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We determine all complex K3 surfaces with Picard rank 20 over Q. Here the
Néron–Severi group has rank 20 and is generated by divisors which are defined
over Q. Our proof uses modularity, the Artin–Tate conjecture and class group
theory. With different techniques, the result has been established by Elkies to
show that Mordell–Weil rank 18 over Q is impossible for an elliptic K3 surface.
We apply our methods to general singular K3 surfaces, that is, those with Néron–
Severi group of rank 20, but not necessarily generated by divisors over Q.

1. Introduction

Complex K3 surfaces of geometric Picard number 20 are called singular since they
involve no moduli. They share many properties with elliptic curves with complex
multiplication (CM). For instance, they can always be defined over some number
field. Moreover, over some finite extension of the number field, the L-series is
given in terms of Hecke characters (see Theorem 29).

For singular K3 surfaces over Q, Livné [1995] proved motivic modularity. How-
ever, this definition does not require that the Néron–Severi group be generated by
divisors which are defined over Q. We refer to this particular property as “Picard
rank 20 over Q”.

The motivation to study such K3 surfaces was the following: Shioda [1994]
raised the question whether it was possible for an elliptic K3 surface to have
Mordell–Weil rank 18 over Q. One way to disprove this would have been to show
that in general, K3 surfaces with Picard rank 20 over Q do not exist.

However, it turned out that there are such examples (see Examples 8, 9). Re-
cently Elkies determined all these surfaces in terms of their transcendental lattices:

Theorem 1 [Elkies 2007]. Let X be a K3 surface with Picard rank 20 over Q.
Then the transcendental lattice T (X) is primitive of class number one.
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336 Matthias Schütt

Using sphere packings and gluing up to a Niemeier lattice, Elkies concluded
that Mordell–Weil rank 18 over Q is impossible for an elliptic K3 surface.

Conversely, let T (X) be primitive of class number one. Then the singular K3
surface X with transcendental lattice T (X) has a model with Picard rank 20 over
Q (see Section 10).

In this paper, we present an alternative proof of Theorem 1 that we hope will
be of independent interest. Our proof uses the following ingredients: modularity
plus the classification of CM-forms in [Schütt 2009]; reduction and the Artin–Tate
conjecture at split primes; and class group theory.

We then generalise our techniques to all singular K3 surfaces. We deduce the
following obstruction to the field of definition:

Theorem 2. Let L be a number field and X a K3 surface of Picard rank 20 over
L. Denote the discriminant of X by d < 0. Then L(

√
d) contains the ring class

field H(d).

This result enables us to give a direct proof of Shafarevich’s finiteness theorem
for singular K3 surfaces (Theorem 35). It is the only known obstruction for the field
of definition of a singular K3 surface other than the result on the genus of T (X) in
[Schütt 2007b] (see (1) on next page and Lemma 34). In private correspondence,
Elkies has informed me that his proof for Theorem 1 also generalises to Theorem 2.

The paper is organised as follows: The next two sections recall the relevant
facts about singular K3 surfaces and modularity. In Section 4 we give two explicit
examples of K3 surfaces of Picard rank 20 over Q. Section 5 introduces the main
techniques to be used, particularly the Artin–Tate conjecture. The proof of The-
orem 1 is presented in Sections 6 through 9. The converse statement of Theorem
1 is covered in Section 10. We continue with the classification of K3 surfaces of
Picard rank 20 over Q up to Q-isomorphism. Section 12 generalises Theorem 1
to K3 surfaces with Picard rank 20 over a quadratic extension of Q. The paper
concludes with the proof of the general case of Theorem 2.

2. Singular K3 surfaces

The main invariant of a singular K3 surface X is its transcendental lattice T (X).
Here we consider the Néron–Severi group NS(X) of divisors up to algebraic equiv-
alence as a lattice in H 2(X,Z) with cup-product. Then the transcendental lattice
is the orthogonal complement

T (X)= NS(X)⊥ ⊂ H 2(X,Z).

The following classification was first stated by Pjateckiı̆–Šapiro and Shafarevich
[1971]. The proof was completed by Shioda and Inose [1977]:
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Theorem 3 [Piatetskiı̆-Shapiro and Shafarevich 1971; Shioda and Inose 1977].
The map X 7→ T (X) gives a bijection

{Singular K3 surfaces}/∼=
1:1
←→

{
positive-definite oriented
even lattices of rank two

}
/∼=

.

The injectivity of this map follows from the Torelli theorem for singular K3 sur-
faces [Piatetskiı̆-Shapiro and Shafarevich 1971]. For the surjectivity, Shioda and
Inose [1977] exhibited an explicit construction involving isogenous CM-elliptic
curves E, E ′. This is often referred to as Shioda–Inose structure:

E × E ′ X
↘ ↙

Km(E × E ′)

Here both rational maps are 2:1, and T (X) ∼= T (E × E ′). Shioda and Inose
exhibited the rational map X 99K Km(E × E ′) through base change of elliptic
fibrations. Explicit equations were subsequently given by Inose [1978]. In [Schütt
2007b], Inose’s results were improved to derive a model over the ring class field
H(d) associated to the discriminant d = disc(T (X)) of the transcendental lattice
(Lemma 33). Over some extension, one can moreover determine the ζ -function of
X (Theorem 29).

