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If the free algebra F on one generator in a variety V of algebras (in the sense of
universal algebra) has a subalgebra free on two generators, must it also have a
subalgebra free on three generators? In general, no; but yes if F generates the
variety V.

Generalizing the argument, it is shown that if we are given an algebra and
subalgebras, A0⊇ · · · ⊇ An , in a prevariety (SP-closed class of algebras) P such
that An generates P, and also subalgebras Bi ⊆ Ai−1 (0 < i ≤ n) such that for
each i > 0 the subalgebra of Ai−1 generated by Ai and Bi is their coproduct in P,
then the subalgebra of A generated by B1, . . . , Bn is the coproduct in P of these
algebras.

Some further results on coproducts are noted:
If P satisfies the amalgamation property, then one has the stronger “transitiv-

ity” statement, that if A has a finite family of subalgebras (Bi )i∈I such that the
subalgebra of A generated by the Bi is their coproduct, and each Bi has a finite
family of subalgebras (Ci j ) j∈Ji with the same property, then the subalgebra of A
generated by all the Ci j is their coproduct.

For P a residually small prevariety or an arbitrary quasivariety, relationships
are proved between the least number of algebras needed to generate P as a pre-
variety or quasivariety, and behavior of the coproduct operation in P.

It is shown by example that for B a subgroup of the group S = Sym(�) of
all permutations of an infinite set �, the group S need not have a subgroup iso-
morphic over B to the coproduct with amalgamation S ∐

B S. But under various
additional hypotheses on B, the question remains open.
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1. Prologue, for the nonexpert

It is well known that the free group on two generators contains a subgroup free on
three generators. Can one deduce, from this alone, that it contains a subgroup free
on four generators?

It is unfair to say “from this alone” without indicating what facts about groups
are to be taken for granted. So suppose we want to use only the fact that groups
form a variety of algebras in the sense of universal algebra — a class of structures
consisting of all sets with a family of operations of specified arities, satisfying a
specified list of identities. Then we can ask, for V any variety and n any positive
integer:

(1) If, in V, the free algebra on n generators has a subalgebra free on n+ 1
generators, must it have a subalgebra free on n+ 2 generators?

Our first result will be a negative answer to this question, in the most extreme case,
n = 1.

On the other hand, a fact that is second nature to combinatorial group theorists is
that if G1 and G2 are overgroups of a common group H , and one forms G1

∐
H G2,

their coproduct with amalgamation of H (in group theorists’ notation and language
G1 ∗H G2, their free product with amalgamation of H), then the canonical maps
of G1 and G2 into that coproduct are embeddings. This says that the variety of
all groups has “the amalgamation property”; and we shall see in Section 6 that if
a variety V has this property, then it also has the property that for any algebras
A1, A2 in V and subalgebras B1 ⊆ A1, B2 ⊆ A1, the coproduct A1

∐A2 contains
the coproduct B1

∐B2. From this it is not hard to show that for any such V, (1) has
an affirmative answer.

However, the amalgamation property is relatively rare. For instance, though it
is satisfied by the variety of all groups, and by all varieties of abelian groups, it
does not seem to be satisfied by most other varieties of groups — in fact, it is a
longstanding open question whether it is satisfied by any variety of groups other
than those just mentioned [Neumann 1967, Problem 6; Kovács and Newman 1974,
page 422].

But in Section 2, after finding our counterexample to (1), we shall see that
a different condition, more common than the amalgamation property, implies a
positive answer to (1); namely, that the free algebra of rank n in V generate V,
that is, not lie in any proper subvariety thereof. (As, for example, the free group
of rank 2 generates the variety of all groups.)

In Sections 3 and 4 we shall generalize this to a result about when an algebra
(not necessarily free) containing a coproduct of subalgebras, some of which in
turn contain coproducts of subalgebras, will itself contain an “obvious” iterated
coproduct. The condition that a certain one of our algebras generate the class we
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are working in will again be a key assumption; not, this time, for generation as a
variety, but as a prevariety, which means, roughly, a class of algebras determined by
identities and universal implications. (For example, the class of torsion-free groups,
that is, groups satisfying (∀x) xn

= 1⇒ x = 1 for each n> 0, is a prevariety.) The
definition of prevariety, and of the related concept of quasivariety, are recalled in
Section 3.

We end with some further results on quasivarieties and prevarieties, and a brief
section on subgroups of infinite symmetric groups.

Acknowledgments and Reader’s Advisory. I am indebted to the referee for several
helpful suggestions, and to the editorial staff of the journal for requesting that I
write this introduction for the general reader.

Carrying that suggestion further, I have added, as Section 11, a quick summary
of some common terminology which should make this note readable (if not light
reading) by anyone for whom this prologue was. Readers not familiar with the
basic language of universal algebra might start with that section.

2. Free subalgebras of free algebras

The original question that led to this investigation [Bergman 2007, Question 4.5]
was whether an algebra A in a variety V which contains a subalgebra isomorphic
to the coproduct in V of two copies of itself, A∐

V A, must also contain a copy of
the three-fold coproduct A∐

V A∐
V A. As indicated above, this can fail even for A

free of rank 1: a free algebra of rank 1 in a variety V may have a subalgebra free
of rank 2 but fail to have any subalgebra free of rank 3. Let us begin by examining
how we might concoct such an example.

To do so, we must “foil” the obvious ways one would expect a free three-
generator subalgebra to arise. If 〈x〉 is free on x and contains a subalgebra 〈y, z〉
free on y and z, then y = px and z = qx for some derived unary operations p, q
of V. Since 〈qx〉 is isomorphic to 〈x〉, its subalgebra corresponding to 〈y, z〉,
namely 〈pqx, qqx〉, will be free on those two generators, and one might expect
〈px, pqx, qqx〉 to be free on the three indicated generators. (If it seems to the
reader that it must be free on those elements, he or she may be implicitly assuming
that V has the amalgamation property, to be discussed in Section 6.)

For this to fail, there must be some ternary relation T in the operations of V
such that T (px, pqx, qqx) is an identity in one variable x , but T (u, v, w) is not
satisfied by all 3-tuples of elements of algebras in V. On the other hand, since
y = px and z = qx generate a free algebra, the relation T (px, pqx, qqx) implies
that T (y, pz, qz) is an identity in two variables y and z in V.

Let us pause to note that if we construct a variety with such an identity T , we
will have eliminated one possibility for a free three-generator subalgebra of 〈x〉 of
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rank 3; but every 3-tuple of expressions obtained from y and z using the operations
of V represents another potential generating set for a free subalgebra. In principle,
we might use different relations to exclude different 3-tuples; but let us see whether
we can make do with just one such relation T , such that T (u, v, w) holds for all 3-
tuples (u, v, w) of elements of 〈x〉. Note that in this case, since 〈x〉 contains a free
algebra of rank two, V must satisfy identities saying that T (u, v, w) holds for any
elements u, v, w of any V-algebra that lie in a common two-generator subalgebra.

In testing out this approach, let us temporarily allow structures involving prim-
itive relations as well as operations. Then we could let V be the class of objects
defined by two primitive unary operations, p and q , and one primitive ternary
relation, T , subject only to the countable family of “identities”

(2) T (a(y, z), b(y, z), c(y, z)),

one for each 3-tuple of words a, b, c in two variables y, z and the operations p, q.
(Of course, since p and q are unary, each of a, b, c really just involves one of y
or z.) In an object of V generated by ≤ 2 elements, T thus holds identically, so in
describing the structures of ≤ 2-generator objects, we can ignore the relation T ,
and simply specify the actions of p and q . Since the family of identities (2) by
which we have defined V includes no identities in the operations p and q alone, the
possible structures of such objects are simply the structures of M-set, for M the
free monoid on generators p and q . In this monoid M , the left ideal generated by
p and q is free on those two elements; hence in the free V-object on one generator
x , the elements px and qx satisfy no relations in p and q; so with T , as noted,
also contributing no information, px and qx indeed generate a free subobject. On
the other hand, if we take the free M-set on three generators x, y, z, and define T
to hold precisely on those 3-tuples thereof in which all three components lie in a
subalgebra generated by two elements, we see that this satisfies the definition of
a free V-object on three generators, and that T (x, y, z) does not hold. Hence the
free object on one generator does not contain a copy of the free object on three
generators.

Let us now try to mimic the above behavior in a variety of genuine algebras. In
addition to two unary operations p and q , let us introduce a 0-ary operation 0 and a
ternary operation t , with the idea that the relation T (u, v, w) will be the condition
t (u, v, w)= 0. To keep our new operations from complicating our structures more
than necessary, let us introduce some “nonproliferation” identities:

(3) p0= q0= pt (x, y, z)= qt (x, y, z)= 0.

(4) t (u, v, w)= 0 whenever any of u, v, w is either 0, or is itself of the form
t (u′, v′, w′).

Finally, we impose the identities corresponding to (2):
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(5) t (a(x, y), b(x, y), c(x, y))= 0 for all derived operations a, b, c in two
variables.

In a free V-algebra, the elements t (u, v, w) that are not 0 may be thought of as
“tags”, showing that certain 3-tuples (u, v, w) obtained from the generators using
p and q alone do not have the form indicated in (5). By (3) and (4), these elements
have essentially no other effect. By the same reasoning as for structures with a
primitive relation T , we get:

Proposition 1. Let V be the variety defined by a 0-ary operation 0, two unary
operations p and q, and a ternary operation t , subject to identities (3), (4), (5).

Then in the free V-algebra FV(x) on one generator x , the subalgebra generated
by px and qx is free on those generators; but FV(x) (and hence also the free alge-
bra on two generators) has no subalgebra free on three or more generators. �

The above result was based on FV(x) satisfying an identity (namely, t (x, y, z)=
0) that did not hold in all of V; and we might hope that if V is a variety where this
does not happen, but which, as above, has unary derived operations p and q such
that px and qx are free generators of the subalgebra 〈px, qx〉 ⊆ FV(x), then the
subalgebra 〈px, pqx, qqx〉 will have to be free on the indicated three generators.
To investigate this question, consider a ternary relation T in the operations of V
about which we now merely assume that T (px, pqx, qqx) holds in FV(x), and let
us see whether we can deduce that T holds for all 3-tuples of elements of FV(x).

