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ALGEBRA AND NUMBER THEORY 3:8(2009)

On coproducts in varieties, quasivarieties
and prevarieties

George M. Bergman

If the free algebra F on one generator in a variety V of algebras (in the sense of
universal algebra) has a subalgebra free on two generators, must it also have a
subalgebra free on three generators? In general, no; but yes if F generates the
variety V.

Generalizing the argument, it is shown that if we are given an algebra and
subalgebras, A0⊇ · · · ⊇ An , in a prevariety (SP-closed class of algebras) P such
that An generates P, and also subalgebras Bi ⊆ Ai−1 (0 < i ≤ n) such that for
each i > 0 the subalgebra of Ai−1 generated by Ai and Bi is their coproduct in P,
then the subalgebra of A generated by B1, . . . , Bn is the coproduct in P of these
algebras.

Some further results on coproducts are noted:
If P satisfies the amalgamation property, then one has the stronger “transitiv-

ity” statement, that if A has a finite family of subalgebras (Bi )i∈I such that the
subalgebra of A generated by the Bi is their coproduct, and each Bi has a finite
family of subalgebras (Ci j ) j∈Ji with the same property, then the subalgebra of A
generated by all the Ci j is their coproduct.

For P a residually small prevariety or an arbitrary quasivariety, relationships
are proved between the least number of algebras needed to generate P as a pre-
variety or quasivariety, and behavior of the coproduct operation in P.

It is shown by example that for B a subgroup of the group S = Sym(�) of
all permutations of an infinite set �, the group S need not have a subgroup iso-
morphic over B to the coproduct with amalgamation S ∐

B S. But under various
additional hypotheses on B, the question remains open.

MSC2000: primary 08B25, 08B26, 08C15; secondary 03C05, 08A60, 08B20, 20M30.
Keywords: coproduct of algebras in a variety or quasivariety or prevariety, free algebra on n

generators containing a subalgebra free on more than n generators, amalgamation property,
number of algebras needed to generate a quasivariety or prevariety, symmetric group on an
infinite set.

arXiv reference: 0806.1750 .
After publication of this article, updates, errata, related references etc., if found, will be recorded at
http://math.berkeley.edu/∼gbergman/papers .
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1. Prologue, for the nonexpert

It is well known that the free group on two generators contains a subgroup free on
three generators. Can one deduce, from this alone, that it contains a subgroup free
on four generators?

It is unfair to say “from this alone” without indicating what facts about groups
are to be taken for granted. So suppose we want to use only the fact that groups
form a variety of algebras in the sense of universal algebra — a class of structures
consisting of all sets with a family of operations of specified arities, satisfying a
specified list of identities. Then we can ask, for V any variety and n any positive
integer:

(1) If, in V, the free algebra on n generators has a subalgebra free on n+ 1
generators, must it have a subalgebra free on n+ 2 generators?

Our first result will be a negative answer to this question, in the most extreme case,
n = 1.

On the other hand, a fact that is second nature to combinatorial group theorists is
that if G1 and G2 are overgroups of a common group H , and one forms G1

∐
H G2,

their coproduct with amalgamation of H (in group theorists’ notation and language
G1 ∗H G2, their free product with amalgamation of H), then the canonical maps
of G1 and G2 into that coproduct are embeddings. This says that the variety of
all groups has “the amalgamation property”; and we shall see in Section 6 that if
a variety V has this property, then it also has the property that for any algebras
A1, A2 in V and subalgebras B1 ⊆ A1, B2 ⊆ A1, the coproduct A1

∐A2 contains
the coproduct B1

∐B2. From this it is not hard to show that for any such V, (1) has
an affirmative answer.

However, the amalgamation property is relatively rare. For instance, though it
is satisfied by the variety of all groups, and by all varieties of abelian groups, it
does not seem to be satisfied by most other varieties of groups — in fact, it is a
longstanding open question whether it is satisfied by any variety of groups other
than those just mentioned [Neumann 1967, Problem 6; Kovács and Newman 1974,
page 422].

But in Section 2, after finding our counterexample to (1), we shall see that
a different condition, more common than the amalgamation property, implies a
positive answer to (1); namely, that the free algebra of rank n in V generate V,
that is, not lie in any proper subvariety thereof. (As, for example, the free group
of rank 2 generates the variety of all groups.)

In Sections 3 and 4 we shall generalize this to a result about when an algebra
(not necessarily free) containing a coproduct of subalgebras, some of which in
turn contain coproducts of subalgebras, will itself contain an “obvious” iterated
coproduct. The condition that a certain one of our algebras generate the class we
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are working in will again be a key assumption; not, this time, for generation as a
variety, but as a prevariety, which means, roughly, a class of algebras determined by
identities and universal implications. (For example, the class of torsion-free groups,
that is, groups satisfying (∀x) xn

= 1⇒ x = 1 for each n> 0, is a prevariety.) The
definition of prevariety, and of the related concept of quasivariety, are recalled in
Section 3.

We end with some further results on quasivarieties and prevarieties, and a brief
section on subgroups of infinite symmetric groups.

Acknowledgments and Reader’s Advisory. I am indebted to the referee for several
helpful suggestions, and to the editorial staff of the journal for requesting that I
write this introduction for the general reader.

Carrying that suggestion further, I have added, as Section 11, a quick summary
of some common terminology which should make this note readable (if not light
reading) by anyone for whom this prologue was. Readers not familiar with the
basic language of universal algebra might start with that section.

2. Free subalgebras of free algebras

The original question that led to this investigation [Bergman 2007, Question 4.5]
was whether an algebra A in a variety V which contains a subalgebra isomorphic
to the coproduct in V of two copies of itself, A∐

V A, must also contain a copy of
the three-fold coproduct A∐

V A∐
V A. As indicated above, this can fail even for A

free of rank 1: a free algebra of rank 1 in a variety V may have a subalgebra free
of rank 2 but fail to have any subalgebra free of rank 3. Let us begin by examining
how we might concoct such an example.

To do so, we must “foil” the obvious ways one would expect a free three-
generator subalgebra to arise. If 〈x〉 is free on x and contains a subalgebra 〈y, z〉
free on y and z, then y = px and z = qx for some derived unary operations p, q
of V. Since 〈qx〉 is isomorphic to 〈x〉, its subalgebra corresponding to 〈y, z〉,
namely 〈pqx, qqx〉, will be free on those two generators, and one might expect
〈px, pqx, qqx〉 to be free on the three indicated generators. (If it seems to the
reader that it must be free on those elements, he or she may be implicitly assuming
that V has the amalgamation property, to be discussed in Section 6.)

For this to fail, there must be some ternary relation T in the operations of V
such that T (px, pqx, qqx) is an identity in one variable x , but T (u, v, w) is not
satisfied by all 3-tuples of elements of algebras in V. On the other hand, since
y = px and z = qx generate a free algebra, the relation T (px, pqx, qqx) implies
that T (y, pz, qz) is an identity in two variables y and z in V.

Let us pause to note that if we construct a variety with such an identity T , we
will have eliminated one possibility for a free three-generator subalgebra of 〈x〉 of
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rank 3; but every 3-tuple of expressions obtained from y and z using the operations
of V represents another potential generating set for a free subalgebra. In principle,
we might use different relations to exclude different 3-tuples; but let us see whether
we can make do with just one such relation T , such that T (u, v, w) holds for all 3-
tuples (u, v, w) of elements of 〈x〉. Note that in this case, since 〈x〉 contains a free
algebra of rank two, V must satisfy identities saying that T (u, v, w) holds for any
elements u, v, w of any V-algebra that lie in a common two-generator subalgebra.

In testing out this approach, let us temporarily allow structures involving prim-
itive relations as well as operations. Then we could let V be the class of objects
defined by two primitive unary operations, p and q , and one primitive ternary
relation, T , subject only to the countable family of “identities”

(2) T (a(y, z), b(y, z), c(y, z)),

one for each 3-tuple of words a, b, c in two variables y, z and the operations p, q .
(Of course, since p and q are unary, each of a, b, c really just involves one of y
or z.) In an object of V generated by ≤ 2 elements, T thus holds identically, so in
describing the structures of ≤ 2-generator objects, we can ignore the relation T ,
and simply specify the actions of p and q . Since the family of identities (2) by
which we have defined V includes no identities in the operations p and q alone, the
possible structures of such objects are simply the structures of M-set, for M the
free monoid on generators p and q . In this monoid M , the left ideal generated by
p and q is free on those two elements; hence in the free V-object on one generator
x , the elements px and qx satisfy no relations in p and q; so with T , as noted,
also contributing no information, px and qx indeed generate a free subobject. On
the other hand, if we take the free M-set on three generators x, y, z, and define T
to hold precisely on those 3-tuples thereof in which all three components lie in a
subalgebra generated by two elements, we see that this satisfies the definition of
a free V-object on three generators, and that T (x, y, z) does not hold. Hence the
free object on one generator does not contain a copy of the free object on three
generators.

Let us now try to mimic the above behavior in a variety of genuine algebras. In
addition to two unary operations p and q, let us introduce a 0-ary operation 0 and a
ternary operation t , with the idea that the relation T (u, v, w) will be the condition
t (u, v, w)= 0. To keep our new operations from complicating our structures more
than necessary, let us introduce some “nonproliferation” identities:

(3) p0= q0= pt (x, y, z)= qt (x, y, z)= 0.

(4) t (u, v, w)= 0 whenever any of u, v, w is either 0, or is itself of the form
t (u′, v′, w′).

Finally, we impose the identities corresponding to (2):
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(5) t (a(x, y), b(x, y), c(x, y))= 0 for all derived operations a, b, c in two
variables.

In a free V-algebra, the elements t (u, v, w) that are not 0 may be thought of as
“tags”, showing that certain 3-tuples (u, v, w) obtained from the generators using
p and q alone do not have the form indicated in (5). By (3) and (4), these elements
have essentially no other effect. By the same reasoning as for structures with a
primitive relation T , we get:

Proposition 1. Let V be the variety defined by a 0-ary operation 0, two unary
operations p and q, and a ternary operation t , subject to identities (3), (4), (5).

Then in the free V-algebra FV(x) on one generator x , the subalgebra generated
by px and qx is free on those generators; but FV(x) (and hence also the free alge-
bra on two generators) has no subalgebra free on three or more generators. �

The above result was based on FV(x) satisfying an identity (namely, t (x, y, z)=
0) that did not hold in all of V; and we might hope that if V is a variety where this
does not happen, but which, as above, has unary derived operations p and q such
that px and qx are free generators of the subalgebra 〈px, qx〉 ⊆ FV(x), then the
subalgebra 〈px, pqx, qqx〉 will have to be free on the indicated three generators.
To investigate this question, consider a ternary relation T in the operations of V
about which we now merely assume that T (px, pqx, qqx) holds in FV(x), and let
us see whether we can deduce that T holds for all 3-tuples of elements of FV(x).

As noted earlier, the conditions that T (px, pqx, qqx) holds in FV(x), and that
y = px and z = qx generate a free algebra 〈y, z〉, show that in that free algebra,
T (y, pz, qz) holds, hence that in any V-algebra, T holds on any 3-tuple whose
last two terms are obtained from a common element by applying p, respectively,
q to it. Let us now apply this observation to a 3-tuple in FV(x) of the form
(a(px, qx), px, qx) where a is any derived operation of V, and use the indepen-
dence of px and qx a second time. We conclude that T (a(y, z), y, z) holds for
every such a. In other words, in any V-algebra, T holds on every 3-tuple whose
first term lies in the subalgebra generated by the last two terms.

But there is no evident way to carry this process further. And in fact, we can
again get a negative result by the same technique of realizing T as t (u, v, w)= 0,
embodying the conditions that we have found T must satisfy this time, in the system
of identities:

(6) t (u, pv, qv)= 0 for all u, v.

(7) t (a(u, v), u, v)= 0 for all u, v, and all binary terms a.

The one tricky point is to show that the variety so defined now has the property
that there are no identities satisfied by the free algebra on one generator that are not
identities of the whole variety. In contrast to the earlier example, our development
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has not called on any such identities; but neither has it shown that none exist. With
some work, one can prove this; but an easier approach, which we will follow, is
to let V0 denote the variety defined by the identities discussed above, and let our
V be the subvariety of V0 generated by the free algebra on one generator therein.
Here are the details.

Proposition 2. Let V0 be the variety defined by a 0-ary operation 0, two unary
operations p and q , a ternary operation t , and the identities (3), (4), (6), and (7);
and let V be the subvariety of V0 generated by the free algebra FV0(x) on one
generator. Thus, FV(x)= FV0(x), so V is generated by FV(x).

In this situation, the subalgebra 〈px, qx〉 ⊆ FV(x) is free in V (and in fact in
V0) on the two generators px and qx ; but the subalgebra 〈px, pqx, qqx〉 is not
free in V (and hence not in V0) on px, pqx and qqx.

Proof. The last sentence of the first paragraph is clear in the general context of a
subvariety generated by a free algebra in any variety.

We shall next show that 〈px, qx〉 ⊆ FV(x) is free on px and qx in V0. Since it
is a subalgebra of FV(x) and hence belongs to V, it will then a fortiori be free on
those generators in that subvariety.

To do this, we need to prove that any relation satisfied in FV(x) by px and qx
also holds between y and z in FV0(y, z). Let M again denote the free monoid on
the two symbols p and q . We know as before that the elements of FV(x) obtained
from x using p and q alone form a free M-set on one generator, and hence that
the sub-M-set M{px, qx} is free as an M-set on px and qx . Thus, if the given
relation satisfied by px and qx involves only the operations p and q , it will indeed
be satisfied by y and z. Hence in what follows, we may assume the relation involves
t and/or 0.

Now by (3) and (4), if either side of our relation in px and qx involves 0 or
t other than in the outermost position, that side equals 0, and the corresponding
expression in y and z does as well; so we can replace that side by 0 in our relation.
Given the forms of the identities (6) and (7), it is not hard to see that to complete
our proof it will suffice to show that if

(8) t (b(px, qx), c(px, qx), d(px, qx))= 0

is an identity of V0, where

(9) b(px, qx), c(px, qx), d(px, qx) ∈ M{px, qx},

then V0 also satisfies the identity

(10) t (b(y, z), c(y, z), d(y, z))= 0.

Moreover, (3) and (4) yield no relations of the form (8) satisfying (9), so we need
only look at relations (8) of the forms (6) and (7).
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An instance of (7) can have the form (8) only if the given u and v have the
forms c(px, qx) and d(px, qx); but then putting y and z in place of px and
qx in that instance of (7) again gives an instance of (7), and hence a relation
in FV0(y, z), as required. If an instance of (6) has the form (8), then we have
u = b(px, qx), but there are two possibilities for the element v: it can either
be x , or of the form e(px, qx). In the former case, this instance of (6) is also
an instance of (7), and the preceding argument applies. In the latter case, the
relation has the form t (b(px, qx), pe(px, qx), qe(px, qx)) = 0, and we see that
t (b(y, z), pe(y, z), qe(y, z)) = 0 is again an instance of (6), and hence a relation
in FV0(y, z). This completes the proof that 〈px, qx〉 is free on px and qx .

To see, finally, that 〈px, pqx, qqx〉 is not free on the indicated generators in
V, we note that FV0(x), which generates V, has 3-tuples of elements of M{x} to
which neither (6) nor (7) applies, for example, (x, qx, px). Hence t (x, y, z) = 0
is not an identity of V; hence the elements px , pqx , qqx , which do satisfy that
relation, cannot be free generators of a free subalgebra. �

After obtaining the above result, I wondered whether for every 3-tuple (ax,bx,cx)
in M{x}, one could find a ternary relation Ta,b,c on M{x} that could be embodied
in a construction like the above, giving an algebra in which that 3-tuple was not
a free generating set. If so, then it would seem that by defining a variety with
operations 0, p, and q and countably many ternary operations ta,b,c, one for each
such choice of a, b and c, one should be able to get an example where, as above,
FV(x) generated V and 〈px, qx〉 ⊆ FV(x) was free on px, qx , but where FV(x)
contained no subalgebra free on three generators.

But just a bit more experimentation revealed 3-tuples (ax, bx, cx) for which no
Ta,b,c with the desired property exists. Translating the resulting obstruction into a
proof of a positive statement, this is:

Proposition 3. Let V be a variety of algebras such that the free algebra FV(x) on
one generator generates V as a variety, and contains a subalgebra free of rank 2
in V, say on generators px and qx , where p and q are derived unary operations
of V. Then the subalgebra 〈px, pqx, pqqx〉 ⊆ FV(x) is free in V on the indicated
three generators.

Proof. It will suffice to show that for any three elements

(11) ax, bx, cx ∈ FV(x),

there exists a homomorphism 〈px, pqx, pqqx〉→ FV(x) carrying px, pqx, pqqx
to ax, bx, cx respectively, since this will show that every relation satisfied by
px, pqx and pqqx is an identity of FV(x), and hence, by hypothesis, of V.

Given elements (11), let us first use the freeness of 〈px, qx〉 to get a homo-
morphism f : 〈px, qx〉 → FV(x) carrying px to aqqx , and qx to x . Thus the
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image of (px, pqx, pqqx) under this map is (aqqx, px, pqx). Since this 3-tuple,
and hence the subalgebra it generates, again lies in 〈px, qx〉, we can compose
this homomorphism with another homomorphism, g : 〈px, qx〉 → FV(x); let this
take px to bqx and qx to x . This takes the preceding 3-tuple to (aqx, bqx, px).
Finally, mapping 〈px, qx〉 to FV(x) by the homomorphism h sending px to cx
and qx to x , we get the desired 3-tuple (ax, bx, cx). Hence, the composite hg f :
〈px, pqx, pqqx〉 → FV(x) acts as required. �

In the question we have answered, the choice of ranks one, two and three was,
of course, made to give a concrete test problem. This, and the restriction to free
algebras rather than coproducts of general algebras, make our counterexamples,
Propositions 1 and 2, formally stronger, but our positive result, Proposition 3,
weaker than the corresponding result without those restrictions. We shall gen-
eralize Proposition 3 in the next two sections so as to remove these restrictions.

3. Prevarieties and quasivarieties

In the proof of Proposition 3, we used the fact that if V is the variety generated by
an algebra A, then a V-algebra generated by a family of elements, B=〈{xi | i ∈ I }〉,
is free on those generators if and only if there exist homomorphisms B→ A taking
the xi to all choices of I -tuples of elements of A. For our generalization, we would
like to say similarly that if an algebra B is generated by a family of subalgebras Bi

(i ∈ I ), then it is their coproduct if and only if every system of homomorphisms
from the algebras Bi to our given algebra A extends to a homomorphism B→ A.
We shall see that this is true for coproducts, not in the variety generated by A, but
in the prevariety so generated (definition recalled below).

There are a few points of notation and terminology in which usage is not uni-
form; we begin by addressing these.

First, we admit the empty algebra when the operations of our algebras include
no 0-ary operations.

Second, note that the operators H, S and P on classes of algebras that appear in
Birkhoff’s Theorem and related results each come in two slightly different flavors.
One may associate to a class X of algebras the class of all factor algebras of
members of X by congruences, or the class of algebras isomorphic to such factor
algebras, that is, the homomorphic images of members of X. Likewise, one may
associate to X the family of subalgebras of members of X, or the family of algebras
isomorphic to such subalgebras; that is, algebras embeddable in members of X.
And finally, we may associate to X the class of direct product algebras constructed
from members of X in the standard way as algebras of tuples, or the class of alge-
bras isomorphic to algebras so constructed, that is, algebras P that admit a family of
maps to the indicated members of X giving P the universal property of their direct



On coproducts in varieties, quasivarieties and prevarieties 855

product. It is probably an accident of history that the symbols H, S and P were
assigned, in two cases (subalgebras and products) to particular explicit construc-
tions, but in the remaining case (homomorphic images) to the isomorphism-closed
concept. The standard remedy is to introduce an operator I, taking every class X
of algebras to the class of algebras isomorphic to members of X, and apply I in
conjunction with S and P when the wider construction is desired. But that wider
construction usually is what is desired, so, following [McKenzie et al. 1987], we
will use the less standard definitions:

Definition 4. If X is a class of algebras of the same type, then SX will denote the
class of algebras isomorphic to subalgebras of algebras in X, and PX the class
of algebras isomorphic to direct products of algebras in X (including the direct
product of the empty family, the one-element algebra). As usual, HX will denote
the class of homomorphic images of algebras in X.

A third point on which terminology is divided concerns the definition of “qua-
sivariety”. Both usages agree that this means a class of algebras A determined by
a set of conditions of the form

(12) (∀ x ∈ AI ) (
∧

j∈J a j (x)= b j (x)) H⇒ c(x)= d(x),

where I and J are sets, and the a j and b j and c and d are I -ary terms in the
algebra operations. (J may be empty, in which case (12) represents an ordinary
identity.) The point of disagreement is whether I and J are required to be finite.
The more standard usage, which, somewhat reluctantly, I will follow, assumes this;
a class of algebras defined by sentences (12) where I and J are not required to be
finite is then called a prevariety. The other usage is exemplified by [Adámek and
Sousa 2004], where “quasivariety” is defined with no finiteness restriction on I
and J , while “prevariety” is used for a still more general sort of class of algebras
(typified by monoids in which every element is invertible; that is groups regarded
as monoids).

(My discomfort with the standard usage is that the prefix “pre-” suggests a con-
cept used mainly for technical purposes in the development of another concept,
as in “preorder”, “presheaf” and “precategory”. Also, the relationship between
“prevariety” and “quasivariety” is not mnemonic, as “quasivariety” and “elemen-
tary quasivariety” would be. Incidentally, if X is a finite set of finite algebras, the
prevariety and the quasivariety that it generates are the same, so works like [Clark
and Davey 1998] don’t have to distinguish the concepts.)

The concept of quasivariety is a natural one only for finitary algebras. (The
constructions of reduced products and ultraproducts, occurring in standard charac-
terizations of quasivarieties, are not in general defined on infinitary algebras.) Most
of our results on prevarieties will not require finitariness; so algebras comprising
prevarieties will not be assumed finitary unless this is explicitly stated.
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We summarize this and some related conventions in:

Definition 5. A prevariety will mean a class P of algebras of a given (not neces-
sarily finitary) type that can be defined by a class of conditions of the form (12);
equivalently that is closed under the operators S and P .

A prevariety P which is finitary (that is, every primitive operation of which has
finite arity), will be called a quasivariety if

(13) P can be defined by conditions (12) in each of which I and J are finite;

equivalently,

(14) P is closed under ultraproducts;

equivalently,

(15) P is closed under reduced products.

If X is a class of algebras of a given type, the least prevariety containing X,
namely, SPX, will be called the prevariety generated by X. Likewise, if the type is
finitary, the least quasivariety containing X, namely, SPPultX = SP redX, where
Pult and P red denote, respectively, the constructions of ultraproducts and reduced
products (and algebras isomorphic thereto), will be called the quasivariety gener-
ated by X. Again without the assumption of finitariness, the least variety containing
X, namely, HSPX, will be called the variety generated by X.

In any prevariety, one has algebras presented by arbitrary systems of generators
and relations. In particular, every family of algebras has a coproduct. A useful
characterization of these is

Lemma 6. Let X be a class of algebras of a given type, let P = SPX be the
prevariety generated by X, let B be an algebra in P, and let fi : Bi→ B (i ∈ I ) be
a family of maps from algebras in P into B.

Then the algebra B is a coproduct of the Bi in P, with the fi as the coprojection
maps, if and only if the following two conditions are satisfied:

(16) B is generated as an algebra by the union of the images fi (Bi ).

(17) For every A in our generating class X, and every choice of a family of
maps gi : Bi → A (i ∈ I ), there exists a homomorphism g : B→ A such
that gi = g fi for all i ∈ I .

Sketch of proof. “Only if” is straightforward: the necessity of (16) is shown, as
usual, by applying the universal property of B as a coproduct to the maps fi ,
regarded as taking the Bi into the subalgebra C of B that they together gener-
ate (which belongs to P, since P is closed under taking subalgebras); while the
necessity of (17) is a case of that universal property.
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Conversely, assuming (16) and (17), let us show that B and the fi satisfy the
universal property of the coproduct. Let C be any algebra in P, given with homo-
morphisms ai : Bi → C .

If there exists a homomorphism a : B→ C with ai = a fi for all i , then by (16)
it will be unique.

To see that such a map exists, we write C as a subalgebra of a direct product∏
j∈J A j with all A j in X. Then for each j ∈ J , the composites of the given maps

ai : Bi → C with the j th projection C→ A j give a system of maps ai j : Bi → A j

(i ∈ I ). By (17), for each j the ai j are induced by a single map a∗ j : B → A j ;
doing this for all j ∈ J gives a map a : B →

∏
J A j , whose restriction to each

fi (Bi ) ⊆ B lies in C ⊆
∏

j∈J A j . Hence a(B) lies in C by (16). The relations
ai j = a∗ j fi now show that ai = a fi , as required. �

Remarks. We shall see in Section 7 that it can happen that though each Bi lies
in P = SPX, no A ∈ X simultaneously admits maps from all Bi . In that case,
condition (17) is vacuous, and the lemma says that (16) characterizes the coproduct∐

P Bi . Though implausible-sounding, this is correct: in that case an algebra B
with maps of the Bi into it, to belong to P = SPX, must embed in the product
of the vacuous family of members of X, hence can have at most one element, so
there is hardly any way it can differ from the desired universal object; (16) merely
guarantees that if all Bi are empty, B is also.

In a different direction, taking I = ∅ in the above result and recalling that a
coproduct of the empty family of objects in a category is an initial object of the
category, the result says that an algebra B is initial in P if and only if it is generated
by the empty set and admits a homomorphism into each A ∈ X.

4. P-independent subalgebras

Definition 7. If A is an algebra in a prevariety P, we shall call a family of subal-
gebras Bi ⊆ A (i ∈ I ) P-independent if the subalgebra B ⊆ A that they generate,
given with the system of inclusion maps Bi → B, is a coproduct of the Bi in P.

Here, finally, is the promised generalization of Proposition 3.

Theorem 8. Suppose that P is a prevariety of algebras and A0 an algebra in P,
and that for some natural number n we are given subalgebras A1, . . . , An and
B1, . . . , Bn of A0, such that for i = 1 . . . n, Ai and Bi are P-independent, and are
both contained in Ai−1. Assume, moreover, that P is generated as a prevariety
by An .

Then B1, . . . , Bn are P-independent.

Proof. Let us prove by induction on i = 0, . . . , n a statement a little stronger than
what we will need for i = n, namely that for every system of homomorphisms
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f j : B j → Ai ( j = 1, . . . , i), there exists a unique homomorphism f from the
subalgebra of A0 generated by B1, . . . , Bi and Ai into Ai which acts on each B j

( j = 1, . . . , i) as f j , and which acts as the identity on Ai .
This is clear for i = 0. Let 0< i ≤ n, inductively assume the result for i−1, and

suppose we are given f j : B j→ Ai ( j = 1, . . . , i). Since Ai ⊆ Ai−1, our inductive
hypothesis gives us a homomorphism g from the subalgebra of A0 generated by
B1, . . . , Bi−1 and Ai−1 into Ai−1 which agrees with f j for j = 1, . . . , i−1, and is
the identity on Ai−1. Note that g will carry the subalgebra generated by B1, . . . , Bi

and Ai into the subalgebra generated by Ai (into which it carries B1, . . . , Bi−1 and
Ai ) and Bi (which is contained in Ai−1, and so is left fixed).

But by assumption, that subalgebra is the coproduct of Ai and Bi , so we can
map it into Ai by a homomorphism h which acts as the identity on Ai and as fi

on Bi . Now f = hg clearly has the property required for our inductive step.
Taking the i = n case of our result, and ignoring the condition that f be the

identity on An , we see that the subalgebra B ⊆ A0 generated by B1, . . . , Bn sat-
isfies (17) for X the singleton family {An}. Since by assumption An generates P,
Lemma 6 tells us that B is the coproduct of the Bi in P. �

Remark. We might call a family of subalgebras Bi of an algebra A in a preva-
riety P, given with a distinguished member B0 which generates P, “almost P-
independent” if every family of homomorphisms fi : Bi → B0 such that f0 is
the identity map of B0 can be realized by a homomorphism on the subalgebra
generated by the Bi . We see from the proof of Theorem 8 that that theorem re-
mains true if the P-independence hypothesis is weakened to say that each pair
(Ai , Bi ), with Ai taken as the distinguished member, is almost P-independent, and
the conclusion strengthened to say that the n+1-tuple (An, B1, . . . , Bn), with An

as distinguished member, is almost P-independent. The condition of almost P-
independence seemed too technical to use in the formal statement of the theorem;
but one might keep it in mind. It is interesting that while Proposition 2 showed that
in the situation described there, the subalgebras 〈px〉, 〈pqx〉 and 〈qqx〉 of FV(x)
were not V-independent, the above proof shows that, with the last of them taken
as distinguished, they are almost V-independent.

Note that Theorem 8 holds even in the case n = 0: If A0 generates P, then the
subalgebra of A0 generated by the empty set is the initial object of P.

A case of Theorem 8 with a simpler hypothesis is

Corollary 9. Suppose A and B1, . . . , Bn are algebras in a prevariety P, such that
A generates P, and such that for each i , A contains an isomorphic copy of A∐

P Bi .
Then A contains an isomorphic copy of

∐i=1,...,n
P Bi . �

Recall next that a free algebra in a prevariety P is also free on the same gen-
erators in the variety V generated by P. Hence we can apply the above results to
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free algebras in a variety, and obtain the following result extending Proposition 3
(though we omit, for brevity, the explicit description of the free generators).

Corollary 10. Suppose V is a variety and m < n are positive integers such that
the free V-algebra FV(x1, . . . , xm) on m generators has a subalgebra free on n
generators, and such that V is generated as a variety by FV(x1, . . . , xm). Then for
every natural number N , FV(x1, . . . , xm) has a subalgebra free on N generators.

Proof. A free V-algebra FV(x1, . . . , xn) has subalgebras free on all smaller num-
bers of generators; so the above hypothesis implies that FV(x1, . . . , xm) has a subal-
gebra free on m+1 generators. This is a coproduct of a free algebra on m generators
and a free algebra on one generator, so we get the hypothesis of Corollary 9 with
P the prevariety generated by A= FV(x1, . . . , xm), the n of that corollary taken to
be N , and each Bi taken to be free on one generator. The conclusion shows that
FV(x1, . . . , xm) has a subalgebra free on N generators in the prevariety it generates.
As noted, a free algebra in a prevariety P is also free in the variety V generated
by P. �

Can we strengthen this result to give free subalgebras of countably infinite rank?
Yes if our algebras are finitary. We will need:

Lemma 11. Let P be a prevariety of finitary algebras, A an algebra in P, and
(Bi )i∈I a family of subalgebras of A, such that every finite subset I0 ⊆ I is con-
tained in a subset I1 ⊆ I such that the family of subalgebras (Bi )i∈I1 is P-indepen-
dent. Then (Bi )i∈I is P-independent.

Proof. We need to show that the map f I :
∐I

P Bi → A whose composite with
each coprojection q j : B j →

∐I
P Bi is the inclusion of B j in A is one-to-one. By

finitariness of P, every element of
∐I

P Bi lies in the subalgebra generated by finitely
many of the Bi , hence it will suffice to show that for any finite subset I0 ⊆ I , the
restriction of f I to the subalgebra of

∐I
P Bi generated by {Bi | i ∈ I0} is one-to-

one. By assumption, I0 is contained in a subset I1 such that the family (Bi )i∈I1

is P-independent; hence the canonical map f I1 :
∐I1

P Bi → A is one-to-one; but
that map factors through f I , so f I is one-to-one on its image, the subalgebra of∐I

P Bi generated by {Bi | i ∈ I1}, hence on the smaller subalgebra generated by
{Bi | i ∈ I0}, as required. �

(We shall see in Sections 6 and 8 respectively that if a prevariety P either satisfies
the amalgamation property (which is not in general the case in the situation we are
interested in here) or is generated as a prevariety by a single algebra (which is
true in the situation to which we are about to apply the above lemma) then any
subfamily of a P-independent family of subalgebras is P-independent; so in such
cases, the hypothesis of the above lemma can be simplified merely to say that every
finite subset of I is P-independent. But in a general prevariety P, a subfamily of a
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P-independent family need not be P-independent, hence that simplified statement
does not carry the full force of the lemma. For an example of P-independence
not carrying over to subfamilies, take for P the variety V of monoids with two
distinguished elements x and y, let A be the V-algebra generated by a universal
two-sided inverse to x , denoted x−1, let B1 and B2 both be the subalgebra of A
generated by u= x−1 y, which is a free monoid on two generators u and x , regarded
as a member of V by setting y = xu, and let B3 be the whole algebra A. It is not
hard to verify that in B1

∐
V B2, the images u1, u2 of the copies of u from B1 and

B2 are distinct (though they satisfy xu1 = xu2). Since in A itself, in contrast,
their images are equal, B1 and B2 are not V-independent subalgebras of A. But in
B1

∐
V B2

∐
V B3, the properties of two-sided inverses force the generators of B1 and

B2 to fall together with the corresponding elements of B3, so the family consisting
of these three subalgebras satisfies the definition of V-independence.)

Combining the above lemma with our earlier results, we get:

Corollary 12. Let P, in (i) and (ii) below, be a prevariety of finitary algebras, and
V, in (iii), a variety of such algebras. Then:

(i) If A0⊇ A1⊇· · ·⊇ Ai ⊇ . . . are algebras in P such that every Ai generates P as
a prevariety; and if for each i > 0, Bi is a subalgebra of Ai−1 such that Ai and
Bi are P-independent, then the countable family (Bi )i>0 is P-independent.

Hence:

(ii) If A is an algebra which generates P as a prevariety, and we are given a
countable family of algebras (Bi )i>0 in P, such that for each i , A has a subal-
gebra isomorphic to A∐

P Bi , then A has a subalgebra isomorphic to
∐i>0

P Bi .
Hence:

(iii) If for some positive integer m the free algebra FV(x1, . . . , xm) generates V as
a variety, and contains a subalgebra free on > m generators, then it contains
a subalgebra free on countably many generators. �

Lemma 11 and Corollary 12 both fail if the assumption that our algebras are
finitary is deleted. To see this for the lemma, let V be the variety determined by
one operation a of countably infinite arity, and identities saying that whenever two
of x0, x1, . . . are equal, we have

(18) a(x0, x1, . . . )= x0.

Let A be a countably infinite set, on which a is defined by letting (18) hold for
all x0, x1, . . . . Then every finite subset of A is a free subalgebra on that set, from
which one sees that any finite family of distinct singleton subsets is an independent
set of subalgebras; but the set of all of these is not independent, because their
coproduct in the variety V, the free V-algebra on countably many generators, does
not satisfy (18) identically.
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To show that the statements of Corollary 12 all need the finitariness condition, it
suffices to give a counterexample to statement (iii) in the absence of that condition.
The idea will be the same as above, but the details are more complicated, and I
will be a little sketchy.

The variety in question will have countably many 0-ary operations c0, c1, . . . ,
two unary operations p and q, an operation a of countable arity, and an additional
0-ary operation 0, satisfying the analogs of (3) and (4) with a in place of t . As in
Section 2, let M denote the free monoid on the symbols p and q . Let V0 be defined
by the abovementioned analogs of (3) and (4), together with the (uncountable)
family of identities saying that

(19) a(x0, x1, . . . )= 0 if infinitely many of the xi belong to M{u} for some
common element u.

These identities do not imply a(c0, c1, . . . ) = 0, so a(x0, x1, . . . ) = 0 is not
an identity in any free algebra in V0. Once again, let V be the subvariety of V0

generated by the free algebra FV(x) on one generator.
One finds that the subalgebra 〈px, qx〉 ⊆ FV(x) = FV0(x) is free on px and

qx . The key point is that if an element a(x0, x1, . . . ) with x0, x1, . . . ∈ 〈px, qx〉
equals 0 in FV(x) by an application of (19), and the element u of the hypothesis
of (19) is x , then the infinite family of elements of M{u} in question will be the
union of a family of elements of M{px} and a family of elements of M{qx}, one
of which must still be infinite; so the relation a(x0, x1, . . . )= 0 still follows from
the expressions for the xi in terms of px and qx .

However, I claim that FV(x) contains no subalgebra free on countably many
generators. For note that a family of independent elements of FV(x) cannot include
the value of any primitive or derived 0-ary operation (since their behavior under
homomorphisms is not free), nor any element obtained with the help of a, by
the analogs of (3) and (4); hence such a family must lie entirely in M{x}. But
by (19) (with u = x), any infinite family x0, x1, . . . of elements of M{x} satisfies
the relation a(x0, x1, . . . ) = 0, which we have seen is not an identity of V; so no
infinite family of elements of FV(x) is independent.

5. Some questions

Proposition 1 shows that Corollary 10 becomes false if we delete the assumption
that FV(x1, . . . , xm) generates P. In the absence of that assumption, it is not clear
what forms the relation of mutual embeddability can assume.

Question 13. For V a variety, let us say that two natural numbers m and n are
V-equivalent (with respect to embeddability of free algebras) if FV(x1, . . . , xm)
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and FV(x1, . . . , xn) each contain an isomorphic copy of the other. Clearly, the V-
equivalence classes are blocks of consecutive integers. Which decompositions of
the natural numbers into blocks can be realized in this way?

More generally, given a prevariety P and algebras A1, . . . , Ar in P, let us define a
preorder � on r -tuples of natural numbers by writing (m1, . . . ,mr )� (n1, . . . , nr )

if the coproduct in P of m1 copies of A1, m2 copies of A2, etc., through mr copies
of Ar , is embeddable in the coproduct of n1 copies of A1 etc., through nr copies
of Ar . What preorderings on ωr can be realized in this way? In particular, what
equivalence relations on ωr can be the equivalence relation determined by such a
preorder? Do these answers change if one requires P to be a variety?

In [Zaı̆tsev 1992], for certain varieties V of Lie algebras over a field of char-
acteristic 0, bounds are obtained on n/m for any m, n equivalent under the re-
lation of the first paragraph of Question 13 above. The idea is to note that if
FV(x1, . . . , xm) and FV(x1, . . . , xn) are mutually embeddable, they must have the
same Gelfand–Kirillov dimension (a measure of growth rate). Upper and lower
bounds are obtained for the Gelfand–Kirillov dimension of FV(x1, . . . , xn), lead-
ing to the asserted conclusions. However, it seems most likely that for such V,
the Gelfand–Kirillov dimension of FV(x1, . . . , xn) will grow with n in a “smooth”
fashion; if so, one should in fact be able to prove that no free algebras of distinct
ranks in V are mutually embeddable, in which case such varieties will not give
interesting examples relevant to Question 13.

For results on isomorphisms and surjections among free algebras, rather than
embeddings, see [Świerczkowski 1961; Clark 1969; Cohn 1966]. The last of these
shows that all consistent cases are realized by module-varieties ModR for rings R.

In generalizing Proposition 3 from free algebras to general coproducts, we found
that the context that made the argument work was that of coproducts in a pre-
variety. Theorem 8 does not give us the corresponding statement for general
A0, . . . , An, B1, . . . , Bn with the prevariety P replaced by a variety V, and the
condition that P be generated by An as a prevariety replaced by the condition that
V be generated by An as a variety, since for a variety V and an algebra A ∈V, the
condition that V be generated by A as a variety is weaker than the condition that
it be generated by A as a prevariety. (For example, the variety of abelian groups
is generated by the infinite cyclic group as a variety, but not as a prevariety, since
all groups in the prevariety it generates must be torsion-free.) But I don’t have a
counterexample to the modified statement.

Question 14. (i) Does Theorem 8 remain true if “prevariety” is everywhere re-
placed by “variety”?

If not, or if the question proves difficult, one might examine some special cases;
for example:
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(ii) If in Corollary 9 we replace “prevariety” by “variety”, and add the assumption
that A is free of rank 1 in that variety (but not that the Bi are free), does the
statement still hold?

(iii) If V is a variety, and A an algebra that generates V as a variety, and that
contains as a subalgebra a coproduct of two copies of itself in V, must it contain a
coproduct of three copies of itself in V?

More likely to have positive answers, since quasivarieties are more like preva-
rieties than varieties are, is:

Question 15. Same questions (i), (ii), (iii) as above, but with “variety” everywhere
replaced by “quasivariety” (necessarily, of finitary algebras).

Looking back further, to Section 2, the mixture of positive and negative results
there suggests:

Question 16. Is there a nice criterion for whether a 3-tuple (a, b, c) of monoid
words in two letters p, q has the property proved in Proposition 3 to hold for the
3-tuple (p, pq, pqq), and in Proposition 2 not to hold for the 3-tuple (p, pq, qq),
namely, of witnessing the existence of subalgebras free on three generators in all
relatively free one-generator algebras 〈x〉 that contain free two-generator subalge-
bras 〈px, qx〉 in the varieties they generate?

More generally, given n > 1 and N > 1, one may ask for a criterion for an
N -tuple (a1, . . . , aN ) of words in n letters p1, . . . , pn to witness the existence of
a free subalgebra on N generators in any relatively free algebra on one generator
that contains a free subalgebra 〈p1x, . . . , pnx〉 on n generators in the variety it
generates.

