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In this paper we study singularities defined by the action of Frobenius in char-
acteristic p > 0. We prove results analogous to inversion of adjunction along a
center of log canonicity. For example, we show that if X is a Gorenstein normal
variety then to every normal center of sharp F-purity W ⊆ X such that X is
F-pure at the generic point of W , there exists a canonically defined Q-divisor
1W on W satisfying (K X )|W ∼Q KW +1W . Furthermore, the singularities of X
near W are “the same” as the singularities of (W,1W ). As an application, we
show that there are finitely many subschemes of a quasiprojective variety that
are compatibly split by a given Frobenius splitting. We also reinterpret Fedder’s
criterion in this context, which has some surprising implications.

1. Introduction

Suppose that X is a variety and Y is an effective integral Weil divisor on X such
that n(K X + Y ) is Cartier. If the singularities of X are mild (for example, if X
is Cohen–Macaulay and normal) one has a restriction theorem ωX (Y )/ωX = ωY .
However OX (n(K X +Y ))|Y is not necessarily equal to nKY ; there is an additional
residue of OX (n(K X + Y ))|Y which (when divided by n) is called “the different”,
see [Kawamata et al. 1987, Lemma 5-1-9] and [Kollár et al. 1992, Chapter 16].
Even when Y is an arbitrary subvariety (that is, not a divisor) similar phenomena
have been observed; see, for example, Kawamata [1997b; 1998; 2008] and [Ein
and Mustaţă 2009]. In this paper we explore a related phenomenon in positive
characteristic which we call F-adjunction, or Frobenius adjunction. In particular,
we prove results very similar to the parts of what was known as the adjunction con-
jecture of Kawamata and Shokurov [Ambro 1999], which relates the singularities
of X near a center of log canonicity W ⊆ X to the singularities of W .

Suppose that R is a Gorenstein (or a sufficiently nice log-Q-Gorenstein) normal
F-finite ring. Then to every center of sharp F-purity Q ∈ Spec R (centers of sharp
F-purity are characteristic p analogs of centers of log canonicity) such that RQ
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is F-pure and R/Q is normal we show that there exists a canonically defined Q-
divisor 1R/Q on Spec R/Q such that the singularities of R near Q are “the same”
as the singularities of (R/Q,1R/Q).

A center of sharp F-purity is a characteristic p > 0 analog of a center of
log canonicity; see for example [Kawamata 1997a, Definition 1.3] and [Schwede
2008a]. Technically speaking, a possibly nonclosed point Q ∈Spec R is a center of
sharp F-purity if, for every R-linear map φ : R1/pe

→ R, we have φ(Q1/pe
)⊆ Q.

In particular, if Spec R is F-split, then Spec R/Q is compatibly split with every
Frobenius splitting of Spec R. Unfortunately, there may be infinitely many dif-
ferent maps that one needs to check to determine whether Q is a center of sharp
F-purity. However, when R is Gorenstein and sufficiently local, there exists a
“generating” map ψ : R1/p

→ R such that Q is a center of sharp F-purity if and
only if ψ(Q1/p) ⊆ Q for this single map ψ , see Proposition 4.1. A similar result
also holds when R is Q-Gorenstein with index not divisible by p > 0. It is the
existence of this “generating map” that we use to prove our results.

We will now briefly outline the construction of 1R/Q on R/Q. On any scheme
X = Spec R such that R is a normal local ring of characteristic p > 0, there is a
bijection of sets{ Effective Q-divisors 1 such

that (pe
− 1)(K X +1) is Cartier

}
←→

{Nonzero elements of
HomOX (F

e
∗

OX ,OX )

}/
∼ ,

where the equivalence relation on the right identifies two maps φ and ψ if there is
a unit u such that φ(u× )=ψ( ); see Theorem 3.13. Statements related to this
correspondence are well known and have appeared in several previous contexts,
see [Hara and Watanabe 2002, Theorem 3.1, Proof 2] and [Mehta and Ramanathan
1985]. However, we do not think it has been explicitly described in the context of
Q-divisors and singularities defined by Frobenius.

With this bijection in mind, assume (pe
−1)K X is Cartier, then the divisor 0 on

X = Spec R determines a map φ ∈ HomOX (F
e
∗

OX ,OX ). Setting W = Spec R/Q,
the map φ can be restricted to a map φQ ∈ HomOW (F

e
∗

OW ,OW ) precisely because
W is a center of sharp F-purity (the map is φQ is nonzero because RQ is F-pure).
But then φQ corresponds to a divisor 1R/Q on W = Spec R/Q.

Once we have constructed 1R/Q , we can relate the singularities of X and W .
Roughly speaking, we can do this because the F-singularities of R (respectively,
the F-singularities of R/Q) can all be defined by the images of certain

φ ∈ HomOX (F
e
∗

OX ,OX )

(respectively φQ ∈ HomOW (F
e
∗

OW ,OW )). Some of these results are summarized
now.
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Main Theorem (Theorem 5.2, Corollary 6.9, Remark 9.5). Suppose that X is an
integral separated normal F-finite noetherian scheme essentially of finite type1

over an F-finite field of characteristic p> 0. Further suppose that1 is an effective
Q-divisor on X such that K X +1 is Q-Cartier with index not divisible by p. Let
W ⊆ X be an closed subscheme that satisfies the following properties:

(a) W is integral and normal.

(b) (X,1) is sharply F-pure at the generic point of W .

(c) The ideal sheaf of W is locally a center of sharp F-purity for (X,1).

Then there exists a canonically determined effective divisor 1W on W satisfying
the following properties:

(i) (KW +1W )∼Q (K X +1)|W .

(ii) Furthermore, if (pe
− 1)(K X + 1) is Cartier then (pe

− 1)(KW + 1W ) is
Cartier and (pe

− 1)1W is integral.

(iii) For any real number t > 0 and any ideal sheaf a on X which is does not
vanish on W , we have that (X,1, at) is sharply F-pure near W if and only if
(W,1W , a

t) is sharply F-pure.

(iv) W is minimal among centers of sharp F-purity for (X,1), with respect to
containment of topological spaces (in other words, the ideal sheaf of W is
of maximal height as a center of sharp F-purity), if and only if (W,1W ) is
strongly F-regular.

(v) There is a natural bijection between the centers of sharp F-purity of (W,1W ),
and the centers of sharp F-purity of (X,1) which are properly contained in
W as topological spaces.

(vi) There is a naturally defined ideal sheaf τb(X,* W ;1, at), which philosoph-
ically corresponds to an analog of an adjoint ideal in arbitrary codimension,
such that

τb(X,* W ;1, at)|W = τb(W ;1W , a
t)= “the big test ideal of (R,1, at)”.

Here a and t > 0 are as in (iii).

When the center W is not a normal scheme, some of these results can still be
lifted to the normalization of W , see Proposition 8.2. Also see the concluding
remarks to this paper. Part (vi) should be viewed as an ultimate generalization
of the F-restriction theorems for test ideals found in Takagi [2007; 2008], also
compare with [Hara and Watanabe 2002, Theorem 4.9, Remark 4.10].

1The essentially finite type hypothesis can be removed if one is willing to work on a sufficiently
small affine chart or if X is the spectrum of a local ring.
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The construction of 1W is local and does not require X to be projective. In par-
ticular, the statement of Theorem 5.2 is ring theoretic and may be more familiar to
commutative algebraists. However the 1W constructed is canonical. In particular,
the 1W glue together to give us the result in the global setting, see Remark 9.5.

When we combine this theory with the work of Fedder [1983], we obtain the
following.

Theorem A (Theorem 5.5). Suppose that S is a regular F-finite ring such that Fe
∗

S
is a free S module (for example, if S is local) and that R= S/I is a quotient that is a
normal domain. Further suppose that1R is an effective Q-divisor on Spec R such
that HomR(Fe

∗
R((pe

−1)1), R) is a rank one free Fe
∗

R-module (for example, if R
is local and (pe

−1)(K R+1) is Cartier). Then there exists an effective Q-divisor
1S on Spec S such that:

(a) (pe
− 1)(KS +1S) is Cartier.

(b) I is (1S, F)-compatible and (S,1S) is sharply F-pure at the minimal asso-
ciated primes of I (that is, the generic points of Spec S/I ).

(c) 1S induces 1R as in the Main Theorem.

We do not know of any similar result proved in characteristic 0 (except when R is
a complete intersection [Ein et al. 2003]). The1S in Theorem 5.5 is not canonically
determined and therefore we do not see how to globalize this statement.

We also prove the following result.

Theorem B (Corollary 4.3, Remark 9.5). Suppose that X is a normal variety of
finite type over an F-finite field k. Suppose that φ : Fe

∗
OX → OX is a (global)

splitting of Frobenius. Then there exists an effective divisor 1 on X (determined
uniquely by φ) such that

(1) K X +1∼Q 0;

(2) (X,1) is sharply F-pure;

(3) The irreducible subvarieties compatibly split by φ coincide exactly with the
centers of sharp F-purity of (X,1).

Since centers of sharp F-purity are closely related to centers of log canonicity,
the previous result should be viewed as a link between compatibly split subvarieties
and centers of log canonicity (of log Calabi–Yau pairs).

Finally, also using these ideas, we prove that there are only finitely many centers
of sharp F-purity for a sharply F-pure triple (R,1, a•) (the case when R is a local
ring was done in [Schwede 2008a] using the techniques of [Enescu and Hochster
2008] or [Sharp 2007]). Here a• is a graded system of ideals [Hara 2005; Schwede
2008a].
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Theorem C (Theorem 5.8). If (R,1, a•) is sharply F-pure, then there are at most
finitely many centers of sharp F-purity.

This also implies that if X is noetherian (although not necessarily affine) and
(X,1) is locally sharply F-pure, then there are at most finitely many centers of
sharp F-purity. This is the analog of the statement that if (X,1) is log canonical,
there exist at most finitely many centers of log canonicity. Another implication of
this is that for a globally F-split variety, there are at most finitely many subschemes
compatibly split with any given splitting, see Corollary 5.10. In the case of a
local ring, similar results have been obtained in [Enescu and Hochster 2008; Sharp
2007]; see also [Schwede 2008a, Corollary 5.2]. Finally, essentially the same result
has been independently obtained by Mehta and Kumar [2009].

We close with a comparison of1R/Q with related constructions which have been
considered in characteristic zero (in particular, the aforementioned “different”). We
then consider what happens if we normalize R/Q (in case R/Q is not normal). We
conclude with several further remarks and questions. In particular see Remark 9.5
where a global version of the ideas of this paper are briefly discussed.

2. Preliminaries and notation

Throughout this paper, all schemes and rings are noetherian, excellent, reduced
and of characteristic p> 0. We also assume that all rings R (and schemes X ) have
locally normalized dualizing complexes, ω q

R (respectively ω q
X ), see [Hartshorne

1966]. In fact, little is lost if one only considers rings that are of essentially finite
type over a perfect field. Since we are primarily concerned with the affine or local
setting, we will freely switch between the notation corresponding to a ring R and
the associated scheme X = Spec R. If X = Spec R and R is reduced, then we will
use k(X) = k(R) to denote the total field of fractions of R. If D is a divisor on
X = Spec R, we will mix notation and use R(D) to denote the global sections of
OX (D). Furthermore, we will often use Fe

∗
M to denote an R-module M viewed

as an R-module via the e-iterated Frobenius, that is r.x = r pe
x (informally, this

is just restriction of scalars). In particular, when R is reduced Fe
∗

R is just another
notation for R1/pe

. The reason for this notation is that if Fe
: X→ X is the e-iterated

Frobenius, then Fe
∗

OX is just the sheaf associated to R1/pe
.

We briefly review some properties of Weil divisors on normal schemes, com-
pare with [Hartshorne 1977, Chapter II, Section 6; 1994] and [Bourbaki 1998,
Chapter 7]. Recall that on a normal scheme X , a Weil divisor is finite formal sum
of reduced and irreducible subschemes of codimension 1, and a prime divisor is
a single irreducible subscheme of codimension 1. So if X = Spec R, the Weil
divisors carry the same information as formal sums of height one prime ideals. A
Q-divisor is an element of {group of Weil divisors} ⊗Z Q; it can also be viewed
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as a finite formal sum
∑

ai Di where the ai ∈ Q and the Di are prime divisors.
See [Kollár and Mori 1998] for basic facts about Q-divisors from this point of
view. A Q-divisor for which all the ai are integers is called an integral divisor
(in other words, an integral divisor is a Q-divisor that is also a Weil divisor). A
Q-divisor is called Q-Cartier if there exists an integer m > 0 such that m D is an
integral Cartier divisor. A Q-divisor is called m-Cartier if m D is an integral Cartier
divisor. A divisor (respectively a Q-divisor) D=

∑
ai Di is called effective if each

of the ai are nonnegative integers (respectively, nonnegative rational numbers).
Since X is normal, for each prime divisor D on X , there is an associated discrete

valuation vD at the generic point of D ⊂ X . Then, for any nondegenerate element
f ∈ k(X) (an element is nondegenerate if it is nonzero on each generic point of
X = Spec R), there is a divisor div f which is defined as div f =

∑
D⊂X vD( f )D.

Recall that associated to any divisor D on X = Spec R there is a coherent sheaf
OX (D) whose global sections we will denote by R(D). Recall that the sheaf R(D)
is reflexive with respect to HomR( , R).

For the convenience of the reader, we record some useful properties of reflexive
sheaves that we will use without comment.

