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measures

Jordan S. Ellenberg and Michael Larsen

A motivic measure is a ring homomorphism from the Grothendieck group of a
field K (with multiplication coming from the fiber product over Spec K ) to some
field. We show that if a real-valued motivic measure µ satisfies µ([V ]) ≥ 0 for
all K -varieties V , then µ is a counting measure; that is, there exists a finite field
L containing K such that µ([V ])= |V (L)| for all K -varieties V .

Let K be a field. By a K -variety, we mean a geometrically reduced, separated
scheme of finite type over K . Let K0(VarK ) denote the Grothendieck group of
K , that is, the free abelian group generated by isomorphism classes [V ] of K -
varieties, with the scissors relations [V ] = [W ]− [V \W ] whenever W is a closed
K -subvariety of V . There is a unique product on K0(VarK ) characterized by the
relation

[V ] · [W ] = [V ×W ],

where × denotes the fiber product over Spec K . This product gives K0(VarK ) a
commutative ring structure with identity [Spec K ]. For every extension L of K ,
extension of scalars gives a natural ring homomorphism K0(VarK )→ K0(VarL).
The map K 7→ K0(VarK ) can be regarded as a functor from fields to commutative
rings. Throughout the paper, we follow the usual convention of writing L for [A1

K ].
Following the terminology of [Larsen and Lunts 2003], we call a ring homo-

morphism from K0(VarK ) to a field F a motivic measure. Note that the origi-
nal meaning of this term [Hales 2005; Looijenga 2002] is different (though re-
lated). If K is a finite field, the map [V ] 7→ |V (K )| extends to a homomorphism
µK : K0(VarK )→ Z, and therefore to an F-valued measure for any field F . More
generally, if L is an extension of K which is also a finite field, the composition
of µL with the natural map K0(VarK )→ K0(VarL) gives for each F a motivic
measure. We will call all such measures counting measures.

In this paper, we consider positive motivic measures, by which we mean R-
valued measures µ such that µ([V ]) ≥ 0 for all K -varieties V . We now state our
main result.
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Theorem 1. Every positive motivic measure is a counting measure. In other words,
if K is any field and µ : K0(VarK ) → R is positive, there exists a finite field L
containing K such that µ([V ])= |V (L)| for all K -varieties V .

Of course, for other choices of F there may still be motivic measures such that
µ([V ]) lies in some interesting semiring of F for all K -varieties V . For example, if
F is C(u, v) and K =C, the measure sending V to its Hodge–Deligne polynomial
takes values in the semiring of polynomials in u, v whose term of highest total
degree is a positive multiple of a power of uv.

We begin with a direct proof of the following obvious corollary of Theorem 1.

Proposition 2. If K is infinite, there are no positive motivic measures on K0(VarK ).

Proof. Let µ be such a measure. For any finite subset S of K , which we regard as
a zero-dimensional subvariety of A1,

0≤ µ(A1
\ S)= µ(L)− |S|.

Thus, µ(L)≥ |S| for all subsets S of K , which proves the proposition. �

For the remainder of the paper we may and do assume that K is finite, of cardi-
nality q . We write Fqn for the degree n extension of K .

Proposition 3. Let�n denote the variety obtained from An by removing all proper
affine-linear subspaces defined over Fq . Then

[�n
] = (L− q)(L− q2) · · · (L− qn).

Proof. For any Fq -rational affine-linear subspace A of An , let A◦ denote the open
subvariety of A which is the complement of all proper Fq -rational affine-linear
subspaces of A. Then [A◦] = [�dim A

], and one can write recursively

[�n
] = Ln

−

n−1∑
i=1

an,i [�
i
],

where an,i is the number of Fq -rational i-dimensional affine linear subspaces of An .
Thus, [�n

] can be expressed as Pn(L), where Pn ∈ Z[x] is monic and of degree n.
It suffices to prove that qd is a root of Pn(x) for all integers d ∈ {1, 2, . . . , n}.