As noted earlier, the conditions that T (px, pqx, qqx) holds in FV(x), and that
y = px and z = qx generate a free algebra 〈y, z〉, show that in that free algebra,
T (y, pz, qz) holds, hence that in any V-algebra, T holds on any 3-tuple whose
last two terms are obtained from a common element by applying p, respectively,
q to it. Let us now apply this observation to a 3-tuple in FV(x) of the form
(a(px, qx), px, qx) where a is any derived operation of V, and use the indepen-
dence of px and qx a second time. We conclude that T (a(y, z), y, z) holds for
every such a. In other words, in any V-algebra, T holds on every 3-tuple whose
first term lies in the subalgebra generated by the last two terms.

But there is no evident way to carry this process further. And in fact, we can
again get a negative result by the same technique of realizing T as t (u, v, w)= 0,
embodying the conditions that we have found T must satisfy this time, in the system
of identities:

(6) t (u, pv, qv)= 0 for all u, v.

(7) t (a(u, v), u, v)= 0 for all u, v, and all binary terms a.

The one tricky point is to show that the variety so defined now has the property
that there are no identities satisfied by the free algebra on one generator that are not
identities of the whole variety. In contrast to the earlier example, our development
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has not called on any such identities; but neither has it shown that none exist. With
some work, one can prove this; but an easier approach, which we will follow, is
to let V0 denote the variety defined by the identities discussed above, and let our
V be the subvariety of V0 generated by the free algebra on one generator therein.
Here are the details.

Proposition 2. Let V0 be the variety defined by a 0-ary operation 0, two unary
operations p and q , a ternary operation t , and the identities (3), (4), (6), and (7);
and let V be the subvariety of V0 generated by the free algebra FV0(x) on one
generator. Thus, FV(x)= FV0(x), so V is generated by FV(x).

In this situation, the subalgebra 〈px, qx〉 ⊆ FV(x) is free in V (and in fact in
V0) on the two generators px and qx ; but the subalgebra 〈px, pqx, qqx〉 is not
free in V (and hence not in V0) on px, pqx and qqx.

Proof. The last sentence of the first paragraph is clear in the general context of a
subvariety generated by a free algebra in any variety.

We shall next show that 〈px, qx〉 ⊆ FV(x) is free on px and qx in V0. Since it
is a subalgebra of FV(x) and hence belongs to V, it will then a fortiori be free on
those generators in that subvariety.

To do this, we need to prove that any relation satisfied in FV(x) by px and qx
also holds between y and z in FV0(y, z). Let M again denote the free monoid on
the two symbols p and q. We know as before that the elements of FV(x) obtained
from x using p and q alone form a free M-set on one generator, and hence that
the sub-M-set M{px, qx} is free as an M-set on px and qx . Thus, if the given
relation satisfied by px and qx involves only the operations p and q , it will indeed
be satisfied by y and z. Hence in what follows, we may assume the relation involves
t and/or 0.

Now by (3) and (4), if either side of our relation in px and qx involves 0 or
t other than in the outermost position, that side equals 0, and the corresponding
expression in y and z does as well; so we can replace that side by 0 in our relation.
Given the forms of the identities (6) and (7), it is not hard to see that to complete
our proof it will suffice to show that if

(8) t (b(px, qx), c(px, qx), d(px, qx))= 0

is an identity of V0, where

(9) b(px, qx), c(px, qx), d(px, qx) ∈ M{px, qx},

then V0 also satisfies the identity

(10) t (b(y, z), c(y, z), d(y, z))= 0.

Moreover, (3) and (4) yield no relations of the form (8) satisfying (9), so we need
only look at relations (8) of the forms (6) and (7).
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An instance of (7) can have the form (8) only if the given u and v have the
forms c(px, qx) and d(px, qx); but then putting y and z in place of px and
qx in that instance of (7) again gives an instance of (7), and hence a relation
in FV0(y, z), as required. If an instance of (6) has the form (8), then we have
u = b(px, qx), but there are two possibilities for the element v: it can either
be x , or of the form e(px, qx). In the former case, this instance of (6) is also
an instance of (7), and the preceding argument applies. In the latter case, the
relation has the form t (b(px, qx), pe(px, qx), qe(px, qx)) = 0, and we see that
t (b(y, z), pe(y, z), qe(y, z)) = 0 is again an instance of (6), and hence a relation
in FV0(y, z). This completes the proof that 〈px, qx〉 is free on px and qx .

To see, finally, that 〈px, pqx, qqx〉 is not free on the indicated generators in
V, we note that FV0(x), which generates V, has 3-tuples of elements of M{x} to
which neither (6) nor (7) applies, for example, (x, qx, px). Hence t (x, y, z) = 0
is not an identity of V; hence the elements px , pqx , qqx , which do satisfy that
relation, cannot be free generators of a free subalgebra. �

After obtaining the above result, I wondered whether for every 3-tuple (ax,bx,cx)
in M{x}, one could find a ternary relation Ta,b,c on M{x} that could be embodied
in a construction like the above, giving an algebra in which that 3-tuple was not
a free generating set. If so, then it would seem that by defining a variety with
operations 0, p, and q and countably many ternary operations ta,b,c, one for each
such choice of a, b and c, one should be able to get an example where, as above,
FV(x) generated V and 〈px, qx〉 ⊆ FV(x) was free on px, qx , but where FV(x)
contained no subalgebra free on three generators.

But just a bit more experimentation revealed 3-tuples (ax, bx, cx) for which no
Ta,b,c with the desired property exists. Translating the resulting obstruction into a
proof of a positive statement, this is:

Proposition 3. Let V be a variety of algebras such that the free algebra FV(x) on
one generator generates V as a variety, and contains a subalgebra free of rank 2
in V, say on generators px and qx , where p and q are derived unary operations
of V. Then the subalgebra 〈px, pqx, pqqx〉 ⊆ FV(x) is free in V on the indicated
three generators.

Proof. It will suffice to show that for any three elements

(11) ax, bx, cx ∈ FV(x),

there exists a homomorphism 〈px, pqx, pqqx〉→ FV(x) carrying px, pqx, pqqx
to ax, bx, cx respectively, since this will show that every relation satisfied by
px, pqx and pqqx is an identity of FV(x), and hence, by hypothesis, of V.

Given elements (11), let us first use the freeness of 〈px, qx〉 to get a homo-
morphism f : 〈px, qx〉 → FV(x) carrying px to aqqx , and qx to x . Thus the
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image of (px, pqx, pqqx) under this map is (aqqx, px, pqx). Since this 3-tuple,
and hence the subalgebra it generates, again lies in 〈px, qx〉, we can compose
this homomorphism with another homomorphism, g : 〈px, qx〉 → FV(x); let this
take px to bqx and qx to x . This takes the preceding 3-tuple to (aqx, bqx, px).
Finally, mapping 〈px, qx〉 to FV(x) by the homomorphism h sending px to cx
and qx to x , we get the desired 3-tuple (ax, bx, cx). Hence, the composite hg f :
〈px, pqx, pqqx〉 → FV(x) acts as required. �

In the question we have answered, the choice of ranks one, two and three was,
of course, made to give a concrete test problem. This, and the restriction to free
algebras rather than coproducts of general algebras, make our counterexamples,
Propositions 1 and 2, formally stronger, but our positive result, Proposition 3,
weaker than the corresponding result without those restrictions. We shall gen-
eralize Proposition 3 in the next two sections so as to remove these restrictions.

3. Prevarieties and quasivarieties

In the proof of Proposition 3, we used the fact that if V is the variety generated by
an algebra A, then a V-algebra generated by a family of elements, B=〈{xi | i ∈ I }〉,
is free on those generators if and only if there exist homomorphisms B→ A taking
the xi to all choices of I -tuples of elements of A. For our generalization, we would
like to say similarly that if an algebra B is generated by a family of subalgebras Bi

(i ∈ I ), then it is their coproduct if and only if every system of homomorphisms
from the algebras Bi to our given algebra A extends to a homomorphism B→ A.
We shall see that this is true for coproducts, not in the variety generated by A, but
in the prevariety so generated (definition recalled below).

There are a few points of notation and terminology in which usage is not uni-
form; we begin by addressing these.

First, we admit the empty algebra when the operations of our algebras include
no 0-ary operations.

Second, note that the operators H, S and P on classes of algebras that appear in
Birkhoff’s Theorem and related results each come in two slightly different flavors.
One may associate to a class X of algebras the class of all factor algebras of
members of X by congruences, or the class of algebras isomorphic to such factor
algebras, that is, the homomorphic images of members of X. Likewise, one may
associate to X the family of subalgebras of members of X, or the family of algebras
isomorphic to such subalgebras; that is, algebras embeddable in members of X.
And finally, we may associate to X the class of direct product algebras constructed
from members of X in the standard way as algebras of tuples, or the class of alge-
bras isomorphic to algebras so constructed, that is, algebras P that admit a family of
maps to the indicated members of X giving P the universal property of their direct
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product. It is probably an accident of history that the symbols H, S and P were
assigned, in two cases (subalgebras and products) to particular explicit construc-
tions, but in the remaining case (homomorphic images) to the isomorphism-closed
concept. The standard remedy is to introduce an operator I, taking every class X
of algebras to the class of algebras isomorphic to members of X, and apply I in
conjunction with S and P when the wider construction is desired. But that wider
construction usually is what is desired, so, following [McKenzie et al. 1987], we
will use the less standard definitions:

Definition 4. If X is a class of algebras of the same type, then SX will denote the
class of algebras isomorphic to subalgebras of algebras in X, and PX the class
of algebras isomorphic to direct products of algebras in X (including the direct
product of the empty family, the one-element algebra). As usual, HX will denote
the class of homomorphic images of algebras in X.