Proposition 2.1 [Hartshorne 1977; 1994, Proposition 1.11, Theorem 1.12]. Sup-
pose that R is a normal domain and suppose that M and N are finitely generated
torsion-free R-modules. Then:

(1) M is reflexive (that is, the natural map M → HomR(HomR(M, R), R) =
(M∨)∨ is an isomorphism) if and only if M is S2.

(2) HomR(M, R)= M∨ is reflexive.

(3) If R is of characteristic p and F-finite (see Definition 2.6), then M is reflexive
if and only if Fe

∗
M is reflexive.

(4) If N is reflexive, then Hom(M, N ) is also reflexive.

(5) Suppose M is reflexive, that X = Spec R and Z ⊂ X is a closed subset of
codimension 2. Set U to be X \ Z and let i : U → X be the inclusion. Then
i∗(M |U )∼= M.

(6) With notation as in (5), the restriction map to U induces an equivalence of
categories from reflexive coherent sheaves on X to reflexive coherent sheaves
on U.

Proposition 2.2 [Hartshorne 1994, Proposition 2.9; 2007, Remark 2.9]. Suppose
that X is a normal scheme and D is a divisor on X. Then, there is a one-to-one cor-
respondence between effective divisors linearly equivalent to D and nondegenerate
sections s ∈ 0(X,OX (D)) modulo multiplication by units in H 0(X,OX ).2

2A section is called nondegenerate if it is nonzero at the generic point of every irreducible com-
ponent of X .
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Definition 2.3. If X is equidimensional, then we set ωX to be h− dim X (ω
q
X ) and

call it the canonical module of X . If, in addition, X is normal, then ωX is a rank 1
reflexive sheaf and so it corresponds to an integral divisor class. A divisor D such
that OX (D)∼= ωX is called a canonical divisor of X and is denoted by K X .

Remark 2.4. If X is not normal but instead Gorenstein in codimension 1 (G1) and
S2, then one can still view ωX as a divisor class (technically as an almost Cartier
divisor / Weil divisorial subsheaf; see [Hartshorne 1994; Kollár et al. 1992]). Most
of the results of this paper generalize to pairs (X,1) where X is G1 and S2 and
1 is an element from {almost Cartier divisors} ⊗Q. However, there are several
technical complications which we feel obscure the main points of this paper and
so we will not work in this generality. In particular, one can have two different
almost Cartier divisors / Weil divisorial subsheaves D and E such that 2D = 2E
[Kollár et al. 1992, page 172]. Because of this, for a Q-Weil divisorial subsheaf D,
OX (D) is not well defined. There are ways around this issue, although statements
like Theorem 3.11(e,f) and the definition of sharply F-pure pairs would need to
be amended. Another option is to do something similar to what is suggested in
Remark 9.1.

Definition 2.5. A pair (X,1) is the combined information of a normal scheme X
and an effective Q-divisor 1. A triple (X,1, at) is the combined information of
a pair (X,1), an ideal sheaf a ⊆ OX which on every chart U = Spec R satisfies
a|U ∩ R◦ 6= ∅, and a positive real number t > 0. If X = Spec R, then we will
sometimes write (R,1) instead of (X,1).

Now we define F-singularities, singularities defined by the action of Frobenius.
These are classes of singularities associated with tight closure theory [Hochster and
Huneke 1990], which are good analogs of singularities from the minimal model
program [Kollár and Mori 1998].

Definition 2.6. We say that a ring R of positive characteristic p > 0 is F-finite if
F∗R = R1/p is finite as an R-module.

Throughout the rest of this paper, all rings will be assumed to be F-finite. This
is not too restrictive an assumption since any ring essentially of finite type over a
perfect field is F-finite, see [Fedder 1983, Lemma 1.4].

Definition 2.7 [Hochster and Roberts 1976; Hochster and Huneke 1989; Hara
and Watanabe 2002; Schwede 2008b]. Suppose that (R,m) is a local ring. We
say that a triple (R,1, at) is sharply F-pure if there exists an integer e > 0, an
element a ∈ adt (p

e
−1)e and a map φ ∈ HomR(Fe

∗
R(d(pe

− 1)1e), R) such that
φ(Fe

∗
(a R)) = R. Here Fe

∗
(a R) ⊆ Fe

∗
R(d(pe

− 1)1e). If 1 = 0 and a = R, then
we call the sharply F-pure triple (R,1, at) (or simply the ring R) F-pure.
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Again, assuming R is local, a triple (R,1, at) is called strongly F-regular if
for every c ∈ R◦ there is an integer e > 0, an element a ∈ adt (p

e
−1)e, and a map

φ ∈ HomR(Fe
∗

R(d(pe
− 1)1e), R) such that φ(Fe

∗
(ca R))= R.

If X is any scheme (for example X = Spec R where R is a nonlocal ring), then
a triple (X,1, at) is called sharply F-pure (respectively, strongly F-regular) if
for every closed point3 x ∈ X , the localized triple (OX,x ,1|Spec OX,x , a

t
x) is sharply

F-pure (respectively, strongly F-regular).

Remark 2.8. In the case where R is a nonlocal ring, these definitions of strong
F-regularity and sharp F-purity are slightly more general than the ones given in
[Takagi 2004a; Takagi and Watanabe 2004; Schwede 2008a; 2008b]. Previously,
a triple (R,1, at) (with R-not necessarily local) was called strongly F-regular
(respectively sharply F-pure) if it satisfied the “local ring” version of the condition
stated above. In the case that a = R (or more generally, if a is principal) then the
various notions coincide (regardless of the 1). The problem is that it is not clear
whether a triple (R,1, at) is strongly F-regular (respectively sharply F-pure) if
and only if it is strongly F-regular (respectively sharply F-pure) after localizing at
every maximal ideal.

Remark 2.9. Suppose that R is local and that (R,1, at) is sharply F-pure and
that e is as in the above definition, then for every integer n > 0 there exists a
φn ∈HomR(Fne

∗
R(d(pne

−1)1e), R) such that 1∈φn(Fne
∗

adt (p
ne
−1)e). This follows

from the same argument as in [Schwede 2008a, Lemma 2.8; 2008b, Proposition
3.3].

Remark 2.10. Sharply F-pure singularities are a characteristic p > 0 analog of
log canonical singularities [Hara and Watanabe 2002; Schwede 2008b]. Strongly
F-regular singularities are a characteristic p> 0 analog of Kawamata log terminal
singularities [Hara and Watanabe 2002]. There are also good analogs of purely log
terminal singularities that we will not discuss here, see [Takagi 2008].

Definition 2.11 [Hochster and Huneke 1990; Hara and Takagi 2004; Schwede
2008a; 2008b]. Suppose that (R,1, at) is a triple. An element c ∈ R◦ is called a
big sharp test element for (R,1, at) if for all modules N ⊆ M and all z ∈ N ∗1,a

t

M ,
one has that cadt (p

e
−1)ez pe

⊆ N [p
e
]1

M for all e ≥ 0.
For the definition of tight closure with respect to such a triple (and an explanation

of the notation above), see [Schwede 2008a, Definition 2.14 ]. Also compare with
[Hara and Yoshida 2003; Takagi 2004b; 2008.]

If R is reduced and F-finite, then there always exists a big sharp test element
for any triple (R,1, at).

3If the condition holds at the closed points, then it also holds at the nonclosed points.
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Definition 2.12 [Hochster and Huneke 1990; Lyubeznik and Smith 2001; Hara
and Takagi 2004; Hochster 2007]. The big test ideal of a triple (R,1, at), denoted
τb(R;1, at), is defined as follows: Set E =⊕m∈m−Spec R ER/m, where ER/m is the
injective hull of R/m. Then

τb(R;1, at) := AnnR 0∗1at

E =
⋂
m

AnnR 0∗1,a
t

ER/m
.

Remark 2.13. Big test ideals are characteristic p> 0 analogs of multiplier ideals,
[Smith 2000; Hara 2001; Takagi 2004b; Hara and Yoshida 2003].

Remark 2.14. In [Schwede 2008a], we defined the big test ideal τb(R;1, at) in a
somewhat different way, essentially using the criterion for the big test ideal found
in [Hara and Takagi 2004, Lemma 2.1]. While we will not state that definition here,
we note that the big test ideal of [Schwede 2008a] was an ideal J of R which, when
localized at any m, coincided with AnnRm 0∗1at

ER/m
. We now explain why such a J

agrees with τb(R;1, at). Note that this J is contained in each AnnR 0∗1at

ER/m
, and so

J ⊆ AnnR 0∗1at

E . Conversely, we see that τb(R;1, at)Rm ⊆ AnnRm 0∗1at

ER/m
⊆ Jm,

which completes the proof.

Definition 2.15 [Schwede 2008a]. An ideal I ⊆ R is said to be F-compatible with
respect to (R,1, at) or equivalently uniformly (1, at , F)-compatible or simply F-
compatible if the context is clear, if for every e> 0, every a ∈ adt (p

e
−1)e and every

map φ ∈ HomR(Fe
∗

R(dt (pe
− 1)1e), R), we have φ(Fe

∗
aI ) ⊆ I . A prime ideal

Q which is F-compatible with respect to (R,1, at) is called a center of sharp F-
purity for (R;1, at), or simply a center of F-purity if the context is clear. We will
also often abuse notation and call the subscheme W := Spec R/Q ⊆ Spec R =: X
a center of F-purity as well.

Remark 2.16. Centers of sharp F-purity are characteristic p > 0 analogs of cen-
ters of log canonicity. In particular, any center of log canonicity reduced from
characteristic 0 to characteristic p � 0 is a center of sharp F-purity [Schwede
2008a, Theorem 6.7].

Lemma 2.17 [Schwede 2008a]. Consider a triple (R,1, at) (recall all rings are
assumed F-finite). The following properties of F-compatible ideals are satisfied.

(1) Any (ideal-theoretic) intersection of F-compatible ideals is F-compatible.
(2) Any (ideal-theoretic) sum of F-compatible ideals is F-compatible.
(3) The radical of an F-compatible ideal is F-compatible.
(4) The big test ideal τb(R; at ,1) is the unique smallest F-compatible ideal that

has nontrivial intersection with R◦.
(5) The minimal primes of a radical F-compatible ideal are also F-compatible.
(6) A pair (R,1) is strongly F-regular if and only if it has no centers of sharp

F-purity besides the minimal primes of R.
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A version of Lemma 2.17(6) is true also for triples (R,1, at). Although in that
case, one must use the “new” strong F-regularity condition, see Remark 2.8. In
particular, [Schwede 2008a, Corollary 4.6] is probably not correct as stated. It
should say: “(R,1, a•) is strongly F-regular after localizing at every maximal
ideal of R if and only if (R,1, a•) has no centers of sharp F-purity besides the
minimal primes of R.” Thus the original statement of [Schwede 2008a, Corollary
4.6] is correct if one uses the definition of strong F-regularity from Definition 2.7.
We believe this is the only instance of the issue described in Remark 2.8 causing
a misstatement in that paper (although several results can be strengthened if one
uses the “new” definition).

3. Relation between Frobenius and boundary divisors

In this section we’ll describe a correspondence between maps φ : Fe
∗

OX→ OX and
Q-divisors 1 such that K X +1 is Q-Cartier (with index not divisible by p > 0).
Statements closely related to this correspondence have appeared in several previ-
ous contexts (see [Hara and Watanabe 2002, Theorem 3.1, Proof 2] and [Mehta
and Ramanathan 1985]) and were known to experts. However, we do not think
the correspondence has been explicitly written from a Q-divisor perspective. As
before, in this section we are assuming that X is the spectrum of a normal F-finite
ring R with a locally normalized dualizing complex ω q

R .
Roughly speaking, the correspondence goes like this. Suppose R is a local ring

and set X = Spec R:

• Given a φ ∈ HomR(Fe
∗

R, R), this is the same as

• choosing a map (of Fe
∗

R-modules) Fe
∗

R→ HomR(Fe
∗

R, R) sending 1 to φ,
which is the same as

• an effective Weil divisor D such that OX (D) ∼= OX ((1− pe)K X ) (note that
Fe
∗

OX ((1− pe)K X )∼= HomR(Fe
∗

R, R)), which is the same as

• an effective Q-divisor 1 where we set 1= (1/(pe
− 1))D.

The expert reader might wonder why we divide by pe
− 1 in the final step (and

thus produce a Q-divisor). It turns out that for the purposes of F-singularities,
composing φ with itself (that is, φ ◦ Fe

∗
φ) is harmless, see Section 4 below. Thus

by dividing by pe
−1 we are normalizing our divisor with respect to composition;

see Theorem 3.11(e).
In order to make this correspondence precise and in order to be able to use

it, we first need the following observations about maps Fe
∗

OX → OX (which of
themselves are of independent interest). Lemma 3.1 is well known to experts; see
[Fedder 1983; Mehta and Ramanathan 1985; Mehta and Srinivas 1991; Hara and
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Watanabe 2002, Lemma 3.4]. However, the proof is short, so we include it for the
convenience of the reader.

Lemma 3.1. Suppose that (X,1) is a pair such that (pe
−1)(K X+1) is a Cartier

divisor. Then H omOX (F
e
∗

OX ((pe
− 1)1),OX ) is an invertible sheaf when viewed

as an Fe
∗

OX -module.