The set of singular K3 surfaces over Q (up to C-isomorphism) is finite by a
result of Shafarevich [1996], quoted in Theorem 35. However, there is only one
effective obstruction known for a singular K3 surface X to be defined over Q: By
[Schütt 2007b], the genus of T (X) has to consist of a single class. (Shimada [2009]
proved this first for the case of the fundamental discriminant d .) In other words,
we require that its class group be only two-torsion:

Cl(T (X))∼= (Z/2)g. (1)

The general case will be treated in Section 13. There we will also provide a for-
mulation in terms of fields of definition (Lemma 34).

The only drawback of relation (1) is that the class group Cl(T (X)) does not
recognise whether T (X) is primitive. We know 101 discriminants d < 0 such that
the class group Cl(d) is only two-torsion. By a result of Weinberger [1973] there is
at most one more such d , and in fact none under some condition on Siegel–Landau
zeroes (which would follow from GRH). However, so far we lacked bounds for the
degree of primitivity of T (X). For Picard rank 20 over Q, primitivity is part of
Theorem 1. For the general case, bounds for the degree of primitivity follow from
Theorem 2 (see Section 13).
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3. Modularity of singular K3 surfaces over Q

We shall now see that condition (1) can also be understood in terms of modular-
ity. Here the modular motive is the compatible system of Galois representations
attached to the transcendental lattice. Over some extension, this motive is related
to Hecke characters by Theorem 29.

Throughout the paper, we fix the imaginary quadratic field K =Q(
√

d) where
d < 0 is the discriminant of X . Write dK for the discriminant of K . Hence d =
N 2dK .

Theorem 4 [Livné 1995]. Every singular K3 surface X over Q is modular. The
L-series of the transcendental lattice T (X) is the Mellin transform of a Hecke
eigenform of weight 3 with CM by K .

By a result of Ribet [1977], CM-newforms are associated to Hecke characters.
Essentially, a Hecke character ψ of K is given by its conductor m, an ideal in the
ring of integers OK , and by its∞-type l. Then ψ satisfies

ψ(αOK )= α
l for all α ≡ 1 mod m.

Let NK/Q denote the norm of K/Q. The sum over all ideals a of OK that are
relatively prime to m gives the L-function of ψ :

L(ψ, s)=
∑

a

ψ(a)NK/Q(a)
s .

Through the inverse Mellin transform, L(ψ, s) defines a newform of weight k =
l+1 and level |NK/Q(m)dK |. For the weight of the corresponding newform to be 3,
the Hecke character thus has to have∞-type 2. Moreover, we require the newform
to have Fourier coefficients in Z. This is possible if and only if the class group of
K consists only of two-torsion (see Theorem 6). This condition is necessarily
satisfied if (1) holds.

Example 5. Let K be such that Cl(K )∼= (Z/2)g with dK 6= −3,−4. Then we can
define a Hecke character ψ of K with trivial conductor and∞-type 2 by setting

ψ(αOK )= α
2

for every principal ideal in OK and choosing suitable values for a set of generators
of Cl(K ). Explicitly, throughout this paper let

D =
{
−dK , if 4 - dK ,

−dK /4, if 4 | dK .

Assume that p= pp̄ splits in K . Since dK 6= −3,−4, we can write p2 uniquely as

p2
= x2
+ Dy2, x, y ∈ 1

2 N.
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(Here x, y ∈ N unless D = −dK .) Then ψ(p) = ±(x ±
√
−Dy). For the corre-

sponding newform f =
∑

anqn , we obtain

ap =±2x .

Once a normalisation is fixed, f has level |dK | and Fourier coefficients in Z.

The newforms arising from different normalisations (that is, sign choices) are
quadratic twists of each other. In general, consider a (quadratic) Dirichlet character
χ and a newform f =

∑
anqn . Then we obtain the twisted Hecke eigenform

f ⊗χ =
∑

n

anχ(n)qn. (2)

The classification in [Schütt 2009] says that the construction of Example 5 produces
all Hecke characters and Hecke eigenforms with Fourier coefficients in Z after
twisting:

Theorem 6 [Schütt 2009]. Let K be an imaginary quadratic field. Then all Hecke
characters of K with fixed ∞-type l such that the corresponding newform f has
coefficients in Z, are identified under twisting. Moreover, there is such a Hecke
character if and only if Cl(K )⊆ (Z/ l)g for some g ∈ N.

Remark 7. If dK 6= −3,−4, then we only have to consider quadratic twists. If χ
is a quadratic Dirichlet character, then we twist the Hecke character by χ◦NK

Q
. In

terms of the associated newform f , this corresponds to the quadratic twist in (2).
For dK =−3,−4, we also have to take cubic and biquadratic twisting into account.
All these twists have geometric equivalents. For instance, any quadratic Dirichlet
character can be identified with a Legendre symbol

(
δ
·

)
for some square-free δ ∈Z.

Then consider an elliptic curve (or a general equation of this type)

E : y2
= g(x) and twist Eδ : δy2

= g(x). (3)

For geometric equivalents of cubic and biquadratic twists, see Remark 27.

4. K3 surfaces of Picard rank 20 over Q: Examples

In this section, we recall two of the most elementary examples of K3 surfaces
of Picard rank 20 over Q. Both use elliptic fibrations with section. For further
examples, the reader is referred to Section 10.

