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Stable reduction of Xy(p?3)

Ken McMurdy and Robert Coleman
with an appendix by Everett W. Howe

This paper is dedicated to Siegfried Bosch, whose foundational work in rigid analysis was
invaluable in our development of the theory of semistable coverings.

We determine the stable models of the modular curves X (p?) for primes p > 13.
An essential ingredient is the close relationship between the deformation theories
of elliptic curves and formal groups, which was established in the Woods Hole
notes of 1964. This enables us to apply results of Hopkins and Gross in our
analysis of the supersingular locus.

1. Introduction

Let n be an integer and p a prime. It is known thatif n >3 and p > 5, orif n > 1
and p > 11, the modular curve X((p™) does not have a model with good reduction
over the ring of integers of any complete subfield of C,. By a model for a scheme
C over a complete local field K, we mean a scheme S over the ring of integers Og
of K such that C = S ®¢, K. When a curve C over K does not have a model with
good reduction over Ok, it may have the “next best thing”, that is, a stable model.
The stable model is unique up to isomorphism if it exists, which it does over the
ring of integers in some finite extension of K, as long as the genus of the curve is
at least 2. Moreover, if 6 is a stable model for C over O, and K € L € C,, then
€ Qg 01, is a stable model for C @k L over 0. The special fiber of any stable
model for C is called the stable reduction.

Here is a brief summary of prior results regarding the stable models of modular
curves at prime power levels. Deligne and Rapoport [1973, §VI.6] found models
for Xo(p) and X(p) over Z, and Z,[u,] that become stable over the quadratic
unramified extension. Edixhoven [1990, Theorem 2.1.2] found stable models for
Xo(p?) over the ring of integers, R, in the Galois extension of Q" of degree
(p> — 1)/2. Bouw and Wewers [2004, Theorem 4.1 and Corollary 3.4] found
stable models of X((p) and X (p) over Z, and R by completely different means.
Krir [1996, Théoreme 1] proved that the Jacobian of Xy(p") has a semistable
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model over the ring of integers of an explicit Galois extension L, of Q" of degree
p**=2(p? — 1) for n > 2, which implies that Xo(p") has a stable model over the
ring of integers of L, by [Deligne and Mumford 1969, Theorem 2.4]. Also, stable
models for X((125) and X((81) were computed explicitly in [McMurdy 2004, §2;
2008, §3], and [2008, §5] gave a conjectural stable reduction of X¢( p4). The main
result of this paper is the construction of a stable model for Xo(p?), when p > 13,
over the ring of integers of some finite extension of (Q, that is made explicit in
[CM 2006].

We introduce the notion of a semistable covering of a smooth complete curve
over a complete nonarchimedean field in Section 2C. We prove that any curve over
a complete stable subfield of C, has a semistable covering if and only if it has
a semistable model, and moreover we can determine the corresponding reduction
from the covering (see Theorem 2.36). Finding a semistable covering is often
easier in practice than finding a semistable model directly, and this is what we do
for Xo(p?) in Sections 6-9.

Overview. Our approach is rigid analytic, in that we construct a stable model of
Xo(p?) by actually constructing a stable covering by wide opens (an equivalent
rigid analytic notion which was introduced in [Coleman and McCallum 1988, §1]).
A covering 4€° of the ordinary locus can be obtained by extending the ordinary
affinoids X;tb defined in [Coleman 2005, §1] to wide open neighborhoods W;Z.
The supersingular locus essentially breaks up into the union of finitely many de-
formation spaces of height 2 formal groups with level structure [Lubin et al. 1964].
We use results from [Hopkins and Gross 1994] and [de Shalit 1994] to produce a
covering ¢* of this region. Finally, we show that the genus of the covering €° U%*
is at least the genus of X((p?), and therefore that the overall covering is stable.
This argument is laid out as follows.

First, in Section 2, we recall or prove the general rigid analytic results that are
necessary for a stable covering argument. These results are proved not only over
complete subfields of C,, but over more general complete nonarchimedean-valued
fields. For example, Proposition 2.34 is the aforementioned result that the genus
of any stable covering must equal the genus of the curve. We also revise and
extend results of Bosch, and of Bosch and Liitkebohmert, on the rigid geometry
of algebraic curves. A rigid analytic version of the Riemann existence theorem is
proved in Appendix A.

In Section 3, we recall and fix notation for some results specifically pertaining
to Xo(p") and its rigid subspaces. This is done from the moduli-theoretic point
of view, which is that points of Xy(p") correspond to pairs (E, C), where E is a
generalized elliptic curve and C is a cyclic subgroup of order p". There is a detailed
discussion in Section 3A of the theory of the canonical subgroup of an elliptic curve
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and its connection with the geometry of Xo(p) [Buzzard 2003, §3]. Section 3B is
where we define wide open neighborhoods, Waib ) X;tb, of the irreducible affinoids
that make up the ordinary locus of Xo(p").

