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Let C be a fusion category faithfully graded by a finite group G and let D be
the trivial component of this grading. The center Z(C) of C is shown to be
canonically equivalent to a G-equivariantization of the relative center ZD(C).
We use this result to obtain a criterion for C to be group-theoretical and apply
it to Tambara–Yamagami fusion categories. We also find several new series of
modular categories by analyzing the centers of Tambara–Yamagami categories.
Finally, we prove a general result about the existence of zeroes in S-matrices of
weakly integral modular categories.
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1. Introduction

Throughout this paper we work over an algebraically closed field k of characteristic
0. All categories considered in this paper are finite, abelian, semisimple, and k-
linear. We freely use the language and basic theory of fusion categories, mod-
ule categories over them, braided categories, and Frobenius–Perron dimensions
[Bakalov and Kirillov 2001; Ostrik 2003; Etingof et al. 2005].

Let G be a finite group. A fusion category C is G-graded if there is a decom-
position

C=
⊕
g∈G

Cg

of C into a direct sum of full abelian subcategories such that the tensor product of
C maps Cg×Ch to Cgh , for all g, h ∈ G. A G-extension of a fusion category D is
a G-graded fusion category C whose trivial component Ce, where e is the identity
of G, is equivalent to D.

MSC2000: primary 16W30; secondary 18D10.
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Gradings and extensions play an important role in the study and classification of
fusion categories. For example, nilpotent fusion categories (that is, those categories
that can be obtained from the trivial category by a sequence of group extensions)
were studied in [Gelaki and Nikshych 2008]. It was proved in [Etingof et al.
2005] that every fusion category of prime power dimension is nilpotent. Group-
theoretical properties of such categories were studied in [Drinfeld et al. 2007]. Re-
cently, fusion categories of dimension pnqm , where p, q are primes, were shown
to be Morita equivalent to nilpotent categories [Etingof et al. 2009].

The main goal of this paper is to describe the center Z(C) of a G-graded fu-
sion category C in terms of its trivial component D (Theorem 3.5) and apply this
description to the study of structural properties of C and the construction of new
examples of modular categories.

The organization of the paper is as follows. In Section 2 we recall some basic
notions, results, and examples of fusion categories, notably the notions of the rela-
tive center of a bimodule category [Majid 1991], group action on a fusion category
and crossed product [Tambara 2001], equivariantization and de-equivariantization
theory [Arkhipov and Gaitsgory 2003; Bruguières 2000; Gaitsgory 2005; Kirillov
2002; Müger 2000; Drinfeld et al. 2009], and braided G-crossed fusion categories
[Turaev 2000; 2008].

In Section 3 we study the center Z(C) of a G-graded fusion category C. We
show that if D is the trivial component of C, then the relative center ZD(C) has a
canonical structure of a braided G-crossed category and there is an equivalence of
braided fusion categories ZD(C)

G ∼= Z(C) (Theorem 3.5). Thus, the structure of
Z(C) can be understood in terms of a smaller and more transparent category ZD(C).
In particular, there is a canonical braided action (studied in detail in [Etingof et al.
2009]) of G on Z(D). In Corollary 3.10 we use this action to prove that C is group-
theoretical if and only if Z(D) contains a G-stable Lagrangian subcategory. As an
illustration, we describe the center of a crossed product fusion category C=DoG.

We apply the results from Section 4 to the study of Tambara–Yamagami cate-
gories [Tambara and Yamagami 1998]. We obtain a convenient description of the
centers of such categories as equivariantizations and compute their modular data,
that is, S- and T -matrices. This computation was previously done in [Izumi 2001]
using different techniques. We establish a criterion for a Tambara–Yamagami cat-
egory to be group-theoretical (Theorem 4.6). We also extend the construction of
non-group-theoretical semisimple Hopf algebras from Tambara–Yamagami cate-
gories given in [Nikshych 2008].

In Section 5 we construct a series of new modular categories as factors of the
centers of Tambara–Yamagami categories. One associates a pair of such categories
E(q, ±) with any nondegenerate quadratic form q on an abelian group A of odd
order. The categories E(q, ±) have dimension 4|A|. They are group-theoretical if
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and only if A contains a Lagrangian subgroup with respect to q . We compute the
S- and T -matrices of E(q, ±) and write down several small examples explicitly.

Section 6 is independent from the rest of the paper and contains a general re-
sult about existence of zeroes in S-matrices of weakly integral modular categories
(Theorem 6.1). This is a categorical analogue of a classical result of Burnside in
character theory.

2. Preliminaries

2A. Dual fusion categories and Morita equivalence. Let C be a fusion category
and let M be an indecomposable right C-module category M. The category C∗M of
C-module endofunctors of M is a fusion category, called the dual of C with respect
to M [Etingof et al. 2005; Ostrik 2003].

Following [Müger 2003a], we say that two fusion categories C and D are Morita
equivalent if D is equivalent to C∗M, for some indecomposable right C-module
category M. A fusion category is said to be pointed if all its simple objects are
invertible (any such category is equivalent to the category VecωG of vector spaces
graded by a finite group G with the associativity constraint given by a 3-cocycleω∈
Z3(G, k×)). A fusion category is called group-theoretical if it is Morita equivalent
to a pointed fusion category. See [Ostrik 2003; Etingof et al. 2005; Nikshych 2008]
for details of the theory of group-theoretical categories.

2B. The center of a bimodule category and the relative center of a fusion cat-
egory. Let C be a fusion category with unit object 1 and associativity constraint
αX,Y,Z : (X ⊗ Y )⊗ Z ∼→ X ⊗ (Y ⊗ Z) and let M be a C-bimodule category.

Definition 2.1. The center of M is the category ZC(M) of C-bimodule functors
from C to M.

Explicitly, the objects of ZC(M) are pairs (M, γ ), where M is an object of M and

γ = {γX : X ⊗M ∼
→ M ⊗ X}X∈C (1)

is a natural family of isomorphisms making the diagram

X ⊗ (M ⊗ Y )
α−1

X,M,Y // (X ⊗M)⊗ Y
γX

''
X ⊗ (Y ⊗M)

γY
77

α−1
X,Y,M ''

(M ⊗ X)⊗ Y,

(X ⊗ Y )⊗M
γX⊗Y

// M ⊗ (X ⊗ Y )
α−1

M,X,Y

77
(2)

commutative, where the α’s denote the associativity constraints in M.
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Indeed, a C-bimodule functor F : C→M is completely determined by the pair
(F(1), {γX }X∈C), where γ = {γX }X∈C is the collection of isomorphisms

γX : X ⊗ F(1) ∼→ F(X) ∼→ F(1)⊗ X,

coming from the C-bimodule structure on F .
We will call the natural family of isomorphisms (1) the central structure of an

object X ∈ ZC(M).

Remark 2.2. (i) The definition of the center of a bimodule category is parallel
to that of the center of a bimodule over a ring.

(ii) We will often suppress the central structure while working with objects of
ZC(M) and refer to (M, γ ) simply as M .

(iii) ZC(M) is a semisimple abelian category. It has the obvious canonical structure
of a Z(C)-module category, where Z(C) is the center of C (see, for example,
[Kassel 1995, Section XIII.4] for the definition of Z(C)).

Here is an important special case of this construction. Let C be a fusion category
and let D⊂C be a fusion subcategory. Then C is a D-bimodule category. We will
call ZD(C) the relative center of C.

Remark 2.3. The aforementioned construction of the relative center is a special
case of a more general construction considered in [Majid 1991, Definition 3.2 and
Theorem 3.3].

It is easy to see that ZD(C) is a tensor category with tensor product defined as
follows. If (X, γ ) and (X ′, γ ′) are objects in ZD(C) then

(X, γ )⊗ (X ′, γ ′) := (X ⊗ X ′, γ̃ ),

where γ̃V : V ⊗ (X ⊗ X ′) ∼→ (X ⊗ X ′)⊗ V, V ∈ D, is defined by the diagram

V ⊗ (X ⊗ X ′)

γ̃V
��

α−1
V,X,X ′ // (V ⊗ X)⊗ X ′

γV // (X ⊗ V )⊗ X ′

αX,V,X ′

��
(X ⊗ X ′)⊗ V X ⊗ (X ′⊗ V )

α−1
X,X ′,Voo X ⊗ (V ⊗ X ′).

γ ′Voo

(3)

The unit object of ZD(C) is (1, id). The dual of (X, γ ) is (X∗, γ ), where γ V :=

(γ∗V )
∗.

Remark 2.4. Let C and D be as above.

(i) ZD(C) is dual to the fusion category D � Crev (where Crev is the fusion cat-
egory obtained from C by reversing the tensor product and � is Deligne’s
tensor product of fusion categories) with respect to its module category C,
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where D and Crev act on C via the right and left multiplication respectively.
In particular, ZD(C) is a fusion category.