(Still more generally, for n > m > 0 and N > 1, one may ask how to decide
whether a given N -tuple of terms in m variables and n operation symbols each of
arity m witnesses the result of Corollary 10. But since terms in operation symbols
of arity > 1 are more complicated than words in unary operation symbols, there
seems to be less likelihood of a simple answer.)

The next four sections are related to, but do not depend on, the material above,
except for the definitions. Section 6 recalls what it means for a category of algebras
to have the amalgamation property, obtains some equivalent statements, and then
shows that for prevarieties with that property, one has stronger results on when
a family of subalgebras of an algebra generates a subalgebra isomorphic to their
coproduct than those that we have seen to hold in general. In a different direc-
tion, motivated by the fact that the prevarieties considered in Section 4 were by
hypothesis each generated by a single algebra, Sections 7-9 show that the number
of algebras needed to generate a prevariety has important consequences for the
behavior of coproducts therein. The brief section Section 10, which is included in
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this note only for convenience, answers a different question about coproducts, also
raised in [Bergman 2007], concerning subgroups of the full symmetric group on
an infinite set.

6. The amalgamation property, and its consequences for P-independence

In any class of algebras that admits coproducts with amalgamation (pushouts), it is
well known and easy to verify that the amalgamation property (definition recalled
in (20) below) is equivalent to the condition that for all pairs of one-to-one maps
with common domain, A → B and A → C , the coprojection maps of B and
C into the coproduct with amalgamation B∐

AC are also one-to-one. The next
lemma gives some further consequences of that property, in the same vein. We
formulate it in a context more general than that of categories of algebras, though
less sophisticated than that of [Kiss et al. 1982, Section 6].

In that lemma, the functor U : C → Set plays the role of the underlying set
functor of a category of algebras, but we shall not need to assume it faithful, as
one does when defining the concept of a concrete category.

One other notational remark: So far, I have generally written
∐

P for “coprod-
uct in the category P ”; but when discussing coproducts with amalgamation of an
object, we will use the subscript position for that object, leaving the category to be
understood from the context. I will follow this mixed practice for the rest of the
paper, showing the category when no amalgamation is involved. (The superscript
position, which might otherwise be assigned to one of these, is used here for index
sets over which coproducts are taken. If there were danger of ambiguity, we could
write

∐
P,A rather than

∐
A, or regard coproducts with amalgamation as coproducts

in a comma category (A ↓ P) and so write
∐
(A↓P) .)

Lemma 17. Let C be a category and U : C→ Set a functor, and let us call a
morphism f in C “one-to-one” if U ( f ) is a one-to-one set map, and emphasize
this by indicating such morphisms using tailed arrows: �.

Assume that C admits pushouts of pairs of one-to-one morphisms; that is, that if
f : S � A and g : S � B are one-to-one, then the coproduct with amalgamation
A∐

S B exists. (But we do not assume at this point that the maps of S, A and B to
that coproduct are one-to-one.)

Then the following three conditions are equivalent:

(20) C has the amalgamation property [Kiss et al. 1982, page 82]. That is,
given objects A, B,C of C, and one-to-one morphisms
f : A � B, g : A � C , there exists an object D, and one-to-one
morphisms f ′ : B � D, g′ : C � D, such that f ′ f = g′g.

(21) For all objects S, T, A, B and one-to-one morphisms S � T , S � A,
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and f : A � B in C, the induced morphism f ∐
ST : A∐

ST → B∐
ST is

one-to-one.

(22) For all objects S, positive integers n, and finite families of objects and
one-to-one morphisms S � Ai and fi : Ai � Bi in C (i=1, . . . , n), the
induced morphism

∐i=1,...,n
S fi :

∐i=1,...,n
S Ai →

∐i=1,...,n
S Bi is

one-to-one.

Moreover, if C also admits direct limits (colimits over directed partially ordered
sets), and if U respects these (for example, if C is a quasivariety of finitary alge-
bras, and U its underlying set functor), then C has coproducts with amalgamation
of possibly infinite families of one-to-one maps S � Ai (for fixed S, and i ranging
over a possibly infinite set I ); and (22) goes over to such coproducts. That is,
(20)–(22) are also equivalent to:

(23) For all objects S, nonempty sets I , and families of objects and
one-to-one morphisms S � Ai and fi : Ai � Bi in C (i ∈ I ), the
induced morphism

∐i∈I
S fi :

∐i∈I
S Ai →

∐i∈I
S Bi is one-to-one.

Proof. (20)⇒(21): Given objects and maps as in (21), the amalgamation property
implies, as mentioned above, that the coprojection A→ A∐

ST is one-to-one. From
this and the assumed one-to-oneness of the map A→ B we similarly get one-to-
oneness of the coprojection A∐

ST → B∐
A(A

∐
ST )= B∐

ST , as desired.
(21)⇒(20): Given objects and maps as in (20), apply (21) with A and its identity

map in the role of S and its map to A, and with C in the role of T , noting that the
domain of the resulting map, A∐

AC , can be identified with C . This gives one-
oneness of the coprojection C→ B∐

AC . By symmetry one also has one-oneness
of the coprojection B→ B∐

AC . Taking D = B∐
AC , we get (20).

(21)⇒(22): The case n = 1 of (22) is trivial. To get the case n = 2 we make
a double application of (21), first getting one-oneness for f1

∐
S A2 : A1

∐
S A2 �

B1
∐

S A2 and then for B1
∐

S f2 : B1
∐

S A2 � B1
∐

S B2. Composing, we get one-
oneness of the desired map.

This shows that two-fold coproducts over S respect one-to-oneness of maps
among objects having one-to-one maps of S into them. Induction now gives the
corresponding result for n-fold coproducts.

(22)⇒(21): Given objects and maps as in (21), apply the n = 2 case of (22)
with A � B in the role of f1 : A1 � B1 and the identity map of C in the role of
f2 : A2 � B2.

Under the additional assumptions about direct limits, one notes that for infinite
I , one can obtain

∐i∈I
S Ai as the direct limit, over the directed system of all finite

subsets I0 ⊆ I , of the objects
∐i∈I0

S Ai . Since by (22), the indicated maps among
these finite coproducts are one-to-one, and by assumption direct limits respect U
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(and hence one-oneness), the corresponding maps among the coproducts over I
are also one-to-one. The converse is immediate: (23) includes (22). �

Let us now note how the amalgamation property implies conditions on inde-
pendent subalgebras stronger than those of Section 4. In considering categories of
algebras, we shall take the functor U of Lemma 17 to be the underlying set functor.
Thus, “one-to-one”, in our formulation (20) of the amalgamation property and our
statements of conditions equivalent thereto, has its usual meaning for algebras.

Corollary 18. Suppose that P is a prevariety having the amalgamation property,
that A is a P-algebra, that (Bi )i∈I is a finite P-independent family of subalgebras
of A, and that for each i ∈ I , (Ci j ) j∈Ji is a finite P-independent family of subalge-
bras of Bi . Then (Ci j )i∈I, j∈Ji is a P-independent family of subalgebras of A. (In
particular, in such a prevariety, examples like those of Propositions 1 and 2 cannot
occur.)

If P is in fact a quasivariety having the amalgamation property, then the above
result holds without the finiteness restrictions on I and the Ji .

Proof. Since all the algebras named are subalgebras of A, the unique homomorphic
image of the initial algebra of P in all of them is the same; let us call this S. Because
S is a homomorphic image of the initial algebra of our category, the operator

∐
S

on nonempty families of algebras containing S is just
∐

P.
We now apply the implication (20)⇒(22) of Lemma 17 (or if P is a quasivariety,

the stronger implication (20)⇒(23)), taking for the S of (22) and (23) the S of the
preceding paragraph, and for the maps Ai � Bi the inclusions

∐ j∈Ji
P Ci j ⊆ Bi .

We conclude that the natural map from

i∈I∐
P

( j∈Ji∐
P

Ci j

)
=

i∈I
j∈Ji∐

P
Ci j

to
∐I

P Bi is one-to-one. Identifying the latter algebra with its embedded image in
A, we get the desired conclusion.

To get the parenthetical remark about examples like those of Propositions 1
and 2, we take I = {0, 1}, J0 = {0}, J1 = {0, 1}, and let A, the Bi and the Ci j all
be free of rank 1. �

Remarks. Lemma 17 was a compromise between proving the minimum we needed
to get the above corollary — that (20) implies the special case of (22) where S is the
image of the initial object of C in A, and so can be ignored in forming coproducts
(and if C has, and U respects, direct limits, the corresponding case of (23)) — and
digressing to state and prove a more complete statement. That statement would
involve the versions of conditions (20) and (22) for κ-fold families for any cardinal
κ , would establish the equivalence between those two conditions for each such κ ,
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would note that the statements for larger κ imply those for smaller κ , and would
verify that the statements for finite κ ≥ 2 are all equivalent, and also equivalent
to (21). The reader should not find it hard to work out the details.

The reason we brought S into (22), though the only case of (22) that our ap-
plication needed was where S was a homomorphic image of the initial object and
so had no effect, was so as to get an if-and-only-if relation between (22) and (20),
the amalgamation property. (The latter is a well-known property, satisfied by the
categories of groups, semilattices, lattices, and commutative integral domains, and
many others. See the first column of the table in [Kiss et al. 1982, pages 98–107] for
more results, positive and negative.) That equivalence fails if S in (22) is restricted
to homomorphic images of the initial object. For instance, the normal form for
coproducts of monoids shows that the variety Monoid satisfies the cases of (21)–
(23) where S is the initial (trivial) monoid. However Monoid does not satisfy the
amalgamation property (20); for example, letting A= 〈x〉, the free monoid on one
generator, and letting B and C be the overmonoids of A gotten by adjoining a left
inverse y, respectively a right inverse z, to x , one finds that in B∐

AC , the elements
xy of B and zx of C fall together with 1; so the maps from B and C to this algebra
are not one-to-one. On the other hand, because the special case of (21)–(23) which
we have seen suffices for Corollary 18 holds, Monoid does satisfy the conclusion
of that corollary.

Here is another result (alluded to in the discussion following Lemma 11) of
a sort similar to the above, which for simplicity of wording we will again state
in terms of the amalgamation property, though again, only the cases of (21)–(23)
where S is a homomorphic image of the initial object of P are needed.

Corollary 19. Suppose P is a prevariety having the amalgamation property, and
A a P-algebra. Then every nonempty subfamily of a P-independent family of sub-
algebras of A is P-independent.

Proof. Given a P-independent family of subalgebras Bi (i ∈ I ) of A, their P-
independence says that the subalgebra of A that they generate is isomorphic to
their coproduct, which we see coincides with their coproduct over the common
image S in all these algebras of the initial algebra of P. For any nonempty subset
J ⊆ I , the coproduct of the Bi for i ∈ J likewise coincides with their coproduct over
S. We now apply (21) with this algebra S for both the S and A of that condition,
with

∐J
S Bi for T , and with

∐I−J
S Bi for B, and then bring in the assumed P-

independence of the whole family. We thus get one-oneness of the natural maps
shown by the first arrow in

(24)
∐J

P Bi ∼=
∐J

S Bi �
∐J

S Bi
∐

S
∐I−J

S Bi ∼=
∐I

S Bi ∼=
∐I

P Bi � A,

and the above arrows and isomorphisms compose to the map we wished to show
one-to-one. �
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7. P-compatible algebras

The prevarieties considered in Section 4 were each generated by a single algebra.
Although any variety of algebras can be generated as a variety by a single algebra
(namely, by a free algebra on sufficiently many generators), prevarieties generated
as prevarieties by a single algebra are rather special. This was shown by Mal’cev
for quasivarieties, in a result that we will generalize in the next section. In this
section we shall see that the size of the collection of algebras needed to generate
P as a prevariety is a nontrivial and interesting invariant of P, even if P happens to
be a variety.

Definition 20. Let P be a prevariety. Then a set X of P-algebras will be called
P-compatible if for every A0 ∈ X, the coprojection map A0→

∐A∈X
P A is one-to-

one; equivalently, if there exists an algebra B in P admitting one-to-one homomor-
phisms A→ B for all A ∈ X.

Theorem 21. Suppose P is a prevariety that is residually small (that is, that can
be generated as a prevariety by a set of algebras) and κ is a cardinal. Then con-
dition (25) below implies condition (26); and if P is a quasivariety (in which case,
we recall, our algebras are assumed finitary), the two conditions are equivalent.

(25) P can be generated, as a prevariety, by a set of ≤ κ algebras.

(26) Every set X of subdirectly irreducible algebras in P can be written as the
union of ≤ κ subsets Xα (α ∈ κ), each of which is P-compatible.

Proof. (25)⇒(26): Suppose P is generated by a set of ≤ κ algebras, Y = {Bα |
α ∈ κ}, and that as in (26), X is a set of subdirectly irreducible algebras in P.
Each A ∈ X is embeddable in a direct product of copies of the Bα, hence, being
subdirectly irreducible, in one of the Bα. Letting Xα be the set of members of X
embeddable in Bα, we get the conclusion of (26) (using the second formulation in
the definition of P-compatibility).

To prove that when P is a quasivariety, (26)⇒(25), note that by our residual
smallness hypothesis, there is a set X of subdirectly irreducible algebras in P which
contains, up to isomorphism, all such algebras. By (26) we may write X=

⋃
α∈κ Xα

where each Xα is P-compatible. Hence for each α, we can choose an algebra
Aα in P in which all members of Xα can be embedded. Since a quasivariety is
generated as a prevariety by its subdirectly irreducible algebras [Gorbunov 1998,
Theorem 3.1.1], the prevariety generated by {Aα | α ∈ κ} is all of P. �

To get easy examples showing that the least κ for which (26) holds can be, inter
alia, any natural number, consider algebras with a single unary operation a, and for
each positive integer d , let Cd be the algebra of this type consisting of d elements,
x, ax, . . . , ad−1x , cyclically permuted by a.
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Now let n be any natural number, and let d1, . . . , dn be positive integers none
of which is the least common multiple of any subset of the others. (In particular,
none of them is 1, since 1 is the least common multiple of the empty set.) Let P
be the prevariety generated by the n algebras Cd1, . . . ,Cdn . Since this is generated
by finitely many finite finitary algebras, it is a quasivariety. From the description
P= SP{Cd1, . . . ,Cdn } we see that all algebras in P satisfy

(27) (∀x) alcm(d1,...,dn)x = x ,

(28) (∀x, y, z) ax = x H⇒ y = z,

(29) For all x , the least positive integer d such that ad x = x is the least
common multiple of some subset of {d1, . . . , dn},

(30) (∀x, y) ad x = x H⇒ ad y = y.

From (27)–(30) and our assumption that none of the di is the least common multiple
of a subset of the rest, one can verify that the subdirectly irreducible objects of P
are precisely the n algebras Cdi ; and by (30) these are pairwise incompatible; so
for this quasivariety, the least κ as in Theorem 21 is n.

For d1, . . . , dn as above, consider next, for contrast, the quasivariety P generated
by a single algebra, the disjoint union Cd1 t · · · tCdn . This will still satisfy (27)–
(29), but not (30). The algebras Cd1, . . . ,Cdn will still be subdirectly irreducible
in P, but they are no longer incompatible. Indeed, since P is generated by a single
algebra, the least cardinal κ as in Theorem 21 is now 1.

For an intermediate case, given d1, d2, d3 as above, let P be generated by the
three disjoint unions Cd1 t Cd2 , Cd1 t Cd3 and Cd2 t Cd3 . Since none of these
generating algebras contains copies of all three Cdi , these algebras, and hence all
algebras in P, satisfy the implication

(31) (∀x1, x2, x3, y, z) (ad1 x1 = x1)∧ (ad2 x2 = x2)∧ (ad3 x3 = x3) H⇒ y = z.

Hence, though any two of Cd1 , Cd2 and Cd3 are P-compatible, the set consisting of
all three is not.

If we take an infinite sequence of integers d1, d2, . . . , none of which divides any
of the others (for instance, the primes), and let P be the prevariety generated by all
finite disjoint unions of the Cdi , this will no longer be a quasivariety. For it will
satisfy the sentence

(32) (∀x1, . . . , xn, . . . ; y; z)
(∧
∞

i=1 adi xi = xi
)
H⇒ y = z,

so the direct limit, as sets with one unary operation, of the above generating family
of finite unions of Ci (mapped into one another by inclusion) does not lie in P;
their direct limit in P is, by (32), the trivial (one-element) algebra. This example
also shows that in our earlier result, Lemma 17, the added direct limit hypothesis
was indeed needed to get from (20)–(22) to (23). For it is easy to see that P
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satisfies (20), while to see that it does not satisfy (23), we may take for S and the
Ai the empty algebra, and for the Bi the above algebras Cdi .

To see that the implication (26)⇒(25) of Theorem 21, which we proved for
quasivarieties, does not hold for general prevarieties, let us construct a prevariety
not having “enough” subdirectly irreducible algebras: Let p be a prime, let G
be the additive group of an infinite-dimensional vector space over the field of p
elements, and let P be the prevariety consisting of all G-sets A such that if an
element of A is fixed by an element of G, then all elements of A are fixed by that
element, and if an element of A is fixed by infinitely many elements of G, then
all elements of A are equal. Then P is residually small: the set of G-sets G/H
for all finite subgroups H ⊂ G generates P. But any finite-dimensional subspace
of G is an intersection of two properly larger finite dimensional subspaces, hence
any nontrivial algebra in P can be decomposed as a subdirect product of algebras
with larger pointwise stabilizers; so P has no subdirectly irreducible algebras, so it
satisfies (26) for κ = 0. On the other hand, no two nonempty algebras in P having
different pointwise stabilizers are compatible, so (25) does not hold for any finite κ .

8. All under one roof: prevarieties where all algebras are P-compatible

For prevarieties that can be generated by one algebra, a stronger result can be
proved than the κ=1 case of (26); moreover, we can weaken the above assumption
“generated by one algebra” to a condition that is necessary as well as sufficient for
our strengthened conclusion.

We need the following definition. (Recall that a preordering � on a set or class
means a reflexive, transitive, but not necessarily antisymmetric binary relation.)

Definition 22. A preordered class (K,�) will be called absolutely directed if every
set of elements of K is majorized by some element of K.

In particular, a preordered set is absolutely directed if and only if it has a greatest
element (an element � all elements).

In the next result, condition (33) can be seen to be a strengthening of the κ = 1
case of (26) (with “nontrivial” replacing “subdirectly irreducible”), while (34) is a
weakening of the condition that P be generated as a prevariety by a single algebra.
The equivalence of (35) and (37) for quasivarieties is due to Mal’cev.

By the trivial algebra we will always mean the one-element algebra. (So trivial
algebras and empty algebras are never the same thing.)

Theorem 23 [Mal’cev 1966; Gorbunov 1998, Proposition 2.1.19]. Let P be a pre-
variety, and let � be the preordering “is embeddable in” among algebras in P.
Then the following conditions are equivalent.

(33) Every set of nontrivial algebras in P is P-compatible.
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(34) P is generated as a prevariety by a class of algebras absolutely directed
under �.

Moreover, if P is a quasivariety (so that, again, our algebras are assumed fini-
tary), then those conditions are also equivalent to each of the following:

(35) Every pair of nontrivial algebras in P is P-compatible.

(36) P is generated as a quasivariety by a class of algebras absolutely
directed under �.

(37) P is generated as a quasivariety by a single algebra.

Proof. (33) says that the class of nontrivial algebras in P is absolutely directed
under �. But P is generated as a prevariety by its nontrivial algebras (the trivial
algebra being the direct product of the empty family thereof), so this implies (34).

To show (34)⇒(33), let X be an absolutely directed class of algebras generating
P, and Y any set of nontrivial algebras in P. Since Y is a set, we can find a set
X0 ⊆X, homomorphisms into members of which separate points of algebras in Y,
and by the absolute directedness of X, some one algebra A ∈X contains embedded
images of all members of X0; hence homomorphisms into A separate points of
algebras in Y. Hence if we form a direct product AI of sufficiently many copies
of A, then for each nonempty B ∈ Y, we can use maps to some coordinates of AI

to separate points of B; and since B is nontrivial and nonempty, the set of maps
so used will be nonempty, and we can repeat some of them to fill in the remaining
coordinates if any; thus we can embed B in AI . The same conclusion is vacuously
true if B is empty, so AI has subalgebras isomorphic to all B ∈ Y, proving that Y
is P-compatible.

Now let P be a quasivariety.
Clearly, (33)⇒(35). The converse holds because we can go from pairwise co-

products to finite coproducts by induction, while coproducts of infinite families
are direct limits of coproducts of finite families, and in a quasivariety, direct limits
respect the underlying set functor. Thus, (33)–(35) are equivalent.

(34)⇒(36) is trivial, since the quasivariety generated by a class of algebras con-
tains the prevariety generated by the same class. We shall now show (36)⇒(37),
then note two alternative ways of getting back from (37): to (34), or to (35).

Given (36), let X be an absolutely directed class of algebras generating P as a
quasivariety. Since the finite sentences (12) form (modulo notation) a set, if we
choose for each such sentence not satisfied by P a member of X for which it fails,
we get a set of algebras X0 ⊆ X which again generates P. By assumption, X0 is
majorized by an algebra A ∈ X, and this will likewise generate P, proving (37).

Now assume (37), and let A be an algebra that generates P as a quasivariety.
On the one hand, one can deduce (34) from the fact that P is generated as a

prevariety by the class of ultrapowers of A ([Gorbunov 1998, Corollary 2.3.4(i)];
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compare last paragraph of Definition 5 above) by verifying that that class is abso-
lutely directed under �. The idea is that given a set of ultrafilters U j ( j ∈ J ), each
on a set I j , these yield a “product” filter on

∏J I j , and any ultrafilter U containing
this will have the property that all the ultrapowers AU j embed in the ultrapower AU.

To get (35), on the other hand, suppose by way of contradiction that B0 and
B1 were a non-P-compatible pair of nontrivial algebras in P. Without loss of gen-
erality, suppose B0, has non-one-to-one coprojection into B0

∐
P B1; let elements

x 6= y of B0 fall together there. Since P is determined by finite sentences (12),
the conjunction of finitely many of these universal sentences with finitely many
equations holding among finitely many elements of B0 and B1 must imply x = y.
But every finite system of relations among elements of each of the Bi is realizable
by relations among some family of elements of A (otherwise A, and hence P,
would satisfy an implication (12) saying that the conjunction of such a system
of relations implies that all elements are equal, contradicting our assumption that
the Bi are nontrivial). On the other hand, since P does not satisfy an implication
forcing x = y to hold in B0, the above equations involving elements of B0 must be
satisfiable by a family of elements of A with distinct elements representing x and y.
But combining this family with the family of elements of A chosen above to satisfy
our finitely many relations holding in B1, we see that the sentences (12) defining
P imply that those two elements are equal, giving the required contradiction. �

In the above theorem we had to exclude the trivial algebra from certain state-
ments. The following addendum to that theorem shows that in many prevarieties,
not only is that restriction unnecessary, but trivial algebras can be used in formu-
lating a very simple criterion, (39), for the equivalent conditions of the theorem to
hold.

Corollary 24. In the context of Theorem 23, suppose that

(38) P has at least one nontrivial algebra with a trivial subalgebra

(that is, a nontrivial algebra with an element idempotent under all the algebra
operations).

Then (33)–(34), and, if P is a quasivariety, (35)–(37) are equivalent to the con-
dition obtained by deleting the word “nontrivial” from (33); and also to

(39) Every algebra in P is P-compatible with the trivial algebra.

Proof. It is easy to deduce from (38) that each of (33) and (35) is equivalent to
the formally strengthened version of itself gotten by deleting the restriction “non-
trivial”: given a set X of algebras (respectively, a pair of algebras) of P including
the trivial algebra, which we want to embed simultaneously in some algebra, we
“sneak the trivial member of our set in” by hiding it in a nontrivial algebra as
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in (38), then apply (33) (respectively, (35)) to the resulting family of nontrivial
algebras. As a special case of this version of either condition, we have (39).

On the other hand, given (39), we can get the strengthened form of (33) by a
version of the construction by which one embeds a family of groups in their direct
product group. Let {Bi | i ∈ I } be any set of algebras in P. By (39), embed each Bi

in an algebra Ai containing an idempotent element ei . Taking A=
∏I Ai , we can

embed each B j in A by using the inclusion map at the j th component, and mapping
to every other component by collapsing everything to a trivial subalgebra. �

Clearly every prevariety of groups, monoids, or lattices satisfies (39), hence
satisfies (33) with the nontriviality condition deleted, (34), and, if it is a quasivari-
ety, (35)–(37).

On the other hand, the variety V of unital associative (or unital associative
commutative) algebras over any field satisfies (33) (and hence (34)–(37)), by the
standard description of coproducts of such algebras, but not (38) or the version
of (33) with “nontrivial” deleted; rather, the trivial algebra (with 1 = 0) is not V-
compatible with any other algebra. Hence in the absence of (38), the exclusion of
the trivial algebra in (33) and (35) is indeed needed to make Theorem 23 hold. Our
constructions in the preceding section with unary algebras also illustrate this: in
the prevariety generated by a single algebra Cd (d > 1), the conditions of Theorem
23 hold, but Cd satisfies (∀x, y, z) ax=x ⇒ y=z, so the trivial algebra is not
P-compatible with any nontrivial algebra.

There are also examples where (38) holds, but where the equivalent conditions of
Theorem 23 and Corollary 24 do not; for example, the variety of groups or monoids
with one distinguished element, or of lattices with two distinguished elements: a
counterexample to (39) is given by any group or monoid with distinguished element
that is not the identity, or any lattice with a pair of distinguished elements that are
not equal.

These same examples also show that the analog of the implication (37)⇒(33)
does not hold for varieties, with “generated as a variety” in place of “generated as
a quasivariety”, since every variety satisfies the analog of (37).

The next corollary is a result promised in the comment following Lemma 11.

Corollary 25. Suppose P is a prevariety generated by a single algebra, or, more
generally, satisfying (34), and let (Bi )i∈I be a family of nontrivial algebras in P.
(Again, if P satisfies (38), the restriction “nontrivial” can be dropped.) Then

(40) for every J ⊆ I , the natural map
∐i∈J

P Bi →
∐i∈I

P Bi is one-to-one.

Hence

(41) any subfamily of a P-independent family of subalgebras of a nontrivial
algebra A is P-independent.
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Proof. To see (40), note that
∐i∈I

P Bi ∼=
(∐i∈J

P Bi
)∐

P
(∐i∈I−J

P Bi
)
, with the natural

map
∐i∈J

P Bi→
∐i∈I

P Bi corresponding to the first coprojection under this decom-
position. By the implication (34)⇒(33) (or its modified version if P satisfies (38)),
the indicated coproducts over J and I−J are P-compatible, hence that coprojection
map is one-to-one, as claimed. (A slight hiccup in this argument: If J or I − J is
empty, can we be sure the coproduct over that subset, namely the initial algebra,
is nontrivial? No, but if it is trivial, and if P is not the trivial prevariety, then since
the initial algebra can be mapped into every algebra, (38) holds, and so we are in
the case where we don’t need nontriviality.)

To get (41), recall that the statement that (Bi )i∈I is an independent family of
subalgebras of A means that the subalgebra of A generated by these subalgebras
can be identified with their coproduct. If none of the Bi is trivial, then this ob-
servation together with (40) immediately gives the desired conclusion. If at least
one of the Bi is trivial, then since by assumption A is not, (38) holds, and by the
parenthetical addendum to the first part of this corollary, we again have (40) and
can proceed as before. �

On a different topic, let us note the extent to which Theorem 21 does and does
not go over from prevarieties to quasivarieties.

Corollary 26. If P is a quasivariety, then (even without the residual smallness
assumption of Theorem 21), condition (26) implies

(42) P can be generated as a quasivariety by ≤ κ algebras.

The reverse implication holds if κ is finite, but not for any infinite κ .

Proof of (26)⇒(42). A quasivariety P is generated as a prevariety, and hence
as a quasivariety, by its subdirectly irreducible algebras [Gorbunov 1998, Theo-
rem 3.1.1], hence, as in the proof of Theorem 23, we can find a set X of these that
generates it as a quasivariety. By (26) we can write X as

⋃
α∈κ Xα where each

Xα is P-compatible. If for each α ∈ κ we let Aα be an algebra in P containing
embedded images of all members of Xα, then P is generated as a quasivariety by
this set of κ algebras.

For the converse assertion when κ is a natural number n, let P be generated as
a quasivariety by A1, . . . , An . Then P=SPPult{A1, . . . , An}, where Pult denotes
closure under ultraproducts; thus, each P-subdirectly irreducible object of P is
embeddable in a member of Pult{A1, . . . , An}. Moreover, the operator Pult respects
finite decompositions; that is, any ultraproduct of a family of structures indexed by
a finite union of sets, (Ai )i∈I1∪···∪In , can be written as an ultraproduct of one of the
subfamilies (Ai )i∈Im . Hence Pult{A1, . . . , An} = Pult{A1} ∪ · · · ∪ Pult{An}. The
class of subdirectly irreducible algebras in P that are embeddable in members of a
given Pult{Ai } is contained in the one-generator quasivariety SPPult{Ai }, hence
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by the implication (37)⇒(33), each of these n classes has the property that all its
subsets are P-compatible. This gives (26).

On the other hand, given any infinite κ , let V be the variety of sets given with
a κ-tuple of 0-ary operations (constants) cα (α ∈ κ). Since as a quasivariety, V
is generated by its finitely presented objects [Gorbunov 1998, Proposition 2.1.18],
and there are only κ of these, it satisfies (42). On the other hand, since all operations
are 0-ary, every equivalence relation on a V-algebra is a congruence, so the subdi-
rectly irreducible algebras are precisely the two-element algebras. We have one of
these for each 2-class equivalence relation on κ , and one more corresponding to the
partition of that set into κ and ∅. This gives 2κ subdirectly irreducible algebras,
no two of which are V-compatible. �

9. Afterthoughts on P-compatible algebras

Perhaps the concept of “P-compatible algebras” is not the best handle on the phe-
nomena we have been examining; or at least should be complemented by another
way of looking at them. Suppose that for algebras A and B in P, we say that
A is “comfortable” with B in P if the coprojection A → A∐

P B is one-to-one;
equivalently, if A is P-compatible with some homomorphic image of B in P. This
relation is not in general symmetric; for example, in the variety of associative unital
rings, each ring Z/nZ is comfortable with Z, but not vice versa. Algebras A and B
are P-compatible if and only if each is comfortable with the other. (So the relations
of P-compatibility and of being comfortable in P may be characterized in terms
of one another.) More generally, an arbitrary family of algebras is P-compatible if
and only if each is comfortable with the coproduct of the others.

If P is generated as a prevariety by a class of algebras X, we see that an algebra
A is comfortable in P with an algebra B if and only if homomorphisms into mem-
bers of X that contain homomorphic images of B separate points of A. Hence, if
we classify algebras B ∈ P according to which algebras A are comfortable with
them, then algebras B1 and B2 will belong to the same equivalence class under
this relation if the subclass of X consisting of algebras containing homomorphic
images of B1 coincides with the subclass of those containing images of B2. (We
do not assert the converse.) In particular, if P is residually small, so that X can
be taken to be a set, the number of these equivalence classes has the cardinality
of a set. More generally, if P is generated by the union of κ classes of algebras,
each absolutely directed under the relation � of Theorem 23, the same reason-
ing shows that it will have at most 2κ equivalence classes under this equivalence
relation. On the other hand, if we classify algebras according to which other
algebras they are comfortable with, we may, so far as I can see, get up to 22κ

classes.
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For any algebra A in P, the class of algebras which are comfortable with A forms
a subprevariety of P. The class of algebras that A is comfortable with likewise
yields a subprevariety on throwing in the trivial algebra. (A stronger statement,
also easy to see, is that this class is closed under taking subalgebras and under
taking products with arbitrary algebras in P; equivalently, that if this class contains
an algebra B, then it contains every algebra in P admitting a homomorphism to B).

10. On infinite symmetric groups: an answer and a question

This last section does not depend on any of the preceding material.
It was shown in [de Bruijn 1957] (see also [Bergman 2007]) that for� an infinite

set, the group S = Sym(�) of all permutations of � contains a coproduct of two
copies of itself (from which it was deduced by other properties of that group that it
contains a coproduct of 2card(�) copies of itself). In [Bergman 2007, Question 4.4],
I asked, inter alia, whether, for every subgroup B of S, if we regard S as a member
of the variety of groups given with homomorphisms of B into them, S contains a
coproduct of two copies of itself in that variety.

The answer is negative. To see this, pick any x ∈� and let B be the stabilizer in
S of x . Writing elements of S to the left of their arguments and composing them
accordingly, we see that the partition of S into left cosets of B classifies elements
according to where they send x , and that for each y∈�, the coset sending x to y has
elements of finite order; for example, if y 6= x , the 2-cycle interchanging x and y.

On the other hand, I claim that if S1 and S2 are any two groups with a common
subgroup B proper in each, then in the coproduct with amalgamation S1

∐
B S2 there

are left cosets of B containing no elements of finite order. Indeed, the standard
normal form in that coproduct shows that each left coset is generated by a possibly
empty alternating string of left coset representatives of B in S1 and S2. When
that string is nonempty and has even length, one sees that elements of finite order
cannot occur. Hence for S = Sym(�) and B as above, S, as a group containing B,
cannot contain a copy of S1

∐
B S2.

So let us modify our earlier question.

Question 27. For � an infinite set, what nice conditions, if any, on a subgroup
B ⊆ S = Sym(�) will imply that S has a subgroup containing B and isomorphic
over B to S∐

B S?
For instance, will this hold if B is equal to, or contained in, the stabilizer of a

subset of � having the same cardinality as �? If B is finite?

In that same question in [Bergman 2007], I asked whether for any submonoid B
of the monoid Self(�) of self-maps of �, the monoid Self(�) must contain, over
B, a coproduct of two copies of itself with amalgamation of B. It seems likely
that the subgroup B ⊂ Sym(�)⊂ Self(�) used above also gives a counterexample
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to this part of the question. This will be so if we can show that the subgroup of
invertible elements of the monoid coproduct of two copies of Self(�) with amal-
gamation of B is isomorphic to the group coproduct of two copies of Sym(�) with
amalgamation of B, since we have seen that this is not embeddable over B in the
group Sym(�) of invertible elements of Self(�). But the analysis of coproducts
of monoids with amalgamation, even when the submonoid being amalgamated is
a group, seems difficult.

The final part of that question posed the same problem for the endomorphism
algebra of an infinite-dimensional vector space over a field. To this I also do not
know the answer; and in view of the results of [Wehrung 2007], it is natural to ask
the same question for lattice of equivalence relations on an infinite set.

11. Glossary for the nonexpert in universal algebra

I indicate below the meanings of some basic concepts of universal algebra, though
more briefly and informally than would be done in a textbook presentation. (Defi-
nitions of some other concepts are recalled in the sections where they are used. I
do not define concepts of category theory, such as coproduct; or of set theory, such
as ultraproduct, and the distinction between sets and proper classes. For these, see
standard references such as [Mac Lane 1971; Chang and Keisler 1990].)

An n-ary operation on a set X means a function Xn
→ X ; here n is called the

arity of the operation. An algebra is a set given with a family of operations of
specified arities. The list of operation-symbols and their arities is the type of the
algebra (used here only in the phrase “algebras of the same type”). Constants in
the definition of an algebra structure (for example, the 0 and 1 of a ring structure)
are in this note regarded as 0-ary operations; indeed, X0 is a one-element set, so
a map X0

→ X specifies an element of X . Given a subset S of an algebra X , the
subalgebra of X generated by S is here denoted 〈S〉.

The given operations of an algebra are called primitive operations. Expressions
in a family of variable-symbols and iterated applications of the primitive operations
determine derived operations. Such expressions are themselves called terms. For
instance, (xy)z and x(yz) are distinct ternary terms in the operations of a group.
(They must be considered distinct so that they can be used to write the group
identity of associativity.) The variable-symbols are also considered terms; they are
the starting-point for the recursive construction of all terms. This technical sense of
term will not stop us from using the word in other ways, for example, in referring
to the mth term of a sequence.

An algebra all of whose primitive operations have finite arity is called finitary.
(This does not preclude there being infinitely many primitive operations; for ex-
ample, we have this for modules over an infinite ring.)
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As indicated in Section 1, a variety of algebras is the class of all algebras of a
given type satisfying a given set of identities. In any variety V, one can construct
a free algebra on any set, satisfying the usual universal property.

The above concepts are assumed from Section 2 on. Starting with Section 3, we
also refer to the variety of algebras generated by a family X of algebras of a given
type, that is, the least variety containing X. This is clearly the class of all algebras
that satisfy all identities satisfied by all members of X. Birkhoff’s Theorem states
that it is also the class of all homomorphic images of subalgebras of (generally
infinite) direct products of members of X, abbreviated HSP(X). (Definitions of
prevariety and quasivariety, and results for these analogous to Birkhoff’s Theorem,
are recalled in Section 3.)

To motivate a concept used from Section 7 on, note that if an algebra A is
embedded in a direct product

∏
I Ai , by a homomorphism with components fi :

A→ Ai , then A∼= f (A)⊆
∏

I fi (A). Modeled on the properties of this subalgebra,
one defines a subdirect product of a family of algebras (Bi )i∈I to be a subalgebra of∏

I Bi which projects surjectively to each Bi . An algebra that, up to isomorphism,
cannot be so expressed without one of the projection maps being an isomorphism
is called subdirectly irreducible.
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Exponential sums nondegenerate
relative to a lattice

Alan Adolphson and Steven Sperber

Our previous theorems on exponential sums often did not apply or did not give
sharp results when certain powers of a variable appearing in the polynomial were
divisible by p. We remedy that defect in this paper by systematically applying p-
power reduction, making it possible to strengthen and extend our earlier results.

1. Introduction

In the papers [AS 1987a; 1987b; 1989; 1990a; 1990b] we established properties
of the L-functions of exponential sums on affine space An and the torus Tn . The
purpose of this article is to prove a general result that leads to a sharpening of the
theorems of those papers.

Let p be a prime, let q = pr , and let Fq be the field of q elements. Let f ∈
Fq [x±1

1 , . . . , x±1
n ] be a Laurent polynomial, say,

f =
∑
j∈J

a j x j , (1.1)

where a j ∈ F×q and J is a finite subset of Zn . Let Z〈J 〉 be the subgroup of Zn

generated by the elements of J . By the basic theory of abelian groups, there exists
a basis u1, . . . , un for Zn and integers d1, . . . , dk such that d1u1, . . . , dk uk is a
basis for Z〈J 〉. After a coordinate change on Tn , we may assume that u1, . . . , un

is the standard basis. The Laurent polynomial f may then be written in the form

f = g(xd1
1 , . . . , xdk

k ),

for some g ∈ Fq [x±1
1 , . . . , x±1

k ]. Write di = pbi ei for each i , where bi ≥ 0 and
(ei , p) = 1. Since raising to the p-th power is an automorphism of Fq , the ex-
ponential sums associated to the polynomials f and g(xe1

1 , . . . , xek
k ) are identical.

Furthermore, the theorems in the aforementioned papers generally produce sharper
results when applied to g(xe1

1 , . . . , xek
k ) than when applied to f . (Thus there is no

MSC2000: primary 11L07; secondary 11T23, 14F30.
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improvement over our earlier work if p - [Zk
: Z〈J 〉].) We refer to g(xe1

1 , . . . , xek
k )

as the p-power reduction of f .
Over An , the technique of p-power reduction is less versatile because one cannot

make the same sorts of coordinate changes. One has a standard toric decomposition
An
=
⋃

A⊆{1,...,n} TA, where TA denotes the |A|-dimensional torus with coordinates
{xi }i∈A. Given f ∈ Fq [x1, . . . , xn], one can try to analyze the corresponding expo-
nential sum on An by analyzing its restriction to each of these tori, but the picture
is complicated by the fact that p-power reduction may require different coordinate
changes on different tori. It thus seems worthwhile to generalize our previous
results to apply directly to the polynomial as given, to avoid the task of performing
p-power reduction on a case-by-case basis.

Let MJ be the prime-to-p saturation of Z〈J 〉,

MJ = {u ∈ Zn
| ku ∈ Z〈J 〉 for some k ∈ Z satisfying (k, p)= 1},

and let R〈J 〉 denote the subspace of Rn spanned by the elements of J . We will get
a strengthening of our earlier results when MJ is a proper subset of Zn

∩R〈J 〉. Let

[Zn
∩R〈J 〉 : Z〈J 〉] = pae,

where a ≥ 0 and (e, p)= 1. Then

[Zn
∩R〈J 〉 : MJ ] = pa, (1.2)

so MJ 6= Zn
∩R〈J 〉 if and only if a > 0.