All of the necessary results regarding deformations of formal groups are given
in Section 4. First we precisely state the relationship between deformations of
elliptic curves and formal groups, which we call Woods Hole theory [Lubin et al.
1964, §6]. This is then used in Section 4A (along with the result of Howe in
Appendix B) to prove that all of the connected components of the supersingular
locus of Xo(p™) are (nearly) isomorphic. Because of this fact, we are able to focus
on those regions W4 (p") that correspond to a supersingular elliptic curve A/F,
for which j(A) # 0, 1728. Specifically, this enables us to directly apply results
of de Shalit [1994, §3] for the forgetful map from X((p) to the j-line. The other
important consequence of Woods Hole theory is that it gives us a natural action of

Aut(A) = (End(A) ® Zp)*

on W4(p"). In Section 4B we recall results from [Hopkins and Gross 1994] that
describe this action in great detail, and we derive the specific consequences that
we need for our analysis of Xo(p?).

Once the groundwork has been laid, the remaining sections are devoted to con-
structing stable coverings of X((p?) and Xo(p?). In Section 5 we construct a stable
covering for Xo(p?) over an explicit Galois extension of Q p of degree 12( pr—1),
essentially showing that the wide open subspaces defined in Section 3 are sufficient.
To be more precise, the stable covering consists of

{W,0, Wfrl, Wi, Wy, U{Wy (p?) : A is supersingular}.

This reproves Edixhoven’s [1990] result from the point of view of this paper. It also
gives a moduli-theoretic interpretation to the wide opens and underlying affinoids
in the stable covering.

As in the stable covering of Xo(p?), the ordinary region of X((p?) is covered by
six wide opens: W, Wzil, Wliz, and W ;. Unlike W4 ( pz), however, W ( p3 ) must
itself be covered by smaller wide opens, since its reduction contains multiple irre-
ducible components. First of all, the reduction of W, (p?) contains two isomorphic
lifts of some supersingular component of X (p?), with each meeting exactly three
of the ordinary components. These two “old” components are connected through a
central genus-0 component that we call the bridging component. To complete the
picture, the bridging component then meets (in distinct points) a certain number of
isomorphic copies of the curve y? = x” —x. A partial picture of the stable reduction
of Xo(p?), including one complete supersingular region (corresponding to a fixed
supersingular curve A) and the six ordinary components, is given in Figure 1. The
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ordinary ordinary
components components

Figure 1. Partial picture of the stable reduction of Xo(p?).

number and genera of the components, as marked on the graph, are as follows:

(p=1/2,2(p+1)/3,(p—5)/6) if j(A) =0,
(a,b,c)=1((p—1/2, p+1,(p—3)/4) if j(A)=1728,
(p—1/2,2(p+1),(p—1)/2) otherwise.

Complete graphs with intersection multiplicities are given in Section 9A. As a
consequence of these results, it follows that the new part of Jo(p?) has potential
good reduction isogenous to the product of (p?> — 1)/6 copies of the Jacobian of
y2=xP —x.

It should be noted that the field of definition of our stable covering ultimately
depends on the field of definition of certain elliptic curves that have ‘“fake CM”.
In [CM 2006] we proved results about these fake CM curves that then made it
possible for us to define the stable model over the ring of integers of an explicit
finite extension of Q,, and compute the associated Weil group action, assuming the
results of this paper. In [CM 2006] we also dealt with the p < 11 cases explicitly
and computed the stable reduction of Xo(Np?) for (N, p) = 1. We expect that
our methods will extend to Xo(Np™), and will have applications to modular forms
as in [CM 2006, Remark 6.10]. We understand that Wewers also has a different
approach with applications to local Langlands.

2. Rigid analytic foundation

We fix some notation for the p-adic analysis and more general nonarchimedean
analysis. Throughout this section, unless otherwise stated, we let K be a complete
nonarchimedean valued field with absolute value | - |. We denote the ring of integers
of K by Rg, its maximal ideal by mg, and the residue field by Fgx. Let p be the
characteristic of Fx (which we allow to be 0). Let C be the completion of an
algebraic closure of K, and denote its ring of integers, maximal ideal, and residue
field by R, mpg, and F. Note that F is then an algebraic closure of Fx. Whenever
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Fx is perfect and has positive characteristic, we let W([F) € R denote the ring of
Witt vectors for any field F € F. The value group of K will be denoted |K*|, and
we let

R:=Rxg ={x e R:x" € |K*| for some n € N}

(equivalently, % := |C*|). Then if S C R, we let RS =R N S.

