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Density of rational points on diagonal
quartic surfaces

Adam Logan, David McKinnon and Ronald van Luijk

Let a, b, ¢, d be nonzero rational numbers whose product is a square, and let V
be the diagonal quartic surface in P? defined by ax* +by* + cz* + dw* = 0. We
prove that if V contains a rational point that does not lie on any of the 48 lines
on V or on any of the coordinate planes, then the set of rational points on V is
dense in both the Zariski topology and the real analytic topology.

1. Introduction

This paper is about the arithmetic of diagonal quartic surfaces, which are the sur-
faces Vy p,c.a C P3 defined by the equation ax*+ by4 +cz* + dw* = 0 for nonzero
a,b,c,d € Q. We will prove the following theorem.

Theorem 1.1. Let a, b, ¢, d € Q* be nonzero rational numbers with abcd square.
Let P = (xo : Yo : 20 : wo) be a rational point on V,p 4, and suppose that
Xo0Yozowo # 0 and that P does not lie on any of the 48 lines of the surface. Then
the set of rational points of the surface is dense in both the Zariski and the real
analytic topology.

We will also prove a generalization to arbitrary number fields of a weaker version
of Theorem 1.1. An easy consequence of Theorem 1.1 is the following.

Theorem 1.2. Let a, b, ¢, d € Q* be nonzero rational numbers with abcd square
and a+b+c+d = 0. Assume that no two of a, b, c,d sum to 0. Then the set
of rational points of the surface Vg p ¢4 is dense in both the Zariski and the real
analytic topology.

The surfaces V, .4 are smooth quartic surfaces, which means that they are K3
surfaces. One of the most important open problems in the arithmetic of K3 surfaces
is to determine whether there is a K3 surface over a number field on which the set
of rational points is neither empty nor Zariski dense. Theorem 1.1 shows that a
diagonal quartic surface over Q for which the product of the coefficients is a square
does not have this property, unless all its rational points lie on the union of its 48
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lines and the coordinate planes. However, no such diagonal surface is known and
the authors believe that the condition in Theorem 1.1 that P not lie on one of the
48 lines or on one of the coordinate planes may not be necessary.

Noam Elkies [1988] proved that the set of (Q-rational points on V; 1 1,—1 is dense
in both the Zariski topology and the real analytic topology. Martin Bright [2006]
has exhibited a Brauer—Manin obstruction to the existence of rational points on
many examples. Sir Peter Swinnerton-Dyer in his paper [2000] assumes like us
that abcd is a square. He uses one of the two elliptic fibrations that exist in this
case to show that under certain specific conditions on the coefficients, V, 5 c.q
does not satisfy the Hasse principle, while under some other hypotheses, including
Schinzel’s hypothesis and the assumption that Tate—Shafarevich groups of elliptic
curves are finite, the Hasse principle is satisfied. In particular, assuming these
two big conjectures, it follows immediately from his work that if abcd is a square
but not a fourth power and no product of two coefficients or their negatives is a
square and there is no Brauer—Manin obstruction to the Hasse principle, then the
set of rational points is Zariski dense; the last hypothesis is obviously satisfied
when V, p .4(Q) is nonempty. By Theorem 1.1 the fact that the set V, p .4 (Q)
is nonempty indeed implies that it is Zariski dense, independent from Schinzel’s
hypothesis and the assumption that Tate—Shafarevich groups of elliptic curves are
finite, provided that we assume instead the existence of a rational point that does
not lie on any of the 48 lines or any of the coordinate planes.

Jean-Louis Colliot-Thélene, Alexei Skorobogatov, and Swinnerton-Dyer also
used Schinzel’s hypothesis and finiteness of Tate—Shafarevich groups to show in
[Colliot-Thélene et al. 1998] that over arbitrary number fields, on semistable ellip-
tic fibrations satisfying certain technical conditions, the Brauer—Manin obstruction
coming from the vertical Brauer group is the only obstruction to the Hasse princi-
ple; and that if such a fibration contains a rational point, its set of rational points
is Zariski dense. Olivier Wittenberg [2007] generalized their theory to the extent
that Swinnerton-Dyer’s aforementioned result over the rational numbers becomes
a special case of this more general setting, thus extending the result to arbitrary
number fields.

Colliot-Thélene pointed out the method of Richmond [1944] to the authors,
which takes a rational point P on V = V, ;.4 to construct two new points over
Q(«/abcd). Each of these two points is the unique last point of intersection be-
tween V and one of the two tangent lines to the singular node in the intersection
between V and the tangent plane to V at P. In this paper we reinterpret this
construction to study the arithmetic of the surface V.

In the next section, we exhibit two endomorphisms e; and e, of V, 5 ¢4 such
that e; (P) and e,(P) are the two points given by Richmond’s construction. The
diagonal surfaces have two elliptic fibrations and each fibration is fixed by one
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of the two endomorphisms. Thus, if ¢; is one of the endomorphisms and P is a
rational point on the surface, we will consider the fibre C; of the fibration fixed
by the endomorphism e; that passes through P. This is a curve, so we can study
the divisor (¢; (P)) — (P) on it. Subject to the hypotheses, we will see that it is
almost never a torsion divisor, and hence that fibres with rational points tend to
have positive rank.

Our results are very much in the spirit of the potential density results from
[Bogomolov and Tschinkel 1999; 2000; Harris and Tschinkel 2000]. These pa-
pers describe a variety of techniques for proving density and potential density of
rational points on a variety of surfaces, including in particular the diagonal quartic
surfaces we consider in this paper. Our results improve on these only in that we
strengthen the conclusion of the potential density results to actual density, and
that we weaken the hypotheses on the density results to demanding only a single
rational point satisfying a weak genericity condition. For an excellent overview
of techniques used to prove density and potential density of rational points on
algebraic varieties, please see Brendan Hassett’s survey [2003].

2. The elliptic fibrations and endomorphisms

Definition 2.1. For a, b, c,d € Q* we let V, ;4 be the surface in P3 given by
axt+by*+czt +dw*=0. Set Vo=V, 11,1 and V=V 1 _1 1. Let 7: P? — P3
be the map that squares all four coordinates. Set Q4 p.c.da = T(Va.b.c.d)-

Suppose a, b, ¢, d € Q* with abed € (@*)? and write V and Q for Va.b.c.a and
Qa,b,c,a respectively. Suppose that V has a rational point. Then Q, which is a
nonsingular quadric surface defined by ax? + by? + cz* 4+ dw? = 0, also contains
a rational point. Since abcd is a square, the two rulings on Q are defined over (1;
see [Bruin 2008, Lemma 2.5].