(ii) FPdim(ZD(C))=FPdim(C)FPdim(D), where FPdim denotes the Frobenius–
Perron dimension of a category.

(iii) ZC(C) coincides with the center Z(C) of C. This category has a canonical
braiding given by

c(X,γ ), (X ′,γ ′) = γX ′ : (X, γ )⊗ (X ′, γ ′) ∼→ (X ′, γ ′)⊗ (X, γ ). (4)

(iv) There is an obvious forgetful tensor functor:

Z(C) 7→ ZD(C) : (X, γ ) 7→ (X, γ |D). (5)

2C. Centralizers in braided fusion categories. Let C be a braided fusion category
with braiding c. Two objects X and Y of C are said to centralize each other [Müger
2003b] if cY,X cX,Y = idX⊗Y .

For any fusion subcategory D⊆C its centralizer D′ is the full fusion subcategory
of C consisting of all objects X ∈ C centralizing every object in D. The category
C is said to be nondegenerate if C′ = Vec. In this case one has D′′ = D [Müger
2003b]. If C is a premodular category, that is, has a spherical structure, then it is
nondegenerate if and only if it is modular.

A braided fusion category E is called Tannakian if it is equivalent to the repre-
sentation category Rep(G) of a finite group G as a braided fusion category. Here
Rep(G) is considered with its standard symmetric braiding. The group G is defined
by E up to an isomorphism [Deligne 1990].

A fusion subcategory L of a braided fusion category is called Lagrangian if it
is Tannakian and L= L′.

Theorem 2.5 [Drinfeld et al. 2007]. A fusion category C is group-theoretical if
and only if Z(C) contains a Lagrangian subcategory.

2D. Group actions on fusion categories and equivariantization. Let G be a finite
group, and let G denote the monoidal category whose objects are elements of G,
whose morphisms are identities, and whose tensor product is given by multiplica-
tion in G. Recall that an action of G on a fusion category C is a monoidal functor
G→ Aut⊗(C) : g 7→ Tg. For any g, h ∈ G, let

γg,h = Tg ◦ Th ' Tgh

be the isomorphism defining the monoidal structure on the functor G→Aut⊗(C).

Definition 2.6. A G-equivariant object in C is a pair (X, {ug}g∈G) consisting of
an object X of C together with a collection of isomorphisms ug :Tg(X)' X, g∈G,
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such that the diagram

Tg(Th(X))
Tg(uh) //

γg,h(X)
��

Tg(X)

ug

��
Tgh(X)

ugh // X

commutes for all g, h ∈ G. One defines morphisms of equivariant objects to be
morphisms in C commuting with ug, g ∈ G.

Equivariant objects in C form a fusion category, called the equivariantization
of C and denoted by CG [Tambara 2001; Arkhipov and Gaitsgory 2003; Gaitsgory
2005]. One has FPdim(CG)= |G|FPdim(C).

There is another fusion category that comes from an action of G on C. It is
the crossed product category C o G defined as follows [Tambara 2001; Nikshych
2008]. As an abelian category, CoG :=C�VecG , where VecG denotes the fusion
category of G-graded vector spaces. The tensor product in C o G is given by

(X � g)⊗ (Y � h) := (X ⊗ Tg(Y ))� gh, X, Y ∈ C, g, h ∈ G. (6)

The unit object is 1 � e and the associativity and unit constraints come from those
of C. Clearly, C o G is faithfully G-graded with the trivial component C.

As explained in [Nikshych 2008], C is a right C o G-module category via

Y ⊗ (X � g) := Tg−1(Y ⊗ X),

and the corresponding dual category (CoG)∗C is equivalent to CG . It follows from
[Müger 2003a] that there is an equivalence of braided fusion categories

Z(C o G)∼= Z(CG).

Let G be a finite group. For any conjugacy class K of G fix a representative
aK ∈ K . Let G K denote the centralizer of aK in G.

Proposition 2.7. Let C=
⊕

g∈G Cg be a G-graded fusion category with an action
g 7→ Tg of G on C such that Tg carries Ch to Cghg−1 . Let H := {g ∈ G | Cg 6= 0}.
There is a bijection between the set of isomorphism classes of simple objects of
CG and pairs (K , X), where K ⊂ H is a conjugacy class of G and X is a simple
G K -equivariant object of CaK .

Proof. A simple G-equivariant object of C must be supported on a single conjugacy
class K . Let Y =⊕g∈K Yg be such an object. Then YaK is a simple G K -equivariant
object.

Conversely, given a G K -equivariant object X in CaK let

Y =
⊕

h

Th(X),
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where the summation is taken over the set of representatives of cosets of G K in G.
It is easy to see that Y acquires the structure of a simple G-equivariant object.

Clearly, the two constructions are inverses of each other. �

Remark 2.8. The Frobenius–Perron dimension of the simple object corresponding
to a pair (K , X) in Proposition 2.7 is |K |FPdim(X).

2E. De-equivariantization of fusion categories. Let C be a fusion category. Let
E=Rep(G) be a Tannakian category along with a braided tensor functor E→Z(C)

such that the composition E→Z(C)→C (where the second arrow is the forgetful
functor) is fully faithful. The following construction was introduced in [Bruguières
2000] and [Müger 2000]. Let A := Fun(G) be the algebra of functions on G. It is
a commutative algebra in E and thus its image is a commutative algebra in Z(C).
This fact allows us to view the category CG of A-modules in C as a fusion category,
called de-equivariantization of C. There is a canonical surjective tensor functor

F : C→ CG : X 7→ A⊗ X. (7)

It was explained in [Müger 2000; Drinfeld et al. 2009] that the group G acts on
CG by tensor autoequivalences (this action comes from the action of G on A by
right translations). Furthermore, there is a bijection between subcategories of C

containing the image of E = Rep(G) and G-stable subcategories of CG . This
bijection preserves Tannakian subcategories.

The procedures of equivariantization and de-equivariantization are inverses of
each other: that is, there are canonical equivalences (CG)

G ∼= C and (CG)G ∼= C.
In particular, the construction above applies when C is a braided fusion category

containing a Tannakian subcategory E = Rep(G). In this case the braiding of
C gives rise to an additional structure on the de-equivariantization functor (7).
Namely, there is natural family of isomorphisms

X ⊗ F(Y ) ∼→ F(Y )⊗ X, X ∈ CG, Y ∈ C, (8)

satisfying obvious compatibility conditions. In other words, F can be factored
through a braided functor C→ Z(CG), that is, F is a central functor.

If E⊂ C′ then CG is a braided fusion category with the braiding inherited from
that of C. If E = C′, the category CG is nondegenerate. (In the presence of a
spherical structure this category is called the modularization of C by E [Bruguières
2000; Müger 2000].)

Remark 2.9. The category CG is not braided in general. However it does have an
additional structure — it is a braided G-crossed fusion category. See next section
(2F) for details.



966 Shlomo Gelaki, Deepak Naidu and Dmitri Nikshych

2F. Braided G-crossed categories. Let G be a finite group. Kirillov [2002] and
Müger [2004] found a description of all braided fusion categories D containing
Rep(G). Namely, they showed that the datum of a braided fusion category D

containing Rep(G) is equivalent to the datum of a braided G-crossed category C;
see Theorem 2.12. The notion of a braided G-crossed category is due to Turaev
[2000; 2008] and is recalled below.

Definition 2.10. A braided G-crossed fusion category is a fusion category C equip-
ped with (i) a (not necessarily faithful) grading C=

⊕
g∈G Cg, (ii) an action g 7→Tg

of G on C such that Tg(Ch)⊂Cghg−1 , and (iii) a natural collection of isomorphisms

cX,Y : X ⊗ Y ' Tg(Y )⊗ X, X ∈ Cg, g ∈ G and Y ∈ C, (9)

called the G-braiding. These structures are required to satisfy certain compatibility
conditions, which we now state. Let γg,h : TgTh

∼
→ Tgh denote the tensor structure

of the functor g 7→ Tg and µg the tensor structure of Tg.

(a) The diagram

Tg(X)⊗ Tg(Y )
cTg (X),Tg (Y ) // Tghg−1(Tg(Y ))⊗ Tg(X)

(γghg−1,g)Y⊗idTg (X)

��
Tg(X ⊗ Y )

(µg)
−1
X,Y

OO

Tg(cX,Y )

��

Tgh(Y )⊗ Tg(X)

Tg(Th(Y )⊗ X)
(µg)

−1
Tg (Y ),X

// Tg(Th(Y ))⊗ Tg(X)

(γg,h)Y⊗idTg (X)

OO
(10)

commutes for all g, h ∈ G and objects X ∈ Ch, Y ∈ C.