Occasionally, for technical reasons, we will need to assume that K is a stable
field [Bosch et al. 1984, Definition 3.6.1/1]. By [1984, Proposition 3.6.2/6], this
is the case if and only if e(L/K) f(L/K) = [L : K] for all finite extensions L/K,
where e(L/K)=|L*|/|K*| and f(L/K)=[F : Fx] are the ramification index and
residue degree of L over K. There are also two special cases that we will consider
for certain results. First, for a fixed prime p, let C, be the completion of a fixed
algebraic closure of Q,, let R, € C,, be its ring of integers, and let mg, be the
maximal ideal of R,. Let v denote the unique valuation on C, with v(p) =1, and
| - | the absolute value given by |0] = 0 and |x| = p‘”(") for x # 0. In this case
R=|C| = pY. Also C, is stable, as is the completion of any tamely ramified
extension of a finite extension of Q. The second specific nonarchimedean valued
field that will be considered is Fp ((T)), for which the corresponding field C will be
denoted Q. Both Fp ((T)) and Q,, are stable, and in this case we have R = |79

Hypothesis T. The field C is isomorphic to either C,, or Q,,.

In fact, for our purposes, this hypothesis can be relaxed to “C is an immediate
extension' of CporQ,”.

Remark 2.1. Suppose K satisfies Hypothesis T. Then if A is an Abelian variety
over K and P € A(C), then 0 is in the closure of {nP : n € N}; see the proof of
Lemma 2.19.

Now, for r € R, we let Bld( [] and B}‘g (r) denote the closed and open d-dimen-
sional polydisks over K of radius r around 0, that is, the rigid spaces over K whose
C-valued points are {(x1, ..., xq) € C¢: |x;| <r}and {(x1, ..., x7) € C?: |x;| <r},
respectively. In particular, let Bg[r] := B }< [r] and Bg(r) := B}( (r) denote the
closed disk and open disk of radius r around 0. If r, s e R and r <s, let Ax[r, s] and
Ak (r, §) be the rigid spaces over K whose C-valued points are {x e C:r < |x| <s}
and {x € C:r < |x| < s}, which we call closed annuli and open annuli. The
semiopen annuli, Ak[r, s) and Ak (r, s], are similarly defined. The width of such
an annulus is defined to be log,(s/r) or In(s/r) if p = 0. Note that all closed
or open disks over K, and all closed or open annuli over K of the same width,
are potentially isomorphic. Here and throughout the paper, we use the adverb
“potentially” in various contexts to mean “after finite base extension.” A closed

ITn the classical theory, an extension of valued fields is said to be immediate if the corresponding
value groups and residue fields are isomorphic. This notion was introduced by Krull.
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annulus of width O will be called a circle, and we will also denote the circle,
Akls, s], by Ck[s].

If X is a rigid space over K and f € A(X) := Ox(X), let | f|p denote the sup
of | f(x)] over all x € X(C). Then set

A°(X) ={f € AX) : | flsup = 1},
AT(X)=cl{f € A(X):|flsup <1}, and
A(X) = A°(X)/AT(X),

where cl is the closure in A°(X). We define the reduction X of X to be the affine
scheme Spec A(X). Suppose now that X = Sp (A) is an affinoid. Then | f |sup 18 just
the usual spectral seminorm of f, which we also denote by || f||x when X is re-
duced and | - |gyp is a norm. There is a canonical reduction map Red : X (C) — X(F),
which we denote by x — x. If X is reduced and Y is any subscheme of X, then
Y :=Red™'Y is the rigid space admissibly covered by affinoid subdomains Z of
X such that Z maps into Y. Asa special case, when Y C Xisan open affine, Y is
the unique subaffinoid of X such that ¥ (C) = {x € X(C) : € Y (F)}, and we call
Y a Zariski subaffinoid of X. When X is a reduced affine curve, we let X¢ denote
the unique complete curve that contains X as an affine open and is nonsingular at
all other points (which we call the points at infinity).

If X is a rigid space over K, and L D K is a complete subfield of C, we write
P € X(L) to mean that P is an L-valued point of X. An unspecified P € X should
be read as P € X(C). We use the notations X; and Xf, for the extensions of X
and X by scalars.

2A. Annuli.

Proposition 2.2. Let f : sy — y be a degree d unramified surjection of annuli
over K (open or closed). Then the width of A is 1/d times the width of ;.