Proof. It is enough to verify this locally, so we may assume that X is the spectrum
of a local ring. Then observe that

H omOX (F
e
∗

OX ((pe
− 1)1),OX )∼=H omOX (F

e
∗

OX ((pe
− 1)1+ pe K X ), ωX )

∼= Fe
∗
H omOX (OX ((pe

− 1)1+ pe K X ), ωX )

∼= Fe
∗

OX ((1− pe)(K X +1))

∼= Fe
∗

OX . �

Remark 3.2. We will often view H omOX (F
e
∗

OX ((pe
− 1)1),OX ) as an Fe

∗
OX -

submodule of H omOX (F
e
∗

OX ,OX ).

Remark 3.3. For an arbitrary normal (nonlocal) F-finite scheme X , we do not
know if one always has

H omOX (F
e
∗

OX ((pe
− 1)1),OX )∼= OX ((1− pe)(K X +1)). (3.3.1)

In the nonlocal case, if one is following the proof of Lemma 3.1, one should write

H omOX (F
e
∗

OX ((pe
− 1)1+ pe K X ), ωX )

∼= Fe
∗
H omOX (OX ((pe

− 1)1+ pe K X ), (Fe)!ωX ).

The module (Fe)!ωX =HomOX (F
e
∗

OX , ωX ) is a canonical module on X , but these
are only unique up to tensoring with an invertible sheaf. In the local case, tensoring
with an invertible sheaf does nothing (and so ωX is unique up to isomorphism —
multiplication by a unit). Likewise, if X is of essentially finite type over an F-finite
field, it is easy to see that (Fe)!ωX can be identified with ωX (again, noncanon-
ically, but up to multiplication by a unit of H 0(X,OX )). Of course, by passing
to a sufficiently small affine chart, we can always assume that Equation (3.3.1) is
satisfied. In fact, it may be that Equation (3.3.1) always holds.

The previous result also implies the following when interpreted using Fedder’s
criterion [Fedder 1983].

Corollary 3.4. Suppose that (R,m) is a quasiGorenstein normal local ring (re-
spectively, a Q-Gorenstein local ring whose index is a factor of pd

− 1). Further
suppose that we can write R = S/I where S is an F-finite regular local ring. Then
for each e> 0 (respectively for each e= nd, n > 0) there exists an element fe ∈ R
so that (I [p

e
]
: I )= I [p

e
]
+ ( fe).
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Proof. Simply note that Fe
∗
(I [p

e
]
: I )HomS(Fe

∗
S, S)/Fe

∗
I [p

e
] ∼= HomR(Fe

∗
R, R)

by [Fedder 1983, Lemma 1.6]. The quasiGorenstein or Q-Gorenstein assumption
implies that the right side of the equation is a free rank-one Fe

∗
R-module. �

Remark 3.5. If one fixes a generator T of HomS(Fe
∗

S, S), one can then view the
element fe as an S-module map Fe

∗
S→ S that sends Fe

∗
I into I .

Observation 3.6. Suppose (in the situation of Lemma 3.1) that X is the spectrum
of a local ring, that 1 = 0, and that OX ((pe

− 1)K X ) is a free rank-one Fe
∗

OX -
module. Therefore, H omOX (F

e
∗

OX ,OX ) has a generator T . If one composes T
with its pushforward Fe

∗
T : F2e

∗
OX → Fe

∗
OX , one obtains a map

T2e = T ◦ Fe
∗

T : F2e
∗

OX → OX . (3.6.1)

One can then ask whether that composition is a generator of the rank-one locally
free F2e

∗
R-module H omOX (F

2e
∗

OX ,OX )? What can be said in the case that1 6= 0?
It turns out that the composition is indeed a generator (and in the case when 1 6= 0
as well). One can prove this using local duality, however it is no more difficult
(and certainly more satisfying) to prove it directly. First however, let us compute
a specific example.

Example 3.7. Consider the case when X = Spec Fp[x1, . . . , xn] = Spec R and
choose Te to be the generator of H om R(Fe

∗
R, R) of the form

Te(x
l1
1 x l2

2 . . . x
ln
n )=

{
1, if l1 = l2 = . . .= ln = pe

−1,
0, whenever li ≤ pe

−1 for all i and li < pe
−1 for some i .

Now consider Te ◦ Fe
∗

Te, we claim it is equal to T2e. Consider a monomial m =
x l1

1 x l2
2 . . . x

ln
n such that li ≤ p2e

− 1. We can write

m = (xk1
1 )

pe
(x j1

1 )(x
k2
2 )

pe
(x j2

2 ) . . . (x
kn
n )

pe
(x jn

n ),

where ki , ji < pe are integers. This implies that

Te(Fe
∗

Te(m))= Te(x
k1
1 . . . xkn

n Te(x
j1
1 . . . x

jn
n )).

The claim is then easily verified since pe(pe
− 1)+ (pe

− 1)= (p2e
− 1).

Remark 3.8. In the context of Example 3.7, it follows that Te(Fe
∗

I ) = I [1/pe
],

where I [1/pe
] is the smallest ideal J such that I ⊆ J [p

e
] [Blickle et al. 2008]. This

was well known to experts.

In fact, Example 3.7 above is a special case of the following lemma (that is
known to experts) which uses Hom-⊗ adjointness. For example, it is closely related
to [Kunz 1986, Appendix F.17(a)].
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Lemma 3.9. Suppose that R→ S is a finite map of rings such that HomR(S, R)
is isomorphic to S as an S-module. Further suppose that M is a finite S-module.

Then the natural map

HomS(M, S)×HomR(S, R)→ HomR(M, R) (3.9.1)

induced by composition is surjective.

Proof. First, set α to be a generator (as an S-module) of HomR(S, R). Suppose
we are given f ∈ HomR(M, R) ∼= HomR(M ⊗S S, R). We wish to write it as a
composition.

Using adjointness, this f induces an element 8( f ) ∈HomS(M,HomR(S, R)).
Just as with the usual Hom-tensor adjointness, we define 8( f ) by the following
rule:

(8( f )(t))(s)= f (t ⊗ s)= f (st) for t ∈ M , s ∈ S.

Therefore, since HomR(S, R) is generated by α, for each f and t ∈ M as above,
we associate a unique element a f,t ∈ S with the property that (8( f )(t))( ) =

α(a f,t ).
Thus using the isomorphism HomR(S, R) ∼= S, induced by sending α to 1, we

obtain a map 9 : HomR(M, R)→ HomS(M, S) given by 9( f )(t)= a f,t .
We now consider α ◦ (9( f )). However,

α(9( f )(t))= α(a f,t)= (8( f )(t))(1)= f (t).

Thus f = α ◦ (9( f )) and we see that the map (3.9.1) is surjective, as desired. �

We need a certain variant of this in the context of pairs.

Corollary 3.10. Suppose that (X,1) is a pair and that K X+1 is (pe
−1)-Cartier.

Then for every d > 0 the natural map 9,

H om Fe
∗OX (F

e+d
∗

OX (d(pd
− 1)1e), Fe

∗
OX )

⊗Fe
∗OX H omOX (F

e
∗

OX ((pe
− 1)1),OX )

∼=H om Fe
∗OX (F

e+d
∗

OX (d(pe+d
− 1)1e), Fe

∗
OX ((pe

− 1)1))

⊗Fe
∗OX H omOX (F

e
∗

OX ((pe
− 1)1),OX )

→H omOX (F
e+d
∗

OX (d(pe+d
− 1)1e),OX )

induced by composition, is an isomorphism.
In other words, locally, every map φ : Fe+d

∗
OX (d(pe+d

− 1)1e)→ OX factors
through some scaling of the (local) Fe

∗
OX -generator of

H omOX (F
e
∗

OX ((pe
− 1)1),OX ).
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Proof. Notice that the map 9 we are considering is a map of rank-one reflexive
(that is, rank-one S2) Fe+d

∗
OX sheaves and thus it is injective (since it is not zero).

So to show it is an isomorphism, it is sufficient to show it is surjective in codi-
mension one. Therefore we may consider the statement at the generic point γ of a
codimension 1 subvariety (locally, this is localizing at a height one prime). Since
X is Gorenstein in codimension one, we see that

(H omOX (F
1
∗

OX ,OX ))γ

is a free rank-one F1
∗

OX -module. We fix a generator T1 and set Tn to be the gener-
ator of

(H omOX (F
n
∗

OX ,OX ))γ

obtained by composing T1 with itself n−1 times just as in (3.6.1) (Tn is a generator
by Lemma 3.9).

If 1 does not contain the point γ in its support, we are done by the previous
lemma. On the other hand, if 1 contains γ in its support, then we may express
1 at the stalk of η locally as zt (where t is a rational number with denominator a
factor of pe

− 1). Then we notice that

Te(z(p
e
−1)t(Fd

∗
Td(z

d(pd
−1)te

i )))= Te(Fd
∗

Td(zdp
d (pe
−1)t+(pd

−1)te ))

= Te(Fd
∗

Td(zd(p
d+e
−1)te ))= Te+d(zd(p

d+e
−1)te ).

This proves the corollary, since for any n> 0, Tn(zd(p
n
−1)te ) generates the image

of the Fn
∗

OX,γ -module

(H omOX (F
n
∗

OX (d(pn
− 1)1e),OX ))γ inside (H omOX (F

n
∗

OX ,OX ))γ . �

We are now ready to explicitly relate φ : Fe
∗

OX → OX to a Q-divisor 1. As
mentioned before, parts of this theorem were likely known to experts, but to my
knowledge, it has not been written down in the language of Q-divisors.

Theorem 3.11. Suppose R is a normal F-finite ring. For every map φ : Fe
∗

R→ R,
there exists an effective Q-divisor 1=1φ on X = Spec R such that:

(a) (pe
− 1)1 is an integral divisor.

(b) (pe
−1)(K X+1) is a Cartier divisor and HomR(Fe

∗
R((pe

−1)1), R)∼= Fe
∗

R.
(c) The natural map Fe

∗
R∼=HomR(Fe

∗
R((pe

−1)1), R)→HomR(Fe
∗

R, R) sends
some Fe

∗
R-module generator of HomR(Fe

∗
R((pe

− 1)1), R) to φ.
(d) The map φ is surjective if and only if the pair (R,1) is sharply F-pure.
(e) The composition map

φ(n+1)e = φ ◦ Fe
∗
φ ◦ F2e

∗
φ ◦ . . . ◦ Fne

∗
φ

also determines the same divisor 1.
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(f) Another map φ′ : Fe′
∗

R→ R determines the same Q-divisor1 if and only if for
some positive integers n and n′ such that (n+ 1)e = (n′+ 1)e′ (equivalently,
for every such pair of integers) there exists a unit u ∈ R such that

φ ◦ Fe
∗
φ ◦ F2e

∗
φ ◦ . . . ◦ Fne

∗
φ(ux)= φ′ ◦ Fe′

∗
φ′ ◦ F2e′

∗
φ′ ◦ . . . ◦ Fn′e′

∗
φ′(x).

for all x ∈ R. In other words, φ and φ′ determine the same divisor if and only
if φ composed with itself n times is a unit multiple of φ′ composed with itself
n′ times.

Proof. A map φ : Fe
∗

R→ R uniquely determines the map of Fe
∗

R-modules

8 : Fe
∗

R→ HomR(Fe
∗

R, R)

which sends 1 to φ. This can also be viewed as applying the functor HomR( , R)
to φ and factoring the map

R
∼ //

Fe
%%

HomR(R, R)
φ∨ // HomR(Fe

∗
R, R)

Fe
∗

R
17→φ

66
(3.11.1)

through Fe
∗

R. We know that HomR(Fe
∗

R, R)∼= Fe
∗

R((1− pe)K X +M) for some
Cartier divisor M (in many cases M is zero; see Remark 3.3). Therefore, the map8
determines an effective divisor D which is linearly equivalent to (1− pe)K X +M ;
see [Hartshorne 1977] and Proposition 2.2. Set

1 :=
1

pe− 1
D.

Clearly property (a) is satisfied. For the first part of (b), simply note that

(pe
− 1)(K X +1)= (pe

− 1)K X + D ∼ (pe
− 1)K X + (1− pe)K X +M = M.

For the second part of (b), observe that

HomR(Fe
∗

R((pe
− 1)1), R)∼= Fe

∗
R((1− pe)K X +M − (pe

− 1)1)
∼= Fe

∗
R((1− pe)K X +M − D)∼= Fe

∗
R.

Let us now prove (c). At height one primes γ , the map

8 : Fe
∗

Rγ → HomR(Fe
∗

R, R)γ ' Fe
∗

Rγ

as above, is multiplication (as an Fe
∗

R-module) by a generator of D. But so is
the map from (c), 9 : Fe

∗
R ∼= HomR(Fe

∗
R((pe

− 1)1), R) → HomR(Fe
∗

R, R).
All the modules involved are rank-1 reflexive Fe

∗
OX -modules and that the domains
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of 8 and 9 are isomorphic. Therefore the maps 8 and 9 induce the same divi-
sors and so 8 and 9 can be identified (for an appropriate choice of isomorphism
HomR(Fe

∗
R((pe

− 1)1), R)∼= Fe
∗

R). Part (c) then follows.
To prove (d), suppose first that φ is surjective, or equivalently that 1 is in φ’s

image. Then there exists an R-module map α so that the composition

R
α // Fe

∗
R

φ // R

is the identity. Apply HomR( , R) to the diagram (3.11.1). This gives a diagram:

R oo φ
ff HomR(HomR(Fe

∗
R, R), R) oo ∼ // Fe

∗
R

HomR(Fe
∗

R, R)
OO

∼

��

tt

Fe
∗

R(D)

and so we can factor φ as Fe
∗

R → Fe
∗

R(D) → R. This proves that (R,1) is
a sharply F-pure pair. Conversely, suppose that (R,1) is sharply F-pure, then
a single (equivalently every) generator α of HomR(Fe

∗
R((pe

− 1)1), R) satisfies
α(Fe

∗
R)= R. But φ is such a generator so φ(Fe

∗
R)= R.