Definition 2.2. Fix a rational point R on O, and decompose the intersection of Q
with the tangent plane to Q at R into two lines /1, [r. Let 71, 7p: Q — P! be two
rulings on Q such that /; is a fibre of z;. Fori =1,2,set fi =m;jo7: V — Pl

Our description of the two rulings shows that they can be defined over (0. How-
ever, the two rulings do not depend on R in the following sense. Let R’ be another
rational point on Q. Then by the same construction we obtain two rulings, which
we can number 7|, 75: Q — P!, such that for each i the maps z; and ] coincide
up to a linear automorphism of P!.

Any two linear forms defining /; define a map to P! equal to 7 j up to a linear
transformation of P!, with i # j. Using additional lines in the same family, we
can obtain alternative equations for the rulings and remove the base locus. The f;
are elliptic fibrations on V, also well-defined up to an automorphism of P!,
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Definition 2.3. Fix fourth roots of a, b, c,d. Let 1,4 be the @—isomorphism
Vab.ed = Vo defined by (ax : /by : ¥/cz : v/dw). Fix fourth roots of 1 and —1,
and let z;’b,c,d be the Q-isomorphism Va,b,e,d =V, defined by 11—1.-1 'olap.cd.

Note that the fibrations f; of V =V, ;, . 4 Were constructed geometrically. There-
fore, the fibrations of V, j .4 coincide with those of Vj 11,1 up to composition with
lq.b,c.d and a linear automorphism of Pl

When we study the geometric properties of diagonal quartics, it suffices to con-
sider Vj or V. It is only when we consider the arithmetic properties that we need
to allow the coefficients to vary. While some formulas are more symmetrical on
Vo, some things are defined over Q for VO’ that are not for V. For example, the two
elliptic fibrations on V] are defined by (x?—=z22:y>—w?) and (x> —w?: y> —7?),
whereas on Vjy they can only be described over Q as maps to a curve isomorphic
to the conic x% 4 y? 4 z2 = 0. To give a fibration of V; over P! requires changing
base to a field over which this conic has a point.

Definition 2.4. Let x denote the group of automorphisms of P that multiply each
coordinate by a fourth root of unity, and let Sy act on the coordinates of P3. We
will regard u as inducing a subgroup of Aut V. Any permutation 7z € S4 induces
an isomorphism from V, 4 ¢ 4 t0 V' iy o 4, Where (a’, b’, ¢’, d’) is the appropriate
permutation of (a, b, c, d).

Definition 2.5. Let G be the semidirect product u x S4, with the obvious action of
S4 on u. We will view G as a subgroup of Aut Vj, and through conjugation with
la.b,c.d also as a subgroup of AutV, p ¢ 4.

Note that when G is viewed as acting on Vj, the elements of S4 correspond to
Q-automorphisms of Vj; this is not the case when G is considered as acting on a
general V, 4 c.q.

The surface V contains exactly 48 lines, on which G acts transitively. On V[
one of these lines is given by x =z and y = w. (For facts regarding the set of lines
on V, .c.a4, see for example [Pjateckii—§apiro and Safarevi¢ 1971].)

Definition 2.6. Let G denote the index-2 subgroup of G that fixes the fibrations
fi (up to an automorphism of P!).

The group G partitions the 48 lines into two orbits A; of size 24 (withi =1, 2),
where A; consists of the irreducible components of the 6 singular fibres of f;, each
being of type 14 [Swinnerton-Dyer 2000, page 517]. The singular points of the
fibres are exactly the 24 points with two coordinates zero, and each of these points
is singular on its fibre in both fibrations.

Definition 2.7. Let Q denote the set of these 24 points, and let U be the comple-
ment of Qin V.
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We will see that the “tangents” to the node at P that we described in the intro-
duction can be characterized in a different manner as well, namely as the tangents
to the fibres of the f; through P. We first show that these tangents do not interfere
too much with the singular fibres.

Lemma 2.8. Fix a point P € U(Q), and i, j such that {i, j} ={1,2}. Fork=1,2,
let Cy be the fibre of fi through P, and let M be the tangent line to C; at P. Then
M is not contained in C;.

Proof. Since this statement is completely geometric, we assume V = V| without
loss of generality. Note that M is well-defined because C; is smooth at P. Suppose
M is contained in C;. Then M is one of the 48 lines. After acting on V by an
appropriate element of G, the line M is given by x = z and y = w, so there are
s,t € @ such that P = (s : ¢ : s : t). Since M is contained in the fibre above
(0 : 1) of the fibration that sends (x : y : z : w) to (x> — z* : w? + y?), the curve
C; is a fibre of the other fibration, so f; can be given by x>+ 22w+ y?),
or equivalently (w? — y? : x> — z%). Since fi(P) = (s? : 1?), we conclude that
C; is given by s?(w? + y?) = t>(x*> + z%) and *(w? — y?) = s?(x?> — z%). The
tangent line to C; at P is therefore also given by s2t(w +y) = t2s(x +z) and
t3(w — y) = s>(x — 7). Simple linear algebra shows that this does not contain M
unless st = 0. This contradicts the assumption that P € U, which shows that M is
not contained in C;. Il

The following proposition is fundamental to our work and shows how the case
of diagonal V is special.

Proposition 2.9. Fix a point P € U(Q) and set R = t(P). Let Tg denote the
tangent space to Q at R, and set A = t='(Tr). Fix i € {1,2}, and let C; be
the fibre of f; through P. Let M denote the tangent line to C; at P. Then M is
contained in A. Furthermore, let Tp denote the tangent plane to 'V at P. If C; is
irreducible, then the intersection multiplicities (M - (Tp N'V))p and (Tp - C;) p are
at least 3.