Example 8. There is a unique complex elliptic K3 surface X with a fibre of type
I19. The fibration can be defined over Q. This follows from work of Hall [1971]
and was studied in detail by Shioda [2003]. A simple explicit Weierstrass equation
is derived in [Schütt and Schweizer 2007]:

X : y2
= x3
+ (t4

+ t3
+ 3t2

+ 1) x2
+ 2(t3

+ t2
+ 2t) x + t2

+ t + 1. (4)
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Let U denote the hyperbolic plane generated by a general fibre and the zero-
section. It is immediate that the Néron–Severi lattice of X (over Q) can be written
as

NS(X)=U ⊕ A18(−1)=
( 0 1

1 0

)
⊕ A18(−1).

In particular, X is a singular K3 surface. The Picard rank of X over Q is 20 if
and only if the all components of the special fibre are defined over Q (that is, if
the special fibre has split multiplicative reduction). This can be achieved by an
appropriate twist as in (3), and was first exhibited in [Schütt and Top 2006]. The
model in (4) has the fibre of type I19 at t = ∞. The fibre is split multiplicative,
so the Picard rank of the surface over Q is already 20. The corresponding Hecke
eigenform has level 19 by [Schütt and Top 2006] (see [Schütt 2009, Table 1]).

The next example goes back to [Tate 1974]. It has been studied very concretely
in [Hulek and Verrill 2005].

Example 9. Let X denote the universal elliptic curve for 01(7). Since this group
has genus 0, the base curve is P1. One the other hand, the space of cusp forms
S3(01(7)) is one-dimensional, so X has geometric genus pg(X) = 1. It follows
that X is a K3 surface. By general theory, the elliptic surface X has a model over
Q with a section P of order 7 also defined over Q. Such a model was first given
by Tate [1974]:

X : y2
+ (1+ t − t2)xy+ (t2

− t3)y = x3
+ (t2

− t3)x2.

Here P = (0, 0) is a point of order 7. In the following, we shall employ an abstract
approach to show that X has Picard rank 20 over Q.

The quotient of X by translation by P gives rise to another elliptic K3 surface
after resolving singularities. Hence the configuration of singular fibres can only be
[1, 1, 1, 7, 7, 7]. In particular, X is a singular K3 surface. We claim that the above
model has Picard rank 20 over Q. Equivalently, each reducible fibre is completely
defined over Q. To prove this, we show that P meets each I7 fibre in a different
nontrivial component.

We employ Shioda’s theory [1990] of Mordell–Weil lattices and the height pair-
ing. As a torsion section, P has height 0. Since P does not meet the 0-section, we
can compute the height directly as

h(P)= 4− (correction terms for reducible fibres).

Here the correction terms are (n(7− n))/7 according to the component 2n which
P meets (cyclically numbered so that the zero-section meets 20). The only way
to obtain h(P)= 0 is

0= h(P)= 4− 6
7 −

10
7 −

12
7 .
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Since P intersects each I7 fibre at a nontrivial component, these special fibres are
split multiplicative. Moreover, as the components differ for each I7 fibre, their
cusps cannot be conjugate. Hence all fibre components are defined over Q, and
the claim follows.

Remark 10. The same argument applies to other modular elliptic K3 surfaces, but
not to all of them. For instance, the universal elliptic curve for 0(4) is a Kummer
surface. Hence it cannot have Picard rank 20 over Q by the next remark. This
argument will also be used in the proof of the primitivity of the transcendental
lattice (Lemma 22). Alternatively, we could also argue with the Weil pairing.
Since the Weil pairing has image µ4, the fourth roots of unity, we deduce that
MW (X/Q)⊂ Z/4×Z/2. Then we apply the inverse argument of Example 9 to a
4-torsion section which is not defined over Q. This implies that there are singular
fibres which are not completely defined over Q.

Remark 11 (Singular abelian surfaces). The situation for abelian surfaces is dif-
ferent: Let A be a singular complex abelian surface, that is, ρ(A) = 4. Then
A∼= E×E ′ for isogenous CM-elliptic curves E, E ′ by a result of Shioda and Mitani
[1974]. However, as Shioda [2005] noted, Picard rank 4 over Q is impossible. This
is a consequence of the cohomology structure of abelian varieties and carries over
to Kummer surfaces (see also Remark 10 and Lemma 22).

5. The Artin–Tate conjecture

Let X be a K3 surface of Picard rank 20 over Q. In order to prove Theorem 1, we
will consider the reductions of X at the good primes p that split in K and apply
the Artin–Tate conjecture.

Let p be a prime of good reduction of X . Then the reduction morphism induces
embeddings

NS(X/Q) ↪→ NS(X/Fp) and NS(X/Q) ↪→ NS(X/Fp), (5)

which are isometries onto the image. For almost all p, these embeddings are prim-
itive. This follows from Shimada’s argumentation [2009, §2.2], since the proof for
the case of supersingular reduction can be generalised directly. For the remainder
of the paper, we will only consider good primes where the reduction is good and
the embeddings in (5) are primitive.

On X/Fp we have the Frobenius endomorphism Frobp raising coordinates to
their pth powers. We want to consider the induced action on cohomology. For
this, we fix a prime ` 6= p and work with étale `-adic cohomology of the base
change X̄ = XFp

to an algebraic closure Fp of Fp. Then we consider the induced
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map Frob∗p on H 2
ét(X̄ ,Q`) and its reciprocal characteristic polynomial

P(X/Fp, T )= det(1−Frob∗p T ; H 2
ét(X̄ ,Q`)).