We now prove (e). It is enough to check the statement at a height one prime γ .
We know that HomR(Fe

∗
R, R)γ is locally free of rank one with generator Te. We

then see that φγ ( )= Te(d )where d is a defining equation for D when localized
at γ . Composing this with itself n times, we obtain the map

φγ ◦Fe
∗
φγ ◦F2e

∗
φγ ◦. . .◦Fne

∗
φγ (F (n+1)e

∗
z)= T(n+1)e(F (n+1)e

∗
d pne

+p(n−1)e
+···+pe

+1z).

But now we notice that (1/(p(n+1)e
− 1))(pne

+ p(n−1)e
+· · ·+ pe

+ 1)D is equal
to (1/(pe

− 1))D.
Finally, we prove (f). First note that changing a map by precomposing with

multiplication by a unit does not change the associated divisor. Therefore, if maps
φ and φ′ satisfy the condition on their compositions (as above), then they determine
the same divisor by (e). Conversely, suppose that the maps φ and φ′ have the same
associated divisor, and choose n and n′ as above. Without loss of generality, by
replacing φ and φ′ with their compositions, we may assume that e = e′, and we
simply have two maps φ, φ′ ∈HomR(Fe

∗
R, R) that determine the same divisor. In

particular, the maps

Fe
∗

R→ HomR(Fe
∗

R, R)
1 7→ φ

and
Fe
∗

R→ HomR(Fe
∗

R, R)
1 7→ φ′
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induce the same embedding of HomR(Fe
∗

R, R) into the total field of fractions of
Fe
∗

R. Therefore the two maps differ by multiplication by a unit as desired; see
[Hartshorne 2007] or Proposition 2.2. �

Remark 3.12. Condition (a) above is redundant in view of condition (b).

Theorem 3.13. Suppose that R is normal and F-finite as above. For every effective
Q-divisor1 satisfying conditions (a) and (b) from Theorem 3.11, there exists a map
φ ∈ HomR(Fe

∗
R, R) such that the divisor associated to φ is 1.

Proof. We set φ to be the image of 1 under the composition

i ◦ q ◦ Fe
: R→ Fe

∗
R ∼= HomR(Fe

∗
R((pe

− 1)1), R)→ HomR(Fe
∗

R, R),

where q is the isomorphism given by hypothesis, and i the map induced by the
inclusion Fe

∗
R ⊆ Fe

∗
R((pe

− 1)1). It is straightforward to verify that applying
HomR( , R) to the above composition also explicitly constructs (and factors) φ
because of the isomorphism HomR(HomR(Fe

∗
R, R), R)∼= Fe

∗
R.

Applying HomR( , R) to this factorization of φ, and using the construction
from Theorem 3.11 gives us back 1. �

In summary, we have shown that for a reduced normal F-finite local ring R there
is a bijection between the sets{ Effective Q-divisors 1 such

that (pe
− 1)(K X +1) is Cartier

}
←→

{Nonzero elements of
HomOX (F

e
∗

OX ,OX )

}/
∼ ,

where the equivalence relation on the right identifies two maps φ and ψ if there
is a unit u ∈ R such that φ(u × ) = ψ( ). Remark 9.5 discusses how to make
sense of such a correspondence in the nonlocal case.

One can even extend this correspondence further. Recall that putting an R{Fe
}-

module structure on an R-module M is equivalent to specifying an additive map

φe : M→ M

such that φe(rm) = r pe
φe(m); see [Lyubeznik and Smith 2001] for additional de-

tails. Such maps can also be identified with R-module maps M→ Fe
∗

M .

Proposition 3.14. Suppose that (R,m) is a complete normal local F-finite ring
with injective hull of the residue field ER . Then there is a bijection between the set
of R{Fe

}-module structures on ER and the set of elements of HomR(Fe
∗

R, R).

Proof. Consider a map φ : Fe
∗

R→ R and apply HomR( , ER). This gives us a
map

ER = HomR(R, ER)→ HomR(Fe
∗

R, ER)= EFe
∗ R = Fe

∗
ER.
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Applying HomR( , ER) gives us back φ. Note that there are (noncanonical)
choices here when we identify Fe

∗
ER with HomR(Fe

∗
R, ER). However, these are

merely up to multiplication by units and so we can fix such isomorphisms. �

Therefore, in the case of a complete local normal ring, we have the following
correspondences.{

Effective Q-divisors 1 such
that (pe

− 1)(K X +1) is Cartier

}
←→

{
Nontrivial cyclic Fe

∗
R-submodules

of HomR(Fe
∗

R, R)

}
←→

{
Nonzero elements of

HomR(Fe
∗

R, R)

}/
∼ ←→

{
Nonzero R{Fe

}-module
structures on ER

}/
∼

The first equivalence relation identified two maps if they agree up to precompo-
sition with multiplication by a unit of Fe

∗
R (as above). The second equivalence

relation identified two maps if they agree up to postcomposition with multiplication
by a unit of Fe

∗
R.

Corollary 3.15. Suppose that S is a regular F-finite ring such that Fe
∗

S is free as
an S-module and that R = S/I is a quotient that is normal. Further suppose that
HomR(Fe

∗
R, R)∼= Fe

∗
R (in particular, R is Q-Gorenstein with index not divisible

by p). Write (I [p
e
]
: I )= I [p

e
]
+ ( fe) just as in Corollary 3.4. Then for all n > 0,

(I [p
ne
]
: I )= I [p

ne
]
+ ( f 1+pe

+···+p(n−1)e

e ).

4. Application to centers of sharp F-purity

In [Schwede 2008a], we introduced a notion called centers of sharp F-purity (also
known as F-compatible ideals), a positive characteristic analog of a center of log
canonicity; see for example [Kawamata 1997a; 1998]. Our main goal in this section
is to prove several finiteness theorems about centers of sharp F-purity.

Recall that an ideal I is called F-compatible with respect to (R,1) if for every
e > 0 and every φ ∈ HomR(Fe

∗
R(d(pe

− 1)1e),1), we have φ(Fe
∗

I ) ⊆ I . One
limitation of the definition of F-compatible ideals is that it seems to require check-
ing infinitely many e > 0 (and infinitely many φ). However, for radical ideals I ,
assuming that (pe

− 1)K X is Cartier, we will show that it is enough to check the
condition only for that e.

Proposition 4.1. Suppose that R is a normal F-finite ring. Further suppose that1
is an effective Q-divisor such that HomR(Fe

∗
R((pe

−1)1), R) is free as an Fe
∗

OX -
module. Then a radical ideal I ⊂ R is F-compatible with respect to (R,1) if and
only if Te(Fe

∗
I )⊆ I where Te is a Fe

∗
R-module generator of

Hom(Fe
∗

R((pe
− 1)1), R).
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Proof. Since a radical ideal I is F-compatible if and only if its minimal associated
primes are F-compatible, see Lemma 2.17(5), without loss of generality we may
assume that I is prime. Furthermore, since F-compatible ideals behave well with
respect to localization, see [Schwede 2008a, Lemma 3.7], we may also assume that
R is local and that I =m is maximal.

Suppose that φ : Fb
∗

R(d(pb
−1)1e)→ R satisfies the property that φ(Fb

∗
m)*m,

we will obtain a contradiction. Therefore, for some element x ∈ m, we have that
φ(Fb

∗
x)= u where u is a unit in R. By scaling φ, we may assume that u= 1. Now

choose integers n and m such that nb=me. Consider the function ψ : Fnb
∗

R→ R
defined by the rule

ψ(Fnb
∗

)= φ
(

x Fb
∗
φ
(
x F2b
∗
φ(x · · · F (n−1)b

∗
φ(Fnb

∗
) · · · )

))
.

Notice that ψ(Fnb
∗

x) = 1. On the other hand, HomR(Fme
∗

R((pme
− 1)1), R) is

generated by T composed with itself m−1 times. Notice that since T sends m into
m, so does its composition. Therefore, to obtain our contradiction we simply have
to check thatψ ∈HomR(Fnb

∗
R, R) is an element of HomR(Fme

∗
R((pme

−1)1), R).
But that is straightforward since it was constructed by composing φ with itself
(using the fact that we round up, not down, so that pa

d(pb
−1)1e+d(pa

−1)1e≥
d(pa+b

− 1)1e ). �

Remark 4.2. For a sharply F-pure pair (R,1), all F-compatible ideals are radical.

Corollary 4.3. Suppose that φ : Fe
∗

R→ R is a Frobenius splitting and R is an F-
finite normal ring. Then the centers of sharp F-purity for the pair (R,1φ) coincide
with the subschemes of X = Spec R compatibly split with φ.

Remark 4.4. One might ask if an analog of Proposition 4.1 holds for nonradical
ideals, and we do not know the answer in general. However, in [Schwede 2008a], it
was shown that the nonfinitistic/big test ideal is the unique smallest F-compatible
ideal that intersects nontrivially with R◦. Using the additional structure of the big
test ideal, we are able to prove an analogous result (in fact, the proof is very similar
to a special case of [Takagi 2008, Proposition 3.5(3)]).

Definition 4.5. Suppose that φe ∈ HomR(Fe
∗

R, R) is a map. For every integer
n ≥ 0, we define φne ∈ HomR(Fne

∗
R, R) to be the map obtained by composing φe

with itself n−1 times, just as in Theorem 3.11(e). We set φ0 to be the identity map
in HomR(R, R).

Our next goal is to characterize the big test ideal using this machinery. First
however, we need two lemmas.

Lemma 4.6. Suppose that a is an ideal generated by l elements and that m and k
are integers. Then:

(am)[p
k
]
⊇ apkm+l(pk

−1).
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Proof. Let f1, . . . , fl be a set of generators for a. Then apkm+l(pk
−1) is generated

by the elements of the form
f b1
1 . . . f bl

l ,

where
∑l

i=1 bi= pkm+l(pk
−1). We will show that each such element is contained

in (am)[p
k
]. Write each bi = qi pk

+ ri where 0≤ ri < pk . Thus we have

f b1
1 · · · f bl

l = ( f q1
1 · · · f ql

l )
pk
( f r1

1 · · · f rl
l ).

Note
∑l

i=1 ri ≤ l(pk
− 1). Therefore,

pkm+ l(pk
− 1)=

l∑
i=1

bi =

(
pk

l∑
i=1

qi

)
+

( l∑
i=1

ri

)
≤

(
pk

l∑
i=1

qi

)
+ l(pk

− 1),

which implies that pkm ≤ pk ∑l
i=1 qi , in particular, m ≤

∑l
i=1 qi . Therefore,

( f q1
1 · · · f ql

l )
pk
∈ (am)[p

k
]

and so f b1
1 · · · f bl

l ∈ (a
m)[p

k
] as desired. �

Lemma 4.7. Suppose that a is an ideal of R which can be generated by l elements
and such that a∩ R◦ 6=∅. Fix an e > 0. Then there exists an element c′ ∈ R◦ such
that

c′adt (p
ne+k
−1)e
⊆ (adt (p

ne
−1)e)[p

k
]

for all n > 0 and all k < e.

Proof. First note that we have

(adt (p
ne
−1)e)[p

k
]
⊇ apk

dt (pne
−1)e+l(pk

−1)
⊇ apk

dt (pne
−1)e+lpe

.

The first containment holds by Lemma 4.6 above. Thus it is sufficient to find a c′

such that c′adt (p
ne+k
−1)e
⊆ apk

dt (pne
−1)e+lpe

. Choose c′ ∈ a(l+1)pe
∩ R◦. We need to

show that
(l + 1)pe

+dt (pne+k
− 1)e ≥ pk

dt (pne
− 1)e+ lpe.

However,

pk
dt (pne

− 1)e+ lpe
≤ pk
bt (pne

− 1)c+ pe
+ lpe

≤ bpk t (pne
− 1)c+ (l + 1)pe

≤ dt (pne+k
− 1)e+ (l + 1)pe

as desired. �

Proposition 4.8. Suppose that R is a normal F-finite ring, that 1 is an effective
Q-divisor such that (pe

− 1)1 is integral, and that HomR(Fe
∗

R((pe
− 1)1), R) is

of rank one and free as an Fe
∗

R-module with generator Te (viewed as an element of
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HomR(Fe
∗

R, R)). Set Tne to be the map obtained by composing Te with itself n−1
times. Then we have the following:

(i) The big test ideal τb(R;1) is the unique smallest ideal J whose intersection
with R◦ is nontrivial and which satisfies Te(Fe

∗
J )⊆ J .

(ii) Furthermore, if a is an ideal such that a∩ R◦ 6=∅ and t > 0 is a real number,
then the big test ideal τb(R;1, at) is the unique smallest ideal J whose inter-
section with R◦ is nontrivial and which satisfies Tne(Fne

∗
adt (p

e
−1)e J ) ⊆ J for

all integers n > 0.

