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Positive motivic measures are counting
measures

Jordan S. Ellenberg and Michael Larsen

A motivic measure is a ring homomorphism from the Grothendieck group of a
field K (with multiplication coming from the fiber product over Spec K) to some
field. We show that if a real-valued motivic measure u satisfies u([V]) > 0 for
all K-varieties V, then u is a counting measure; that is, there exists a finite field
L containing K such that x([V]) = |V (L)] for all K-varieties V.

Let K be a field. By a K -variety, we mean a geometrically reduced, separated
scheme of finite type over K. Let Ko(Varg) denote the Grothendieck group of
K, that is, the free abelian group generated by isomorphism classes [V] of K-
varieties, with the scissors relations [V] = [W]— [V \ W] whenever W is a closed
K -subvariety of V. There is a unique product on Ko(Varg) characterized by the
relation

[VI-[W]l=[V x W],

where x denotes the fiber product over Spec K. This product gives Ko(Varg) a
commutative ring structure with identity [Spec K]. For every extension L of K,
extension of scalars gives a natural ring homomorphism Kg(Varg) — Ko(Vary).
The map K +— Ky(Varg) can be regarded as a functor from fields to commutative
rings. Throughout the paper, we follow the usual convention of writing [ for [A}(].

Following the terminology of [Larsen and Lunts 2003], we call a ring homo-
morphism from Ko(Varg) to a field F' a motivic measure. Note that the origi-
nal meaning of this term [Hales 2005; Looijenga 2002] is different (though re-
lated). If K is a finite field, the map [V] + |V (K)| extends to a homomorphism
Uk : Ko(Varg) — Z, and therefore to an F-valued measure for any field F. More
generally, if L is an extension of K which is also a finite field, the composition
of uy with the natural map Ky(Varg) — Ko(Vary) gives for each F a motivic
measure. We will call all such measures counting measures.

In this paper, we consider positive motivic measures, by which we mean R-
valued measures x such that #([V]) > 0 for all K-varieties V. We now state our
main result.
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Theorem 1. Every positive motivic measure is a counting measure. In other words,
if K is any field and p: Ko(Varg) — R is positive, there exists a finite field L
containing K such that u([V]) = |V (L)| for all K -varieties V.

Of course, for other choices of F there may still be motivic measures such that
1 ([V]) lies in some interesting semiring of F for all K -varieties V. For example, if
F is C(u, v) and K = C, the measure sending V to its Hodge—Deligne polynomial
takes values in the semiring of polynomials in u, v whose term of highest total
degree is a positive multiple of a power of uv.

We begin with a direct proof of the following obvious corollary of Theorem 1.

Proposition 2. If K is infinite, there are no positive motivic measures on Ko(Varg).

Proof. Let u be such a measure. For any finite subset S of K, which we regard as
a zero-dimensional subvariety of A!,

0= puAN\S)=pnW)—ISI.
Thus, ¢ (L) > |S] for all subsets S of K, which proves the proposition. (]

For the remainder of the paper we may and do assume that K is finite, of cardi-
nality g. We write [« for the degree n extension of K.

Proposition 3. Let Q" denote the variety obtained from A" by removing all proper
affine-linear subspaces defined over [,. Then

[QT=L—q)L—g%) - (L—g".

Proof. For any [, -rational affine-linear subspace A of A", let A° denote the open
subvariety of A which is the complement of all proper [,-rational affine-linear
subspaces of A. Then [A°] = [QIMA] and one can write recursively

n—1
[QT=1" =D an[Q],
i=1

where a, ; is the number of [ -rational i-dimensional affine linear subspaces of A".
Thus, [Q"] can be expressed as P, (L), where P, € Z[x] is monic and of degree n.
It suffices to prove that ¢¢ is a root of P, (x) for all integers d € {1, 2, ..., n}.
For any d in this range Q"(F,«) is empty. Indeed, if x € A"(F ), then the n
coordinates of x together with 1 cannot be linearly independent over [,, which
implies that x lies in a proper [, -rational affine-linear subspace of A". Thus,

0= ur,, (Q") = Pa(q?). O

Corollary 4. If w is a positive measure on Ko(Varg,), there exists a positive integer
n such that u(L) = q".
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Proof. If ¢"' < u(l) < ¢" for some integer n, then u(Q") < 0, contrary to
positivity. (Il

Our goal is then to prove that x(L) = ¢" implies u = ug ,. We prove first that
these measures coincide for varieties of the form SpecF,« and deduce that they
coincide for all affine varieties. As Ko(Varg, ) is generated by the classes of affine
varieties, this implies Theorem 1.