Frob∗p acts through a permutation on the algebraic cycles in H 2
ét(X̄ ,Q`). More

precisely, it operates as multiplication by p on NS(X/Fp) and in particular on the
image of NS(X/Q) under the primitive embedding (5). In the present case, X has
Picard rank 20 over Q and discriminant d . Let f =

∑
anqn denote the associated

newform by Theorem 4. Then

P(X/Fp, T )= (1− p T )20
(

1− ap T +
(d

p

)
p2 T 2

)
. (6)

The Tate conjecture [1965] relates the shape of the zeroes of P(X/Fp, T ) to the
Picard number: Conjecturally for any smooth projective surface X over Fp, it pre-
dicts

ρ(X/Fp)= #
{

zeroes T = 1
p

of P(X/Fp, T )
}
,

ρ(X/Fp)= #
{

zeroes T = ζ 1
p

of P(X/Fp, T ) where ζ is a root of unity
}
.

Here we count the zeroes with multiplicities. Since Frobp acts as multiplication by
p on N S(X/Fp), we always have ≤ in the above equations. For instance, the Tate
conjecture is known for elliptic K3 surfaces [Artin and Swinnerton-Dyer 1973].
By [Milne 1975] (see the addendum cited for characteristic two), it is equivalent
to the Artin–Tate conjecture:

Conjecture 12 (Artin and Tate [Tate 1966]). Let X/Fp be a smooth projective
surface. Let α(X)= χ(X)− 1+ dim Pic Var(X). Then

P(X/Fp, T )
(1− p T )ρ(X/Fp)

∣∣∣
T= 1

p

=
|Br(X/Fp)| |discr(NS(X/Fp))|

pα(X) |NS(X/Fp)tor|2
(7)

Remark 13. By [Liu et al. 2005], |Br(X/Fp)| is always a square. For K3 surfaces,
α(X)=1 and the Néron–Severi group is torsion-free, since numerical and algebraic
equivalence coincide. Hence (7) simplifies to

P(X/Fp, T )
(1− p T )ρ(X/Fp)

∣∣∣
T= 1

p

=
1
p
|Br(X/Fp)| |discr(NS(X/Fp))|. (8)

We shall now specialise to the situation where X is a K3 surface with Picard
rank 20 over Q and p is a good split prime. The Fourier coefficient ap can be
computed in terms of Example 5. In particular, it is never a multiple of p. Hence
the zero T = (1/p) of P(X/Fp, T ) has multiplicity exactly 20, and there is no
further zero T = ζ(1/p). It follows that ρ(X/Fp)= ρ(X/Fp)= 20. In particular,



K3 surfaces with Picard rank 20 343

the Tate conjecture holds for X over Fp. From (5) we deduce

NS(X/Q)= NS(X/Q)= NS(X/Fp)= NS(X/Fp)

and thus
discr(NS(X/Q))= discr(NS(X/Fp))= d = N 2 dK .

Hence the Artin–Tate conjecture for X/Fp (8) gives, with M2
= |Br(X/Fp)|,

2p− ap = M2
|d| = (M N )2|dK |. (9)

The proof of Theorem 1 now proceeds in three steps:

(A) The imaginary quadratic field K has class number one (Corollary 15).

(B) The discriminant d has class number one (Corollary 20).

(C) The transcendental lattice T (X) is primitive (Lemma 22).

As a by-product, we will also determine the possible shapes of the associated new-
form f (Lemma 17).

6. Class number of K

In this section, we will prove that K has class number one. We achieve this through
the following proposition:

Proposition 14. Let p split in K and let ap ∈ Z be the coefficient of a newform of
weight 3 with CM by K . Then (9) implies that p splits into principal ideals in K .

Proof. By Example 5, we can write ap = 2z with z =±x ∈ 1
2 Z. By (9), we have

p− z =
m2 D

2
(10)

for some m ∈N. On the other hand, p2
= z2
+Dy2 for some y ∈ 1

2 N by assumption,
that is,

p2
− z2
= Dy2. (11)

Dividing (11) by (10), we obtain

p+ z = 2
( y

m

)2
. (12)

Now we add (10) and (12) and divide by two to derive

p =
( y

m

)2
+ D

(m
2

)2
. (13)

Since m/2 ∈ 1
2 N, the same holds for y/m. We deduce that p splits into principal

ideals in K . �
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Corollary 15. Let X be a K3 surface of Picard rank 20 over Q. Then its CM-field
K has class number one.

Proof. By the Artin–Tate conjecture, Equation (9) holds at all but finitely many p
that split in K . By Proposition 14, each of these p splits into principal ideals in
K . Hence K has class number one. �

7. Shape of f

If K has class number one, we can describe the CM-newforms of K even more
explicitly in terms of Example 5. Here we only have to take extra care of the special
cases dK =−3,−4 where OK 6= {±1}. For this purpose, let

D′ =


27, if dK =−3,
4, if dK =−4,
D, if dK 6= −3,−4.

Example 16 (Class number one). Let K have class number one. Let D′ as above.
If p splits in K , then we rewrite (13) uniquely as

p = x2
+ D′y2, x, y ∈ 1

2 N.

The corresponding Hecke character ψ of ∞-type 2 sends the prime ideal (x +
√
−D′ y) to its square. We obtain the newform fK of weight 3 and level D′ from

[Schütt 2009, Table 1] with coefficients

ap = 2(x2
− D′y2). (14)

Lemma 17. Let X be a K3 surface of Picard rank 20 over Q. Let f denote the
associated newform.