Proof. For (i), note that the big test ideal τb(R;1) satisfies Te(Fe
∗
τb(R;1)) ⊆

τb(R;1), thanks to [Schwede 2008a, Proposition 6.1]. Thus we simply have to
show it is the smallest such ideal. Likewise for (ii), τb(R;1, at) satisfies the con-
dition Tne(Fne

∗
adt (p

e
−1)eτb(R;1, at))⊆ τb(R;1, at) for all integers n > 0, so we

must show that it is the smallest such ideal.
We now claim that statement is local in order to assume that R= (R,m) is a local

ring. We outline the proof of this claim in case (i) since case (ii) is essentially the
same. Suppose that J is an ideal which satisfies both J∩R◦ 6=∅ and Te(Fe

∗
J )⊆ J .

Then J + τb(R;1) also satisfies both conditions. Note that J does not contain
τb(R;1) if and only if we have the strict containment J + τb(R;1) ) J . But in
such a case, we can localize at a maximal ideal where the same strict containment
holds. Thus we have reduced to the local case. Therefore, from this point forward,
we assume that R is a local ring with maximal ideal m.

Suppose that J is an ideal such that Te(Fe
∗

J ) ⊆ J — alternatively, such that
Tne(Fne

∗
adt (p

ne
−1)e J ⊆ J , for all n > 0 — and such that J ∩ R◦ 6= ∅. In case (i),

notice also that Tne(Fne
∗

J )⊆ J for all positive integers n (and thus φ(Fne
∗

J )⊆ J for
all φ ∈HomR(Fne

∗
R((pne−1

−1)1), R) since Tne is also a generator by Corollary
3.10).

In the setting of (i), fix d ∈ J ∩ R◦. By applying Matlis duality, we see that the
composition

ER/J // ER // ER ⊗R Fne
∗

R // ER ⊗R Fne
∗

R((pne
− 1)1)

Fne
∗ (×d)

// ER ⊗R Fne
∗

R((pne
− 1)1)

is zero for every integer n > 0. Likewise, in the setting of (ii), for each d ∈ J ∩ R◦

and each a ∈ adt (p
ne
−1)e, we have that the composition

ER/J // ER // ER ⊗R Fne
∗

R // ER ⊗R Fne
∗

R((pne
− 1)1)

Fne
∗ (×da)

// ER ⊗R Fne
∗

R((pne
− 1)1)

is zero for every integer n > 0.
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We now want to show that ER/J ⊂ 0∗1ER
(respectively ER/J ⊂ 0∗1,a

t

ER
) because

AnnR(0∗1ER
) = τb(R;1) (respectively AnnR(0

∗1,at

ER
) = τb(R;1, at)). Therefore,

choose z ∈ ER/J . By assumption dz pne
= 0 ∈ ER ⊗R Fne

∗
R((pne

− 1)1) for all
n> 0 (respectively, dadt (p

ne
−1)ez pne

= 0∈ ER⊗R Fne
∗

R((pne
−1)1) for all n> 0).

We need to verify a similar statement for powers of p that are not multiples of e,
and so now the proof becomes quite similar to [Hochster and Huneke 1990, Lemma
8.16].

In the setting of (i), we claim that Fne
∗

R((pne
− 1)1) naturally maps to

Fk+ne
∗

R(d(pk+ne
− 1)1e)

for any k > 0 via the k-iterated action of Frobenius. To see this explicitly, apply
HomR(R(−d(pne

− 1)1e), ) to the map R → Fk
∗

R(d(pk
− 1)1e). Tensoring

with ER then gives us a map

Fne
∗

R((pne
− 1)1)⊗R ER → Fk+ne

∗
R(d(pk+ne

− 1)1e)⊗R ER

dz pne
= d ⊗ z 7→ d pk

⊗ z = d pk
z pk+ne

which factors the map ER→ Fk+ne
∗

R(d(pk+ne
− 1)1e)⊗R ER . Hence, d pk

z pne+k

vanishes for all k, n > 0.
Choose c = d pe−1

and choose j > 0 arbitrary. Write j = ne+ k where k < e.
Then

cz p j
= d pe−1

z pne+k
= d pe−1

−pk
d pk

z pne+k
= d pe−1

−pk
0= 0,

as desired. Therefore, ER/J ⊂ 0∗1ER
so that

J = AnnR(ER/J )⊇ AnnR(0∗1ER
)= τb(R;1),

which proves (i).
In case (ii), using a similar argument, we still have d pk

(adt (p
ne
−1)e)[p

k
]z pne+k

= 0
for all k, n > 0. By Lemma 4.7, there exists a c′ ∈ R◦ such that

c′adt (p
ne+k
−1)e
⊆ (adt (p

ne
−1)e)[p

k
]

for all n > 0 and all k < e.
Set c= c′d pe−1

, choose j > 0 arbitrary and write j = ne+ k where k < e. Then

cadt (p
j
−1)ez p j

= d pe−1
c′adt (p

ne+k
−1)ez pne+k

⊆ d pe−1
−pk

d pk
(adt (p

ne
−1)e)[p

k
]z pne+k

= d pe−1
−pk

0= 0,

as desired. �
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5. F-adjunction

In this section, we reinterpret the following observation using the language from
the previous sections.

Observation 5.1. Suppose that (R,m) is an F-finite local ring and

φ ∈ HomR(Fe
∗

R, R).

Further suppose that I is a proper ideal of R such that φ(Fe
∗

I )⊆ I . Then there is
a diagram

Fe
∗

R

Fe
∗α

��

φ // R

α

��
Fe
∗
(R/I )

φI // R/I

where the vertical arrows are the natural quotients.
• Because R is local, φ is surjective if and only if φI is surjective.

When we apply the correspondence between effective Q-divisors and

φ ∈ HomR(Fe
∗

R, R),

we obtain the following result.

Theorem 5.2. Suppose that R is a reduced F-finite normal ring and that (R,1).
Assume also that (pe

−1)1 is an integral divisor such that we have an isomorphism
HomR(Fe

∗
R((pe

−1)1), R)∼= Fe
∗

R of Fe
∗

R-modules. Further suppose that I ⊂ R is
F-compatible with respect to (R,1) and that R/I is normal. Finally suppose that
(R,1) is sharply F-pure at the generic points of Spec R/I (that is, after localizing
at the minimal primes of I ). Then there exists a canonically determined effective
Q-divisor 1R/I on Spec R/I satisfying the following properties:

(i) (pe
− 1)(K R/I +1R/I ) is an integral Cartier divisor

(ii) HomR/I
(
Fe
∗
((R/I )((pe

− 1)1R/I )), R/I
)
∼= Fe

∗
(R/I ) as Fe

∗
(R/I )-modules.

(iii) (R,1) is sharply F-pure near Spec R/I if and only if (R/I,1R/I ) is sharply
F-pure.

(iv) For any ideal a⊆ R which is not contained in any minimal prime of I and any
real number t > 0, we have that (R,1, at) is sharply F-pure near Spec R/I
if and only if (R/I,1R/I , a

t) is sharply F-pure.

(v) I is maximal with respect to containment among F-compatible ideals for the
pair (R,1) (in other words, I is a minimal center of sharp F-purity), if and
only if (R/I,1R/I ) is a strongly F-regular pair and R/I is a domain.4

4In fact, if we assume that I is maximal among F-compatible ideals, then it follows that R/I is
a normal domain and so the assumption that R/I is normal is unnecessary.
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(vi) There exists a natural bijection between the centers of sharp F-purity of
(R/I,1R/I ) and the centers of sharp F-purity of (R,1) which contain I .

Remark 5.3. Roughly speaking, properties (iii), (iv), (v) and (vi) imply that the
singularities of (R/I,1R/I ) are very closely related to the singularities of (R,1)
near I . Compare with [Kawamata 1998; 2007; 2008; Ein and Mustaţă 2009; Am-
bro 1999; Ein et al. 2003].

Proof. Given 1 as above, associate a φ ∈ HomR(Fe
∗

R, R) as in Theorem 3.13.
Just as in Observation 5.1, we associate a φI ∈HomR/I (Fe

∗
(R/I ), R/I ), to which

we associate a divisor 1R/I . By construction (and using Theorem 3.11) we see
that the existence and that properties (i) and (ii) are obvious. For the rest of the
properties, it is harmless to assume that R is local. Notice that the map φI is not
the zero map on any irreducible component of Spec R/I because (R,1) is sharply
F-pure at the minimal primes of I . To show that 1R/I is canonically determined,
note that if one chooses a different φ : Fe

∗
R→ R associated to 1, the associated

map φI will differ from the original choice by multiplication by a unit, and so1R/I

will not change. Likewise, if one chooses a different e > 0, then using Theorem
3.11(e,f), we obtain the same 1R/I yet again.

In terms of (iii), this simply follows from Observation 5.1. Notice now that (iv)
is a generalization of (iii). Condition (iv) follows by an argument similar to the
one in Observation 5.1 since we simply consider a diagram

Fd
∗

R

Fd
∗ α

��
Fd
∗ α

��

Fd
∗ (×a)

// Fd
∗

R

Fd
∗ α

��

φn
// R

α

��
Fd
∗

R/I
Fd
∗ (×a)

// Fd
∗

R/I
φn

I // R/I

for each d = ne instead and various a ∈ adt (p
d
−1)e. In the diagram above, φn is the

composition of φ with itself n−1 times as before. Now again, the map obtained
by composing the bottom row is surjective if an only if the map obtained from
composing the top row is surjective.

Condition (v) will follow from (vi) since a pair is strongly F-regular if and only
if it has no centers of sharp F-purity. Therefore, we conclude by proving (vi).
Suppose that P ∈ Spec R contains I , and corresponds to P ∈ Spec R/I . We will
show that P is a center of sharp F-purity of (R,1) if and only if P is a center of
sharp F-purity for (R/I,1R/I ). First suppose that P is a center of sharp F-purity
for (R,1). This is equivalent to the condition that φ(Fe

∗
P)⊆ P . This implies that

φI (Fe
∗

P)⊆ P). The converse direction reverses this and is essentially the same as
the argument given in the proof of [Schwede 2008a, Proposition 7.5]. �
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Remark 5.4. I do not know if one can somehow generalize the “centers of sharp
F-purity” of condition (vi) to all F-compatible ideals. It is not hard to see that
one does obtain a bijection between radical F-compatible ideals since they are
intersections of centers of sharp F-purity. Section 6 is concerned with proving an
analog of (vi) for the big test ideal.

Using the ideas of Fedder’s criterion, we also obtain the following result.

Theorem 5.5. Suppose that S is a regular F-finite ring such that Fe
∗

S is a free S
module (for example, if S is local) and that R = S/I is a quotient that is a normal
domain. Further suppose that 1R is an effective Q-divisor on Spec R such that
HomR(Fe

∗
R((pe

− 1)1), R) is a rank one free Fe
∗

R-module (for example, if R is
local and (pe

− 1)(K R +1) is Cartier). Then there exists an effective Q-divisor
1S on Spec S such that:

(a) (pe
− 1)(KS +1S) is Cartier.

(b) I is (1S, F)-compatible and (S,1S) is sharply F-pure at the minimal asso-
ciated primes of I (that is, at the generic points of Spec S/I ).

(b) 1S induces 1R as in Theorem 5.2.

Proof. The key point is that every map Fe
∗

R→ R is obtained by restricting a map
Fe
∗

S → S to R, see [Fedder 1983, Lemma 1.6]. Note that condition (b) follows
immediately since the map Fe

∗
R→ R we are concerned with is nonzero. �

Remark 5.6. The 1S constructed in the above theorem is in no way canonically
chosen.

Remark 5.7. I do not know of anything like a characteristic zero analog of this
except in the case that X ⊆ Y is a complete intersection [Ein and Mustaţǎ 2004];
also compare with [Kawakita 2008; Ein and Mustaţă 2009].

We now show that for an F-pure pair, there are at most finitely many centers
of sharp F-purity (equivalently there are at most finitely many (1, F)-compatible
ideals). We give a proof that is written using the language of divisors. However
the same proof may be given without this language (this was done in a preprint of
this paper). This result was proved for local rings in [Schwede 2008a, Corollary
5.2], using the method of [Enescu and Hochster 2008] or a modification of the
method of [Sharp 2007]. Finally, essentially the same result has also been obtained
independently in [Metha and Kumar 2009].

Theorem 5.8. If (R,1, a•) is sharply F-pure, then there are at most finitely many
centers of sharp F-purity.
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Proof. We may prove this on a finite affine cover of Spec R. Thus, we may assume5

there exists a map φ : Fe
∗

R(d(pe
−1)1e)→ R that sends some element a∈ Fe

∗
ape−1

to 1. Note, every center of sharp F-purity Q ∈ Spec R for (R,1, a•) satisfies
φ(Fe

∗
aQ) ⊆ Q. Our goal is to show that there are finitely many prime ideals Q

such that φ(Fe
∗

aQ)⊆ Q.
First note that we can replace φ( ) by φ(a × ) and so ignore the term a.

For a contradiction, assume there are infinitely many such prime ideals Q such
that φ(Fe

∗
Q) ⊆ Q. We choose a collection Q of infinitely many primes ideals Q

satisfying:

(i) φ(Fe
∗

Q)⊆ Q.

(ii) All Q ∈Q have the same height.

(iii) The closure of the set Q in the Zariski topology is an irreducible (possibly
nonproper) closed subset W of Spec R. We set P to be the generic point of
that subset W (in other words, P = ∩Q∈QQ).

Using the pigeonhole principle, it is not difficult to see that a set Q satisfying
conditions (i), (ii) and (iii) exists.

We make two observations about the prime ideal P:

• P must have smaller height than the elements of Q.

