Algebra &
Number
Theory

Volume 4

|
|
JJ - Gentle algebras arising from surface triangulations

] 4 Ibrahim Assem, Thomas Briistle,
1 Gabrielle Charbonneau-Jodoin and Pierre-Guy Plamondon

Jd
ol

-l J J - J J - J - - J -
JjJJ JJJJ | JJ_l JJ JJJJ JJ.] k |
| J 3 3 J J 3 | ] | J | ] g 3 _l 3 J | _Iil
JJ-i _]JJ JJJJ | . | J_l J_j q JJ JJJ JJ |
J J J J J d q J 44 q d
Ay .13 J J



ALGEBRA AND NUMBER THEORY 4:2(2010)

Gentle algebras arising from surface
triangulations

Ibrahim Assem, Thomas Briistle,
Gabrielle Charbonneau-Jodoin and Pierre-Guy Plamondon

We associate an algebra A(I') to a triangulation I' of a surface S with a set
of boundary marking points. This algebra A(T") is gentle and Gorenstein of
dimension one. We also prove that A(T") is cluster-tilted if and only if it is
cluster-tilted of type A or A, or if and only if the surface S is a disc or an annulus.
Moreover all cluster-tilted algebras of type A or A are obtained in this way.

1. Introduction

Among the main recent results in the fast-growing theory of cluster algebras is the
paper of Fomin, Shapiro and Thurston [Fomin et al. 2008], relating triangulations
of oriented surfaces to cluster algebras. This approach, which existed since the
beginning of the theory [Caldero et al. 2006], was followed in [Labardini-Fragoso
2009; Schiffler 2008], among others. In the same spirit, we consider in the present
paper an unpunctured oriented surface S and a finite set of points M, lying on the
boundary of § and intersecting every boundary component of S. We then associate
to a triangulation I' of the marked surface (S, M) a quiver Q(I'), and a potential
on Q(T') (in the sense of [Derksen et al. 2008]), thus defining an algebra A(T),
namely the (noncompleted) Jacobian algebra defined by Q(I') and the associated
potential.

Such an algebra A(I") has some very nice properties: it is always Gorenstein
of dimension one, and also it is a gentle algebra in the sense of [Assem and
Skowroniski 1987]. In the unpunctured case studied here, our definition coincides
with Labardini’s definition of a quiver with potential associated to a (possibly punc-
tured) surface [Labardini-Fragoso 2009]. But in the punctured case, one does not
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get gentle algebras, or even string algebras. For instance, a once-punctured disc
gives rise to cluster-tilted algebras of type D [Schiffler 2008].

Gentle algebras form a particularly nice subclass of the class of string algebras
of [Butler and Ringel 1987] and are much investigated in the representation theory
of algebras. For instance, this subclass contains the tilted algebras of type A and
A (see [Assem 1982] and [Assem and Skowrofiski 1987], respectively) and it is
closed under tilting and even under derived equivalence (see [Schroer 1999] and
[Schréer and Zimmermann 2003], respectively).

Our objective in this paper is twofold. Firstly, we ask which gentle algebras
arise in this way, that is, are induced from triangulations of an unpunctured surface
with boundary marked points. We show in Proposition 2.8 that this is the case for
every gentle algebra such that every relation lies on what we call a 3-cycle with
radical-square zero (see definition before Theorem 2.7 or [Buan and Vatne 2008]
for the definition). Secondly, we ask which gentle algebras are cluster-tilted. The
class of cluster-tilted algebras, introduced in [Buan et al. 2007], has been much
investigated and is by now well-understood (see, for instance, [Assem et al. 2008a;
Barot et al. 2008; Buan et al. 2006; Buan and Vatne 2008; Caldero et al. 2006;
Keller 2009; Keller and Reiten 2007; Schiffler 2008]). In particular, it was shown
in [Assem et al. 2008a] that every cluster-tilted algebra is the relation-extension
of a tilted algebra, that is, it is the trivial extension of a tilted algebra C by the
C-C-bimodule Extzc (DC, C). We may now state the main result of this paper.

Theorem 1.1. Let A(I') be the algebra associated to the triangulation T of an
unpunctured marked surface (S, M). Then the following statements are equivalent:

(1) A(T) is cluster-tilted.
(2) A(D) is cluster-tilted of type A and A.
(3) A(T) is the relation-extension of a tilted algebra of type A and A

(4) The surface S is a disc or an annulus.

Moreover, all cluster-tilted algebras of type A (or A) are of the form A(T") for some
triangulation of a disc S (or an annulus S, respectively).

Actually, we prove in Theorem 3.3 that a cluster-tilted algebra is gentle if and
only if it is of type A and A, or if and only if it is the relation-extension of a
gentle tilted algebra, and the latter coincide with the tilted algebras of type A or A,
respectively.

The case where S is a disc has already been studied in [Caldero et al. 2006], and
it is known that the bound quivers of all cluster-tilted algebras of type A arise from
triangulations of the (unpunctured) disc. These algebras have also been described
explicitly in [Buan and Vatne 2008]. Also, the potential we use for defining the
cluster-tilted algebras of type Aisa particular case of the potential recently defined
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by Keller [2009]. However, we do not use this fact, but rather present another proof
(predating Keller’s result), which uses [Assem et al. 2008a] and properties of the
second extension group.

The paper is organised as follows: in Section 2, we define our algebras A(I")
and prove their main properties in Theorem 2.7. Section 3 is devoted to the classi-
fication of the gentle cluster-titled algebras and Section 4 to the proof of our main
theorem and some of its consequences. We conclude with an example of an algebra
A(I") that is not of polynomial growth in the sense of [Skowronski 1990].

2. Algebras arising from surface triangulations

Throughout this paper, the algebras we consider are basic connected algebras over
a fixed algebraically closed field k. Unless otherwise stated, all algebras are finite-
dimensional. Consequently, they are given in the form A = kQ/I where Q is a
quiver and [ is an admissible ideal of the path algebra kQ [Assem et al. 2006].
The pair (Q, I) is called a bound quiver, and the algebra A = kQ/1 is referred to
as a bound quiver algebra.

Given abound quiver algebra A=k Q/1, for every vertex x of O we denote by e,
the idempotent of A associated to x. Also, Py, I, and S, will be the corresponding
indecomposable projective module, indecomposable injective module and simple
module, respectively.

We study in this section the algebra associated with a surface triangulation. For
background material on oriented surfaces we refer to [Massey 1991].

The medial quiver Q(I'). We first recall from [Fomin et al. 2008] the construction
of a quiver for every triangulation of a marked surface. Let S be an oriented surface
with boundary 0, and let M be a nonempty finite set of points on 85 intersecting
each connected component of the boundary 6S. In this paper, we only consider
the case where there are no punctures, that is, we request that the set of marked
points M be contained in the boundary 0S. The pair (S, M) is referred to as an
unpunctured bordered surface with marked points.
An arc in (S, M) is a curve y in S such that:

 The endpoints of y are marked points in M.

« v does not intersect itself, except that its endpoints may coincide.

7 intersects the boundary of 0.5 only in its endpoints.