A third point on which terminology is divided concerns the definition of “qua-
sivariety”. Both usages agree that this means a class of algebras A determined by
a set of conditions of the form

(12) (∀ x ∈ AI ) (
∧

j∈J a j (x)= b j (x)) H⇒ c(x)= d(x),

where I and J are sets, and the a j and b j and c and d are I -ary terms in the
algebra operations. (J may be empty, in which case (12) represents an ordinary
identity.) The point of disagreement is whether I and J are required to be finite.
The more standard usage, which, somewhat reluctantly, I will follow, assumes this;
a class of algebras defined by sentences (12) where I and J are not required to be
finite is then called a prevariety. The other usage is exemplified by [Adámek and
Sousa 2004], where “quasivariety” is defined with no finiteness restriction on I
and J , while “prevariety” is used for a still more general sort of class of algebras
(typified by monoids in which every element is invertible; that is groups regarded
as monoids).

(My discomfort with the standard usage is that the prefix “pre-” suggests a con-
cept used mainly for technical purposes in the development of another concept,
as in “preorder”, “presheaf” and “precategory”. Also, the relationship between
“prevariety” and “quasivariety” is not mnemonic, as “quasivariety” and “elemen-
tary quasivariety” would be. Incidentally, if X is a finite set of finite algebras, the
prevariety and the quasivariety that it generates are the same, so works like [Clark
and Davey 1998] don’t have to distinguish the concepts.)

The concept of quasivariety is a natural one only for finitary algebras. (The
constructions of reduced products and ultraproducts, occurring in standard charac-
terizations of quasivarieties, are not in general defined on infinitary algebras.) Most
of our results on prevarieties will not require finitariness; so algebras comprising
prevarieties will not be assumed finitary unless this is explicitly stated.
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We summarize this and some related conventions in:

Definition 5. A prevariety will mean a class P of algebras of a given (not neces-
sarily finitary) type that can be defined by a class of conditions of the form (12);
equivalently that is closed under the operators S and P .

A prevariety P which is finitary (that is, every primitive operation of which has
finite arity), will be called a quasivariety if

(13) P can be defined by conditions (12) in each of which I and J are finite;

equivalently,

(14) P is closed under ultraproducts;

equivalently,

(15) P is closed under reduced products.

If X is a class of algebras of a given type, the least prevariety containing X,
namely, SPX, will be called the prevariety generated by X. Likewise, if the type is
finitary, the least quasivariety containing X, namely, SPPultX = SP redX, where
Pult and P red denote, respectively, the constructions of ultraproducts and reduced
products (and algebras isomorphic thereto), will be called the quasivariety gener-
ated by X. Again without the assumption of finitariness, the least variety containing
X, namely, HSPX, will be called the variety generated by X.

In any prevariety, one has algebras presented by arbitrary systems of generators
and relations. In particular, every family of algebras has a coproduct. A useful
characterization of these is

Lemma 6. Let X be a class of algebras of a given type, let P = SPX be the
prevariety generated by X, let B be an algebra in P, and let fi : Bi→ B (i ∈ I ) be
a family of maps from algebras in P into B.

Then the algebra B is a coproduct of the Bi in P, with the fi as the coprojection
maps, if and only if the following two conditions are satisfied:

(16) B is generated as an algebra by the union of the images fi (Bi ).

(17) For every A in our generating class X, and every choice of a family of
maps gi : Bi → A (i ∈ I ), there exists a homomorphism g : B→ A such
that gi = g fi for all i ∈ I .

Sketch of proof. “Only if” is straightforward: the necessity of (16) is shown, as
usual, by applying the universal property of B as a coproduct to the maps fi ,
regarded as taking the Bi into the subalgebra C of B that they together gener-
ate (which belongs to P, since P is closed under taking subalgebras); while the
necessity of (17) is a case of that universal property.
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Conversely, assuming (16) and (17), let us show that B and the fi satisfy the
universal property of the coproduct. Let C be any algebra in P, given with homo-
morphisms ai : Bi → C .

If there exists a homomorphism a : B→ C with ai = a fi for all i , then by (16)
it will be unique.

To see that such a map exists, we write C as a subalgebra of a direct product∏
j∈J A j with all A j in X. Then for each j ∈ J , the composites of the given maps

ai : Bi → C with the j th projection C→ A j give a system of maps ai j : Bi → A j

(i ∈ I ). By (17), for each j the ai j are induced by a single map a∗ j : B → A j ;
doing this for all j ∈ J gives a map a : B →

∏
J A j , whose restriction to each

fi (Bi ) ⊆ B lies in C ⊆
∏

j∈J A j . Hence a(B) lies in C by (16). The relations
ai j = a∗ j fi now show that ai = a fi , as required. �

Remarks. We shall see in Section 7 that it can happen that though each Bi lies
in P = SPX, no A ∈ X simultaneously admits maps from all Bi . In that case,
condition (17) is vacuous, and the lemma says that (16) characterizes the coproduct∐

P Bi . Though implausible-sounding, this is correct: in that case an algebra B
with maps of the Bi into it, to belong to P = SPX, must embed in the product
of the vacuous family of members of X, hence can have at most one element, so
there is hardly any way it can differ from the desired universal object; (16) merely
guarantees that if all Bi are empty, B is also.

In a different direction, taking I = ∅ in the above result and recalling that a
coproduct of the empty family of objects in a category is an initial object of the
category, the result says that an algebra B is initial in P if and only if it is generated
by the empty set and admits a homomorphism into each A ∈ X.

4. P-independent subalgebras

Definition 7. If A is an algebra in a prevariety P, we shall call a family of subal-
gebras Bi ⊆ A (i ∈ I ) P-independent if the subalgebra B ⊆ A that they generate,
given with the system of inclusion maps Bi → B, is a coproduct of the Bi in P.

Here, finally, is the promised generalization of Proposition 3.

Theorem 8. Suppose that P is a prevariety of algebras and A0 an algebra in P,
and that for some natural number n we are given subalgebras A1, . . . , An and
B1, . . . , Bn of A0, such that for i = 1 . . . n, Ai and Bi are P-independent, and are
both contained in Ai−1. Assume, moreover, that P is generated as a prevariety
by An .

Then B1, . . . , Bn are P-independent.

Proof. Let us prove by induction on i = 0, . . . , n a statement a little stronger than
what we will need for i = n, namely that for every system of homomorphisms
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f j : B j → Ai ( j = 1, . . . , i), there exists a unique homomorphism f from the
subalgebra of A0 generated by B1, . . . , Bi and Ai into Ai which acts on each B j

( j = 1, . . . , i) as f j , and which acts as the identity on Ai .
This is clear for i = 0. Let 0< i ≤ n, inductively assume the result for i−1, and

suppose we are given f j : B j→ Ai ( j = 1, . . . , i). Since Ai ⊆ Ai−1, our inductive
hypothesis gives us a homomorphism g from the subalgebra of A0 generated by
B1, . . . , Bi−1 and Ai−1 into Ai−1 which agrees with f j for j = 1, . . . , i−1, and is
the identity on Ai−1. Note that g will carry the subalgebra generated by B1, . . . , Bi

and Ai into the subalgebra generated by Ai (into which it carries B1, . . . , Bi−1 and
Ai ) and Bi (which is contained in Ai−1, and so is left fixed).

But by assumption, that subalgebra is the coproduct of Ai and Bi , so we can
map it into Ai by a homomorphism h which acts as the identity on Ai and as fi

on Bi . Now f = hg clearly has the property required for our inductive step.
Taking the i = n case of our result, and ignoring the condition that f be the

identity on An , we see that the subalgebra B ⊆ A0 generated by B1, . . . , Bn sat-
isfies (17) for X the singleton family {An}. Since by assumption An generates P,
Lemma 6 tells us that B is the coproduct of the Bi in P. �

Remark. We might call a family of subalgebras Bi of an algebra A in a preva-
riety P, given with a distinguished member B0 which generates P, “almost P-
independent” if every family of homomorphisms fi : Bi → B0 such that f0 is
the identity map of B0 can be realized by a homomorphism on the subalgebra
generated by the Bi . We see from the proof of Theorem 8 that that theorem re-
mains true if the P-independence hypothesis is weakened to say that each pair
(Ai , Bi ), with Ai taken as the distinguished member, is almost P-independent, and
the conclusion strengthened to say that the n+1-tuple (An, B1, . . . , Bn), with An

as distinguished member, is almost P-independent. The condition of almost P-
independence seemed too technical to use in the formal statement of the theorem;
but one might keep it in mind. It is interesting that while Proposition 2 showed that
in the situation described there, the subalgebras 〈px〉, 〈pqx〉 and 〈qqx〉 of FV(x)
were not V-independent, the above proof shows that, with the last of them taken
as distinguished, they are almost V-independent.

Note that Theorem 8 holds even in the case n = 0: If A0 generates P, then the
subalgebra of A0 generated by the empty set is the initial object of P.

A case of Theorem 8 with a simpler hypothesis is

Corollary 9. Suppose A and B1, . . . , Bn are algebras in a prevariety P, such that
A generates P, and such that for each i , A contains an isomorphic copy of A∐

P Bi .
Then A contains an isomorphic copy of

∐i=1,...,n
P Bi . �

Recall next that a free algebra in a prevariety P is also free on the same gen-
erators in the variety V generated by P. Hence we can apply the above results to
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free algebras in a variety, and obtain the following result extending Proposition 3
(though we omit, for brevity, the explicit description of the free generators).

Corollary 10. Suppose V is a variety and m < n are positive integers such that
the free V-algebra FV(x1, . . . , xm) on m generators has a subalgebra free on n
generators, and such that V is generated as a variety by FV(x1, . . . , xm). Then for
every natural number N , FV(x1, . . . , xm) has a subalgebra free on N generators.