• P satisfies φ(Fe
∗

P)⊆ P since P is the intersection of the elements of Q.

By restricting to an open affine set of Spec R containing P , we may assume that
R/P is normal (the elements of Q will still form a dense subset of Spec R/P).
Therefore, φ induces a divisor 1P on Spec R/P as in Theorem 5.2. The set of
elements in Q restrict to centers of sharp F-purity for (R/P,1P) by Theorem
5.2(vi). As noted above, {Q/P | Q ∈Q} is dense in Spec R/P and simultaneously
{Q/P | Q ∈ Q} is contained in the nonstrongly F-regular locus of (R/P,1P),
which is closed and proper. This is a contradiction. �

Remark 5.9. If one wishes to assume that R is not necessarily normal and that
1 = 0, or even that 1 is some sort of appropriate generalization of a Q-divisor
(see for example [Hartshorne 2007] or [Kollár et al. 1992, Chapter 16]), the proof
goes through without change.

Corollary 5.10. Suppose that X is a noetherian F-finite Frobenius split scheme
with splitting φ : Fe

∗
OX→ OX , then there exists at most finitely many φ-compatibly

split subschemes.

Proof. Use a finite affine cover of X . On each open affine subset, there are finitely
many compatibly split subschemes by the above argument. �

5This happens after localizing each point, so it happens in a neighborhood of each point, so we
may use such neighborhoods to cover Spec R
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6. Comments on adjoint-like test ideals and restriction theorems

Based on the work of Takagi, it is natural to hope that there is a restriction theorem
of (generalized) adjoint-like test ideals, similar to the ones in [Takagi 2007; 2008].
Using the results of the previous section, we can accomplish this.

Definition 6.1. Suppose that R is F-finite normal ring and that (R,1, at) is a
triple. Further suppose that :

(a) Q ∈ Spec R is a center of sharp F-purity for (R,1).

(b) a∩ (R \ Q) 6=∅.

(c) (RQ,1|Spec RQ ) is sharply F-pure.

(d) R/Q is normal.

(e) There exists an integer e0 such that HomR(F
e0
∗ R((pe0 − 1)1), R) is free as

an Fe0
∗ R-module.

(f) The integer e0 is the smallest positive integer satisfying condition (e).

Fix a map φe0 = φ : F
e0
∗ R→ R corresponding to 1. We define the big test ideal of

(R,1, at) outside of Q, denoted τb(R;* Q;1, at) (if it exists), to be the smallest
ideal J satisfying the following two conditions:

• J is not contained in Q (that is, J ∩ (R \ Q) 6=∅).

• φne0(F
ne0
∗ adt (p

ne0−1)e J )⊆ J for all n ≥ 0 where φne0 is as in Definition 4.5.

Remark 6.2. With regard to Definition 6.1(b), using the fact that

a∩ (R \ Q) 6=∅,

we see that Q is a center of sharp F-purity for (R,1) if and only if it is a center
of sharp F-purity for (R,1, at). Likewise, the localized pair (RQ,1|Spec RQ ) is
sharply F-pure if and only if the localized triple

(RQ,1|Spec RQ , (aRQ)
t)

is sharply F-pure since aRQ = RQ .

Remark 6.3. It is unnecessary to choose e0 to be the smallest integer satisfying
condition (e). If one uses any integer e0 satisfying condition (e), then one obtains
the same τb(R,* Q;1, at). We will not verify this here as the proof is rather
involved and is essentially the same argument as in Proposition 4.8.

Remark 6.4. It is also interesting to study the smallest ideal J which properly
contains Q and such that φne0(F

ne0
∗ adt (p

ne0−1)e J ) ⊆ J for all n ≥ 0 (again, if it
exists). For future reference, we will denote that ideal by τb(R,⊇ Q;1, at).
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Remark 6.5. If a = R, then τb(R,* Q;1) = τb(R,* Q;1, at) is the unique
smallest ideal not contained in Q such that φe0(F

e0
∗ J ) ⊆ J . Likewise, if a = R,

τb(R,⊇ Q;1) = τb(R,⊇ Q;1, at) is the smallest ideal properly containing Q
such that φe0(F

e0
∗ J )⊆ J .

Remark 6.6. It is probably interesting to look at nonprime radical ideals Q which
are F-compatible with respect to (R,1). Set R◦Q to be the set of elements not
contained in any minimal prime of Q. In that case, one should probably consider
ideals J minimal with respect to the conditions that J∩R◦Q 6=∅ and φ(Fe0

∗ J )⊆ J .
If one takes Q to be the zero ideal of R, then τb(R,* Q;1) is just the usual big
test ideal, see Proposition 4.8. However, in this paper, we will not work in this
generality.

Remark 6.7. Suppose that the ideals τb(R,* Q;1, at) and τb(R,⊇ Q;1, at)

exist. Notice that τb(R,* Q;1, at)⊆ τb(R,⊇ Q;1, at). Furthermore, we claim
that

τb(R,* Q;1, at)+ Q = τb(R,⊇ Q;1, at). (6.7.1)

The containment ⊇ follows from the definition of τb(R,⊇ Q;1, at) because
τb(R,* Q;1, at)+ Q satisfies

φne0(F
ne0
∗

adt (p
ne0−1)e(τb(R,* Q;1, at)+ Q))⊆ τb(R,* Q;1, at)+ Q (6.7.2)

since both Q and τb(R,* Q;1, at) satisfy the condition of Equation (6.7.2). But
then since both τb(R,* Q;1, at) and Q are contained in τb(R,⊇ Q;1, at), we
are done.

We can now prove that τb(R,⊇ Q;1, at) exists.

Proposition 6.8. Suppose that (R,1, at) and Q ∈ Spec R are as in Definition
6.1. Further suppose that α : R → R/Q is the natural surjection. Suppose that
1R/Q is the Q-divisor on Spec R/Q corresponding to 1 as in Theorem 5.2. Then
τb(R,⊇ Q;1, at) exists and is equal to α−1(τb(R/Q;1R/Q, a

t)). In particular

τb(R,⊇ Q;1, at)/Q = τb(R,⊇ Q;1, at)|R/Q = τb(R/Q;1R/Q, a
t).

Proof. As noted before, it is easy to see that if J contains Q and

φne0(F
e
∗
adt (p

ne0−1)e J )⊆ J,

then φne0,Q(F
e
∗
adt (p

ne0−1)e(J/Q))⊆ J/Q. Conversely, if we have an ideal J ⊇ Q
such that φne0,Q(F

e
∗
adt (p

ne0−1)e(J/Q))⊆ J/Q then

φne0(F
e
∗
adt (p

ne0−1)e J )⊆ J + Q = J.

But ideals of R containing Q are in bijection with ideals of R/Q. This completes
the proof. �
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Once we have verified that τb(R,* Q;1, at) exists, Proposition 6.8 will im-
mediately imply the following restriction theorem.

Corollary 6.9. Suppose that (R,1, at) and Q ∈ Spec R are as in Definition 6.1.
Further suppose that 1R/Q is the Q-divisor on R/Q corresponding to 1 as in
Theorem 5.2. Then

τb(R,* Q;1, at)|R/Q = (τb(R,* Q;1, at)+ Q)|R/Q = τb(R/Q;1R/Q, a
t).

Proof. Apply Proposition 6.8 and Equation (6.7.1). The result will follow once we
know that τb(R,* Q;1, at) exists. �

The rest of the section will be devoted to proving that the ideal τb(R,* Q;1, at)

exists.

Remark 6.10. One way to do this is by working out a version of tight closure
theory using c ∈ R \ Q instead of c ∈ R◦. However, we will use a more direct
approach.

We begin with several lemmas which are essentially the same as those used in
the proof the existence of test elements. The main technical result of the section is
Proposition 6.14, which combines the following three lemmas.

Lemma 6.11. Suppose that (R,1) is a sharply F-pure pair, (pe
− 1)(K R +1)

is integral, and that HomR(Fe
∗

R((pe
− 1)1), R) is free as an Fe

∗
R-module with

generator φe (by restriction, we also view φe as an element of HomR(Fe
∗

R, R)).
Further suppose that d ∈ R is an element not contained in any center of F-purity
for (R,1).

Then:

(i) 1 ∈ φn0e(F
n0e
∗ (d R)) for some n0 > 0.

(ii) There exists n0 > 0 such that 1 ∈ φne(Fne
∗
(d R)) for all n ≥ n0.

Proof. We begin by proving (i). First we claim that the statement is local. Another
way to phrase the conclusion of the lemma is that φne(Fne

∗
(d R)) = R. However,

φne(Fne
∗
(d R)) = R (for a fixed n) if and only if it is true after localizing at each

maximal ideal. Conversely, if (φni e)mi (F
ni e
∗ d Rmi ) = Rmi after localizing at some

maximal ideal mi for some ni , then it holds in a neighborhood of mi for the same ni .
Cover Spec R by a finite number of such neighborhoods and choose a sufficiently
large n that works on all neighborhoods.6 Therefore we may assume that R =
(R,m) is local. Note that this is essentially the same as the usual proof that strong
F-regularity localizes.

6Note that if 1 ∈ φne(Fne
∗ (d R)) then 1 ∈ φne(Fne

∗ R). By composition, this implies that 1 ∈
φmne(Fmne

∗ (d R)) for all integers m > 0.
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Choose a minimal center Q of sharp F-purity for (R,1) and mod out by Q. It
follows that (R/Q,1R/Q) is strongly F-regular and also that d 6= 0 ∈ R/Q.

In particular, for some n > 0, we have φne(Fne
∗

d R/Q) = R/Q. Therefore, we
can find an element b ∈ R/Q such that φne(Fne

∗
db) = 1 ∈ R/Q. By choosing an

arbitrary b ∈ R such that the coset b+ Q = b, we see that φne(Fne
∗

db)= 1+ x for
some x ∈ Q. Since R is local, Q⊆m and 1+x is a unit, we have 1∈φne(Fne

∗
(d R))

as desired.
We now prove (ii). Let n0 be the integer from part (i). It follows that 1 ∈

φn0e(F
n0e
∗ R) so there exists an element f ∈ R such that 1 = φn0e(F

n0e
∗ f ). In

particular, the map
Fn0e
: R→ Fn0e

∗
R((pn0e

− 1)1)
1 7→ Fn0e

∗
1

splits. This implies that Fe
: R→ Fe

∗
R((pe

−1)1) also splits. But then 1∈φe(Fe
∗

R)
since φe was chosen as a generator of HomR(Fe

∗
R((pe

− 1)1), R). Therefore we
see that,

1 ∈ φe(Fe
∗

R)= φe(Fe
∗
φne(Fne

∗
(d R)))= φ(n+1)e(F (n+1)e

∗
(d R)).

Repeatedly applying φe will then complete the proof of (ii). �

Lemma 6.12. Suppose that (R,1, at) is a triple and Q ∈ Spec R is a center of
F-purity satisfying the conditions from Definition 6.1. Then there exists an element
c ∈ R \ Q that satisfies the following condition:

For all d ∈ R \ Q and for all sufficiently large n > 0, there exists an integer
m′ > 0 (which depends on both n and d) such that cm′

∈ φne0(F
ne0
∗ dadt (p

ne
−1)e).

Proof. Choose c ∈ a∩ (R \ Q) so that

(a) (Rc,1|Spec Rc) is sharply F-pure.

(b) There are no centers of sharp F-purity for (Rc,1|Spec Rc) which contain Q Rc

(as an ideal).

(c) All centers of sharp F-purity for (Rc,1|Spec Rc) are contained in Q Rc (as
ideals).

In particular, d/1 ∈ Rc is not contained in any centers of sharp F-purity for
(Rc,1|Spec Rc). Note conditions (b) and (c) above may be summarized by saying
that Q Rc is the unique maximal height (as an ideal) center of sharp F-purity.

Therefore, by Lemma 6.11, we know that for all n� 0, 1∈ (φne0)c(F
ne0
∗ (d Rc)).

This implies that cm′
∈ φne0(F

ne0
∗ dadt (p

ne0−1)e) for some m′. �

Lemma 6.13. Suppose that for some e > 0, we have a map γe : Fe
∗

R → R such
that b ∈ γe(Fe

∗
adt (p

e
−1)e). Then for all n > 0, b2

∈ γne(Fne
∗

adt (p
ne
−1)e). Here γne is

the map obtained by composing γ with itself n−1 times, as in Definition 4.5.
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Proof. We proceed by induction. The case n = 1 was given by hypothesis. Now
suppose the result holds for n (that is, b2

∈ γne(Fne
∗

adt (p
ne
−1)e)). However,

b2
∈ bγe(Fe

∗
adt (p

e
−1)e)= γe

(
Fe
∗
adt (p

e
−1)ebpe)

⊆ γe
(
Fe
∗
adt (p

e
−1)eb2)

⊆ γe
(
Fe
∗
adt (p

e
−1)eγne(Fne

∗
adt (p

ne
−1)e)

)
= γe

(
Fe
∗
γne(Fne

∗
(adt (p

e
−1)e)[p

ne
]adt (p

ne
−1)e)

)
⊆ γ(n+1)e

(
F (n+1)e
∗

adt (p
(n+1)e

−1)e),
as desired. �

We now come to the main technical result of the section.

Proposition 6.14. Assume the notation and conventions from Definition 6.1. There
is an element b ∈ R\Q such that for every d ∈ R\Q, there exists an integer nd > 0
such that b ∈ φnd e0(F

nd e0
∗ dadt (p

nd e0−1)e). Note that b does not depend on d.