» y does not cut out a monogon (that is, y is not contractible into a point of M).
We call an arc y a boundary arc if it cuts out a digon (that is, y is homotopic to

a curve ¢ on the boundary 05 that intersects M only in its endpoints). Otherwise,
y 1is said to be an internal arc. Each arc y is considered up to homotopy in the



204 I. Assem, T. Briistle, G. Charbonneau-Jodoin and P.-G. Plamondon

class of such curves. A triangulation of (S, M) is a maximal collection I' of arcs
that do not intersect in the interior of S (more precisely, there are curves in their
respective homotopy classes that do not intersect in the interior of S).

Proposition 2.1 [Fomin et al. 2008, (2.10)]. In each triangulation of (S, M), the
number of internal arcs is

n=6g+3b+c—6,

where g is the genus of S, b is the number of boundary components, and ¢ = |M |
is the number of marked points.

This proposition also indicates that in some cases a triangulation does not exist
(for instance a disc with one marked point would give n = —2). We consider
from now on only marked surfaces (S, M) that admit a triangulation. Given a
triangulation I', we also refer to M as the set of vertices of I'. The triangles are
the components of S\I" with the arcs of I as edges.

We denote by Q(I') the medial quiver of internal arcs of I'. That is, Q(I') is
the quiver whose set of points is the set of internal arcs of I', and the arrows are
defined as follows: whenever there is a triangle 7 in I" containing two internal arcs
a and b, then Q(T") contains an arrow a — b if a is a predecessor of b with respect
to clockwise orientation at the joint vertex of @ and b in T (we can talk about
clockwise orientation around each marked point because S is an oriented surface).

Example. We illustrate the construction of Q(I") when I is a triangulation of an
octagon:

N
/\

Lemma 2.2. The quiver Q(I') contains no oriented cycles of length < 2.

Proof. We first show that Q(I") contains no loops. A loop «a at the point @ of Q(I")
would arise from a triangle 7 in I in the following way:

a a

X gives rise to X
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But in this case the triangle 7' is homeomorphic to

which means that x is an internal vertex, contradicting our assumption that M is
contained in the boundary of S.

We now show that Q(I") contains no oriented cycles of length two. Indeed, such
a cycle corresponds to the following situation in I':

X

Then a neighbourhood of x is homeomorphic to

which again contradicts the assumption that I" contains no internal vertices. [

Remark. Fomin et al. [2008] associate a skew-symmetric matrix B(I') to a tri-
angulation I" of (S, M). This construction is equivalent to the construction of the
quiver Q(I") we consider here. Since Q(I') contains no oriented cycles of length
< 2, it is uniquely determined by a skew-symmetric matrix B (where the number
of arrows between two vertices is given by the entries of B, and the direction of
the arrows is determined by the sign of the matrix entries). It is easy to see that
B coincides with B(I'). Thus all the results from [Fomin et al. 2008] apply; in
particular, mutations of the quiver Q(I") correspond to flips of the triangulation I'.

Let b be an internal arc of I'. Thus b is one diagonal of the quadrilateral formed
by the two triangles of I' that contain b. The flip of b replaces the edge b by the
other diagonal b* of the same quadrilateral. Keeping all other edges unchanged,
one obtains a new triangulation z;(T").

N A
v

An essential ingredient in the definition of cluster algebras by Fomin and Zele-
vinsky [2002] is the mutation of skew-symmetric matrices. Reformulated in the
language of quivers, one obtains a mutation of quivers Q — u,(Q). The following
proposition shows that flips of the triangulation commute with quiver mutations.
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Proposition 2.3 [Fomin et al. 2008, Proposition 4.8]. Suppose that the triangula-
tion up(T') is obtained from T by a flip replacing the diagonal labelled b. Then

Q(up(l)) = up(Q(I))

The algebra A(T'). We define in this section an algebra A(I") for each triangula-
tion I' of the unpunctured marked surface (S, M). Our construction generalizes
the one given in [Caldero et al. 2006] for polygons. An even more general case
is considered in [Labardini-Fragoso 2009], where such an algebra A(I") is defined
for a general marked surface (allowing punctures). If there are no punctures, the
definitions coincide (although Labardini works in the equivalent framework of op-
posite medial quivers).

A triangle T in T is called an internal triangle if all edges of T are internal
arcs. Every internal triangle 7 in I' gives rise to an oriented cycle arfBryr in
Q(T"), unique up to cyclic permutation of the factors a7, fr, yr. We define

W= ZaTﬂTVT,
T

where the sum runs over all internal triangles 7 of I'. Then W is a potential on
Q(T") and we define A(I") to be the (noncompleted) Jacobian algebra of (Q, W)
[Derksen et al. 2008; Keller 2007]. Thus A(I') can be described as a quotient
A(T)=kQ(I')/I(I") of the path algebra k Q(I") by the ideal I (I') generated by all
paths ar S, fryr and yrar whenever T is an internal triangle of I'. Labardini
[2009] showed that flips in the triangulation correspond to mutations of the quiver
with potential (Q(I"), W) as defined in [Derksen et al. 2008].

The following result is shown in [Labardini-Fragoso 2009, Theorem 36] for the
more general case of punctured marked surfaces.

Lemma 2.4. Let I be a triangulation of an unpunctured marked surface (S, M).
Then the algebra A(T') is finite-dimensional.

We show in Lemma 2.5 that the algebras A(I") belong to a class of algebras
called gentle algebras. Recall from [Assem and Skowroniski 1987] that a finite-
dimensional algebra is gentle if it admits a presentation A = kQ/I satisfying the
following conditions:

(G1) At each point of Q start at most two arrows and stop at most two arrows.
(G2) The ideal I is generated by paths of length 2.

(G3) For each arrow S there is at most one arrow o and at most one arrow y such
that aff € I and Sy € I.

(G4) For each arrow S there is at most one arrow o and at most one arrow y such
thataf ¢ I and Sy & I.
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If the pair (Q, I) satisfies conditions (G1) through (G4), we call it a gentle bound
quiver, or a gentle presentation of A =kQ/I. Note that in contrast to [Assem and
Skowronski 1987], we do not assume that A = kQ/I is triangular. An algebra
A =kQ/I where I is generated by paths and (Q, I) satisfies the two conditions
(G1) and (G#4) is called a string algebra [Butler and Ringel 1987], and thus every
gentle algebra is a string algebra. The gentle algebras can be characterized by
the fact that their repetitive categories are special biserial [Assem and Skowronski
1987; Pogorzaty and Skowronski 1991].

We recall here the classification of indecomposable modules over a string alge-
bra A=k(Q/I whichis given in [Butler and Ringel 1987] in terms of reduced walks
in the quiver Q. A string in A is by definition a reduced walk w in Q avoiding the
zero-relations, and thus w is a sequence

al ap Op—1
W= X X2 te Xn s

where the x; are vertices of Q and each a; is an arrow between the vertices x; and
X;+1 in either direction such that w does not contain a sequence of the form

Lt o Bt
with S --- Bs € I, or their duals. A string is cyclic if the first and the last vertex
coincide. A band is defined to be a cyclic string b such that each power b" is a
string, but b itself is not a proper power of some string c.