Proof. Note that C; = 7! (L;), where L and L, are the lines in TN Q, so we have
CiUC,=1t"(TrN Q) =71 (TR) N7~ '(Q) = AN V. By the assumption P € U,
the curve C; is smooth at P, so M is well-defined. Without loss of generality, we
assume that P is contained in the affine part w =1, given by P = (xq, Yo, zo)- Since
the statement of Proposition 2.9 is completely geometric, we may assume that Q is
given by x> +y%+2z241=0, so that V is given by gy =0 with gy =x*+y*+z4+1,
and A by g4 =0 with g4 = xgx2 + ygy2 + zgzz + 1. Note that at most one of the
coefficients of the equation defining A is 0, so A is irreducible and smooth at P.
The common tangent space Tp to V and A at P is given by [ = 0, where

I = x5 (x —x0) +y5(y — o) + 25 (z — z0) = xpx + gy + 25z + 1.
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It turns out that since Q is diagonal, the surfaces A and V are more similar
locally at P than is implied by the fact that they share a tangent space. Let Ops p
and m be the local ring of P in 3 and its maximal ideal. Set g = xg (x —x0)> +
Yo (y — ¥0)* + 2§ (z — z0)* € m?. Then the quadratic approximations of ¢4 and gy
are g4 =2/+g mod m’ and gy =4/+6g mod m>. (Note that in fact g4 =2/+g
as well.) Let g1, g» € k[x, y, z] be quadrics such that C; is given on A by ¢g; = 0.
From C{ U C,; = V N A we conclude that gy = cq1q» mod g4 for some nonzero
constant c. Replacing g by cq;, we find that there exists a quadric r € k[x, y, z]
such that gy = g1g> + gar. From ¢; € m we find 4] = gy = g4r = 2lr mod m?,
and since 2/ # 0 in m/m?, this implies that r =2 mod m.

Let Oy, p and n denote the local ring of P on M and its maximal ideal, and let
the reduction map Ops p — Oy, p be given by s 5. Since M is contained in Tp,
we have [ = 0. Since C; is tangent to M, we have g; € n?, so giq> € n>. Note
that this also holds when M is a component of C;, because then we have g; = 0.
Therefore, we find 65 = gy = 7g4 = 2g mod n?, and so g € n. This implies
ga =g en’. If M were not contained in A, then this would imply that A intersects
M at P with multiplicity at least 3, which is impossible because A is quadratic and
M is linear. We conclude that M is indeed contained in A.

Now assume that C; is irreducible. Then by Lemma 2.8, the line M is not
contained in CyUC, = ANV, so M ¢ V. This implies that the first intersection is
between curves that have no common components. Because C; is the intersection
of two quadrics, it is not contained in a hyperplane. The same holds for the second
intersection.

The first intersection takes place in Tp and the multiplicity equals the valuation
of gy in Oy, p. From the congruence gy = 6g mod n3 we conclude that gy € n?,
so the multiplicity is at least 3. Let Oc_p and p denote the local ring of P on C;
and its maximal ideal, and let the reduction map Ops p — Oc p be given by s — 5.
Since gy vanishes on C;, we have 4/ +6g =0 mod p>. Because ¢ vanishes on
C;, we also have 2] + § = 0. Together this implies [ € p>. As [ defines Tp, this
implies that Tp intersects C; at P with multiplicity at least 3. O

Definition 2.10. For the rest of this section, fix a point P € U(Q) and i, j such
that {i, j} = {1, 2}. For k =1, 2, let Cj be the fibre of f; through P and M the
tangent line to Cy at P.

Corollary 2.11. The line M j intersects C; in a scheme of dimension 0 and degree 2
that contains the reduced point P. (The intersection may be a nonreduced scheme
supported at P.)

Proof. Let T and A = t~!(T) be as in Proposition 2.9. Recall that C; =7~ (L)
for some line L in Ty, so C; is defined in A by a single quadric. The line M; is
contained in A by Proposition 2.9, but not in C; by Lemma 2.8, so the dimension



Density of rational points on diagonal quartic surfaces 7

of the intersection is indeed 0. First suppose A is nonsingular. Then M; is a line
in one of the rulings on A. The curve C; on A is of type (2, 2), so it intersects M ;
twice, counted with multiplicity. The claim follows immediately. Now assume that
A is singular. Without loss of generality we assume V = V. Suppose P = (xg :
Yo :20:wo), so that A is given by xgx2 + ygy2 -I—Z(%zz + w(z)w2 =0. The facts that A
is singular and that P € U imply that exactly one of the coordinates of P is zero.
We deduce that A is the cone over a smooth conic, and that P is not contained
in any of the lines on V, as their equations imply that if one coordinate is zero,
then so is another. Therefore C; is smooth, so, as C; is defined in A by a single
equation, it does not contain the vertex S of A. This means we can naively apply
the usual intersection theory to study the intersections of C; with other curves. The
line M; is a line on A through the vertex § and intersects any hyperplane section
that does not go through S once. Since C; is a quadratic hypersurface section, we
find M; - C; = 2. Again, the claim follows. 0

Definition 2.12. Following Corollary 2.11, we define morphisms ¢;,e;: U — V.
The morphism e; sends any point R to the unique second intersection point between
the fibre of f; through R and the tangent at R to the fibre of f; through R. The
morphism e; is defined by interchanging the roles of i and ;.

By definition, ¢; and e; respect the fibrations f; and f; respectively.

Corollary 2.13. Let Tp denote the tangent plane to V at P, and set D=TpNV. If
C;j is irreducible, then the line M ; intersects D in the divisor 3(P)+ (e; (P)) of D.
If C; is irreducible, then Tp intersects C; also in 3(P) + (e; (P)), but as a divisor
on C;.

Proof. Let A be as in Proposition 2.9. Then we have M; CAand ANV =C; UC;.
If C; is irreducible, then M; is not contained in C;, and by Lemma 2.8 also not
in C;, so M; ¢ V, and M; N D is O-dimensional. If C; is irreducible, then it is
not contained in Tp, so Tp N C; is 0-dimensional. Both intersections have degree
4 by Bézout’s Theorem, applied in 7p and P? respectively. By Proposition 2.9
the intersection at P has multiplicity at least 3, so it suffices to show that ¢; (P) is
contained in both intersections. This follows from ¢;(P) € C; C V and ¢;(P) €
M j C Tp. O

Remark 2.14. Since the M, intersect D at P with multiplicity at least 3, they are
exactly the “tangent” lines to the node on D at P that we discussed in the intro-
duction. By Corollary 2.13 this means that the ¢; (P) are the two points obtained
from P as described there.