Part of the motivation for this work was a desire to understand Theorems 3.6.5
and 3.6.7 from [Katz 2005] from our point of view. Suppose that f ∈Fq [x1, . . . , xn]

is a homogeneous polynomial of degree d = pke, (e, p)= 1, k ≥ 1. Katz showed
that if f = 0 defines a smooth hypersurface in Pn−1, then the L-function asso-
ciated to the exponential sum defined by f (see Section 2 for the definition) is a
polynomial (n odd) or the reciprocal of a polynomial (n even) of degree

1
pk ((d − 1)n + (−1)n(pk

− 1)),

all of whose reciprocal roots have absolute value qn/2. Note that in this situation
[Zn
: MJ ] = pk . Our results in [AS 1989] do not apply to polynomials of degree

divisible by p. However, we show here that when MJ is a proper subset of Zn one
can weaken the definition of nondegeneracy used in that article and still deduce
analogous conclusions. In particular, we show that the above theorem of Katz is
true as well for nonhomogeneous polynomials, provided that the homogeneous
part of highest degree defines a smooth hypersurface in Pn−1 and [Zn

: MJ ] = pk .
In other words, the conclusion remains true when one perturbs the smooth homo-
geneous polynomial by adding arbitrary terms of degrees pke′, e′ < e. (In earlier
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work, analogous results for exponential sums involving polynomials of degree di-
visible by p were proved under the additional assumption that the homogeneous
form of second highest degree “behaved nicely” relative to the leading form: see
[AS 2000; 2009; Rojas-León 2006].)

This generalization of Katz’s theorem (Proposition 5.1 below) will be derived
as a consequence of Theorem 4.17. Another consequence of that theorem is the
following result. Consider the Dwork family of hypersurfaces

xn
1 + · · ·+ xn

n + λx1 . . . xn = 0

in Pn−1. If n = pke, where k ≥ 1 and (p, e) = 1, and λ 6= 0, this hypersurface is
singular (except for n=2, 3). We show (Corollary 5.9 below) that the zeta function
of this hypersurface has the form

Z(t)=
R(t)(−1)n−1

(1− t)(1− qt) . . . (1− qn−2t)
,

where R(t) is a polynomial of degree

(pk
− 1)en−1

+ e−1((e− 1)n + (−1)n(e− 1)),

all of whose reciprocal roots have absolute value q(n−2)/2. (Zeta functions of the
Dwork family have also been studied recently in [Rojas-León and Wan 2007] and
[Katz 2007].)

As another example, we strengthen the classical theorem of Chevalley–Warning.
Let f =

∑
j∈J a j x j

∈ Fq [x1, . . . , xn] and let N ( f ) denote the number of solutions
of f = 0 with coordinates in Fq . Let N denote the nonnegative integers, let N+

denote the positive integers, and let J ′ = {( j, 1)∈Nn+1
| j ∈ J }. Let 1(J ′) denote

the convex hull of J ′ ∪ {(0, . . . , 0)} in Rn+1.

Theorem 1.3. Let µ be the smallest positive integer such that µ1(J ′), the dilation
of 1(J ′) by the factor µ, contains a point of MJ ′ ∩ (N+)

n+1. Then ordq N ( f ) ≥
µ− 1, where ordq denotes the p-adic valuation normalized by ordq q = 1.

For example, the equation
∑n

i=1 x pki

i = 0 has qn−1 solutions: since raising
to the p-th power is an automorphism of Fq , one can assign arbitrary values to
x1, . . . , xn−1 and there will be a unique value of xn satisfying the equation. Since
MJ ′ = Z〈J ′〉 is the lattice generated by the {(0, . . . , 0, pki , 0, . . . , 0, 1)}ni=1, µ= n
and Theorem 1.3 gives the precise divisibility by q .

For a more subtle example, let p = 3, n = 3, and consider the polynomial

f = x1x2
2 + x2x2

3 + x2
1 x3.

The lattice MJ ′ = Z〈J ′〉 is the rank-three sublattice of Z4 with basis the vectors

u1 = (1, 2, 0, 1), u2 = (0, 1, 2, 1), u3 = (2, 0, 1, 1).
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The only point of 1(J ′)∩ (N+)4 is (1, 1, 1, 1) and one has

(1, 1, 1, 1)= 1
3(u1+ u2+ u3), (1.4)

thus (1, 1, 1, 1) 6∈ MJ ′ . It follows that µ > 1, so Theorem 1.3 implies that N ( f )
is divisible by 3r . (In fact, u1+ u2 ∈ MJ ′ ∩ (N+)

4, so µ= 2.) On the other hand,
since the degree of f equals the number of variables, the classical Chevalley–
Warning Theorem does not predict the divisibility of N ( f ) by 3. If we take the
same polynomial f but assume p 6= 3, then (1.4) shows that

(1, 1, 1, 1) ∈ MJ ′,

so µ= 1 and Theorem 1.3 does not predict any divisibility by p.
Theorem 1.3 is a special case of Theorem 3.3, which we prove by the method of

[Ax 1964], as applied in [AS 1990a]. Ax expresses an exponential sum as a sum of
certain products of Gauss sums; Stickelberger’s Theorem computes the valuation
of each Gauss sum, so one must determine which of these products of Gauss sums
has minimal valuation. This minimum is in general difficult to calculate directly,
so one replaces the set of valuations by a larger set whose minimum is easier to
calculate. We used a convexity argument in [AS 1990a, Lemma 1], which is the
approach we take here. Another method for estimating this minimum is via the “p-
weight” of the polynomial: see [Moreno et al. 2004, Section 4] for a description of
this approach and references to related work. The results obtained from these two
approaches do not seem comparable, that is, neither implies the other as far as we
know.

The first main idea of this paper is that when computing the action of Dwork’s
Frobenius operator, which gives the L-function of the exponential sum on the
torus, one can ignore the action of Frobenius on power series whose exponents
lie outside of MJ since such power series contribute nothing to the spectral theory
of Frobenius. This idea is explained in Section 2. The second main idea is the
notion of nondegeneracy relative to a lattice, which is introduced in Section 4. It
guarantees that the p-power reduction of f will be nicely behaved. This leads to
precise formulas for the degree of the L-function and the number of roots of a
given archimedian weight.

2. Trace formula

Let 9 : Fq →Q(ζp) be a nontrivial additive character and define

Sm(T
n, f )=

∑
x∈Tn(Fqm )

9(TrFqm /Fq ( f (x))),
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where TrFqm /Fq denotes the trace map. In the special case where f ∈Fq [x1, . . . , xn],
we can also define

Sm(A
n, f )=

∑
x∈An(Fqm )

9(TrFqm /Fq ( f (x))).

There are corresponding L-functions

L(Tn, f ; t)= exp
( ∞∑

m=1

Sm(T
n, f )

tm

m

)
and

L(An, f ; t)= exp
( ∞∑

m=1

Sm(A
n, f )

tm

m

)
.

Let Qp denote the field of p-adic numbers and Zp the ring of p-adic integers.
Set �1 =Qp(ζp). Then �1 is a totally ramified extension of Qp of degree p− 1.
Let K denote the unramified extension of Qp of degree r and set �0 = K (ζp).
The Frobenius automorphism x 7→ x p of Gal(Fq/Fp) lifts to a generator τ of
Gal(�0/�1) by setting τ(ζp)= ζp. Let� be the completion of an algebraic closure
of �0. Let “ord” denote the additive valuation on � normalized by ord p = 1 and
let “ordq” denote the additive valuation normalized by ordq q = 1.

Let E(t)= exp(
∑
∞

i=0 t pi
/pi ) be the Artin–Hasse exponential series. Let γ ∈�1

be a solution of
∑
∞

i=0 t pi
/pi
= 0 satisfying ord γ = 1/(p− 1) and set

θ(t)= E(γ t)=
∞∑

i=0

λi t i
∈�1[[t]].

The series θ(t) is a splitting function in Dwork’s terminology and its coefficients
satisfy

ord λi ≥
i

p− 1
. (2.1)

Define the Newton polyhedron of f , written 1( f ), to be the convex hull in Rn

of the set J ∪{(0, . . . , 0)}. Let C( f ) be the cone in Rn over 1( f ), that is, C( f ) is
the union of all rays in Rn emanating from the origin and passing through 1( f ).
For any lattice point u ∈ C( f )∩ Zn , let w(u), the weight of u, be defined as the
smallest positive real number (necessarily rational) such that u ∈w(u)1( f ), where
w(u)1( f ) denotes the dilation of 1( f ) by the factor w(u). Then

w : C( f )∩Zn
→

1
N

Z
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for some positive integer N . We fix a choice γ̃ of N -th root of γ and set �̃0 =

�0(γ̃ ), �̃1 = �1(γ̃ ). We extend τ ∈ Gal(�0/�1) to a generator of Gal(�̃0/�̃1)

by setting τ(γ̃ )= γ̃ . Let Õ0 be the ring of integers of �̃0.
Let M be a lattice such that MJ ⊆ M ⊆ Zn

∩R〈J 〉, let L = HomZ(M,Z), and
let ` ∈ L . We extend ` to a function on Zn

∩R〈J 〉 as follows. For u ∈ Zn
∩R〈J 〉

we have pau ∈ M by (1.2), so we may define

`(u)= p−a`(pau).

This definition identifies L with a subgroup of HomZ(Z
n
∩R〈J 〉, p−aZ). Define

M0( f )= {u ∈ Zn
∩C( f ) | ord `(u)≥ 0 for all ` ∈ L}.

Note that M0( f )= M ∩C( f ). For i > 0 let

Mi ( f )= {u ∈ Zn
∩C( f ) | inf

`∈L
{ord `(u)} = −i}.

Note that since L has finite rank, the infimum over L always exists. Furthermore,
we have Mi ( f )=∅ for i > a and

Zn
∩C( f )=

a⋃
i=0

Mi ( f ).

We consider the following spaces of power series (where b ∈ R, b ≥ 0, c ∈ R,
and 0≤ i ≤ a):

L i (b, c)=
{ ∑

u∈Mi ( f )

Au xu
| Au ∈�0, ord Au ≥ bw(u)+ c

}
,

L i (b)=
⋃
c∈R

L i (b, c),

Bi =

{ ∑
u∈Mi ( f )

Au γ̃
Nw(u)xu

| Au ∈ Õ0, Au→ 0 as u→∞
}
,

B ′i =
{ ∑

u∈Mi ( f )

Au γ̃
Nw(u)xu

| Au ∈ �̃0, Au→ 0 as u→∞
}
.

We also define L(b, c), L(b), B, B ′ as the unions of these spaces for i = 0, . . . , a.
Note that if b> 1/(p−1), then L i (b)⊆ B ′i and for c≥ 0, L i (b, c)⊆ Bi . Similarly
L(b) ⊆ B ′ and for c ≥ 0, L(b, c) ⊆ B. Define a norm on Bi , i = 0, . . . , a, as
follows. If

ξ =
∑

u∈Mi ( f )

Au γ̃
Nw(u)xu,
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then set
‖ξ‖ = sup

u∈Mi ( f )
|Au|.

One defines a norm on B in an analogous fashion.
Let f̂ =

∑
j∈J â j x j be the Teichmüller lifting of f , that is, âq

j = â j and the
reduction of f̂ modulo p is f . Set

F(x)=
∏
j∈J

θ(â j x j ), F0(x)=
r−1∏
i=0

Fτ
i
(x pi

).

The estimate (2.1) implies that F(x) and F0(x) are well-defined and satisfy

F(x) ∈ L0

( 1
p− 1

, 0
)
, F0(x) ∈ L0

( p
q(p− 1)

, 0
)
.

We define the operator ψ on series by

ψ
( ∑

u∈Zn

Au xu
)
=

∑
u∈Zn

Apu xu .

Clearly, ψ(L(b, c))⊆ L(pb, c).

Lemma 2.2. For 1≤ i < a we have

ψ(L i (b, c))⊆ L i+1(b, c),

and for i = a we have
ψ(La(b, c))= 0.

Furthermore, the same assertions hold with L i (b, c) replaced by B ′i .

Proof. Let `∈ L and pu ∈Mi ( f ). Since ord `(pu)≥−i , it follows that ord `(u)≥
−i − 1. By definition of Mi ( f ) the first inequality is an equality for some ` ∈ L .
The second inequality is then an equality also for that `, hence u ∈ Mi+1( f ). �

The operator α = ψr
◦ F0 is

• an �̃0-linear endomorphism of the space B ′, and

• an �0-linear endomorphism of L(b) for 0< b ≤ p/(p− 1).

The operator α0 = τ
−1
◦ψ ◦ F0 is

• an �̃1-linear endomorphism of B ′,

• an �1-linear endomorphism of L(b) for 0< b ≤ p/(p− 1),

• an �̃0-semilinear endomorphism of B ′, and

• an �0-semilinear endomorphism of L(b) for 0< b ≤ p/(p− 1).
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It follows from [Serre 1962] that the operators αm and αm
0 acting on B ′ and L(b) for

0< b≤ p/(p−1) have well defined traces. In addition, the Fredholm determinants
det(I − tα) and det(I − tα0) are well defined and p-adically entire. The Dwork
trace formula asserts

Sm(T
n, f )= (qm

− 1)nTr(αm), (2.3)

where α acts either on B ′ or on some L(b), 0< b ≤ p/(p− 1), and the nontrivial
additive character implicit on the left-hand side is given by

9(x)= θ(1)TrFq /Fp (x).

Let δ be the operator on formal power series with constant term 1 defined by g(t)δ=
g(t)/g(qt). Using the relationship det(I − tα) = exp(−

∑
∞

m=1 Tr(αm)tm/m),
Equation (2.3) is equivalent to

L(Tn, f ; t)(−1)n−1
= det(I − tα)δ

n
. (2.4)

Let 0 be the map on power series defined by

0
( ∑

u∈Zn

Au xu
)
=

∑
u∈M0( f )

Au xu .

Define α̃ = 0◦ α, an endomorphism of B ′0 and L0(b) for 0< b ≤ p/(p− 1). The
main technical result of this paper is the following.

Theorem 2.5. If MJ ⊆M , then as operator on B ′0 and L0(b) for 0< b≤ p/(p−1)
the map α̃ satisfies

Sm(T
n, f )= (qm

− 1)nTr(α̃m).

Equivalently,

L(Tn, f ; t)(−1)n−1
= det(I − t α̃)δ

n
.

Proof. To fix ideas, we work with the space B ′. Note that if u ∈ M0( f ) and
v ∈Mi ( f ), 1≤ i ≤ a, then u+v ∈Mi ( f ). This shows that multiplication by F and
F0 are stable on B ′i for i = 1, . . . , a. Lemma 2.2 then implies that α(B ′i )⊆ B ′i+1 for
i = 1, . . . , a− 1 and α(B ′a)= 0. It follows that any power of α acting on

⋃a
i=1 B ′i

has trace 0, so on
⋃a

i=1 B ′i we have det(I−tα)= 1. From [Serre 1962, Proposition
9] we then get

det(I − tα | B ′)= det
(
I − tα | B ′/

⋃a
i=1 B ′i

)
.

Under the Banach space isomorphism B ′0 ∼= B ′/
⋃a

i=1 B ′i , the operator α̃ is identi-
fied with the operator induced by α on B ′/

⋃a
i=1 B ′i . This proves the theorem. �
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3. First applications

To improve the results of [AS 1987a], one can replace the space L(p/(p−1)) and
its associated counting function W (k) used there by the space L0(p/(p− 1)) for
the lattice MJ and its associated counting function

W0(k)= card{u ∈ MJ ∩C( f ) | w(u)= k/N }. (3.1)

But since the main results of [AS 1987a] are concerned with the n-torus Tn , it is
simpler to just replace f by its p-power reduction as described in the introduction.
For example, the first inequality of Theorem 1.8 of that paper becomes the one in
Theorem 3.2 below.

Theorem 3.2. We have 0 ≤ deg L(Tn, f ; t)(−1)n−1
≤ n! V ( f )/[Zn

: MJ ], where
V ( f ) denotes the volume of 1( f ) relative to Lebesgue measure on Rn .

The second inequality of [AS 1987a, Theorem 1.8] can be similarly improved.
Suppose that f ∈Fq [x1, . . . , xn] and letω( f ) be the smallest positive real (hence

rational) number such that ω( f )1( f ), the dilation of 1( f ) by the factor ω( f ),
contains a point of MJ ∩ (N+)

n . We prove the following strengthening of [AS
1987b, Theorem 1.2].

Theorem 3.3. If f is not a polynomial in some proper subset of {x1, . . . , xn}, then

ordq S1(A
n, f )≥ ω( f ).

As an example of Theorem 3.3, consider the polynomial

f (x1, x2)= x1x4
2 + x7

1 x3
2 + x13

1 x2
2 .

If p 6= 5, then MJ = Z2; so ω( f )= 7/25, which gives the estimate of [AS 1987b,
Theorem 1.2]. Theorem 3.3 gives an improvement when p = 5. In this case,

MJ = {(u1, u2) ∈ Z2
| u1+ 6u2 is divisible by 25}

so ω( f )= 1.

Proof of Theorem 3.3. Let 80 be the set of all functions φ : J →{0, 1, . . . , q − 1}
such that

1
q − 1

∑
j∈J

φ( j) j ∈ (N+)n.

For φ ∈80 define φ′ ∈80 by

φ′( j)=

{
0 if φ( j)= 0,

least positive residue of pφ( j) modulo q − 1 if φ( j) 6= 0.
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We denote the i-fold iteration of this operation by φ(i). Note that since q = pr ,
one has φ(r) = φ. By [AS 1990a, Equation 13] we have

ordq S1(A
n, f )≥ min

φ∈80

{
1
r

r−1∑
i=0

∑
j∈J

φ(i)( j)
q − 1

}
. (3.4)

Clearly
∑

j∈J φ
(i)( j) j ∈ Z〈J 〉 for all i , so

1
q − 1

∑
j∈J

φ(i)( j) j ∈ MJ ∩ (N+)
n.

If we define 81 to be the set of all functions φ : J → R≥0 such that

1
q − 1

∑
j∈J

φ( j) j ∈ MJ ∩ (N+)
n,

then 1
q−180 ⊆81, so Equation (3.4) implies

ordq S1(A
n, f )≥ min

φ∈81

{∑
j∈J

φ( j)
}
.

The assertion of Theorem 3.3 then follows from [AS 1990a, Lemma 1] by taking
the set L of that lemma equal to MJ ∩ (N+)

n . (Theorem 3.3 can also be proved by
repeating mutatis mutandis the argument of [AS 1987b, Section 4] with L(p/(p−
1)) replaced by L0(p/(p− 1)).) �

We derive a generalization of Theorem 1.3 from Theorem 3.3. Let f1, . . . , fr ∈

Fq [x1, . . . , xn] and let N ( f1, . . . , fr ) denote the number of solutions in Fq to the
system f1 = · · · = fr = 0. Let y1, . . . , yr be additional variables and set

F =
r∑

i=1

yi fi ∈ Fq [x1, . . . , xn, y1, . . . , yr ].

It is easily seen that

S1(A
n+r , F)= qr N ( f1, . . . , fr ).

Applying Theorem 3.3 to F gives the following result, of which Theorem 1.3 is
the special case r = 1.

Corollary 3.5. ordq N ( f1, . . . , fr )≥ ω(F)− r .
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4. Nondegeneracy relative to a lattice

The results of [AS 1989; 1990b] are cohomological in nature and require a more
detailed development. Suppose that Z〈J 〉 has rank k. Let M be a lattice, Z〈J 〉 ⊆
M ⊆ Zn

∩ R〈J 〉, and set L = HomZ(M,Z). For ` ∈ L we define a “differential
operator” E` on the ring Fq [xu

| u ∈ M] by linearity and the formula

E`(xu)= `(u)xu .

This definition is motivated by the fact that if we write

`(u1, . . . , un)=

n∑
j=1

a j u j ,

where u = (u1, . . . , un) ∈ M ⊆ Zn and the a j are rational numbers, and put E` =∑n
j=1 a j x j∂/∂x j , then in characteristic 0,

E`(xu)=

n∑
j=1

a j x j
∂

∂x j
(xu)= `(u)xu .

Let f be given by (1.1) and let σ be a subset of 1( f ). Define

fσ =
∑

j∈J∩σ

a j x j .

We say that f is nondegenerate relative to (1( f ),M) if for every face σ of 1( f )
that does not contain the origin, the Laurent polynomials {E`( fσ )}`∈L have no
common zero in (F̄×q )

n , where F̄q denotes an algebraic closure of Fq . Note that the
condition Z〈J 〉 ⊆ M guarantees that all fσ lie in Fq [xu

| u ∈ M], so the E`( fσ )
are defined. Note also that to check this condition, it suffices to check it on a
set of the form {E`i }

k
i=1, where {`i }

k
i=1 is any basis of L . (We remark that this

idea, to replace the differential operators xi∂/∂xi by certain linear combinations
with coefficients that are not p-integral, appears in nascent form in [Dwork 1962],
where it was needed to calculate the p-adic cohomology of smooth hypersurfaces
of degree divisible by p.)

The condition used in [AS 1989], that f be nondegenerate relative to 1( f ), is
equivalent to the condition that f be nondegenerate relative to (1( f ),Zn

∩R〈J 〉) in
the sense of the present definition. We make the relationship between this definition
and our earlier one more explicit. There is a basis e1, . . . , en for Zn and positive
integers d1, . . . , dk , k ≤ n, such that d1e1, . . . , dk ek is a basis for M . After a
coordinate change on Tn , we may take e1, . . . , en to be the standard basis for Zn .



892 Alan Adolphson and Steven Sperber

This implies that there exists a Laurent polynomial

g =
∑
c∈C

bcxc
∈ Fq [x±1

1 , . . . , x±1
k ],

where C is a finite subset of Zk , such that

f (x1, . . . , xn)= g(xd1
1 , . . . , xdk

k ). (4.1)

Note that (4.1) implies

[Z〈C〉 : Z〈J 〉] = d1 · · · dk (= [Z
n
∩R〈J 〉 : M]). (4.2)

Remark. When we choose M =MJ , it follows from Equation (1.2) that each di is
a power of p. In this case, the exponential sums associated to f and g are identical.

Proposition 4.3. The Laurent polynomial f is nondegenerate relative to the pair
(1( f ),M) if and only if g is nondegenerate relative to (1(g),Zk).

Proof. Equation (4.1) implies that there is a one-to-one correspondence between the
faces of 1( f ) and the faces of 1(g). Specifically, the face σ of 1( f ) corresponds
to the face σ ′ of 1(g) defined by

σ ′ = {(d−1
1 u1, . . . , d−1

k uk) ∈ Rk
| (u1, . . . , uk) ∈ σ }.

Furthermore, we have

fσ (x1, . . . , xk)= gσ ′(x
d1
1 , . . . , xdk

k ).

Using u1, . . . , uk as coordinates on Zk , we may take as basis for HomZ(Z
k,Z) the

linear forms {`′i }
k
i=1 defined by

`′i (u1, . . . , uk)= ui ,

and we may take as basis for L =HomZ(M,Z) the linear forms {`i }
k
i=1 defined by

`i (u1, . . . , uk)= d−1
i ui .

It is straightforward to check that for i = 1, . . . , k,

E`i ( fσ )(x1, . . . , xk)= E`′i (gσ ′)(x
d1
1 , . . . , xdk

k ).

This implies the proposition. �

Lemma 4.4. Put [Zn
∩ R〈J 〉 : MJ ] = pa and let M ⊆ Zn

∩ R〈J 〉 be a lattice
containing Z〈J 〉. Then M ⊆ MJ if and only if pa

| [Zn
∩R〈J 〉 : M].

Proof. Suppose that pa
| [Zn
∩R〈J 〉 : M]. Then [M : Z〈J 〉] = e′ with (e′, p)= 1.

In particular, e′m ∈ Z〈J 〉 for all m ∈ M , so M ⊆ MJ . The other direction of the
assertion is clear. �
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There are restrictions on the lattices with respect to which f can be nondegen-
erate.

Proposition 4.5. Let M be a lattice, Z〈J 〉 ⊆ M ⊆ Zn
∩R〈J 〉.

(a) If f is nondegenerate relative to (1( f ),M), then M ⊆ MJ .

(b) Suppose M ⊆MJ . Then f is nondegenerate relative to (1( f ),M) if and only
if f is nondegenerate relative to (1( f ),MJ ).

Proof. We may assume without loss of generality that Z〈J 〉 is a subgroup of Zn of
rank n. For if rank(Z〈J 〉) = k < n, then by (4.1) we may take f to be a Laurent
polynomial in x1, . . . , xk , in which case Z〈J 〉 is a subgroup of Zn

∩R〈J 〉(= Zk)

of rank k.
We suppose M is not contained in MJ and prove that f must be degenerate

relative to (1( f ),M). By (4.2) and Lemma 4.4, we have pa - [Z〈C〉 : Z〈J 〉]. But
pa
| [Zn
: Z〈J 〉], so p | [Zn

: Z〈C〉]. Arguing as in the proof of Equation (4.1) then
shows that there exists a Laurent polynomial

h =
∑
e∈E

cexe
∈ Fq [x±1

1 , . . . , x±1
n ]

such that
g(x1, . . . , xn)= h(x1, . . . , xn−1, x p

n ). (4.6)

To show f is degenerate relative to (1( f ),M), it suffices by Proposition 4.3 to
show that any Laurent polynomial g of the form (4.6) is degenerate relative to
(1(g),Zn). The weight function w of Section 2 defines an increasing filtration
on the ring Fq [xu

| u ∈ C(g) ∩ Zn
]: level i/N of the filtration is spanned by

the monomials of weight ≤ i/N . If g were nondegenerate, then {xi∂g/∂xi }
n
i=1

would be a regular sequence in the associated graded ring and would generate a
proper ideal of codimension n! V (g) (by [Kouchnirenko 1976], see also [AS 1989,
Section 2]). But, by Equation (4.6), xn∂g/∂xn = 0, and hence cannot be part of
such a regular sequence. This contradiction establishes part (a) of Proposition 4.5.

Now suppose that M ⊆ MJ . Choose a basis {e(i)}ni=1 for MJ and integers
d1, . . . , dn such that {di e(i)}ni=1 is a basis for M . By Lemma 4.4, p - d1 · · · dn .
Let {`i }

n
i=1 be the basis for HomZ(MJ ,Z) defined by

`i (e( j))= δi j (Kronecker’s delta).

Then {d−1
i `i }

n
i=1 is a basis for HomZ(M,Z). And since (di , p) = 1 for all i , the

{E`i ( fσ )}ni=1 have no common zero in (F̄×q )
n if and only if the same is true of the

{Ed−1
i `i

( fσ )}ni=1. This establishes part (b) of Proposition 4.5. �

By Proposition 4.5(a), we must have M ⊆ MJ if we hope to have f nondegen-
erate relative to (1( f ),M). On the other hand, we must have MJ ⊆ M in order
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for the trace formula (Theorem 2.5) to hold for M . Thus the only practical choice
for M is to take M = MJ . Recall from Section 2 that if g(t) is a power series with
constant term 1, then g(t)δ = g(t)/g(qt).

Theorem 4.7. Suppose that Z〈J 〉 has rank k and that f is nondegenerate relative
to (1( f ),MJ ). Then L(Tn, f ; t)(−1)n−1

= P(t)δ
n−k

, where P(t) is a polynomial
of degree k! VMJ ( f ) and VMJ ( f ) denotes the volume of 1( f ) relative to Lebesgue
measure on R〈J 〉 normalized so that a fundamental domain for MJ has volume 1.

Proof. One repeats the arguments of [AS 1989] with the modifications introduced
for Theorem 2.5: replace L(b) and B ′ by L0(b) and B ′0 and use α̃ in place of α.
We recall some of these details as they are needed in the proof of Theorem 4.17.

Let
�• : 0→�0

→ · · · →�n
→ 0

be the cohomological Koszul complex on B ′0 defined by the differential operators
{D̂i }

n
i=1 constructed in [AS 1989, Section 2]. The endomorphism α̃ of B ′0 con-

structed in Section 2 can be extended to an endomorphism α̃• of the complex �•

by noting that �i
= (B ′0)

(n
i) and then defining α̃i :�

i
→�i to be

(qn−i α̃)(
n
i) : (B ′0)

(n
i)→ (B ′0)

(n
i). (4.8)

Theorem 2.5 is equivalent to the assertion that

L(Tn, f ; t)=
n∏

i=0

det(I − t α̃i |�
i )(−1)i+1

,

which implies that

L(Tn, f ; t)=
n∏

i=0

det(I − t α̃i | H i (�•))(−1)i+1
. (4.9)

Put R = Fq [xu
| u ∈ M0( f )]. The ring R has an increasing filtration defined

by the weight function w of Section 2: Fi/N R is the subspace spanned by {xu
|

w(u) ≤ i/N }. Let R̄ =
⊕
∞

i=0 R̄i/N be the associated graded ring, that is, R̄i/N =

Fi/N R/F(i−1)/N . Now suppose that f is nondegenerate relative to (1( f ),MJ ), let
{`i }

k
i=1 be a basis for L = HomZ(MJ ,Z), and let E`i ( f ) ∈ R̄1 be the image in the

associated graded ring of E`i ( f ) ∈ F1 R. The nondegeneracy hypothesis implies
by the arguments in [Kouchnirenko 1976] that {E`i ( f )}ki=1 is a regular sequence
in R̄, that is, the (cohomological) Koszul complex on R̄ defined by {E`i ( f )}ki=1 has
vanishing cohomology except in top dimension. Furthermore, also by the methods
in [Kouchnirenko 1976], one can show that the single nonvanishing cohomology
group has dimension k! VMJ ( f ).
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Since MJ ⊆Zn , we may express the elements of L as linear forms in n variables.
Write

`i (u1, . . . , un)=

n∑
j=1

ai j u j , ai j ∈ p−aZ.

Put D̂`i =
∑n

j=1 ai j D̂ j and let �•` be the cohomological Koszul complex on B ′0
defined by {D̂`i }

k
i=1. The Frobenius action α̃i :�

i
`→�i

` is defined to be

(qk−i α̃)(
k
i) : (B ′0)

(k
i)→ (B ′0)

(k
i).

The “reduction mod p” [AS 1989, Lemma 2.10] of�•` is the Koszul complex on R̄
defined by {E`i ( f )}ki=1. Monsky’s cohomological lifting theorem [Monsky 1970,
Theorem 8.5; AS 1989, Theorem A.1] then implies that the cohomology of �•`
vanishes except in top dimension and that H k(�•`) has dimension k! VMJ ( f ). But
since {D̂`i }

k
i=1 are linear combinations of {D̂i }

n
i=1 and vice versa, it follows that

(as Frobenius modules)

H i (�•)∼= (H k(�•`))
(n−k

n−i),

where it is understood that the right-hand side vanishes if i < k. In particular we
have H n(�•)∼= H k(�•`), hence

det(I − t α̃i | H i (�•))= det(I − qn−i t α̃n | H n(�•))(
n−k
n−i).

From Equation (4.9) we then get

L(Tn, f ; t)=
n∏

i=k

det(I − qn−i t α̃n | H n(�•))(−1)i+1(n−k
n−i). (4.10)

If we put

P(t)= det(I − t α̃n | H n(�•)) (= det(I − t α̃k | H k(�•`))),

then P(t) is a polynomial of degree k! VMJ ( f ) and (4.10) implies that

L(Tn, f ; t)(−1)n−1
= P(t)δ

n−k
.

This completes the proof of Theorem 4.7. �

Assume the hypotheses of Theorem 4.7. The quotient ring

R̄/(E`1( f ), . . . , E`k ( f ))

is a graded ring of dimension k! VMJ ( f ) over Fq . Put

ai = dimFq (R̄/(E`1( f ), . . . , E`k ( f )))i/N .
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One can show that ai =0 for i>k N . By either repeating the argument of [AS 1989]
or replacing the polynomial f by the polynomial g(xe1

1 , . . . , xen
n ) constructed in

the introduction and applying [AS 1989, Theorem 3.10], one obtains the following
generalization of part of [AS 1989, Theorem 3.10].

Theorem 4.11. Under the hypotheses of Theorem 4.7, the Newton polygon of the
polynomial P(t) relative to the valuation ordq lies on or above the Newton polygon
relative to ordq of the polynomial

∏k N
i=0(1− q i/N t)ai .

Remark. We recall the combinatorial description of the ai . Let W0(i) be the
counting function of Equation (3.1) and form the generating series

H(t)=
∞∑

i=0

W0(i)t i/N .

Then

H(t)=
∑k N

i=0 ai t i/N

(1− t)k
.

Remark. The lower bound of Theorem 4.11 is generically sharp if, for some in-
teger D depending on 1( f ), p ≡ 1 (mod D) [Wan 1993].

We generalize Theorem 4.7 to the affine case. (The corresponding generalization
of Theorem 4.11 is somewhat more involved so we postpone that to a future article.)
Let

f =
∑
j∈J

a j x j
∈ Fq [x±1

1 , . . . , x±1
k , xk+1, . . . , xn].

For each subset A ⊆ {k+ 1, . . . , n}, let f A be the polynomial obtained from f by
setting xi = 0 for all i ∈ A. Then

f A =
∑
j∈JA

a j x j
∈ F[x±1

1 , . . . , x±1
k , {xi }i 6∈A], (4.12)

where JA = { j = ( j1, . . . , jn) ∈ J | ji = 0 for i ∈ A}. We call f convenient if for
each such A one has

dim1( f A)= dim1( f )− |A|.

Suppose f is convenient and nondegenerate relative to (1( f ),MJ ). The hypoth-
esis that f be convenient guarantees that f A is also convenient, and the hypothesis
that f be nondegenerate relative to (1( f ),MJ ) implies that f A is nondegener-
ate relative to (1( f A),MJ ∩ R〈JA〉). By Proposition 4.5(a), we must then have
MJ ∩R〈JA〉 ⊆ MJA . The reverse inclusion is clear, so

MJA = MJ ∩R〈JA〉, (4.13)



Exponential sums nondegenerate relative to a lattice 897

and we conclude that f A is nondegenerate relative to (1( f A),MJA). Applying
Theorem 4.7, we get that

L(Tn−|A|, f A; t)(−1)n−|A|−1
= PA(t)δ

n−dim1( f )
, (4.14)

where PA(t) is a polynomial of degree

deg PA(t)= (dim1( f A))! VMJA
( f A). (4.15)

The standard toric decomposition of affine space gives

Sm(T
k
×An−k, f )=

∑
A⊆{k+1,...,n}

Sm(T
n−|A|, f A),

hence

L(Tk
×An−k, f ; t)(−1)n−1

=

∏
A⊆{k+1,...,n}

(L(Tn−|A|, f A; t)(−1)n−|A|−1
)(−1)|A| . (4.16)

Put
ν( f )=

∑
A⊆{k+1,...,n}

(−1)|A|(dim1( f A))! VMJA
( f A).

Theorem 4.17. If f ∈Fq [x±1
1 , . . . , x±1

k , xk+1, . . . , xn] is nondegenerate relative to
(1( f ),MJ ) and convenient, then

L(Tk
×An−k, f ; t)(−1)n−1

= Q(t)δ
n−dim1( f )

, (4.18)

where Q(t) is a polynomial of degree ν( f ).

Proof. It follows from Equations (4.14) and (4.16) that Equation (4.18) holds with

Q(t)=
∏

A⊆{k+1,...,n}

PA(t)(−1)|A|, (4.19)

a rational function of degree ν( f ) by Equation (4.15). It remains only to show that
Q(t) is a polynomial.

In the proof of Theorem 4.7, we constructed a complex �• satisfying

H i (�•)∼= (H n(�•))(
n−dim1( f )

n−i ) (4.20)

and L(Tn, f ; t)(−1)n−1
= P(t)δ

n−dim1( f )
, where

P(t)= det(I − t α̃n | H n(�•)). (4.21)

Since f is nondegenerate and convenient, each of the polynomials f A satisfies the
hypotheses of that theorem, so analogous assertions are true. Let

�•A : 0→�0
A→ · · · →�

n−|A|
A → 0
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be the corresponding cohomological Koszul complex with differential operators
{D̂ A

i }i 6∈A and Frobenius operators {α̃A
i }

n−|A|
i=0 . We have

H i (�•A)= (H
n−|A|(�•A))

(n−dim1( f )
n−|A|−i ) (4.22)

and L(Tn−|A|, f A; t)(−1)n−|A|−1
= PA(t)n−dim1( f ), where

PA(t)= det(I − t α̃A
n−|A| | H

n−|A|(�•A)). (4.23)

There is an exact sequence of complexes [Libgober and Sperber 1995, Equation
(4.1)]:

�•→
⊕
|A|=1

�•A[−1] →
⊕
|A|=2

�•A[−2] → · · · →�•
{k+1,...,n}[−n+ k] → 0.

Let �̄• = ker(�•→
⊕
|A|=1�

•

A[−1]), so that there is an exact sequence

0→ �̄•→�•→
⊕
|A|=1

�•A[−1] → · · · →�•
{k+1,...,n}[−n+ k] → 0. (4.24)

Equations (4.20), (4.22), (4.24), and induction on n− k show that

H i (�̄•)∼= (H n(�̄•))(
n−dim1( f )

n−i ). (4.25)

Equation (4.24) implies that

n∏
i=0

det(I − t α̃i | H i (�̄•))(−1)i+1

=

∏
A⊆{k+1,...,n}

(n−|A|∏
i=0

det(I − t α̃A
i | H

i (�•A))
(−1)i+|A|+1

)(−1)|A|

. (4.26)

The inner product on the right-hand side of (4.26) equals L(Tn−|A|, f A, t)(−1)|A| ,
hence by (4.16) the right-hand side equals L(Tk

×An−k, f ; t). By (4.25) the left-
hand side equals

n−dim1( f )∏
i=0

det(I − tq i α̃n | H n(�̄•))(−1)n−1(n−dim1( f )
i ).

We thus have

L(Tk
×An−k, f ; t)(−1)n−1

= det(I − t α̃n | H n(�̄•))δ
n−dim1( f )

.

Comparison with Equation (4.18) then shows that

Q(t)= det(I − t α̃n | H n(�̄•)),
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hence Q(t) is a polynomial. �

We explain how to compute the archimedian absolute values of the roots of the
polynomial Q(t) under the hypothesis of Theorem 4.17. Take M=MJ and let g be
the Laurent polynomial associated to f by Equation (4.1). As noted in the proof of
Proposition 4.3, the linear transformation ui 7→ d−1

i ui , i = 1, . . . , k, identifies the
faces σ of 1( f ) with the faces σ ′ of 1(g). In particular, the face 1( f A) of 1( f )
will correspond to some face σ ′A of 1(g). Let gA denote the sum of those terms
of g whose exponents lie on the face σ ′A (so that 1(gA) = σ

′

A). By the Remark
preceding Proposition 4.3, we have

L(Tn−|A|, gA; t)(−1)n−|A|−1
= L(Tn−|A|, f A; t)(−1)n−|A|−1

= PA(t)δ
n−dim1( f )

. (4.27)

The nondegeneracy of f A relative to (1( f A),MJA) implies the nondegeneracy of
gA relative to (1(gA),Zdim1(gA)). We can thus apply the results of [AS 1990b] and
[Denef and Loeser 1991] to gA to compute the number of roots of PA(t) of a given
archimedian weight. By Equation (4.19) and the fact that Q(t) is a polynomial,
we then get the number of roots of Q(t) of a given archimedian weight.

For applications in the next section, we calculate the number of reciprocal roots
of largest possible archimedian absolute value q(dim1( f ))/2 of Q(t). For A 6= ∅,
all reciprocal roots of PA(t) have absolute value < q(dim1( f ))/2, so this is just the
number of reciprocal roots of P∅(t) of absolute value q(dim1( f ))/2. By Equation
(4.27), this can be obtained by applying [AS 1990b, Theorem 1.10] to g: the
number wdim1( f ) of reciprocal roots of highest weight is

wdim1( f ) =
∑

(0,...,0)⊆σ ′⊆1(g)

(−1)dim1(g)−dim σ ′(dim σ ′)! VZdim σ ′ (σ
′). (4.28)

Since 1(g) is obtained from 1( f ) by an explicit linear transformation, we can
express this in terms of invariants of 1( f ):

wdim1( f ) =
∑

(0,...,0)⊆σ⊆1( f )

(−1)dim1( f )−dim σ (dim σ)! VMJσ
(σ ), (4.29)

where Jσ = J ∩ σ .
We note an important special case of this formula. If every face of 1( f ) that

contains the origin is of the form1( f A) for some A⊆{k+1, . . . , n}, the right-hand
side of Equation (4.29) is just ν( f ). This gives the following result.

Corollary 4.30. Under the hypothesis of Theorem 4.17, if every face of 1( f ) that
contains the origin is of the form 1( f A) for some A ⊆ {k + 1, . . . , n}, then all
reciprocal roots of Q(t) have archimedian absolute value q(dim1( f ))/2.

As a special case of Corollary 4.30, we note the following result.
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Corollary 4.31. If f ∈ Fq [x1, . . . , xn] is nondegenerate relative to (1( f ),MJ )

and convenient, then L(An, f ; t)(−1)n−1
is a polynomial of degree ν( f ) all of whose

reciprocal roots have absolute value qn/2.

5. Examples

We explain how Theorem 4.17 implies a generalization of the result of Katz quoted
in the introduction.

Proposition 5.1. Let f ∈ Fq [x1, . . . , xn] have degree d = pke, (e, p) = 1, and
suppose that every monomial appearing in f has degree divisible by pk . If f (d),
the homogeneous part of f of degree d, defines a smooth hypersurface in Pn−1,
then L(An, f ; t)(−1)n−1

is a polynomial of degree

ν( f )=
1
pk ((d − 1)n + (−1)n(pk

− 1)), (5.2)

all of whose reciprocal roots have absolute value qn/2.