The string module M (w) is obtained from the string w by replacing each x; in
w by a copy of the field k. The action of an arrow a on M (w) is induced by the
relevant identity morphisms if a lies on w, and is zero otherwise. The dimension
vector dim M (w) of M (w) is obtained by counting how often the string w passes
through each vertex x of the quiver Q:

dim M (1) = (1; 505) oo
where o, ,, = 1 for x = x; and 0, ,, = 0 otherwise. Similarly, each band b in A
gives rise to a family of band modules M (b, /., n) where 1 € k and n € N (we refer
to [Butler and Ringel 1987] for the precise definition). All string and band modules
are indecomposable, and in fact every indecomposable A-module is either a string
module M (w) or a band module M (b, A, n) [Butler and Ringel 1987].
We now return to the study of algebras stemming from surface triangulations:

Lemma 2.5. Let I be a triangulation of an unpunctured marked surface (S, M).
Then A(T) is a gentle algebra.

Proof. By Lemma 2.4, the algebra A(I") is finite-dimensional, so we only need to
verify conditions (G1) to (G4) for the bound quiver (Q(I"), I(I")) of A(T).
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(G2): By definition, the ideal I(I") is generated by paths of length two.

(G1): Let a be a point of Q(I") corresponding to an internal arc a of I'. Since T is
a triangulation of a surface, the arc a is contained in at most two triangles:

b

by

Hence there are at most two arrows a1 : by — a and a; : by — a of Q(I') ending
in a. The same holds for arrows starting in a point a.

(G3), (G4): Suppose now that Q(I") contains aj, a;, S as follows:
bie_a;
a c
by %2

We have to show that precisely one of af, af belongs to I(I'). In T, the
internal arcs a, by, by belong to two triangles as considered in the proof of (G1).
The arrow 8 encodes that the arc c is a successor of a in one of these triangles, say
the one formed by a, b1, c. This gives rise to the relation a;f, and a;f does not
belong to I (I') since a; and f arise from different triangles. O

From the construction of A(T") it is clear that for each aff € I(I') there is an
arrow y in Q(T") such that fy € I(I') and ya € I(I'). In the following lemma we
study a homological property of all gentle algebras satisfying this condition: an
algebra A is Gorenstein of dimension one if the injective dimension of the (finitely
generated) projective A-modules is at most one, and the projective dimension of
the (finitely generated) injective A-modules is at most one. Note that all cluster-
tilted algebras are Gorenstein of dimension one, and that an algebra of Gorenstein
dimension one is either hereditary or has infinite global dimension; see [Keller and
Reiten 2007].

Lemma 2.6. Let A =kQ/I be a gentle algebra such that for each af € I there is
an arrow y in Q such that fy € I and ya € 1. Then A is Gorenstein of dimension
one.

Proof. We only compute the projective dimension of the injective modules here; the
proof of the other part in the definition of Gorenstein of dimension one is dual. It is
sufficient to show that for every vertex x of Q the corresponding indecomposable
injective A-module I, has projective dimension at most one. To do so, we construct
explicitly a projective resolution of I,. We write the string module I, as I, =
Moo, lu; 1Y, where u; and u, are oriented paths. Both paths might have length
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zero, and in this case, also the arrows a; and o, might not be present. The following

figure is used throughout the proof:

w
el ’\/\/‘\Nl\/\/\_/\> fl

V
ui (2]

Al ~eeem> 1<—Cl ’\’\N\/\/\/\>d1

N
LU

ay sz_CZ W/\>d2

N
w2

€) ~ > f2
Note that {x, c1, b1} and {x, ¢z, b>} form oriented cycles in Q such that the com-
position of any two consecutive arrows is zero. Let
po: P(O) — Iy
be a projective cover; then
P(0) = M(wl_lyl_lulalﬁzvz) &) M(w;lyz_luzazﬂ]vl)

and
Ker po = M(w1) ® M(w2) @ M(v; ' By fav2)

(note that some summands of the terms of this sequence can be zero). We show
that Ker pg is projective, thus obtaining the desired projective resolution

0 — Ker po P0) 21, 0.

In order to see that the first two summands of Ker pg are projective (namely the
indecomposable projectives P, and P,,), one has to show that there are no other ar-
rows starting at the vertices e, e;. Suppose there is an arrow J; : e; — y in Q. Since
the algebra A is gentle, the composition y1d; lies in the ideal /. The assumption of
the lemma guarantees the existence of a cycle yd;€; such that y,6;, d1€1, €171 € 1.
But then the simple A-module S, would be a composition factor of I, contradict-
ing the assumption [, = M(ulalaglugl). This shows that M (w;) = P,,, and
a similar argument shows that M (w,) = P,,. Since M(vflﬁflﬁzuz) = P, we
conclude that Ker py is projective. U

Example. We illustrate the projective resolution constructed in Lemma 2.6 when
I" is the following triangulation of a polygon with 11 vertices (where the midpoints
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of internal arcs are labeled):

L
c1 b2
L
X ®
b
4 ! €2
el ap d2

The corresponding algebra A(I") is given by the quiver

V
up
ai

0
by : C1
N
X
N
02
by 5 2

with relations a1 1 = f161 = d101 =0 and ar > = fr0» = drap = 0. The projective
resolution of the injective module I, is then

d>

O—>Pe1®Px—>PaIEBPb2—>Ix—>O,

where P,, is simple and P, = M(,Bl_lﬁzvz), P,y = M(uja1p202) and Py, =
M{(a2p1).

We recall from [Gabnel 1981] the concept of Galois coverings of bound quiver
algebras: Let A = kQ/I be a bound quiver algebra (where the quiver Q is not
necessarily finite). A group G of k-linear automorphisms of A is acting freely
on A if ge, # e, for each vertex x of Q and each g # 1 in G. In this case the
multiplication in A induces a multiplication on the set A/G of G-orbits which
turns A/G into an algebra. The canonical projection A — A/G is called the
Galois covering of A/ G with group G.

In the following theorem we call (as in [Buan and Vatne 2008]) a 3-cycle an ori-
ented cycle afiy where a, 5, y are three distinct arrows; and by a 3-cycle with rad-
ical square zero we mean a 3-cycle affy in an algebra kQ/I such that af, Sy, ya
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all lie in /. By a simple cycle we refer to a subquiver C of Q with n distinct vertices
{x0, X1, ..., Xn—1, Xy = X9} and n arrows a; : x; = x;+1,fori =1,...,n—1.

Theorem 2.7. Let I be a triangulation of an unpunctured marked surface (S, M).
(1) The algebra A(T') is a gentle algebra.
(2) The algebra A(T") is Gorenstein of dimension one.
(3) There is a relation in A(') from x to y only if there is an arrow y — Xx.
(4) A(T) admits a Galois covering by a bound quiver algebra k Q)1 satisfying:

(T1) Every simple cycle in Qisa 3-cycle with radical square zero.
(T2) The only relations in I are those in the 3-cycles.