(b) The diagram
(X ⊗ Y )⊗ Z

αX,Y,Z

uu

cX,Y⊗idZ

))
X ⊗ (Y ⊗ Z)

cX,Y⊗Z

��

(Tg(Y )⊗ X)⊗ Z

αTg (Y ),X,Z

��
Tg(Y ⊗ Z)⊗ X

(µg)
−1
Y,Z⊗idX

��

Tg(Y )⊗ (X ⊗ Z)

idTg (Y )⊗cX,Z

��
(Tg(Y )⊗ Tg(Z))⊗ X

αTg (Y ),Tg (Z),X // Tg(Y )⊗ (Tg(Z)⊗ X)

(11)

commutes for all g ∈ G and objects X ∈ Cg, Y, Z ∈ C.



Centers of graded fusion categories 967

(c) The diagram
X ⊗ (Y ⊗ Z)

idX ⊗cY,Z

))
(X ⊗ Y )⊗ Z

αX,Y,Z
55

X ⊗ (Th(Z)⊗ Y )

α−1
X,Th (Z),Y

��
Tgh(Z)⊗ (X ⊗ Y )

c−1
X⊗Y,Z

OO

(X ⊗ Th(Z))⊗ Y

cX,Th (Z)⊗idY

��
TgTh(Z)⊗ (X ⊗ Y )

(γg,h)Z⊗idX⊗Y

OO

α−1
Tg Th (Z),X,Y // (TgTh(Z)⊗ X)⊗ Y

(12)

commutes for all g, h ∈ G and objects X ∈ Cg, Y ∈ Ch, Z ∈ C.

Remark 2.11. The trivial component Ce of a braided G-crossed fusion category
C is a braided fusion category with the action of G by braided autoequivalences.
This can be seen by taking X, Y ∈ Ce in diagrams (10)–(12).

Theorem 2.12 ([Kirillov 2002; Müger 2004]). The equivariantization and de-
equivariantization constructions establish a bijection between the set of equiva-
lence classes of G-crossed braided fusion categories and the set of equivalence
classes of braided fusion categories containing Rep(G) as a symmetric fusion sub-
category.

We shall now sketch the proof of this theorem. An alternative approach is given
in [Drinfeld et al. 2009].

Suppose C is a braided G-crossed fusion category. We define a braiding c̃ on
its equivariantization CG as follows.

Let (X, {ug}g∈G) and (Y, {vg}g∈G) be objects in CG . Let X = ⊕g∈G Xg be a
decomposition of X with respect to the grading of C. Define an isomorphism

c̃X,Y :X⊗Y=
⊕
g∈G

Xg⊗Y
⊕cXg ,Y
−−−−→

⊕
g∈G

Tg(Y )⊗Xg
⊕vg⊗idXg
−−−−−→

⊕
g∈G

Y⊗Xg=Y⊗X. (13)

It follows from condition (a) of Definition 2.10 that c̃X,Y respects the equivariant
structures, that is, it is an isomorphism in CG . Its naturality is clear. The fact that c̃
is a braiding on CG (that is, the hexagon axioms) follows from the commutativity
of diagrams (11) and (12). It is easy to check that c̃ restricts to the standard braiding
on Rep(G)= VecG

⊂ CG . Hence, CG contains a Tannakian subcategory Rep(G).
Conversely, let C be a braided fusion category with braiding c containing a Tan-

nakian subcategory Rep(G). The restriction of the de-equivariantization functor
F from (7) on Rep(G) is isomorphic to the fiber functor Rep(G)→ Vec. Hence
for any object X in CG and any object V in Rep(G) we have an automorphism of
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F(V )⊗ X defined as the composition

F(V )⊗ X ∼→ X ⊗ F(V ) ∼→ F(V )⊗ X, (14)

where the first isomorphism comes from the fact that F(V ) ∈ Vec and the second
one is (8).

When X is simple we have an isomorphism AutC(F(V )⊗ X)∼=AutVec(F(V )),
hence we obtain a tensor automorphism iX of F |Rep(G). Since Aut⊗(F |Rep(G))∼=G
we have an assignment X 7→ iX ∈ G. The hexagon axiom of braiding implies that
this assignment is multiplicative, that is, that iZ = iX iY for any simple object Z
contained in X ⊗ Y . Thus, it defines a G-grading on C:

C=
⊕
g∈G

Cg, where O(Cg)= {X ∈ O(C) | iX = g}. (15)

It is straightforward to check that iTg(X) = ghg−1 whenever iX = h.
Finally, to construct a G-crossed braiding on C, observe that C and Crev are

embedded into the crossed product category Co G = (CG)∗C as subcategories Cleft

and Cright, consisting, respectively, of functors of left and right multiplications by
objects of C. Clearly, there is a natural family of isomorphisms

X ⊗ Y
∼
−→ Y ⊗ X, with X ∈ Cleft and Y ∈ Cright, (16)

satisfying obvious compatibility conditions. Note that Cleft is identified with the
diagonal subcategory of C o G spanned by objects X � g, X ∈ Cg, g ∈ G, and
Cright is identified with the trivial component subcategory C � e. Using (6) we
conclude that isomorphisms (16) give rise to a G-crossed braiding on C.

One can check that the two constructions above (from braided fusion categories
containing Rep(G) to braided G-crossed categories and vice versa) are inverses of
each other; see [Kirillov 2002; Müger 2004; Drinfeld et al. 2009] for details.

Remark 2.13. Let C = ⊕g∈GCg be a braided G-crossed fusion category. It was
shown in [Drinfeld et al. 2009] that the braided category CG is nondegenerate if
and only if Ce is nondegenerate and the G-grading of C is faithful.

3. The center of a graded fusion category

Let G be a finite group and let D be a fusion category. Throughout this section C

will denote a fusion category with a faithful G-grading, whose trivial component
is D; that is, C is a G-extension of D:

C=
⊕
g∈G

Cg, Ce = D. (17)
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In what follows we consider only faithful gradings: that is, those such that Cg 6= 0
for all g ∈ G. An object of C contained in Cg will be called homogeneous of
degree g.

Our goal is to describe the center Z(C) as an equivariantization of the relative
center ZD(C) defined in Section 2B.

3A. The relative center ZD(C) as a braided G-crossed category. Let us define a
canonical braided G-crossed category structure on ZD(C).

First of all, there is an obvious faithful G-grading on ZD(C):

ZD(C)=
⊕
g∈G

ZD(Cg). (18)

Indeed, it is clear that for every simple object X of ZD(C) the forgetful image of
X in C must be homogeneous.

We now define the action of G on ZD(C). Take g, h ∈G. Let FunD�Drev(Cg,Ch)

denote the category of D-bimodule functors from Cg to Ch . Clearly, it is a Z(D)-
bimodule category.

Proposition 3.1. Let g, h ∈ G. The functors

Lg,h :ZD(Ch)
∼
→ FunD�Drev(Cg,Chg) : Z 7→ Z⊗?, (19)

Rg,h :ZD(Ch)
∼
→ FunD�Drev(Cg,Cgh) : Z 7→?⊗Z . (20)

are equivalences of Z(D)-bimodule categories.

Proof. We prove that (19) is an equivalence. Let FunD(Cg,Chg) be the category of
right D-module functors from Cg to Chg. It suffices to prove that

Mg,h : Ch→ FunD(Cg,Chg) : X 7→ X⊗? (21)

is an equivalence. Indeed, D-bimodule functor structures on Mg,h(X) for X ∈ Ch

are in bijection with central structures on X .
For every g ∈ G choose a simple object Xg ∈ Cg. Then Ag := Xg ⊗ X∗g is an

algebra in D. It follows from [Ostrik 2003, Theorem 1] that the functor Y 7→Y⊗X∗g
is a left C-module category equivalence between C and the category of right Ag-
modules in C. Since Y ⊗ X∗g belongs to D if and only if Y is in Cg we see that the
functor above restricts to a left D-module category equivalence between Cg and
the category of right Ag-modules in D. There are also similar equivalences of right
module categories.

It follows that for all g, h ∈ G there is an equivalence

Y 7→ Xg ⊗ Y ⊗ X∗hg (22)

between C and the category of (Ag− Ahg)-bimodules in C. The right-hand side of
(22) belongs to D if and only if Y is in Ch . Hence, (22) restricts to an equivalence
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between Ch and the category of (Ag− Ahg)-bimodules in D. The latter category is
identified with the category of right D-module functors between the categories of
right Ag-modules and Ahg-modules in D, that is, with FunD(Cg,Chg). It is easy to
see that upon this identification the restriction of equivalence (22) to Ch coincides
with (21).