Proof. Let e(1), . . . , e(n) denote the standard basis for Rn . Over any sufficiently
large extension field of Fq , we can make a coordinate change on An so that f
is convenient and for any A ⊆ {1, . . . , n}, the intersection of f (d) = 0 with the
coordinate hyperplanes {xi = 0}i∈A is smooth. In particular, the equations f (d)A = 0
define smooth hypersurfaces in Pn−|A|−1. The Newton polyhedron 1( f ) is then
the simplex in Rn with vertices at the origin and the points {de(i)}ni=1. The faces of
1( f ) not containing the origin are the convex hulls of the sets {de(i)}i∈A. It will
be simpler to index these faces by their complements: let σA denote the face which
is the convex hull of {de(i)}i 6∈A.

Write f =
∑

j∈J a j x j , J a finite subset of Nn . Let M ⊆ Zn be the subgroup

M = {(u1, . . . , un) ∈ Zn
| u1+ · · ·+ un is divisible by pk

}.

Since all monomials in f have degree divisible by pk , it follows that Z〈J 〉 ⊆ M .
In fact, MJ ⊆ M . To see this, let (u1, . . . , un) ∈ MJ . By definition, there exists an
integer c prime to p such that c(u1, . . . , un) ∈ Z〈J 〉. This implies that c

∑n
i=1 ui

is divisible by pk . But since (c, p)= 1, one has
∑n

i=1 ui divisible by pk , therefore
(u1, . . . , un) ∈ M .

We claim that f is nondegenerate relative to (1( f ),M). As basis for M we
take the elements

(pk, 0, . . . , 0)∪ {(−1, 0, . . . , 0, 1, 0, . . . , 0)}ni=2,
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where the 1 occurs in the i-th position, and as basis for L =HomZ(M,Z) we take
the “dual basis”, namely, the linear forms

`1(u1, . . . , un)= p−k(u1+ · · ·+ un)

and
`i (u1, . . . , un)= ui ,

for i = 2, . . . , n. Let A⊆ {1, . . . , n} and let σA be the face of 1( f ) defined above.
Note that

fσA :=

∑
j∈J∩σA

a j x j
= f (d)A .

We must thus check that {E`i ( f (d)A )}ni=1 have no common zero in (F̄×q )
n . But

E`1( f (d)A )= e−1 f (d)A

and

E`i ( f (d)A )= xi
∂ f (d)A

∂xi

for i = 2, . . . , n, so we must show that the system

f (d)A = x2
∂ f (d)A

∂x2
= · · · = xn

∂ f (d)A

∂xn
= 0 (5.3)

has no solution in (F̄×q )
n . Since p | d, the Euler relation implies that any common

zero of {xi∂ f (d)A /∂xi }
n
i=2 is also a zero of x1∂ f (d)A /∂x1, thus the system (5.3) is

equivalent to the system

f (d)A = x1
∂ f (d)A

∂x1
= · · · = xn

∂ f (d)A

∂xn
= 0. (5.4)

Furthermore, xi does not appear in f A if i ∈ A, hence the solutions of (5.4) in (F̄×q )
n

are exactly the solutions of the set

{ f (d)A } ∪ {∂ f (d)A /∂xi }i 6∈A (5.5)

in (F̄×q )
n . However, the equation f (d)A =0 defines a smooth hypersurface in Pn−|A|−1,

so any common zero of the set (5.5) must have xi = 0 for all i 6∈ A. In particular,
(5.5) has no common zero in (F̄×q )

n . This implies that (5.4) has no solution in
(F̄×q )

n , proving the nondegeneracy of f relative to (1( f ),M).
We can now compute ν( f ). By Proposition 4.5(a) we have M = MJ , so

[Zn−|A|
: MJA ] = pk for all A 6= {1, . . . , n}
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and

(n− |A|)! V ( f A)/[Z
n−|A|
: MJA ] =

{
dn−|A|/pk if A 6= {1, . . . , n},

1 if A = {1, . . . , n}.

Then clearly

ν( f )=
1
pk ((d − 1)n + (−1)n(pk

− 1))

and the assertions of Proposition 5.1 follow from Theorem 4.17. Finally, note
that if L(An, f ; t)(−1)n−1

is a polynomial of degree (5.2) over all sufficiently large
extension fields of Fq , then the same is true over Fq itself. The assertion about the
absolute value of the roots follows immediately from Corollary 4.31. �

Remark. There are many results in the literature that, like Proposition 5.1, assert
that L(An, f ; t)(−1)n−1

is a polynomial if f (d) defines a smooth hypersurface and
some additional condition is satisfied (see [Deligne 1974, Théorème 8.4; AS 2000,
Theorem 1.11 and the following remark; Katz 2005, Theorem 3.6.5; AS 2009, The-
orem 3.1]). One might ask if any additional condition is really necessary. Consider
the three-variable polynomial

f = (z p
− z)+ x p−1 y+ y p−1z.

The homogeneous part of degree p is smooth but f has the same L-function as

g = x p−1 y+ y p−1z.

Since
∑

z∈Fq
9(y p−1z)= 0 if y 6= 0, one calculates that

∑
x,y,z∈Fq

9(g(x, y, z))=
q2. This gives L(A3, f ; t) = (1− q2t)−1, showing that smoothness of f (d) alone
is not sufficient to guarantee that L(An, f ; t)(−1)n−1

will be a polynomial.
We apply Theorem 4.17 to compute the zeta functions of some possibly singular

hypersurfaces. Let f ∈ Fq [x1, . . . , xn] be a homogeneous polynomial and let X ⊆
Pn−1 be the hypersurface f = 0. Write the zeta function Z(X/Fq , t) of X in the
form

Z(X/Fq , t)=
R(t)(−1)n−1

(1− t)(1− qt) . . . (1− qn−2t)
, (5.6)

where R(t) is a rational function. The exponential sum associated to the poly-
nomial y f ∈ Fq [x1, . . . , xn, y±1

] can be used to count points on the projective
hypersurface X . The precise relation is given in [AS 1989, Equation (6.14)]:

L(An
×T, y f ; t)(−1)n

= R(qt)δ. (5.7)

Proposition 5.8. Suppose that y f ∈ Fq [x1, . . . , xn, y±1
] is nondegenerate relative

to (1(y f ),MJ ) and convenient. Then R(t) is a polynomial of degree ν(y f ), all of
whose reciprocal roots have absolute value q(n−2)/2.
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Proof. The assertion about the degree of R(t) follows immediately by applying
Theorem 4.17 to Equation (5.7). The assertion about the absolute values of the
roots of R(t) follows immediately from Corollary 4.30. �

As an illustration of Proposition 5.8, consider the projective hypersurface X ⊆
Pn−1 over Fq defined by the homogeneous equation

f (x1, . . . , xn)= xn
1 + · · ·+ xn

n + λx1 . . . xn = 0,

where λ ∈ Fq . If p - n, this hypersurface is smooth for all but finitely many values
of λ. If p | n, it is a singular hypersurface for all nonzero λ (except in the cases
p = n = 2 and p = n = 3). We describe the zeta function when p | n.

Corollary 5.9. Suppose that n= pke, where k ≥ 1 and (p, e)= 1, and λ 6= 0. Then
R(t) is a polynomial of degree

deg R(t)= (pk
− 1)en−1

+ e−1((e− 1)n + (−1)n(e− 1)), (5.10)

all of whose reciprocal roots have absolute value q(n−2)/2.

Remark. Note that the second summand on the right-hand side of Equation
(5.10) is the dimension of the primitive part of middle-dimensional cohomology
of a smooth hypersurface of degree e. When λ= 0, the hypersurface X0 is smooth
of degree e. (It is defined by the equation xe

1 + · · ·+ xe
n = 0.)

Proof of Corollary 5.9. The proof is a direct application of Proposition 5.8. We
sketch the details. It is straightforward to check that y f is convenient: 1(y f ) is
the n-simplex in Rn+1 with vertices at the origin and the points

(n, 0, . . . , 0, 1), (0, n, 0, . . . , 0, 1), . . . , (0, . . . , 0, n, 1),

and for each subset A ⊆ {1, . . . , n}, one has dim1(y f A)= n− |A|. We have

J ={(n,0, . . . ,0,1), (0,n,0, . . . ,0,1), . . . , (0, . . . ,0,n,1), (1, . . . ,1,1)}⊆Zn+1,

thus R〈J 〉 is the hyperplane in Rn+1 with equation u1 + · · · + un = nv and the
lattice Zn+1

∩R〈J 〉 has basis

B={(1,−1,0,. . .,0), (0,1,−1,0,. . .,0), . . ., (0,. . .,0,1,−1,0), (0,. . .,0,n,1)}.

It follows that n! Vn(y f )= nn−1. Similarly, we have

(n− |A|)! Vn−|A|(y f A)=

{
nn−1−|A| if |A| ≤ n− 1,
1 if |A| = n.

Let the first n−1 vectors in B be denoted ai , i = 1, . . . , n−1. The lattice Z〈J 〉
has basis

na1, . . . , nan−2, (n− 1,−1, . . . ,−1, 0), (1, . . . , 1, 1),
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from which it follows that MJ has basis

pk a1, . . . , pk an−2, (n− 1,−1, . . . ,−1, 0), (1, . . . , 1, 1). (5.11)

One then checks that

[Zn+1
∩R〈J 〉 : MJ ] = (pk)n−2.

If |A| ≥ 1, then JA consists of vectors (0, . . . , 0, n, 0, . . . , 0, 1) for which the n
occurs in the i-th entry for i 6∈ A (the vector (1, . . . , 1, 1) does not appear), and the
calculation is easier. One gets

[Zn+1
∩R〈JA〉 : MJA ] =


(pk)n−2 if A =∅,

(pk)n−1−|A| if 1≤ |A| ≤ n− 1,

1 if A = {1, . . . , n}.

We then have

(n− |A|)! Vn−|A|(y f A)

[Zn+1 ∩R〈JA〉 : MJA ]
=


pken−1 if A =∅,

en−1−|A| if 1≤ |A| ≤ n− 1,

1 if A = {1, . . . , n}.

It is now straightforward to check that ν(y f ) equals the expression on the right-
hand side of (5.10).

It remains to check that y f is nondegenerate relative to (1(y f ),MJ ). The dual
basis of the basis (5.11) for MJ is the set of linear forms

`i (u1, . . . , un, v)=

i∑
j=1

1
pk u j +

n− i
pk un − ev, i = 1, . . . , n− 2,

`n−1(u1, . . . , un, v)=−un + v,

`n(u1, . . . , un, v)= v.

The polynomials (y f )σ for faces σ of 1(y f ) that do not contain the origin are
exactly the polynomials y f A for A ⊂ {1, . . . , n}, |A|< n. If A =∅, we have

E`n (y f )− E`n−1(y f )= λyx1 . . . xn,

which has no zero in (F̄×q )
n+1. So suppose that 1≤ |A| ≤ n− 1. Then

y f A =
∑
i 6∈A

yxn
i .

Suppose first that n 6∈ A. If 1 ∈ A, then

E`1(y f A)+ eE`n (y f A)=−eyxn
n ,
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and if i ∈ A for some i , 2≤ i ≤ n− 2, then

E`i (y f A)− E`i−1(y f A)=−eyxn
n .

Neither of these monomials vanishes on (F̄×q )
n+1. If i 6∈ A for all i = 1, . . . , n−2,

then A = {n− 1}. In this case we have

E`1(y f A)+ eE`n (y f A)= ey(xn
1 − xn

n ),

E`i (y f A)− E`i−1(y f A)= ey(xn
i − xn

n ) for i = 2, . . . , n− 2,

E`n (y f A)= y(xn
1 + . . . + xn

n−2 + xn
n ).

If the first n−2 expressions vanish, then yxn
1 = · · · = yxn

n−2= yxn
n . The vanishing

of the last expression is then equivalent to (n − 1)yxn
n = 0, which is impossible

in (F̄×q )
n+1.

Now suppose that n ∈ A. If 1 6∈ A, then

E`1(y f A)+ eE`n (y f A)= eyxn
1 ,

and if i 6∈ A for some i , 2≤ i ≤ n− 2, then

E`i (y f A)− E`i−1(y f A)= eyxn
i .

Neither of these monomials vanishes on (F̄×q )
n+1. If i ∈ A for i = 1, . . . , n − 2,

then A contains all indices except i = n − 1 and E`n (y f A) = yxn
n−1, which does

not vanish on (F̄×q )
n+1.

Thus y f satisfies the hypotheses of Proposition 5.8. �
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F-adjunction
Karl Schwede

In this paper we study singularities defined by the action of Frobenius in char-
acteristic p > 0. We prove results analogous to inversion of adjunction along a
center of log canonicity. For example, we show that if X is a Gorenstein normal
variety then to every normal center of sharp F-purity W ⊆ X such that X is
F-pure at the generic point of W , there exists a canonically defined Q-divisor
1W on W satisfying (K X )|W ∼Q KW +1W . Furthermore, the singularities of X
near W are “the same” as the singularities of (W,1W ). As an application, we
show that there are finitely many subschemes of a quasiprojective variety that
are compatibly split by a given Frobenius splitting. We also reinterpret Fedder’s
criterion in this context, which has some surprising implications.

1. Introduction

Suppose that X is a variety and Y is an effective integral Weil divisor on X such
that n(K X + Y ) is Cartier. If the singularities of X are mild (for example, if X
is Cohen–Macaulay and normal) one has a restriction theorem ωX (Y )/ωX = ωY .
However OX (n(K X +Y ))|Y is not necessarily equal to nKY ; there is an additional
residue of OX (n(K X + Y ))|Y which (when divided by n) is called “the different”,
see [Kawamata et al. 1987, Lemma 5-1-9] and [Kollár et al. 1992, Chapter 16].
Even when Y is an arbitrary subvariety (that is, not a divisor) similar phenomena
have been observed; see, for example, Kawamata [1997b; 1998; 2008] and [Ein
and Mustaţă 2009]. In this paper we explore a related phenomenon in positive
characteristic which we call F-adjunction, or Frobenius adjunction. In particular,
we prove results very similar to the parts of what was known as the adjunction con-
jecture of Kawamata and Shokurov [Ambro 1999], which relates the singularities
of X near a center of log canonicity W ⊆ X to the singularities of W .

Suppose that R is a Gorenstein (or a sufficiently nice log-Q-Gorenstein) normal
F-finite ring. Then to every center of sharp F-purity Q ∈ Spec R (centers of sharp
F-purity are characteristic p analogs of centers of log canonicity) such that RQ

MSC2000: primary 14B05; secondary 13A35.
Keywords: F-pure, F-split, test ideal, log canonical, center of log canonicity, subadjunction,

adjunction conjecture, different.
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is F-pure and R/Q is normal we show that there exists a canonically defined Q-
divisor 1R/Q on Spec R/Q such that the singularities of R near Q are “the same”
as the singularities of (R/Q,1R/Q).

A center of sharp F-purity is a characteristic p > 0 analog of a center of
log canonicity; see for example [Kawamata 1997a, Definition 1.3] and [Schwede
2008a]. Technically speaking, a possibly nonclosed point Q ∈Spec R is a center of
sharp F-purity if, for every R-linear map φ : R1/pe

→ R, we have φ(Q1/pe
)⊆ Q.

In particular, if Spec R is F-split, then Spec R/Q is compatibly split with every
Frobenius splitting of Spec R. Unfortunately, there may be infinitely many dif-
ferent maps that one needs to check to determine whether Q is a center of sharp
F-purity. However, when R is Gorenstein and sufficiently local, there exists a
“generating” map ψ : R1/p

→ R such that Q is a center of sharp F-purity if and
only if ψ(Q1/p) ⊆ Q for this single map ψ , see Proposition 4.1. A similar result
also holds when R is Q-Gorenstein with index not divisible by p > 0. It is the
existence of this “generating map” that we use to prove our results.

We will now briefly outline the construction of 1R/Q on R/Q. On any scheme
X = Spec R such that R is a normal local ring of characteristic p > 0, there is a
bijection of sets{ Effective Q-divisors 1 such

that (pe
− 1)(K X +1) is Cartier

}
←→

{Nonzero elements of
HomOX (F

e
∗

OX ,OX )

}/
∼ ,

where the equivalence relation on the right identifies two maps φ and ψ if there is
a unit u such that φ(u× )=ψ( ); see Theorem 3.13. Statements related to this
correspondence are well known and have appeared in several previous contexts,
see [Hara and Watanabe 2002, Theorem 3.1, Proof 2] and [Mehta and Ramanathan
1985]. However, we do not think it has been explicitly described in the context of
Q-divisors and singularities defined by Frobenius.

With this bijection in mind, assume (pe
−1)K X is Cartier, then the divisor 0 on

X = Spec R determines a map φ ∈ HomOX (F
e
∗

OX ,OX ). Setting W = Spec R/Q,
the map φ can be restricted to a map φQ ∈ HomOW (F

e
∗

OW ,OW ) precisely because
W is a center of sharp F-purity (the map is φQ is nonzero because RQ is F-pure).
But then φQ corresponds to a divisor 1R/Q on W = Spec R/Q.

Once we have constructed 1R/Q , we can relate the singularities of X and W .
Roughly speaking, we can do this because the F-singularities of R (respectively,
the F-singularities of R/Q) can all be defined by the images of certain

φ ∈ HomOX (F
e
∗

OX ,OX )

(respectively φQ ∈ HomOW (F
e
∗

OW ,OW )). Some of these results are summarized
now.



F-adjunction 909

Main Theorem (Theorem 5.2, Corollary 6.9, Remark 9.5). Suppose that X is an
integral separated normal F-finite noetherian scheme essentially of finite type1

over an F-finite field of characteristic p> 0. Further suppose that1 is an effective
Q-divisor on X such that K X +1 is Q-Cartier with index not divisible by p. Let
W ⊆ X be an closed subscheme that satisfies the following properties:

(a) W is integral and normal.

(b) (X,1) is sharply F-pure at the generic point of W .

(c) The ideal sheaf of W is locally a center of sharp F-purity for (X,1).

Then there exists a canonically determined effective divisor 1W on W satisfying
the following properties:

(i) (KW +1W )∼Q (K X +1)|W .

(ii) Furthermore, if (pe
− 1)(K X + 1) is Cartier then (pe

− 1)(KW + 1W ) is
Cartier and (pe

− 1)1W is integral.

(iii) For any real number t > 0 and any ideal sheaf a on X which is does not
vanish on W , we have that (X,1, at) is sharply F-pure near W if and only if
(W,1W , a

t) is sharply F-pure.

(iv) W is minimal among centers of sharp F-purity for (X,1), with respect to
containment of topological spaces (in other words, the ideal sheaf of W is
of maximal height as a center of sharp F-purity), if and only if (W,1W ) is
strongly F-regular.

(v) There is a natural bijection between the centers of sharp F-purity of (W,1W ),
and the centers of sharp F-purity of (X,1) which are properly contained in
W as topological spaces.

(vi) There is a naturally defined ideal sheaf τb(X,* W ;1, at), which philosoph-
ically corresponds to an analog of an adjoint ideal in arbitrary codimension,
such that

τb(X,* W ;1, at)|W = τb(W ;1W , a
t)= “the big test ideal of (R,1, at)”.

Here a and t > 0 are as in (iii).

When the center W is not a normal scheme, some of these results can still be
lifted to the normalization of W , see Proposition 8.2. Also see the concluding
remarks to this paper. Part (vi) should be viewed as an ultimate generalization
of the F-restriction theorems for test ideals found in Takagi [2007; 2008], also
compare with [Hara and Watanabe 2002, Theorem 4.9, Remark 4.10].

1The essentially finite type hypothesis can be removed if one is willing to work on a sufficiently
small affine chart or if X is the spectrum of a local ring.
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The construction of 1W is local and does not require X to be projective. In par-
ticular, the statement of Theorem 5.2 is ring theoretic and may be more familiar to
commutative algebraists. However the 1W constructed is canonical. In particular,
the 1W glue together to give us the result in the global setting, see Remark 9.5.

When we combine this theory with the work of Fedder [1983], we obtain the
following.

Theorem A (Theorem 5.5). Suppose that S is a regular F-finite ring such that Fe
∗

S
is a free S module (for example, if S is local) and that R= S/I is a quotient that is a
normal domain. Further suppose that1R is an effective Q-divisor on Spec R such
that HomR(Fe

∗
R((pe

−1)1), R) is a rank one free Fe
∗

R-module (for example, if R
is local and (pe

−1)(K R+1) is Cartier). Then there exists an effective Q-divisor
1S on Spec S such that:

(a) (pe
− 1)(KS +1S) is Cartier.

(b) I is (1S, F)-compatible and (S,1S) is sharply F-pure at the minimal asso-
ciated primes of I (that is, the generic points of Spec S/I ).

(c) 1S induces 1R as in the Main Theorem.

We do not know of any similar result proved in characteristic 0 (except when R is
a complete intersection [Ein et al. 2003]). The1S in Theorem 5.5 is not canonically
determined and therefore we do not see how to globalize this statement.

We also prove the following result.

Theorem B (Corollary 4.3, Remark 9.5). Suppose that X is a normal variety of
finite type over an F-finite field k. Suppose that φ : Fe

∗
OX → OX is a (global)

splitting of Frobenius. Then there exists an effective divisor 1 on X (determined
uniquely by φ) such that

(1) K X +1∼Q 0;

(2) (X,1) is sharply F-pure;

(3) The irreducible subvarieties compatibly split by φ coincide exactly with the
centers of sharp F-purity of (X,1).

Since centers of sharp F-purity are closely related to centers of log canonicity,
the previous result should be viewed as a link between compatibly split subvarieties
and centers of log canonicity (of log Calabi–Yau pairs).

Finally, also using these ideas, we prove that there are only finitely many centers
of sharp F-purity for a sharply F-pure triple (R,1, a•) (the case when R is a local
ring was done in [Schwede 2008a] using the techniques of [Enescu and Hochster
2008] or [Sharp 2007]). Here a• is a graded system of ideals [Hara 2005; Schwede
2008a].



F-adjunction 911

Theorem C (Theorem 5.8). If (R,1, a•) is sharply F-pure, then there are at most
finitely many centers of sharp F-purity.

This also implies that if X is noetherian (although not necessarily affine) and
(X,1) is locally sharply F-pure, then there are at most finitely many centers of
sharp F-purity. This is the analog of the statement that if (X,1) is log canonical,
there exist at most finitely many centers of log canonicity. Another implication of
this is that for a globally F-split variety, there are at most finitely many subschemes
compatibly split with any given splitting, see Corollary 5.10. In the case of a
local ring, similar results have been obtained in [Enescu and Hochster 2008; Sharp
2007]; see also [Schwede 2008a, Corollary 5.2]. Finally, essentially the same result
has been independently obtained by Mehta and Kumar [2009].

We close with a comparison of1R/Q with related constructions which have been
considered in characteristic zero (in particular, the aforementioned “different”). We
then consider what happens if we normalize R/Q (in case R/Q is not normal). We
conclude with several further remarks and questions. In particular see Remark 9.5
where a global version of the ideas of this paper are briefly discussed.

2. Preliminaries and notation

Throughout this paper, all schemes and rings are noetherian, excellent, reduced
and of characteristic p> 0. We also assume that all rings R (and schemes X ) have
locally normalized dualizing complexes, ω q

R (respectively ω q
X ), see [Hartshorne

1966]. In fact, little is lost if one only considers rings that are of essentially finite
type over a perfect field. Since we are primarily concerned with the affine or local
setting, we will freely switch between the notation corresponding to a ring R and
the associated scheme X = Spec R. If X = Spec R and R is reduced, then we will
use k(X) = k(R) to denote the total field of fractions of R. If D is a divisor on
X = Spec R, we will mix notation and use R(D) to denote the global sections of
OX (D). Furthermore, we will often use Fe

∗
M to denote an R-module M viewed

as an R-module via the e-iterated Frobenius, that is r.x = r pe
x (informally, this

is just restriction of scalars). In particular, when R is reduced Fe
∗

R is just another
notation for R1/pe

. The reason for this notation is that if Fe
: X→ X is the e-iterated

Frobenius, then Fe
∗

OX is just the sheaf associated to R1/pe
.

We briefly review some properties of Weil divisors on normal schemes, com-
pare with [Hartshorne 1977, Chapter II, Section 6; 1994] and [Bourbaki 1998,
Chapter 7]. Recall that on a normal scheme X , a Weil divisor is finite formal sum
of reduced and irreducible subschemes of codimension 1, and a prime divisor is
a single irreducible subscheme of codimension 1. So if X = Spec R, the Weil
divisors carry the same information as formal sums of height one prime ideals. A
Q-divisor is an element of {group of Weil divisors} ⊗Z Q; it can also be viewed
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as a finite formal sum
∑

ai Di where the ai ∈ Q and the Di are prime divisors.
See [Kollár and Mori 1998] for basic facts about Q-divisors from this point of
view. A Q-divisor for which all the ai are integers is called an integral divisor
(in other words, an integral divisor is a Q-divisor that is also a Weil divisor). A
Q-divisor is called Q-Cartier if there exists an integer m > 0 such that m D is an
integral Cartier divisor. A Q-divisor is called m-Cartier if m D is an integral Cartier
divisor. A divisor (respectively a Q-divisor) D=

∑
ai Di is called effective if each

of the ai are nonnegative integers (respectively, nonnegative rational numbers).
Since X is normal, for each prime divisor D on X , there is an associated discrete

valuation vD at the generic point of D ⊂ X . Then, for any nondegenerate element
f ∈ k(X) (an element is nondegenerate if it is nonzero on each generic point of
X = Spec R), there is a divisor div f which is defined as div f =

∑
D⊂X vD( f )D.

Recall that associated to any divisor D on X = Spec R there is a coherent sheaf
OX (D) whose global sections we will denote by R(D). Recall that the sheaf R(D)
is reflexive with respect to HomR( , R).

For the convenience of the reader, we record some useful properties of reflexive
sheaves that we will use without comment.

Proposition 2.1 [Hartshorne 1977; 1994, Proposition 1.11, Theorem 1.12]. Sup-
pose that R is a normal domain and suppose that M and N are finitely generated
torsion-free R-modules. Then:

(1) M is reflexive (that is, the natural map M → HomR(HomR(M, R), R) =
(M∨)∨ is an isomorphism) if and only if M is S2.

(2) HomR(M, R)= M∨ is reflexive.

(3) If R is of characteristic p and F-finite (see Definition 2.6), then M is reflexive
if and only if Fe

∗
M is reflexive.

(4) If N is reflexive, then Hom(M, N ) is also reflexive.

(5) Suppose M is reflexive, that X = Spec R and Z ⊂ X is a closed subset of
codimension 2. Set U to be X \ Z and let i : U → X be the inclusion. Then
i∗(M |U )∼= M.

(6) With notation as in (5), the restriction map to U induces an equivalence of
categories from reflexive coherent sheaves on X to reflexive coherent sheaves
on U.

Proposition 2.2 [Hartshorne 1994, Proposition 2.9; 2007, Remark 2.9]. Suppose
that X is a normal scheme and D is a divisor on X. Then, there is a one-to-one cor-
respondence between effective divisors linearly equivalent to D and nondegenerate
sections s ∈ 0(X,OX (D)) modulo multiplication by units in H 0(X,OX ).2

2A section is called nondegenerate if it is nonzero at the generic point of every irreducible com-
ponent of X .
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Definition 2.3. If X is equidimensional, then we set ωX to be h− dim X (ω
q
X ) and

call it the canonical module of X . If, in addition, X is normal, then ωX is a rank 1
reflexive sheaf and so it corresponds to an integral divisor class. A divisor D such
that OX (D)∼= ωX is called a canonical divisor of X and is denoted by K X .

Remark 2.4. If X is not normal but instead Gorenstein in codimension 1 (G1) and
S2, then one can still view ωX as a divisor class (technically as an almost Cartier
divisor / Weil divisorial subsheaf; see [Hartshorne 1994; Kollár et al. 1992]). Most
of the results of this paper generalize to pairs (X,1) where X is G1 and S2 and
1 is an element from {almost Cartier divisors} ⊗Q. However, there are several
technical complications which we feel obscure the main points of this paper and
so we will not work in this generality. In particular, one can have two different
almost Cartier divisors / Weil divisorial subsheaves D and E such that 2D = 2E
[Kollár et al. 1992, page 172]. Because of this, for a Q-Weil divisorial subsheaf D,
OX (D) is not well defined. There are ways around this issue, although statements
like Theorem 3.11(e,f) and the definition of sharply F-pure pairs would need to
be amended. Another option is to do something similar to what is suggested in
Remark 9.1.

Definition 2.5. A pair (X,1) is the combined information of a normal scheme X
and an effective Q-divisor 1. A triple (X,1, at) is the combined information of
a pair (X,1), an ideal sheaf a ⊆ OX which on every chart U = Spec R satisfies
a|U ∩ R◦ 6= ∅, and a positive real number t > 0. If X = Spec R, then we will
sometimes write (R,1) instead of (X,1).

Now we define F-singularities, singularities defined by the action of Frobenius.
These are classes of singularities associated with tight closure theory [Hochster and
Huneke 1990], which are good analogs of singularities from the minimal model
program [Kollár and Mori 1998].

Definition 2.6. We say that a ring R of positive characteristic p > 0 is F-finite if
F∗R = R1/p is finite as an R-module.

Throughout the rest of this paper, all rings will be assumed to be F-finite. This
is not too restrictive an assumption since any ring essentially of finite type over a
perfect field is F-finite, see [Fedder 1983, Lemma 1.4].

Definition 2.7 [Hochster and Roberts 1976; Hochster and Huneke 1989; Hara
and Watanabe 2002; Schwede 2008b]. Suppose that (R,m) is a local ring. We
say that a triple (R,1, at) is sharply F-pure if there exists an integer e > 0, an
element a ∈ adt (p

e
−1)e and a map φ ∈ HomR(Fe

∗
R(d(pe

− 1)1e), R) such that
φ(Fe

∗
(a R)) = R. Here Fe

∗
(a R) ⊆ Fe

∗
R(d(pe

− 1)1e). If 1 = 0 and a = R, then
we call the sharply F-pure triple (R,1, at) (or simply the ring R) F-pure.
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Again, assuming R is local, a triple (R,1, at) is called strongly F-regular if
for every c ∈ R◦ there is an integer e > 0, an element a ∈ adt (p

e
−1)e, and a map

φ ∈ HomR(Fe
∗

R(d(pe
− 1)1e), R) such that φ(Fe

∗
(ca R))= R.

If X is any scheme (for example X = Spec R where R is a nonlocal ring), then
a triple (X,1, at) is called sharply F-pure (respectively, strongly F-regular) if
for every closed point3 x ∈ X , the localized triple (OX,x ,1|Spec OX,x , a

t
x) is sharply

F-pure (respectively, strongly F-regular).

Remark 2.8. In the case where R is a nonlocal ring, these definitions of strong
F-regularity and sharp F-purity are slightly more general than the ones given in
[Takagi 2004a; Takagi and Watanabe 2004; Schwede 2008a; 2008b]. Previously,
a triple (R,1, at) (with R-not necessarily local) was called strongly F-regular
(respectively sharply F-pure) if it satisfied the “local ring” version of the condition
stated above. In the case that a = R (or more generally, if a is principal) then the
various notions coincide (regardless of the 1). The problem is that it is not clear
whether a triple (R,1, at) is strongly F-regular (respectively sharply F-pure) if
and only if it is strongly F-regular (respectively sharply F-pure) after localizing at
every maximal ideal.

Remark 2.9. Suppose that R is local and that (R,1, at) is sharply F-pure and
that e is as in the above definition, then for every integer n > 0 there exists a
φn ∈HomR(Fne

∗
R(d(pne

−1)1e), R) such that 1∈φn(Fne
∗

adt (p
ne
−1)e). This follows

from the same argument as in [Schwede 2008a, Lemma 2.8; 2008b, Proposition
3.3].

Remark 2.10. Sharply F-pure singularities are a characteristic p > 0 analog of
log canonical singularities [Hara and Watanabe 2002; Schwede 2008b]. Strongly
F-regular singularities are a characteristic p> 0 analog of Kawamata log terminal
singularities [Hara and Watanabe 2002]. There are also good analogs of purely log
terminal singularities that we will not discuss here, see [Takagi 2008].

Definition 2.11 [Hochster and Huneke 1990; Hara and Takagi 2004; Schwede
2008a; 2008b]. Suppose that (R,1, at) is a triple. An element c ∈ R◦ is called a
big sharp test element for (R,1, at) if for all modules N ⊆ M and all z ∈ N ∗1,a

t

M ,
one has that cadt (p

e
−1)ez pe

⊆ N [p
e
]1

M for all e ≥ 0.
For the definition of tight closure with respect to such a triple (and an explanation

of the notation above), see [Schwede 2008a, Definition 2.14 ]. Also compare with
[Hara and Yoshida 2003; Takagi 2004b; 2008.]

If R is reduced and F-finite, then there always exists a big sharp test element
for any triple (R,1, at).

3If the condition holds at the closed points, then it also holds at the nonclosed points.
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Definition 2.12 [Hochster and Huneke 1990; Lyubeznik and Smith 2001; Hara
and Takagi 2004; Hochster 2007]. The big test ideal of a triple (R,1, at), denoted
τb(R;1, at), is defined as follows: Set E =⊕m∈m−Spec R ER/m, where ER/m is the
injective hull of R/m. Then

τb(R;1, at) := AnnR 0∗1at

E =
⋂
m

AnnR 0∗1,a
t

ER/m
.

Remark 2.13. Big test ideals are characteristic p> 0 analogs of multiplier ideals,
[Smith 2000; Hara 2001; Takagi 2004b; Hara and Yoshida 2003].

Remark 2.14. In [Schwede 2008a], we defined the big test ideal τb(R;1, at) in a
somewhat different way, essentially using the criterion for the big test ideal found
in [Hara and Takagi 2004, Lemma 2.1]. While we will not state that definition here,
we note that the big test ideal of [Schwede 2008a] was an ideal J of R which, when
localized at any m, coincided with AnnRm 0∗1at

ER/m
. We now explain why such a J

agrees with τb(R;1, at). Note that this J is contained in each AnnR 0∗1at

ER/m
, and so

J ⊆ AnnR 0∗1at

E . Conversely, we see that τb(R;1, at)Rm ⊆ AnnRm 0∗1at

ER/m
⊆ Jm,

which completes the proof.

Definition 2.15 [Schwede 2008a]. An ideal I ⊆ R is said to be F-compatible with
respect to (R,1, at) or equivalently uniformly (1, at , F)-compatible or simply F-
compatible if the context is clear, if for every e> 0, every a ∈ adt (p

e
−1)e and every

map φ ∈ HomR(Fe
∗

R(dt (pe
− 1)1e), R), we have φ(Fe

∗
aI ) ⊆ I . A prime ideal

Q which is F-compatible with respect to (R,1, at) is called a center of sharp F-
purity for (R;1, at), or simply a center of F-purity if the context is clear. We will
also often abuse notation and call the subscheme W := Spec R/Q ⊆ Spec R =: X
a center of F-purity as well.

Remark 2.16. Centers of sharp F-purity are characteristic p > 0 analogs of cen-
ters of log canonicity. In particular, any center of log canonicity reduced from
characteristic 0 to characteristic p � 0 is a center of sharp F-purity [Schwede
2008a, Theorem 6.7].

Lemma 2.17 [Schwede 2008a]. Consider a triple (R,1, at) (recall all rings are
assumed F-finite). The following properties of F-compatible ideals are satisfied.

(1) Any (ideal-theoretic) intersection of F-compatible ideals is F-compatible.
(2) Any (ideal-theoretic) sum of F-compatible ideals is F-compatible.
(3) The radical of an F-compatible ideal is F-compatible.
(4) The big test ideal τb(R; at ,1) is the unique smallest F-compatible ideal that

has nontrivial intersection with R◦.
(5) The minimal primes of a radical F-compatible ideal are also F-compatible.
(6) A pair (R,1) is strongly F-regular if and only if it has no centers of sharp

F-purity besides the minimal primes of R.
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A version of Lemma 2.17(6) is true also for triples (R,1, at). Although in that
case, one must use the “new” strong F-regularity condition, see Remark 2.8. In
particular, [Schwede 2008a, Corollary 4.6] is probably not correct as stated. It
should say: “(R,1, a•) is strongly F-regular after localizing at every maximal
ideal of R if and only if (R,1, a•) has no centers of sharp F-purity besides the
minimal primes of R.” Thus the original statement of [Schwede 2008a, Corollary
4.6] is correct if one uses the definition of strong F-regularity from Definition 2.7.
We believe this is the only instance of the issue described in Remark 2.8 causing
a misstatement in that paper (although several results can be strengthened if one
uses the “new” definition).

3. Relation between Frobenius and boundary divisors

In this section we’ll describe a correspondence between maps φ : Fe
∗

OX→ OX and
Q-divisors 1 such that K X +1 is Q-Cartier (with index not divisible by p > 0).
Statements closely related to this correspondence have appeared in several previ-
ous contexts (see [Hara and Watanabe 2002, Theorem 3.1, Proof 2] and [Mehta
and Ramanathan 1985]) and were known to experts. However, we do not think
the correspondence has been explicitly written from a Q-divisor perspective. As
before, in this section we are assuming that X is the spectrum of a normal F-finite
ring R with a locally normalized dualizing complex ω q

R .
Roughly speaking, the correspondence goes like this. Suppose R is a local ring

and set X = Spec R:

• Given a φ ∈ HomR(Fe
∗

R, R), this is the same as

• choosing a map (of Fe
∗

R-modules) Fe
∗

R→ HomR(Fe
∗

R, R) sending 1 to φ,
which is the same as

• an effective Weil divisor D such that OX (D) ∼= OX ((1− pe)K X ) (note that
Fe
∗

OX ((1− pe)K X )∼= HomR(Fe
∗

R, R)), which is the same as

• an effective Q-divisor 1 where we set 1= (1/(pe
− 1))D.

The expert reader might wonder why we divide by pe
− 1 in the final step (and

thus produce a Q-divisor). It turns out that for the purposes of F-singularities,
composing φ with itself (that is, φ ◦ Fe

∗
φ) is harmless, see Section 4 below. Thus

by dividing by pe
−1 we are normalizing our divisor with respect to composition;

see Theorem 3.11(e).
In order to make this correspondence precise and in order to be able to use

it, we first need the following observations about maps Fe
∗

OX → OX (which of
themselves are of independent interest). Lemma 3.1 is well known to experts; see
[Fedder 1983; Mehta and Ramanathan 1985; Mehta and Srinivas 1991; Hara and



F-adjunction 917

Watanabe 2002, Lemma 3.4]. However, the proof is short, so we include it for the
convenience of the reader.

Lemma 3.1. Suppose that (X,1) is a pair such that (pe
−1)(K X+1) is a Cartier

divisor. Then H omOX (F
e
∗

OX ((pe
− 1)1),OX ) is an invertible sheaf when viewed

as an Fe
∗

OX -module.

Proof. It is enough to verify this locally, so we may assume that X is the spectrum
of a local ring. Then observe that

H omOX (F
e
∗

OX ((pe
− 1)1),OX )∼=H omOX (F

e
∗

OX ((pe
− 1)1+ pe K X ), ωX )

∼= Fe
∗
H omOX (OX ((pe

− 1)1+ pe K X ), ωX )

∼= Fe
∗

OX ((1− pe)(K X +1))

∼= Fe
∗

OX . �

Remark 3.2. We will often view H omOX (F
e
∗

OX ((pe
− 1)1),OX ) as an Fe

∗
OX -

submodule of H omOX (F
e
∗

OX ,OX ).

Remark 3.3. For an arbitrary normal (nonlocal) F-finite scheme X , we do not
know if one always has

H omOX (F
e
∗

OX ((pe
− 1)1),OX )∼= OX ((1− pe)(K X +1)). (3.3.1)

In the nonlocal case, if one is following the proof of Lemma 3.1, one should write

H omOX (F
e
∗

OX ((pe
− 1)1+ pe K X ), ωX )

∼= Fe
∗
H omOX (OX ((pe

− 1)1+ pe K X ), (Fe)!ωX ).

The module (Fe)!ωX =HomOX (F
e
∗

OX , ωX ) is a canonical module on X , but these
are only unique up to tensoring with an invertible sheaf. In the local case, tensoring
with an invertible sheaf does nothing (and so ωX is unique up to isomorphism —
multiplication by a unit). Likewise, if X is of essentially finite type over an F-finite
field, it is easy to see that (Fe)!ωX can be identified with ωX (again, noncanon-
ically, but up to multiplication by a unit of H 0(X,OX )). Of course, by passing
to a sufficiently small affine chart, we can always assume that Equation (3.3.1) is
satisfied. In fact, it may be that Equation (3.3.1) always holds.

The previous result also implies the following when interpreted using Fedder’s
criterion [Fedder 1983].