(i) If dK 6= −3,−4, then f = fK .

(ii) If dK =−4, then f is a quadratic twist of fK .

(iii) If dK =−3, then f is a cubic twist of fK .

Proof. Assume that dK 6= −3,−4. Let p be a split prime as in Example 16. By
Theorem 6, f has the coefficient

ap =±2(x2
− Dy2). (15)

Inserting into (9) gives

2(x2
+ Dy2

∓ (x2
− Dy2))= m2 D. (16)

Since dK is not a square and neither is D, it follows that only the minus sign in
(16) is possible. That is, in (15), only the plus sign occurs. By definition f = fK .
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If dK =−4 and p = x2
+ 4y2, then

ap =

{
±2(x2

− 4y2),

±8xy.

The second case occurs (at some split p) if and only if f is a biquadratic twist of
fK . Only the first case is compatible with (9), since in the second case

2p− ap = 2(x2
+ 4y2

∓ 4xy)= 2(x ∓ 2y)2 6= 4n2.

Hence f is a quadratic twist of fK .
A similar argument rules out quadratic and sextic twists of fK for dK = −3:

Here we can always write the coefficients of f as

ap =±2(x2
− 3y2) where nonuniquely p = x2

+ 3y2, x, y ∈ 1
2 N.

By the argument of case (i), only the plus sign occurs. This implies that f is a
cubic twist of fK . �

8. Class number of d

Let X be a K3 surface of Picard rank 20 over Q. Denote the associated newform
by f =

∑
anqn . We can rephrase Lemma 17 and its proof as follows: At every

good split prime p, we can write (nonuniquely if D 6= D′)

p = x2
p + Dy2

p such that ap = 2(x2
p − Dy2

p) and 4Dy2
p = M2

p |d|. (17)

By construction, we have either dK = −4D and y ∈ N or dK = −D and y ∈ 1
2 N.

Recall that d = N 2dK and dK has class number one by Corollary 15. We want to
find all d which are compatible with Picard rank 20 over Q. In other words, we
search for all N |Mp which are simultaneously possible in (17) at all good split p.

Observation 18. Let gcd denote the greatest common divisor in N if dK =−4D,
or in 1

2 N if dK =−D. Let yp be given by (17) at a good split prime p. Then

N | gcd(yp; p good split prime for X).

Hence, if for instance there was a yp = 1 (or yp =
1
2 in the case dK = −D)

occurring, then d = dK (and N = Mp = 1) would follow. However, this need not
be the case in general. To see this, let the associated newform f have level 27.
Then by construction 3|yp for all split p. Hence at least d = −3 and d = −27
would be possible a priori.

To bound d (or N ) in general, we need information on the greatest common di-
visor of the yp. This divisibility problem translates into class group theory through
representations of primes by quadratic forms:
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Lemma 19. Let d < 0 and let Q =
( 2

b
b
2c

)
be a quadratic form of discriminant d.

For r ∈ N, the following are equivalent:

(i) For almost every prime p represented by Q, there is a representation

p = u2
+ buv+ cv2, u, v ∈ Z, (18)

such that r | v.

(ii) h(d)= h(dr2).

Proof. Note that Q always represents the principal class in Cl(d). Hence, if h(d)=
h(dr2), the quadratic form

Qr =

( 2 br
br 2cr2

)
in Cl(dr2) represents the same primes as Q (the principal ones). Thus r | v for all
these p.

Conversely, assume that r | v for almost all p represented by Q. Thus all these
p are represented by Qr as well. Since the split primes are equally distributed
on the classes that represent them, we obtain h(d) ≥ h(dr2). On the other hand,
h(d) ≤ h(r2d) holds trivially. Hence the class numbers h(d) and h(dr2) have to
coincide. �

Corollary 20. Let X be a K3 surface of Picard rank 20 over Q. Then the tran-
scendental lattice has discriminant d of class number one.

Proof. By Corollary 15, dK has class number one. Assume that d 6= dK , that is,
there is some r dividing all yp in (17). To apply Lemma 19, we have to relate
divisibility of yp and vp. We consider the following quadratic forms:(

Q =
2 0
0 2D

)
if dK is even, Q =

(2 1
1 (D+1)/2

)
if dK is odd.

If dK is even, then dK =−4D and vp = yp ∈N. Hence h(d)= h(dK )= 1 follows
from Lemma 19. If dK is odd, then we can rewrite (18) in half-integers:

p = u2
p + u pvp +

D+ 1
4

v2
p =

(
u p +

vp

2

)2
+ D

(vp

2

)2
.

Hence, divisibility of yp in 1
2 N translates into divisibility of vp ∈N and vice versa.

Again we deduce h(d)= h(dK )= 1 by Lemma 19. �

Remark 21. Let X be a K3 surface of Picard rank 20 over Q. If d 6= dK , it is
immediate from the above argument that the associated newform f has a partic-
ular shape. For d = −28, this newform is uniquely determined with level 7 by
Lemma 17. In the other three cases (d =−12,−16,−27), it is easily checked that
the condition r | yp fixes a unique Hecke character. We find that f is the unique
newform of weight 3 and level |d|.
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9. Primitivity of T (X)

We have seen that a K3 surface with Picard rank 20 over Q has discriminant of
class number one. Hence there are a priori 17 possibilities for the transcendental
lattice:

• the 13 primitive lattices of class number one, corresponding to isomorphism
classes of CM-elliptic curves over Q through the Shioda–Inose structure, and

• the 4 imprimitive lattices of discriminant d =−12,−16,−27,−28.