The proof of the equivalence (20) is completely similar. �

We define tensor functors

Tg,h := L−1
g,ghg−1 Rg,h : ZD(Ch)→ ZD(Cghg−1), g, h ∈ G, (23)

and set

Tg :=
⊕
h∈G

Tg,h : ZD(C)→ ZD(C). (24)

The definition of Tg along with Proposition 3.1 give rise to the following natural
isomorphism of D-bimodule functors from Cg to C:

c−,Y : ? ⊗ Y ∼→ Tg(Y )⊗ ?. (25)

It translates to a natural family of isomorphisms

cX,Y : X ⊗ Y ∼→ Tg(Y )⊗ X, X ∈ Cg, Y ∈ ZD(C), g ∈ G, (26)

satisfying natural compatibility conditions corresponding to the D-bimodule struc-
ture on (25). Since the grading (18) is faithful, we have Tg(ZD(Ch))⊂ZD(Cghg−1).

Take X1 ∈ Cg1, X2 ∈ Cg2 and set X = X1 ⊗ X2 in (26). We obtain a natural
isomorphism

Tg1 Tg2(Y )⊗ X1⊗ X2
∼
→ Tg1g2(Y )⊗ X1⊗ X2. (27)

Since every object Z ∈Cg1g2 is contained in X1⊗X2 for some X1 ∈Cg1, X2 ∈Cg2,

using naturality of (27) we obtain a natural isomorphism

Tg1 Tg2(Y )⊗ Z ∼→ Tg1g2(Y )⊗ Z , Z ∈ Cg1g2, (28)

of D-bimodule functors Tg1 Tg2(Y )⊗? and Tg1g2(Y )⊗?. By Proposition 3.1 this
gives an isomorphism Tg1 Tg2(Y )

∼
→ Tg1g2(Y ), Y ∈ZD(C), that is, an isomorphism

of functors Tg1 Tg2
∼
→ Tg1g2 . Thus, the assignment g 7→ Tg is an action of G on

ZD(C) by tensor autoequivalences.
Suppose that X is an object in Z(Cg). Then both sides of (26) have structure of

objects in ZD(C) obtained by composing central structures of X and Y .

Lemma 3.2. Isomorphisms (26) define a G-braiding on ZD(C).
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Proof. That isomorphisms (26) are indeed morphisms in ZD(C) follows from com-
mutativity of the diagram

X ⊗ Y ⊗ V
idX ⊗δV //

cX,Y⊗idV
��

X ⊗ V ⊗ Y
γV⊗idY //

cX⊗V,Y

tt

V ⊗ X ⊗ Y
cV⊗X,Y

tt
idV ⊗cX,Y

��
Tg(Y )⊗ X ⊗ V

idTg (Y )⊗γV

// Tg(Y )⊗ V ⊗ X
Tg(δ)V⊗idX

// V ⊗ Tg(Y )⊗ X,

(29)

where (X, γ ) ∈ ZD(Cg), (Y, δ) ∈ ZD(C), and V ∈ D. Indeed, the parallelogram
in the middle commutes by naturality of c, and the two triangular faces commute
since the natural isomorphism (25) is an isomorphism of D-bimodule functors.

It is straightforward to check that isomorphisms cX,Y satisfy the compatibility
conditions of Definition 2.10. �

The constructions and arguments above prove the following theorem.

Theorem 3.3. Let G be a finite group and let C be a fusion category with a faithful
G-grading whose trivial component is D. The relative center ZD(C) has a canon-
ical structure of a braided G-crossed category.

Remark 3.4. In particular, to every G-extension of a fusion category D we as-
signed an action of G by braided autoequivalences of Z(D). This assignment is
studied in detail in [Etingof et al. 2009].

3B. The center Z(C) as an equivariantization. As before, let G be a finite group
and let C be a fusion category with a faithful G-grading (17). Let ZD(C) be the
braided G-crossed category constructed in Section 3A.

Theorem 3.5. There is an equivalence of braided fusion categories

ZD(C)
G ∼
→ Z(C). (30)

Proof. We see from (26) that a G-equivariant object in ZD(C) has a structure
of a central object in C defined as in (13). It follows from definitions that the
corresponding tensor functor ZD(C)

G
→ Z(C) is braided.

Conversely, given an object Y in Z(C), consider its forgetful image Ỹ in ZD(C).
Combining the central structure of Y with isomorphism (26) we obtain a family of
isomorphisms

Ỹ ⊗ X ∼→ Tg(Ỹ )⊗ X, X ∈ Cg, g ∈ G,

which gives rise to the isomorphism of D-bimodule functors Ỹ⊗ ? ∼→ Tg(Ỹ )⊗ ? :
Cg → C. By Proposition 3.1 we obtain a natural isomorphism Ỹ ∼

→ Tg(Ỹ ) and,
hence, a G-equivariant structure on Ỹ . Thus, we have a tensor functor Z(C)→

ZD(C)
G . It is clear that the two functors are quasiinverses of each other. �



972 Shlomo Gelaki, Deepak Naidu and Dmitri Nikshych

We describe the Tannakian subcategory E ∼= Rep(G) ⊂ Z(C) corresponding to
equivalence (30). For any representation π : G → GL(V ) of the grading group
G, consider an object Iπ in Z(C) where Iπ = V ⊗ 1 as an object of C with the
permutation isomorphism

cIπ ,X := π(g)⊗ idX : Iπ ⊗ X ∼= X ⊗ Iπ , when X ∈ Cg. (31)

Then E is the subcategory of Z(C) consisting of objects Iπ , where π runs through
all finite-dimensional representations of G.

Remark 3.6. Here is another description of the subcategory E: it consists of all
objects in Z(C) sent to Vec by the forgetful functor Z(C)→ ZD(C).

Corollary 3.7. Let C be a faithfully G-graded fusion category with the trivial
component D. Let E= Rep(G)⊂ Z(C) be the Tannakian subcategory constructed
above. Then the de-equivariantization category (E′)G is braided tensor equivalent
to Z(D).

Proof. The statement follows from Theorem 3.5 since (E′)G is the trivial compo-
nent of the grading of Z(C)G = ZD(C). �

Remark 3.8. The assignment above

{G-extensions of D} 7→ {braided G-crossed extensions of Z(D)} (32)

can be thought of as an analogue of the center construction for G-extensions.

Next, we describe simple objects of Z(C). For any conjugacy class K in G fix
a representative aK ∈ K . Let G K denote the centralizer of aK in G. Note that the
action (24) of G on ZD(C) restricts to the action of G K on ZD(CaK ).

Proposition 3.9. There is a bijection between the set of isomorphism classes of
simple objects of Z(C) and pairs (K , X), where K is a conjugacy class of G and
X is a simple G K -equivariant object of ZD(CaK ).

Proof. By Theorem 3.5 we have Z(C)'ZD(C)
G , so the stated parameterization is

immediate from the description of simple objects of the equivariantization category
given in Proposition 2.7. �

3C. A criterion for a graded fusion category to be group-theoretical. We have
seen in Corollary 3.7 that Z(C) contains a Tannakian subcategory E=Rep(G) such
that the de-equivariantization (E′)G is braided equivalent to Z(D), where D is the
trivial component of C. Furthermore, by Remark 2.11, there is a canonical action
of G on Z(D), by braided autoequivalences. By [Drinfeld et al. 2009], Tannakian
subcategories of Z(C) containing E bijectively correspond to G-stable Tannakian
subcategories of (E′)G ' Z(D). Combining this observation with Theorem 2.5(ii)
we obtain the following criterion.
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Corollary 3.10. A graded fusion category C =
⊕

g∈G Cg, Ce = D, is group-
theoretical if and only if Z(D) contains a G-stable Lagrangian subcategory.

Corollary 3.10 will be useful in Section 4D, where we characterize group-
theoretical Tambara–Yamagami categories.

We can specialize Corollary 3.10 to equivariantization categories. Let G be a
finite group acting on a fusion category C. The equivariantization CG is Morita
equivalent to the crossed product category C o G (see Section 2D). Therefore,
Z(CG)∼=Z(C o G). Clearly, the trivial component of Z(C o G)G is Z(C) and the
canonical action of G on Z(C) is induced from the action of G on C in an obvious
way.

Corollary 3.11. The equivariantization CG is group-theoretical if and only if there
exists a G-stable Lagrangian subcategory of Z(C).

Remark 3.12. Let G act on C as before. One can check (independently from
the results of this section) that the G-set of Lagrangian subcategories of Z(C)

is isomorphic to the G-set consisting of indecomposable C-module categories M

such that the dual category C∗M is pointed. This isomorphism is given by the map
constructed in [Naidu and Nikshych 2008, Theorem 4.17]. Thus, the criterion in
Corollary 3.11 is the same as [Nikshych 2008, Corollary 3.6].

3D. Example: the relative center of a crossed product category. Let G be a finite
group and let g 7→ Tg, g ∈ G, be an action of G on a fusion category D. Let
C :=DoG be the crossed product category defined in Section 2D. It has a natural
grading

C=
⊕
g∈G

Cg, where Cg = {Y � g | Y ∈ D}.

We describe the braided G-crossed fusion category structure on the relative cen-
ter

ZD(C)=
⊕
g∈G

ZD(Cg).