Corollary 3.4. Suppose that (R,m) is a quasiGorenstein normal local ring (re-
spectively, a Q-Gorenstein local ring whose index is a factor of pd

− 1). Further
suppose that we can write R = S/I where S is an F-finite regular local ring. Then
for each e> 0 (respectively for each e= nd, n > 0) there exists an element fe ∈ R
so that (I [p

e
]
: I )= I [p

e
]
+ ( fe).
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Proof. Simply note that Fe
∗
(I [p

e
]
: I )HomS(Fe

∗
S, S)/Fe

∗
I [p

e
] ∼= HomR(Fe

∗
R, R)

by [Fedder 1983, Lemma 1.6]. The quasiGorenstein or Q-Gorenstein assumption
implies that the right side of the equation is a free rank-one Fe

∗
R-module. �

Remark 3.5. If one fixes a generator T of HomS(Fe
∗

S, S), one can then view the
element fe as an S-module map Fe

∗
S→ S that sends Fe

∗
I into I .

Observation 3.6. Suppose (in the situation of Lemma 3.1) that X is the spectrum
of a local ring, that 1 = 0, and that OX ((pe

− 1)K X ) is a free rank-one Fe
∗

OX -
module. Therefore, H omOX (F

e
∗

OX ,OX ) has a generator T . If one composes T
with its pushforward Fe

∗
T : F2e

∗
OX → Fe

∗
OX , one obtains a map

T2e = T ◦ Fe
∗

T : F2e
∗

OX → OX . (3.6.1)

One can then ask whether that composition is a generator of the rank-one locally
free F2e

∗
R-module H omOX (F

2e
∗

OX ,OX )? What can be said in the case that1 6= 0?
It turns out that the composition is indeed a generator (and in the case when 1 6= 0
as well). One can prove this using local duality, however it is no more difficult
(and certainly more satisfying) to prove it directly. First however, let us compute
a specific example.

Example 3.7. Consider the case when X = Spec Fp[x1, . . . , xn] = Spec R and
choose Te to be the generator of H om R(Fe

∗
R, R) of the form

Te(x
l1
1 x l2

2 . . . x
ln
n )=

{
1, if l1 = l2 = . . .= ln = pe

−1,
0, whenever li ≤ pe

−1 for all i and li < pe
−1 for some i .

Now consider Te ◦ Fe
∗

Te, we claim it is equal to T2e. Consider a monomial m =
x l1

1 x l2
2 . . . x

ln
n such that li ≤ p2e

− 1. We can write

m = (xk1
1 )

pe
(x j1

1 )(x
k2
2 )

pe
(x j2

2 ) . . . (x
kn
n )

pe
(x jn

n ),

where ki , ji < pe are integers. This implies that

Te(Fe
∗

Te(m))= Te(x
k1
1 . . . xkn

n Te(x
j1
1 . . . x

jn
n )).

The claim is then easily verified since pe(pe
− 1)+ (pe

− 1)= (p2e
− 1).

Remark 3.8. In the context of Example 3.7, it follows that Te(Fe
∗

I ) = I [1/pe
],

where I [1/pe
] is the smallest ideal J such that I ⊆ J [p

e
] [Blickle et al. 2008]. This

was well known to experts.

In fact, Example 3.7 above is a special case of the following lemma (that is
known to experts) which uses Hom-⊗ adjointness. For example, it is closely related
to [Kunz 1986, Appendix F.17(a)].
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Lemma 3.9. Suppose that R→ S is a finite map of rings such that HomR(S, R)
is isomorphic to S as an S-module. Further suppose that M is a finite S-module.

Then the natural map

HomS(M, S)×HomR(S, R)→ HomR(M, R) (3.9.1)

induced by composition is surjective.

Proof. First, set α to be a generator (as an S-module) of HomR(S, R). Suppose
we are given f ∈ HomR(M, R) ∼= HomR(M ⊗S S, R). We wish to write it as a
composition.

Using adjointness, this f induces an element 8( f ) ∈HomS(M,HomR(S, R)).
Just as with the usual Hom-tensor adjointness, we define 8( f ) by the following
rule:

(8( f )(t))(s)= f (t ⊗ s)= f (st) for t ∈ M , s ∈ S.

Therefore, since HomR(S, R) is generated by α, for each f and t ∈ M as above,
we associate a unique element a f,t ∈ S with the property that (8( f )(t))( ) =

α(a f,t ).
Thus using the isomorphism HomR(S, R) ∼= S, induced by sending α to 1, we

obtain a map 9 : HomR(M, R)→ HomS(M, S) given by 9( f )(t)= a f,t .
We now consider α ◦ (9( f )). However,

α(9( f )(t))= α(a f,t)= (8( f )(t))(1)= f (t).

Thus f = α ◦ (9( f )) and we see that the map (3.9.1) is surjective, as desired. �

We need a certain variant of this in the context of pairs.

Corollary 3.10. Suppose that (X,1) is a pair and that K X+1 is (pe
−1)-Cartier.

Then for every d > 0 the natural map 9,

H om Fe
∗OX (F

e+d
∗

OX (d(pd
− 1)1e), Fe

∗
OX )

⊗Fe
∗OX H omOX (F

e
∗

OX ((pe
− 1)1),OX )

∼=H om Fe
∗OX (F

e+d
∗

OX (d(pe+d
− 1)1e), Fe

∗
OX ((pe

− 1)1))

⊗Fe
∗OX H omOX (F

e
∗

OX ((pe
− 1)1),OX )

→H omOX (F
e+d
∗

OX (d(pe+d
− 1)1e),OX )

induced by composition, is an isomorphism.
In other words, locally, every map φ : Fe+d

∗
OX (d(pe+d

− 1)1e)→ OX factors
through some scaling of the (local) Fe

∗
OX -generator of

H omOX (F
e
∗

OX ((pe
− 1)1),OX ).
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Proof. Notice that the map 9 we are considering is a map of rank-one reflexive
(that is, rank-one S2) Fe+d

∗
OX sheaves and thus it is injective (since it is not zero).

So to show it is an isomorphism, it is sufficient to show it is surjective in codi-
mension one. Therefore we may consider the statement at the generic point γ of a
codimension 1 subvariety (locally, this is localizing at a height one prime). Since
X is Gorenstein in codimension one, we see that

(H omOX (F
1
∗

OX ,OX ))γ

is a free rank-one F1
∗

OX -module. We fix a generator T1 and set Tn to be the gener-
ator of

(H omOX (F
n
∗

OX ,OX ))γ

obtained by composing T1 with itself n−1 times just as in (3.6.1) (Tn is a generator
by Lemma 3.9).

If 1 does not contain the point γ in its support, we are done by the previous
lemma. On the other hand, if 1 contains γ in its support, then we may express
1 at the stalk of η locally as zt (where t is a rational number with denominator a
factor of pe

− 1). Then we notice that

Te(z(p
e
−1)t(Fd

∗
Td(z

d(pd
−1)te

i )))= Te(Fd
∗

Td(zdp
d (pe
−1)t+(pd

−1)te ))

= Te(Fd
∗

Td(zd(p
d+e
−1)te ))= Te+d(zd(p

d+e
−1)te ).

This proves the corollary, since for any n> 0, Tn(zd(p
n
−1)te ) generates the image

of the Fn
∗

OX,γ -module

(H omOX (F
n
∗

OX (d(pn
− 1)1e),OX ))γ inside (H omOX (F

n
∗

OX ,OX ))γ . �

We are now ready to explicitly relate φ : Fe
∗

OX → OX to a Q-divisor 1. As
mentioned before, parts of this theorem were likely known to experts, but to my
knowledge, it has not been written down in the language of Q-divisors.

Theorem 3.11. Suppose R is a normal F-finite ring. For every map φ : Fe
∗

R→ R,
there exists an effective Q-divisor 1=1φ on X = Spec R such that:

(a) (pe
− 1)1 is an integral divisor.

(b) (pe
−1)(K X+1) is a Cartier divisor and HomR(Fe

∗
R((pe

−1)1), R)∼= Fe
∗

R.
(c) The natural map Fe

∗
R∼=HomR(Fe

∗
R((pe

−1)1), R)→HomR(Fe
∗

R, R) sends
some Fe

∗
R-module generator of HomR(Fe

∗
R((pe

− 1)1), R) to φ.
(d) The map φ is surjective if and only if the pair (R,1) is sharply F-pure.
(e) The composition map

φ(n+1)e = φ ◦ Fe
∗
φ ◦ F2e

∗
φ ◦ . . . ◦ Fne

∗
φ

also determines the same divisor 1.
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(f) Another map φ′ : Fe′
∗

R→ R determines the same Q-divisor1 if and only if for
some positive integers n and n′ such that (n+ 1)e = (n′+ 1)e′ (equivalently,
for every such pair of integers) there exists a unit u ∈ R such that

φ ◦ Fe
∗
φ ◦ F2e

∗
φ ◦ . . . ◦ Fne

∗
φ(ux)= φ′ ◦ Fe′

∗
φ′ ◦ F2e′

∗
φ′ ◦ . . . ◦ Fn′e′

∗
φ′(x).

for all x ∈ R. In other words, φ and φ′ determine the same divisor if and only
if φ composed with itself n times is a unit multiple of φ′ composed with itself
n′ times.

Proof. A map φ : Fe
∗

R→ R uniquely determines the map of Fe
∗

R-modules

8 : Fe
∗

R→ HomR(Fe
∗

R, R)

which sends 1 to φ. This can also be viewed as applying the functor HomR( , R)
to φ and factoring the map

R
∼ //

Fe
%%

HomR(R, R)
φ∨ // HomR(Fe

∗
R, R)

Fe
∗

R
17→φ

66
(3.11.1)

through Fe
∗

R. We know that HomR(Fe
∗

R, R)∼= Fe
∗

R((1− pe)K X +M) for some
Cartier divisor M (in many cases M is zero; see Remark 3.3). Therefore, the map8
determines an effective divisor D which is linearly equivalent to (1− pe)K X +M ;
see [Hartshorne 1977] and Proposition 2.2. Set

1 :=
1

pe− 1
D.

Clearly property (a) is satisfied. For the first part of (b), simply note that

(pe
− 1)(K X +1)= (pe

− 1)K X + D ∼ (pe
− 1)K X + (1− pe)K X +M = M.

For the second part of (b), observe that

HomR(Fe
∗

R((pe
− 1)1), R)∼= Fe

∗
R((1− pe)K X +M − (pe

− 1)1)
∼= Fe

∗
R((1− pe)K X +M − D)∼= Fe

∗
R.

Let us now prove (c). At height one primes γ , the map

8 : Fe
∗

Rγ → HomR(Fe
∗

R, R)γ ' Fe
∗

Rγ

as above, is multiplication (as an Fe
∗

R-module) by a generator of D. But so is
the map from (c), 9 : Fe

∗
R ∼= HomR(Fe

∗
R((pe

− 1)1), R) → HomR(Fe
∗

R, R).
All the modules involved are rank-1 reflexive Fe

∗
OX -modules and that the domains



922 Karl Schwede

of 8 and 9 are isomorphic. Therefore the maps 8 and 9 induce the same divi-
sors and so 8 and 9 can be identified (for an appropriate choice of isomorphism
HomR(Fe

∗
R((pe

− 1)1), R)∼= Fe
∗

R). Part (c) then follows.
To prove (d), suppose first that φ is surjective, or equivalently that 1 is in φ’s

image. Then there exists an R-module map α so that the composition

R
α // Fe

∗
R

φ // R

is the identity. Apply HomR( , R) to the diagram (3.11.1). This gives a diagram:

R oo φ
ff HomR(HomR(Fe

∗
R, R), R) oo ∼ // Fe

∗
R

HomR(Fe
∗

R, R)
OO

∼

��

tt

Fe
∗

R(D)

and so we can factor φ as Fe
∗

R → Fe
∗

R(D) → R. This proves that (R,1) is
a sharply F-pure pair. Conversely, suppose that (R,1) is sharply F-pure, then
a single (equivalently every) generator α of HomR(Fe

∗
R((pe

− 1)1), R) satisfies
α(Fe

∗
R)= R. But φ is such a generator so φ(Fe

∗
R)= R.

We now prove (e). It is enough to check the statement at a height one prime γ .
We know that HomR(Fe

∗
R, R)γ is locally free of rank one with generator Te. We

then see that φγ ( )= Te(d )where d is a defining equation for D when localized
at γ . Composing this with itself n times, we obtain the map

φγ ◦Fe
∗
φγ ◦F2e

∗
φγ ◦. . .◦Fne

∗
φγ (F (n+1)e

∗
z)= T(n+1)e(F (n+1)e

∗
d pne

+p(n−1)e
+···+pe

+1z).

But now we notice that (1/(p(n+1)e
− 1))(pne

+ p(n−1)e
+· · ·+ pe

+ 1)D is equal
to (1/(pe

− 1))D.
Finally, we prove (f). First note that changing a map by precomposing with

multiplication by a unit does not change the associated divisor. Therefore, if maps
φ and φ′ satisfy the condition on their compositions (as above), then they determine
the same divisor by (e). Conversely, suppose that the maps φ and φ′ have the same
associated divisor, and choose n and n′ as above. Without loss of generality, by
replacing φ and φ′ with their compositions, we may assume that e = e′, and we
simply have two maps φ, φ′ ∈HomR(Fe

∗
R, R) that determine the same divisor. In

particular, the maps

Fe
∗

R→ HomR(Fe
∗

R, R)
1 7→ φ

and
Fe
∗

R→ HomR(Fe
∗

R, R)
1 7→ φ′
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induce the same embedding of HomR(Fe
∗

R, R) into the total field of fractions of
Fe
∗

R. Therefore the two maps differ by multiplication by a unit as desired; see
[Hartshorne 2007] or Proposition 2.2. �

Remark 3.12. Condition (a) above is redundant in view of condition (b).

Theorem 3.13. Suppose that R is normal and F-finite as above. For every effective
Q-divisor1 satisfying conditions (a) and (b) from Theorem 3.11, there exists a map
φ ∈ HomR(Fe

∗
R, R) such that the divisor associated to φ is 1.

Proof. We set φ to be the image of 1 under the composition

i ◦ q ◦ Fe
: R→ Fe

∗
R ∼= HomR(Fe

∗
R((pe

− 1)1), R)→ HomR(Fe
∗

R, R),

where q is the isomorphism given by hypothesis, and i the map induced by the
inclusion Fe

∗
R ⊆ Fe

∗
R((pe

− 1)1). It is straightforward to verify that applying
HomR( , R) to the above composition also explicitly constructs (and factors) φ
because of the isomorphism HomR(HomR(Fe

∗
R, R), R)∼= Fe

∗
R.

Applying HomR( , R) to this factorization of φ, and using the construction
from Theorem 3.11 gives us back 1. �

In summary, we have shown that for a reduced normal F-finite local ring R there
is a bijection between the sets{ Effective Q-divisors 1 such

that (pe
− 1)(K X +1) is Cartier

}
←→

{Nonzero elements of
HomOX (F

e
∗

OX ,OX )

}/
∼ ,

where the equivalence relation on the right identifies two maps φ and ψ if there
is a unit u ∈ R such that φ(u × ) = ψ( ). Remark 9.5 discusses how to make
sense of such a correspondence in the nonlocal case.

One can even extend this correspondence further. Recall that putting an R{Fe
}-

module structure on an R-module M is equivalent to specifying an additive map

φe : M→ M

such that φe(rm) = r pe
φe(m); see [Lyubeznik and Smith 2001] for additional de-

tails. Such maps can also be identified with R-module maps M→ Fe
∗

M .

Proposition 3.14. Suppose that (R,m) is a complete normal local F-finite ring
with injective hull of the residue field ER . Then there is a bijection between the set
of R{Fe

}-module structures on ER and the set of elements of HomR(Fe
∗

R, R).

Proof. Consider a map φ : Fe
∗

R→ R and apply HomR( , ER). This gives us a
map

ER = HomR(R, ER)→ HomR(Fe
∗

R, ER)= EFe
∗ R = Fe

∗
ER.
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Applying HomR( , ER) gives us back φ. Note that there are (noncanonical)
choices here when we identify Fe

∗
ER with HomR(Fe

∗
R, ER). However, these are

merely up to multiplication by units and so we can fix such isomorphisms. �

Therefore, in the case of a complete local normal ring, we have the following
correspondences.{

Effective Q-divisors 1 such
that (pe

− 1)(K X +1) is Cartier

}
←→

{
Nontrivial cyclic Fe

∗
R-submodules

of HomR(Fe
∗

R, R)

}
←→

{
Nonzero elements of

HomR(Fe
∗

R, R)

}/
∼ ←→

{
Nonzero R{Fe

}-module
structures on ER

}/
∼

The first equivalence relation identified two maps if they agree up to precompo-
sition with multiplication by a unit of Fe

∗
R (as above). The second equivalence

relation identified two maps if they agree up to postcomposition with multiplication
by a unit of Fe

∗
R.

Corollary 3.15. Suppose that S is a regular F-finite ring such that Fe
∗

S is free as
an S-module and that R = S/I is a quotient that is normal. Further suppose that
HomR(Fe

∗
R, R)∼= Fe

∗
R (in particular, R is Q-Gorenstein with index not divisible

by p). Write (I [p
e
]
: I )= I [p

e
]
+ ( fe) just as in Corollary 3.4. Then for all n > 0,

(I [p
ne
]
: I )= I [p

ne
]
+ ( f 1+pe

+···+p(n−1)e

e ).

4. Application to centers of sharp F-purity

In [Schwede 2008a], we introduced a notion called centers of sharp F-purity (also
known as F-compatible ideals), a positive characteristic analog of a center of log
canonicity; see for example [Kawamata 1997a; 1998]. Our main goal in this section
is to prove several finiteness theorems about centers of sharp F-purity.

Recall that an ideal I is called F-compatible with respect to (R,1) if for every
e > 0 and every φ ∈ HomR(Fe

∗
R(d(pe

− 1)1e),1), we have φ(Fe
∗

I ) ⊆ I . One
limitation of the definition of F-compatible ideals is that it seems to require check-
ing infinitely many e > 0 (and infinitely many φ). However, for radical ideals I ,
assuming that (pe

− 1)K X is Cartier, we will show that it is enough to check the
condition only for that e.

Proposition 4.1. Suppose that R is a normal F-finite ring. Further suppose that1
is an effective Q-divisor such that HomR(Fe

∗
R((pe

−1)1), R) is free as an Fe
∗

OX -
module. Then a radical ideal I ⊂ R is F-compatible with respect to (R,1) if and
only if Te(Fe

∗
I )⊆ I where Te is a Fe

∗
R-module generator of

Hom(Fe
∗

R((pe
− 1)1), R).
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Proof. Since a radical ideal I is F-compatible if and only if its minimal associated
primes are F-compatible, see Lemma 2.17(5), without loss of generality we may
assume that I is prime. Furthermore, since F-compatible ideals behave well with
respect to localization, see [Schwede 2008a, Lemma 3.7], we may also assume that
R is local and that I =m is maximal.

Suppose that φ : Fb
∗

R(d(pb
−1)1e)→ R satisfies the property that φ(Fb

∗
m)*m,

we will obtain a contradiction. Therefore, for some element x ∈ m, we have that
φ(Fb

∗
x)= u where u is a unit in R. By scaling φ, we may assume that u= 1. Now

choose integers n and m such that nb=me. Consider the function ψ : Fnb
∗

R→ R
defined by the rule

ψ(Fnb
∗

)= φ
(

x Fb
∗
φ
(
x F2b
∗
φ(x · · · F (n−1)b

∗
φ(Fnb

∗
) · · · )

))
.

Notice that ψ(Fnb
∗

x) = 1. On the other hand, HomR(Fme
∗

R((pme
− 1)1), R) is

generated by T composed with itself m−1 times. Notice that since T sends m into
m, so does its composition. Therefore, to obtain our contradiction we simply have
to check thatψ ∈HomR(Fnb

∗
R, R) is an element of HomR(Fme

∗
R((pme

−1)1), R).
But that is straightforward since it was constructed by composing φ with itself
(using the fact that we round up, not down, so that pa

d(pb
−1)1e+d(pa

−1)1e≥
d(pa+b

− 1)1e ). �

Remark 4.2. For a sharply F-pure pair (R,1), all F-compatible ideals are radical.

Corollary 4.3. Suppose that φ : Fe
∗

R→ R is a Frobenius splitting and R is an F-
finite normal ring. Then the centers of sharp F-purity for the pair (R,1φ) coincide
with the subschemes of X = Spec R compatibly split with φ.

Remark 4.4. One might ask if an analog of Proposition 4.1 holds for nonradical
ideals, and we do not know the answer in general. However, in [Schwede 2008a], it
was shown that the nonfinitistic/big test ideal is the unique smallest F-compatible
ideal that intersects nontrivially with R◦. Using the additional structure of the big
test ideal, we are able to prove an analogous result (in fact, the proof is very similar
to a special case of [Takagi 2008, Proposition 3.5(3)]).

Definition 4.5. Suppose that φe ∈ HomR(Fe
∗

R, R) is a map. For every integer
n ≥ 0, we define φne ∈ HomR(Fne

∗
R, R) to be the map obtained by composing φe

with itself n−1 times, just as in Theorem 3.11(e). We set φ0 to be the identity map
in HomR(R, R).

Our next goal is to characterize the big test ideal using this machinery. First
however, we need two lemmas.

Lemma 4.6. Suppose that a is an ideal generated by l elements and that m and k
are integers. Then:

(am)[p
k
]
⊇ apkm+l(pk

−1).
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Proof. Let f1, . . . , fl be a set of generators for a. Then apkm+l(pk
−1) is generated

by the elements of the form
f b1
1 . . . f bl

l ,

where
∑l

i=1 bi= pkm+l(pk
−1). We will show that each such element is contained

in (am)[p
k
]. Write each bi = qi pk

+ ri where 0≤ ri < pk . Thus we have

f b1
1 · · · f bl

l = ( f q1
1 · · · f ql

l )
pk
( f r1

1 · · · f rl
l ).

Note
∑l

i=1 ri ≤ l(pk
− 1). Therefore,

pkm+ l(pk
− 1)=

l∑
i=1

bi =

(
pk

l∑
i=1

qi

)
+

( l∑
i=1

ri

)
≤

(
pk

l∑
i=1

qi

)
+ l(pk

− 1),

which implies that pkm ≤ pk ∑l
i=1 qi , in particular, m ≤

∑l
i=1 qi . Therefore,

( f q1
1 · · · f ql

l )
pk
∈ (am)[p

k
]

and so f b1
1 · · · f bl

l ∈ (a
m)[p

k
] as desired. �

Lemma 4.7. Suppose that a is an ideal of R which can be generated by l elements
and such that a∩ R◦ 6=∅. Fix an e > 0. Then there exists an element c′ ∈ R◦ such
that

c′adt (p
ne+k
−1)e
⊆ (adt (p

ne
−1)e)[p

k
]

for all n > 0 and all k < e.

Proof. First note that we have

(adt (p
ne
−1)e)[p

k
]
⊇ apk

dt (pne
−1)e+l(pk

−1)
⊇ apk

dt (pne
−1)e+lpe

.

The first containment holds by Lemma 4.6 above. Thus it is sufficient to find a c′

such that c′adt (p
ne+k
−1)e
⊆ apk

dt (pne
−1)e+lpe

. Choose c′ ∈ a(l+1)pe
∩ R◦. We need to

show that
(l + 1)pe

+dt (pne+k
− 1)e ≥ pk

dt (pne
− 1)e+ lpe.

However,

pk
dt (pne

− 1)e+ lpe
≤ pk
bt (pne

− 1)c+ pe
+ lpe

≤ bpk t (pne
− 1)c+ (l + 1)pe

≤ dt (pne+k
− 1)e+ (l + 1)pe

as desired. �

Proposition 4.8. Suppose that R is a normal F-finite ring, that 1 is an effective
Q-divisor such that (pe

− 1)1 is integral, and that HomR(Fe
∗

R((pe
− 1)1), R) is

of rank one and free as an Fe
∗

R-module with generator Te (viewed as an element of
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HomR(Fe
∗

R, R)). Set Tne to be the map obtained by composing Te with itself n−1
times. Then we have the following:

(i) The big test ideal τb(R;1) is the unique smallest ideal J whose intersection
with R◦ is nontrivial and which satisfies Te(Fe

∗
J )⊆ J .

(ii) Furthermore, if a is an ideal such that a∩ R◦ 6=∅ and t > 0 is a real number,
then the big test ideal τb(R;1, at) is the unique smallest ideal J whose inter-
section with R◦ is nontrivial and which satisfies Tne(Fne

∗
adt (p

e
−1)e J ) ⊆ J for

all integers n > 0.

Proof. For (i), note that the big test ideal τb(R;1) satisfies Te(Fe
∗
τb(R;1)) ⊆

τb(R;1), thanks to [Schwede 2008a, Proposition 6.1]. Thus we simply have to
show it is the smallest such ideal. Likewise for (ii), τb(R;1, at) satisfies the con-
dition Tne(Fne

∗
adt (p

e
−1)eτb(R;1, at))⊆ τb(R;1, at) for all integers n > 0, so we

must show that it is the smallest such ideal.
We now claim that statement is local in order to assume that R= (R,m) is a local

ring. We outline the proof of this claim in case (i) since case (ii) is essentially the
same. Suppose that J is an ideal which satisfies both J∩R◦ 6=∅ and Te(Fe

∗
J )⊆ J .

Then J + τb(R;1) also satisfies both conditions. Note that J does not contain
τb(R;1) if and only if we have the strict containment J + τb(R;1) ) J . But in
such a case, we can localize at a maximal ideal where the same strict containment
holds. Thus we have reduced to the local case. Therefore, from this point forward,
we assume that R is a local ring with maximal ideal m.

Suppose that J is an ideal such that Te(Fe
∗

J ) ⊆ J — alternatively, such that
Tne(Fne

∗
adt (p

ne
−1)e J ⊆ J , for all n > 0 — and such that J ∩ R◦ 6= ∅. In case (i),

notice also that Tne(Fne
∗

J )⊆ J for all positive integers n (and thus φ(Fne
∗

J )⊆ J for
all φ ∈HomR(Fne

∗
R((pne−1

−1)1), R) since Tne is also a generator by Corollary
3.10).

In the setting of (i), fix d ∈ J ∩ R◦. By applying Matlis duality, we see that the
composition

ER/J // ER // ER ⊗R Fne
∗

R // ER ⊗R Fne
∗

R((pne
− 1)1)

Fne
∗ (×d)

// ER ⊗R Fne
∗

R((pne
− 1)1)

is zero for every integer n > 0. Likewise, in the setting of (ii), for each d ∈ J ∩ R◦

and each a ∈ adt (p
ne
−1)e, we have that the composition

ER/J // ER // ER ⊗R Fne
∗

R // ER ⊗R Fne
∗

R((pne
− 1)1)

Fne
∗ (×da)

// ER ⊗R Fne
∗

R((pne
− 1)1)

is zero for every integer n > 0.
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We now want to show that ER/J ⊂ 0∗1ER
(respectively ER/J ⊂ 0∗1,a

t

ER
) because

AnnR(0∗1ER
) = τb(R;1) (respectively AnnR(0

∗1,at

ER
) = τb(R;1, at)). Therefore,

choose z ∈ ER/J . By assumption dz pne
= 0 ∈ ER ⊗R Fne

∗
R((pne

− 1)1) for all
n> 0 (respectively, dadt (p

ne
−1)ez pne

= 0∈ ER⊗R Fne
∗

R((pne
−1)1) for all n> 0).

We need to verify a similar statement for powers of p that are not multiples of e,
and so now the proof becomes quite similar to [Hochster and Huneke 1990, Lemma
8.16].

In the setting of (i), we claim that Fne
∗

R((pne
− 1)1) naturally maps to

Fk+ne
∗

R(d(pk+ne
− 1)1e)

for any k > 0 via the k-iterated action of Frobenius. To see this explicitly, apply
HomR(R(−d(pne

− 1)1e), ) to the map R → Fk
∗

R(d(pk
− 1)1e). Tensoring

with ER then gives us a map

Fne
∗

R((pne
− 1)1)⊗R ER → Fk+ne

∗
R(d(pk+ne

− 1)1e)⊗R ER

dz pne
= d ⊗ z 7→ d pk

⊗ z = d pk
z pk+ne

which factors the map ER→ Fk+ne
∗

R(d(pk+ne
− 1)1e)⊗R ER . Hence, d pk

z pne+k

vanishes for all k, n > 0.
Choose c = d pe−1

and choose j > 0 arbitrary. Write j = ne+ k where k < e.
Then

cz p j
= d pe−1

z pne+k
= d pe−1

−pk
d pk

z pne+k
= d pe−1

−pk
0= 0,

as desired. Therefore, ER/J ⊂ 0∗1ER
so that

J = AnnR(ER/J )⊇ AnnR(0∗1ER
)= τb(R;1),

which proves (i).
In case (ii), using a similar argument, we still have d pk

(adt (p
ne
−1)e)[p

k
]z pne+k

= 0
for all k, n > 0. By Lemma 4.7, there exists a c′ ∈ R◦ such that

c′adt (p
ne+k
−1)e
⊆ (adt (p

ne
−1)e)[p

k
]

for all n > 0 and all k < e.
Set c= c′d pe−1

, choose j > 0 arbitrary and write j = ne+ k where k < e. Then

cadt (p
j
−1)ez p j

= d pe−1
c′adt (p

ne+k
−1)ez pne+k

⊆ d pe−1
−pk

d pk
(adt (p

ne
−1)e)[p

k
]z pne+k

= d pe−1
−pk

0= 0,

as desired. �
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5. F-adjunction

In this section, we reinterpret the following observation using the language from
the previous sections.

Observation 5.1. Suppose that (R,m) is an F-finite local ring and

φ ∈ HomR(Fe
∗

R, R).

Further suppose that I is a proper ideal of R such that φ(Fe
∗

I )⊆ I . Then there is
a diagram

Fe
∗

R

Fe
∗α

��

φ // R

α

��
Fe
∗
(R/I )

φI // R/I

where the vertical arrows are the natural quotients.
• Because R is local, φ is surjective if and only if φI is surjective.

When we apply the correspondence between effective Q-divisors and

φ ∈ HomR(Fe
∗

R, R),

we obtain the following result.

Theorem 5.2. Suppose that R is a reduced F-finite normal ring and that (R,1).
Assume also that (pe

−1)1 is an integral divisor such that we have an isomorphism
HomR(Fe

∗
R((pe

−1)1), R)∼= Fe
∗

R of Fe
∗

R-modules. Further suppose that I ⊂ R is
F-compatible with respect to (R,1) and that R/I is normal. Finally suppose that
(R,1) is sharply F-pure at the generic points of Spec R/I (that is, after localizing
at the minimal primes of I ). Then there exists a canonically determined effective
Q-divisor 1R/I on Spec R/I satisfying the following properties:

(i) (pe
− 1)(K R/I +1R/I ) is an integral Cartier divisor

(ii) HomR/I
(
Fe
∗
((R/I )((pe

− 1)1R/I )), R/I
)
∼= Fe

∗
(R/I ) as Fe

∗
(R/I )-modules.

(iii) (R,1) is sharply F-pure near Spec R/I if and only if (R/I,1R/I ) is sharply
F-pure.

(iv) For any ideal a⊆ R which is not contained in any minimal prime of I and any
real number t > 0, we have that (R,1, at) is sharply F-pure near Spec R/I
if and only if (R/I,1R/I , a

t) is sharply F-pure.

(v) I is maximal with respect to containment among F-compatible ideals for the
pair (R,1) (in other words, I is a minimal center of sharp F-purity), if and
only if (R/I,1R/I ) is a strongly F-regular pair and R/I is a domain.4

4In fact, if we assume that I is maximal among F-compatible ideals, then it follows that R/I is
a normal domain and so the assumption that R/I is normal is unnecessary.
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(vi) There exists a natural bijection between the centers of sharp F-purity of
(R/I,1R/I ) and the centers of sharp F-purity of (R,1) which contain I .

Remark 5.3. Roughly speaking, properties (iii), (iv), (v) and (vi) imply that the
singularities of (R/I,1R/I ) are very closely related to the singularities of (R,1)
near I . Compare with [Kawamata 1998; 2007; 2008; Ein and Mustaţă 2009; Am-
bro 1999; Ein et al. 2003].

Proof. Given 1 as above, associate a φ ∈ HomR(Fe
∗

R, R) as in Theorem 3.13.
Just as in Observation 5.1, we associate a φI ∈HomR/I (Fe

∗
(R/I ), R/I ), to which

we associate a divisor 1R/I . By construction (and using Theorem 3.11) we see
that the existence and that properties (i) and (ii) are obvious. For the rest of the
properties, it is harmless to assume that R is local. Notice that the map φI is not
the zero map on any irreducible component of Spec R/I because (R,1) is sharply
F-pure at the minimal primes of I . To show that 1R/I is canonically determined,
note that if one chooses a different φ : Fe

∗
R→ R associated to 1, the associated

map φI will differ from the original choice by multiplication by a unit, and so1R/I

will not change. Likewise, if one chooses a different e > 0, then using Theorem
3.11(e,f), we obtain the same 1R/I yet again.

In terms of (iii), this simply follows from Observation 5.1. Notice now that (iv)
is a generalization of (iii). Condition (iv) follows by an argument similar to the
one in Observation 5.1 since we simply consider a diagram

Fd
∗

R

Fd
∗ α

��
Fd
∗ α

��

Fd
∗ (×a)

// Fd
∗

R

Fd
∗ α

��

φn
// R

α

��
Fd
∗

R/I
Fd
∗ (×a)

// Fd
∗

R/I
φn

I // R/I

for each d = ne instead and various a ∈ adt (p
d
−1)e. In the diagram above, φn is the

composition of φ with itself n−1 times as before. Now again, the map obtained
by composing the bottom row is surjective if an only if the map obtained from
composing the top row is surjective.

Condition (v) will follow from (vi) since a pair is strongly F-regular if and only
if it has no centers of sharp F-purity. Therefore, we conclude by proving (vi).
Suppose that P ∈ Spec R contains I , and corresponds to P ∈ Spec R/I . We will
show that P is a center of sharp F-purity of (R,1) if and only if P is a center of
sharp F-purity for (R/I,1R/I ). First suppose that P is a center of sharp F-purity
for (R,1). This is equivalent to the condition that φ(Fe

∗
P)⊆ P . This implies that

φI (Fe
∗

P)⊆ P). The converse direction reverses this and is essentially the same as
the argument given in the proof of [Schwede 2008a, Proposition 7.5]. �
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Remark 5.4. I do not know if one can somehow generalize the “centers of sharp
F-purity” of condition (vi) to all F-compatible ideals. It is not hard to see that
one does obtain a bijection between radical F-compatible ideals since they are
intersections of centers of sharp F-purity. Section 6 is concerned with proving an
analog of (vi) for the big test ideal.

Using the ideas of Fedder’s criterion, we also obtain the following result.

Theorem 5.5. Suppose that S is a regular F-finite ring such that Fe
∗

S is a free S
module (for example, if S is local) and that R = S/I is a quotient that is a normal
domain. Further suppose that 1R is an effective Q-divisor on Spec R such that
HomR(Fe

∗
R((pe

− 1)1), R) is a rank one free Fe
∗

R-module (for example, if R is
local and (pe

− 1)(K R +1) is Cartier). Then there exists an effective Q-divisor
1S on Spec S such that:

(a) (pe
− 1)(KS +1S) is Cartier.

(b) I is (1S, F)-compatible and (S,1S) is sharply F-pure at the minimal asso-
ciated primes of I (that is, at the generic points of Spec S/I ).

(b) 1S induces 1R as in Theorem 5.2.

Proof. The key point is that every map Fe
∗

R→ R is obtained by restricting a map
Fe
∗

S → S to R, see [Fedder 1983, Lemma 1.6]. Note that condition (b) follows
immediately since the map Fe

∗
R→ R we are concerned with is nonzero. �

Remark 5.6. The 1S constructed in the above theorem is in no way canonically
chosen.

Remark 5.7. I do not know of anything like a characteristic zero analog of this
except in the case that X ⊆ Y is a complete intersection [Ein and Mustaţǎ 2004];
also compare with [Kawakita 2008; Ein and Mustaţă 2009].

We now show that for an F-pure pair, there are at most finitely many centers
of sharp F-purity (equivalently there are at most finitely many (1, F)-compatible
ideals). We give a proof that is written using the language of divisors. However
the same proof may be given without this language (this was done in a preprint of
this paper). This result was proved for local rings in [Schwede 2008a, Corollary
5.2], using the method of [Enescu and Hochster 2008] or a modification of the
method of [Sharp 2007]. Finally, essentially the same result has also been obtained
independently in [Metha and Kumar 2009].

Theorem 5.8. If (R,1, a•) is sharply F-pure, then there are at most finitely many
centers of sharp F-purity.
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Proof. We may prove this on a finite affine cover of Spec R. Thus, we may assume5

there exists a map φ : Fe
∗

R(d(pe
−1)1e)→ R that sends some element a∈ Fe

∗
ape−1

to 1. Note, every center of sharp F-purity Q ∈ Spec R for (R,1, a•) satisfies
φ(Fe

∗
aQ) ⊆ Q. Our goal is to show that there are finitely many prime ideals Q

such that φ(Fe
∗

aQ)⊆ Q.
First note that we can replace φ( ) by φ(a × ) and so ignore the term a.

For a contradiction, assume there are infinitely many such prime ideals Q such
that φ(Fe

∗
Q) ⊆ Q. We choose a collection Q of infinitely many primes ideals Q

satisfying:

(i) φ(Fe
∗

Q)⊆ Q.

(ii) All Q ∈Q have the same height.

(iii) The closure of the set Q in the Zariski topology is an irreducible (possibly
nonproper) closed subset W of Spec R. We set P to be the generic point of
that subset W (in other words, P = ∩Q∈QQ).

Using the pigeonhole principle, it is not difficult to see that a set Q satisfying
conditions (i), (ii) and (iii) exists.

We make two observations about the prime ideal P:

• P must have smaller height than the elements of Q.

• P satisfies φ(Fe
∗

P)⊆ P since P is the intersection of the elements of Q.

By restricting to an open affine set of Spec R containing P , we may assume that
R/P is normal (the elements of Q will still form a dense subset of Spec R/P).
Therefore, φ induces a divisor 1P on Spec R/P as in Theorem 5.2. The set of
elements in Q restrict to centers of sharp F-purity for (R/P,1P) by Theorem
5.2(vi). As noted above, {Q/P | Q ∈Q} is dense in Spec R/P and simultaneously
{Q/P | Q ∈ Q} is contained in the nonstrongly F-regular locus of (R/P,1P),
which is closed and proper. This is a contradiction. �

Remark 5.9. If one wishes to assume that R is not necessarily normal and that
1 = 0, or even that 1 is some sort of appropriate generalization of a Q-divisor
(see for example [Hartshorne 2007] or [Kollár et al. 1992, Chapter 16]), the proof
goes through without change.

Corollary 5.10. Suppose that X is a noetherian F-finite Frobenius split scheme
with splitting φ : Fe

∗
OX→ OX , then there exists at most finitely many φ-compatibly

split subschemes.

Proof. Use a finite affine cover of X . On each open affine subset, there are finitely
many compatibly split subschemes by the above argument. �

5This happens after localizing each point, so it happens in a neighborhood of each point, so we
may use such neighborhoods to cover Spec R
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6. Comments on adjoint-like test ideals and restriction theorems

Based on the work of Takagi, it is natural to hope that there is a restriction theorem
of (generalized) adjoint-like test ideals, similar to the ones in [Takagi 2007; 2008].
Using the results of the previous section, we can accomplish this.

Definition 6.1. Suppose that R is F-finite normal ring and that (R,1, at) is a
triple. Further suppose that :

(a) Q ∈ Spec R is a center of sharp F-purity for (R,1).

(b) a∩ (R \ Q) 6=∅.

(c) (RQ,1|Spec RQ ) is sharply F-pure.

(d) R/Q is normal.

(e) There exists an integer e0 such that HomR(F
e0
∗ R((pe0 − 1)1), R) is free as

an Fe0
∗ R-module.

(f) The integer e0 is the smallest positive integer satisfying condition (e).

Fix a map φe0 = φ : F
e0
∗ R→ R corresponding to 1. We define the big test ideal of

(R,1, at) outside of Q, denoted τb(R;* Q;1, at) (if it exists), to be the smallest
ideal J satisfying the following two conditions:

• J is not contained in Q (that is, J ∩ (R \ Q) 6=∅).

• φne0(F
ne0
∗ adt (p

ne0−1)e J )⊆ J for all n ≥ 0 where φne0 is as in Definition 4.5.

Remark 6.2. With regard to Definition 6.1(b), using the fact that

a∩ (R \ Q) 6=∅,

we see that Q is a center of sharp F-purity for (R,1) if and only if it is a center
of sharp F-purity for (R,1, at). Likewise, the localized pair (RQ,1|Spec RQ ) is
sharply F-pure if and only if the localized triple

(RQ,1|Spec RQ , (aRQ)
t)

is sharply F-pure since aRQ = RQ .

Remark 6.3. It is unnecessary to choose e0 to be the smallest integer satisfying
condition (e). If one uses any integer e0 satisfying condition (e), then one obtains
the same τb(R,* Q;1, at). We will not verify this here as the proof is rather
involved and is essentially the same argument as in Proposition 4.8.