Proof. A free V-algebra FV(x1, . . . , xn) has subalgebras free on all smaller num-
bers of generators; so the above hypothesis implies that FV(x1, . . . , xm) has a subal-
gebra free on m+1 generators. This is a coproduct of a free algebra on m generators
and a free algebra on one generator, so we get the hypothesis of Corollary 9 with
P the prevariety generated by A= FV(x1, . . . , xm), the n of that corollary taken to
be N , and each Bi taken to be free on one generator. The conclusion shows that
FV(x1, . . . , xm) has a subalgebra free on N generators in the prevariety it generates.
As noted, a free algebra in a prevariety P is also free in the variety V generated
by P. �

Can we strengthen this result to give free subalgebras of countably infinite rank?
Yes if our algebras are finitary. We will need:

Lemma 11. Let P be a prevariety of finitary algebras, A an algebra in P, and
(Bi )i∈I a family of subalgebras of A, such that every finite subset I0 ⊆ I is con-
tained in a subset I1 ⊆ I such that the family of subalgebras (Bi )i∈I1 is P-indepen-
dent. Then (Bi )i∈I is P-independent.

Proof. We need to show that the map f I :
∐I

P Bi → A whose composite with
each coprojection q j : B j →

∐I
P Bi is the inclusion of B j in A is one-to-one. By

finitariness of P, every element of
∐I

P Bi lies in the subalgebra generated by finitely
many of the Bi , hence it will suffice to show that for any finite subset I0 ⊆ I , the
restriction of f I to the subalgebra of

∐I
P Bi generated by {Bi | i ∈ I0} is one-to-

one. By assumption, I0 is contained in a subset I1 such that the family (Bi )i∈I1

is P-independent; hence the canonical map f I1 :
∐I1

P Bi → A is one-to-one; but
that map factors through f I , so f I is one-to-one on its image, the subalgebra of∐I

P Bi generated by {Bi | i ∈ I1}, hence on the smaller subalgebra generated by
{Bi | i ∈ I0}, as required. �

(We shall see in Sections 6 and 8 respectively that if a prevariety P either satisfies
the amalgamation property (which is not in general the case in the situation we are
interested in here) or is generated as a prevariety by a single algebra (which is
true in the situation to which we are about to apply the above lemma) then any
subfamily of a P-independent family of subalgebras is P-independent; so in such
cases, the hypothesis of the above lemma can be simplified merely to say that every
finite subset of I is P-independent. But in a general prevariety P, a subfamily of a
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P-independent family need not be P-independent, hence that simplified statement
does not carry the full force of the lemma. For an example of P-independence
not carrying over to subfamilies, take for P the variety V of monoids with two
distinguished elements x and y, let A be the V-algebra generated by a universal
two-sided inverse to x , denoted x−1, let B1 and B2 both be the subalgebra of A
generated by u= x−1 y, which is a free monoid on two generators u and x , regarded
as a member of V by setting y = xu, and let B3 be the whole algebra A. It is not
hard to verify that in B1

∐
V B2, the images u1, u2 of the copies of u from B1 and

B2 are distinct (though they satisfy xu1 = xu2). Since in A itself, in contrast,
their images are equal, B1 and B2 are not V-independent subalgebras of A. But in
B1

∐
V B2

∐
V B3, the properties of two-sided inverses force the generators of B1 and

B2 to fall together with the corresponding elements of B3, so the family consisting
of these three subalgebras satisfies the definition of V-independence.)

Combining the above lemma with our earlier results, we get:

Corollary 12. Let P, in (i) and (ii) below, be a prevariety of finitary algebras, and
V, in (iii), a variety of such algebras. Then:

(i) If A0⊇ A1⊇· · ·⊇ Ai ⊇ . . . are algebras in P such that every Ai generates P as
a prevariety; and if for each i > 0, Bi is a subalgebra of Ai−1 such that Ai and
Bi are P-independent, then the countable family (Bi )i>0 is P-independent.

Hence:

(ii) If A is an algebra which generates P as a prevariety, and we are given a
countable family of algebras (Bi )i>0 in P, such that for each i , A has a subal-
gebra isomorphic to A∐

P Bi , then A has a subalgebra isomorphic to
∐i>0

P Bi .
Hence:

(iii) If for some positive integer m the free algebra FV(x1, . . . , xm) generates V as
a variety, and contains a subalgebra free on > m generators, then it contains
a subalgebra free on countably many generators. �

Lemma 11 and Corollary 12 both fail if the assumption that our algebras are
finitary is deleted. To see this for the lemma, let V be the variety determined by
one operation a of countably infinite arity, and identities saying that whenever two
of x0, x1, . . . are equal, we have

(18) a(x0, x1, . . . )= x0.

Let A be a countably infinite set, on which a is defined by letting (18) hold for
all x0, x1, . . . . Then every finite subset of A is a free subalgebra on that set, from
which one sees that any finite family of distinct singleton subsets is an independent
set of subalgebras; but the set of all of these is not independent, because their
coproduct in the variety V, the free V-algebra on countably many generators, does
not satisfy (18) identically.
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To show that the statements of Corollary 12 all need the finitariness condition, it
suffices to give a counterexample to statement (iii) in the absence of that condition.
The idea will be the same as above, but the details are more complicated, and I
will be a little sketchy.

The variety in question will have countably many 0-ary operations c0, c1, . . . ,
two unary operations p and q , an operation a of countable arity, and an additional
0-ary operation 0, satisfying the analogs of (3) and (4) with a in place of t . As in
Section 2, let M denote the free monoid on the symbols p and q . Let V0 be defined
by the abovementioned analogs of (3) and (4), together with the (uncountable)
family of identities saying that

(19) a(x0, x1, . . . )= 0 if infinitely many of the xi belong to M{u} for some
common element u.

These identities do not imply a(c0, c1, . . . ) = 0, so a(x0, x1, . . . ) = 0 is not
an identity in any free algebra in V0. Once again, let V be the subvariety of V0

generated by the free algebra FV(x) on one generator.
One finds that the subalgebra 〈px, qx〉 ⊆ FV(x) = FV0(x) is free on px and

qx . The key point is that if an element a(x0, x1, . . . ) with x0, x1, . . . ∈ 〈px, qx〉
equals 0 in FV(x) by an application of (19), and the element u of the hypothesis
of (19) is x , then the infinite family of elements of M{u} in question will be the
union of a family of elements of M{px} and a family of elements of M{qx}, one
of which must still be infinite; so the relation a(x0, x1, . . . )= 0 still follows from
the expressions for the xi in terms of px and qx .

However, I claim that FV(x) contains no subalgebra free on countably many
generators. For note that a family of independent elements of FV(x) cannot include
the value of any primitive or derived 0-ary operation (since their behavior under
homomorphisms is not free), nor any element obtained with the help of a, by
the analogs of (3) and (4); hence such a family must lie entirely in M{x}. But
by (19) (with u = x), any infinite family x0, x1, . . . of elements of M{x} satisfies
the relation a(x0, x1, . . . ) = 0, which we have seen is not an identity of V; so no
infinite family of elements of FV(x) is independent.

5. Some questions

Proposition 1 shows that Corollary 10 becomes false if we delete the assumption
that FV(x1, . . . , xm) generates P. In the absence of that assumption, it is not clear
what forms the relation of mutual embeddability can assume.

Question 13. For V a variety, let us say that two natural numbers m and n are
V-equivalent (with respect to embeddability of free algebras) if FV(x1, . . . , xm)
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and FV(x1, . . . , xn) each contain an isomorphic copy of the other. Clearly, the V-
equivalence classes are blocks of consecutive integers. Which decompositions of
the natural numbers into blocks can be realized in this way?

More generally, given a prevariety P and algebras A1, . . . , Ar in P, let us define a
preorder � on r -tuples of natural numbers by writing (m1, . . . ,mr )� (n1, . . . , nr )

if the coproduct in P of m1 copies of A1, m2 copies of A2, etc., through mr copies
of Ar , is embeddable in the coproduct of n1 copies of A1 etc., through nr copies
of Ar . What preorderings on ωr can be realized in this way? In particular, what
equivalence relations on ωr can be the equivalence relation determined by such a
preorder? Do these answers change if one requires P to be a variety?

In [Zaı̆tsev 1992], for certain varieties V of Lie algebras over a field of char-
acteristic 0, bounds are obtained on n/m for any m, n equivalent under the re-
lation of the first paragraph of Question 13 above. The idea is to note that if
FV(x1, . . . , xm) and FV(x1, . . . , xn) are mutually embeddable, they must have the
same Gelfand–Kirillov dimension (a measure of growth rate). Upper and lower
bounds are obtained for the Gelfand–Kirillov dimension of FV(x1, . . . , xn), lead-
ing to the asserted conclusions. However, it seems most likely that for such V,
the Gelfand–Kirillov dimension of FV(x1, . . . , xn) will grow with n in a “smooth”
fashion; if so, one should in fact be able to prove that no free algebras of distinct
ranks in V are mutually embeddable, in which case such varieties will not give
interesting examples relevant to Question 13.

For results on isomorphisms and surjections among free algebras, rather than
embeddings, see [Świerczkowski 1961; Clark 1969; Cohn 1966]. The last of these
shows that all consistent cases are realized by module-varieties ModR for rings R.

In generalizing Proposition 3 from free algebras to general coproducts, we found
that the context that made the argument work was that of coproducts in a pre-
variety. Theorem 8 does not give us the corresponding statement for general
A0, . . . , An, B1, . . . , Bn with the prevariety P replaced by a variety V, and the
condition that P be generated by An as a prevariety replaced by the condition that
V be generated by An as a variety, since for a variety V and an algebra A ∈V, the
condition that V be generated by A as a variety is weaker than the condition that
it be generated by A as a prevariety. (For example, the variety of abelian groups
is generated by the infinite cyclic group as a variety, but not as a prevariety, since
all groups in the prevariety it generates must be torsion-free.) But I don’t have a
counterexample to the modified statement.

Question 14. (i) Does Theorem 8 remain true if “prevariety” is everywhere re-
placed by “variety”?