By definition, the objects of ZD(Cg) are pairs (Y � g, γ ), where Y ∈ D and

γ = {γX : X ⊗ Y ∼→ Y ⊗ Tg(X)}X∈D (33)

is a natural family of isomorphisms satisfying natural compatibility conditions.
Thus, ZD(Cg) can be viewed as a “deformation” of Z(D) by means of Tg.

The action of G on D induces an action h 7→ T̃h on ZD(C) defined as follows.
Applying Th, h ∈ G, to γTh−1 (X) in (33), we obtain an isomorphism

γ̃X : X ⊗ Th(Y ) ∼→ Th(Y )⊗ Thgh−1(X). (34)

Set T̃h(Y � g, γ ) := (Th(Y )� hgh−1, γ̃ ). Thus, T̃h maps ZD(Cg) to ZD(Chgh−1).
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Finally, the G-braiding between objects (X �h)∈ZD(Ch) and (Y �g)∈ZD(Cg)

comes from the isomorphism

(X �h)⊗(Y �g)= (X⊗Th(Y ))�hg
γ̃
−→ (Th(Y )⊗Thgh−1(X))�hg

= (Th(Y )�hgh−1)⊗(X �h)

= T̃h(Y �g)⊗(X �h).

By Theorem 3.5, the category Z(Do G)∼=Z(DG) is equivalent to the equivari-
antization of the braided G-crossed category above.

4. The centers of Tambara–Yamagami categories

Our goal in this section is to apply techniques developed in Section 3 to Tambara–
Yamagami categories introduced in [Tambara and Yamagami 1998] (see Section
4A below for the definition). Namely, using the techniques in Section 3 we estab-
lish a criterion for a Tambara–Yamagami category to be group-theoretical. We then
use this criterion together with Corollary 3.11 to produce a series of non-group-
theoretical semisimple Hopf algebras. In this section we assume that our ground
field k is the field of complex numbers C. We begin by recalling the definition of
a Tambara–Yamagami category.

4A. Definition of Tambara–Yamagami categories. Let Z2 = 〈 δ | δ
2
= 1 〉 be the

cyclic group of order 2.
Tambara and Yamagami [1998] completely classified all Z2-graded fusion cat-

egories in which all but one simple objects are invertible and the noninvertible
simple object has nontrivial graded degree.

They showed that any such category TY(A, χ, τ ) is determined, up to an equiv-
alence, by a finite abelian group A, a nondegenerate symmetric bilinear form
χ : A× A→ k×, and a square root τ ∈ k of |A|−1. The category TY(A, χ, τ ) is
described as follows. It is a skeletal category (that is, such that any two isomorphic
objects are equal) with simple objects {a | a ∈ A} and m, and tensor product

a⊗ b = a+ b, a⊗m = m, m⊗ a = m, m⊗m =
⊕
a∈A

a,

for all a, b∈ A, and the unit object 0∈ A. The associativity constraints are given by

αa,b,c = ida+b+c, αa,b,m = idm, αa,m,b = χ(a, b) idm, αm,a,b = idm,

αa,m,m =
⊕
b∈A

idb, αm,a,m =
⊕
b∈A

χ(a, b) idb,

αm,m,a =
⊕
b∈A

idb, αm,m,m =
⊕

a,b∈A
τχ(a, b)−1 idm .



Centers of graded fusion categories 975

The unit constraints are the identity maps. The category TY(A, χ, τ ) is rigid with
a∗ =−a and m∗ = m (with obvious evaluation and coevaluation maps).

Let n := |A|. The dimensions of simple objects of TY(A, χ, τ ) are FPdim(a)=
1, a ∈ A, and FPdim(m)=

√
n. We have FPdim(TY(A, χ, τ ))= 2n.

The Z2-grading on TY(A, χ, τ ) is

TY(A, χ, τ )= TY(A, χ, τ )1⊕TY(A, χ, τ )δ,

where TY(A, χ, τ )1 is the full fusion subcategory generated by the invertible ob-
jects a ∈ A and TY(A, χ, τ )δ is the full abelian subcategory generated by the
object m.

Let C := TY(A, χ, τ ) and D := TY(A, χ, τ )1.

4B. Braided Z2-crossed category ZD(C). First, let us describe the simple objects
of ZD(C)= Z(C1)⊕ZD(Cδ). Let Â := Hom(A, k×). Clearly, Z(C1)= Z(VecA),
so its simple objects are parameterized by (a, φ) ∈ A × Â. The object X(a,φ)
corresponding to such a pair is equal to a as an object of C and its central structure
is given by

φ(x) ida+x : x ⊗ X(a,φ) ∼→ X(a,φ)⊗ x . (35)

Using Definition 2.1 we see that simple objects of ZD(Cδ) are parameterized by
functions ρ : A→ k× satisfying

ρ(a+ b)= χ(a, b)−1ρ(a)ρ(b), a, b ∈ A (36)

(clearly, such functions form a torsor over Â). The corresponding object Zρ is
equal to m as an object of C and has the relative central structure

ρ(x) idm : x ⊗ Zρ ∼→ Zρ ⊗ x, x ∈ A. (37)

Let A→ Â :a 7→ â be the homomorphism defined by â(x)=χ(x, a). Similarly,
let Â→ A : φ 7→ φ̂ be the homomorphism defined by φ(x)= χ(x, φ̂) (recall that
χ is nondegenerate). Clearly, these two maps are inverses of each other.

The fusion rules of ZD(C) are computed using formula (3) :

X(a,φ)⊗ X(b,ψ) = X(a+b,φ+ψ),

X(a,φ)⊗ Zρ = Zρφ(−â),

Zρ ⊗ X(a,φ) = Zρφ(−â),

Zρ′ ⊗ Zρ =
⊕
a∈A

X(a,̂aρ′/ρ).

We have X∗(a,φ) = X(−a,−φ) and Z∗ρ = Zρ , where ρ(x)= ρ(−x), x ∈ A.
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Using the construction given in Section 3A we see that the action of Z2 on
ZD(C) is given by

T1 = idZD(C); Tδ(X(a,φ))= X(−φ̂,−â), Tδ(Zρ)= Zρ . (38)

The monoidal functor structure on Z2 → Aut⊗(ZD(C)) is given by the natural
isomorphism γ := γδ,δ : Tδ ◦ Tδ ∼→ T1 defined by

γX(a,φ) = φ(a) idX(a,φ), γZρ =

(
τ
∑
x∈A

ρ(x)−1
)

idZρ .

The crossed braiding morphisms on ZD(C) are given by

cX(a,φ),X(b,ψ) = ψ(a) ida+b : X(a,φ)⊗ X(b,ψ) ∼→ X(b,ψ)⊗ X(a,φ),

cX(a,φ),Zρ = ρ(a) idm : X(a,φ)⊗ Zρ ∼→ Zρ ⊗ X(a,φ),

cZρ ,X(a,φ) = idm : Zρ ⊗ X(a,φ) ∼→ X(−φ̂,−â)⊗ Zρ,

cZρ′ ,Zρ =⊕a∈A ρ(−a)−1 ida : Zρ′ ⊗ Zρ ∼→ Zρ ⊗ Zρ′ .

4C. The equivariantization category ZD(C)Z2 . A simple calculation of Z2-equi-
variant objects in ZD(C) establishes the following.

Proposition 4.1. The following is a complete list of simple objects of ZD(C)
Z2 ∼=

Z(TY(A, χ, τ )) up to an isomorphism:

(1) 2n invertible objects parameterized by pairs (a, ε), where a ∈ A and ε2
=

χ(a, a)−1. The corresponding object Xa,ε is equal to X(a,−â) as an object of
ZD(C) and has Z2-equivariant structure

ε idX(a,−â) : Tδ(X(a,−â))
∼
→ X(a,−â);

(2) n(n−1)
2 two-dimensional objects parameterized by unordered pairs (a, b) of

distinct objects in A. The corresponding object Ya,b is equal to X(a,−b̂) ⊕

X(b,−â) as an object of ZD(C) and has Z2-equivariant structure(
idX(a,−b̂)

⊕χ(a, b)−1 idX(b,−â)

)
: Tδ(X(a,−b̂)⊕ X(b,−â))

∼
→ X(a,−b̂)⊕ X(b,−â);

(3) 2n
√

n-dimensional objects parameterized by pairs (ρ,1), where ρ : A→ k×

satisfies (36) and 12
= τ

∑
x∈A ρ(x)

−1. The corresponding object Zρ,1 is
equal to Zρ as an object of ZD(C) and has Z2-equivariant structure

1 idZρ : Tδ(Zρ)
∼
→ Zρ .