Remark 2.15. Let H be a hyperplane section of the generic fibre ; /Q(z) in P3 of
fi. By Corollary 2.13, if we identify ¥; with Pic! (V;), then ¢; is given by sending
R to H — 3R for any point R on V;.
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Although a computer is useful, even by hand it is not impossible to check that, on
an open subset, ¢; and e, are given by sending (xg : yo : zo : wo) to (x1:y1:21:w1)
with

x1 = x0((3beyyzg + adxjwg) (axg + dwg) + 4N xgyg 5w (byg — cz3)),
Y1 =0 ((3acxézg + bdygwg) (byg + dwé') + 4Nx§y§z5w%(czg — axg)) ,
21 = z0((Babxyyg + cdzgwg) (czg + dwg) + 4N x5 yg zgwg (axg — byy)),

w] = wy (cdzéwg(czé + dwg) — abxé‘yg(9czg + dwg)),

(1)

where N is one of the two square roots of abced.

Definition 2.16. For each coordinate v of P?, let 5, € u denote the automorphism
of P3 that negates the v-coordinate. For a pair of coordinates u, v, let 6,,, = 6,0,.

Proposition 2.17. The automorphisms o, commute with the maps e; on V and with
all the maps 14 p.c.4.

Proof. For the e;, this follows immediately from the equations in (1). For the
la.b.c.d it is obvious. O

Proposition 2.18. Assume P is contained in a line that is an irreducible compo-
nent of C;. Then there are two different coordinates u, v of P3 such that e i(P) =
0u» (P), while P and e; (P) lie on nonintersecting components of C; and e; (P) & Q.
In particular, e; (P) lies on a line.

Proof. By Proposition 2.17 we may assume V = V. Let L be the line in C; that
contains P. Note that the group G acts by conjugation on the set of the three
automorphisms of the form o, with u # ». The group G also acts by conjugation
on the pair of fibrations and acts accordingly on the set of the two sets A; of lines.
It follows that after acting with an appropriate element of G, we may assume that
Lis givenby x =z and y = w, so there are s, # € Q@ such that P = (s : ¢ : s : ). From
P ¢ Q we get st #0. Then f; can be given by (x : y:z:w) — (x> —z%: w>+y?),
while f; can be given by (x : y 1 z: w) (x% 422 : w> + y?). As e; respects
fi, it is easy to check which equations in (1) give e;. It turns out that ¢; is given
by (1) with N = 1, while e; is given by N = —1. Substituting in (1), we find
ej(P) = (—s:t:—s:1) =0 (P)and ¢;(P) = (13 : —s3 : =13 : §%). Itis
clear that ¢; (P) is not contained in Q and lies on the component of C; given by
x +2z=y+w =0, which is a line and does not intersect L. U

Proposition 2.19. Let € Sy be an automorphism of Vi in P3 given by permutation
of the coordinates, and let S4 act on V =V, p . 4 by conjugating the action on Vy
With 14 p.c.d- Then we; = exm, where k =i if the permutation underlying m is even
and k = j if it is odd.
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Proof. The statement is purely geometric, so we may assume V = V{. Note that 7
switches the rulings on the quadric given by x% + y? +z%> +w? =0 if and only if z
is odd, and it permutes the two elliptic fibrations on V accordingly. The statement
therefore follows from Corollary 2.11. O

We can rephrase Proposition 2.19 by stating that inside the group G = u x Sy
we have GgN S4 = A4. We see that if we conjugate the equations for e; in (1) by
an element in A4, then we obtain a new set of equations for ¢;. In particular this
will be true for the subgroup V4 C A4 of products of disjoint cycles. If instead
we conjugate the equations for e¢; by an odd element of S4, we get a new set of
equations for e;.

Proposition 2.20. The map e; extends to an endomorphism of U. The sets of
equations obtained by conjugating those in (1) with elements of Vy are sufficient to
define e; on all of U.

Proof. The set of all points R where none of these 4 sets of equations defines a
regular map is determined on V by the vanishing of all 16 polynomials in the sets.
One checks by computer that this set is supported on Q. Now suppose that for
some R we have ¢;(R) € Q, and let C; be the fibre of f; through R. Then ¢;(R)
also lies on C;, so C; is a singular fibre, and Proposition 2.18 contradicts ¢; (R) € Q.
We conclude that ¢;(U) C U. O

Remark 2.21. In fact the ¢; do not extend to any of the points in Q. One way to
prove this is to show that, for each point R € Q and each i, there are two lines that
meet at R whose images under the ¢; are disjoint. This reflects the fact that K3
surfaces do not have endomorphisms of degree greater than 1.

Proposition 2.22. The following are equivalent: (a) e;(P) = P, (b) e2(P) = P,
(¢) exactly one of the coordinates of P is (.

Proof. Without loss of generality we suppose V = V;. Let A be as in Proposition 2.9
and assume P = (xg: yo:z0: wg). Then A is given by x§x2+y§y2+z(2)z2+w§w2 =
0. Suppose (c) holds. Then A is the cone over a nonsingular conic, and from
M, M, C A we conclude that M| = M, is the unique line on A through P and
the vertex of A. This implies that the M; are both tangent to both the C;, so
the second intersection point in M; N Cy and M, N C; is again P, proving (a)
and (b). Alternatively, we can verify the statement by direct calculation: we may
assume xo = 0 by Proposition 2.19. Substituting into (1) and using — yg = zg + wg ,
we simplify ¢; (P) to (0 : —ygzgwg : —ygzgwg : —yé’zgwg) = (0:y:z0: wo).
Conversely, fix k € {1, 2} and assume ez (P) = P. If Cy were singular, then P
and e (P) would lie on nonintersecting components of Cy by Proposition 2.18,
so we conclude that Cy is nonsingular. By Corollary 2.13 the divisor 4(P) =
3(P) 4 (ex(P)) on Cy is linearly equivalent to a hyperplane section H. Since
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multiplication by 4 on the Jacobian of Cy has degree 16, there are exactly 16 points
S on Cy for which 48§ is linearly equivalent to H. By the implication (c) = (a)
& (b), we can already account for all 16 of these points, namely the intersection
points of the coordinate planes with Cy, as each of the 4 planes intersects Cy in 4
different points. This shows that P is one of these points, which proves (c). 0

Proposition 2.23. Suppose that C; is irreducible. Then the divisor (eiz(P)) —(P)
on C; is linearly equivalent to —2(e; (P)) + 2(P).

Proof. Let H denote the hyperplane class on C;. By Corollary 2.13 we have
3(S) + (e; (S)) ~ H for any point S on C;. Applying this to S = P and S = ¢; (P),
we obtain 3(P)+ (e¢; (P)) ~3(e; (P))+ (eiz(P)), from which the statement follows.