Proof. Part (1) is shown in Lemma 2.5, and part (2) is shown in Lemma 2.6 since
the condition imposed on the gentle algebra A there clearly holds for the algebra
A(T"). Part (3) follows directly from the definition of A(I'). Maybe the most
intuitive way to obtain the Galois covering required in part (4) is the following.
By construction, the only relations in the algebra A(I") are those in the 3-cycles.
In a first step, we identify all 3-cycles to points, replacing each 3-cycle C with
vertices {x1, x>, x3} by one single vertex x and replacing each arrow y — x; (or
x; — y, respectively) by an arrow y — x (or x — y, respectively). The quiver 0
thus obtained contains no relations, and we let Q be its universal Galois covering,
a (maybe infinite) tree. The bound quiver (Q, I) is then obtained by placing back
the 3-cycles C = {x1, x2, x3} for all contracted vertices x of Q O

Note that the finite quivers satisfying conditions (T1) and (T2) from the pre-
vious theorem form precisely the class of quivers 9, considered in [Buan and
Vatne 2008], where also the same relations are imposed. It would be interesting
to relate the Galois covering (Q, I ) constructed above with the universal cover of
the bordered surface (S, M).

Recovering topological data from A (T'). The condition (4) in Theorem 2.7 is very
strong. Combined with the fact that the algebra is gentle, it implies the remaining
conditions (2) and (3). We show in this section that a gentle algebra satisfying
condition (4) is given by an unpunctured marked surface.

First we give a different combinatorial description of the algebras studied here.
Consider the following two bound quivers, where type I is a quiver of type A, and
type Il is a 3-cycle with radical square zero:

Q

Typel o0 Type II A
O O

Using these bound quivers one can construct algebras in the following way.
Suppose we start with a collection C of disjoint blocks of types I and II. Choose
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a partial matching (that is to say a partial bijection) z of the vertices in C, where
matching a vertex to another vertex of the same block is not allowed. Identifying
(or “gluing”) the vertices within each pair of the matching we obtain an algebra
A(C, ). Note that the arrows are not identified by this procedure, so one might ob-
tain parallel arrows or two-cycles. We consider only matchings where the algebra
A(C, m) is connected.

The procedure of gluing blocks is considered in a more general situation (using
plenty of building blocks) in [Briistle 2001], where the resulting algebras are called
kit algebras. A similar construction to glue blocks of type I, II and four more types
is described in [Fomin et al. 2008].

We show below that the gentle algebras that admit a Galois covering satisfying
conditions (T1) and (T2) from Theorem 2.7 are algebras of the form A(C, «), and
thus results from [Fomin et al. 2008] concerning these algebras can be applied.

Proposition 2.8. Let A =kQ/I be a gentle algebra where every relation lies on a
3-cycle with radical square zero. Then there exists an unpunctured marked surface
(S, M) with a triangulation T such that A(I') = A.

Proof. The statement follows from [Fomin et al. 2008, (14.1)] once we show that
the algebra A admits a unique block decomposition A = A(C, =) using blocks of
types I and II. We therefore define C to be the disjoint union of all 3-cycles with
radical square zero of A together with the disjoint union of all remaining arrows
from A. Denote by f the quiver morphism f : C — Q that identifies the blocks of
C with their images in Q.

We first show that | f ~!(x)| <2 for each vertex x € Q. Indeed, if f~!(x) contains
three different vertices, then there are three different arrows in Q adjacent to the
vertex x. But since the algebra A is gentle, there has to be one relation between
these three arrows. However, the set C is constructed in such a way that all relations
of A belong to one of the components in C, so there are no relations between arrows
corresponding to different components of C, and so the fiber f~'(x) contains at
most two vertices.

We now define a matching 7 on C relating x; to x, whenever f -1 (x) ={x1, x2}.
As required in the definition of A(C, ), we do not match a vertex to itself or to
some vertex in the same block. It is clear from the construction that A = A(C, «).
Moreover, the choice of blocks of type I or II is unique since all relations have to
correspond to a block of type II. |

We would like to point out that all algebras A(I") given by a triangulation I" of
an unpunctured marked surface are of the form A(C, 7 ) for some C and 7, but the
converse is not true: One can easily produce two-cycles in an algebra A(C, « ), but
this never occurs for the algebras A(I") as we have shown in Lemma 2.2.
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3. Gentle cluster-tilted algebras

Cluster-tilted algebras. Let A be an acyclic quiver. In [Buan et al. 2006] the clus-
ter category €, is studied in order to obtain a categorical interpretation of the
cluster variables of the cluster algebra associated with A. It is shown there that
clusters correspond bijectively to tilting objects T in €. Their endomorphism
rings Endg, (T') are called cluster-tilted algebras of type A. They were introduced
and studied in [Buan et al. 2007].

Here we use a different description that has been given in [Assem et al. 2008a].
Let A be the hereditary algebra kA. An A-module T is called a tilting module if
Extl{1 (T, T) = 0 and the number of isomorphism classes of indecomposable sum-
mands of T equals the number of isomorphism classes of simple A-modules. In
this case, the endomorphism ring End4 (T) is called a tilted algebra of type A.

Let C be an algebra of global dimension two. The trivial extension

C = C x ExtZ(DC, C)

of C by the C-C-bimodule Extzc (DC, C) is called the relation-extension of C. It
is useful to describe explicitly the operations on C. As an abelian group, C =
Co Ext% (DC, C). Therefore, let (c, €) and (¢, €’) be two elements of C, where
e and e’ are respectively represented by the exact sequences of C-modules

e : 0 P M N 1 0,
e: 0 P’ M’ N’ g 0,

with P, P’ projective and I, I’ injective. The addition is given by
(c,e)+(c,e)=(c+,e+e),

where the sum ¢ + ¢’ is the ordinary sum inside C, while e + €’ is the Baer sum in
Ext%j (DC, C) (for which we refer to any textbook of homological algebra). The
product in C is given by the formula

(c,e)(c’, €') = (cc’, ce' +ec),

where the product c¢’ is the ordinary product inside C, while ce’ and €’c are defined
as follows. Viewing c¢ € C as an element of End C¢ = C, then e =ce’ is represented
by the sequence obtained by pulling down the sequence e’:

e 0 P’ M ! r 0
oo _—
el : 0 P M, ! I 0

Similarly, if we view ¢’ € C as an element of End DC¢c = C, then e; = ec’ is
represented by the sequence obtained by lifting the sequence e:
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e: 0 P M N, L 0
e
e: 0 P M N I 0

The following theorem allows us to view cluster-tilted algebras as relation-
extensions of tilted algebras.

Theorem 3.1 [Assem et al. 2008a]. An algebra A is cluster-tilted of type A if and
only if there exists a tilted algebra C of type A such that A is isomorphic to the
relation-extension C of C.

Every cluster-tilted algebra satisfies conditions (2) and (3) from Theorem 2.7
[Keller and Reiten 2007]. The bound quivers of cluster-tilted algebras of type A
are explicitly described in [Buan and Vatne 2008, Proposition 3.1]. In fact they
were already described in [Caldero et al. 2006] as the algebras A(I") arising from
a triangulation of an unpunctured polygon. The following proposition is contained
in [Buan and Vatne 2008], but it also follows from Theorem 3.3 below.