Recall from [Etingof et al. 2005] that in a braided fusion category of an in-
teger Frobenius–Perron dimension there is a canonical choice of a twist θ such
that the categorical dimensions of objects coincide with their Frobenius–Perron
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dimensions. Namely, for any simple object X the scalar θX is defined in such a
way that the composition

1 coevX
−−−→ X ⊗ X∗

θX cX,X∗
−−−−→ X∗⊗ X

evX
−−→ 1 (39)

is equal to FPdim(X) idX .
Let θ be the canonical twist on Z(C). Using the previous observation, explicit

formulas from Section 4B, and Section 2F, we immediately obtain the following.

θXa,ε = χ(a, a)−1, θYa,b = χ(a, b)−1, θZρ,1 =1.

Using the fusion rules of Z(C) (which may be computed using the explicit formulas
in Section 4B), values of the twists above, and the well known formula

SX,Y = θ
−1
X θ−1

Y

∑
Z

N Z
X,Y θZ dZ , (40)

we obtain the S- and T -matrices of Z(C):

SXa,ε ,Xa′,ε′
= χ(a, a′)2, SXa,ε ,Yb,c = 2χ(a, b+ c),

SXa,ε ,Zρ,1 = ε
√

nρ(a), SYa,b,Yc,d = 2 (χ(a, d)χ(b, c)+χ(a, c)χ(b, d)) ,

SYa,b,Zρ,1 = 0, SZρ,1,Zρ′,1′ =
1
11′

∑
a∈A

χ(a, a)2ρ(a)ρ ′(a);

TXa,ε = χ(a, a)−1, TYa,b = χ(a, b)−1, TZρ,1 =1.

Proposition 4.2. The maximal pointed subcategory of Z(C) is nondegenerate if
and only if |A| is odd.

Proof. Let a ∈ A be an element of order 2. Then Xa,ε centralizes every invertible
object of Z(C). �

Remark 4.3. We note that simple objects and the S- and T -matrices of Z(C) were
described in [Izumi 2001] using very different methods.

4D. A criterion for a Tambara–Yamagami category to be group-theoretical. The
group A× Â is equipped with a canonical nondegenerate quadratic form q : A× Â→
k× given by

q((a, φ)) := φ(a), (a, φ) ∈ A× Â.

We will call a subgroup B⊂ A× Â Lagrangian if q|B = 1 and B= B⊥ with respect
to the bilinear form defined by q. Lagrangian subgroups of A× Â correspond to
Lagrangian subcategories of Z(VecA)∼= VecA× Â.

The braided tensor autoequivalence Tδ of Z(VecA) defined in Section 4B deter-
mines an order 2 automorphism of A× Â, which we denote simply by δ:

δ((a, φ))= (−φ̂, −â), (a, φ) ∈ A× Â. (41)
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Definition 4.4. We will say that a subgroup L ⊂ A is Lagrangian (with respect
to χ ) if L = L⊥ with respect to the inner product on A given by χ . Equivalently,
|L|2 = |A| and χ |L = 1.

Lemma 4.5. Let A be an abelian 2-group such that |A|=22n and let χ be a nonde-
generate symmetric bilinear form on A. Then A contains a Lagrangian subgroup.

Proof. It suffices to show that A contains an isotropic element, that is, an element
x ∈ A, x 6= 0, such that χ(x, x) = 1. Then one can pass from A to 〈x〉⊥/〈x〉 and
use induction.

Suppose that A is cyclic with a generator a. Then 22na = 0 and χ(a, a) is a
(22n)th root of unity, hence χ(2na, 2na)= χ(a, a)2

2n
= 1.

If A is not cyclic then it contains a subgroup A0 = Z/2Z⊕Z/2Z. Let x1, x2 be
distinct nonzero elements of A0. Suppose χ(xi , xi ) 6=1, i=1, 2. Then χ(xi , xi )=

−1 and χ(x1+ x2, x1+ x2)= 1, as desired. �

Theorem 4.6. Let C = TY(A, χ, τ ) be a Tambara–Yamagami fusion category.
Then C is group-theoretical if and only if A contains a Lagrangian subgroup (with
respect to χ ).

Proof. By Corollary 3.10, C is group-theoretical if and only if Z(D) contains a
Tδ-stable Lagrangian subcategory. Equivalently, C is group-theoretical if and only
if A× Â contains a Lagrangian subgroup B stable under the action

(a, φ) 7→ (φ̂, â). (42)

This condition on B is the same as being stable under the action of δ from (41).
Let L be a Lagrangian (with respect to χ ) subgroup of A and let L̂ := {̂a |a ∈ L}.

Then L× L̂ is a Lagrangian subgroup of A× Â stable under (42). Hence C is group-
theoretical.

Conversely, suppose that C is group-theoretical. Let us write A= Aeven⊕ Aodd,
where Aeven is the Sylow 2-subgroup of A and Aodd is the maximal odd order
subgroup of A. Since |A| must be a square, we conclude that |Aeven| is a square,
and so Aeven contains a Lagrangian subgroup with respect to χ |Aeven by Lemma 4.5.

So it remains to show that Aodd contains a Lagrangian subgroup with respect to
χ |Aodd . For this end we may assume that |A| is odd. Let B⊂ A× Â be a Lagrangian
subgroup stable under (42). Then B = B+⊕ B−, where

B± := {(a,±â) | (a,±â) ∈ B}.

Let L± = B± ∩ (A× {1}). Then |L+||L−| = |A|, and χ |L± = 1. Hence, L± are
Lagrangian subgroups of A. �

Remark 4.7. It was observed in [Etingof et al. 2005, Remark 8.48] that for an odd
prime p and elliptic bicharacter χ on A= (Z/pZ)2, the category TY((Z/pZ)2,χ,τ )

is not group-theoretical. The criterion from Theorem 4.6 extends this observation.
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4E. A series of non-group-theoretical semisimple Hopf algebras obtained from
Tambara–Yamagami categories. Here we apply Corollary 3.11 to produce a series
of non-group-theoretical fusion categories admitting fiber functors (that is, repre-
sentation categories of non-group-theoretical semisimple Hopf algebras), gener-
alizing examples constructed in [Nikshych 2008]. We refer the reader to [Mont-
gomery 1993] as a reference on Hopf algebra theory.

Let A be a finite abelian group with a nondegenerate bilinear form χ . Let
Aut(A, χ) denote the group of automorphisms of A preserving χ .

The following proposition was proved in [Nikshych 2008, Proposition 2.10].

Proposition 4.8. There is an action of Aut(A, χ) on TY(A, χ, τ ) given by g 7→
Tg, where

Tg(A)= g(a), Tg(m)= m, a ∈ A, g ∈ Aut(A, χ),

with the tensor structure of Tg given by identity morphisms.

Corollary 4.9. Let G be a subgroup of Aut(A, χ). Then the fusion category
TY(A, χ, τ )G is group-theoretical if and only if there is a Lagrangian subgroup
of (A, χ) stable under the action of G.

Proof. Combine Corollary 3.11 and Theorem 4.6. �

We will say that a nondegenerate symmetric bilinear form χ : A× A→ k× is
hyperbolic if there are Lagrangian subgroups L , L ′ ⊂ A such that A = L⊕ L ′. In
this case L ′ is isomorphic to the group L̂ =Hom(L , k×) of characters of L and χ
is identified with the canonical bilinear form on L ⊕ L̂ .

It was demonstrated in Tambara [2000] that when n = |A| is odd the category
TY(A, χ, τ ) admits a fiber functor (that is, TY(A, χ, τ ) is equivalent to the rep-
resentation category of a semisimple Hopf algebra) if and only if τ−1 is a positive
integer and χ is hyperbolic.

Corollary 4.10. Let p be an odd prime, let L = (Z/pZ)N , N ≥ 1, let A = L⊕ L̂ ,
and let χ : A× A→ k× be the canonical bilinear form defined by

χ((a, φ), (b, ψ))= ψ(a)φ(b), a, b ∈ A, φ, ψ ∈ Â.

Suppose that G is a subgroup of Aut(A, χ) not contained in any conjugate of
Aut(L) ⊂ Aut(A, χ). Then the equivariantization category TY(A, χ, p−N )G is
a non-group-theoretical fusion category equivalent to the representation category
of a semisimple Hopf algebra of dimension 2p2N

|G|.

Proof. Note that Aut(A, χ) acts transitively on the set of Lagrangian subgroups of
(A, χ) and the stabilizer of L is Aut(L). Apply Corollary 4.9. �
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Remark 4.11. The series of fusion categories in Corollary 4.10 extends the one
constructed in [Nikshych 2008], where the case of N = 1 and G = Z/2Z was
considered.

5. Examples of modular categories arising from quadratic forms

As before, let C := TY(A, χ, τ ) be a Tambara–Yamagami category and let D :=

TY(A, χ, τ )1 be the trivial component of Z2-grading of TY(A, χ, τ ). In this
section we assume that our ground field k is the field of complex numbers C.

Suppose that the symmetric bicharacter χ : A× A→ k× comes from a quadratic
form on A, that is, there is a function q : A→ k× such that

q(a+ b)= q(a)q(b)χ(a, b), a, b ∈ A and q(−a)= q(a).