O

Remark 2.24. Proposition 2.23 tells us that if we give C; the structure of an elliptic
curve with origin P, then we have eI.Z(P) = —2¢;(P), and by induction we obtain
el (P)=aue;(P) witha; =1and a,11 = —3a, + 1.

Corollary 2.25. Assume that C; is irreducible. Then the divisor (e;(P)) — (P) has
order dividing 3 if and only ifeiz(P) =¢;(P).

Proof. By Proposition 2.23, the order divides 3 if and only if el.z(P) is linearly
equivalent to ¢; (P). This is equivalent to eiz(P) = ¢;(P), because two different
points cannot be linearly equivalent on a curve of positive genus. 0

Our goal is to prove that the class of the divisor (¢; (P)) — (P) on C; is often of
infinite order in the Jacobian of C;. It turns out that this class is 2 times the class
of a divisor that has a simple description.

Proposition 2.26. Assume that C; is nonsingular. Then the divisors (e; (P)) — (P)
and 2(o, P)—2(P) on C; are linearly equivalent, where u is any of the coordinates
on P3.

Proof. As this statement is purely geometric, we may assume V = Vj. By Propo-
sition 2.19, we may assume that f; is given by (x : y : 7: w) > (x> —z%: y? —w?),
and since A4 acts transitively on the coordinates, also that u = y. Write P =
(x0: Yo : zo : wo). Adding 4(P) to both sides and using Corollary 2.13 to identify
(ei (P)) + 3(P) with the hyperplane class on C;, we see that it is enough to find
a hyperplane whose intersection with C; is 2(P) + 2(g,(P)). A straightforward
calculation shows that the plane (s> + 1) (wox — xow) — (s> — t?)(woz — zow) has
this property, where (s : 1) = (x(% — z% : yg — w%) is the image of P under f;. [J

Proposition 2.27. Assume C; to be irreducible. Then for any two coordinates u, v
of P3, the divisor 2(c,,(P)) — 2(P) on C; is principal.
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Proof. Twice applying Proposition 2.26 to ¢, (P), once with the coordinate u and
once with v, we see that the divisors 2(c,, (P)) — 2(c,(P)) and 2(P) — 2(o,(P))
are linearly equivalent. The result follows immediately. O

Proposition 2.28. Let P = (xo : yo : 20 : wo) and V = V. Let Cy be the fibre
through P of the fibration given by (x : y : 7 : w) — (x> + 2% : y> + w?), and
let Cy be the other fibre. For k = 1,2, we let Ey be the elliptic curve Cy with
P as origin, provided that Cy. is nonsingular. Let i denote a fixed square root of
—1. If Cy is nonsingular, then the rational points of exact order 4 on E| are the
(£z0 : Two : £x9 : £yo) with three + signs and one — sign; the other points of
exact order 4 are given by

(U)() : :|:iZ() . :|:iy() 2X()), (—U)Q . :|:iZQ . :|:iy() 2X()),
(yo : %ixg: £iwo: —2z0), (yo : Fixo: Fiwog : 20).

If Cy is nonsingular, then on E», the (Xwy, £20, Zyo, £x0) with three + signs and
one — sign are all the rational points of exact order 4; the others are given by

(:I:iZ()Iw()i:l:ixOZy()), (:I:iZOZ —w()Z:FiX()iy()),
(Fiyo:xo:Liwg: z0), (Fiyo : —xo : £iwg : z0).

In particular, for each k € {1,2} there is a set Sy of 12 automorphisms of V;
defined over Q(i) such that, for R in an open subset of V, the class of the divisor
(ex(R)) — (R) on the fibre of fi through R is of exact order 4 if and only if e; (R) =
a.(R) for some o € Sk.

Proof. One proof consists of finding a Weierstrass form for C;, finding all 4-torsion
points, and then pulling them back to our model. Instead, we show directly that for
each S among the given points, the double 2.5 is one of the 2-torsion points o, (P)
given in Proposition 2.27. Take for instance the point § = (z¢ : wg : xo : —yg) on
E|. The tangent plane to V at S is given by / =0 with [ = ng + wgy —xgz + ySw.
By Corollary 2.13 this plane intersects C; with multiplicity 3 at S and multiplicity
1 at e;(S). One checks, for instance using (1), that the plane given by m = 0 with
m = zowo(wox — zoy) — xo0Yo(Yoz + xow) contains S and e (S). It follows that the
function g =m/[ on Cy is regular everywhere, except perhaps for a double pole at
S. Since C; is not contained in a plane, the function g is not constant. As C; has
positive genus, the function g has more poles than just one simple pole, so g has
exactly a double pole at S. Set A = g(P), then one easily checks that g — A also
vanishes at o,,(P), so we have (g — 1) = P + 0., (P) — 28, which shows that on
E| we have 2S5 = o,;(P), so by Proposition 2.27, the point S has order exactly 4.
The other points can be handled similarly. O

The simplicity of the formulas in Proposition 2.28 reflects the well-known fact
that the Mordell-Weil groups of the Jacobians of these fibrations over Q(i)(r)
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are both isomorphic to Z/47 @& 7 /AZ; see [Pjateckii-Sapiro and Safarevi¢ 1971,
paragraph 8].

Proposition 2.29. Assume that P is defined over Q) and that all its coordinates are
nonzero. If (e;(P)) — (P) is a torsion divisor class on C;, its order is at most 4.

Proof. Since the coordinates of P are all nonzero, the 2-torsion subgroup of the
Mordell-Weil group of the Jacobian of C; over Q has order 4 by Proposition 2.27.
By Mazur’s theorem [1977], the torsion subgroup of C; is therefore Z /27 &7 /2kZ
where k < 4. Accordingly, if (¢;(P)) — (P) is torsion, then, since it is a multiple
of 2 by Proposition 2.26, its order is at most 4. O

Of course the order of (¢;(P)) — (P) is 1 if and only if ¢;(P) = P; that is, by
Proposition 2.22, if and only if one of the coordinates of P is 0. In this case, P is
fixed by both endomorphisms e, and the construction of this paper does not allow
us to exhibit infinitely many rational points on V.

Proposition 2.30. Assume that C; is nonsingular. Then the exact order of the
divisor (e;(P)) — (P) is 2 if and only if P lies on a line.