If not, or if the question proves difficult, one might examine some special cases;
for example:
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(ii) If in Corollary 9 we replace “prevariety” by “variety”, and add the assumption
that A is free of rank 1 in that variety (but not that the Bi are free), does the
statement still hold?

(iii) If V is a variety, and A an algebra that generates V as a variety, and that
contains as a subalgebra a coproduct of two copies of itself in V, must it contain a
coproduct of three copies of itself in V?

More likely to have positive answers, since quasivarieties are more like preva-
rieties than varieties are, is:

Question 15. Same questions (i), (ii), (iii) as above, but with “variety” everywhere
replaced by “quasivariety” (necessarily, of finitary algebras).

Looking back further, to Section 2, the mixture of positive and negative results
there suggests:

Question 16. Is there a nice criterion for whether a 3-tuple (a, b, c) of monoid
words in two letters p, q has the property proved in Proposition 3 to hold for the
3-tuple (p, pq, pqq), and in Proposition 2 not to hold for the 3-tuple (p, pq, qq),
namely, of witnessing the existence of subalgebras free on three generators in all
relatively free one-generator algebras 〈x〉 that contain free two-generator subalge-
bras 〈px, qx〉 in the varieties they generate?

More generally, given n > 1 and N > 1, one may ask for a criterion for an
N -tuple (a1, . . . , aN ) of words in n letters p1, . . . , pn to witness the existence of
a free subalgebra on N generators in any relatively free algebra on one generator
that contains a free subalgebra 〈p1x, . . . , pnx〉 on n generators in the variety it
generates.

(Still more generally, for n > m > 0 and N > 1, one may ask how to decide
whether a given N -tuple of terms in m variables and n operation symbols each of
arity m witnesses the result of Corollary 10. But since terms in operation symbols
of arity > 1 are more complicated than words in unary operation symbols, there
seems to be less likelihood of a simple answer.)

The next four sections are related to, but do not depend on, the material above,
except for the definitions. Section 6 recalls what it means for a category of algebras
to have the amalgamation property, obtains some equivalent statements, and then
shows that for prevarieties with that property, one has stronger results on when
a family of subalgebras of an algebra generates a subalgebra isomorphic to their
coproduct than those that we have seen to hold in general. In a different direc-
tion, motivated by the fact that the prevarieties considered in Section 4 were by
hypothesis each generated by a single algebra, Sections 7-9 show that the number
of algebras needed to generate a prevariety has important consequences for the
behavior of coproducts therein. The brief section Section 10, which is included in
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this note only for convenience, answers a different question about coproducts, also
raised in [Bergman 2007], concerning subgroups of the full symmetric group on
an infinite set.

6. The amalgamation property, and its consequences for P-independence

In any class of algebras that admits coproducts with amalgamation (pushouts), it is
well known and easy to verify that the amalgamation property (definition recalled
in (20) below) is equivalent to the condition that for all pairs of one-to-one maps
with common domain, A → B and A → C , the coprojection maps of B and
C into the coproduct with amalgamation B∐

AC are also one-to-one. The next
lemma gives some further consequences of that property, in the same vein. We
formulate it in a context more general than that of categories of algebras, though
less sophisticated than that of [Kiss et al. 1982, Section 6].

In that lemma, the functor U : C → Set plays the role of the underlying set
functor of a category of algebras, but we shall not need to assume it faithful, as
one does when defining the concept of a concrete category.

One other notational remark: So far, I have generally written
∐

P for “coprod-
uct in the category P ”; but when discussing coproducts with amalgamation of an
object, we will use the subscript position for that object, leaving the category to be
understood from the context. I will follow this mixed practice for the rest of the
paper, showing the category when no amalgamation is involved. (The superscript
position, which might otherwise be assigned to one of these, is used here for index
sets over which coproducts are taken. If there were danger of ambiguity, we could
write

∐
P,A rather than

∐
A, or regard coproducts with amalgamation as coproducts

in a comma category (A ↓ P) and so write
∐
(A↓P) .)

Lemma 17. Let C be a category and U : C→ Set a functor, and let us call a
morphism f in C “one-to-one” if U ( f ) is a one-to-one set map, and emphasize
this by indicating such morphisms using tailed arrows: �.

Assume that C admits pushouts of pairs of one-to-one morphisms; that is, that if
f : S � A and g : S � B are one-to-one, then the coproduct with amalgamation
A∐

S B exists. (But we do not assume at this point that the maps of S, A and B to
that coproduct are one-to-one.)

Then the following three conditions are equivalent:

(20) C has the amalgamation property [Kiss et al. 1982, page 82]. That is,
given objects A, B,C of C, and one-to-one morphisms
f : A � B, g : A � C , there exists an object D, and one-to-one
morphisms f ′ : B � D, g′ : C � D, such that f ′ f = g′g.

(21) For all objects S, T, A, B and one-to-one morphisms S � T , S � A,
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and f : A � B in C, the induced morphism f ∐
ST : A∐

ST → B∐
ST is

one-to-one.

(22) For all objects S, positive integers n, and finite families of objects and
one-to-one morphisms S � Ai and fi : Ai � Bi in C (i=1, . . . , n), the
induced morphism

∐i=1,...,n
S fi :

∐i=1,...,n
S Ai →

∐i=1,...,n
S Bi is

one-to-one.

Moreover, if C also admits direct limits (colimits over directed partially ordered
sets), and if U respects these (for example, if C is a quasivariety of finitary alge-
bras, and U its underlying set functor), then C has coproducts with amalgamation
of possibly infinite families of one-to-one maps S � Ai (for fixed S, and i ranging
over a possibly infinite set I ); and (22) goes over to such coproducts. That is,
(20)–(22) are also equivalent to:

(23) For all objects S, nonempty sets I , and families of objects and
one-to-one morphisms S � Ai and fi : Ai � Bi in C (i ∈ I ), the
induced morphism

∐i∈I
S fi :

∐i∈I
S Ai →

∐i∈I
S Bi is one-to-one.

Proof. (20)⇒(21): Given objects and maps as in (21), the amalgamation property
implies, as mentioned above, that the coprojection A→ A∐

ST is one-to-one. From
this and the assumed one-to-oneness of the map A→ B we similarly get one-to-
oneness of the coprojection A∐

ST → B∐
A(A

∐
ST )= B∐

ST , as desired.
(21)⇒(20): Given objects and maps as in (20), apply (21) with A and its identity

map in the role of S and its map to A, and with C in the role of T , noting that the
domain of the resulting map, A∐

AC , can be identified with C . This gives one-
oneness of the coprojection C→ B∐

AC . By symmetry one also has one-oneness
of the coprojection B→ B∐

AC . Taking D = B∐
AC , we get (20).

(21)⇒(22): The case n = 1 of (22) is trivial. To get the case n = 2 we make
a double application of (21), first getting one-oneness for f1

∐
S A2 : A1

∐
S A2 �

B1
∐

S A2 and then for B1
∐

S f2 : B1
∐

S A2 � B1
∐

S B2. Composing, we get one-
oneness of the desired map.

This shows that two-fold coproducts over S respect one-to-oneness of maps
among objects having one-to-one maps of S into them. Induction now gives the
corresponding result for n-fold coproducts.

(22)⇒(21): Given objects and maps as in (21), apply the n = 2 case of (22)
with A � B in the role of f1 : A1 � B1 and the identity map of C in the role of
f2 : A2 � B2.

Under the additional assumptions about direct limits, one notes that for infinite
I , one can obtain

∐i∈I
S Ai as the direct limit, over the directed system of all finite

subsets I0 ⊆ I , of the objects
∐i∈I0

S Ai . Since by (22), the indicated maps among
these finite coproducts are one-to-one, and by assumption direct limits respect U
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(and hence one-oneness), the corresponding maps among the coproducts over I
are also one-to-one. The converse is immediate: (23) includes (22). �

Let us now note how the amalgamation property implies conditions on inde-
pendent subalgebras stronger than those of Section 4. In considering categories of
algebras, we shall take the functor U of Lemma 17 to be the underlying set functor.
Thus, “one-to-one”, in our formulation (20) of the amalgamation property and our
statements of conditions equivalent thereto, has its usual meaning for algebras.

Corollary 18. Suppose that P is a prevariety having the amalgamation property,
that A is a P-algebra, that (Bi )i∈I is a finite P-independent family of subalgebras
of A, and that for each i ∈ I , (Ci j ) j∈Ji is a finite P-independent family of subalge-
bras of Bi . Then (Ci j )i∈I, j∈Ji is a P-independent family of subalgebras of A. (In
particular, in such a prevariety, examples like those of Propositions 1 and 2 cannot
occur.)

If P is in fact a quasivariety having the amalgamation property, then the above
result holds without the finiteness restrictions on I and the Ji .

Proof. Since all the algebras named are subalgebras of A, the unique homomorphic
image of the initial algebra of P in all of them is the same; let us call this S. Because
S is a homomorphic image of the initial algebra of our category, the operator

∐
S

on nonempty families of algebras containing S is just
∐

P.
We now apply the implication (20)⇒(22) of Lemma 17 (or if P is a quasivariety,

the stronger implication (20)⇒(23)), taking for the S of (22) and (23) the S of the
preceding paragraph, and for the maps Ai � Bi the inclusions

∐ j∈Ji
P Ci j ⊆ Bi .

We conclude that the natural map from

i∈I∐
P

( j∈Ji∐
P

Ci j

)
=

i∈I
j∈Ji∐

P
Ci j

to
∐I

P Bi is one-to-one. Identifying the latter algebra with its embedded image in
A, we get the desired conclusion.