In this section, we will rule out the second case.

Lemma 22. Let X be a K3 surface of Picard rank 20 over Q. Then T (X) is
primitive.

Proof. Assume that T (X) is not primitive. By Corollary 20, we are in the second
case above. We shall treat even and odd discriminants separately.

If d is even in the second case above, then the transcendental lattice T (X) has
intersection form 2Q for Q ∈ Cl(d ′) where 4d ′ = d . It follows from [Shioda and
Inose 1977] that X is the Kummer surface of an abelian surface A such that the
transcendental lattice T (A) has intersection form Q. By Remark 11, ρ(A/Q) < 4
and ρ(X/Q)≤ ρ(A/Q)+ 16< 20.

If d is odd, that is, d = −27, we consider Inose’s fibration on X [Inose 1978;
Shioda 2006]. In the present case, K = Q(

√
−3), and X arises from the Shioda–

Inose construction (see Section 2) for the following elliptic curves:

E with CM by OK and E ′ with CM by Z+ 3OK .

In particular, j (E) = 0. It follows from [Inose 1978] that X admits the isotrivial
elliptic fibration

X : y2
= x3
+ t5(3 t2

− 2 · 11 · 23 t + 3).

Here the singular fibres have type II ∗, II ∗, II, II, and the Mordell–Weil group
over Q has rank two. The generic fibre has CM by OK . Let ω denote a primitive
third root of unity acting on X via x 7→ω x . If P is a section of the elliptic surface,
then so is ω∗P . Since the singular fibres admit no nontrivial torsion sections, these
sections are independent. Since this argumentation applies to any twist Y of X ,
Gal(Q(

√
−3)/Q) always acts nontrivially on MW (Y ). Hence rk MW (Y/Q) < 2

and in particular ρ(Y/Q) < 20. �

10. Existence of K3 surfaces of Picard rank 20 over Q

There are 13 primitive lattices T of class number one appearing in Theorem 1. For
each of them one can ask whether there is a K3 surface with Picard rank 20 over
Q and this transcendental lattice. Elkies [2007] announced in that this holds true
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for each T . It follows that for each of these surfaces, one such model is given by
Inose’s fibration for the CM-elliptic curve corresponding to T , as exhibited over
Q in [Schütt 2007b].

However, for Inose’s fibration, the nontrivial sections are often not immediate.
In the cases at hand, there are two fibres of type II ∗ plus an additional reducible
fibre of type I2. Hence the Mordell–Weil rank is one. Elkies recently computed
the Mordell–Weil generator of height |d|/2 explicitly for all these fibrations [Elkies
2008a].

For the reader’s convenience we include a list of different models of these K3
surfaces where the Picard rank 20 over Q becomes evident. These models are given
in terms of elliptic fibrations with configuration of singular fibres and the abstract
structure of the Mordell–Weil group. We also include a reference, but naturally the
given models are far from unique. Other models may be found in [Elkies 2008b;
Schütt 2007a; Top and Yui 2007] for instance. Explanations follow the table.

d configuration MW reference

−3 [13, 3, 12∗] Z/4 Lemma 26
−4 [0∗, III ∗, III ∗] Z/2 Lemma 25
−7 [13, 73

] Z/7 Example 9
−8 [1, 4, III ∗, II ∗] {0} [Schütt 2007a, §7]
−11 [13, 11, II ∗] {0} [Schütt 2006, (III.2)]
−12 [2, 3, III ∗, II ∗] {0} [Schütt 2007a, §7]
−16 [2, 8, 1∗, 1∗] Z/4 [Schütt 2007a, §7]
−19 [15, 19] {0} Example 8
−27 [14, 2, 92

] Z+Z/3 Example 23
−28 [16, 6, 12] Z2 [Elkies 2008b, §5]
−43 [16, 6, 12] Z2 [Elkies 2008b, §5]
−67 [13, 4, 7, II ∗] Z [Elkies 2008b, §4]
−163 [16, 6, 12] Z2 [Elkies 2008b, §5]

For d =−8,−12, it was shown in [Schütt 2007a, §7] that the named fibrations
are defined over Q. To obtain Picard rank 20 over Q, it suffices to apply a quadratic
twist as in Example 8 such that the fibre of type I4 or I3, respectively, becomes
split-multiplicative.

For d =−11, the following Weierstrass form was derived in [Schütt 2006]:

y2
= x3
+ t2(t2

+ 3t + 1) x2
+ t4(2t + 4) x + t5(t + 1).

This fibration has a II ∗ fibre at 0 and a split-multiplicative fibre of type I11 at∞.
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For d =−16, we realise the surface as a quadratic base change of the extremal
rational elliptic surface with configuration [1, 4, 1∗]. It has a rational 4-torsion
section P which meets the singular fibres I4 at a near and I ∗1 at a far component
[Miranda and Persson 1986]. This implies that all fibre components are defined
over Q. The same argumentation applies to the base changed surface. Here we
choose the base change in such a way that the I ∗1 fibres sit above rational cusps.

Example 23 (Discriminant d =−27). For this discriminant, we searched the one-
dimensional family of elliptic K3 surfaces with the given configuration [14, 2, 92

]

and a 3-torsion section for an appropriate specialisation. Using techniques from
[Elkies and Schütt 2008], we found

X : y2
+ 3(2t2

+ 1)xy+ (1− t2)3 y = x3.

