. L. Glaisher [1883] defined a bijection between partitions with parts not
divisible by a given number k on the one hand and partitions where no part is
repeated k times on the other hand; in particular for k = 2 this gives a bijection
between O(n) and D(n). Here, Glaisher’s map G is defined as follows. Let α =
(1m1, 3m3, · · · )∈O(n). Write each multiplicity mi as a sum of distinct powers of 2,
that is, in its 2-adic decomposition: mi =

∑
j 2ai j . Then G(α) ∈ D(n) consists of

the parts (2ai j i)i, j , sorted in order to give a partition.
Let B be a 2-block of Sn , contained in a 2-block B̃ of the double cover group S̃n

(see [Bessenrodt and Olsson 1997] for background and notation). Then we define
the set

OB = OB̃ = {α ∈ O(n) | dbl(G(α))(2) = κ(B)} .

Note that in [Bessenrodt 2007] we have used the language of 4̄-combinatorics for
the description of the 2-block distribution of spin characters, and the set OB is then
the set of partitions of type O such that the Glaisher image has as 4̄-core the one
associated to B̃.

The sets OB for the 2-blocks B of Sn give then a set partition O(n)=
⋃

B OB .
The set OB is the set of labels of the 2-regular classes we want to associate to B,

that is, we set
Cl′(B)= {σ Sn

α | α ∈ OB} .

Defining
DB̃ = {λ ∈ D(n) | dbl(λ)(2) = κ(B)} ,

the Glaisher map then induces bijections OB→ DB̃ , for all 2-blocks B of Sn .
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By [Bessenrodt and Olsson 1997], |DB | = |DB̃ | = p(w(B)). Thus the following
block parts of the character table are all square matrices:

X B = ([µ](σα))µ∈DB
α∈OB

.

Denoting the irreducible Brauer characters of Sn by ϕµ, µ∈D(n), we also consider
the corresponding block part of the Brauer character table:

8B = (ϕ
µ(σα))µ∈DB

α∈OB

.

Theorem 3.1. [Bessenrodt 2007] Let Irr′(B) and Cl′(B) for the 2-blocks B of Sn

be defined as above. Then the determinants

det8B = det X B, B ∈ Bl(Sn)

of the associated block parts of the character table and the Brauer character table
are all odd.

Thus the sets Cl′(B) define a 2-block splitting of the 2-regular classes for Sn .

Remarks 3.2. (i) More precisely, the determinant det X B is (up to sign) the odd
part of the determinant of the corresponding block part of the reduced spin character
table for the 2-block B̃ of the double cover group S̃n containing B, that is,

Zs(B̃)= (〈λ〉(σ̃α))λ∈DB̃
α∈OB

.

See [Bessenrodt 2007] for the notation used here and details on this result.

(ii) By the 2-block splitting for Sn given above and Brauer’s Theorem, the ele-
mentary divisors of the Cartan matrix CB of a 2-block B of Sn are exactly the
2-powers

2kα = |CSn (σα)|2, α ∈ OB .

Here, the 2-defect of the class of type α in Sn may easily be computed as follows
[Bessenrodt 2007]:

kα = l(α)− l(G(α)) .

This is a restatement of a formula from [Uno and Yamada 2006] which is based
on [Bessenrodt and Olsson 1997]; a corrected version of an earlier formula from
[Olsson 1986] already appeared in [Bessenrodt and Olsson 1997]. One should
note, though, that this formula was used in the confirmation of the block splitting
for Sn in [Bessenrodt 2007], so this does not give an independent proof for the
elementary divisors of the Cartan matrix.



A 2-block splitting in alternating groups 841

4. A 2-block splitting for alternating groups

We also have to introduce some notation for the alternating group An .
We let P+(n)= {λ ∈ P(n) | (−1)n−l(λ)

= 1} denote the set of even partitions in
P(n); these are the cycle types of elements in An .

The conjugacy classes in An are then of two types. The classes labeled by parti-
tionsµ∈ P+(n)\(O∩D)(n) are the nonsplit classes, that is, those conjugacy classes
of Sn which are also An-classes; we note that the corresponding An-centralizer is
then of order z′µ= zµ/2. For the partitions µ∈ (O∩D)(n), the Sn-class of σµ splits
into two conjugacy classes in An , for which we denote representatives by σ+µ and
σ−µ ; their centralizers are of order z′µ = zµ.