Proof. Suppose that P lies on a line L. Then none of its coordinates is 0, as the
intersection of any line with any coordinate plane is contained in 2. By Proposition
2.22 this implies e; (P) # P, so ¢;(P) and P are not linearly equivalent, as no two
different points are linearly equivalent to each other on a curve of positive genus.
The line L is a component of C; with j # i, so by Proposition 2.18 we have
¢;(P) = o,,(P) for some coordinates u, v of 3. By Proposition 2.27 we find
immediately that (e; (P)) — (P) has order 2, thus proving one implication.

Note that each L of the 24 lines in the fibres of f; intersect C; in two points by
Corollary 2.11, which are different by Lemma 2.8. This already gives 48 points S
on C; with 2(¢; (S)) ~ 2(S). By Proposition 2.22, the 16 intersection points of C;
with the coordinate planes also satisfy 2(e; (S)) ~ 2(S), so that is 64 points total.
Note that 3(S) + ¢; (S) is linearly equivalent to a hyperplane section H on C; for
every point S on C; by Corollary 2.13, so we have 2(e; (S)) ~ 2(S) if and only if
8(9) is linearly equivalent to 2H. Since multiplication by 8 on the Jacobian of C;
has degree 64, there are no points S with 8(S) ~ 2H other than the ones already
described. This proves the converse. U

3. Proof of the main theorem

Definition 3.1. Let k be a positive integer and i € {1,2}. Define T}; to be the
closure of the locus of points P on V for which C;, the fibre of f; through P, is
nonsingular and where (e; (P)) — (P) is a divisor of exact order k on C;.

In these terms, Proposition 2.22 states that 771 = T}, is the intersection of V
with the union of the coordinate planes. Likewise, in Proposition 2.30 we showed
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that 751 U Ty is contained in the union of the lines on V. Therefore, if a point
P satisfies the hypotheses of our main theorem (Theorem 1.1, repeated below as
Theorem 3.4), it does not lie in Ty; for any k, i € {1, 2}.

By Corollary 2.25, we have that T3; is the closure of e, 1(Tli) \ T1;. Now,
Ty; consists of the intersections of the coordinate planes with V. Calling these
X1, X2, X3, X4, a straightforward computer calculation shows that e;” 1(X j) =
X; UY;;, where the Y;; are geometrically irreducible. In other words, each Tj3;
is the union of four irreducible components. Also, as in Proposition 2.28, the exact
order of ¢;(P)— P is 4 if and only if ¢; (P) = a(P), where a ranges over a certain
set of 12 automorphisms. So Ty; is the union of 12 such curves, which are in fact
geometrically irreducible.

Theorem 3.2. The set Tx; is the union of geometrically irreducible curves of geo-
metric genus 41, while Ty; is the union of geometrically irreducible curves of geo-
metric genus 13.

Proof. From the above, we can compute the 73; and 7y; explicitly using any com-
puter algebra package. Without loss of generality we assume that V = V!, given
by x*+y* =z*+w*, and that the fibration f; is given by (x : y :z: w) > (x> —272:
y% 4+ w?), so that in terms of Proposition 2.28 we have i = 2. Then ¢; is given by
(1) with N = 1.

We first consider 74;. Consider the automorphism a: V — V given by (x : y :
z:w) (—w:z:y:x),so that a is one of the 12 automorphisms of Proposition
2.28 for which for any point P € U with e¢; (P) = a(P), the divisor (e; (P)) — (P)
has exact order 4 on the fiber of f; through P. It is easily computed that the locus
of such points is an irreducible curve D whose union with the skew quadrilateral
Q C V given by w? + x> = y?> — 72> = 0 is the degree-4 hypersurface section
given by yz(y? — z?) = xw(x*> + w?). Note that a skew quadrilateral of lines
has self-intersection 0 and intersects a hyperplane section with multiplicity 4. We
deduce that the self-intersection D? equals 32, so that by the adjunction formula
the arithmetic genus of D equals %(D2 +2) =17. One also checks that D has four
ordinary double points, namely at the singular points of Q. It follows that D has
geometric genus 17 — 4 = 13. The other components can be dealt with similarly,
or by symmetry under the action of the group G¢ of Definition 2.6.

For T3; we consider the locus of points P for which ¢; (P) is contained in the
coordinate plane x = 0. One checks that this locus is the union of this coordinate
plane itself and an irreducible curve E whose union with the two disjoint skew
quadrilaterals given by x> —iy? = 72 +iw?> =0and x> +iy> =z2> —iw? =0is
the degree-8 hypersurface section given by x2y2(z* — w*) = w?z?(x* + 3y*). We
deduce that the self-intersection E? equals 128, so that by the adjunction formula
the arithmetic genus of E equals %(E2 +2) = 65. One also checks that E has an
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ordinary double point at each of the 24 points of € of Definition 2.7. It follows
that £ has geometric genus 65 — 24 = 41. For the remaining coordinates we get
three more isomorphic curves. O

Proposition 3.3. The intersection (T3 U Ty1) N (T3p U Typ) does not contain any
rational points outside the coordinate planes and the 48 lines on V.

Proof. Suppose P is a rational point in the given intersection that is not on any of
the coordinate planes, and set Q =1, ,4(P) € Vo. Then the ratios of the fourth
powers of the coordinates of Q are rational. By computer calculation, we will see
that up to the action of G, there is only one such point on Vy with this property.
Working on Vp, we intersect every component of 731 and 74 with every component
of T3, and Ty;, and remove extraneous points with one of the coordinates 0 or that
lie on a line. Then we resolve these schemes into primary components over Q.
Since all of the intersections have dimension 0, we may use Magma to find all
the Q-points on these components. The only points for which the fourth powers
of the coordinates have rational ratios are in the orbit under G (acting on Vj) of
(7:1:1:1) with #* = =3, so Q is one of these points, defined over Q(, #),
where i denotes a square root of —1, and P is its inverse image under 14 p ¢ 4.
Let a, f, 7, 6 be the fourth roots of a, b, ¢, d respectively that determine 1, p ¢ 4,
viewed as elements of a field K = Q(i, a, 5, v, J, ). Fix an extension v3 of the
3-adic valuation of Q to K. Note that # is a uniformizer for v3; we normalize so
that v3(¢#) = 1. Given a K-point R=(rg:ry:rp:r3) of V,letv(R) = Z?:o v3(r;)
viewed as an element of Z/47. 1t is clear that v(R) is well-defined, G-invariant,
and 0 if R is defined over Q. However, v(P) = v3(n/(afy d)), and from the fact
that abcd is a square it follows that v3(afy o) is even. This is a contradiction,
because v3(7) = 1 and v(P) = 0. We conclude that such a P does not exist. [

We are now ready to prove the main theorem, repeated here.