Proposition 3.2 [Buan and Vatne 2008, (3.1)]. An algebra A is cluster-tilted of
type A precisely when A is gentle and there is a presentation A = kQ /I which
satisfies conditions (T1) and (T2) from Theorem 2.7.

In particular, the cluster-tilted algebras of type A are gentle. We describe in
the following theorem, whose proof occupies the rest of the section, which of the
gentle algebras are cluster-tilted:

Theorem 3.3. Let C =kQc¢/I¢ be a tilted algebra, and C be its relation-extension.
The following are equivalent.

(1) C is gentle.

(2) Cis tilted of type A or A.

3) Cis gentle.

(4) C is cluster-tilted of type A or A.

A preliminary part of the proof follows from a result in [Schroer 1999], which
says that the class of gentle algebras is stable under tilting.

Lemma 3.4. If a tilted algebra is gentle, then it is tilted of type A or A.

Proof. Let A be a quiver such that C is tilted of type A. Then there exists a tilting
C-module T such that End 7 = kA. According to [Schroer 1999], kA is a gentle
algebra. This implies that the quiver A is of type A or A. O

Lemma 3.5. If C is gentle, then so is C.

Proof. This follows from the fact that C is a split extension of C and from [Assem
et al. 2008b, (2.7)]. g
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Lemma 3.6. The algebra C is tilted of type A or A if and only if C is cluster-tilted
of type A or A.

Proof Clearly, if C is tilted of type A or A, then C is cluster-tilted of type A or
A. Conversely, suppose C is cluster-tilted of type A or A. By [Assem et al. 2008a]
there exists a local slice 2’ in mod C such that C’ = C/Ann X' is tilted of type A
or A. On the other hand, since C=Cx Ext2C (DC, C), then there exists a local
slice ¥ in mod C such that C = C/Ann Z. Since both £ and X’ have the same
underlying graph, C and C’ have the same type, so C is tilted of type A or A. O

The main part of the proof of Theorem 3.3 is concerned with the problem of
showing that C is gentle if C is tilted of type A or A. This will be done next.

Relation-extensions of tilted algebras of types A and A. Suppose C = kQc¢/Ic
is tilted of type A or A. In particular, C is gentle because of [Assem 1982] and
[Assem and Skowroiiski 1987]. Moreover, the quiver of C is known, as are some of
its relations, namely those already in C [Assem et al. 2008a; Assem et al. 2008b].
The aim here is to study the remaining relations of C.

First, the bound quiver of a tilted algebra of type A has been described in [Assem
1982], and that of a tilted algebra of type A in [Roldan 1983]. The criterion given
here is derived from [Huard and Liu 2000].

We recall that a double-zero in a gentle algebra is a reduced walk of the form
afwyd, where a, B, y and ¢ are arrows such that aff and yo are relations, while
o is a nonzero reduced walk (that is, a walk which does not contain any relation).
Note that @ may be trivial and that in this case £ and y may coincide.

Example. The algebra

/\/
\/\

where aff = py = de =0, is gentle with a double-zero (namely ¢y~ py).

Proposition 3.7 [Assem 1982; Assem and Skowronski 1987]. (1) An algebra is
tilted of type A if and only if it admits a bound quiver presentation kQ /I, with
(Q, I) a gentle tree with no double-zero.

(2) An algebra is tilted of type A if and only if it admits a bound quiver pre-
sentation kQ /1, with (Q, I) a gentle presentation with no double-zero and a
unique (nonoriented) cycle such that, if the cycle is a band, then all arrows
attached to the cycle either enter it or leave it.
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Example. Consider the algebras given by the bound quivers

NN
NN

af =0 off =y0=0

Using Proposition 3.7, we see that the first one is tilted of type A, while the second
one is tilted of type A.

A vanishing criterion. We need a criterion to verify whether a given exact se-
quence represents the zero element in the second extension group:

Lemma 3.8 [Happel et al. 1996, (11.1.3)]. Given a morphism f : M —> N, the

exact sequence

0 ——Ker f M ! N Coker f ——0

represents the zero element of Ext>(Coker f, Ker f) if and only if there exist a
module X and morphisms g, h such that the sequence

h
0— M mrex LN 0

is exact, where p and j are the natural morphisms arising from f.
The following lemma will be used frequently.

Lemma 3.9. Let (Q, I) be a gentle presentation of an algebra C, and let o.:c —> b
and f : b —> a be arrows in Q. Let ¢ and 3 be strings, not passing through b,
such that fo and na are strings. Let f : M(fo) —> M (na) be a morphism such
that Im f = Sp.

Then the exact sequence

e: O—>Kerf—>M(ﬁa)L>M(71a)—>C0kerf—>0

represents a nonzero element of Ext ¢ (Coker f, Ker f) if and only if af lies in I.

Proof. In view of Lemma 3.8, the sequence e represents a nonzero element of
Ext% (Coker f, Ker f) if and only if there exists no short exact sequence of the

form

0——> MBo) % m f o x L M) — o,
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Assume such a sequence exists. Since S, appears exactly once as a composition
factor of M(fo) and M (5a), then it also appears exactly once as a composition
factor of X. Therefore, there exists a unique indecomposable summand Y of X
admitting S;, as a composition factor.

We claim that g : M(flc) —> X is a monomorphism: let x € Q¢ and take
a vector v € M(fo)y such that g,(v) = 0. If x # b, then p,(v) = 0 and so
(p, &)} (v) = 0 which implies v = 0. If x = b, then (p,(fv), g.(M(fo)p(v))) =
(P, 8),,(M(B0)5(0)) = (Im £ ®X);(p, g)}(v) =0 which implies M (Ba)(v) =0.
Since (M (Bo)p is injective, then v = 0. This completes the proof of our claim.

Since the evaluation M (B0 ) of the module M (Bo) on the arrow £ is nonzero,
we must have X4 # 0. Now, Sj, is a composition factor of Y, hence Yy # 0 as well.
Similarly, 4 is an epimorphism and it follows that Y, #= 0. On the other hand, Y
must be a string or a band module. The above reasoning implies that aff must then
be a subpath of a string or a band, which implies that af ¢ I, as required.

Conversely, if af ¢ I, then we have a short exact sequence

0 —— M(fo) — S ® M(nafo) — M(na) — 0,
and hence e represents the zero element in Ext% (Coker f, Ker f). U

Arrows. From now on, let C be a tilted algebra of type A or A. We give a descrip-
tion of the elements of C = C x Ext%(DC , C) corresponding to the arrows of its
ordinary quiver. In [Assem et al. 2008a, (2.4)], it is proved that the quiver of Cis
obtained from that of C by adding an arrow from x to y for each relation from y
to x. The elements of C corresponding to the arrows of C are of the form (a, 0),
where a is an arrow of C.

The other arrows correspond to relations in C. Let af be a relation from ¢ to a
in C, and let ;5 be the corresponding new arrow in C.