Remark 6.4. It is also interesting to study the smallest ideal J which properly
contains Q and such that φne0(F

ne0
∗ adt (p

ne0−1)e J ) ⊆ J for all n ≥ 0 (again, if it
exists). For future reference, we will denote that ideal by τb(R,⊇ Q;1, at).
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Remark 6.5. If a = R, then τb(R,* Q;1) = τb(R,* Q;1, at) is the unique
smallest ideal not contained in Q such that φe0(F

e0
∗ J ) ⊆ J . Likewise, if a = R,

τb(R,⊇ Q;1) = τb(R,⊇ Q;1, at) is the smallest ideal properly containing Q
such that φe0(F

e0
∗ J )⊆ J .

Remark 6.6. It is probably interesting to look at nonprime radical ideals Q which
are F-compatible with respect to (R,1). Set R◦Q to be the set of elements not
contained in any minimal prime of Q. In that case, one should probably consider
ideals J minimal with respect to the conditions that J∩R◦Q 6=∅ and φ(Fe0

∗ J )⊆ J .
If one takes Q to be the zero ideal of R, then τb(R,* Q;1) is just the usual big
test ideal, see Proposition 4.8. However, in this paper, we will not work in this
generality.

Remark 6.7. Suppose that the ideals τb(R,* Q;1, at) and τb(R,⊇ Q;1, at)

exist. Notice that τb(R,* Q;1, at)⊆ τb(R,⊇ Q;1, at). Furthermore, we claim
that

τb(R,* Q;1, at)+ Q = τb(R,⊇ Q;1, at). (6.7.1)

The containment ⊇ follows from the definition of τb(R,⊇ Q;1, at) because
τb(R,* Q;1, at)+ Q satisfies

φne0(F
ne0
∗

adt (p
ne0−1)e(τb(R,* Q;1, at)+ Q))⊆ τb(R,* Q;1, at)+ Q (6.7.2)

since both Q and τb(R,* Q;1, at) satisfy the condition of Equation (6.7.2). But
then since both τb(R,* Q;1, at) and Q are contained in τb(R,⊇ Q;1, at), we
are done.

We can now prove that τb(R,⊇ Q;1, at) exists.

Proposition 6.8. Suppose that (R,1, at) and Q ∈ Spec R are as in Definition
6.1. Further suppose that α : R → R/Q is the natural surjection. Suppose that
1R/Q is the Q-divisor on Spec R/Q corresponding to 1 as in Theorem 5.2. Then
τb(R,⊇ Q;1, at) exists and is equal to α−1(τb(R/Q;1R/Q, a

t)). In particular

τb(R,⊇ Q;1, at)/Q = τb(R,⊇ Q;1, at)|R/Q = τb(R/Q;1R/Q, a
t).

Proof. As noted before, it is easy to see that if J contains Q and

φne0(F
e
∗
adt (p

ne0−1)e J )⊆ J,

then φne0,Q(F
e
∗
adt (p

ne0−1)e(J/Q))⊆ J/Q. Conversely, if we have an ideal J ⊇ Q
such that φne0,Q(F

e
∗
adt (p

ne0−1)e(J/Q))⊆ J/Q then

φne0(F
e
∗
adt (p

ne0−1)e J )⊆ J + Q = J.

But ideals of R containing Q are in bijection with ideals of R/Q. This completes
the proof. �
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Once we have verified that τb(R,* Q;1, at) exists, Proposition 6.8 will im-
mediately imply the following restriction theorem.

Corollary 6.9. Suppose that (R,1, at) and Q ∈ Spec R are as in Definition 6.1.
Further suppose that 1R/Q is the Q-divisor on R/Q corresponding to 1 as in
Theorem 5.2. Then

τb(R,* Q;1, at)|R/Q = (τb(R,* Q;1, at)+ Q)|R/Q = τb(R/Q;1R/Q, a
t).

Proof. Apply Proposition 6.8 and Equation (6.7.1). The result will follow once we
know that τb(R,* Q;1, at) exists. �

The rest of the section will be devoted to proving that the ideal τb(R,* Q;1, at)

exists.

Remark 6.10. One way to do this is by working out a version of tight closure
theory using c ∈ R \ Q instead of c ∈ R◦. However, we will use a more direct
approach.

We begin with several lemmas which are essentially the same as those used in
the proof the existence of test elements. The main technical result of the section is
Proposition 6.14, which combines the following three lemmas.

Lemma 6.11. Suppose that (R,1) is a sharply F-pure pair, (pe
− 1)(K R +1)

is integral, and that HomR(Fe
∗

R((pe
− 1)1), R) is free as an Fe

∗
R-module with

generator φe (by restriction, we also view φe as an element of HomR(Fe
∗

R, R)).
Further suppose that d ∈ R is an element not contained in any center of F-purity
for (R,1).

Then:

(i) 1 ∈ φn0e(F
n0e
∗ (d R)) for some n0 > 0.

(ii) There exists n0 > 0 such that 1 ∈ φne(Fne
∗
(d R)) for all n ≥ n0.

Proof. We begin by proving (i). First we claim that the statement is local. Another
way to phrase the conclusion of the lemma is that φne(Fne

∗
(d R)) = R. However,

φne(Fne
∗
(d R)) = R (for a fixed n) if and only if it is true after localizing at each

maximal ideal. Conversely, if (φni e)mi (F
ni e
∗ d Rmi ) = Rmi after localizing at some

maximal ideal mi for some ni , then it holds in a neighborhood of mi for the same ni .
Cover Spec R by a finite number of such neighborhoods and choose a sufficiently
large n that works on all neighborhoods.6 Therefore we may assume that R =
(R,m) is local. Note that this is essentially the same as the usual proof that strong
F-regularity localizes.

6Note that if 1 ∈ φne(Fne
∗ (d R)) then 1 ∈ φne(Fne

∗ R). By composition, this implies that 1 ∈
φmne(Fmne

∗ (d R)) for all integers m > 0.
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Choose a minimal center Q of sharp F-purity for (R,1) and mod out by Q. It
follows that (R/Q,1R/Q) is strongly F-regular and also that d 6= 0 ∈ R/Q.

In particular, for some n > 0, we have φne(Fne
∗

d R/Q) = R/Q. Therefore, we
can find an element b ∈ R/Q such that φne(Fne

∗
db) = 1 ∈ R/Q. By choosing an

arbitrary b ∈ R such that the coset b+ Q = b, we see that φne(Fne
∗

db)= 1+ x for
some x ∈ Q. Since R is local, Q⊆m and 1+x is a unit, we have 1∈φne(Fne

∗
(d R))

as desired.
We now prove (ii). Let n0 be the integer from part (i). It follows that 1 ∈

φn0e(F
n0e
∗ R) so there exists an element f ∈ R such that 1 = φn0e(F

n0e
∗ f ). In

particular, the map
Fn0e
: R→ Fn0e

∗
R((pn0e

− 1)1)
1 7→ Fn0e

∗
1

splits. This implies that Fe
: R→ Fe

∗
R((pe

−1)1) also splits. But then 1∈φe(Fe
∗

R)
since φe was chosen as a generator of HomR(Fe

∗
R((pe

− 1)1), R). Therefore we
see that,

1 ∈ φe(Fe
∗

R)= φe(Fe
∗
φne(Fne

∗
(d R)))= φ(n+1)e(F (n+1)e

∗
(d R)).

Repeatedly applying φe will then complete the proof of (ii). �

Lemma 6.12. Suppose that (R,1, at) is a triple and Q ∈ Spec R is a center of
F-purity satisfying the conditions from Definition 6.1. Then there exists an element
c ∈ R \ Q that satisfies the following condition:

For all d ∈ R \ Q and for all sufficiently large n > 0, there exists an integer
m′ > 0 (which depends on both n and d) such that cm′

∈ φne0(F
ne0
∗ dadt (p

ne
−1)e).

Proof. Choose c ∈ a∩ (R \ Q) so that

(a) (Rc,1|Spec Rc) is sharply F-pure.

(b) There are no centers of sharp F-purity for (Rc,1|Spec Rc) which contain Q Rc

(as an ideal).

(c) All centers of sharp F-purity for (Rc,1|Spec Rc) are contained in Q Rc (as
ideals).

In particular, d/1 ∈ Rc is not contained in any centers of sharp F-purity for
(Rc,1|Spec Rc). Note conditions (b) and (c) above may be summarized by saying
that Q Rc is the unique maximal height (as an ideal) center of sharp F-purity.

Therefore, by Lemma 6.11, we know that for all n� 0, 1∈ (φne0)c(F
ne0
∗ (d Rc)).

This implies that cm′
∈ φne0(F

ne0
∗ dadt (p

ne0−1)e) for some m′. �

Lemma 6.13. Suppose that for some e > 0, we have a map γe : Fe
∗

R → R such
that b ∈ γe(Fe

∗
adt (p

e
−1)e). Then for all n > 0, b2

∈ γne(Fne
∗

adt (p
ne
−1)e). Here γne is

the map obtained by composing γ with itself n−1 times, as in Definition 4.5.
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Proof. We proceed by induction. The case n = 1 was given by hypothesis. Now
suppose the result holds for n (that is, b2

∈ γne(Fne
∗

adt (p
ne
−1)e)). However,

b2
∈ bγe(Fe

∗
adt (p

e
−1)e)= γe

(
Fe
∗
adt (p

e
−1)ebpe)

⊆ γe
(
Fe
∗
adt (p

e
−1)eb2)

⊆ γe
(
Fe
∗
adt (p

e
−1)eγne(Fne

∗
adt (p

ne
−1)e)

)
= γe

(
Fe
∗
γne(Fne

∗
(adt (p

e
−1)e)[p

ne
]adt (p

ne
−1)e)

)
⊆ γ(n+1)e

(
F (n+1)e
∗

adt (p
(n+1)e

−1)e),
as desired. �

We now come to the main technical result of the section.

Proposition 6.14. Assume the notation and conventions from Definition 6.1. There
is an element b ∈ R\Q such that for every d ∈ R\Q, there exists an integer nd > 0
such that b ∈ φnd e0(F

nd e0
∗ dadt (p

nd e0−1)e). Note that b does not depend on d.

Proof. Fix c ∈ R \ Q satisfying Lemma 6.12. Then there exist integers n1,m1 > 0
such that cm1 ∈ φn1e0(F

n1e0
∗ (1)adt (p

n1e0−1)e). An application of Lemma 6.13 then
implies that c2m1 ∈ φnn1e0(F

nn1e0
∗ (1)adt (p

nn1e0−1)e) for all n > 0. We will show that
c3m1 = b works.

Likewise, by Lemma 6.12, for some n′ > 0 there exists md such that

cmd ∈ φn′e0

(
Fn′e0
∗

(d)adt (p
n′e0−1)e).

If md < 3m1, we are done (set nd = n′). Otherwise, choose n > 0 such that
m1 pnn1e0 ≥ md . Then,

c3m1 = cm1c2m1 ∈ cm1φnn1e0

(
Fnn1e0
∗

adt (p
nn1e0−1)e)

= φnn1e0

(
Fnn1e0
∗

adt (p
nn1e0−1)ecm1 pnn1e0 )

⊆ φnn1e0

(
Fnn1e0
∗

adt (p
nn1e0−1)ecmd

)
⊆ φnn1e0

(
Fnn1e0
∗

adt (p
nn1e0−1)eφn′e0(F

n′e0
∗

(d)adt (p
n′e0−1)e)

)
= φnn1e0

(
Fnn1e0
∗

φn′e0(F
n′e0
∗

(d)(adt (p
nn1e0−1)e)[p

n′e0 ]adt (p
n′e0−1)e)

)
⊆ φ(nn1+n′)e0

(
F (nn1+n′)e0
∗

(d)adt (p
(nn1+n′)e0−1)e).

Thus we can choose nd = nn1+ n′, which completes the proof. �

Remark 6.15. The b from the previous proposition can be used as a big sharp test
element for the variant of tight closure mentioned in Remark 6.10. In fact, to prove
the existence of big sharp test elements, one still has to prove Proposition 6.14 or
something closely related to it.
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Definition 6.16 [Hara and Takagi 2004] . Fix b as in Proposition 6.14. Then we
define the ideal τ̃ (R; b,1, at) as follows:

τ̃ (R; b,1, at) :=
∑
n≥0

φne0(F
ne0
∗

badt (p
ne0−1)e).

Note that the sum stabilizes as a finite sum since R is noetherian.

We make several observations about this ideal (and then we will show it is equal
to τb(R,* Q;1, at)).

Lemma 6.17. With notation as above, we have the following two results:

(i) b ∈ τ̃ (R; b,1, at). In particular, τ̃ (R; b,1, at)∩ (R \ Q) 6=∅.

(ii) For all n′ ≥ 0, φn′e0(F
n′e0
∗ adt (p

n′e0−1)eτ̃ (R; b,1, at))⊆ τ̃ (R; b,1, at).

Proof. For (i), simply set d = b and apply Proposition 6.14. For (ii), notice we
have the inclusion

φn′e0

(
Fn′e0
∗

adt (p
n′e0−1)eτ̃ (R; b,1, at)

)
= φn′e0

(
Fn′e0
∗

adt (p
n′e0−1)e ∑

n≥0
φne0(F

ne0
∗

badt (p
ne0−1)e)

)
⊆ φn′e0

(
Fn′e0
∗

∑
n≥0

φne0(F
ne0
∗

badt (p
(n+n′)e0−1)e)

)
=
∑

n≥n′
φne0(F

ne0
∗

badt (p
ne0−1)e)⊆ τ̃ (R; b,1, at). �

Theorem 6.18. For b ∈ (R \ Q) as in Proposition 6.14, the ideal τ̃ (R; b,1, at) is
the unique smallest ideal J that satisfies

J ∩ (R \ Q) 6=∅ and φne0(F
ne0
∗

adt (p
ne0−1)e J )⊆ J for all n ≥ 0.

Therefore τb(R,* Q;1, at)= τ̃ (R; b,1, at).

Proof. The previous lemma proves that τ̃ (R; b,1, at) satisfies the two conditions.
Suppose that J is any other ideal that also satisfies the two conditions in Theorem
6.18. Choose d ∈ J ∩ (R \ Q). By hypothesis,∑

n≥0

φne0(F
ne0
∗

dadt (p
ne0−1)e)⊆

∑
n≥0

φne0(F
ne0
∗

adt (p
ne0−1)e J )⊆ J,

and so by Proposition 6.14, we see that b ∈ J . But then

τ̃ (R; b,1, at)=
∑
n≥0

φne0(F
ne0
∗

badt (p
ne0−1)e)

⊆

∑
n>0

φne0(F
ne0
∗

adt (p
ne0−1)e J )⊆ J. �
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Remark 6.19. Theorem 6.18 implies that τ̃ (R; b,1, at) is also independent of the
choice of b (as long as b is chosen via Proposition 6.14).

Remark 6.20. If b is as in Proposition 6.14, then for any multiplicative set T , it
follows that b/1 satisfies Proposition 6.14 for the localized triple

(T−1 R,1|Spec T−1 R, (T
−1a)t).

Therefore the formation of τb(R,* Q;1, at) = τ̃ (R; b,1, at) commutes with
localization. In particular, we can define τb(X,* W ;1, at) on a scheme X with
center of F-purity W which locally satisfies the conditions of Definition 6.1.

7. Comments on codimension one centers of F-purity

Suppose that (X = Spec R,1+D) is a pair, D ⊆ X is an integral normal reduced
and irreducible divisor, and 1 and D have no common components. Assume that
K X +1+ D is Q-Cartier with index not divisible by p > 0. Since X is normal,
(X,1+ D) is F-pure at the generic point of D and D is also a center of F-purity
for the pair (X,1+D). In characteristic zero, there is the notion of the “different”;
see [Kollár et al. 1992]. If Q is a defining ideal of D, the different is an effective
divisor that plays a role similar to the divisor 1R/Q from Theorem 5.2.

We will show that the different and 1R/Q agree under the hypothesis that D is
Cartier in codimension 2. Roughly speaking, this is the case where the different
is uninteresting (it is also the case discussed in [Kollár and Mori 1998]). We will
then give two applications of the methods used to prove this result. We expect that
the different and 1R/Q coincide in general although we do not have a proof, see
Remark 7.6.

First we need the following lemma. This lemma is implicit in the work we have
done previously, but we provide an explicit proof for completeness. Lemma 7.1
is also closely related to the fact that the set of Frobenius actions on H d

m(R) is
generated by the natural Frobenius action F : H dim R

m (R)→ H dim R
m (R) [Lyubeznik

and Smith 2001].

Lemma 7.1. Suppose that R is an F-finite Gorenstein local ring. By dualizing the
natural map G : R→ Fe

∗
R (apply HomR( , ωR)), we construct the map

9 : Fe
∗
ωR→ ωR.

By fixing any isomorphism of ωR with R (which we can do since R is Gorenstein),
we obtain a map which we also call 9,

9 : Fe
∗

R→ R.

This map 9 is an Fe
∗

R-module generator of HomR(Fe
∗

R, R). In particular, if R is
normal, then 9 corresponds to the divisor 0 via Theorem 3.11.
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Proof. First note that the choices we made in the set-up of the lemma are all unique
up to multiplication by a unit (note there is also the choice of isomorphism between
(Fe)!ωR with Fe

∗
ωR as in Remark 3.3). Therefore, these choices are irrelevant in

terms of proving that9 is an Fe
∗

R-module generator. Suppose that φ is an arbitrary
Fe
∗

R-module generator of HomR(Fe
∗

R, R); we can write9( )=φ(d · ) for some
d ∈ Fe

∗
R. Using the same isomorphisms we selected before, we can view φ as a

map Fe
∗
ωR → ωR . By duality for a finite morphism, we obtain φ∨ : R → Fe

∗
R.

Note now that G( ) = d · φ∨( ). But G sends 1 to 1 which implies that d is a
unit and completes the proof. �

We now need the following (useful) surjectivity. A similar argument (involving
local duality) was used in the characteristic p> 0 inversion of adjunction result of
[Hara and Watanabe 2002, Theorem 4.9].

Proposition 7.2. Using the notation above, further suppose that D is Cartier in
codimension 2 and that (pe

−1)(K X +D+1) is Cartier. Then the natural map of
Fe
∗

OX -modules:

8 : HomOX (F
e
∗

OX ((pe
− 1)(D+1)),OX )→ HomOD (F

e
∗

OD((pe
− 1)1|D),OD).

induced by restriction is surjective.

Proof. The statement is local so we may assume that X = Spec R where R is the
spectrum of a local ring. Furthermore, because we are working locally, the domain
of 8 is isomorphic to Fe

∗
R. Thus the image of 8 is cyclic as an Fe

∗
OD-module

which implies that the image of 8 is a reflexive Fe
∗

OD-module. Therefore, it is
sufficient to prove that 8 is surjective at the codimension one points of D (which
correspond to codimension two points of X ). We now assume that X = Spec R is
the spectrum of a two-dimensional normal local ring and that D is a Cartier divisor
defined by a local equation ( f = 0). Since D is normal and one-dimensional, D
is Gorenstein, and so X is also Gorenstein. In particular, (pe

− 1)1 is Cartier.
This also explains how we can restrict (pe

− 1)1 to D: perform the restriction at
codimension 1 points of D, and then take the corresponding divisor.

Consider the following diagram of short exact sequences:

0 // R

17→ f pe
−1

��

× f // R

17→1
��

// R/ f //

17→1
��

0

0 // Fe
∗

R
Fe
∗× f

// Fe
∗

R // Fe
∗
(R/ f ) // 0

Apply the functor HomR( , ωR) and note that we obtain the following diagram
of short exact sequences.
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0 // ωR
× f // ωR // ωR/ f ∼= Ext1R(R/ f, ωR) // 0

0 // Fe
∗
ωR

α

OO

Fe
∗× f

// Fe
∗
ωR

β

OO

// Fe
∗
ωR/ f ∼= Ext1R(F

e
∗
(R/ f ), ωR)

δ

OO

// 0

The sequences are exact on the right because R is Gorenstein and hence Cohen–
Macaulay. By Lemma 7.1, we see that δ and α can be viewed as Fe

∗
R-module

generators of the modules

HomR/ f (Fe
∗
(R/ f ), R/ f )∼= HomR/ f (Fe

∗
ωR/ f , ωR/ f ),

HomR(Fe
∗

R, R)∼= HomR(Fe
∗
ωR, ωR),

respectively. Furthermore, the map labeled β can be identified with

α ◦ (Fe
∗
(× f pe

−1)).

But the diagram proves exactly that the map β ∈ HomR(Fe
∗

R, R) restricts to a
generator of HomR/ f (Fe

∗
ωR/ f , ωR/ f ) which is exactly what we wanted to prove in

the case that 1= 0. When 1 6= 0, we can simply premultiply the α, β and δ with
a local generator of the Cartier divisor (pe

− 1)1. �

Remark 7.3. Suppose that X is normal,1=0 and D is Gorenstein in codimension
1 and S2 (but D is not necessarily normal or irreducible), then the map 8 from
Proposition 7.2 is still surjective. The proof is unchanged.

The previous example also gives us the following corollary. Compare with
[Kollár and Shepherd-Barron 1988, Theorem 5.1; Karu 2000, Theorem 2.5; Fedder
and Watanabe 1989, Proposition 2.13; Schwede 2007, Theorem 5.1].

Corollary 7.4. Suppose that R is normal, local and Q-Gorenstein with index not
divisible by p and that f ∈ R is a nonzero divisor such that the map 8 from
Proposition 7.2 (where D = div( f ) and 1= 0) is surjective.7

If R[ f −1
] is strongly F-regular and R/ f is F-pure then R is strongly F-regular.

In particular, both R and R/ f are Cohen–Macaulay.

Proof. Since the map

8 : HomR(Fe
∗

R((pe
− 1) div( f )), R)→ HomR/ f (Fe

∗
(R/ f ), R/ f ).

is surjective, a splitting φ ∈ HomR/ f (Fe
∗
(R/ f ), R/ f ) has a preimage

φ ∈ HomR(Fe
∗

R, R).

7Note that 8 is surjective if R/ f is normal, or more generally if R/ f is S2 and Gorenstein in
codimension 1.



942 Karl Schwede

It then follows (just as in Observation 5.1) that the map φ is also surjective. In
particular, φ sends some multiple of f pe

−1 to 1. But then since R[ f −1
] is strongly

F-regular, we see that R itself is strongly F-regular. �

Corollary 7.5. Suppose that S is an F-finite regular local ring and I is a prime
ideal of S such that R = S/I is normal and satisfies

(I [p
e
]
: I )= I [p

e
]
+ (g)

for some g ∈ S (note that this implies that (pe
−1)K R is Cartier). Further suppose

that f ∈ S is an element whose image in R is nonzero and such that R/( f R) is
normal (or S2 and Gorenstein in codimension 1). Then(

(I + ( f ))[p
e
]
: (I + ( f ))

)
= (I + ( f ))[p

e
]
+ ( f pe

−1g).

Proof. If A= S/(I+ f ), it follows from Proposition 7.2 that HomA(Fe
∗

A, A) is free
of rank 1 as an Fe

∗
A-module and furthermore that a generator of HomA(Fe

∗
A, A) is

obtained by multiplying a generator of HomR(Fe
∗

R, R) by f pe
−1 and restricting.

The result then follows from [Fedder 1983, Lemma 1.6]. �

Remark 7.6. Suppose that D is a normal prime divisor on X a normal scheme.
Further suppose that 1 is an effective Q-divisor (without common components
with D) such that K X + 1 + D is Q-Cartier. Then there exists a canonically
determined effective Q-divisor 1D on D with (K X +1+D)|D ∼Q K D+1D; see
[Kollár et al. 1992, Chapter 16] for a description of the construction of the different
(which can be performed in any characteristic). Furthermore, in characteristic zero,
the singularities of (X, D +1) near D are closely related to the singularities of
(D,1D) [Kollár et al. 1992; Kawakita 2007]. We expect that the different co-
incides with the divisor 1R/Q we have constructed, but we do not have a proof
(the problem might be quite easy if approached correctly). One should note that
we believe that the divisor called the “different” in [Takagi 2008, Theorem 4.3] is
1R/Q . Again, we suspect that 1R/Q coincides with the different in general.

8. Comments on normalizing centers of F-purity

In the characteristic zero setting, one obstruction to working with an arbitrary log
canonical centers W ⊆ X is the fact that W may not be normal. One way around
this issue is to normalize the subscheme W (even if W is a divisor). Therefore, it
is tempting to do the same in positive characteristic. Using Lemma 8.1, one can
do something like this in characteristic zero. In particular, in Proposition 8.2 we
do obtain canonically determined Q-divisors on the normalization of any center of
F-purity. However, a full analog of inversion of adjunction on log canonicity via
normalizing centers of F-purity is impossible, as we will see in Example 8.4.
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Lemma 8.1. Suppose that R is a reduced F-finite ring and that φ∈HomR(Fe
∗

R,R).
Set RN to be the normalization of R inside the total field of fractions. Then φ
extends to a unique RN -linear map φN

: Fe
∗

RN
→ RN that restricts back to φ.

Proof. To construct φN , simply tensor φ with the total field of fractions k(R) of R
and then restrict the domain to Fe

∗
RN . The fact that the image of φN is contained

inside RN follows from [Brion and Kumar 2005, Hint to Exercise 1.2.E(4)]; for
a complete proof see [Schwede 2008a, Proposition 7.11]. The fact that this φN is
unique follows from the fact that the natural map

HomR(Fe
∗

R, R)→ HomR(Fe
∗

R, R)⊗R k(R)∼= Homk(R)(Fe
∗

k(R), k(R))

is injective. �

Proposition 8.2. Suppose that X = Spec R and (X,1) is a pair and that

H omOX (F
e
∗

OX ((pe
− 1)1),OX )

is free of rank 1 as an Fe
∗

OX -module. Further suppose that Spec R/I = W ⊂ X
is a reduced closed subscheme such that (X,1) is sharply F-pure at the generic
points of W and I is F-compatible with respect to (R,1). Set

η : (Spec R/I )N
=W N

→W

to be the normalization map and write W N
=
∐m

i=1 W N
i ; the disjoint union of W N

into its irreducible components.
Then there exists a canonically determined Q-divisor 1W N on W N satisfying

the following properties:

(i) If1W N ,i is set to the portion of1W N on W N
i , then (pe

−1)(KW N
i
+1W N ,i ) is

Cartier, and H omOW N
i
(Fe
∗

OW N
i
((pe
−1)1W N ,i ),OW N

i
)∼= Fe

∗
OW N

i
as Fe

∗
OW N

i
-

modules.

(ii) The conductor ideal of (R/I ) in (R/I )N is F-compatible with respect to
((R/I )N ,1W N ).

(iii) The big test ideal τb((R/I )N
;1W N ) of ((R/I )N ,1W N ) is contained in the

conductor ideal of R/I ⊆ (R/I )N .

(iv) If (X,1) is sharply F-pure, then (W N ,1W N ) is also sharply F-pure.

(v) If J is an ideal of (R/I )N which is F-compatible with respect to (R,1W N ),
then the inverse image J of J in R is F-compatible with respect to (R,1). (In
particular, τb(R,* I ;1), defined as suggested in Remark 6.6, is contained
in the inverse image of τb((R/I )N ,1W N )).

Remark 8.3. Even though W N is not necessarily equidimensional, it is easy to
define KW N since we can work on each component individually.
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Proof. We can associate to1 a map φ : Fe
∗

HomR(Fe
∗

R, R) (up to scaling by a unit).
By assumption, this φ restricts to a map φI ∈ HomR/I (Fe

∗
(R/I ), R/I ) which is

nonzero at the generic point of each irreducible component of R/I . By Lemma
8.1, this map extends to a map φN

I ∈HomOW N (F
e
∗

OW N ,OW N ). Thus this map gives
us our 1W N by Theorem 3.11. Notice that the image of a unit under R→ (R/I )N

is still a unit, so that 1W N is uniquely determined.
At this point, statement (i) is obvious. Statement (ii) follows from [Schwede

2008a, Proposition 7.10] and statement (iii) follows from the fact that the big test
ideal is the smallest ideal F-compatible ideal with respect to ((R/I )N ,1W N ). For
statement (iv), note that if φ is surjective, then so is φI . But then it is easy to see
that φN

I is also surjective.
To prove (v), we first note that φI (Fe

∗
(J ∩ R/I )) ⊆ J ∩ R/I . But then we see

that the preimage of J ∩ R/I in R is F-compatible with respect to (R,1). �

One might hope that the converse to property (iv) of Proposition 8.2 above holds,
but unfortunately, this is not the case. Of course, it is easy to see that if φN

I is
actually a splitting (that is, if it sends 1 to 1), then so is φI and thus φ is surjective
near I (which would imply that (R,1) is sharply F-pure near I ). However, it
can happen that φN

I is surjective (that is, it sends some x to 1) but φI is not (in
particular, the element x is in (R/I )N but not in R/I ). The following example
illustrates this phenomenon.

Example 8.4. Suppose that R=k[a, b, c]where k=F2, the field with two elements
(any perfect field of characteristic two will work). Set I = (ac2

+ b2). Set 1 =
div(I ). It is easy to see that I is F-compatible with respect to (R,1). Notice that
we can write

R/I = k[a, b, c]/(ac2
+ b2)∼= k[x2, xy, y].

Therefore, the normalization of R/I is simply k[x, y]. We will exhibit a map
φI : F∗(R/I )→ R/I , restricted from a map φ : F∗R→ R, that is not surjective,
but that the extension φN

I to the normalization is surjective. Of course, R/I is
not weakly normal and so it is not F-pure, which implies that no such φ∗ can be
surjective.

To construct φ, we simply take the following map which is associated to 1.
Explicitly, we take the map ψ : F∗R→ R that sends abc to 1 (and all other lower-
degree monomials to zero) and precompose with multiplication by ac2

+ b2. That
is,

φ( )= ψ((ac2
+ b2) · ).

We compute φ on the relevant monomials.

φ(1)= 0, φ(a)= 0, φ(b)= 0, φ(c)= 0,

φ(ab)= 0, φ(bc)= c, φ(ac)= 0, φ(abc)= b,
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Thus we see that φ (and therefore also φI ) is not surjective when localized at the
origin. Now we wish to consider the corresponding map on k[x, y]. First we
retranslate φ in terms of the variables x and y.

φN
I (1)= 0, φN

I (y)= 0, φN
I (xy2)= y,

φN
I (x

2)= 0, φN
I (x

3 y)= 0, φN
I (x

3 y2)= xy,

φN
I (xy)= 0, φN

I (x
2)= 0,

Therefore, y = φN
I (xy2)= yφN

I (x), which implies that φN
I (x)= 1.

Remark 8.5. Of course, in the above example, there were certain purely insep-
arable field extensions in the normalization. In particular, R/I was not weakly
normal. It may be that without such pure-inseparability, when φN

I is surjective so
is φ.

9. Further remarks and questions

We conclude with some remarks and speculation.

Remark 9.1. It is natural to try to generalize the results of this paper outside of the
case when R is normal. One approach to this is to normalize R as we discussed in
the previous section. However, as we saw, this approach has limitations. Another
more direct approach might be, instead of working with pairs (R,1) such that
(pe
−1)(K R+1) is Cartier, to consider pairs (R, N ) where N is a free (or perhaps

locally free) subsheaf of HomR(Fe
∗

R, R) for some e.
Perhaps yet a better formulation would be to consider first the graded non-

commutative algebra ⊕e HomR(Fe
∗

R, R) where the multiplication is defined by
composition. That is, for φ ∈ HomR(Fd

∗
R, R) and ψ ∈ HomR(Fe

∗
R, R) the prod-

uct φ · ψ is defined to be φ ◦ Fd
∗
ψ ∈ HomR(Fe+d

∗
R, R). Dually, one could

consider the noncommutative ring F(ER) of [Lyubeznik and Smith 2001]. Then
perhaps a pair could be the combined data of the ring R and a graded subalgebra
A ⊆ ⊕e HomR(Fe

∗
R, R) such that A is generated as an algebra over A0 ∼= R by

a single element φ ∈ HomR(Fe
∗

R, R) for some e. Two pairs (R, A) and (R, A′)
would be said to be equivalent, if there is an integer n > 0 such that Ane = A′ne for
all e (here Ane is the ne’th graded piece of A).

Almost all of the results of this paper can be generalized to such a setting.

Remark 9.2. This theory can also be used to help identify subschemes of a quasi-
projective variety X that are compatibly split with a given Frobenius splitting. In
particular, suppose that φ : Fe

∗
OX → OX is a Frobenius splitting. We can then

associate a divisor 1φ to φ. Any center of log canonicity of the pair (X,1) is
a center of sharp F-purity [Schwede 2008a] and thus the associated scheme is
compatibly split with φ.



946 Karl Schwede

Question 9.3. Suppose that R is a normal Q-Gorenstein ring of finite type over
a field of characteristic zero and that Q ∈ Spec R is a center of log canonicity.
Further suppose that RQ is log canonical and that, when reduced to characteristic
p � 0 (or perhaps to infinitely many p > 0), (Rp)Q p is F-pure. Then for each
p � 0, we can associate a (canonically defined) 1Q p on Rp/Q p. We then ask
whether or not 1Q p is reduced from some Q-divisor 1 on R?

Question 9.4. Is there a characteristic zero analog of τb(R,* Q;1)? Takagi has
considered similar questions [Takagi 2007, Conjecture 2.8]. One possible analog
is something along the following lines: for a log resolution π : X̃ → X = Spec R
of (R,1), let E =

∑
Ei be the sum of divisors Ei of X̃ (exceptional or not) such

that Q ∈ π(Ei ) and such that the discrepancy of (R,1) along Ei is ≤ −1. Then
consider the ideal

π∗OX̃

(⌈
K X̃ −π

∗(K X +1)+ ε
∑

Ei
⌉)

for ε > 0 sufficiently small.

Is it possible that this coincides with τb(R,* Q;1) for infinitely many p > 0?
Also compare with [Fujino 2008].

Finally, we consider the nonlocal setting.

Remark 9.5. Suppose that (X,1) is a pair where X is a (possibly proper) variety
of finite type over an F-finite field k. In particular, we know that (Fe)!ωX can
itself be identified with ωX ; see Remark 3.3. Further suppose that K X +1 is Q-
Cartier with index not divisible by p > 0. Now suppose that W ⊂ X is a normal
closed variety defined by an ideal sheaf IW which is locally F-compatible with
respect to 1. Then on a sufficiently fine affine cover Ui of X , we can associate
Q-divisors 1Wi on Wi = Ui ∩ W . It is easy to see that these divisors agree on
overlaps since they were canonically determined. Therefore, there is a Q-divisor
1W on W determined by (X,1).

Furthermore, we claim that

(pe
− 1)(K X +1)|W ∼ (pe

− 1)(KW +1W ). (9.5.1)

One way to see this is to work globally (in particular, partially globalize Theo-
rems 3.11 and 3.13). More precisely, there is a bijection of sets{

Effective Q-divisors1 on X such
that (pe

−1)(K X+1) is Cartier

}
←→

{
Line bundles L and nonzero

elements of HomOX (F
e
∗
L ,OX )

}/
∼

The equivalence relation on the right side identifies two maps φ1 : Fe
∗
L1 → OX

and φ2 : Fe
∗
L2→ OX if there is an isomorphism γ :L1→L2 and a commutative
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diagram

Fe
∗
L1

Fe
∗ γ

��

φ1 // OX

id
��

Fe
∗
L2

φ2 // OX

We sketch the correspondence for the convenience of the reader. Given 1, set
L = OX ((1− pe)(K X +1)). Then observe that

H omOX (F
e
∗
L ,OX )∼= Fe

∗
H omOX (L ,OX ((1− pe)K X ))∼= Fe

∗
OX ((pe

− 1)1).

We can choose a global section of OX ((pe
− 1)1) corresponding to the effective

integral divisor (pe
− 1)1 (up to multiplication by a unit). This section may be

viewed as a map φ1 : Fe
∗
L → OX by the above isomorphism. For the converse

direction, given such a φ we obtain a global section of Fe
∗
L −1((1 − pe)K X ).

This corresponds to an effective divisor D. Set 1φ = (1/(pe
− 1))D. Again, as

mentioned before, this is simply the globalized version of Theorems 3.11 and 3.13.
Now, since IW is locally F-compatible with respect to 1, we have that

φ1(Fe
∗

IW L )⊆ IW .

By restriction, we obtain a map φW :L |W → OW . It is then clear that

OX ((pe
− 1)(K X +1))|W

is isomorphic to OW ((pe
− 1)(KW +1W )) as desired.
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Log minimal models according to Shokurov
Caucher Birkar

Following Shokurov’s ideas, we give a short proof of the following klt version
of his result: termination of terminal log flips in dimension d implies that any
klt pair of dimension d has a log minimal model or a Mori fibre space. Thus, in
particular, any klt pair of dimension 4 has a log minimal model or a Mori fibre
space.

1. Introduction

All the varieties in this paper are assumed to be over an algebraically closed field k
of characteristic zero. We refer the reader to Section 2 for notation and terminology.

The following conjecture is perhaps the most important problem in birational
geometry.

Conjecture 1.1 (Minimal model). Let (X/Z , B) be a Kawamata log terminal (klt)
pair. Then it has a log minimal model or a Mori fibre space.

The 2-dimensional case of this conjecture is considered to be classical. The
3-dimensional case was settled in the 80’s and 90’s by the efforts of many math-
ematicians, in particular Mori, Shokurov and Kawamata. The higher-dimensional
case has seen considerable progress in recent years, thanks primarily to Shokurov’s
work on the existence of log flips, which paved the way for further progress. The
conjecture is also settled for pairs of general type [Birkar et al. 2006], and inductive
arguments have been proposed for pairs of nonnegative Kodaira dimension [Birkar
2007]. For a more detailed account of the known cases of this conjecture, see the
introduction to [Birkar 2007].

Shokurov [2006] proved that the log minimal model program (LMMP) in dimen-
sion d − 1 and termination of terminal log flips in dimension d imply Conjecture
1.1 in dimension d even for log canonical (lc) pairs. (In this paper, by termination
of terminal log flips in dimension d, we will mean termination of any sequence
X i 99K X i+1/Zi of log flips/Z starting with a d-dimensional klt pair (X/Z , B)
which is terminal in codimension ≥ 2; see Section 2 for a more precise formula-
tion.)

MSC2000: 14E30.
Keywords: minimal models, Mori fibre spaces.
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Following Shokurov’s method and using results of [Birkar et al. 2006], we give
a short proof of:

Theorem 1.2. Termination of terminal log flips in dimension d implies Conjecture
1.1 in dimension d; more precisely, for a klt pair (X/Z , B) of dimension d one
constructs a log minimal model or a Mori fibre space by running the LMMP/Z on
K X + B with scaling of a suitable big/Z R-divisor and proving that it terminates.

As in [Shokurov 2006], one immediately derives the following:

Corollary 1.3. Conjecture 1.1 holds in dimension 4.

Note that when (X/Z , B) is effective (for example if it is of nonnegative Kodaira
dimension), log minimal models are constructed in [Birkar 2007], using different
methods, in dimension ≤ 5.

2. Basics

Let k be an algebraically closed field of characteristic zero. For an R-divisor D
on a variety X over k, we use D∼ to denote the birational transform of D on a
specified birational model of X .

Definition 2.1. A pair (X/Z , B) consists of normal quasiprojective varieties X, Z
over k, an R-divisor B on X with coefficients in [0, 1] such that K X + B is R-
Cartier, and a projective morphism X→ Z . (X/Z , B) is called log smooth if X is
smooth and Supp B has simple normal crossing singularities.

For a prime divisor D on some birational model of X with a nonempty centre on
X , a(D, X, B) denotes the log discrepancy. (X/Z , B) is terminal in codimension
≥ 2 if a(D, X, B) > 1 whenever D is exceptional/X . Log flips preserve this
condition but divisorial contractions may not.

Let (X/Z , B) be a klt pair. By a log flip/Z we mean the flip of a K X + B-
negative extremal flipping contraction/Z . A sequence of log flips/Z starting with
(X/Z , B) is a sequence X i 99K X i+1/Zi in which X i→ Zi← X i+1 is a K X i +Bi -
flip/Z and Bi is the birational transform of B1 on X1, and (X1/Z , B1)= (X/Z , B).
By termination of terminal log flips in dimension d we mean termination of such
a sequence in which (X1/Z , B1) is a d-dimensional klt pair which is terminal in
codimension ≥ 2. Now assume that G is an R-Cartier divisor on X . A sequence
of G-flops/Z with respect to (X/Z , B) is a sequence X i 99K X i+1/Zi in which
X i → Zi ← X i+1 is a Gi -flip/Z such that K X i + Bi ≡ 0/Zi where Gi is the
birational transform of G on X = X1.

Definition 2.2 ([Birkar 2007, §2]). Let (X/Z , B) be a klt pair, (Y/Z , BY ) a Q-
factorial klt pair, φ : X 99K Y/Z a birational map such that φ−1 does not contract
divisors, and BY be the birational transform of B (Note that since X → Z and
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Y → Z are both projective, by the definition of a pair, X and Y have the same
image on Z ). Moreover, assume that

a(D, X, B)≤ a(D, Y, BY )

for any prime divisor D on birational models of X and assume that the strict in-
equality holds for any prime divisor D on X which is exceptional/Y .

We say that (Y/Z , BY ) is a log minimal model of (X/Z , B) if KY+BY is nef/Z .
On the other hand, we say that (Y/Z , BY ) is a Mori fibre space of (X/Z , B) if there
is a KY + BY -negative extremal contraction Y → Y ′/Z such that dim Y ′ < dim Y .