Proof. Fix c ∈ R \ Q satisfying Lemma 6.12. Then there exist integers n1,m1 > 0
such that cm1 ∈ φn1e0(F

n1e0
∗ (1)adt (p

n1e0−1)e). An application of Lemma 6.13 then
implies that c2m1 ∈ φnn1e0(F

nn1e0
∗ (1)adt (p

nn1e0−1)e) for all n > 0. We will show that
c3m1 = b works.

Likewise, by Lemma 6.12, for some n′ > 0 there exists md such that

cmd ∈ φn′e0

(
Fn′e0
∗

(d)adt (p
n′e0−1)e).

If md < 3m1, we are done (set nd = n′). Otherwise, choose n > 0 such that
m1 pnn1e0 ≥ md . Then,

c3m1 = cm1c2m1 ∈ cm1φnn1e0

(
Fnn1e0
∗

adt (p
nn1e0−1)e)

= φnn1e0

(
Fnn1e0
∗

adt (p
nn1e0−1)ecm1 pnn1e0 )

⊆ φnn1e0

(
Fnn1e0
∗

adt (p
nn1e0−1)ecmd

)
⊆ φnn1e0

(
Fnn1e0
∗

adt (p
nn1e0−1)eφn′e0(F

n′e0
∗

(d)adt (p
n′e0−1)e)

)
= φnn1e0

(
Fnn1e0
∗

φn′e0(F
n′e0
∗

(d)(adt (p
nn1e0−1)e)[p

n′e0 ]adt (p
n′e0−1)e)

)
⊆ φ(nn1+n′)e0

(
F (nn1+n′)e0
∗

(d)adt (p
(nn1+n′)e0−1)e).

Thus we can choose nd = nn1+ n′, which completes the proof. �

Remark 6.15. The b from the previous proposition can be used as a big sharp test
element for the variant of tight closure mentioned in Remark 6.10. In fact, to prove
the existence of big sharp test elements, one still has to prove Proposition 6.14 or
something closely related to it.
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Definition 6.16 [Hara and Takagi 2004] . Fix b as in Proposition 6.14. Then we
define the ideal τ̃ (R; b,1, at) as follows:

τ̃ (R; b,1, at) :=
∑
n≥0

φne0(F
ne0
∗

badt (p
ne0−1)e).

Note that the sum stabilizes as a finite sum since R is noetherian.

We make several observations about this ideal (and then we will show it is equal
to τb(R,* Q;1, at)).

Lemma 6.17. With notation as above, we have the following two results:

(i) b ∈ τ̃ (R; b,1, at). In particular, τ̃ (R; b,1, at)∩ (R \ Q) 6=∅.

(ii) For all n′ ≥ 0, φn′e0(F
n′e0
∗ adt (p

n′e0−1)eτ̃ (R; b,1, at))⊆ τ̃ (R; b,1, at).

Proof. For (i), simply set d = b and apply Proposition 6.14. For (ii), notice we
have the inclusion

φn′e0

(
Fn′e0
∗

adt (p
n′e0−1)eτ̃ (R; b,1, at)

)
= φn′e0

(
Fn′e0
∗

adt (p
n′e0−1)e ∑

n≥0
φne0(F

ne0
∗

badt (p
ne0−1)e)

)
⊆ φn′e0

(
Fn′e0
∗

∑
n≥0

φne0(F
ne0
∗

badt (p
(n+n′)e0−1)e)

)
=
∑

n≥n′
φne0(F

ne0
∗

badt (p
ne0−1)e)⊆ τ̃ (R; b,1, at). �

Theorem 6.18. For b ∈ (R \ Q) as in Proposition 6.14, the ideal τ̃ (R; b,1, at) is
the unique smallest ideal J that satisfies

J ∩ (R \ Q) 6=∅ and φne0(F
ne0
∗

adt (p
ne0−1)e J )⊆ J for all n ≥ 0.

Therefore τb(R,* Q;1, at)= τ̃ (R; b,1, at).

Proof. The previous lemma proves that τ̃ (R; b,1, at) satisfies the two conditions.
Suppose that J is any other ideal that also satisfies the two conditions in Theorem
6.18. Choose d ∈ J ∩ (R \ Q). By hypothesis,∑

n≥0

φne0(F
ne0
∗

dadt (p
ne0−1)e)⊆

∑
n≥0

φne0(F
ne0
∗

adt (p
ne0−1)e J )⊆ J,

and so by Proposition 6.14, we see that b ∈ J . But then

τ̃ (R; b,1, at)=
∑
n≥0

φne0(F
ne0
∗

badt (p
ne0−1)e)

⊆

∑
n>0

φne0(F
ne0
∗

adt (p
ne0−1)e J )⊆ J. �
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Remark 6.19. Theorem 6.18 implies that τ̃ (R; b,1, at) is also independent of the
choice of b (as long as b is chosen via Proposition 6.14).

Remark 6.20. If b is as in Proposition 6.14, then for any multiplicative set T , it
follows that b/1 satisfies Proposition 6.14 for the localized triple

(T−1 R,1|Spec T−1 R, (T
−1a)t).

Therefore the formation of τb(R,* Q;1, at) = τ̃ (R; b,1, at) commutes with
localization. In particular, we can define τb(X,* W ;1, at) on a scheme X with
center of F-purity W which locally satisfies the conditions of Definition 6.1.

7. Comments on codimension one centers of F-purity

Suppose that (X = Spec R,1+D) is a pair, D ⊆ X is an integral normal reduced
and irreducible divisor, and 1 and D have no common components. Assume that
K X +1+ D is Q-Cartier with index not divisible by p > 0. Since X is normal,
(X,1+ D) is F-pure at the generic point of D and D is also a center of F-purity
for the pair (X,1+D). In characteristic zero, there is the notion of the “different”;
see [Kollár et al. 1992]. If Q is a defining ideal of D, the different is an effective
divisor that plays a role similar to the divisor 1R/Q from Theorem 5.2.

We will show that the different and 1R/Q agree under the hypothesis that D is
Cartier in codimension 2. Roughly speaking, this is the case where the different
is uninteresting (it is also the case discussed in [Kollár and Mori 1998]). We will
then give two applications of the methods used to prove this result. We expect that
the different and 1R/Q coincide in general although we do not have a proof, see
Remark 7.6.

First we need the following lemma. This lemma is implicit in the work we have
done previously, but we provide an explicit proof for completeness. Lemma 7.1
is also closely related to the fact that the set of Frobenius actions on H d

m(R) is
generated by the natural Frobenius action F : H dim R

m (R)→ H dim R
m (R) [Lyubeznik

and Smith 2001].

Lemma 7.1. Suppose that R is an F-finite Gorenstein local ring. By dualizing the
natural map G : R→ Fe

∗
R (apply HomR( , ωR)), we construct the map

9 : Fe
∗
ωR→ ωR.

By fixing any isomorphism of ωR with R (which we can do since R is Gorenstein),
we obtain a map which we also call 9,

9 : Fe
∗

R→ R.

This map 9 is an Fe
∗

R-module generator of HomR(Fe
∗

R, R). In particular, if R is
normal, then 9 corresponds to the divisor 0 via Theorem 3.11.
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Proof. First note that the choices we made in the set-up of the lemma are all unique
up to multiplication by a unit (note there is also the choice of isomorphism between
(Fe)!ωR with Fe

∗
ωR as in Remark 3.3). Therefore, these choices are irrelevant in

terms of proving that9 is an Fe
∗

R-module generator. Suppose that φ is an arbitrary
Fe
∗

R-module generator of HomR(Fe
∗

R, R); we can write9( )=φ(d · ) for some
d ∈ Fe

∗
R. Using the same isomorphisms we selected before, we can view φ as a

map Fe
∗
ωR → ωR . By duality for a finite morphism, we obtain φ∨ : R → Fe

∗
R.

Note now that G( ) = d · φ∨( ). But G sends 1 to 1 which implies that d is a
unit and completes the proof. �

We now need the following (useful) surjectivity. A similar argument (involving
local duality) was used in the characteristic p> 0 inversion of adjunction result of
[Hara and Watanabe 2002, Theorem 4.9].

Proposition 7.2. Using the notation above, further suppose that D is Cartier in
codimension 2 and that (pe

−1)(K X +D+1) is Cartier. Then the natural map of
Fe
∗

OX -modules:

8 : HomOX (F
e
∗

OX ((pe
− 1)(D+1)),OX )→ HomOD (F

e
∗

OD((pe
− 1)1|D),OD).

induced by restriction is surjective.

Proof. The statement is local so we may assume that X = Spec R where R is the
spectrum of a local ring. Furthermore, because we are working locally, the domain
of 8 is isomorphic to Fe

∗
R. Thus the image of 8 is cyclic as an Fe

∗
OD-module

which implies that the image of 8 is a reflexive Fe
∗

OD-module. Therefore, it is
sufficient to prove that 8 is surjective at the codimension one points of D (which
correspond to codimension two points of X ). We now assume that X = Spec R is
the spectrum of a two-dimensional normal local ring and that D is a Cartier divisor
defined by a local equation ( f = 0). Since D is normal and one-dimensional, D
is Gorenstein, and so X is also Gorenstein. In particular, (pe

− 1)1 is Cartier.
This also explains how we can restrict (pe

− 1)1 to D: perform the restriction at
codimension 1 points of D, and then take the corresponding divisor.

Consider the following diagram of short exact sequences:

0 // R

17→ f pe
−1

��

× f // R

17→1
��

// R/ f //

17→1
��

0

0 // Fe
∗

R
Fe
∗× f

// Fe
∗

R // Fe
∗
(R/ f ) // 0

Apply the functor HomR( , ωR) and note that we obtain the following diagram
of short exact sequences.
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0 // ωR
× f // ωR // ωR/ f ∼= Ext1R(R/ f, ωR) // 0

0 // Fe
∗
ωR

α

OO

Fe
∗× f

// Fe
∗
ωR

β

OO

// Fe
∗
ωR/ f ∼= Ext1R(F

e
∗
(R/ f ), ωR)

δ

OO

// 0

The sequences are exact on the right because R is Gorenstein and hence Cohen–
Macaulay. By Lemma 7.1, we see that δ and α can be viewed as Fe

∗
R-module

generators of the modules

HomR/ f (Fe
∗
(R/ f ), R/ f )∼= HomR/ f (Fe

∗
ωR/ f , ωR/ f ),

HomR(Fe
∗

R, R)∼= HomR(Fe
∗
ωR, ωR),

respectively. Furthermore, the map labeled β can be identified with

α ◦ (Fe
∗
(× f pe

−1)).

But the diagram proves exactly that the map β ∈ HomR(Fe
∗

R, R) restricts to a
generator of HomR/ f (Fe

∗
ωR/ f , ωR/ f ) which is exactly what we wanted to prove in

the case that 1= 0. When 1 6= 0, we can simply premultiply the α, β and δ with
a local generator of the Cartier divisor (pe

− 1)1. �

Remark 7.3. Suppose that X is normal,1=0 and D is Gorenstein in codimension
1 and S2 (but D is not necessarily normal or irreducible), then the map 8 from
Proposition 7.2 is still surjective. The proof is unchanged.

The previous example also gives us the following corollary. Compare with
[Kollár and Shepherd-Barron 1988, Theorem 5.1; Karu 2000, Theorem 2.5; Fedder
and Watanabe 1989, Proposition 2.13; Schwede 2007, Theorem 5.1].

Corollary 7.4. Suppose that R is normal, local and Q-Gorenstein with index not
divisible by p and that f ∈ R is a nonzero divisor such that the map 8 from
Proposition 7.2 (where D = div( f ) and 1= 0) is surjective.7

If R[ f −1
] is strongly F-regular and R/ f is F-pure then R is strongly F-regular.

In particular, both R and R/ f are Cohen–Macaulay.

Proof. Since the map

8 : HomR(Fe
∗

R((pe
− 1) div( f )), R)→ HomR/ f (Fe

∗
(R/ f ), R/ f ).

is surjective, a splitting φ ∈ HomR/ f (Fe
∗
(R/ f ), R/ f ) has a preimage

φ ∈ HomR(Fe
∗

R, R).

7Note that 8 is surjective if R/ f is normal, or more generally if R/ f is S2 and Gorenstein in
codimension 1.
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It then follows (just as in Observation 5.1) that the map φ is also surjective. In
particular, φ sends some multiple of f pe

−1 to 1. But then since R[ f −1
] is strongly

F-regular, we see that R itself is strongly F-regular. �

Corollary 7.5. Suppose that S is an F-finite regular local ring and I is a prime
ideal of S such that R = S/I is normal and satisfies

(I [p
e
]
: I )= I [p

e
]
+ (g)

for some g ∈ S (note that this implies that (pe
−1)K R is Cartier). Further suppose

that f ∈ S is an element whose image in R is nonzero and such that R/( f R) is
normal (or S2 and Gorenstein in codimension 1). Then(

(I + ( f ))[p
e
]
: (I + ( f ))

)
= (I + ( f ))[p

e
]
+ ( f pe

−1g).

Proof. If A= S/(I+ f ), it follows from Proposition 7.2 that HomA(Fe
∗

A, A) is free
of rank 1 as an Fe

∗
A-module and furthermore that a generator of HomA(Fe

∗
A, A) is

obtained by multiplying a generator of HomR(Fe
∗

R, R) by f pe
−1 and restricting.