Lemma 3.10. The new arrow Cyp lies in 0 ® Ext% (1., P,).

Proof. This new arrow lies in eaéec, which can be written as the direct sum of
e,Ce. and eaExt% (DC, C)e.. We know from Proposition 3.7 that the quiver of C
contains no double-zero. Consequently, there are no paths from a to ¢, and hence
e,Ce. = 0. Moreover, eaExt% (DC, C)e, = Ext% (I, P;). The element &,p thus
lies in 0 @ ExtX (I, Py). O

The following lemma gives the dimension and a basis of the extension space
involved in the last expression.

Lemma 3.11. Leta:c—> b and f:b—> a be two arrows of C such that o € I¢.
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(a) The dimension of the vector space Ext2C (I., P,) is 1 or 2. Its dimension is 2 if
and only if the following situation occurs in the bound quiver of C:

c—2sb—"sa
y 5
X y Z

where y and 6 are arrows, n and o are paths, possibly stationary, without
relations, and a8, yo are relations.

(b) If the dimension of the space is 1, then a basis is given by the sequence
el : 0——= P, ——> M(pPo)— M(na) —I. —=0,
where n and o are paths such that I, = M () and P, = M (o).
(c) If the dimension of the space is 2, then a basis is given by the sequences

e: 0—— P, —— M(fo) —— M(na) —— 1. —=0,
e): 0—>Pa—>M(0§*1)—>M(y_1;7)—>lc—>0,

where y, 0, § and o are as in the figure in part ().

Proof. (a) It is known from [Assem et al. 2008a] that there is a new arrow from a
to c; thus the dimension cannot be zero. On the other hand, since C is gentle and
without double-zero, the local situation of the relation af can be described by the
following figure, where dotted lines represent relations.

/
/ Y n

d ~~~sc A e
a V
b
X
g ~rms

This diagram allows us to compute a projective resolution of /. in mod C:

D2 P1

0—">P(2) P(1) P(0) " I 0,
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where P(2) = M(y)® M(n), P(1) = M(~'¢pw) ® M(c 107! B5) and P(0) =
M@~ '6"'yaf0). Note that some direct summands of the terms of this sequence
can be zero. Applying Hom¢ (—, P,), we get a complex

(po, Pa)
0—— HomC (Ic‘a Pa) — HomC(P(O)a Pa)

Py Py Py
PP Home (P(1), Py) P25 Home (P2), Py) 2520,

This yields

Ker Hom(ps, Py) _ Hom(M (), P,) ® Hom(M (1), P,)
ImHom(p2, Pa) Im Hom (p2, Pa) '
Since P, = M(#), we have dim Hom (M (5), P,) = 1, and since

Ext:(I,, P,) =

Hom(M (s~ '07"' 1), P,) =0,

no nonzero morphism in Hom(M (7), P,) factors through p>.

We claim that Hom (M (), P,) is nonzero if and only if j =i. Indeed, a nonzero
morphism from M () to P, can only exist when j coincides with a vertex on the
path . But if j were a vertex different from i, then there would be an arrow
@' : j — j in the path 7, forcing the relation ¢¢” and creating the double-zero
o0¢p¢’. Thus j =1i. In this case, w has no choice but to be the trivial path in i, and
dim Hom(M (y), P,) = 1. Since Hom(M (:'¢y, P,) = 0, no nonzero morphism
in Hom(M (), P,) factors through p;.

Hence no nonzero morphism in Hom(M (y), P,) & Hom(M (%), P,) factors
through p,. Thus the dimension of this space is either 1 or 2, and it is 2 exactly
when i = j. In this case, and in this case only, we have

a
c——b——>aqa

/ N

d e j

as desired.
(b) It follows from Lemma 3.9 that e; is nonzero. The result follows.

(c) It follows from Lemma 3.9 that e; and e, are nonzero. It remains to be shown
that e; and e; are linearly independent. Suppose there exists a nonzero scalar A
such that e; + 1e; = 0. Computing this sum, we get the sequence

0—> Py —= M(fo6™") —L= MG~ jo) — I, — 0,

where all morphisms are multiples of the natural morphisms between string mod-
ules.



220 I. Assem, T. Briistle, G. Charbonneau-Jodoin and P.-G. Plamondon

Here, applying Lemma 3.9 is not possible, since Im f = S, & S, but a similar
technique of proof can be used.

Suppose there exist a module X and morphisms g and & such that the sequence

_1, pg) (J.h) .
0——=MPod™) —= (S ®S,)®X —= M(y~ na) —=0

is exact, where f = jp is the canonical factorisation. Since S, appears exactly once
as a composition factor of M (Bcd~") and M (y~'5a), it also appears exactly once
as a composition factor of X. Therefore, there exists a unique indecomposable
summand Y of X admitting S;, as a composition factor. As in the proof of Lemma
3.9, we show that Yz # 0 and Y, # 0. Therefore, a.f must be a subpath of a string
or a band, which is a contradiction, since it is a relation.

The sequences e; and e, thus form a basis of the extension space. O

It remains to determine which of the basis elements are represented by arrows
of C.

Lemma 3.12. Let a : ¢ —> b and f : b —> a be two arrows of the quiver of C
such that a8 is a relation. Let {,p be the corresponding new arrow in C. With the
notation of Lemma 3.11, the element (0, e1) can be chosen to represent &,p.

Proof. The space 0 ® Ext% (1., P,) contains at least one arrow.

If its dimension is 1, the result is obvious.

If its dimension is 2, Lemma 3.11 describes the situation of af in the quiver of
C. Two cases arise.

First, suppose that # and ¢ are both trivial paths.

X

In this case, two arrows from a to ¢ are added to the quiver. Both (0, e;) and (0, e>)
must thus represent arrows of C.

Second, suppose # and ¢ are not both trivial. In this case, Lemma 3.11 implies
that Ext2c (I, P;) is of dimension 1, and that a basis is given by

/

e 0——> P, —> M($) —= M(y) — I, — 0.

Reasoning as above, we get that (0, ') represents the new arrow from z to x.
Moreover, a straightforward calculation yields (g, 0)(0, ") (7, 0) = (0, e3).
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Since one of # and ¢ is not trivial, one of (0, #) and (0, o) must lie in rad C.
Therefore (0, e;) € rad’>C, and (0, e;) € rad C \ rad’C; in other words, (0, e;)
represents an arrow from a to c. O

Relations. Knowing how to write arrows in C allows us to compute the relations.
Lemma 3.13. Let C =kQc/Ic and C =kQz/1.

(1) Let wy, wa, ..., w, be paths from x to y in the quiver of C, and let 11, A2, ...,
In €k. Then 3 7, 2i(w;, 0)=0in C ifand only if >/, 2iw; =0in C.

) Let a :¢c —> b and B : b —> a be two arrows in the quiver of C such
that af is a relation. Let (0, e)) be the element representing the correspond-
ing new arrow, where ej is as in Lemma 3.11. Then (0, e1)(a, 0) = 0 and

(8,0)(0, e1) =0.
(3) The ideal I is generated by the relations of C and those described in (2).