A set of representatives of the 2-regular classes of An is thus given by:

R(n)= {σα | α ∈ (O \O∩D)(n)} ∪ {σ±α | α ∈ (O∩D)(n)} .

Furthermore, we briefly have to recall some information on the irreducible An-
characters [James and Kerber 1981, Section 2.5].

For a partition λ of n, let λ′ denote the conjugate partition. Let

S(n)= {λ ∈ P(n) | λ= λ′}

be the set of symmetric partitions of n.
If λ is nonsymmetric, then [λ]↓An=[λ

′
]↓An is irreducible. Let {λ}={λ′} denote

this irreducible character of An .
If λ = λ′, then [λ] ↓An= {λ}+ + {λ}− is a sum of two distinct irreducible An-

characters (which are conjugate in Sn).
This gives all the irreducible complex characters of An , that is,

Irr(An)= {{λ}± | λ ∈ S(n)} ∪ {{λ} | λ ∈ (P \S)(n)} .

The characters {λ}±, for λ∈S(n), are only distinguished by their values on the cor-
responding “critical” classes of cycle type h(λ)= (hλ1, . . . , hλd), where hλ1, . . . , hλd
are the principal hook lengths in λ and d = d(λ) is the diagonal length of λ. Note
that h(λ) ∈ (O∩D)(n), so the corresponding Sn-class splits.

Then we have [λ](σh(λ))= (−1)(n−d)/2
=: ελ. We set Hλ =

∏d
i=1 hλi . Then

{λ}+(σ
±

h(λ))=
1
2

(
ελ±

√
ελHλ

)
,

{λ}−(σ
±

h(λ))=
1
2

(
ελ∓

√
ελHλ

)
.

For any other irreducible An-character the values on these two classes coincide.
We have the following easy and well known property:

Lemma 4.1. The map h : S(n) → (O ∩ D)(n) with h(λ) = (hλ1, . . . , hλd(λ)), for
λ ∈ S(n), is a bijection.
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Let B ∈Bl(Sn) with 2-core ρk = (k, k−1, . . . , 2, 1)= dbl(τk), where, as before,
τk = (2k−1, 2k−5, . . .); let DB̃ and OB =OB̃ as before in Section 3 and (O∩D)B̃ =

OB̃ ∩DB̃ .
We set SB = {λ ∈ S(n) | λ(2) = ρk}.
In our context, we need the following refinement of Lemma 4.1:

Proposition 4.2. The map h induces bijections SB→ (O∩D)B̃ .

Proof. We have to show that for any λ ∈ S(n), we have λ(2) = dbl(h(λ))(2). In
the notation of 4̄-combinatorics an easy reduction argument shows that λ(2) =
dbl(h(λ)(4̄)); simultaneously removing 2-hooks from the diagram of λ that are
symmetrically positioned in λ corresponds to removing 4-bars from h(λ), namely,
subtracting 4 from a part in h(λ), and removing an inner 2× 2 array corresponds
to removing a pair 3, 1 (which is also a 4-bar). This ends at a staircase partition
ρk = λ(2), and in parallel at the corresponding τk = h(λ)(4̄).

By [Bessenrodt and Olsson 1997, Lemma 3.6], we obtain the equation on the
2-cores. �

Remark 4.3. It is not difficult to see [Olsson 1993, 12.5] that

|SB | =

{
0 if w(B) is odd,
p(w/2) if w(B) is even.

For a character χ of G, let χo denote the restriction of χ to the 2-regular ele-
ments of G. The following useful proposition provides a good 2-basic set for the
alternating groups. Note here that the set (D ∩S)(n) labeling the third subset of
characters is nonempty only if n is a triangular number; in that case, if n =

(k+1
2

)
,

(D∩S)(n) = {ρk}, and thus both characters {ρk}± of defect 0 then belong to the
basic set.

Proposition 4.4. Set

C(n)= {{λ} | λ ∈ (D \S)(n)} ∪ {{λ}+ | λ ∈ S(n)} ∪ {{λ}− | λ ∈ (D∩S)(n)} .