To get the parenthetical remark about examples like those of Propositions 1
and 2, we take I = {0, 1}, J0 = {0}, J1 = {0, 1}, and let A, the Bi and the Ci j all
be free of rank 1. �

Remarks. Lemma 17 was a compromise between proving the minimum we needed
to get the above corollary — that (20) implies the special case of (22) where S is the
image of the initial object of C in A, and so can be ignored in forming coproducts
(and if C has, and U respects, direct limits, the corresponding case of (23)) — and
digressing to state and prove a more complete statement. That statement would
involve the versions of conditions (20) and (22) for κ-fold families for any cardinal
κ , would establish the equivalence between those two conditions for each such κ ,
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would note that the statements for larger κ imply those for smaller κ , and would
verify that the statements for finite κ ≥ 2 are all equivalent, and also equivalent
to (21). The reader should not find it hard to work out the details.

The reason we brought S into (22), though the only case of (22) that our ap-
plication needed was where S was a homomorphic image of the initial object and
so had no effect, was so as to get an if-and-only-if relation between (22) and (20),
the amalgamation property. (The latter is a well-known property, satisfied by the
categories of groups, semilattices, lattices, and commutative integral domains, and
many others. See the first column of the table in [Kiss et al. 1982, pages 98–107] for
more results, positive and negative.) That equivalence fails if S in (22) is restricted
to homomorphic images of the initial object. For instance, the normal form for
coproducts of monoids shows that the variety Monoid satisfies the cases of (21)–
(23) where S is the initial (trivial) monoid. However Monoid does not satisfy the
amalgamation property (20); for example, letting A= 〈x〉, the free monoid on one
generator, and letting B and C be the overmonoids of A gotten by adjoining a left
inverse y, respectively a right inverse z, to x , one finds that in B∐

AC , the elements
xy of B and zx of C fall together with 1; so the maps from B and C to this algebra
are not one-to-one. On the other hand, because the special case of (21)–(23) which
we have seen suffices for Corollary 18 holds, Monoid does satisfy the conclusion
of that corollary.

Here is another result (alluded to in the discussion following Lemma 11) of
a sort similar to the above, which for simplicity of wording we will again state
in terms of the amalgamation property, though again, only the cases of (21)–(23)
where S is a homomorphic image of the initial object of P are needed.

Corollary 19. Suppose P is a prevariety having the amalgamation property, and
A a P-algebra. Then every nonempty subfamily of a P-independent family of sub-
algebras of A is P-independent.

Proof. Given a P-independent family of subalgebras Bi (i ∈ I ) of A, their P-
independence says that the subalgebra of A that they generate is isomorphic to
their coproduct, which we see coincides with their coproduct over the common
image S in all these algebras of the initial algebra of P. For any nonempty subset
J ⊆ I , the coproduct of the Bi for i ∈ J likewise coincides with their coproduct over
S. We now apply (21) with this algebra S for both the S and A of that condition,
with

∐J
S Bi for T , and with

∐I−J
S Bi for B, and then bring in the assumed P-

independence of the whole family. We thus get one-oneness of the natural maps
shown by the first arrow in

(24)
∐J

P Bi ∼=
∐J

S Bi �
∐J

S Bi
∐

S
∐I−J

S Bi ∼=
∐I

S Bi ∼=
∐I

P Bi � A,

and the above arrows and isomorphisms compose to the map we wished to show
one-to-one. �
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7. P-compatible algebras

The prevarieties considered in Section 4 were each generated by a single algebra.
Although any variety of algebras can be generated as a variety by a single algebra
(namely, by a free algebra on sufficiently many generators), prevarieties generated
as prevarieties by a single algebra are rather special. This was shown by Mal’cev
for quasivarieties, in a result that we will generalize in the next section. In this
section we shall see that the size of the collection of algebras needed to generate
P as a prevariety is a nontrivial and interesting invariant of P, even if P happens to
be a variety.

Definition 20. Let P be a prevariety. Then a set X of P-algebras will be called
P-compatible if for every A0 ∈ X, the coprojection map A0→

∐A∈X
P A is one-to-

one; equivalently, if there exists an algebra B in P admitting one-to-one homomor-
phisms A→ B for all A ∈ X.

Theorem 21. Suppose P is a prevariety that is residually small (that is, that can
be generated as a prevariety by a set of algebras) and κ is a cardinal. Then con-
dition (25) below implies condition (26); and if P is a quasivariety (in which case,
we recall, our algebras are assumed finitary), the two conditions are equivalent.

(25) P can be generated, as a prevariety, by a set of ≤ κ algebras.

(26) Every set X of subdirectly irreducible algebras in P can be written as the
union of ≤ κ subsets Xα (α ∈ κ), each of which is P-compatible.

Proof. (25)⇒(26): Suppose P is generated by a set of ≤ κ algebras, Y = {Bα |
α ∈ κ}, and that as in (26), X is a set of subdirectly irreducible algebras in P.
Each A ∈ X is embeddable in a direct product of copies of the Bα, hence, being
subdirectly irreducible, in one of the Bα. Letting Xα be the set of members of X
embeddable in Bα, we get the conclusion of (26) (using the second formulation in
the definition of P-compatibility).

To prove that when P is a quasivariety, (26)⇒(25), note that by our residual
smallness hypothesis, there is a set X of subdirectly irreducible algebras in P which
contains, up to isomorphism, all such algebras. By (26) we may write X=

⋃
α∈κ Xα

where each Xα is P-compatible. Hence for each α, we can choose an algebra
Aα in P in which all members of Xα can be embedded. Since a quasivariety is
generated as a prevariety by its subdirectly irreducible algebras [Gorbunov 1998,
Theorem 3.1.1], the prevariety generated by {Aα | α ∈ κ} is all of P. �

To get easy examples showing that the least κ for which (26) holds can be, inter
alia, any natural number, consider algebras with a single unary operation a, and for
each positive integer d , let Cd be the algebra of this type consisting of d elements,
x, ax, . . . , ad−1x , cyclically permuted by a.
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Now let n be any natural number, and let d1, . . . , dn be positive integers none
of which is the least common multiple of any subset of the others. (In particular,
none of them is 1, since 1 is the least common multiple of the empty set.) Let P
be the prevariety generated by the n algebras Cd1, . . . ,Cdn . Since this is generated
by finitely many finite finitary algebras, it is a quasivariety. From the description
P= SP{Cd1, . . . ,Cdn } we see that all algebras in P satisfy

(27) (∀x) alcm(d1,...,dn)x = x ,

(28) (∀x, y, z) ax = x H⇒ y = z,

(29) For all x , the least positive integer d such that ad x = x is the least
common multiple of some subset of {d1, . . . , dn},

(30) (∀x, y) ad x = x H⇒ ad y = y.

From (27)–(30) and our assumption that none of the di is the least common multiple
of a subset of the rest, one can verify that the subdirectly irreducible objects of P
are precisely the n algebras Cdi ; and by (30) these are pairwise incompatible; so
for this quasivariety, the least κ as in Theorem 21 is n.

For d1, . . . , dn as above, consider next, for contrast, the quasivariety P generated
by a single algebra, the disjoint union Cd1 t · · · tCdn . This will still satisfy (27)–
(29), but not (30). The algebras Cd1, . . . ,Cdn will still be subdirectly irreducible
in P, but they are no longer incompatible. Indeed, since P is generated by a single
algebra, the least cardinal κ as in Theorem 21 is now 1.

For an intermediate case, given d1, d2, d3 as above, let P be generated by the
three disjoint unions Cd1 t Cd2 , Cd1 t Cd3 and Cd2 t Cd3 . Since none of these
generating algebras contains copies of all three Cdi , these algebras, and hence all
algebras in P, satisfy the implication

(31) (∀x1, x2, x3, y, z) (ad1 x1 = x1)∧ (ad2 x2 = x2)∧ (ad3 x3 = x3) H⇒ y = z.

Hence, though any two of Cd1 , Cd2 and Cd3 are P-compatible, the set consisting of
all three is not.

If we take an infinite sequence of integers d1, d2, . . . , none of which divides any
of the others (for instance, the primes), and let P be the prevariety generated by all
finite disjoint unions of the Cdi , this will no longer be a quasivariety. For it will
satisfy the sentence

(32) (∀x1, . . . , xn, . . . ; y; z)
(∧
∞

i=1 adi xi = xi
)
H⇒ y = z,

so the direct limit, as sets with one unary operation, of the above generating family
of finite unions of Ci (mapped into one another by inclusion) does not lie in P;
their direct limit in P is, by (32), the trivial (one-element) algebra. This example
also shows that in our earlier result, Lemma 17, the added direct limit hypothesis
was indeed needed to get from (20)–(22) to (23). For it is easy to see that P
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satisfies (20), while to see that it does not satisfy (23), we may take for S and the
Ai the empty algebra, and for the Bi the above algebras Cdi .

To see that the implication (26)⇒(25) of Theorem 21, which we proved for
quasivarieties, does not hold for general prevarieties, let us construct a prevariety
not having “enough” subdirectly irreducible algebras: Let p be a prime, let G
be the additive group of an infinite-dimensional vector space over the field of p
elements, and let P be the prevariety consisting of all G-sets A such that if an
element of A is fixed by an element of G, then all elements of A are fixed by that
element, and if an element of A is fixed by infinitely many elements of G, then
all elements of A are equal. Then P is residually small: the set of G-sets G/H
for all finite subgroups H ⊂ G generates P. But any finite-dimensional subspace
of G is an intersection of two properly larger finite dimensional subspaces, hence
any nontrivial algebra in P can be decomposed as a subdirect product of algebras
with larger pointwise stabilizers; so P has no subdirectly irreducible algebras, so it
satisfies (26) for κ = 0. On the other hand, no two nonempty algebras in P having
different pointwise stabilizers are compatible, so (25) does not hold for any finite κ .

8. All under one roof: prevarieties where all algebras are P-compatible

For prevarieties that can be generated by one algebra, a stronger result can be
proved than the κ=1 case of (26); moreover, we can weaken the above assumption
“generated by one algebra” to a condition that is necessary as well as sufficient for
our strengthened conclusion.

We need the following definition. (Recall that a preordering � on a set or class
means a reflexive, transitive, but not necessarily antisymmetric binary relation.)

Definition 22. A preordered class (K,�) will be called absolutely directed if every
set of elements of K is majorized by some element of K.