Proof. (1) This is shown in [Assem et al. 2008b].

(2) Viewing o as an element of End DC, or more precisely as a morphism from
I to 1., we can compute e f5:

ef: 00— P, ——= M(fo) ——= M@na)®M(py) — I, —=0,

where I, = M (nay~'¢~"). This sequence represents the zero element, because of
Lemma 3.8 and exactness of the sequence

0—=M(Bo) —= S, ®M(pyBo)®M(na) —= M(py) ® M(na) —= 0.

Therefore (0, e1)(a, 0) = 0.
In a dual way, we prove that (5, 0)(0, e;) = 0.

(3) Itis sufficient to show that new arrows in the quiver of C are not involved in
other relations than those described in (2).

First suppose that w is a monomial relation involving new arrows and rela-
tions other than those described in (2). Then it must contain exactly one new
arrow &, corresponding to a relation af; otherwise the quiver of C would contain
a double-zero. Write w = ulv, where u and v are nonzero paths consisting of
arrows of C. Let e; be the sequence as in Lemma 3.11 corresponding to £. Then
(u,0)(0, e1)(v,0) = (0, uev), where ue;v is the sequence

00— Mu'w)—=MQPu'u') —M@vv'a) — M@'v~") —=0,

where 1’ and v’ are paths in the quiver of C. The figure at the top of the next page
illustrates the local situation, where a8 = y’d’ = 0; the last arrow of u and the first
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of ¢ form a relation, as do the last of v and »” and the first of w’ and w, respectively.

! A

u f v w
lu’ v
v Y’ 4
l()"
t/
>

This yields the following commutative diagram, where the first line is a projec-
tive resolution of M (v'v~"):

P2 P1 Po

0 P() P(1) P(0)

L(f,o) L(O,g,o) l(h,f)

0— M@u 'w)—= MPu'u') —M©vv 'a) — M@v"") —=0,

Mo —0

where PQ)=Mt)®M(t'), P(1)=M(w'w)® M 'y ' pt)® M(z~'6't") and
PO)=M(Gz "y la"low)®M(z'~'y~'v’'w’), and all nonzero morphisms are the
natural morphisms between string modules. It is then seen that ( f, 0) cannot factor
through p,, and thus the lower exact sequence is nonzero. Hence there are no other
monomial relations than those in (2).

Now suppose we have a minimal relation of the form )., 1;w;, where each
A; is a nonzero scalar, each w; is a path in the quiver of C ,and m > 2. At least
one of the w; must pass through a new arrow, and since C contains no double
zero, this implies that each w; must pass through exactly one new arrow, say &,
corresponding to a relation a; f;. Write w; = u;&v;, where u; and v; are paths of
the quiver of C.

Since the quiver of C contains at most one cycle, we must have m = 2. Since k is
a field, we may suppose that 1; = 1. Letting e and e, be the sequences associated
to &1 and &, respectively, we get that ujejv and A,uzep0, are both sequences of
the form above. Their sum is the sequence

0 —— M(u; 'uy) —= M(Bous ' ur ;1)
— M(az_lvzvl_lal) e M(vlvz_l) —0.

By an argument similar to the one given in the proof of Lemma 3.11(c), this
element is not zero; a contradiction. Hence no binomial relations existin C. [

The relations described in the preceding lemma make C a gentle algebra.

Lemma 3.14. If C is cluster-tilted of type A or A, then C is gentle.
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Proof. The relations of C are known (see Lemma 3.13). Moreover, C is gentle.

Suppose that there are r new arrows. Let us add the new arrows and the cor-
responding new relations one by one, thus obtaining a sequence C = Cy, Cy, ...,
C,=C of algebras. We show that C; is gentle for all i in {0, 1,2,...,r}.

Since C is gentle, then so is Cy. Suppose that C; is gentle, where i is in
{0,1,2,...,r —1}. To get C;4, we add one new arrow, say y from x to y. This
arrow comes from a relation af from y to x in C. We must add the relations Sy
and ya to obtain Cj4 ;.

Since C; is gentle, there were already at most two arrows starting from x in C;.
Suppose that there were two, say #; and #,. Since C; is gentle, then £ is involved
in a relation with one of the two, say #;. The arrow #; cannot be in C, otherwise
there would be a double zero involving af and f7;. So the arrow #; comes from
a relation of in C. Since C is gentle, we must have that ¢ = a, so that #; = y,
which is absurd because y is not in C;.

Therefore, in C;, there is at most one outgoing arrow from x, and this arrow
is not involved in a relation with f. This shows that in C;;, there are at most
two arrows starting from x, say # and y, and that S is not a relation while Sy
is. Moreover, there is at most one more arrow ending in x, say J, and since C; is
gentle, we have that 7 is a relation, while Jy is not. So the relations at x are those
found in a gentle algebra.

Using a similar argument for the vertex y, we get that C;1 is a gentle algebra.

By induction, C is a gentle algebra. g

Example. Lemma 3.13 allows us to compute the relation-extension of any gentle
tilted algebra. As an illustration, consider the two algebras given in the example on
page 216. The relation-extension of each is given in the following diagram:

.v. | /\
NAOSA

off =10=p1=0 off =y0=pa=0

pp=0cy=00=0

Proof of the main theorem. Now the proof of Theorem 3.3, developed in separate
parts over the last several pages, can be stated properly.
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Proof of Theorem 3.3. That (1) implies (2) is shown in Lemma 3.4, that (2) implies
(4) in Lemma 3.6, that (4) implies (3) in Lemma 3.14, and that (3) implies (1) in
Lemma 3.5. O

4. Geometry of surfaces and A (')

We study in this section more connections between geometric properties of the
marked surface (S, M) and properties of the algebra A(I") given by a triangulation
of (S, M).

Cluster-tilted algebras arising from surfaces. We first address the question of
which of the algebras A(I") are cluster-tilted. Recall that all algebras A(I") share the
properties (2) and (3) from Theorem 2.7 with every cluster-tilted algebra. More-
over, it is shown in [Caldero et al. 2006] and [Buan and Vatne 2008] that the
cluster-tilted algebras of type A are algebras A(I") arising from a triangulation of
an unpunctured polygon. In this section, we show the following generalization:

Theorem 4.1. Let A(I') be the algebra associated to the triangulation T of an
unpunctured marked surface (S, M). Then the following statements are equivalent:

(1) The algebra A(T) is cluster-tilted.
(2) The algebra A(T) is cluster-tilted of type A or A.
(3) S is adisc or an annulus.

Moreover, all cluster-tilted algebras of type A (or A) are of the form A(T') for some
triangulation I of a disc S (or an annulus S, respectively).

Proof. 1t is clear that (2) implies (1). Let us show the converse: Suppose that the
algebra A(T) is cluster-tilted. Thus there is a sequence of mutations transforming
the quiver with potential defining A(I") into some quiver Q with zero potential.
This sequence of mutations corresponds to a sequence of flips, transforming the
triangulation I" of (S, M) into a triangulation T with Q(7T') = Q and zero potential.
Hence A(T) = kQ is hereditary. Since we know from Theorem 2.7 that A(T) is
gentle, this leaves only the possibilities that Q is of type A or A. Therefore the
algebra A(T) is cluster-tilted of type A or A.