Theorem 3.4. Let a, b, c,d € Q be nonzero rational numbers with abcd square.
Let P = (xo : Yo : 20 : wo) be a rational point on V,p 4, and suppose that
Xo0Yozowo 7 0 and that P does not lie on any of the 48 lines of the surface. Then
the set of rational points of the surface is dense in both the Zariski and the real
analytic topology.

Proof. Fori = 1,2, let C; denote the fibre of f; through P, endowed with the
structure of an elliptic curve with P as the origin. By assumption, ¢; (P) does not
have order 1 or 2 on either C;. That being so, Proposition 3.3 assures us that for
some i the order of ¢;(P) is infinite. Say (without loss of generality) that this i
is 1. Then the subgroup S of C;(R) generated by e;(P) and the 2-torsion points
is infinite and, in fact, dense in the real analytic topology. For each point Q in S,
consider the divisor class (e2(Q)) — (Q) on the fibre of f; passing through Q. Its
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order is 1 or 2 finitely often, by Propositions 2.22 and 2.30; by Theorem 3.2 it is
3 or 4 finitely often, because C; does not have genus 41 or 13 and so cannot be
one of the curves on which the order of (e2(R)) — (R) is 3 or 4 for all R. In other
words, there are only finitely many points Q in S for which the fibre of f, through
Q contains only finitely many rational points. If R € S is not one of these finitely
many points, then similarly the set of rational points on the fibre of f, through R
is infinite and dense in the real analytic topology. Of course C| meets any fibre
of f> in only finitely many points, so there are infinitely many distinct fibres of f»
with infinitely many rational points. Zariski density follows.

Now we treat the real analytic topology. If a, b, ¢, d were all of the same sign,
then V =V, 5 .« would not have any real points, so we conclude that not all of
them have the same sign. Since abcd is a nonzero square, it is positive, so two of
a, b, c,d are positive and two are negative. Without loss of generality, we assume
thata, d > 0 and b, ¢ <0, and we choose real a, 5, y, ¢ such that a*=a, ﬁ“ =—b,
y* = —c, and 6* = d. Then over R, one of the elliptic fibrations, say fi, is given
by (x:y:z:w) > (a®x?—p2y? 192722 = 6%w?) = (y 222+ %w? 1 a’x%> + f%y?), up
to a linear automorphism of P!. The fibration f> can be given by (x : y:z: w) —
(02x? — p%y? 1 272 + 0%w?) = (y22% — 6*w? : a’x® + p%y?). Let L be the line
defined by ax = fy and y z = dw. Then L is contained in the fibre of f, above
(0: 1) and it is easy to check that L(R) maps surjectively to f;(V (R)) C P'(R).

We now show that there exists a nonempty open subset A of V(R) in which the
subset of rational points is dense. The locus of points on V where f| and f> do not
give local parameters is of codimension 1. Since the set of rational points is Zariski
dense, we can choose a rational point Q not on a line or a coordinate plane such
that f; and f, give local parameters at Q. We choose Q such that the set of rational
points on the fibre F of f} through Q is dense in F(R) as well. Let A C V(R) be
an open neighbourhood of Q and J;, J, C P!(R) connected open subsets such that
the map f = (f1, f2): A — Ji x J» is a homeomorphism. It suffices to show that
f(ANV(Q))isdensein J; x J,. Sets; = f;(Q), so that f(Q) = (s1, s2). Choose
(r1,r) € Ji x J. Since the rational points on F are dense in F(R), following
the proof of the density of rational points in the Zariski topology, we can choose a
rational #; € J,, arbitrarily close to r,, such that (s;, ) = f(R) for some R € F(Q)
for which the rational points in the fibre G of f, through R are dense. Therefore,
there is a #1, arbitrarily close to ry, such that (¢1, 1) = f(T) for some T € G(Q).
Since (11, ) can be chosen arbitrarily close to (rq, r2), it follows that V(Q)N A is
dense in A. The following diagram depicts the remainder of the argument.

Let I ¢ P!(R) be a nonempty connected open subset contained in fi(A) = J;.
Suppose B is a nonempty open subset of V (R) and let J C P!(R) be a connected
open subset contained in f;(B). Since fi(L) = fl(fz_l((O : 1))) contains I and
J, for t € P'(R) close enough to (0: 1) the set f;( f[l(t)) intersects both I and J
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{ L &Y WY ) [ & \
) —®) :
1 J P (R)
—h=fi(A) —

nontrivially. Choose such a ¢ close to (0 : 1), let G, denote the fibre f2_1 (t), and
choose a nonempty connected open subset I’ C P! (R) contained in I N f (G, (R)).
Since V(Q)N A is dense in A, we may choose Q € V(Q)N A such that a = f1(Q)
is contained in I’ and the set of rational points on the fibre F, = fl_l(a) is dense
in F,(R); moreover, such that the set S of those rational points R on F, for which
the set of rational points on the fibre of f, through R is dense, is itself dense
in F;(R). Since a € I’ is contained in f1(G;(R)), there is an X € G,(R) with
f1(X)=a,sowecanfind R € S C F,(Q) such that R is arbitrarily close to X and
thus b = f>(R) is arbitrarily close to ¢. Since f1(G,(R)) intersects J nontrivially,
we may choose R so close to X that also f1(G,(R)) intersects J nontrivially, with
Gy = fz_] (b). Since the set of rational points on Gy is dense in G,(R), we can
find a point T € G,(Q) such that ¢ = f1(T) is contained in J; moreover, we can
pick T so that the set of rational points on the fibre F, = f]_1 (c) is dense in F,.(R).
Since F.(R) intersects B nontrivially and F,.(Q) is dense in F.(R), we conclude
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that B contains at least one rational point. Thus, any nonempty open subset of
V(R) contains at least one rational point, and we conclude that V (Q) is dense in
V(R). O

Remark 3.5. One might wonder about the possibility of proving that the rational
points are dense in the p-adic topology as well as the real one. Sadly, the techniques
of this paper are insufficient to prove this. To see this, note that our techniques start
from a given rational point, and then move along fibres of the two fibrations to enter
any given open set. In the p-adic topology, this is known to be impossible. For
instance, there is an example of Swinnerton-Dyer, which is easy to verify, in which
he shows that for the surface x*+ y* = 9z* + w*, every 3-adic point satisfies either
3|x/y or 3|y/x, and all smooth fibres of each fibration contain only one of the two
kinds of points.