Typically, one obtains a log minimal model or a Mori fibre space by a finite
sequence of divisorial contractions and log flips.

Remark 2.3. Let (X/Z , B) be a klt pair and W → X a log resolution. Let BW =

B∼+ (1− ε)
∑

Ei where 0< ε� 1 and Ei are the exceptional/X divisors on W .
Remember that B∼ is the birational transform of B. If (Y/X, BY ) is a log minimal
model of (W/X, BW ), which exists by [Birkar et al. 2006], then by the negativity
lemma Y → X is a small Q-factorialisation of X . To find a log minimal model or
a Mori fibre space of (X/Z , B), it is enough to find one for (Y/Z , BY ). So, one
could assume that X is Q-factorial by replacing it with Y .

We recall a variant of the LMMP with scaling which we use in this paper. Let
(X/Z , B+C) be a Q-factorial klt pair such that K X+B+C is nef/Z and B,C ≥0.
By [Birkar 2007, Lemma 2.7], either K X + B is nef/Z or there is an extremal ray
R/Z such that

(K X + B) · R < 0 and (K X + B+ λ1C) · R = 0,

where
λ1 := inf{t ≥ 0 | K X + B+ tC is nef/Z}

and K X + B + λ1C is nef/Z . Now assume that R defines a divisorial contraction
or a log flip X 99K X ′. We can consider (X ′/Z , B ′ + λ1C ′), where B ′ + λ1C ′ is
the birational transform of B + λ1C and continue the argument. That is, either
K X ′ + B ′ is nef/Z or there is an extremal ray R′/Z such that (K X ′ + B ′) · R′ < 0
and (K X ′ + B ′+ λ2C ′) · R′ = 0, where

λ2 := inf{t ≥ 0 | K X ′ + B ′+ tC ′ is nef/Z}

and K X ′ + B ′ + λ2C ′ is nef/Z . By continuing this process, we obtain a special
kind of LMMP on K X + B which we refer to as the LMMP with scaling of C . If
it terminates, then we obviously get a log minimal model or a Mori fibre space for
(X/Z , B). Note that the required log flips exist by [Birkar et al. 2006].



954 Caucher Birkar

3. Extremal rays

In this section, for convenience of the reader, we give the proofs of some results
about extremal rays [Shokurov 2006, Corollary 9, Addendum 4]. The norm ‖G‖
of an R-divisor G denotes the maximum of the absolute value of its coeffecients.

Let X → Z be a projective morphism of normal quasiprojective varieties. A
curve 0 on X is called extremal/Z if it generates an extremal ray R/Z which
defines a contraction X → S/Z , and if for some ample/Z divisor H we have
H · 0 = min{H ·6}, where 6 ranges over curves generating R. If (X/Z , B) is
divisorial log terminal (dlt) and (K X + B) · R < 0, then by [Kawamata 1991] there
is a curve 6 generating R such that (K X + B) ·6 ≥−2 dim X . On the other hand,
since 0 and 6 both generate R we have

(K X + B) ·0
H ·0

=
(K X + B) ·6

H ·6
,

hence
(K X + B) ·0 = (K X + B) ·6

H ·0
H ·6

≥−2 dim X.

Remark 3.1. Let (X/Z , B) be a Q-factorial klt pair, F be a reduced divisor on X
whose support contains that of B, and V be the R-vector space of divisors generated
by the components of F .

(i) By [Shokurov 1992, Property 1.3.2; 1996, First Main Theorem 6.2 and Re-
mark 6.4], the sets

L= {1 ∈ V | (X/Z ,1) is lc} and N= {1 ∈ L | K X +1 is nef/Z}

are rational polytopes in V . Since B ∈ L, there are rational boundaries
B1, . . . , Br

∈ L and nonnegative real numbers a1, . . . , ar such that B =∑
a j B j ,

∑
a j = 1, and each (X/Z , B j ) is klt. In particular, there is m ∈ N

such that m(K X + B j ) are Cartier, and for any curve 0 on X the intersection
number (K X + B) · 0 can be written as

∑
a j

n j
m for certain n1, . . . , nr ∈ Z.

Moreover, if 0 is extremal/Z , then the n j satisfy n j ≥−2m dim X .

(ii) If K X+B is nef/Z , then B ∈N and so one can choose the B j so that K X+B j

are nef/Z .

Lemma 3.2. Let (X/Z , B) be a Q-factorial klt pair. There is a real number α > 0
such that:

(i) If 0 is any extremal curve/Z and if (K X + B) ·0 > 0, then (K X + B) ·0 > α.

(ii) If K X + B is nef/Z , then for any R-divisor G, any sequence X i 99K X i+1/Zi

of G-flops/Z with respect to (X/Z , B), and any extremal curve 0 on X i , if
(K X i+Bi )·0> 0, then (K X i+Bi )·0>α where Bi is the birational transform
of B.
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Proof. (i) If B is a Q-divisor, then the statement is trivially true. Let B1, . . . , Br ,
a1, . . . , ar , and m be as in Remark 3.1(i). Let 0 be an extremal curve/Z . Then,
(K X + B) ·0 =

∑
a j (K X + B j ) ·0 and since for each j we have (K X + B j ) ·0 ≥

−2 dim X , the existence of α is clear for (i).

(ii) By Remark 3.1(ii) we may also assume that K X + B j are nef/Z . Then, the se-
quence X i 99K X i+1/Zi is also a sequence of flops with respect to each (X/Z , B j ).
In particular, (X i/Z , B j

i ) is klt and m(K X i + B j
i ) is Cartier for any j, i where B j

i
is the birational transform of B j . The rest is as in (i). �

Proposition 3.3. Let (X/Z , B) be a Q-factorial klt pair, F a reduced divisor on
X whose support contains that of B, and L as in Remark 3.1. There is a rational
polytope K ⊂ L of klt boundaries and of maximal dimension containing an open
neighborhood of B in L (with respect to the topology on L induced by the norm
‖ · ‖) such that

(i) if1∈K and (K X+1)·R< 0 for an extremal ray R/Z , then (K X+B)·R≤ 0,
and

(ii) if K X + B is nef/Z , 1 ∈ K, we have a sequence X i 99K X i+1/Zi of K X +1-
flops/Z with respect to (X/Z , B), and (K X i +1i ) · R < 0 for an extremal ray
R/Z on some X i , then (K X i + Bi ) · R = 0, where 1i , Bi are the birational
transforms of 1, B respectively.

Proof. (i) Let M ⊂ L be a rational polytope of klt boundaries and of maximal
dimension containing an open neighborhood of B in L. If the statement is not true
then there is an infinite sequence of 1l ∈M and extremal rays Rl/Z such that for
each l we have

(K X +1l) · Rl < 0, (K X + B) · Rl > 0,

and ‖1l − B‖ converges to 0. Let �l be the point on the boundary of M such that
�l −1l = bl(1l − B) for some real number bl ≥ 0 and such that ‖�l − B‖ is
maximal. So, �l is the most far away point in M which is on the line determined
by B and 1l , in the direction of 1l . Since ‖1l − B‖ converges to 0, bl converges
to +∞.

By assumptions, (X/Z , �l) is klt and if 0l is an extremal curve/Z generating
Rl , then

(�l −1l) ·0l = (K X +�l) ·0l − (K X +1l) ·0l ≥−2 dim X.

This is not possible because by Lemma 3.2,

(K X +1l) ·0l + (B−1l) ·0l = (K X + B) ·0l > α,

and by the same arguments (B−1l) ·0l approaches 0.
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By definition, the sequence X i 99K X i+1/Zi is a sequence of K X +1-flips which
are numerically trivial with respect to K X + B. Let K be as in (i). Assume that R
is an extremal ray/Z on X i such that (K X i +1i ) · R < 0 but (K X i + Bi ) · R > 0.
Let 0 be an extremal curve/Z generating R. Let � be the point on the boundary
of K which is chosen for 1 similarly as in (i). By assumptions, (X i/Z ,1i ) and
(X i/Z , �i ) are klt where �i is the birational transform of �. So,

(�i −1i ) ·0 = (K X i +�i ) ·0− (K X i +1i ) ·0 ≥−2 dim X.

On the other hand, (K X i+Bi )·0>α where α is as in Lemma 3.2. By construction,
there is some b ≥ 0 such that b(1i − Bi )=�i −1i . Therefore,

(K X i +1i ) ·0 = (K X i + Bi ) ·0+ (1i − Bi ) ·0 > α−
2 dim X

b
.

which is not possible if bα > 2 dim X . In other words, if 1 is close enough to B
then the statement of (i i) also holds, that is, we only need to shrink K appropriately.

�

4. Proof of the main results

Proof of Theorem 1.2. Let (X/Z , B) be a klt pair of dimension d . By Remark 2.3,
we can assume that X is Q-factorial. Let H ≥ 0 be an R-divisor which is big/Z
so that K X + B+ H is klt and nef/Z . Run the LMMP/Z on K X + B with scaling
of H . If the LMMP terminates, then we get a log minimal model or a Mori fibre
space. Suppose that we get an infinite sequence X i 99K X i+1/Zi of log flips/Z ,
where we may also assume that (X1/Z , B1)= (X/Z , B).

Let λi be the threshold on X i determined by the LMMP with scaling as explained
in Section 2. So, K X i + Bi + λi Hi is nef/Z ,

(K X i + Bi ) · Ri < 0 and (K X i + Bi + λi Hi ) · Ri = 0,

where Bi and Hi are the birational transforms of B and H and, Ri is the extremal
ray which defines the flipping contraction X i → Zi . Obviously, λi ≥ λi+1.

Put λ = limi→∞ λi . If the limit is attained, that is, λ = λi for some i , then the
sequence terminates by Corollary 1.4.2 of [Birkar et al. 2006]. So, we assume that
the limit is not attained. Actually, if λ > 0, again [Birkar et al. 2006] implies that
the sequence terminates. However, we do not need to use [Birkar et al. 2006] in
this case. In fact, by replacing Bi with Bi +λHi , we can assume that λ= 0 hence
limi→∞ λi = 0.

Put 3i := Bi + λi Hi . Since we are assuming that terminal log flips terminate,
or, alternatively, by Corollary 1.4.3 of [Birkar et al. 2006], we can construct a
terminal (in codimension ≥ 2) crepant model (Yi/Z ,2i ) of (X i/Z ,3i ). A slight
modification of the argument in Remark 2.3 would do this. Note that we can assume
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that all the Yi are isomorphic to Y1 in codimension one, perhaps after truncating
the sequence. Let 11 = limi→∞2

∼

i on Y1 and let 1i be its birational transform
on Yi . The limit is obtained componentwise.

Since Hi is big/Z and K X i +3i is klt and nef/Z , K X i +3i and KYi +2i are
semiample/Z by the base point freeness theorem for R-divisors. Thus, KYi+1i is a
limit of movable/Z divisors which in particular means that it is pseudo-effective/Z .
Note that if KYi+1i is not pseudo-effective/Z , we get a contradiction by Corollary
1.3.2 of [Birkar et al. 2006].

Now run the LMMP/Z on KY1 +11. No divisor will be contracted again be-
cause KY1 +11 is a limit of movable/Z divisors. Since KY1 +11 is terminal in
codimension≥2, by assumptions, the LMMP terminates with a log minimal model
(W/Z ,1). By construction, 1 on W is the birational transform of 11 on Y1, and
Gi :=2

∼

i −1 on W satisfies limi→∞ Gi = 0.
By Proposition 3.3, for each Gi with i� 0, we can run the LMMP/Z on KW +

1+Gi which will be a sequence of Gi -flops, that is, K +1 would be numerically
zero on all the extremal rays contracted in the process. No divisor will be contracted
because KW+1+Gi is movable/Z . The LMMP ends up with a log minimal model
(Wi/Z , �i ). Here, �i is the birational transform of 1+Gi and so of 2i . Let Si

be the lc model of (Wi/Z , �i ) which is the same as the lc model of (Yi/Z ,2i )

and that of (X i/Z ,3i ) because KWi +�i and KYi +2i are nef/Z with Wi and Yi

being isomorphic in codimension one, and KYi +2i is the pullback of K X i +3i .
Also note that since K X i + Bi is pseudoeffective/Z , K X i +3i is big/Z ; hence Si

is birational to X i .
By construction, KWi +1

∼ is nef/Z and it turns out that KWi +1
∼
∼R 0/Si .

Suppose that this is not the case. Then, KWi+1
∼ is not numerically zero/Si hence

there is some curve C/Si such that (KWi+1
∼
+G∼i )·C = 0 but (KWi+1

∼)·C > 0
which implies that G∼i ·C < 0. Hence, there is a KWi +1

∼
+ (1+ τ)G∼i -negative

extremal ray R/Si for any τ > 0. This contradicts Proposition 3.3 because we must
have

(KWi +1
∼
+G∼i ) · R = (KWi +1

∼) · R = 0.

Therefore, KWi +1
∼
∼R 0/Si . Now K X i +3i ∼R 0/Zi implies that Zi is over

Si and so KYi +1i ∼R 0/Si . On the other hand, K X i + Bi is the pushdown of
KYi +1i ; hence K X i + Bi ∼R 0/Si . Thus, K X i + Bi ∼R 0/Zi and this contradicts
the fact that X i → Zi is a K X i + Bi -flipping contraction. So, the sequence of flips
terminates and this completes the proof. �

Proof of Corollary 1.3. Since terminal log flips terminate in dimension 4 by [Fujino
2004; Shokurov 2004] (see also [Alexeev et al. 2007]), the result follows from
Theorem 1.2. �
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Centers of graded fusion categories
Shlomo Gelaki, Deepak Naidu and Dmitri Nikshych

Let C be a fusion category faithfully graded by a finite group G and let D be
the trivial component of this grading. The center Z(C) of C is shown to be
canonically equivalent to a G-equivariantization of the relative center ZD(C).
We use this result to obtain a criterion for C to be group-theoretical and apply
it to Tambara–Yamagami fusion categories. We also find several new series of
modular categories by analyzing the centers of Tambara–Yamagami categories.
Finally, we prove a general result about the existence of zeroes in S-matrices of
weakly integral modular categories.
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1. Introduction

Throughout this paper we work over an algebraically closed field k of characteristic
0. All categories considered in this paper are finite, abelian, semisimple, and k-
linear. We freely use the language and basic theory of fusion categories, mod-
ule categories over them, braided categories, and Frobenius–Perron dimensions
[Bakalov and Kirillov 2001; Ostrik 2003; Etingof et al. 2005].

Let G be a finite group. A fusion category C is G-graded if there is a decom-
position

C=
⊕
g∈G

Cg

of C into a direct sum of full abelian subcategories such that the tensor product of
C maps Cg×Ch to Cgh , for all g, h ∈ G. A G-extension of a fusion category D is
a G-graded fusion category C whose trivial component Ce, where e is the identity
of G, is equivalent to D.

MSC2000: primary 16W30; secondary 18D10.
Keywords: fusion categories, braided categories, graded tensor categories.
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Gradings and extensions play an important role in the study and classification of
fusion categories. For example, nilpotent fusion categories (that is, those categories
that can be obtained from the trivial category by a sequence of group extensions)
were studied in [Gelaki and Nikshych 2008]. It was proved in [Etingof et al.
2005] that every fusion category of prime power dimension is nilpotent. Group-
theoretical properties of such categories were studied in [Drinfeld et al. 2007]. Re-
cently, fusion categories of dimension pnqm , where p, q are primes, were shown
to be Morita equivalent to nilpotent categories [Etingof et al. 2009].

The main goal of this paper is to describe the center Z(C) of a G-graded fu-
sion category C in terms of its trivial component D (Theorem 3.5) and apply this
description to the study of structural properties of C and the construction of new
examples of modular categories.

The organization of the paper is as follows. In Section 2 we recall some basic
notions, results, and examples of fusion categories, notably the notions of the rela-
tive center of a bimodule category [Majid 1991], group action on a fusion category
and crossed product [Tambara 2001], equivariantization and de-equivariantization
theory [Arkhipov and Gaitsgory 2003; Bruguières 2000; Gaitsgory 2005; Kirillov
2002; Müger 2000; Drinfeld et al. 2009], and braided G-crossed fusion categories
[Turaev 2000; 2008].

In Section 3 we study the center Z(C) of a G-graded fusion category C. We
show that if D is the trivial component of C, then the relative center ZD(C) has a
canonical structure of a braided G-crossed category and there is an equivalence of
braided fusion categories ZD(C)

G ∼= Z(C) (Theorem 3.5). Thus, the structure of
Z(C) can be understood in terms of a smaller and more transparent category ZD(C).
In particular, there is a canonical braided action (studied in detail in [Etingof et al.
2009]) of G on Z(D). In Corollary 3.10 we use this action to prove that C is group-
theoretical if and only if Z(D) contains a G-stable Lagrangian subcategory. As an
illustration, we describe the center of a crossed product fusion category C=DoG.

We apply the results from Section 4 to the study of Tambara–Yamagami cate-
gories [Tambara and Yamagami 1998]. We obtain a convenient description of the
centers of such categories as equivariantizations and compute their modular data,
that is, S- and T -matrices. This computation was previously done in [Izumi 2001]
using different techniques. We establish a criterion for a Tambara–Yamagami cat-
egory to be group-theoretical (Theorem 4.6). We also extend the construction of
non-group-theoretical semisimple Hopf algebras from Tambara–Yamagami cate-
gories given in [Nikshych 2008].

In Section 5 we construct a series of new modular categories as factors of the
centers of Tambara–Yamagami categories. One associates a pair of such categories
E(q, ±) with any nondegenerate quadratic form q on an abelian group A of odd
order. The categories E(q, ±) have dimension 4|A|. They are group-theoretical if
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and only if A contains a Lagrangian subgroup with respect to q. We compute the
S- and T -matrices of E(q, ±) and write down several small examples explicitly.

Section 6 is independent from the rest of the paper and contains a general re-
sult about existence of zeroes in S-matrices of weakly integral modular categories
(Theorem 6.1). This is a categorical analogue of a classical result of Burnside in
character theory.

2. Preliminaries

2A. Dual fusion categories and Morita equivalence. Let C be a fusion category
and let M be an indecomposable right C-module category M. The category C∗M of
C-module endofunctors of M is a fusion category, called the dual of C with respect
to M [Etingof et al. 2005; Ostrik 2003].

Following [Müger 2003a], we say that two fusion categories C and D are Morita
equivalent if D is equivalent to C∗M, for some indecomposable right C-module
category M. A fusion category is said to be pointed if all its simple objects are
invertible (any such category is equivalent to the category VecωG of vector spaces
graded by a finite group G with the associativity constraint given by a 3-cocycleω∈
Z3(G, k×)). A fusion category is called group-theoretical if it is Morita equivalent
to a pointed fusion category. See [Ostrik 2003; Etingof et al. 2005; Nikshych 2008]
for details of the theory of group-theoretical categories.

2B. The center of a bimodule category and the relative center of a fusion cat-
egory. Let C be a fusion category with unit object 1 and associativity constraint
αX,Y,Z : (X ⊗ Y )⊗ Z ∼→ X ⊗ (Y ⊗ Z) and let M be a C-bimodule category.

Definition 2.1. The center of M is the category ZC(M) of C-bimodule functors
from C to M.

Explicitly, the objects of ZC(M) are pairs (M, γ ), where M is an object of M and

γ = {γX : X ⊗M ∼
→ M ⊗ X}X∈C (1)

is a natural family of isomorphisms making the diagram

X ⊗ (M ⊗ Y )
α−1

X,M,Y // (X ⊗M)⊗ Y
γX

''
X ⊗ (Y ⊗M)

γY
77

α−1
X,Y,M ''

(M ⊗ X)⊗ Y,

(X ⊗ Y )⊗M
γX⊗Y

// M ⊗ (X ⊗ Y )
α−1

M,X,Y

77
(2)

commutative, where the α’s denote the associativity constraints in M.



962 Shlomo Gelaki, Deepak Naidu and Dmitri Nikshych

Indeed, a C-bimodule functor F : C→M is completely determined by the pair
(F(1), {γX }X∈C), where γ = {γX }X∈C is the collection of isomorphisms

γX : X ⊗ F(1) ∼→ F(X) ∼→ F(1)⊗ X,

coming from the C-bimodule structure on F .
We will call the natural family of isomorphisms (1) the central structure of an

object X ∈ ZC(M).

Remark 2.2. (i) The definition of the center of a bimodule category is parallel
to that of the center of a bimodule over a ring.

(ii) We will often suppress the central structure while working with objects of
ZC(M) and refer to (M, γ ) simply as M .

(iii) ZC(M) is a semisimple abelian category. It has the obvious canonical structure
of a Z(C)-module category, where Z(C) is the center of C (see, for example,
[Kassel 1995, Section XIII.4] for the definition of Z(C)).

Here is an important special case of this construction. Let C be a fusion category
and let D⊂C be a fusion subcategory. Then C is a D-bimodule category. We will
call ZD(C) the relative center of C.

Remark 2.3. The aforementioned construction of the relative center is a special
case of a more general construction considered in [Majid 1991, Definition 3.2 and
Theorem 3.3].

It is easy to see that ZD(C) is a tensor category with tensor product defined as
follows. If (X, γ ) and (X ′, γ ′) are objects in ZD(C) then

(X, γ )⊗ (X ′, γ ′) := (X ⊗ X ′, γ̃ ),

where γ̃V : V ⊗ (X ⊗ X ′) ∼→ (X ⊗ X ′)⊗ V, V ∈ D, is defined by the diagram

V ⊗ (X ⊗ X ′)

γ̃V
��

α−1
V,X,X ′ // (V ⊗ X)⊗ X ′

γV // (X ⊗ V )⊗ X ′

αX,V,X ′

��
(X ⊗ X ′)⊗ V X ⊗ (X ′⊗ V )

α−1
X,X ′,Voo X ⊗ (V ⊗ X ′).

γ ′Voo

(3)

The unit object of ZD(C) is (1, id). The dual of (X, γ ) is (X∗, γ ), where γ V :=

(γ∗V )
∗.

Remark 2.4. Let C and D be as above.

(i) ZD(C) is dual to the fusion category D � Crev (where Crev is the fusion cat-
egory obtained from C by reversing the tensor product and � is Deligne’s
tensor product of fusion categories) with respect to its module category C,
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where D and Crev act on C via the right and left multiplication respectively.
In particular, ZD(C) is a fusion category.

(ii) FPdim(ZD(C))=FPdim(C)FPdim(D), where FPdim denotes the Frobenius–
Perron dimension of a category.

(iii) ZC(C) coincides with the center Z(C) of C. This category has a canonical
braiding given by

c(X,γ ), (X ′,γ ′) = γX ′ : (X, γ )⊗ (X ′, γ ′) ∼→ (X ′, γ ′)⊗ (X, γ ). (4)

(iv) There is an obvious forgetful tensor functor:

Z(C) 7→ ZD(C) : (X, γ ) 7→ (X, γ |D). (5)

2C. Centralizers in braided fusion categories. Let C be a braided fusion category
with braiding c. Two objects X and Y of C are said to centralize each other [Müger
2003b] if cY,X cX,Y = idX⊗Y .

For any fusion subcategory D⊆C its centralizer D′ is the full fusion subcategory
of C consisting of all objects X ∈ C centralizing every object in D. The category
C is said to be nondegenerate if C′ = Vec. In this case one has D′′ = D [Müger
2003b]. If C is a premodular category, that is, has a spherical structure, then it is
nondegenerate if and only if it is modular.

A braided fusion category E is called Tannakian if it is equivalent to the repre-
sentation category Rep(G) of a finite group G as a braided fusion category. Here
Rep(G) is considered with its standard symmetric braiding. The group G is defined
by E up to an isomorphism [Deligne 1990].

A fusion subcategory L of a braided fusion category is called Lagrangian if it
is Tannakian and L= L′.

Theorem 2.5 [Drinfeld et al. 2007]. A fusion category C is group-theoretical if
and only if Z(C) contains a Lagrangian subcategory.

2D. Group actions on fusion categories and equivariantization. Let G be a finite
group, and let G denote the monoidal category whose objects are elements of G,
whose morphisms are identities, and whose tensor product is given by multiplica-
tion in G. Recall that an action of G on a fusion category C is a monoidal functor
G→ Aut⊗(C) : g 7→ Tg. For any g, h ∈ G, let

γg,h = Tg ◦ Th ' Tgh

be the isomorphism defining the monoidal structure on the functor G→Aut⊗(C).

Definition 2.6. A G-equivariant object in C is a pair (X, {ug}g∈G) consisting of
an object X of C together with a collection of isomorphisms ug :Tg(X)' X, g∈G,
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such that the diagram

Tg(Th(X))
Tg(uh) //

γg,h(X)
��

Tg(X)

ug

��
Tgh(X)

ugh // X

commutes for all g, h ∈ G. One defines morphisms of equivariant objects to be
morphisms in C commuting with ug, g ∈ G.

Equivariant objects in C form a fusion category, called the equivariantization
of C and denoted by CG [Tambara 2001; Arkhipov and Gaitsgory 2003; Gaitsgory
2005]. One has FPdim(CG)= |G|FPdim(C).

There is another fusion category that comes from an action of G on C. It is
the crossed product category C o G defined as follows [Tambara 2001; Nikshych
2008]. As an abelian category, CoG :=C�VecG , where VecG denotes the fusion
category of G-graded vector spaces. The tensor product in C o G is given by

(X � g)⊗ (Y � h) := (X ⊗ Tg(Y ))� gh, X, Y ∈ C, g, h ∈ G. (6)

The unit object is 1 � e and the associativity and unit constraints come from those
of C. Clearly, C o G is faithfully G-graded with the trivial component C.

As explained in [Nikshych 2008], C is a right C o G-module category via

Y ⊗ (X � g) := Tg−1(Y ⊗ X),

and the corresponding dual category (CoG)∗C is equivalent to CG . It follows from
[Müger 2003a] that there is an equivalence of braided fusion categories

Z(C o G)∼= Z(CG).

Let G be a finite group. For any conjugacy class K of G fix a representative
aK ∈ K . Let G K denote the centralizer of aK in G.

Proposition 2.7. Let C=
⊕

g∈G Cg be a G-graded fusion category with an action
g 7→ Tg of G on C such that Tg carries Ch to Cghg−1 . Let H := {g ∈ G | Cg 6= 0}.
There is a bijection between the set of isomorphism classes of simple objects of
CG and pairs (K , X), where K ⊂ H is a conjugacy class of G and X is a simple
G K -equivariant object of CaK .

Proof. A simple G-equivariant object of C must be supported on a single conjugacy
class K . Let Y =⊕g∈K Yg be such an object. Then YaK is a simple G K -equivariant
object.

Conversely, given a G K -equivariant object X in CaK let

Y =
⊕

h

Th(X),
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where the summation is taken over the set of representatives of cosets of G K in G.
It is easy to see that Y acquires the structure of a simple G-equivariant object.

Clearly, the two constructions are inverses of each other. �

Remark 2.8. The Frobenius–Perron dimension of the simple object corresponding
to a pair (K , X) in Proposition 2.7 is |K |FPdim(X).

2E. De-equivariantization of fusion categories. Let C be a fusion category. Let
E=Rep(G) be a Tannakian category along with a braided tensor functor E→Z(C)

such that the composition E→Z(C)→C (where the second arrow is the forgetful
functor) is fully faithful. The following construction was introduced in [Bruguières
2000] and [Müger 2000]. Let A := Fun(G) be the algebra of functions on G. It is
a commutative algebra in E and thus its image is a commutative algebra in Z(C).
This fact allows us to view the category CG of A-modules in C as a fusion category,
called de-equivariantization of C. There is a canonical surjective tensor functor

F : C→ CG : X 7→ A⊗ X. (7)

It was explained in [Müger 2000; Drinfeld et al. 2009] that the group G acts on
CG by tensor autoequivalences (this action comes from the action of G on A by
right translations). Furthermore, there is a bijection between subcategories of C

containing the image of E = Rep(G) and G-stable subcategories of CG . This
bijection preserves Tannakian subcategories.

The procedures of equivariantization and de-equivariantization are inverses of
each other: that is, there are canonical equivalences (CG)

G ∼= C and (CG)G ∼= C.
In particular, the construction above applies when C is a braided fusion category

containing a Tannakian subcategory E = Rep(G). In this case the braiding of
C gives rise to an additional structure on the de-equivariantization functor (7).
Namely, there is natural family of isomorphisms

X ⊗ F(Y ) ∼→ F(Y )⊗ X, X ∈ CG, Y ∈ C, (8)

satisfying obvious compatibility conditions. In other words, F can be factored
through a braided functor C→ Z(CG), that is, F is a central functor.

If E⊂ C′ then CG is a braided fusion category with the braiding inherited from
that of C. If E = C′, the category CG is nondegenerate. (In the presence of a
spherical structure this category is called the modularization of C by E [Bruguières
2000; Müger 2000].)

Remark 2.9. The category CG is not braided in general. However it does have an
additional structure — it is a braided G-crossed fusion category. See next section
(2F) for details.
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2F. Braided G-crossed categories. Let G be a finite group. Kirillov [2002] and
Müger [2004] found a description of all braided fusion categories D containing
Rep(G). Namely, they showed that the datum of a braided fusion category D

containing Rep(G) is equivalent to the datum of a braided G-crossed category C;
see Theorem 2.12. The notion of a braided G-crossed category is due to Turaev
[2000; 2008] and is recalled below.

Definition 2.10. A braided G-crossed fusion category is a fusion category C equip-
ped with (i) a (not necessarily faithful) grading C=

⊕
g∈G Cg, (ii) an action g 7→Tg

of G on C such that Tg(Ch)⊂Cghg−1 , and (iii) a natural collection of isomorphisms

cX,Y : X ⊗ Y ' Tg(Y )⊗ X, X ∈ Cg, g ∈ G and Y ∈ C, (9)

called the G-braiding. These structures are required to satisfy certain compatibility
conditions, which we now state. Let γg,h : TgTh

∼
→ Tgh denote the tensor structure

of the functor g 7→ Tg and µg the tensor structure of Tg.

(a) The diagram

Tg(X)⊗ Tg(Y )
cTg (X),Tg (Y ) // Tghg−1(Tg(Y ))⊗ Tg(X)

(γghg−1,g)Y⊗idTg (X)

��
Tg(X ⊗ Y )

(µg)
−1
X,Y

OO

Tg(cX,Y )

��

Tgh(Y )⊗ Tg(X)

Tg(Th(Y )⊗ X)
(µg)

−1
Tg (Y ),X

// Tg(Th(Y ))⊗ Tg(X)

(γg,h)Y⊗idTg (X)

OO
(10)

commutes for all g, h ∈ G and objects X ∈ Ch, Y ∈ C.

(b) The diagram
(X ⊗ Y )⊗ Z

αX,Y,Z

uu

cX,Y⊗idZ

))
X ⊗ (Y ⊗ Z)

cX,Y⊗Z

��

(Tg(Y )⊗ X)⊗ Z

αTg (Y ),X,Z

��
Tg(Y ⊗ Z)⊗ X

(µg)
−1
Y,Z⊗idX

��

Tg(Y )⊗ (X ⊗ Z)

idTg (Y )⊗cX,Z

��
(Tg(Y )⊗ Tg(Z))⊗ X

αTg (Y ),Tg (Z),X // Tg(Y )⊗ (Tg(Z)⊗ X)

(11)

commutes for all g ∈ G and objects X ∈ Cg, Y, Z ∈ C.
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(c) The diagram
X ⊗ (Y ⊗ Z)

idX ⊗cY,Z

))
(X ⊗ Y )⊗ Z

αX,Y,Z
55

X ⊗ (Th(Z)⊗ Y )

α−1
X,Th (Z),Y

��
Tgh(Z)⊗ (X ⊗ Y )

c−1
X⊗Y,Z

OO

(X ⊗ Th(Z))⊗ Y

cX,Th (Z)⊗idY

��
TgTh(Z)⊗ (X ⊗ Y )

(γg,h)Z⊗idX⊗Y

OO

α−1
Tg Th (Z),X,Y // (TgTh(Z)⊗ X)⊗ Y

(12)

commutes for all g, h ∈ G and objects X ∈ Cg, Y ∈ Ch, Z ∈ C.

Remark 2.11. The trivial component Ce of a braided G-crossed fusion category
C is a braided fusion category with the action of G by braided autoequivalences.
This can be seen by taking X, Y ∈ Ce in diagrams (10)–(12).

Theorem 2.12 ([Kirillov 2002; Müger 2004]). The equivariantization and de-
equivariantization constructions establish a bijection between the set of equiva-
lence classes of G-crossed braided fusion categories and the set of equivalence
classes of braided fusion categories containing Rep(G) as a symmetric fusion sub-
category.

We shall now sketch the proof of this theorem. An alternative approach is given
in [Drinfeld et al. 2009].

Suppose C is a braided G-crossed fusion category. We define a braiding c̃ on
its equivariantization CG as follows.

Let (X, {ug}g∈G) and (Y, {vg}g∈G) be objects in CG . Let X = ⊕g∈G Xg be a
decomposition of X with respect to the grading of C. Define an isomorphism

c̃X,Y :X⊗Y=
⊕
g∈G

Xg⊗Y
⊕cXg ,Y
−−−−→

⊕
g∈G

Tg(Y )⊗Xg
⊕vg⊗idXg
−−−−−→

⊕
g∈G

Y⊗Xg=Y⊗X. (13)

It follows from condition (a) of Definition 2.10 that c̃X,Y respects the equivariant
structures, that is, it is an isomorphism in CG . Its naturality is clear. The fact that c̃
is a braiding on CG (that is, the hexagon axioms) follows from the commutativity
of diagrams (11) and (12). It is easy to check that c̃ restricts to the standard braiding
on Rep(G)= VecG

⊂ CG . Hence, CG contains a Tannakian subcategory Rep(G).
Conversely, let C be a braided fusion category with braiding c containing a Tan-

nakian subcategory Rep(G). The restriction of the de-equivariantization functor
F from (7) on Rep(G) is isomorphic to the fiber functor Rep(G)→ Vec. Hence
for any object X in CG and any object V in Rep(G) we have an automorphism of
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F(V )⊗ X defined as the composition

F(V )⊗ X ∼→ X ⊗ F(V ) ∼→ F(V )⊗ X, (14)

where the first isomorphism comes from the fact that F(V ) ∈ Vec and the second
one is (8).

When X is simple we have an isomorphism AutC(F(V )⊗ X)∼=AutVec(F(V )),
hence we obtain a tensor automorphism iX of F |Rep(G). Since Aut⊗(F |Rep(G))∼=G
we have an assignment X 7→ iX ∈ G. The hexagon axiom of braiding implies that
this assignment is multiplicative, that is, that iZ = iX iY for any simple object Z
contained in X ⊗ Y . Thus, it defines a G-grading on C:

C=
⊕
g∈G

Cg, where O(Cg)= {X ∈ O(C) | iX = g}. (15)

It is straightforward to check that iTg(X) = ghg−1 whenever iX = h.
Finally, to construct a G-crossed braiding on C, observe that C and Crev are

embedded into the crossed product category Co G = (CG)∗C as subcategories Cleft

and Cright, consisting, respectively, of functors of left and right multiplications by
objects of C. Clearly, there is a natural family of isomorphisms

X ⊗ Y
∼
−→ Y ⊗ X, with X ∈ Cleft and Y ∈ Cright, (16)

satisfying obvious compatibility conditions. Note that Cleft is identified with the
diagonal subcategory of C o G spanned by objects X � g, X ∈ Cg, g ∈ G, and
Cright is identified with the trivial component subcategory C � e. Using (6) we
conclude that isomorphisms (16) give rise to a G-crossed braiding on C.

One can check that the two constructions above (from braided fusion categories
containing Rep(G) to braided G-crossed categories and vice versa) are inverses of
each other; see [Kirillov 2002; Müger 2004; Drinfeld et al. 2009] for details.

Remark 2.13. Let C = ⊕g∈GCg be a braided G-crossed fusion category. It was
shown in [Drinfeld et al. 2009] that the braided category CG is nondegenerate if
and only if Ce is nondegenerate and the G-grading of C is faithful.

3. The center of a graded fusion category

Let G be a finite group and let D be a fusion category. Throughout this section C

will denote a fusion category with a faithful G-grading, whose trivial component
is D; that is, C is a G-extension of D:

C=
⊕
g∈G

Cg, Ce = D. (17)
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In what follows we consider only faithful gradings: that is, those such that Cg 6= 0
for all g ∈ G. An object of C contained in Cg will be called homogeneous of
degree g.

Our goal is to describe the center Z(C) as an equivariantization of the relative
center ZD(C) defined in Section 2B.

3A. The relative center ZD(C) as a braided G-crossed category. Let us define a
canonical braided G-crossed category structure on ZD(C).

First of all, there is an obvious faithful G-grading on ZD(C):

ZD(C)=
⊕
g∈G

ZD(Cg). (18)

Indeed, it is clear that for every simple object X of ZD(C) the forgetful image of
X in C must be homogeneous.

We now define the action of G on ZD(C). Take g, h ∈G. Let FunD�Drev(Cg,Ch)

denote the category of D-bimodule functors from Cg to Ch . Clearly, it is a Z(D)-
bimodule category.

Proposition 3.1. Let g, h ∈ G. The functors

Lg,h :ZD(Ch)
∼
→ FunD�Drev(Cg,Chg) : Z 7→ Z⊗?, (19)

Rg,h :ZD(Ch)
∼
→ FunD�Drev(Cg,Cgh) : Z 7→?⊗Z . (20)

are equivalences of Z(D)-bimodule categories.

Proof. We prove that (19) is an equivalence. Let FunD(Cg,Chg) be the category of
right D-module functors from Cg to Chg. It suffices to prove that

Mg,h : Ch→ FunD(Cg,Chg) : X 7→ X⊗? (21)

is an equivalence. Indeed, D-bimodule functor structures on Mg,h(X) for X ∈ Ch

are in bijection with central structures on X .
For every g ∈ G choose a simple object Xg ∈ Cg. Then Ag := Xg ⊗ X∗g is an

algebra in D. It follows from [Ostrik 2003, Theorem 1] that the functor Y 7→Y⊗X∗g
is a left C-module category equivalence between C and the category of right Ag-
modules in C. Since Y ⊗ X∗g belongs to D if and only if Y is in Cg we see that the
functor above restricts to a left D-module category equivalence between Cg and
the category of right Ag-modules in D. There are also similar equivalences of right
module categories.

It follows that for all g, h ∈ G there is an equivalence

Y 7→ Xg ⊗ Y ⊗ X∗hg (22)

between C and the category of (Ag− Ahg)-bimodules in C. The right-hand side of
(22) belongs to D if and only if Y is in Ch . Hence, (22) restricts to an equivalence
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between Ch and the category of (Ag− Ahg)-bimodules in D. The latter category is
identified with the category of right D-module functors between the categories of
right Ag-modules and Ahg-modules in D, that is, with FunD(Cg,Chg). It is easy to
see that upon this identification the restriction of equivalence (22) to Ch coincides
with (21).

The proof of the equivalence (20) is completely similar. �

We define tensor functors

Tg,h := L−1
g,ghg−1 Rg,h : ZD(Ch)→ ZD(Cghg−1), g, h ∈ G, (23)

and set

Tg :=
⊕
h∈G

Tg,h : ZD(C)→ ZD(C). (24)

The definition of Tg along with Proposition 3.1 give rise to the following natural
isomorphism of D-bimodule functors from Cg to C:

c−,Y : ? ⊗ Y ∼→ Tg(Y )⊗ ?. (25)

It translates to a natural family of isomorphisms

cX,Y : X ⊗ Y ∼→ Tg(Y )⊗ X, X ∈ Cg, Y ∈ ZD(C), g ∈ G, (26)

satisfying natural compatibility conditions corresponding to the D-bimodule struc-
ture on (25). Since the grading (18) is faithful, we have Tg(ZD(Ch))⊂ZD(Cghg−1).

Take X1 ∈ Cg1, X2 ∈ Cg2 and set X = X1 ⊗ X2 in (26). We obtain a natural
isomorphism

Tg1 Tg2(Y )⊗ X1⊗ X2
∼
→ Tg1g2(Y )⊗ X1⊗ X2. (27)

Since every object Z ∈Cg1g2 is contained in X1⊗X2 for some X1 ∈Cg1, X2 ∈Cg2,

using naturality of (27) we obtain a natural isomorphism

Tg1 Tg2(Y )⊗ Z ∼→ Tg1g2(Y )⊗ Z , Z ∈ Cg1g2, (28)

of D-bimodule functors Tg1 Tg2(Y )⊗? and Tg1g2(Y )⊗?. By Proposition 3.1 this
gives an isomorphism Tg1 Tg2(Y )

∼
→ Tg1g2(Y ), Y ∈ZD(C), that is, an isomorphism

of functors Tg1 Tg2
∼
→ Tg1g2 . Thus, the assignment g 7→ Tg is an action of G on

ZD(C) by tensor autoequivalences.
Suppose that X is an object in Z(Cg). Then both sides of (26) have structure of

objects in ZD(C) obtained by composing central structures of X and Y .