The result then follows from [Fedder 1983, Lemma 1.6]. �

Remark 7.6. Suppose that D is a normal prime divisor on X a normal scheme.
Further suppose that 1 is an effective Q-divisor (without common components
with D) such that K X + 1 + D is Q-Cartier. Then there exists a canonically
determined effective Q-divisor 1D on D with (K X +1+D)|D ∼Q K D+1D; see
[Kollár et al. 1992, Chapter 16] for a description of the construction of the different
(which can be performed in any characteristic). Furthermore, in characteristic zero,
the singularities of (X, D +1) near D are closely related to the singularities of
(D,1D) [Kollár et al. 1992; Kawakita 2007]. We expect that the different co-
incides with the divisor 1R/Q we have constructed, but we do not have a proof
(the problem might be quite easy if approached correctly). One should note that
we believe that the divisor called the “different” in [Takagi 2008, Theorem 4.3] is
1R/Q . Again, we suspect that 1R/Q coincides with the different in general.

8. Comments on normalizing centers of F-purity

In the characteristic zero setting, one obstruction to working with an arbitrary log
canonical centers W ⊆ X is the fact that W may not be normal. One way around
this issue is to normalize the subscheme W (even if W is a divisor). Therefore, it
is tempting to do the same in positive characteristic. Using Lemma 8.1, one can
do something like this in characteristic zero. In particular, in Proposition 8.2 we
do obtain canonically determined Q-divisors on the normalization of any center of
F-purity. However, a full analog of inversion of adjunction on log canonicity via
normalizing centers of F-purity is impossible, as we will see in Example 8.4.
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Lemma 8.1. Suppose that R is a reduced F-finite ring and that φ∈HomR(Fe
∗

R,R).
Set RN to be the normalization of R inside the total field of fractions. Then φ
extends to a unique RN -linear map φN

: Fe
∗

RN
→ RN that restricts back to φ.

Proof. To construct φN , simply tensor φ with the total field of fractions k(R) of R
and then restrict the domain to Fe

∗
RN . The fact that the image of φN is contained

inside RN follows from [Brion and Kumar 2005, Hint to Exercise 1.2.E(4)]; for
a complete proof see [Schwede 2008a, Proposition 7.11]. The fact that this φN is
unique follows from the fact that the natural map

HomR(Fe
∗

R, R)→ HomR(Fe
∗

R, R)⊗R k(R)∼= Homk(R)(Fe
∗

k(R), k(R))

is injective. �

Proposition 8.2. Suppose that X = Spec R and (X,1) is a pair and that

H omOX (F
e
∗

OX ((pe
− 1)1),OX )

is free of rank 1 as an Fe
∗

OX -module. Further suppose that Spec R/I = W ⊂ X
is a reduced closed subscheme such that (X,1) is sharply F-pure at the generic
points of W and I is F-compatible with respect to (R,1). Set

η : (Spec R/I )N
=W N

→W

to be the normalization map and write W N
=
∐m

i=1 W N
i ; the disjoint union of W N

into its irreducible components.
Then there exists a canonically determined Q-divisor 1W N on W N satisfying

the following properties:

(i) If1W N ,i is set to the portion of1W N on W N
i , then (pe

−1)(KW N
i
+1W N ,i ) is

Cartier, and H omOW N
i
(Fe
∗

OW N
i
((pe
−1)1W N ,i ),OW N

i
)∼= Fe

∗
OW N

i
as Fe

∗
OW N

i
-

modules.

(ii) The conductor ideal of (R/I ) in (R/I )N is F-compatible with respect to
((R/I )N ,1W N ).

(iii) The big test ideal τb((R/I )N
;1W N ) of ((R/I )N ,1W N ) is contained in the

conductor ideal of R/I ⊆ (R/I )N .

(iv) If (X,1) is sharply F-pure, then (W N ,1W N ) is also sharply F-pure.

(v) If J is an ideal of (R/I )N which is F-compatible with respect to (R,1W N ),
then the inverse image J of J in R is F-compatible with respect to (R,1). (In
particular, τb(R,* I ;1), defined as suggested in Remark 6.6, is contained
in the inverse image of τb((R/I )N ,1W N )).

Remark 8.3. Even though W N is not necessarily equidimensional, it is easy to
define KW N since we can work on each component individually.
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Proof. We can associate to1 a map φ : Fe
∗

HomR(Fe
∗

R, R) (up to scaling by a unit).
By assumption, this φ restricts to a map φI ∈ HomR/I (Fe

∗
(R/I ), R/I ) which is

nonzero at the generic point of each irreducible component of R/I . By Lemma
8.1, this map extends to a map φN

I ∈HomOW N (F
e
∗

OW N ,OW N ). Thus this map gives
us our 1W N by Theorem 3.11. Notice that the image of a unit under R→ (R/I )N

is still a unit, so that 1W N is uniquely determined.
At this point, statement (i) is obvious. Statement (ii) follows from [Schwede

2008a, Proposition 7.10] and statement (iii) follows from the fact that the big test
ideal is the smallest ideal F-compatible ideal with respect to ((R/I )N ,1W N ). For
statement (iv), note that if φ is surjective, then so is φI . But then it is easy to see
that φN

I is also surjective.
To prove (v), we first note that φI (Fe

∗
(J ∩ R/I )) ⊆ J ∩ R/I . But then we see

that the preimage of J ∩ R/I in R is F-compatible with respect to (R,1). �

One might hope that the converse to property (iv) of Proposition 8.2 above holds,
but unfortunately, this is not the case. Of course, it is easy to see that if φN

I is
actually a splitting (that is, if it sends 1 to 1), then so is φI and thus φ is surjective
near I (which would imply that (R,1) is sharply F-pure near I ). However, it
can happen that φN

I is surjective (that is, it sends some x to 1) but φI is not (in
particular, the element x is in (R/I )N but not in R/I ). The following example
illustrates this phenomenon.

Example 8.4. Suppose that R=k[a, b, c]where k=F2, the field with two elements
(any perfect field of characteristic two will work). Set I = (ac2

+ b2). Set 1 =
div(I ). It is easy to see that I is F-compatible with respect to (R,1). Notice that
we can write

R/I = k[a, b, c]/(ac2
+ b2)∼= k[x2, xy, y].

Therefore, the normalization of R/I is simply k[x, y]. We will exhibit a map
φI : F∗(R/I )→ R/I , restricted from a map φ : F∗R→ R, that is not surjective,
but that the extension φN

I to the normalization is surjective. Of course, R/I is
not weakly normal and so it is not F-pure, which implies that no such φ∗ can be
surjective.

To construct φ, we simply take the following map which is associated to 1.
Explicitly, we take the map ψ : F∗R→ R that sends abc to 1 (and all other lower-
degree monomials to zero) and precompose with multiplication by ac2

+ b2. That
is,

φ( )= ψ((ac2
+ b2) · ).

We compute φ on the relevant monomials.

φ(1)= 0, φ(a)= 0, φ(b)= 0, φ(c)= 0,

φ(ab)= 0, φ(bc)= c, φ(ac)= 0, φ(abc)= b,
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Thus we see that φ (and therefore also φI ) is not surjective when localized at the
origin. Now we wish to consider the corresponding map on k[x, y]. First we
retranslate φ in terms of the variables x and y.

φN
I (1)= 0, φN

I (y)= 0, φN
I (xy2)= y,

φN
I (x

2)= 0, φN
I (x

3 y)= 0, φN
I (x

3 y2)= xy,

φN
I (xy)= 0, φN

I (x
2)= 0,

Therefore, y = φN
I (xy2)= yφN

I (x), which implies that φN
I (x)= 1.

Remark 8.5. Of course, in the above example, there were certain purely insep-
arable field extensions in the normalization. In particular, R/I was not weakly
normal. It may be that without such pure-inseparability, when φN

I is surjective so
is φ.

9. Further remarks and questions

We conclude with some remarks and speculation.

Remark 9.1. It is natural to try to generalize the results of this paper outside of the
case when R is normal. One approach to this is to normalize R as we discussed in
the previous section. However, as we saw, this approach has limitations. Another
more direct approach might be, instead of working with pairs (R,1) such that
(pe
−1)(K R+1) is Cartier, to consider pairs (R, N ) where N is a free (or perhaps

locally free) subsheaf of HomR(Fe
∗

R, R) for some e.
Perhaps yet a better formulation would be to consider first the graded non-

commutative algebra ⊕e HomR(Fe
∗

R, R) where the multiplication is defined by
composition. That is, for φ ∈ HomR(Fd

∗
R, R) and ψ ∈ HomR(Fe

∗
R, R) the prod-

uct φ · ψ is defined to be φ ◦ Fd
∗
ψ ∈ HomR(Fe+d

∗
R, R). Dually, one could

consider the noncommutative ring F(ER) of [Lyubeznik and Smith 2001]. Then
perhaps a pair could be the combined data of the ring R and a graded subalgebra
A ⊆ ⊕e HomR(Fe

∗
R, R) such that A is generated as an algebra over A0 ∼= R by

a single element φ ∈ HomR(Fe
∗

R, R) for some e. Two pairs (R, A) and (R, A′)
would be said to be equivalent, if there is an integer n > 0 such that Ane = A′ne for
all e (here Ane is the ne’th graded piece of A).

Almost all of the results of this paper can be generalized to such a setting.

Remark 9.2. This theory can also be used to help identify subschemes of a quasi-
projective variety X that are compatibly split with a given Frobenius splitting. In
particular, suppose that φ : Fe

∗
OX → OX is a Frobenius splitting. We can then

associate a divisor 1φ to φ. Any center of log canonicity of the pair (X,1) is
a center of sharp F-purity [Schwede 2008a] and thus the associated scheme is
compatibly split with φ.
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Question 9.3. Suppose that R is a normal Q-Gorenstein ring of finite type over
a field of characteristic zero and that Q ∈ Spec R is a center of log canonicity.
Further suppose that RQ is log canonical and that, when reduced to characteristic
p � 0 (or perhaps to infinitely many p > 0), (Rp)Q p is F-pure. Then for each
p � 0, we can associate a (canonically defined) 1Q p on Rp/Q p. We then ask
whether or not 1Q p is reduced from some Q-divisor 1 on R?

Question 9.4. Is there a characteristic zero analog of τb(R,* Q;1)? Takagi has
considered similar questions [Takagi 2007, Conjecture 2.8]. One possible analog
is something along the following lines: for a log resolution π : X̃ → X = Spec R
of (R,1), let E =

∑
Ei be the sum of divisors Ei of X̃ (exceptional or not) such

that Q ∈ π(Ei ) and such that the discrepancy of (R,1) along Ei is ≤ −1. Then
consider the ideal

π∗OX̃

(⌈
K X̃ −π

∗(K X +1)+ ε
∑

Ei
⌉)

for ε > 0 sufficiently small.

Is it possible that this coincides with τb(R,* Q;1) for infinitely many p > 0?
Also compare with [Fujino 2008].

Finally, we consider the nonlocal setting.

Remark 9.5. Suppose that (X,1) is a pair where X is a (possibly proper) variety
of finite type over an F-finite field k. In particular, we know that (Fe)!ωX can
itself be identified with ωX ; see Remark 3.3. Further suppose that K X +1 is Q-
Cartier with index not divisible by p > 0. Now suppose that W ⊂ X is a normal
closed variety defined by an ideal sheaf IW which is locally F-compatible with
respect to 1. Then on a sufficiently fine affine cover Ui of X , we can associate
Q-divisors 1Wi on Wi = Ui ∩ W . It is easy to see that these divisors agree on
overlaps since they were canonically determined. Therefore, there is a Q-divisor
1W on W determined by (X,1).

Furthermore, we claim that

(pe
− 1)(K X +1)|W ∼ (pe

− 1)(KW +1W ). (9.5.1)

One way to see this is to work globally (in particular, partially globalize Theo-
rems 3.11 and 3.13). More precisely, there is a bijection of sets{

Effective Q-divisors1 on X such
that (pe

−1)(K X+1) is Cartier

}
←→

{
Line bundles L and nonzero

elements of HomOX (F
e
∗
L ,OX )

}/
∼

The equivalence relation on the right side identifies two maps φ1 : Fe
∗
L1 → OX

and φ2 : Fe
∗
L2→ OX if there is an isomorphism γ :L1→L2 and a commutative
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diagram

Fe
∗
L1

Fe
∗ γ

��

φ1 // OX

id
��

Fe
∗
L2

φ2 // OX

We sketch the correspondence for the convenience of the reader. Given 1, set
L = OX ((1− pe)(K X +1)). Then observe that

H omOX (F
e
∗
L ,OX )∼= Fe

∗
H omOX (L ,OX ((1− pe)K X ))∼= Fe

∗
OX ((pe

− 1)1).

We can choose a global section of OX ((pe
− 1)1) corresponding to the effective

integral divisor (pe
− 1)1 (up to multiplication by a unit). This section may be

viewed as a map φ1 : Fe
∗
L → OX by the above isomorphism. For the converse

direction, given such a φ we obtain a global section of Fe
∗
L −1((1 − pe)K X ).

This corresponds to an effective divisor D. Set 1φ = (1/(pe
− 1))D. Again, as

mentioned before, this is simply the globalized version of Theorems 3.11 and 3.13.
Now, since IW is locally F-compatible with respect to 1, we have that

φ1(Fe
∗

IW L )⊆ IW .

By restriction, we obtain a map φW :L |W → OW . It is then clear that

OX ((pe
− 1)(K X +1))|W

is isomorphic to OW ((pe
− 1)(KW +1W )) as desired.
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