It might be possible to prove something weaker using these techniques. For
example, it might be possible to prove that there is some nonempty p-adic open
set U on which the rational points are dense. We have not attempted to do this.

The second theorem from the introduction, also repeated here, follows almost
immediately.

Theorem 3.6. Let a, b, c,d € QF be nonzero rational numbers with abed square
and a + b+ c+d = 0. Assume that no two of a, b, c,d sum to 0. Then the set
of rational points of the surface Vg p..q is dense in both the Zariski and the real
analytic topology.

Proof. The surface V, .4 contains the point P = (1 :1:1: 1), which does not
lie on a coordinate plane. Each of the 48 lines on V is contained in one of the
sets ax* + by4 =0, ax* +cz* =0, or ax* +dw* = 0. Since no two of a, b, ¢, d
sum to zero, the point P does not lie on any of the lines. By Theorem 1.1, the set
of rational points of the surface is dense in both the Zariski and the real analytic
topology. O

Remark 3.7. Theorem 1.2 is included to give a large family of surfaces for which
we can prove unconditionally that the set of rational points is dense. Each surface
V = Vap.c.a Witha + b+ c+d =0 contains the point P = (1:1:1:1) and if
N? = abcd, then V also contains the less trivial point Q = (x : y : z : w) with

x=Bbc+ad)(a+d)+4Nb —c),
y=Q@Bac+bd)(b+d)+4N(c—a),
z2=QBab+cd)(c+d)+4N(a—D),
w = —d(ab+ac+bc) —9abc,

(2)

which equals e; (P) for some i € {1,2} by (1). Theorem 1.2 appears weaker than
Theorem 1.1 because of the condition a +b + ¢ +d = 0, but in fact Theorem 1.1
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follows directly from Theorem 1.2. Indeed, given a point P’ = (x¢ : yo : 20 : wo)
on V' =Vypea,themap (x 1y :z:w)— (x(;lx : yaly : zalz : walu)) sends
P'to P=(1:1:1:1) and induces an isomorphism zp/ from V' to V.=V, p c.q
with a = a’xé, b= b/yg, c= C/Zé, and d = d’wé, satisfying a + b+ c+d = 0.
The point P’ lies on a line in V' if and only if P lies on a line in V, which is the
case if and only if two of a, b, ¢, d sum to 0. In a conversation, Andrew Granville
reduced (1) to the equations in (2) and noted that the endomorphism ¢; on V' can
be recovered from these simpler formulas, as we have ¢; (P’) = rg,l (0).

Remark 3.8. Without reference to the real analytic topology, Theorem 1.1 and its
proof also apply to rational function fields over Q. Take, for instance, the function
field K = Q(a, b, ), setd = —a —b —c, and define L = K[x]/(x> —abcd). Then,
as in Theorem 1.2, we find that V,, , . 4(L) is Zariski dense in V, p ¢ 4.

4. General number fields

Theorem 1.1 does not generalize immediately to number fields, as Mazur’s theorem
does not either. Samir Siksek pointed out to us that one can prove the following
statement for general number fields. Note that Definition 2.3 applies to any number
field.

Theorem 4.1. There exists a Zariski open subset U C V1 1.1,1, such that for each
number field K there exists an integer n, such that for all a,b,c,d € K* with
abcd € K*Z, ifla_’},’c,d (U) CV =V, p.c.a contains more than n points over K, then
the set of K -rational points on V is Zariski dense.

Proof. Foreach P € V, let 0;(P) € {1, 2,3, ...} U{oo} denote the order of ¢; (P)
on the fibre of f; through P with P as origin. We refer to o; (P) as the order of
(] (P) .

Recall that for any positive integer N, the curve X;(N) parametrizes pairs
(E, P), where E is an elliptic curve and P is a point of order N. The genus
of X{(N) is at least 2 for N = 13 and N > 16 (see [Ogg 1971, p. 109]). For the
remaining N, thatis, N e [ :={1,...,12,14, 15}, and i € {1, 2}, let T; x be the
closure of the locus of all points P on V ;1,1 suchthato;(P)=N.LetU C V; 11,1
be the complement of the 7; y, so that for all P € U we have 0;(P) & I.

Suppose K is a number field. By Merel’s Theorem [1996, Corollaire], there is
an integer B, depending in fact only on the degree of K, such that any K-rational
point of finite order on an elliptic curve over K has order at most B. Set

s= D #X (N)(K).
N<B
N¢I
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Note that s is well defined because for each N in the sum, the genus of X (N) is at
least 2, so #X1(N)(K) is finite by Faltings’ Theorem [1983]. We conclude that up
to isomorphism over the algebraic closure of K, there are at most s elliptic curves
over K containing a point of finite order N ¢ I.

Take a, b, c,d € K* with abcd € K *2_and let f1, f> be the elliptic fibrations
of V. =V, .4 over K as before. It is easy to check that the degree of the maps
ji: P! — P! that send € P! to the j-invariant of the fibre fl._l(t) equals 24.
Therefore there are at most 24s fibres of f;, defined over K, of which the Jacobian
contains a point over K of finite order N € I. Let R = Zle k?, and take n = 24sR
and assume U, pc.q = z;’lb’ eud (U) contains more than n points over K. Suppose
that no fibre of f; contains more than R points of U, 5 ¢.4(K). Then there would at
least be one point P € U, 5 q4(K) on a fibre of fi, say C, such that all K-rational
torsion points on the Jacobian of C have order in /. From P € U, 4 We derive
0;(P) ¢ I, s0 ¢; (P) has infinite order and C has infinitely many rational points. We
conclude that there is a fibre of fi, say C, with more than R points of U, 4 ¢4 (K).
By Merel’s Theorem, at least one of these points has infinite order, so that there
are infinitely many K -rational points on Cj.

As C intersects U, .4 nontrivially, infinitely many of these rational points Q
liein Uy p ¢ 4, thus satisfying 02(Q) & 1. Since at most n points Q on V have finite
order 02(Q) ¢ I on the fiber of f, through Q, we get 02(Q) = oo for infinitely
many rational Q on Cj. It follows that infinitely many fibres of f, contain infinitely
many rational points, so the set of rational points is Zariski dense. O
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