From the description obtained in Section 4B we observe that ZD(C) contains a
fusion subcategory spanned by the simple objects X(a,̂a), a ∈ A, and Zq−1 . It is
clear from the Tambara–Yamagami classification in Section 4A that this category
is equivalent to C.

Proposition 5.1. Suppose that the symmetric bicharacter χ comes from a qua-
dratic form on A. Then C admits a Z2-crossed braided category structure. The
equivariantization CZ2 is nondegenerate if and only if |A| is odd.

Proof. Clearly, C inherits the Z2-crossed braided category structure from ZD(C).
The nondegeneracy claim follows from Proposition 4.2 and Remark 2.13. �

Let us assume that n := |A| is odd. Then χ corresponds to a unique quadratic
form q. Let E(q,±) := CZ2 be the modular category constructed in Proposition
5.1 (the ± corresponding to τ =± 1

√
n , respectively). In what follows we describe

the fusion rules and S- and T -matrices of E(q,±).

5A. Fusion rules of E. Clearly, E(q,±) is a fusion category of dimension 4n. It
has the following simple objects:

two invertible objects, 1= X+ and X−;
n−1

2 two-dimensional objects Ya, a ∈ A−{0} (with Y−a = Ya); and

two
√

n-dimensional objects Zl , l ∈ Z/2Z.

Here we simplify the notation used in Section 4C and define

X± := X0,±1, Ya := Ya,−a, Zl := Zq−1,1l ,

where 1l, l ∈ Z/2Z, are distinct square roots of ± 1
√

n
∑

a∈A q(a).
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The fusion rules of E(q,±) are given by

X−⊗ X− = X+, X±⊗ Ya = Ya, X+⊗ Zl = Zl,

X−⊗ Zl = Zl+1, Ya ⊗ Yb = Ya+b⊕ Ya−b, Ya ⊗ Ya = X+⊕ X−⊕ Y2a,

Ya ⊗ Zl = Z0⊕ Z1, Zl ⊗ Zl = X+⊕ (⊕ Ya) , Zl ⊗ Zl+1 = X−⊕ (⊕ Ya) ,

where a, b ∈ A (a 6= b) and l ∈ Z/2Z. All objects of E(q,±) are self-dual.

Remark 5.2. Note that the fusion rules of E(q,±) do not depend on the quadratic
form q and the number τ . We show below that the S- and T -matrices of E(q,±)
do depend on q and τ .

5B. S- and T-matrices of E.

Lemma 5.3. The Gauss sums corresponding to q and q2 are equal up to a sign,
that is, ∑

a∈A q(a)2∑
a∈A q(a)

∈ {±1}.

Proof. Consider the group A× A with a nondegenerate quadratic form Q = q×q.
The Gaussian sum for this form is

τ(A× A, Q)=
∑

a,b∈A

q(a)q(b)= τ(A, q)2.

The restriction of Q on the diagonal subgroup D := {(a, a) | a ∈ A} is nonde-
generate since |A| is odd. The restriction of Q on the orthogonal complement
D⊥ = {(a,−a) | a ∈ A} is nondegenerate as well. By the multiplicativity of
Gaussian sums we have

τ(A× A, Q)= τ(D, Q)τ (D⊥, Q)= (
∑
a∈A

q(a)2)2,

which implies the result. �

Using the formulas for the S- and T - matrices of Z(C) given in Section 4C we
can write down the S- and T - matrices of E(q,±):

SX±,X± = 1, SX∓,X± = 1, SX±,Ya = 2, SYa,Zl = 0,

SX+,Zl =
√

n, SX−,Zl =−
√

n, SYa,Yb = 2
( q(a+ b)2

q(a)2q(b)2
+

q(a)2q(b)2

q(a+ b)2

)
,

SZl ,Zl =

{
±
√

n if the Gauss sums of q and q2 coincide,
∓
√

n otherwise,

SZl ,Zl+1 =

{
∓
√

n if the Gauss sums of q and q2 coincide,
±
√

n otherwise.
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TX± = 1, TYa = q(a)2, TZl =1l .

(Recall that 1l, l ∈ Z/2Z, are distinct square roots of ± 1
√

n
∑

a∈A q(a).)

5C. Example with A = Z/ pZ × Z/ pZ. Let p be an odd prime and let A :=
Z/pZ×Z/pZ. Let

(
·

p

)
denote the Legendre symbol modulo p, that is,

(a
p

)
= 1 if

a ∈ (Z/pZ)× is a square modulo p and −1 otherwise.
Let a, b ∈ (Z/pZ)× and ξ := e2π i/p. Consider the following nondegenerate

quadratic form q on A:
q(x1, x2)= ξ

ax2
1−bx2

2 .

It is hyperbolic if
(ab

p

)
= 1 and elliptic if

(ab
p

)
=−1.

Lemma 5.4. For every a, b ∈ A×, we have

∑
x∈Z/pZ

ξax2
=

{(a
p

)√
p if p ≡ 1 (mod 4),(a

p

)
i
√

p if p ≡ 3 (mod 4),

and ∑
(x1,x2)∈Z/pZ×Z/pZ

ξax2
1−bx2

2 =

(
ab
p

)
p.

Proof. The first assertion is well known; see, for example, [Ireland and Rosen
1990]. The second assertion is an easy consequence of the first. �

Using Lemma 5.4 we can explicitly write the S-matrix of E(q,±):

SX±,X± = 1, SX∓,X± = 1, SX±,Y(x1,x2)
= 2,

SX+,Zl = p, SX−,Zl =−p, SY(x1,x2),Y(y1,y2)
= 4 Re(ξ 4ax1 y1−4bx2 y2),

SY(x1,x2),Zl = 0, SZl ,Zl =±p, SZl ,Zl+1 =∓p,

and its T -matrix:

TX± = 1, TY(x1,x2) = ξ
2ax2

1−2bx2
2 , TZl =1l,

where 1l, l ∈ Z/2Z, are distinct square roots of ±
(ab

p

)
.

The central charge of the modular category E(q,±) is

ζ(E(q,±))=
(

ab
p

)
.

Below we give the S- and T -matrices of the modular category E(q,±) for p =
3. Order simple objects of E(q,±) as follows: 1, X−, Y(0,1), Y(1,0), Y(1,1), Y(1,2),
Z+, Z−. There are four modular categories E(q,±) of dimension 36 corresponding
to the choices of hyperbolic/elliptic q and τ =± 1

3 .



Centers of graded fusion categories 983

(a) When q is hyperbolic we have

S =



1 1 2 2 2 2 3 3
1 1 2 2 2 2 −3 3
2 2 −2 4 −2 −2 0 0
2 2 4 −2 −2 −2 0 0
2 2 −2 −2 4 −2 0 0
2 2 −2 −2 −2 4 0 0
3 −3 0 0 0 0 ±3 ∓3
3 −3 0 0 0 0 ∓3 ±3


,

T = diag{1, 1, ξ 2, ξ, 1, 1, 1,−1} when τ = 1
3 ,

T = diag{1, 1, ξ 2, ξ, 1, 1, i,−i} when τ =− 1
3 .

Note that both the corresponding modular categories are group-theoretical
with central charge 1; in fact the one with τ = 1

3 is equivalent to the represen-
tation category of the double D(S3) of the symmetric group S3 and the one
with τ =− 1

3 is equivalent to the twisted double of S3.

(b) When q is elliptic we have

S =



1 1 2 2 2 2 3 3
1 1 2 2 2 2 −3 3
2 2 −2 4 −2 −2 0 0
2 2 4 −2 −2 −2 0 0
2 2 −2 −2 −2 4 0 0
2 2 −2 −2 4 −2 0 0
3 −3 0 0 0 0 ±3 ∓3
3 −3 0 0 0 0 ∓3 ±3


,

T = diag{1, 1, ξ, ξ, ξ 2, ξ 2, i,−i} when τ =
1
3
,

T = diag{1, 1, ξ, ξ, ξ 2, ξ 2, 1,−1} when τ =−
1
3
.

Both the corresponding modular categories are not group-theoretical. They
both have central charge −1 and so are not equivalent to centers of fusion
categories. In particular, they are not equivalent to representation categories
of any twisted group doubles.

5D. Example with A = Z/ pZ. Let p be an odd prime and let A := Z/pZ. Let
a ∈ (Z/pZ)× and ξ := e2π i/p. Up to isomorphism there are two nondegenerate
quadratic forms q on A:

q(x)= ξax2
,
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one corresponding to
(a

p

)
= 1 and another to

(a
p

)
=−1.