In particular, a preordered set is absolutely directed if and only if it has a greatest
element (an element � all elements).

In the next result, condition (33) can be seen to be a strengthening of the κ = 1
case of (26) (with “nontrivial” replacing “subdirectly irreducible”), while (34) is a
weakening of the condition that P be generated as a prevariety by a single algebra.
The equivalence of (35) and (37) for quasivarieties is due to Mal’cev.

By the trivial algebra we will always mean the one-element algebra. (So trivial
algebras and empty algebras are never the same thing.)

Theorem 23 [Mal’cev 1966; Gorbunov 1998, Proposition 2.1.19]. Let P be a pre-
variety, and let � be the preordering “is embeddable in” among algebras in P.
Then the following conditions are equivalent.

(33) Every set of nontrivial algebras in P is P-compatible.
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(34) P is generated as a prevariety by a class of algebras absolutely directed
under �.

Moreover, if P is a quasivariety (so that, again, our algebras are assumed fini-
tary), then those conditions are also equivalent to each of the following:

(35) Every pair of nontrivial algebras in P is P-compatible.

(36) P is generated as a quasivariety by a class of algebras absolutely
directed under �.

(37) P is generated as a quasivariety by a single algebra.

Proof. (33) says that the class of nontrivial algebras in P is absolutely directed
under �. But P is generated as a prevariety by its nontrivial algebras (the trivial
algebra being the direct product of the empty family thereof), so this implies (34).

To show (34)⇒(33), let X be an absolutely directed class of algebras generating
P, and Y any set of nontrivial algebras in P. Since Y is a set, we can find a set
X0 ⊆X, homomorphisms into members of which separate points of algebras in Y,
and by the absolute directedness of X, some one algebra A ∈X contains embedded
images of all members of X0; hence homomorphisms into A separate points of
algebras in Y. Hence if we form a direct product AI of sufficiently many copies
of A, then for each nonempty B ∈ Y, we can use maps to some coordinates of AI

to separate points of B; and since B is nontrivial and nonempty, the set of maps
so used will be nonempty, and we can repeat some of them to fill in the remaining
coordinates if any; thus we can embed B in AI . The same conclusion is vacuously
true if B is empty, so AI has subalgebras isomorphic to all B ∈ Y, proving that Y
is P-compatible.

Now let P be a quasivariety.
Clearly, (33)⇒(35). The converse holds because we can go from pairwise co-

products to finite coproducts by induction, while coproducts of infinite families
are direct limits of coproducts of finite families, and in a quasivariety, direct limits
respect the underlying set functor. Thus, (33)–(35) are equivalent.

(34)⇒(36) is trivial, since the quasivariety generated by a class of algebras con-
tains the prevariety generated by the same class. We shall now show (36)⇒(37),
then note two alternative ways of getting back from (37): to (34), or to (35).

Given (36), let X be an absolutely directed class of algebras generating P as a
quasivariety. Since the finite sentences (12) form (modulo notation) a set, if we
choose for each such sentence not satisfied by P a member of X for which it fails,
we get a set of algebras X0 ⊆ X which again generates P. By assumption, X0 is
majorized by an algebra A ∈ X, and this will likewise generate P, proving (37).

Now assume (37), and let A be an algebra that generates P as a quasivariety.
On the one hand, one can deduce (34) from the fact that P is generated as a

prevariety by the class of ultrapowers of A ([Gorbunov 1998, Corollary 2.3.4(i)];
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compare last paragraph of Definition 5 above) by verifying that that class is abso-
lutely directed under �. The idea is that given a set of ultrafilters U j ( j ∈ J ), each
on a set I j , these yield a “product” filter on

∏J I j , and any ultrafilter U containing
this will have the property that all the ultrapowers AU j embed in the ultrapower AU.

To get (35), on the other hand, suppose by way of contradiction that B0 and
B1 were a non-P-compatible pair of nontrivial algebras in P. Without loss of gen-
erality, suppose B0, has non-one-to-one coprojection into B0

∐
P B1; let elements

x 6= y of B0 fall together there. Since P is determined by finite sentences (12),
the conjunction of finitely many of these universal sentences with finitely many
equations holding among finitely many elements of B0 and B1 must imply x = y.
But every finite system of relations among elements of each of the Bi is realizable
by relations among some family of elements of A (otherwise A, and hence P,
would satisfy an implication (12) saying that the conjunction of such a system
of relations implies that all elements are equal, contradicting our assumption that
the Bi are nontrivial). On the other hand, since P does not satisfy an implication
forcing x = y to hold in B0, the above equations involving elements of B0 must be
satisfiable by a family of elements of A with distinct elements representing x and y.
But combining this family with the family of elements of A chosen above to satisfy
our finitely many relations holding in B1, we see that the sentences (12) defining
P imply that those two elements are equal, giving the required contradiction. �

In the above theorem we had to exclude the trivial algebra from certain state-
ments. The following addendum to that theorem shows that in many prevarieties,
not only is that restriction unnecessary, but trivial algebras can be used in formu-
lating a very simple criterion, (39), for the equivalent conditions of the theorem to
hold.

Corollary 24. In the context of Theorem 23, suppose that

(38) P has at least one nontrivial algebra with a trivial subalgebra

(that is, a nontrivial algebra with an element idempotent under all the algebra
operations).

Then (33)–(34), and, if P is a quasivariety, (35)–(37) are equivalent to the con-
dition obtained by deleting the word “nontrivial” from (33); and also to

(39) Every algebra in P is P-compatible with the trivial algebra.

Proof. It is easy to deduce from (38) that each of (33) and (35) is equivalent to
the formally strengthened version of itself gotten by deleting the restriction “non-
trivial”: given a set X of algebras (respectively, a pair of algebras) of P including
the trivial algebra, which we want to embed simultaneously in some algebra, we
“sneak the trivial member of our set in” by hiding it in a nontrivial algebra as
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in (38), then apply (33) (respectively, (35)) to the resulting family of nontrivial
algebras. As a special case of this version of either condition, we have (39).

On the other hand, given (39), we can get the strengthened form of (33) by a
version of the construction by which one embeds a family of groups in their direct
product group. Let {Bi | i ∈ I } be any set of algebras in P. By (39), embed each Bi

in an algebra Ai containing an idempotent element ei . Taking A=
∏I Ai , we can

embed each B j in A by using the inclusion map at the j th component, and mapping
to every other component by collapsing everything to a trivial subalgebra. �

Clearly every prevariety of groups, monoids, or lattices satisfies (39), hence
satisfies (33) with the nontriviality condition deleted, (34), and, if it is a quasivari-
ety, (35)–(37).

On the other hand, the variety V of unital associative (or unital associative
commutative) algebras over any field satisfies (33) (and hence (34)–(37)), by the
standard description of coproducts of such algebras, but not (38) or the version
of (33) with “nontrivial” deleted; rather, the trivial algebra (with 1 = 0) is not V-
compatible with any other algebra. Hence in the absence of (38), the exclusion of
the trivial algebra in (33) and (35) is indeed needed to make Theorem 23 hold. Our
constructions in the preceding section with unary algebras also illustrate this: in
the prevariety generated by a single algebra Cd (d > 1), the conditions of Theorem
23 hold, but Cd satisfies (∀x, y, z) ax=x ⇒ y=z, so the trivial algebra is not
P-compatible with any nontrivial algebra.

There are also examples where (38) holds, but where the equivalent conditions of
Theorem 23 and Corollary 24 do not; for example, the variety of groups or monoids
with one distinguished element, or of lattices with two distinguished elements: a
counterexample to (39) is given by any group or monoid with distinguished element
that is not the identity, or any lattice with a pair of distinguished elements that are
not equal.

These same examples also show that the analog of the implication (37)⇒(33)
does not hold for varieties, with “generated as a variety” in place of “generated as
a quasivariety”, since every variety satisfies the analog of (37).

The next corollary is a result promised in the comment following Lemma 11.

Corollary 25. Suppose P is a prevariety generated by a single algebra, or, more
generally, satisfying (34), and let (Bi )i∈I be a family of nontrivial algebras in P.
(Again, if P satisfies (38), the restriction “nontrivial” can be dropped.) Then

(40) for every J ⊆ I , the natural map
∐i∈J

P Bi →
∐i∈I

P Bi is one-to-one.

Hence

(41) any subfamily of a P-independent family of subalgebras of a nontrivial
algebra A is P-independent.
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Proof. To see (40), note that
∐i∈I

P Bi ∼=
(∐i∈J

P Bi
)∐

P
(∐i∈I−J

P Bi
)
, with the natural

map
∐i∈J

P Bi→
∐i∈I

P Bi corresponding to the first coprojection under this decom-
position. By the implication (34)⇒(33) (or its modified version if P satisfies (38)),
the indicated coproducts over J and I−J are P-compatible, hence that coprojection
map is one-to-one, as claimed. (A slight hiccup in this argument: If J or I − J is
empty, can we be sure the coproduct over that subset, namely the initial algebra,
is nontrivial? No, but if it is trivial, and if P is not the trivial prevariety, then since
the initial algebra can be mapped into every algebra, (38) holds, and so we are in
the case where we don’t need nontriviality.)

To get (41), recall that the statement that (Bi )i∈I is an independent family of
subalgebras of A means that the subalgebra of A generated by these subalgebras
can be identified with their coproduct. If none of the Bi is trivial, then this ob-
servation together with (40) immediately gives the desired conclusion. If at least
one of the Bi is trivial, then since by assumption A is not, (38) holds, and by the
parenthetical addendum to the first part of this corollary, we again have (40) and
can proceed as before. �

On a different topic, let us note the extent to which Theorem 21 does and does
not go over from prevarieties to quasivarieties.

Corollary 26. If P is a quasivariety, then (even without the residual smallness
assumption of Theorem 21), condition (26) implies

(42) P can be generated as a quasivariety by ≤ κ algebras.

The reverse implication holds if κ is finite, but not for any infinite κ .