This elliptic surface has 3-torsion sections with zero x-coordinate and an indepen-
dent section P over Q with x-coordinate x(P)= (t − 1)3 and height h(P)= 3/2.
The I9 fibres are located at t=±1 and split-multiplicative. Hence X has Picard rank
20 over Q. Using the height pairing [Shioda 1990], one can show that neither P
nor its translates by the torsion sections are 3-divisible. Hence X has discriminant

d =−h(P)
disc(A1) disc(A8)

2

|MW (X)|2
=−27.

11. Classification up to Q-isomorphism

So far, we have only considered K3 surfaces up to isomorphism over C. Then a
singular K3 surface X is identified by its transcendental lattice T (X) (Theorem 3).
In this section, we answer the question which Q-isomorphism classes have Picard
rank 20 over Q. This is closely related to the precise shape of the corresponding
Hecke eigenform (compare Lemma 17).

We will work with Inose’s elliptic fibration. In this context, one should al-
ways have quadratic twisting as in (3) in mind. This operation twists the mod-
ular forms. Notably it also twists sections and affects singular fibres of types
IV, IV ∗, I ∗m, In(n > 2). Our first result concerns the case d 6= −3,−4:

Proposition 24. Let 0> d 6= −3,−4 of class number one. Up to Q-isomorphism,
there is a unique K3 surface X of discriminant d and Picard rank 20 over Q.

Proof. The existence was shown in the previous section. We work with Inose’s fi-
bration with reducible singular fibres I2, II ∗, II ∗ and a section P of height h(P)=
|d|/2. Over C, such a fibration is unique [Shioda 2006]. Over Q, this only leaves
quadratic twists (for d 6= −3,−4). But then the condition that the section P be
defined over Q distinguishes the unique twist with Picard rank 20 over Q. �
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Lemma 25. Let d =−4. Consider the extremal elliptic K3 surface

X : y2
= x3
− t3(t − 1)2x, (19)

with singular fibres III ∗ at 0 and ∞ and I ∗0 at 1 and two-torsion section (0, 0).
Then any K3 surface with discriminant d and Picard rank 20 over Q is Q-iso-
morphic to a quadratic twist of X.

Proof. The configuration determines a unique elliptic fibration over C. Over Q,
we distinguish biquadratic twists

Xδ : y2
= x3
− δ t3(t − 1)2x, δ ∈Q∗.

All fibre components are defined over Q with the possible exception of the simple
components of the I ∗0 fibre which do not meet the zero section. These components
are endowed with the Galois action of the extension Q(x3

− δ x)/Q. Hence all
components are defined over Q if and only if δ is a square in Q∗. This corresponds
to the quadratic twist of (19) by

√
δ as in (3). �

Lemma 26. Let d =−3. Consider Inose’s fibration

X : y2
= x3
− t5(t + 1)2

with singular fibres II ∗ at 0 and ∞ and IV at −1. Then any K3 surface with
discriminant d and Picard rank 20 over Q is Q-isomorphic to a cubic twist of X.

Different elliptic fibrations on this surface have been studied in [Schütt 2008].
We omit the proof, which is analogous to the previous one.

Remark 27. If d = −3 or −4, then there are infinitely many possible associated
newforms by Lemma 17. By the previous two lemmata, each of these twists (qua-
dratic and cubic) is associated to a unique K3 surface of Picard rank 20 over Q.

12. K3 surfaces with Picard rank 20 over a quadratic extension

In the next section, we will apply our methods to fields of definition of general
singular K3 surfaces and their Néron–Severi lattices. To give a flavor of the ideas
involved, we first give a full treatment of K3 surfaces with Picard rank 20 over a
quadratic extension of Q. We keep the techniques and notation above.

Proposition 28. Let L be a quadratic extension of Q and X be a K3 surface with
Picard rank 20 over L. As before, let T (X) denote the transcendental lattice, d its
discriminant and K =Q(

√
d).

(i) If L = K , then d has class number one.

(ii) If L 6= K , then d has class number one or two. In the latter case, the com-
positum L K agrees with the ring class field H(d).
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Proof. We consider all those primes p that split in both K and L . Let p | p in L .
Then Fp = Fp and again ρ(X/Fp) = 20. As before we will apply the Artin–Tate
conjecture to the reduction of X at p. For this, we need the coefficient ap of the
characteristic polynomial of Frobp as in (6). Even if X is not defined over Q, there
still is a modularity result over some extension:

Theorem 29 [Shioda and Inose 1977, Theorem 6]. Upon increasing the base field,
the ζ -function of a singular K3 surface X splits into one-dimensional factors. Then
the L-function of the transcendental lattice factors as

L(T (X), s)= L(ψ2, s) L(ψ2, s),

where ψ is the Hecke character associated to an elliptic curve with CM in K . Here
one can choose the elliptic curve E identified with the transcendental lattice T (S)
under the map(2a b

b 2c

)
7→ τ =

−b+
√

b2− 4ac
2a

7→ E = C/(Z+ τZ).

Thanks to this result, we are able to derive the relevant properties of ap to apply
our previous techniques. We will need the following lemma:

Lemma 30. In the above notation, ap ∈ K . Moreover ap takes the shape of Exam-
ple 5 and p splits into primes of order two in Cl(K ):

p2
= αp · ᾱp = x2

+ Dy2, ap =±2x .