Using Lemma 5.4 we can explicitly write the S-matrix of E(q,±):

SX±,X± = 1, SX∓,X± = 1, SX±,Yx = 2,

SX+,Zl =
√

p, SX−,Zl =−
√

p, SYx ,Yy = 4 Re(ξ 4axy),

SYa,Zl = 0, SZl ,Zl =±

(
2
p

)
√

p, SZl ,Zl+1 =∓

(
2
p

)
√

p.

Further, we have

TX± = 1, TYx = ξ
−2ax2

, TZl =1l,

where

1l, l ∈ Z/2Z, are distinct square roots of

{
±
(a

p

)
if p ≡ 1 (mod 4),

±
(a

p

)
i if p ≡ 3 (mod 4).

The central charge of the modular category E(q,±) is

ζ(E(q,±))=

{(2a
p

)
if p ≡ 1 (mod 4),

−
(2a

p

)
i if p ≡ 3 (mod 4).

Below we give the S- and T -matrices of the modular category E(q,±) for p =
3 and 5. For p= 3 we order the simple objects as 1, X−, Y1, Z0, Z1 and for p= 5
we order them as 1, X−, Y1, Y2, Z0, Z1. (In (c) and (d) below, ξ = e2π i/5.)

(a) When p = 3 and a = 1 we have

S =


1 1 2

√
3
√

3
1 1 2 −

√
3 −
√

3
2 2 −2 0 0
√

3 −
√

3 0 ∓
√

3 ±
√

3
√

3 −
√

3 0 ±
√

3 ∓
√

3

 ,

T = diag
{

1, 1,
−1+ i

√
3

2
,

1+ i
√

2
,
−1− i
√

2

}
when τ =

1
√

3
,

T = diag
{

1, 1,
−1+ i

√
3

2
,

1− i
√

2
,
−1+ i
√

2

}
when τ =−

1
√

3
.

The central charge of both the corresponding modular categories is i .
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(b) When p = 3 and a = 2 we have

S = the S-matrix in (a),

T = diag
{

1, 1,
−1− i

√
3

2
,

1− i
√

2
,
−1+ i
√

2

}
when τ =

1
√

3
,

T = diag
{

1, 1,
−1− i

√
3

2
,

1+ i
√

2
,
−1− i
√

2

}
when τ =

1
√

3
.

The central charge of both the corresponding modular categories is −i .

(c) When p = 5 and a = 1 we have

S =



1 1 2 2
√

5
√

5
1 1 2 2 −

√
5 −
√

5
2 2

√
5− 1 −

√
5− 1 0 0

2 2 −
√

5− 1
√

5− 1 0 0
√

5 −
√

5 0 0 ∓
√

5 ±
√

5
√

5 −
√

5 0 0 ±
√

5 ∓
√

5


,

T = diag
{
1, 1, ξ 3, ξ 2, 1,−1

}
when τ =

1
√

5
,

T = diag
{
1, 1, ξ 3, ξ 2, i,−i

}
when τ =−

1
√

5
.

The central charge of both the corresponding modular categories is −1.

(d) When p = 5 and a = 2 we have

S =



1 1 2 2
√

5
√

5
1 1 2 2 −

√
5 −
√

5
2 2 −

√
5− 1

√
5− 1 0 0

2 2
√

5− 1 −
√

5− 1 0 0
√

5 −
√

5 0 0 ∓
√

5 ±
√

5
√

5 −
√

5 0 0 ±
√

5 ∓
√

5


,

T = diag
{
1, 1, ξ, ξ 4, i,−i

}
when τ =

1
√

5
,

T = diag
{
1, 1, ξ, ξ 4, 1,−1

}
when τ =−

1
√

5
.

The central charge of both the corresponding modular categories is 1.
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6. Appendix: Zeroes in S-matrices

There is a classical result of Burnside in character theory saying that if χ is an
irreducible character of a finite group G and χ(1) > 1, then χ(g) = 0 for some
g ∈ G; see [Berkovich and Zhmud’ 1999, Chapter 21].

In this appendix we establish a categorical analogue of this result for weakly
integral modular categories. Recall from [Etingof et al. 2008] that a fusion category
C is called weakly integral if its Frobenius–Perron dimension is an integer. In this
case the Frobenius–Perron dimension of every simple object of C is the square root
of an integer [Etingof et al. 2005].

Let C be a weakly integral modular category with the S-matrix S. Let O(C)

denote the set of all (representatives of isomorphism classes of) simple objects of
C. Given X ∈ O(C) define the sets

TX = {Y ∈ O(C) | SX,Y = 0}, DX = O(C)− (TX ∪ {1}).

Clearly, we have a partition O(C)= TX ∪DX ∪{1}. Let TX and DX be full abelian
subcategories of C generated by TX and DX , respectively.

Let K be the field extension of Q generated by the entries of S. It is known
[de Boer and Goeree 1991; Coste and Gannon 1994] that there is a root of unity ξ
such that K ⊂Q(ξ). In particular, the operation of taking the square of an absolute
value of an element of S is well defined. Let G := Gal(K/Q). Every element
σ ∈ G comes from a permutation σ of O(C) such that σ(SX,Y ) = SX,σ (Y ) for all
X, Y ∈ O(C).

Let C be a weakly integral modular category. It was shown in [Etingof et al.
2005] that there is a canonical spherical structure on C such that categorical dimen-
sions in C coincide with Frobenius–Perron dimensions. Let us fix this structure for
the remainder of this section. For any X ∈ O(C) let dX denote the dimension of
X . For any full abelian subcategory A of C let dim A denote the sum of squares
of dimensions of simple objects of A.

Theorem 6.1. Let C be a weakly integral modular category with the S-matrix S.
Then TX is not empty for every noninvertible simple object X of C. That is, every
row (column) of S corresponding to a noninvertible simple object contains at least
one zero entry.

Proof. Note that the statement of Proposition does not depend on the choice of
spherical structure.

We have
∑

Y∈O(C) |SX,Y |
2
= dim C; hence,

1=
dim C

d2
X
−

∑
Y∈DX

∣∣∣∣ SX,Y

dX

∣∣∣∣2 = 1+ dim TX

d2
X

−

(∑
Y∈DX

∣∣∣∣ SX,Y

dX

∣∣∣∣2− dim DX

d2
X

)
, (43)
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where dX denotes the dimension of X . It suffices to check that

1
dim DX

∑
Y∈DX

∣∣∣∣ SX,Y

dX

∣∣∣∣2 ≥ 1
d2

X
, (44)

since then (43) implies that 1≤ (1+ dim TX )/d2
X , whence

dim TX ≥ d2
X − 1. (45)

But X is noninvertible so dX > 1 and TX 6= 0.
Rewriting the left hand side of (44) as the sum of dim DX terms and using the

inequality of arithmetic and geometric means we obtain

1
dim DX

∑
Y∈DX

∣∣∣∣ SX,Y

dX

∣∣∣∣2 = 1
dim DX

∑
Y∈DX

d2
Y

∣∣∣∣ SX,Y

dX dY

∣∣∣∣2

≥
1

d2
X

( ∏
Y∈DX

∣∣∣∣ SX,Y

dY

∣∣∣∣2d2
Y
)1/dim DX

.

The set DX is clearly stable under all automorphisms in the Galois group, and
hence so is the product

∏
Y∈DX

∣∣SX,Y /dY
∣∣2d2

Y . Therefore, this product belongs to
Q. Its factors are squares of absolute values of characters of K0(C) on X and
hence are algebraic integers. Since all factors are positive, the product is ≥ 1,
which implies (44). �

For X ∈ O(C) define

UX = {Y ∈ O(C) | |SX,Y | = dY }.

Let UX be the full abelian subcategory of C generated by UX .

Proposition 6.2. Let C be a weakly integral modular category and let X be a
simple noninvertible object in C. Then

3 dim TX + dim UX > dim C. (46)

Proof. We may assume dX ≥
√

2.
We will use the following theorem of Siegel [1945] from number theory. Let

K/Q be a finite Galois extension with the Galois group G =Gal(K/Q). Let α be
a totally positive algebraic integer in K , α 6= 1. Then

1
|G|

∑
σ∈G

σ(α)≥
3
2
.
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We apply this to the situation when K is the extension of Q generated by entries
of S. We compute

dim C=
∑
Y∈C

|SX,Y |
2
= d2

X +
∑

Y∈UX

d2
Y +

∑
Y∈O(C)−(TX∪UX∪{1})

|SX,Y |
2

= d2
X + dim UX +

∑
Y∈O(C)−(TX∪UX∪{1})

d2
Y

(
1
|G|

∑
σ∈G

σ

(
|SX,Y |

2

d2
Y

))
≥ 2+ dim UX +

3
2(dim C− dim TX − dim UX − 1);

therefore 3 dim TX + dim UX ≥ dim C+ 1> dim C, as required. �

Remark 6.3. Our proofs of Theorem 6.1 and Proposition 6.2 imitate the corre-
sponding proofs for group characters given in [Berkovich and Zhmud’ 1999].
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