We prove now the equivalence of (2) and (3). Since all triangulations on (S, M)
are flip-equivalent [Hatcher 1991] and flips of the triangulation correspond to mu-
tations of the corresponding quiver with potential [Labardini-Fragoso 2009], it is
sufficient to consider one particular triangulation. In the case where S is a disc, we
choose the triangulation to be in the form of a fan, giving rise to a linear oriented
quiver of type A. In the case where § is an annulus, we choose the triangulation
given by two fans in opposite direction as shown in the figure at the top of the next
page (where the left and right vertical edge should be identified).
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The corresponding quiver is of type A with zero potential; thus (3) implies (2).
Conversely, we know from Proposition 2.8 that the quivers Q(I") uniquely deter-
mine the topology of the unpunctured marked surface (S, M). Therefore S is a
disc or an annulus, respectively, and since all triangulations are flip-equivalent, it
is clear that all cluster-tilted algebras of the corresponding type occur. U

Curves in (S, M) and string modules. In this section we are comparing strings in
A(T") to curves in (S, M). By a curve in (S, M) we mean a curve y in S whose
endpoints lie in M and where all points except the endpoints lie in the interior of S.
We usually consider curves up to homotopy. For instance, for two distinct curves y
and J in (S, M), the intersection number It (y, J) is defined as the minimal number
of transversal intersections of two representatives of the homotopy classes of y and
0. Denote the internal arcs of the triangulation I" by {ay, ..., a,}. Then we define
the intersection vector It (y) of a curve y as

Ir(y) =Ur(y,a1) ..., Ir(y,an)).

Proposition 4.2. Let I be a triangulation of (S, M), an unpunctured marked sur-
face. Then there exists a bijection {y} — w(y) between the homotopy classes of
curves in (S, M) not homotopic to an arc in I and the strings of A(T'). Under
this bijection, the intersection vector corresponds to the dimension vector of the
corresponding string module, that is,

Ir(y) = dim M (w(y)).

aq [25) Os—

Proof. Let w = x X2 . : x; be a string in A(T"). We define a
curve y(w) in (S, M) as follows: The arcs x; and x, belong to the same triangle
T since they are joined by an arrow in A(I'). We connect the midpoints of x;
and x; by a curve y; in the interior of 7}. Proceeding in the same way with the
remaining arcs xp, ..., Xy we obtain curves y», ..., ys—| connecting the midpoints

of the respective arcs. The internal arc x| belongs to two triangles: the triangle
Ty which we considered above and another triangle Ty. Let P € M be the marked
point in Ty opposite to the arc x;. We now connect P with the midpoint of x| by
a curve yg in the interior of Ty, and proceed in the same way on the other end of
the string w, connecting the midpoint of x; with a marked point QO by some curve
ys. The curve y(w) is then defined as the concatenation of the curves yg, ..., 7s.
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X1 X2 X3 Xs
71 Y2 V3 Vs—1

By construction, the points of intersection of the curve y(w) with arcs in I’
are indexed by the vertices of the string w. The curve intersects the arcs of I’
transversally, and since the string w is reduced, none of the y; is homotopic to a
piece of an arc in I'. Thus the intersection numbers are minimal, and I (y (w)) =
dim M (w). Since y(w) has nontrivial intersection with arcs of I', it is clear that it
is not homotopic to an arc in the triangulation I'.

Conversely, let y : [0, 1] — S be a curve in (S, M) which is not homotopic to an
arc in I'. We assume that the curve y is chosen (in its homotopy class) such that
it intersects the arcs a of I' transversally (if at all) and such that the intersection
numbers Ir(y, a) are minimal. Orienting y from P =y(0)e M to Q =y(1) € M,
we denote by x the first internal arc of I" that intersects y, by x, the second arc, and
so on. We thus obtain a sequence x1, ..., x; of (not necessarily different) internal
arcs in I'. Since the intersection numbers are minimal, we know that x; # x;1.
Thus there are arrows, either o; : x; — x; 1.1 or o; : ;41 — x; in Q(I"), and we obtain
awalk w(y) = x; al b a2 xs in Q(I). The fact that y intersects
the arcs of I" transversally implies that the walk w(y) is reduced and avoids the
zero-relations, and thus w(y) is a string in A(T).

It follows from their construction that the two maps between strings and homo-
topy classes of curves defined above are mutually inverse. O

Remark. Recall that two string modules M (w) and M (v) are isomorphic precisely
when v = w or v = w~!. The inverse string w ™! corresponds to orienting the curve

in the opposite direction.

Proposition 4.3. Let I" be a triangulation of (S, M), an unpunctured marked sur-

face. Then there exists a bijection between the homotopy classes of closed curves
in (S, M) and powers b" of bands b of A(T").

The proof is analogous to that of the previous proposition.

An example where A(T) is not cluster-tilted. We finally present in this section
an example of an algebra A(I") which is not cluster-tilted. Recall that an algebra
A is tame if for all d € N there is a finite number n,; of one-parameter families
of A-modules such that almost every d-dimensional A-module belongs to one of
these ny families. The algebra A is said to be domestic if there is a constant ¢ such
that ny < ¢ for all d € N. On the other hand, if the numbers n, grow faster than
any polynomial, then the tame algebra A is said to be of nonpolynomial growth.
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It is well-known that every string algebra A is tame, and that the one-parameter
families are given by the bands in A [Butler and Ringel 1987]. In particular, all the
algebras A(I") are tame, because they are gentle and thus string algebras. Moreover
the tame cluster-tilted algebras of the form A(T") studied here are all domestic;
in fact, they are of type A or A, and thus we may assume above that ¢ = 0 or
¢ = 1. We construct in this section an example of an algebra A(I") which is of
nonpolynomial growth, and thus cannot be cluster-tilted. To obtain this example,
we consider a sphere § with three holes and choose one marked point in each
boundary component. We fix the following triangulation I' of (S, M) :

Then the algebra A(T") is given by the following quiver with relations €; p; =
0, pioc; =0and g;¢; =0fori =1andi =2.

b
I\
ap - c1
B

a b2 Y

ay f) (6)
2
The string algebra A(I") admits the two bands
B

o a f
= by—>ay«<—a; —> by —> by,
P y oy B
n= by <—cy<—cy <— b — by.

Since ¢ and # can be composed arbitrarily, the number of bands of a fixed length
[ grows exponentially with /, so the algebra A(I") is of nonpolynomial growth.

We would like to point out that the notion of nonpolynomial growth of tame
algebras discussed here does not coincide with the notion of nonpolynomial growth
cluster algebras discussed in [Fomin et al. 2008]: There one counts the number of
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cluster variables, that is to say, of arcs in (S, M), instead of one-parameter families,
that is to say, closed curves in (S, M). In [Fomin et al. 2008] the example we are
considering in this section is classified as being of polynomial growth, meaning
that, even if the number of curves is growing exponentially, the number of arcs is
bounded for the sphere with three holes.
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