Lemma 3.2. Isomorphisms (26) define a G-braiding on ZD(C).
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Proof. That isomorphisms (26) are indeed morphisms in ZD(C) follows from com-
mutativity of the diagram

X ⊗ Y ⊗ V
idX ⊗δV //

cX,Y⊗idV
��

X ⊗ V ⊗ Y
γV⊗idY //

cX⊗V,Y

tt

V ⊗ X ⊗ Y
cV⊗X,Y

tt
idV ⊗cX,Y

��
Tg(Y )⊗ X ⊗ V

idTg (Y )⊗γV

// Tg(Y )⊗ V ⊗ X
Tg(δ)V⊗idX

// V ⊗ Tg(Y )⊗ X,

(29)

where (X, γ ) ∈ ZD(Cg), (Y, δ) ∈ ZD(C), and V ∈ D. Indeed, the parallelogram
in the middle commutes by naturality of c, and the two triangular faces commute
since the natural isomorphism (25) is an isomorphism of D-bimodule functors.

It is straightforward to check that isomorphisms cX,Y satisfy the compatibility
conditions of Definition 2.10. �

The constructions and arguments above prove the following theorem.

Theorem 3.3. Let G be a finite group and let C be a fusion category with a faithful
G-grading whose trivial component is D. The relative center ZD(C) has a canon-
ical structure of a braided G-crossed category.

Remark 3.4. In particular, to every G-extension of a fusion category D we as-
signed an action of G by braided autoequivalences of Z(D). This assignment is
studied in detail in [Etingof et al. 2009].

3B. The center Z(C) as an equivariantization. As before, let G be a finite group
and let C be a fusion category with a faithful G-grading (17). Let ZD(C) be the
braided G-crossed category constructed in Section 3A.

Theorem 3.5. There is an equivalence of braided fusion categories

ZD(C)
G ∼
→ Z(C). (30)

Proof. We see from (26) that a G-equivariant object in ZD(C) has a structure
of a central object in C defined as in (13). It follows from definitions that the
corresponding tensor functor ZD(C)

G
→ Z(C) is braided.

Conversely, given an object Y in Z(C), consider its forgetful image Ỹ in ZD(C).
Combining the central structure of Y with isomorphism (26) we obtain a family of
isomorphisms

Ỹ ⊗ X ∼→ Tg(Ỹ )⊗ X, X ∈ Cg, g ∈ G,

which gives rise to the isomorphism of D-bimodule functors Ỹ⊗ ? ∼→ Tg(Ỹ )⊗ ? :
Cg → C. By Proposition 3.1 we obtain a natural isomorphism Ỹ ∼

→ Tg(Ỹ ) and,
hence, a G-equivariant structure on Ỹ . Thus, we have a tensor functor Z(C)→

ZD(C)
G . It is clear that the two functors are quasiinverses of each other. �
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We describe the Tannakian subcategory E ∼= Rep(G) ⊂ Z(C) corresponding to
equivalence (30). For any representation π : G → GL(V ) of the grading group
G, consider an object Iπ in Z(C) where Iπ = V ⊗ 1 as an object of C with the
permutation isomorphism

cIπ ,X := π(g)⊗ idX : Iπ ⊗ X ∼= X ⊗ Iπ , when X ∈ Cg. (31)

Then E is the subcategory of Z(C) consisting of objects Iπ , where π runs through
all finite-dimensional representations of G.

Remark 3.6. Here is another description of the subcategory E: it consists of all
objects in Z(C) sent to Vec by the forgetful functor Z(C)→ ZD(C).

Corollary 3.7. Let C be a faithfully G-graded fusion category with the trivial
component D. Let E= Rep(G)⊂ Z(C) be the Tannakian subcategory constructed
above. Then the de-equivariantization category (E′)G is braided tensor equivalent
to Z(D).

Proof. The statement follows from Theorem 3.5 since (E′)G is the trivial compo-
nent of the grading of Z(C)G = ZD(C). �

Remark 3.8. The assignment above

{G-extensions of D} 7→ {braided G-crossed extensions of Z(D)} (32)

can be thought of as an analogue of the center construction for G-extensions.

Next, we describe simple objects of Z(C). For any conjugacy class K in G fix
a representative aK ∈ K . Let G K denote the centralizer of aK in G. Note that the
action (24) of G on ZD(C) restricts to the action of G K on ZD(CaK ).

Proposition 3.9. There is a bijection between the set of isomorphism classes of
simple objects of Z(C) and pairs (K , X), where K is a conjugacy class of G and
X is a simple G K -equivariant object of ZD(CaK ).

Proof. By Theorem 3.5 we have Z(C)'ZD(C)
G , so the stated parameterization is

immediate from the description of simple objects of the equivariantization category
given in Proposition 2.7. �

3C. A criterion for a graded fusion category to be group-theoretical. We have
seen in Corollary 3.7 that Z(C) contains a Tannakian subcategory E=Rep(G) such
that the de-equivariantization (E′)G is braided equivalent to Z(D), where D is the
trivial component of C. Furthermore, by Remark 2.11, there is a canonical action
of G on Z(D), by braided autoequivalences. By [Drinfeld et al. 2009], Tannakian
subcategories of Z(C) containing E bijectively correspond to G-stable Tannakian
subcategories of (E′)G ' Z(D). Combining this observation with Theorem 2.5(ii)
we obtain the following criterion.
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Corollary 3.10. A graded fusion category C =
⊕

g∈G Cg, Ce = D, is group-
theoretical if and only if Z(D) contains a G-stable Lagrangian subcategory.

Corollary 3.10 will be useful in Section 4D, where we characterize group-
theoretical Tambara–Yamagami categories.

We can specialize Corollary 3.10 to equivariantization categories. Let G be a
finite group acting on a fusion category C. The equivariantization CG is Morita
equivalent to the crossed product category C o G (see Section 2D). Therefore,
Z(CG)∼=Z(C o G). Clearly, the trivial component of Z(C o G)G is Z(C) and the
canonical action of G on Z(C) is induced from the action of G on C in an obvious
way.

Corollary 3.11. The equivariantization CG is group-theoretical if and only if there
exists a G-stable Lagrangian subcategory of Z(C).

Remark 3.12. Let G act on C as before. One can check (independently from
the results of this section) that the G-set of Lagrangian subcategories of Z(C)

is isomorphic to the G-set consisting of indecomposable C-module categories M

such that the dual category C∗M is pointed. This isomorphism is given by the map
constructed in [Naidu and Nikshych 2008, Theorem 4.17]. Thus, the criterion in
Corollary 3.11 is the same as [Nikshych 2008, Corollary 3.6].

3D. Example: the relative center of a crossed product category. Let G be a finite
group and let g 7→ Tg, g ∈ G, be an action of G on a fusion category D. Let
C :=DoG be the crossed product category defined in Section 2D. It has a natural
grading

C=
⊕
g∈G

Cg, where Cg = {Y � g | Y ∈ D}.

We describe the braided G-crossed fusion category structure on the relative cen-
ter

ZD(C)=
⊕
g∈G

ZD(Cg).

By definition, the objects of ZD(Cg) are pairs (Y � g, γ ), where Y ∈ D and

γ = {γX : X ⊗ Y ∼→ Y ⊗ Tg(X)}X∈D (33)

is a natural family of isomorphisms satisfying natural compatibility conditions.
Thus, ZD(Cg) can be viewed as a “deformation” of Z(D) by means of Tg.

The action of G on D induces an action h 7→ T̃h on ZD(C) defined as follows.
Applying Th, h ∈ G, to γTh−1 (X) in (33), we obtain an isomorphism

γ̃X : X ⊗ Th(Y ) ∼→ Th(Y )⊗ Thgh−1(X). (34)

Set T̃h(Y � g, γ ) := (Th(Y )� hgh−1, γ̃ ). Thus, T̃h maps ZD(Cg) to ZD(Chgh−1).
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Finally, the G-braiding between objects (X �h)∈ZD(Ch) and (Y �g)∈ZD(Cg)

comes from the isomorphism

(X �h)⊗(Y �g)= (X⊗Th(Y ))�hg
γ̃
−→ (Th(Y )⊗Thgh−1(X))�hg

= (Th(Y )�hgh−1)⊗(X �h)

= T̃h(Y �g)⊗(X �h).

By Theorem 3.5, the category Z(Do G)∼=Z(DG) is equivalent to the equivari-
antization of the braided G-crossed category above.

4. The centers of Tambara–Yamagami categories

Our goal in this section is to apply techniques developed in Section 3 to Tambara–
Yamagami categories introduced in [Tambara and Yamagami 1998] (see Section
4A below for the definition). Namely, using the techniques in Section 3 we estab-
lish a criterion for a Tambara–Yamagami category to be group-theoretical. We then
use this criterion together with Corollary 3.11 to produce a series of non-group-
theoretical semisimple Hopf algebras. In this section we assume that our ground
field k is the field of complex numbers C. We begin by recalling the definition of
a Tambara–Yamagami category.

4A. Definition of Tambara–Yamagami categories. Let Z2 = 〈 δ | δ
2
= 1 〉 be the

cyclic group of order 2.
Tambara and Yamagami [1998] completely classified all Z2-graded fusion cat-

egories in which all but one simple objects are invertible and the noninvertible
simple object has nontrivial graded degree.

They showed that any such category TY(A, χ, τ ) is determined, up to an equiv-
alence, by a finite abelian group A, a nondegenerate symmetric bilinear form
χ : A× A→ k×, and a square root τ ∈ k of |A|−1. The category TY(A, χ, τ ) is
described as follows. It is a skeletal category (that is, such that any two isomorphic
objects are equal) with simple objects {a | a ∈ A} and m, and tensor product

a⊗ b = a+ b, a⊗m = m, m⊗ a = m, m⊗m =
⊕
a∈A

a,

for all a, b∈ A, and the unit object 0∈ A. The associativity constraints are given by

αa,b,c = ida+b+c, αa,b,m = idm, αa,m,b = χ(a, b) idm, αm,a,b = idm,

αa,m,m =
⊕
b∈A

idb, αm,a,m =
⊕
b∈A

χ(a, b) idb,

αm,m,a =
⊕
b∈A

idb, αm,m,m =
⊕

a,b∈A
τχ(a, b)−1 idm .
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The unit constraints are the identity maps. The category TY(A, χ, τ ) is rigid with
a∗ =−a and m∗ = m (with obvious evaluation and coevaluation maps).

Let n := |A|. The dimensions of simple objects of TY(A, χ, τ ) are FPdim(a)=
1, a ∈ A, and FPdim(m)=

√
n. We have FPdim(TY(A, χ, τ ))= 2n.

The Z2-grading on TY(A, χ, τ ) is

TY(A, χ, τ )= TY(A, χ, τ )1⊕TY(A, χ, τ )δ,

where TY(A, χ, τ )1 is the full fusion subcategory generated by the invertible ob-
jects a ∈ A and TY(A, χ, τ )δ is the full abelian subcategory generated by the
object m.

Let C := TY(A, χ, τ ) and D := TY(A, χ, τ )1.

4B. Braided Z2-crossed category ZD(C). First, let us describe the simple objects
of ZD(C)= Z(C1)⊕ZD(Cδ). Let Â := Hom(A, k×). Clearly, Z(C1)= Z(VecA),
so its simple objects are parameterized by (a, φ) ∈ A × Â. The object X(a,φ)
corresponding to such a pair is equal to a as an object of C and its central structure
is given by

φ(x) ida+x : x ⊗ X(a,φ) ∼→ X(a,φ)⊗ x . (35)

Using Definition 2.1 we see that simple objects of ZD(Cδ) are parameterized by
functions ρ : A→ k× satisfying

ρ(a+ b)= χ(a, b)−1ρ(a)ρ(b), a, b ∈ A (36)

(clearly, such functions form a torsor over Â). The corresponding object Zρ is
equal to m as an object of C and has the relative central structure

ρ(x) idm : x ⊗ Zρ ∼→ Zρ ⊗ x, x ∈ A. (37)

Let A→ Â :a 7→ â be the homomorphism defined by â(x)=χ(x, a). Similarly,
let Â→ A : φ 7→ φ̂ be the homomorphism defined by φ(x)= χ(x, φ̂) (recall that
χ is nondegenerate). Clearly, these two maps are inverses of each other.

The fusion rules of ZD(C) are computed using formula (3) :

X(a,φ)⊗ X(b,ψ) = X(a+b,φ+ψ),

X(a,φ)⊗ Zρ = Zρφ(−â),

Zρ ⊗ X(a,φ) = Zρφ(−â),

Zρ′ ⊗ Zρ =
⊕
a∈A

X(a,̂aρ′/ρ).

We have X∗(a,φ) = X(−a,−φ) and Z∗ρ = Zρ , where ρ(x)= ρ(−x), x ∈ A.
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Using the construction given in Section 3A we see that the action of Z2 on
ZD(C) is given by

T1 = idZD(C); Tδ(X(a,φ))= X(−φ̂,−â), Tδ(Zρ)= Zρ . (38)

The monoidal functor structure on Z2 → Aut⊗(ZD(C)) is given by the natural
isomorphism γ := γδ,δ : Tδ ◦ Tδ ∼→ T1 defined by

γX(a,φ) = φ(a) idX(a,φ), γZρ =

(
τ
∑
x∈A

ρ(x)−1
)

idZρ .

The crossed braiding morphisms on ZD(C) are given by

cX(a,φ),X(b,ψ) = ψ(a) ida+b : X(a,φ)⊗ X(b,ψ) ∼→ X(b,ψ)⊗ X(a,φ),

cX(a,φ),Zρ = ρ(a) idm : X(a,φ)⊗ Zρ ∼→ Zρ ⊗ X(a,φ),

cZρ ,X(a,φ) = idm : Zρ ⊗ X(a,φ) ∼→ X(−φ̂,−â)⊗ Zρ,

cZρ′ ,Zρ =⊕a∈A ρ(−a)−1 ida : Zρ′ ⊗ Zρ ∼→ Zρ ⊗ Zρ′ .

4C. The equivariantization category ZD(C)Z2 . A simple calculation of Z2-equi-
variant objects in ZD(C) establishes the following.

Proposition 4.1. The following is a complete list of simple objects of ZD(C)
Z2 ∼=

Z(TY(A, χ, τ )) up to an isomorphism:

(1) 2n invertible objects parameterized by pairs (a, ε), where a ∈ A and ε2
=

χ(a, a)−1. The corresponding object Xa,ε is equal to X(a,−â) as an object of
ZD(C) and has Z2-equivariant structure

ε idX(a,−â) : Tδ(X(a,−â))
∼
→ X(a,−â);

(2) n(n−1)
2 two-dimensional objects parameterized by unordered pairs (a, b) of

distinct objects in A. The corresponding object Ya,b is equal to X(a,−b̂) ⊕

X(b,−â) as an object of ZD(C) and has Z2-equivariant structure(
idX(a,−b̂)

⊕χ(a, b)−1 idX(b,−â)

)
: Tδ(X(a,−b̂)⊕ X(b,−â))

∼
→ X(a,−b̂)⊕ X(b,−â);

(3) 2n
√

n-dimensional objects parameterized by pairs (ρ,1), where ρ : A→ k×

satisfies (36) and 12
= τ

∑
x∈A ρ(x)

−1. The corresponding object Zρ,1 is
equal to Zρ as an object of ZD(C) and has Z2-equivariant structure

1 idZρ : Tδ(Zρ)
∼
→ Zρ .

Recall from [Etingof et al. 2005] that in a braided fusion category of an in-
teger Frobenius–Perron dimension there is a canonical choice of a twist θ such
that the categorical dimensions of objects coincide with their Frobenius–Perron
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dimensions. Namely, for any simple object X the scalar θX is defined in such a
way that the composition

1 coevX
−−−→ X ⊗ X∗

θX cX,X∗
−−−−→ X∗⊗ X

evX
−−→ 1 (39)

is equal to FPdim(X) idX .
Let θ be the canonical twist on Z(C). Using the previous observation, explicit

formulas from Section 4B, and Section 2F, we immediately obtain the following.

θXa,ε = χ(a, a)−1, θYa,b = χ(a, b)−1, θZρ,1 =1.

Using the fusion rules of Z(C) (which may be computed using the explicit formulas
in Section 4B), values of the twists above, and the well known formula

SX,Y = θ
−1
X θ−1

Y

∑
Z

N Z
X,Y θZ dZ , (40)

we obtain the S- and T -matrices of Z(C):

SXa,ε ,Xa′,ε′
= χ(a, a′)2, SXa,ε ,Yb,c = 2χ(a, b+ c),

SXa,ε ,Zρ,1 = ε
√

nρ(a), SYa,b,Yc,d = 2 (χ(a, d)χ(b, c)+χ(a, c)χ(b, d)) ,

SYa,b,Zρ,1 = 0, SZρ,1,Zρ′,1′ =
1
11′

∑
a∈A

χ(a, a)2ρ(a)ρ ′(a);

TXa,ε = χ(a, a)−1, TYa,b = χ(a, b)−1, TZρ,1 =1.

Proposition 4.2. The maximal pointed subcategory of Z(C) is nondegenerate if
and only if |A| is odd.

Proof. Let a ∈ A be an element of order 2. Then Xa,ε centralizes every invertible
object of Z(C). �

Remark 4.3. We note that simple objects and the S- and T -matrices of Z(C) were
described in [Izumi 2001] using very different methods.

4D. A criterion for a Tambara–Yamagami category to be group-theoretical. The
group A× Â is equipped with a canonical nondegenerate quadratic form q : A× Â→
k× given by

q((a, φ)) := φ(a), (a, φ) ∈ A× Â.

We will call a subgroup B⊂ A× Â Lagrangian if q|B = 1 and B= B⊥ with respect
to the bilinear form defined by q . Lagrangian subgroups of A× Â correspond to
Lagrangian subcategories of Z(VecA)∼= VecA× Â.

The braided tensor autoequivalence Tδ of Z(VecA) defined in Section 4B deter-
mines an order 2 automorphism of A× Â, which we denote simply by δ:

δ((a, φ))= (−φ̂, −â), (a, φ) ∈ A× Â. (41)
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Definition 4.4. We will say that a subgroup L ⊂ A is Lagrangian (with respect
to χ ) if L = L⊥ with respect to the inner product on A given by χ . Equivalently,
|L|2 = |A| and χ |L = 1.

Lemma 4.5. Let A be an abelian 2-group such that |A|=22n and let χ be a nonde-
generate symmetric bilinear form on A. Then A contains a Lagrangian subgroup.

Proof. It suffices to show that A contains an isotropic element, that is, an element
x ∈ A, x 6= 0, such that χ(x, x) = 1. Then one can pass from A to 〈x〉⊥/〈x〉 and
use induction.

Suppose that A is cyclic with a generator a. Then 22na = 0 and χ(a, a) is a
(22n)th root of unity, hence χ(2na, 2na)= χ(a, a)2

2n
= 1.

If A is not cyclic then it contains a subgroup A0 = Z/2Z⊕Z/2Z. Let x1, x2 be
distinct nonzero elements of A0. Suppose χ(xi , xi ) 6=1, i=1, 2. Then χ(xi , xi )=

−1 and χ(x1+ x2, x1+ x2)= 1, as desired. �

Theorem 4.6. Let C = TY(A, χ, τ ) be a Tambara–Yamagami fusion category.
Then C is group-theoretical if and only if A contains a Lagrangian subgroup (with
respect to χ ).

Proof. By Corollary 3.10, C is group-theoretical if and only if Z(D) contains a
Tδ-stable Lagrangian subcategory. Equivalently, C is group-theoretical if and only
if A× Â contains a Lagrangian subgroup B stable under the action

(a, φ) 7→ (φ̂, â). (42)

This condition on B is the same as being stable under the action of δ from (41).
Let L be a Lagrangian (with respect to χ ) subgroup of A and let L̂ := {̂a |a ∈ L}.

Then L× L̂ is a Lagrangian subgroup of A× Â stable under (42). Hence C is group-
theoretical.

Conversely, suppose that C is group-theoretical. Let us write A= Aeven⊕ Aodd,
where Aeven is the Sylow 2-subgroup of A and Aodd is the maximal odd order
subgroup of A. Since |A| must be a square, we conclude that |Aeven| is a square,
and so Aeven contains a Lagrangian subgroup with respect to χ |Aeven by Lemma 4.5.

So it remains to show that Aodd contains a Lagrangian subgroup with respect to
χ |Aodd . For this end we may assume that |A| is odd. Let B⊂ A× Â be a Lagrangian
subgroup stable under (42). Then B = B+⊕ B−, where

B± := {(a,±â) | (a,±â) ∈ B}.

Let L± = B± ∩ (A× {1}). Then |L+||L−| = |A|, and χ |L± = 1. Hence, L± are
Lagrangian subgroups of A. �

Remark 4.7. It was observed in [Etingof et al. 2005, Remark 8.48] that for an odd
prime p and elliptic bicharacter χ on A= (Z/pZ)2, the category TY((Z/pZ)2,χ,τ )

is not group-theoretical. The criterion from Theorem 4.6 extends this observation.
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4E. A series of non-group-theoretical semisimple Hopf algebras obtained from
Tambara–Yamagami categories. Here we apply Corollary 3.11 to produce a series
of non-group-theoretical fusion categories admitting fiber functors (that is, repre-
sentation categories of non-group-theoretical semisimple Hopf algebras), gener-
alizing examples constructed in [Nikshych 2008]. We refer the reader to [Mont-
gomery 1993] as a reference on Hopf algebra theory.

Let A be a finite abelian group with a nondegenerate bilinear form χ . Let
Aut(A, χ) denote the group of automorphisms of A preserving χ .

The following proposition was proved in [Nikshych 2008, Proposition 2.10].

Proposition 4.8. There is an action of Aut(A, χ) on TY(A, χ, τ ) given by g 7→
Tg, where

Tg(A)= g(a), Tg(m)= m, a ∈ A, g ∈ Aut(A, χ),

with the tensor structure of Tg given by identity morphisms.

Corollary 4.9. Let G be a subgroup of Aut(A, χ). Then the fusion category
TY(A, χ, τ )G is group-theoretical if and only if there is a Lagrangian subgroup
of (A, χ) stable under the action of G.

Proof. Combine Corollary 3.11 and Theorem 4.6. �

We will say that a nondegenerate symmetric bilinear form χ : A× A→ k× is
hyperbolic if there are Lagrangian subgroups L , L ′ ⊂ A such that A = L⊕ L ′. In
this case L ′ is isomorphic to the group L̂ =Hom(L , k×) of characters of L and χ
is identified with the canonical bilinear form on L ⊕ L̂ .

It was demonstrated in Tambara [2000] that when n = |A| is odd the category
TY(A, χ, τ ) admits a fiber functor (that is, TY(A, χ, τ ) is equivalent to the rep-
resentation category of a semisimple Hopf algebra) if and only if τ−1 is a positive
integer and χ is hyperbolic.

Corollary 4.10. Let p be an odd prime, let L = (Z/pZ)N , N ≥ 1, let A = L⊕ L̂ ,
and let χ : A× A→ k× be the canonical bilinear form defined by

χ((a, φ), (b, ψ))= ψ(a)φ(b), a, b ∈ A, φ, ψ ∈ Â.

Suppose that G is a subgroup of Aut(A, χ) not contained in any conjugate of
Aut(L) ⊂ Aut(A, χ). Then the equivariantization category TY(A, χ, p−N )G is
a non-group-theoretical fusion category equivalent to the representation category
of a semisimple Hopf algebra of dimension 2p2N

|G|.

Proof. Note that Aut(A, χ) acts transitively on the set of Lagrangian subgroups of
(A, χ) and the stabilizer of L is Aut(L). Apply Corollary 4.9. �
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Remark 4.11. The series of fusion categories in Corollary 4.10 extends the one
constructed in [Nikshych 2008], where the case of N = 1 and G = Z/2Z was
considered.

5. Examples of modular categories arising from quadratic forms

As before, let C := TY(A, χ, τ ) be a Tambara–Yamagami category and let D :=

TY(A, χ, τ )1 be the trivial component of Z2-grading of TY(A, χ, τ ). In this
section we assume that our ground field k is the field of complex numbers C.

Suppose that the symmetric bicharacter χ : A× A→ k× comes from a quadratic
form on A, that is, there is a function q : A→ k× such that

q(a+ b)= q(a)q(b)χ(a, b), a, b ∈ A and q(−a)= q(a).

From the description obtained in Section 4B we observe that ZD(C) contains a
fusion subcategory spanned by the simple objects X(a,̂a), a ∈ A, and Zq−1 . It is
clear from the Tambara–Yamagami classification in Section 4A that this category
is equivalent to C.

Proposition 5.1. Suppose that the symmetric bicharacter χ comes from a qua-
dratic form on A. Then C admits a Z2-crossed braided category structure. The
equivariantization CZ2 is nondegenerate if and only if |A| is odd.

Proof. Clearly, C inherits the Z2-crossed braided category structure from ZD(C).
The nondegeneracy claim follows from Proposition 4.2 and Remark 2.13. �

Let us assume that n := |A| is odd. Then χ corresponds to a unique quadratic
form q. Let E(q,±) := CZ2 be the modular category constructed in Proposition
5.1 (the ± corresponding to τ =± 1

√
n , respectively). In what follows we describe

the fusion rules and S- and T -matrices of E(q,±).

5A. Fusion rules of E. Clearly, E(q,±) is a fusion category of dimension 4n. It
has the following simple objects:

two invertible objects, 1= X+ and X−;
n−1

2 two-dimensional objects Ya, a ∈ A−{0} (with Y−a = Ya); and

two
√

n-dimensional objects Zl , l ∈ Z/2Z.

Here we simplify the notation used in Section 4C and define

X± := X0,±1, Ya := Ya,−a, Zl := Zq−1,1l ,

where 1l, l ∈ Z/2Z, are distinct square roots of ± 1
√

n
∑

a∈A q(a).
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The fusion rules of E(q,±) are given by

X−⊗ X− = X+, X±⊗ Ya = Ya, X+⊗ Zl = Zl,

X−⊗ Zl = Zl+1, Ya ⊗ Yb = Ya+b⊕ Ya−b, Ya ⊗ Ya = X+⊕ X−⊕ Y2a,

Ya ⊗ Zl = Z0⊕ Z1, Zl ⊗ Zl = X+⊕ (⊕ Ya) , Zl ⊗ Zl+1 = X−⊕ (⊕ Ya) ,

where a, b ∈ A (a 6= b) and l ∈ Z/2Z. All objects of E(q,±) are self-dual.

Remark 5.2. Note that the fusion rules of E(q,±) do not depend on the quadratic
form q and the number τ . We show below that the S- and T -matrices of E(q,±)
do depend on q and τ .

5B. S- and T-matrices of E.

Lemma 5.3. The Gauss sums corresponding to q and q2 are equal up to a sign,
that is, ∑

a∈A q(a)2∑
a∈A q(a)

∈ {±1}.

Proof. Consider the group A× A with a nondegenerate quadratic form Q = q×q .
The Gaussian sum for this form is

τ(A× A, Q)=
∑

a,b∈A

q(a)q(b)= τ(A, q)2.

The restriction of Q on the diagonal subgroup D := {(a, a) | a ∈ A} is nonde-
generate since |A| is odd. The restriction of Q on the orthogonal complement
D⊥ = {(a,−a) | a ∈ A} is nondegenerate as well. By the multiplicativity of
Gaussian sums we have

τ(A× A, Q)= τ(D, Q)τ (D⊥, Q)= (
∑
a∈A

q(a)2)2,

which implies the result. �

Using the formulas for the S- and T - matrices of Z(C) given in Section 4C we
can write down the S- and T - matrices of E(q,±):

SX±,X± = 1, SX∓,X± = 1, SX±,Ya = 2, SYa,Zl = 0,

SX+,Zl =
√

n, SX−,Zl =−
√

n, SYa,Yb = 2
( q(a+ b)2

q(a)2q(b)2
+

q(a)2q(b)2

q(a+ b)2

)
,

SZl ,Zl =

{
±
√

n if the Gauss sums of q and q2 coincide,
∓
√

n otherwise,

SZl ,Zl+1 =

{
∓
√

n if the Gauss sums of q and q2 coincide,
±
√

n otherwise.
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TX± = 1, TYa = q(a)2, TZl =1l .

(Recall that 1l, l ∈ Z/2Z, are distinct square roots of ± 1
√

n
∑

a∈A q(a).)

5C. Example with A = Z/ pZ × Z/ pZ. Let p be an odd prime and let A :=
Z/pZ×Z/pZ. Let

(
·

p

)
denote the Legendre symbol modulo p, that is,

(a
p

)
= 1 if

a ∈ (Z/pZ)× is a square modulo p and −1 otherwise.
Let a, b ∈ (Z/pZ)× and ξ := e2π i/p. Consider the following nondegenerate

quadratic form q on A:
q(x1, x2)= ξ

ax2
1−bx2

2 .

It is hyperbolic if
(ab

p

)
= 1 and elliptic if

(ab
p

)
=−1.

Lemma 5.4. For every a, b ∈ A×, we have

∑
x∈Z/pZ

ξax2
=

{(a
p

)√
p if p ≡ 1 (mod 4),(a

p

)
i
√

p if p ≡ 3 (mod 4),

and ∑
(x1,x2)∈Z/pZ×Z/pZ

ξax2
1−bx2

2 =

(
ab
p

)
p.

Proof. The first assertion is well known; see, for example, [Ireland and Rosen
1990]. The second assertion is an easy consequence of the first. �

Using Lemma 5.4 we can explicitly write the S-matrix of E(q,±):

SX±,X± = 1, SX∓,X± = 1, SX±,Y(x1,x2)
= 2,

SX+,Zl = p, SX−,Zl =−p, SY(x1,x2),Y(y1,y2)
= 4 Re(ξ 4ax1 y1−4bx2 y2),

SY(x1,x2),Zl = 0, SZl ,Zl =±p, SZl ,Zl+1 =∓p,

and its T -matrix:

TX± = 1, TY(x1,x2) = ξ
2ax2

1−2bx2
2 , TZl =1l,

where 1l, l ∈ Z/2Z, are distinct square roots of ±
(ab

p

)
.

The central charge of the modular category E(q,±) is

ζ(E(q,±))=
(

ab
p

)
.

Below we give the S- and T -matrices of the modular category E(q,±) for p =
3. Order simple objects of E(q,±) as follows: 1, X−, Y(0,1), Y(1,0), Y(1,1), Y(1,2),
Z+, Z−. There are four modular categories E(q,±) of dimension 36 corresponding
to the choices of hyperbolic/elliptic q and τ =± 1

3 .
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(a) When q is hyperbolic we have

S =



1 1 2 2 2 2 3 3
1 1 2 2 2 2 −3 3
2 2 −2 4 −2 −2 0 0
2 2 4 −2 −2 −2 0 0
2 2 −2 −2 4 −2 0 0
2 2 −2 −2 −2 4 0 0
3 −3 0 0 0 0 ±3 ∓3
3 −3 0 0 0 0 ∓3 ±3


,

T = diag{1, 1, ξ 2, ξ, 1, 1, 1,−1} when τ = 1
3 ,

T = diag{1, 1, ξ 2, ξ, 1, 1, i,−i} when τ =− 1
3 .

Note that both the corresponding modular categories are group-theoretical
with central charge 1; in fact the one with τ = 1

3 is equivalent to the represen-
tation category of the double D(S3) of the symmetric group S3 and the one
with τ =− 1

3 is equivalent to the twisted double of S3.

(b) When q is elliptic we have

S =



1 1 2 2 2 2 3 3
1 1 2 2 2 2 −3 3
2 2 −2 4 −2 −2 0 0
2 2 4 −2 −2 −2 0 0
2 2 −2 −2 −2 4 0 0
2 2 −2 −2 4 −2 0 0
3 −3 0 0 0 0 ±3 ∓3
3 −3 0 0 0 0 ∓3 ±3


,

T = diag{1, 1, ξ, ξ, ξ 2, ξ 2, i,−i} when τ =
1
3
,

T = diag{1, 1, ξ, ξ, ξ 2, ξ 2, 1,−1} when τ =−
1
3
.

Both the corresponding modular categories are not group-theoretical. They
both have central charge −1 and so are not equivalent to centers of fusion
categories. In particular, they are not equivalent to representation categories
of any twisted group doubles.

5D. Example with A = Z/ pZ. Let p be an odd prime and let A := Z/pZ. Let
a ∈ (Z/pZ)× and ξ := e2π i/p. Up to isomorphism there are two nondegenerate
quadratic forms q on A:

q(x)= ξax2
,
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one corresponding to
(a

p

)
= 1 and another to

(a
p

)
=−1.

Using Lemma 5.4 we can explicitly write the S-matrix of E(q,±):

SX±,X± = 1, SX∓,X± = 1, SX±,Yx = 2,

SX+,Zl =
√

p, SX−,Zl =−
√

p, SYx ,Yy = 4 Re(ξ 4axy),

SYa,Zl = 0, SZl ,Zl =±

(
2
p

)
√

p, SZl ,Zl+1 =∓

(
2
p

)
√

p.

Further, we have

TX± = 1, TYx = ξ
−2ax2

, TZl =1l,

where

1l, l ∈ Z/2Z, are distinct square roots of

{
±
(a

p

)
if p ≡ 1 (mod 4),

±
(a

p

)
i if p ≡ 3 (mod 4).

The central charge of the modular category E(q,±) is

ζ(E(q,±))=

{(2a
p

)
if p ≡ 1 (mod 4),

−
(2a

p

)
i if p ≡ 3 (mod 4).

Below we give the S- and T -matrices of the modular category E(q,±) for p =
3 and 5. For p= 3 we order the simple objects as 1, X−, Y1, Z0, Z1 and for p= 5
we order them as 1, X−, Y1, Y2, Z0, Z1. (In (c) and (d) below, ξ = e2π i/5.)

(a) When p = 3 and a = 1 we have

S =


1 1 2

√
3
√

3
1 1 2 −

√
3 −
√

3
2 2 −2 0 0
√

3 −
√

3 0 ∓
√

3 ±
√

3
√

3 −
√

3 0 ±
√

3 ∓
√

3

 ,

T = diag
{

1, 1,
−1+ i

√
3

2
,

1+ i
√

2
,
−1− i
√

2

}
when τ =

1
√

3
,

T = diag
{

1, 1,
−1+ i

√
3

2
,

1− i
√

2
,
−1+ i
√

2

}
when τ =−

1
√

3
.

The central charge of both the corresponding modular categories is i .
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(b) When p = 3 and a = 2 we have

S = the S-matrix in (a),

T = diag
{

1, 1,
−1− i

√
3

2
,

1− i
√

2
,
−1+ i
√

2

}
when τ =

1
√

3
,

T = diag
{

1, 1,
−1− i

√
3

2
,

1+ i
√

2
,
−1− i
√

2

}
when τ =

1
√

3
.

The central charge of both the corresponding modular categories is −i .

(c) When p = 5 and a = 1 we have

S =



1 1 2 2
√

5
√

5
1 1 2 2 −

√
5 −
√

5
2 2

√
5− 1 −

√
5− 1 0 0

2 2 −
√

5− 1
√

5− 1 0 0
√

5 −
√

5 0 0 ∓
√

5 ±
√

5
√

5 −
√

5 0 0 ±
√

5 ∓
√

5


,

T = diag
{
1, 1, ξ 3, ξ 2, 1,−1

}
when τ =

1
√

5
,

T = diag
{
1, 1, ξ 3, ξ 2, i,−i

}
when τ =−

1
√

5
.

The central charge of both the corresponding modular categories is −1.

(d) When p = 5 and a = 2 we have

S =



1 1 2 2
√

5
√

5
1 1 2 2 −

√
5 −
√

5
2 2 −

√
5− 1

√
5− 1 0 0

2 2
√

5− 1 −
√

5− 1 0 0
√

5 −
√

5 0 0 ∓
√

5 ±
√

5
√

5 −
√

5 0 0 ±
√

5 ∓
√

5


,

T = diag
{
1, 1, ξ, ξ 4, i,−i

}
when τ =

1
√

5
,

T = diag
{
1, 1, ξ, ξ 4, 1,−1

}
when τ =−

1
√

5
.

The central charge of both the corresponding modular categories is 1.
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6. Appendix: Zeroes in S-matrices

There is a classical result of Burnside in character theory saying that if χ is an
irreducible character of a finite group G and χ(1) > 1, then χ(g) = 0 for some
g ∈ G; see [Berkovich and Zhmud’ 1999, Chapter 21].

In this appendix we establish a categorical analogue of this result for weakly
integral modular categories. Recall from [Etingof et al. 2008] that a fusion category
C is called weakly integral if its Frobenius–Perron dimension is an integer. In this
case the Frobenius–Perron dimension of every simple object of C is the square root
of an integer [Etingof et al. 2005].

Let C be a weakly integral modular category with the S-matrix S. Let O(C)

denote the set of all (representatives of isomorphism classes of) simple objects of
C. Given X ∈ O(C) define the sets

TX = {Y ∈ O(C) | SX,Y = 0}, DX = O(C)− (TX ∪ {1}).

Clearly, we have a partition O(C)= TX ∪DX ∪{1}. Let TX and DX be full abelian
subcategories of C generated by TX and DX , respectively.

Let K be the field extension of Q generated by the entries of S. It is known
[de Boer and Goeree 1991; Coste and Gannon 1994] that there is a root of unity ξ
such that K ⊂Q(ξ). In particular, the operation of taking the square of an absolute
value of an element of S is well defined. Let G := Gal(K/Q). Every element
σ ∈ G comes from a permutation σ of O(C) such that σ(SX,Y ) = SX,σ (Y ) for all
X, Y ∈ O(C).

Let C be a weakly integral modular category. It was shown in [Etingof et al.
2005] that there is a canonical spherical structure on C such that categorical dimen-
sions in C coincide with Frobenius–Perron dimensions. Let us fix this structure for
the remainder of this section. For any X ∈ O(C) let dX denote the dimension of
X . For any full abelian subcategory A of C let dim A denote the sum of squares
of dimensions of simple objects of A.

Theorem 6.1. Let C be a weakly integral modular category with the S-matrix S.
Then TX is not empty for every noninvertible simple object X of C. That is, every
row (column) of S corresponding to a noninvertible simple object contains at least
one zero entry.

Proof. Note that the statement of Proposition does not depend on the choice of
spherical structure.

We have
∑

Y∈O(C) |SX,Y |
2
= dim C; hence,

1=
dim C

d2
X
−

∑
Y∈DX

∣∣∣∣ SX,Y

dX

∣∣∣∣2 = 1+ dim TX

d2
X

−

(∑
Y∈DX

∣∣∣∣ SX,Y

dX

∣∣∣∣2− dim DX

d2
X

)
, (43)
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where dX denotes the dimension of X . It suffices to check that

1
dim DX

∑
Y∈DX

∣∣∣∣ SX,Y

dX

∣∣∣∣2 ≥ 1
d2

X
, (44)

since then (43) implies that 1≤ (1+ dim TX )/d2
X , whence

dim TX ≥ d2
X − 1. (45)

But X is noninvertible so dX > 1 and TX 6= 0.
Rewriting the left hand side of (44) as the sum of dim DX terms and using the

inequality of arithmetic and geometric means we obtain

1
dim DX

∑
Y∈DX

∣∣∣∣ SX,Y

dX

∣∣∣∣2 = 1
dim DX

∑
Y∈DX

d2
Y

∣∣∣∣ SX,Y

dX dY

∣∣∣∣2

≥
1

d2
X

( ∏
Y∈DX

∣∣∣∣ SX,Y

dY

∣∣∣∣2d2
Y
)1/dim DX

.

The set DX is clearly stable under all automorphisms in the Galois group, and
hence so is the product

∏
Y∈DX

∣∣SX,Y /dY
∣∣2d2

Y . Therefore, this product belongs to
Q. Its factors are squares of absolute values of characters of K0(C) on X and
hence are algebraic integers. Since all factors are positive, the product is ≥ 1,
which implies (44). �

For X ∈ O(C) define

UX = {Y ∈ O(C) | |SX,Y | = dY }.

Let UX be the full abelian subcategory of C generated by UX .

Proposition 6.2. Let C be a weakly integral modular category and let X be a
simple noninvertible object in C. Then

3 dim TX + dim UX > dim C. (46)

Proof. We may assume dX ≥
√

2.
We will use the following theorem of Siegel [1945] from number theory. Let

K/Q be a finite Galois extension with the Galois group G =Gal(K/Q). Let α be
a totally positive algebraic integer in K , α 6= 1. Then

1
|G|

∑
σ∈G

σ(α)≥
3
2
.
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We apply this to the situation when K is the extension of Q generated by entries
of S. We compute

dim C=
∑
Y∈C

|SX,Y |
2
= d2

X +
∑

Y∈UX

d2
Y +

∑
Y∈O(C)−(TX∪UX∪{1})

|SX,Y |
2

= d2
X + dim UX +

∑
Y∈O(C)−(TX∪UX∪{1})

d2
Y

(
1
|G|

∑
σ∈G

σ

(
|SX,Y |

2

d2
Y

))
≥ 2+ dim UX +

3
2(dim C− dim TX − dim UX − 1);

therefore 3 dim TX + dim UX ≥ dim C+ 1> dim C, as required. �

Remark 6.3. Our proofs of Theorem 6.1 and Proposition 6.2 imitate the corre-
sponding proofs for group characters given in [Berkovich and Zhmud’ 1999].
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