For any d in this range �n(Fqd ) is empty. Indeed, if x ∈ An(Fqd ), then the n
coordinates of x together with 1 cannot be linearly independent over Fq , which
implies that x lies in a proper Fq -rational affine-linear subspace of An . Thus,

0= µFqd (�
n)= Pn(qd). �

Corollary 4. Ifµ is a positive measure on K0(VarFq ), there exists a positive integer
n such that µ(L)= qn .
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Proof. If qn−1 < µ(L) < qn for some integer n, then µ(�n) < 0, contrary to
positivity. �

Our goal is then to prove that µ(L) = qn implies µ = µFqn . We prove first that
these measures coincide for varieties of the form Spec Fqd and deduce that they
coincide for all affine varieties. As K0(VarFq ) is generated by the classes of affine
varieties, this implies Theorem 1.

Lemma 5. Let µ be a real-valued motivic measure of K0(VarFq ) and m a positive
integer. Then

µ(Spec Fqm ) ∈ {0,m}.

If Spec Fqm has measure m, then Spec Fqd has measure d whenever d divides m.

Proof. As
Fqm ⊗Fq Fqm = Fm

qm ,

the class x of Spec Fqm satisfies x2
= mx . If d divides m,

Fqd ⊗Fq Fqm = Fd
qm ,

so µ(Spec Fqm )= m implies µ(Spec Fqd )= d. �

Of course,

µFqn (Spec Fqm )=

{
m if m |n,
0 otherwise.

We will prove the same thing for the values of µ(Spec Fqm ). We begin with:

Proposition 6. If µ(L)= qn and µ(Spec(Fqk ))= k for some k ≥ n, then

µ(Spec Fqm )=

{
m if m |n,
0 otherwise.

(1)

For any integer k, we denote by Xk the complement in A1 of the set of all points
with residue field contained in Fqk .

Proof. By Lemma 5, µ(Spec Fqd )= d when d divides k. Choose an m not dividing
k, and let Yk,m denote the complement in Xk of the set of points with residue field
Fqm . Then

µ([Yk,m])= µ(L)−
∑
d|k

cdd − cmµ(Spec Fqm ),

where ci is the number of points in A1 with residue field Fq i . From the positivity
of µ([Yk,m]) and the fact that

0= µFqk ([Yk,m])= qk
−

∑
d|k

cdd,

we see that µ(L)− qk
= qn
− qk must be nonnegative, which is to say k = n, and

that µ(Spec Fqm )= 0. �
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Proposition 7. If µ(L)= qn , then µ(Spec Fqn )= n.

Proof. The assertion is clear for n = 1, so we assume n > 1. Let ci denote the
number of points in A1 with residue field Fq i . Thus ici ≤ q i

− 1 for all i > 1. If
µ(Spec Fqn )= 0, then µ(Spec(Fq i ))= 0 for all i ≥ n, so for all k > 0 we have

µ([Xk])≥ qn
− q −

n−1∑
i=2

(q i
− 1)≥ 2.

Now we consider all curves in A2 of the form y = P(x) where P(x) ∈ Fq [x]
has degree ≤ 2n. The total number of such curves is greater than q2n , and for
any intersection point (α, β) of any two distinct curves of this family, α satisfies a
polynomial equation of degree ≤ 2n over Fq . Therefore, the open curves

CP := {(x, P(x)) | x 6∈ Fq(2n)!},

indexed by polynomials P of degree ≤ 2n, each isomorphic to X(2n)!, are mutually
disjoint. If C denotes the closure of the union of the CP in A2, it follows that

µ([C]) > q2nµ([X(2n)!]) > q2n,

so µ([A2
\C]) < 0, which is absurd. �

Together, the two preceding propositions imply (1).
We can now prove Theorem 1. We assume µ(L)= qn . It suffices to check that

µ([V ])= |V (Fqn )| for all affine Fq -varieties V .
Each closed point of V with residue field Fqd corresponds to a d-element Galois

orbit in V (Fqd ). If d divides n, it gives a d-element subset of V (Fqn ) and the
subsets arising from different closed points are mutually disjoint. Since V (Fqn ) is
the union of all these subsets, and µ(Spec Fqd )= d , we have

µ([V ])≥ |V (Fqn )| (2)

for each Fq -variety V . However, embedding V as a closed subvariety of Am for
some m, the complement W = Am

\ V is again a variety, so

µ([W ])≥ |W (Fqn )|. (3)

Since
qmn
= µ([Am

])= µ([V ])+µ([W ])

≥ |V (Fqn )| + |W (Fqn )|

= |Am(Fqn )| = qmn,

we must have equality in (2) and (3).
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