Then {χo
| χ ∈ C(n)} is a basic set for An (at the prime p = 2).

Proof. If χ = {µ} = [µ] ↓An for µ∈ (P \S)(n), then, since the 2-regular partitions
label a basic set for Sn ,

χo
= [µ]o ↓An=

∑
λ∈D(n)

cµλ[λ]o ↓An=

∑
λ∈(D\S)(n)

cµλ{λ}o+
∑

λ∈(D∩S)(n)

cµλ({λ}o++{λ}
o
−
),

with integer coefficients cµλ; as explained just before the proposition, the second
sum above has at most one partition λ ∈ (D∩S)(n) giving a contribution, namely
when n is a triangular number.



A 2-block splitting in alternating groups 843

For χ ={µ}+, µ∈S(n), or χ ={µ}−, µ∈ (D∩S)(n), there is nothing to prove.
If χ = {µ}−, µ ∈ S \(D∩S)(n), then, again since the 2-regular partitions label a
basic set for Sn ,

χo
= {µ}o

−
= [µ]o ↓An −{µ}

o
+
=

( ∑
λ∈D(n)

cµλ[λ]o ↓An

)
−{µ}o

+

=

( ∑
λ∈(D\S)(n)

cµλ{λ}o+
∑

λ∈(D∩S)(n)

cµλ({λ}o++{λ}
o
−
)
)
−{µ}o

+
,

an integral linear combination as desired.
Since |C(n)| = |D(n)| + |S(n)| = |O(n)| + |(O ∩ D)(n)| = |Cl′(An)|, the set
{χo
| χ ∈ C(n)} is a Z-basis of 〈χo

| χ ∈ Irr(An)〉Z, as claimed. �

For any set Q ⊆ P(n), we set

aQ =
∏
λ∈Q

aλ .

Using the basic set above, we define the 2-regular character table for the alternating
group An to be

X A
n = (χ(σ ))χ∈C(n)

σ∈R(n)
.

Using the properties of the irreducible characters of An stated above (see also
[Bessenrodt and Olsson 2004]), as well as the formula for the 2-regular character
table for Sn from [Olsson 2003] we deduce:

Corollary 4.5. | det X A
n | = | det Xn| ·

√a(O∩D)(n) = aO(n) ·
√a(O∩D)(n) .

In the main theorem stated below, we will give a block refinement of the first
equation above.

Remark 4.6. The 2-blocks of Sn and An are closely related [Olsson 1993] . Let
B ∈ Bl(Sn). If w(B) = 0, then B covers two 2-blocks of An (of defect 0), say
B A
ε , ε ∈ {±}. This only occurs when n is a triangular number, say n =

(k+1
2

)
, and

κ(B)= ρk = (k, k− 1, . . . , 2, 1); then Irr(B A
ε )= {{ρk}ε}, ε ∈ {±}.

Note that there is then a suitable choice of signs ε̄ for ε ∈ {±} such that

{ρk}ε(σh(ρk),ε̄) 6≡ 0 mod p .

If w(B) > 0, then B covers only one 2-block B A of An , and this block B A is only
covered by B. We then have

Irr(B A)= {{λ}(±) | λ ∈ P(n), λ(2) = κ(B)} .

Here, {λ}(±) means that we take the character {λ} if λ is nonsymmetric, and both
characters {λ}± if λ is symmetric.
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Theorem 4.7. Let B ∈ Bl(Sn) with 2-core κ(B)= ρk = dbl(τk).
If w(B)= 0, then OB = {τk} and DB = {ρk}, and we set

Cl′A(B A
ε )= {σ

An
τk ,ε̄
} , Irr′(B A

ε )= {{ρk}ε} , for ε ∈ {±} .

If w(B) > 0, we set

Cl′A(B A)= {σ An
α(,±) | α ∈ OB} , Irr′(B A)= {{λ} | λ ∈ DB} ∪ {{λ}+ | λ ∈ SB} .

Let X B A = (χ(xK ))χ∈Irr′(B A), K∈Cl′A(B A). Then

| det X B A | = | det X B | ·
√

a(O∩D)B̃
.