Proof of (26)⇒(42). A quasivariety P is generated as a prevariety, and hence
as a quasivariety, by its subdirectly irreducible algebras [Gorbunov 1998, Theo-
rem 3.1.1], hence, as in the proof of Theorem 23, we can find a set X of these that
generates it as a quasivariety. By (26) we can write X as

⋃
α∈κ Xα where each

Xα is P-compatible. If for each α ∈ κ we let Aα be an algebra in P containing
embedded images of all members of Xα, then P is generated as a quasivariety by
this set of κ algebras.

For the converse assertion when κ is a natural number n, let P be generated as
a quasivariety by A1, . . . , An . Then P=SPPult{A1, . . . , An}, where Pult denotes
closure under ultraproducts; thus, each P-subdirectly irreducible object of P is
embeddable in a member of Pult{A1, . . . , An}. Moreover, the operator Pult respects
finite decompositions; that is, any ultraproduct of a family of structures indexed by
a finite union of sets, (Ai )i∈I1∪···∪In , can be written as an ultraproduct of one of the
subfamilies (Ai )i∈Im . Hence Pult{A1, . . . , An} = Pult{A1} ∪ · · · ∪ Pult{An}. The
class of subdirectly irreducible algebras in P that are embeddable in members of a
given Pult{Ai } is contained in the one-generator quasivariety SPPult{Ai }, hence



On coproducts in varieties, quasivarieties and prevarieties 875

by the implication (37)⇒(33), each of these n classes has the property that all its
subsets are P-compatible. This gives (26).

On the other hand, given any infinite κ , let V be the variety of sets given with
a κ-tuple of 0-ary operations (constants) cα (α ∈ κ). Since as a quasivariety, V
is generated by its finitely presented objects [Gorbunov 1998, Proposition 2.1.18],
and there are only κ of these, it satisfies (42). On the other hand, since all operations
are 0-ary, every equivalence relation on a V-algebra is a congruence, so the subdi-
rectly irreducible algebras are precisely the two-element algebras. We have one of
these for each 2-class equivalence relation on κ , and one more corresponding to the
partition of that set into κ and ∅. This gives 2κ subdirectly irreducible algebras,
no two of which are V-compatible. �

9. Afterthoughts on P-compatible algebras

Perhaps the concept of “P-compatible algebras” is not the best handle on the phe-
nomena we have been examining; or at least should be complemented by another
way of looking at them. Suppose that for algebras A and B in P, we say that
A is “comfortable” with B in P if the coprojection A → A∐

P B is one-to-one;
equivalently, if A is P-compatible with some homomorphic image of B in P. This
relation is not in general symmetric; for example, in the variety of associative unital
rings, each ring Z/nZ is comfortable with Z, but not vice versa. Algebras A and B
are P-compatible if and only if each is comfortable with the other. (So the relations
of P-compatibility and of being comfortable in P may be characterized in terms
of one another.) More generally, an arbitrary family of algebras is P-compatible if
and only if each is comfortable with the coproduct of the others.

If P is generated as a prevariety by a class of algebras X, we see that an algebra
A is comfortable in P with an algebra B if and only if homomorphisms into mem-
bers of X that contain homomorphic images of B separate points of A. Hence, if
we classify algebras B ∈ P according to which algebras A are comfortable with
them, then algebras B1 and B2 will belong to the same equivalence class under
this relation if the subclass of X consisting of algebras containing homomorphic
images of B1 coincides with the subclass of those containing images of B2. (We
do not assert the converse.) In particular, if P is residually small, so that X can
be taken to be a set, the number of these equivalence classes has the cardinality
of a set. More generally, if P is generated by the union of κ classes of algebras,
each absolutely directed under the relation � of Theorem 23, the same reason-
ing shows that it will have at most 2κ equivalence classes under this equivalence
relation. On the other hand, if we classify algebras according to which other
algebras they are comfortable with, we may, so far as I can see, get up to 22κ

classes.
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For any algebra A in P, the class of algebras which are comfortable with A forms
a subprevariety of P. The class of algebras that A is comfortable with likewise
yields a subprevariety on throwing in the trivial algebra. (A stronger statement,
also easy to see, is that this class is closed under taking subalgebras and under
taking products with arbitrary algebras in P; equivalently, that if this class contains
an algebra B, then it contains every algebra in P admitting a homomorphism to B).

10. On infinite symmetric groups: an answer and a question

This last section does not depend on any of the preceding material.
It was shown in [de Bruijn 1957] (see also [Bergman 2007]) that for� an infinite

set, the group S = Sym(�) of all permutations of � contains a coproduct of two
copies of itself (from which it was deduced by other properties of that group that it
contains a coproduct of 2card(�) copies of itself). In [Bergman 2007, Question 4.4],
I asked, inter alia, whether, for every subgroup B of S, if we regard S as a member
of the variety of groups given with homomorphisms of B into them, S contains a
coproduct of two copies of itself in that variety.

The answer is negative. To see this, pick any x ∈� and let B be the stabilizer in
S of x . Writing elements of S to the left of their arguments and composing them
accordingly, we see that the partition of S into left cosets of B classifies elements
according to where they send x , and that for each y∈�, the coset sending x to y has
elements of finite order; for example, if y 6= x , the 2-cycle interchanging x and y.

On the other hand, I claim that if S1 and S2 are any two groups with a common
subgroup B proper in each, then in the coproduct with amalgamation S1

∐
B S2 there

are left cosets of B containing no elements of finite order. Indeed, the standard
normal form in that coproduct shows that each left coset is generated by a possibly
empty alternating string of left coset representatives of B in S1 and S2. When
that string is nonempty and has even length, one sees that elements of finite order
cannot occur. Hence for S = Sym(�) and B as above, S, as a group containing B,
cannot contain a copy of S1

∐
B S2.

So let us modify our earlier question.

Question 27. For � an infinite set, what nice conditions, if any, on a subgroup
B ⊆ S = Sym(�) will imply that S has a subgroup containing B and isomorphic
over B to S∐

B S?
For instance, will this hold if B is equal to, or contained in, the stabilizer of a

subset of � having the same cardinality as �? If B is finite?

In that same question in [Bergman 2007], I asked whether for any submonoid B
of the monoid Self(�) of self-maps of �, the monoid Self(�) must contain, over
B, a coproduct of two copies of itself with amalgamation of B. It seems likely
that the subgroup B ⊂ Sym(�)⊂ Self(�) used above also gives a counterexample
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to this part of the question. This will be so if we can show that the subgroup of
invertible elements of the monoid coproduct of two copies of Self(�) with amal-
gamation of B is isomorphic to the group coproduct of two copies of Sym(�) with
amalgamation of B, since we have seen that this is not embeddable over B in the
group Sym(�) of invertible elements of Self(�). But the analysis of coproducts
of monoids with amalgamation, even when the submonoid being amalgamated is
a group, seems difficult.

The final part of that question posed the same problem for the endomorphism
algebra of an infinite-dimensional vector space over a field. To this I also do not
know the answer; and in view of the results of [Wehrung 2007], it is natural to ask
the same question for lattice of equivalence relations on an infinite set.

11. Glossary for the nonexpert in universal algebra

I indicate below the meanings of some basic concepts of universal algebra, though
more briefly and informally than would be done in a textbook presentation. (Defi-
nitions of some other concepts are recalled in the sections where they are used. I
do not define concepts of category theory, such as coproduct; or of set theory, such
as ultraproduct, and the distinction between sets and proper classes. For these, see
standard references such as [Mac Lane 1971; Chang and Keisler 1990].)

An n-ary operation on a set X means a function Xn
→ X ; here n is called the

arity of the operation. An algebra is a set given with a family of operations of
specified arities. The list of operation-symbols and their arities is the type of the
algebra (used here only in the phrase “algebras of the same type”). Constants in
the definition of an algebra structure (for example, the 0 and 1 of a ring structure)
are in this note regarded as 0-ary operations; indeed, X0 is a one-element set, so
a map X0

→ X specifies an element of X . Given a subset S of an algebra X , the
subalgebra of X generated by S is here denoted 〈S〉.

The given operations of an algebra are called primitive operations. Expressions
in a family of variable-symbols and iterated applications of the primitive operations
determine derived operations. Such expressions are themselves called terms. For
instance, (xy)z and x(yz) are distinct ternary terms in the operations of a group.
(They must be considered distinct so that they can be used to write the group
identity of associativity.) The variable-symbols are also considered terms; they are
the starting-point for the recursive construction of all terms. This technical sense of
term will not stop us from using the word in other ways, for example, in referring
to the mth term of a sequence.

An algebra all of whose primitive operations have finite arity is called finitary.
(This does not preclude there being infinitely many primitive operations; for ex-
ample, we have this for modules over an infinite ring.)
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As indicated in Section 1, a variety of algebras is the class of all algebras of a
given type satisfying a given set of identities. In any variety V, one can construct
a free algebra on any set, satisfying the usual universal property.

The above concepts are assumed from Section 2 on. Starting with Section 3, we
also refer to the variety of algebras generated by a family X of algebras of a given
type, that is, the least variety containing X. This is clearly the class of all algebras
that satisfy all identities satisfied by all members of X. Birkhoff’s Theorem states
that it is also the class of all homomorphic images of subalgebras of (generally
infinite) direct products of members of X, abbreviated HSP(X). (Definitions of
prevariety and quasivariety, and results for these analogous to Birkhoff’s Theorem,
are recalled in Section 3.)

To motivate a concept used from Section 7 on, note that if an algebra A is
embedded in a direct product

∏
I Ai , by a homomorphism with components fi :

A→ Ai , then A∼= f (A)⊆
∏

I fi (A). Modeled on the properties of this subalgebra,
one defines a subdirect product of a family of algebras (Bi )i∈I to be a subalgebra of∏

I Bi which projects surjectively to each Bi . An algebra that, up to isomorphism,
cannot be so expressed without one of the projection maps being an isomorphism
is called subdirectly irreducible.
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