Remark 31. By inspection, Lemma 30 does not require NS(X) to be rational over
Fp, but only p to split in K and p | p. In our special case where NS(X) is fully
defined over Fp, the proof of Proposition 28 will ultimately show that p splits into
principal primes in Cl(d).

Proof of Lemma 30. From the Weil conjectures we know that

ap = αp+ ᾱp with |αp| = p. (20)

Here αp, ᾱp are algebraic integers, complex conjugate in an imaginary quadratic
extension of Q since ap ∈ Z. We have to show that this quadratic field is K .
In the present situation we know the ζ -function of X over some extension of
L by Theorem 29. As a result of increasing the ground field, the eigenvalues
ψ(P)2, ψ(P)

2
of Frobenius at a prime P above p agree with some power of αp, ᾱp.

Since ψ(P)∈ K \Q and αp is quadratic over Q, this implies that αp ∈ K . It follows
that ap has exactly the same shape as ap in Example 5. In fact, we deduce from
(20) that

p2
= αp · ᾱp = x2

+ Dy2, where ap = αp+ ᾱp =±2x .
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This is to say that the prime factors of p in K become principal upon squaring. �

Thanks to Lemma 30 we can continue exactly along the lines of the previous
sections to complete the proof of Proposition 28. We distinguish two cases:

If L = K , then at every good split prime p in K , we have ρ(X/Fp)= 20. Hence
the arguments from the previous sections carry over except for Lemma 22. That
is, d has class number one, but imprimitive T (X) occurs.

If L 6= K , then Proposition 14 tells us that all the primes that split in both K and
L are principal. Hence K has class number one or two. By the argumentation of
Section 8, all these p are principal in Cl(d) as well (as mentioned in Remark 31).
Hence, d has class number one or two. In the latter case, L K = H(d) by class
field theory. �

Remark 32. For many K3 surfaces with Picard rank 20 over a quadratic extension,
we know a model over Q. Most of these models arise through the Shioda–Inose
fibration [Inose 1978; Schütt 2007b] or through extremal elliptic surfaces [Beukers
and Montanus 2008; Schütt 2007a]. It is an open question whether all K3 surfaces
with Picard rank 20 over a quadratic extension (or more generally with discriminant
d of class number two) might have a model over Q.

13. Singular K3 surfaces over number fields

We conclude the paper with an application of our techniques to general singular
K3 surfaces. We will derive an explicit obstruction for the field of definition of
the surface and that of its Néron–Severi group. First we recall a possible field of
definition:

Lemma 33. Let X be a singular K3 surface of discriminant d. Then X has a model
over the ring class field H(d).

A model was given in [Schütt 2007b, proof of Proposition 10], based on Inose’s
fibration [1978] (compare [Shioda 2006]). Elkies [2007] announced another model.

In general, the field H(d) need not be the optimal field of definition. In fact,
there are examples of singular K3 surfaces over Q where H(d) has degree 16 or
24 over K . The question arises how far one can possibly descend X , starting from
H(d). Shimada [2009] (for fundamental d) and the author [Schütt 2007b] (in full
generality) derived the following condition in terms of lattice:

{T (Xσ ); σ ∈ Aut(C/K )} = genus of T (X). (21)

In Section 2, we used this to the following effect: If X is defined over Q, then the
genus of T (X) consists of a single class, that is, Cl(T (X))∼= (Z/2)g.
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To rephrase (21) in terms of class field theory, denote the degree of primitivity
of T (X) by m. Write d = m2d ′, so that we can identify

Cl(T (X))∼= Cl(d ′).

Let G = Cl(d ′)[2], the two-torsion subgroup of Cl(d ′), and M the fixed field of G
in the abelian Galois extension H(d ′)/K .

Lemma 34. Let X be a singular K3 surface over some number field L. In the
above notation,

M ⊂ K L .

So far, this was the only known obstruction to fields of definition of singular K3
surfaces. The only drawback of Lemma 34 is that it fails to measure the degree of
primitivity of T (X). For this reason, Theorem 2 provides a major improvement: By
providing bounds on the discriminant d , it also implies restrictions on the degree
of primitivity. We shall now apply the techniques from the previous sections to
prove Theorem 2.

Proof of Theorem 2. Without loss of generality, we can assume that L contains K .
We consider all those good primes p that split completely in L . Let p | p in L . Then
Fp = Fp and ρ(X/Fp) = 20. Hence we can apply the Artin–Tate conjecture at p.
As in the previous section, Lemma 30 guarantees that ap has the shape of Example
5 and p splits into prime ideals of order two in Cl(K ). By the argumentation of
Sections 6–8, p is not only represented by the principal class of Cl(K ), but also of
Cl(d). Hence, by class field theory, L has to contain the ring class field H(d). �

Since there are only limited possibilities for the Galois action on the Néron–
Severi lattice of a singular K3 surface (or on any lattice of given rank), Theorem 2
provides us with a direct proof of the following finiteness result due to Shafarevich.
For best efficiency, Theorem 2 should be combined with Lemma 34.

Theorem 35 [Shafarevich 1996]. Let n ∈ N. Then

#{singular K3 surface X over L; [L :Q] ≤ n}/∼= <∞.

Remark 36. Similar results can be established for other modular surfaces, for
instance for singular abelian surfaces [Shioda and Mitani 1974]. In that particular
case, they would also follow from the cohomological structure (see Remark 11).
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