In particular, | det X B A | 6≡ 0 mod p. Hence, the sets above, taken for all B ∈
Bl(Sn), define a 2-block splitting for An .

Proof. Using the notation above, let B A be a 2-block of An . As seen above, the
sets Cl′A(B A) and Irr′(B A) are of the same cardinality. We have to show that all
the block tables have a nonzero determinant modulo p.

For the case where w(B) = 0, we have already seen before that we can make
a suitable choice (namely the one used in the statement of the Theorem) such that
this holds for the two blocks of An covered by B.

Thus we may now assume that w(B) > 0; then we do not have an irreducible
character labeled by a partition of type D ∩ S in B, that is, DB ∩ SB = ∅. We
consider the part of the character table of An corresponding to B A, sorted such
that among the character labels we first list the nonsymmetric ones and then the
symmetric ones. The classes are ordered such that we first have the OB classes, and
among these classes the (O ∩D)B̃ classes at the end, and here first the (O∩D)+

B̃
classes (where the “+” indicates that we take the representatives σ+α ), followed by
the corresponding (O∩D)−

B̃
classes. The classes of type (O∩D)B̃ are taken in some

ordering, and the SB characters are then taken in the corresponding order, that is,
with the label µ ∈ SB corresponding to h(µ) ∈ (O∩D)B̃ .

Recall that for any λ ∈ (P \ S)(n) and α ∈ (O ∩ D)(n), we have {λ}(σ+α ) =
{λ}(σ−α )= [λ](σα). Now take µ ∈ S(n); then for α = h(µ) we have

{µ}+(σ
±

h(µ))=
1
2(εµ±

√
εµHµ)=: y±µ ,

while for β ∈ (O∩D)(n), β 6= h(µ), we have {µ}+(σ+β ) = {µ}+(σ
−

β ). Set cµ =√
εµHµ = y+µ − y−µ . Now for any α ∈ (O∩D)B̃ , subtract the column of the block

character table X B A to the class of σ+α from the one to the class of σ−α . By the
above, then the final columns to the (O∩D)−

B̃
classes are transformed into an upper

zero part, corresponding to the characters labeled by nonsymmetric partitions, and
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below this a diagonal matrix with diagonal entries −cµ, µ ∈ SB . The table

X S
B = ({λ}(σ

(+)
α ))λ∈DB

α∈OB̃

is the upper left hand block part of the table X B A . By the above and Section 3, this
is exactly the block part of the 2-regular character table of the symmetric group
corresponding to the block B of Sn , with the block splitting constructed for the
symmetric groups, that is,

X S
B = X B = ([λ](σα))λ∈DB

α∈OB

.

Thus we have det X S
B 6≡ 0 mod p. Hence

| det X B A | = | det X S
B | ·

∏
µ∈SB

|cµ| = | det X B | ·
√

a(O∩D)B̃
6≡ 0 mod p ,

and we have proved that our construction provides a 2-block splitting for An . �

Remark 4.8. In contrast to the case of symmetric groups, the block splitting of
the 2-regular classes for the alternating groups as given above is not the only block
splitting; already A6 provides a counterexample. Indeed, instead of associating
the classes to (16), (13, 3), (32) to the principal 2-block of A6, the choices (16),
(13, 3), (1, 5)+ or (16), (32), (1, 5)+ are also possible.

Recall that for α ∈ O(n) \ (O∩D)(n), the corresponding conjugacy class of σα
is nonsplit in An , so we then have |CAn (σα)|2 = 2kα−1, with kα = l(α)− l(G(α))
as before.

By Brauer’s Theorem 2.1 we can now deduce from our 2-block splitting given in
Theorem 4.7 the following result on the Cartan matrices of 2-blocks of alternating
groups, providing a combinatorial formula for the elementary divisors which is
easy to compute.

Corollary 4.9. Let B ∈ Bl(Sn) of weight w(B) > 0, covering the block B A
∈

Bl(An). Then the elementary divisors of the Cartan matrix CB A are

|CAn (σα)|2 = 2kα−1, for α ∈ OB \ (O∩D)B̃ ; 12|(O∩D)B̃ | .

In particular,
det CB = 22`(B)−`(B A) det CB A .
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