Lemma S. Let u be a real-valued motivic measure of Ko(Varg,) and m a positive
integer. Then
u(SpeclFym) € {0, m}.

If Spec Fym has measure m, then Spec F,a has measure d whenever d divides m.
Proof. As

Fgm ®F, Fgm = Fiin,
the class x of Spec [, satisfies x2 =mx. If d divides m,

Fya ®5, Fgn = Féo,
so u(SpecFyn) =m implies u(SpecF ) =d. |

Of course,

m ifmin,
i, (SpecFym) = [

We will prove the same thing for the values of u(Spec F,»). We begin with:

0 otherwise.

Proposition 6. If u (L) = g" and u(Spec(F,+)) = k for some k > n, then

m ifm|n,
SpecF m) = 1
#(Speckyr) [O otherwise. )
For any integer k, we denote by X the complement in A! of the set of all points

with residue field contained in I]:qk.

Proof. By Lemma 5, u(Spec [ «) = d when d divides k. Choose an m not dividing
k, and let Y ,, denote the complement in X of the set of points with residue field
Fym. Then
1([Yem]) = u) = cad — cpp(SpecFyn),
dlk
where ¢; is the number of points in A! with residue field F,i. From the positivity
of u([Yk,n]) and the fact that

0= e, ((Yeml) =¢" - > cad,
dlk

we see that u (L) — g* = ¢" — g* must be nonnegative, which is to say k = n, and
that u(Spec Fyn) = 0. O
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Proposition 7. If (L) = q", then u(SpecFyn) = n.

Proof. The assertion is clear for n = 1, so we assume n > 1. Let ¢; denote the
number of points in A' with residue field Fgi. Thus ic; < g —1foralli > 1.1If
u(SpecFyn) =0, then u(Spec(F,i)) = 0 for all i > n, so for all k > 0 we have

n—1

pXi) =q"—g-D (¢ =1 =2.

i=2

Now we consider all curves in A? of the form y = P(x) where P(x) € Fylx]
has degree < 2n. The total number of such curves is greater than ¢, and for
any intersection point (a, £) of any two distinct curves of this family, a satisfies a
polynomial equation of degree < 2n over [,. Therefore, the open curves

Cp:={(x, P(x)) | x & F e},

indexed by polynomials P of degree < 2n, each isomorphic to X 2,), are mutually
disjoint. If C denotes the closure of the union of the Cp in A2, it follows that

#(CD > g™ u(Xean)) > ¢,
so #([A?\ C]) < 0, which is absurd. (]

Together, the two preceding propositions imply (1).

We can now prove Theorem 1. We assume u (L) = ¢". It suffices to check that
u([V]) = |V (F4»)| for all affine [, -varieties V.

Each closed point of V' with residue field [« corresponds to a d-element Galois
orbit in V(F,«). If d divides n, it gives a d-element subset of V(F;») and the
subsets arising from different closed points are mutually disjoint. Since V ([Fyn) is
the union of all these subsets, and u(SpecF,«) = d, we have

n((V1) = [V (Egn)l @)

for each [ -variety V. However, embedding V as a closed subvariety of A" for
some m, the complement W = A™ \ V is again a variety, so

p((W]) = [W(Fgn)I. (3)
Since
g"" = w(A"]) = u((V]D) + u(W])
> |V(Eg)| + W (Fgn)]
= |A"(Fgn)| = g™,

we must have equality in (2) and (3).
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