Proof. Extend scalars to C, and choose isomorphisms y; : §; — Ac(r;, 1) for some
ri € R with r; < 1. Let T be the natural parameter on Ac(ri, 1). Then viewing
f =yso foy, !"as an invertible function on Ac(ri, 1), we may write f as either
cT4(14g(T)) or cT~4(14g(T)), where g(T) € A*(Ac(ry, 1)). In the first case,
for any t € Ac(ry, 1), we clearly have | £ ()] = |c| - |714. So by surjectivity of f,
this implies that |c| = 1 and rld = ry. Thus, log,(1/r1) = (1/d)log,(1/r2). The
second case is very similar. O

Definition 2.3. For any r € R \ R, we let

K,« = {ZHEZ anTn ‘a € K, 11m|n|_>oo|an|r" = O}
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Then K, is a field, and f — max {|a,|r"} is a valuation® if f(T) = DonezanT".
If r1, ..., r, € Ry have linearly independent images in the Q-vector space R /R,
welet K, =Ky, .r ), and Kz =K.

.....

Then K, ., = K, Rk ...Qk K, , and its value group is generated by R and
{r1,...,ry} [Berkovich 1990, pp. 21-22]. If m is a positive integer, the map
f(T)— f(T™) gives an injection from K,» into K, for any r.

Lemma 2.4. The group Auteon(K;, ... r,/K) contains a subgroup H, for which
h +— h? is a bijection whenever p { d, and whose fixed field is K .

Proof. 1t suffices to do the case n = 1. Let r =r;. Suppose a € K such that |a| <r.
If feK,and f(T)=2,.,a,T", we set

Oq _ ! ! n
f (T) = ;a_n(m) +nz>g(1n(T —OC) .
Then o, € Auteont(K,/K), and if a, = 0 for large |n|, then f°«(T) is the image
of the rational function f(7 — a) in K,. It follows, by continuity, that the map
o +— 0, is an injective homomorphism from the subgroup B, :={a € K : |a| < r}
of Kt into Auteon(K,/K). Since ptd, a > da is a bijection on B,.
Now, if fo«(T)=>_, _,b,T", then

neZ

b= (0 () (57 Jana

m=>n

where we set (Z) =0ifa <0orb <0. Suppose f?« = f for all @ € B,. Then in
the formula above, we must have b, = a, for all a € B,. This can only happen if
ap =0 for all n # 0. Therefore f € K, and we may take H to be the image of B,
in Auteont(K,/K). ]

Lemma 2.5. Let X be a reduced affinoid over K, and let f : X — Akla, b] be
finite, flat, and of degree d, where p{1d and a,b € R witha <1 < b. Let T be
the natural parameter on Agla, b]. Suppose there exists a function G on X[1] :=
f~YCk[1] such that 1G4 — f*T\xi < 1. Then there exist ay, by € Rla, b] with
ay <1 < by, and a function S on f_lAK[al, b1], such that §4 = f*T.

Proof. Setting s = G and t = T, we have @(m) = Fx[s, s~ '] and @(Cﬁ) =
Fx[z,t7'], and f : X[1] — C[1] is given by t = s¢. Let V = Agla, 1] and
U = f~(V). Then Ck[1] is an affine open in V. Therefore, identifying O(U)
with its image in @(m), we have

©(m) = G(U) ®@(V) G(CKU])-

2Some authors call this an absolute value.
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Thus s is in the image of O(U). So we may lift s to a function Sy € A°(U) such
that
IS5 = f*Tllxp < 1.

Now, choose a; € R[a, 1) such that |Sg—f*T| <|f*T|onU;:= f*IAK[al, 1].
Let p(x) =x9— (f*T/Sg), considered as a polynomial over A°(Uy). Then xp:=1
satisfies | p(xo)| < 1 and | p’(xp)| =1 over all of U;. Therefore, by the usual Hensel’s
lemma argument, there exists a unique x € A°(U;) with p(x)=0and |[x—1]|y, <1.
Letting S1 = Sox, we have an S} € A(U;) whose restriction to X[1] is a lift of s,
and for which Sf = f*T.

By precisely the same argument, there is a function S, € A(U;) that reduces to s
on X[1] and satisfies Sg = f*T, where Uy = f~'Ag[1, by] for some b € R(1, b].
Also, since X is reduced, (Sl/Sz)d =1 on X[1] (with p{d), and ||S; — G| x;1; < 1,
we must have S| = S, on X[1]. Therefore, S; and S, patch to a function S on
f~YAglai, b1] with S = f*T. O

Theorem 2.6. Suppose a < b € R. Any finite connected étale cover over K of the
annulus Ak la, b] (respectively Ak (a, b)) of degree d, where d < p if p %20, is an
annulus isomorphic over K to Agla'de, b'dc] (respectively Ak (a'/e, bl/dc))
for some ¢ € |K*|'/“.

Proof. We will first prove the statement for closed annuli.

Let W be a connected rigid space over K, and let f : W — Akla, b] be finite
and étale of degree d < p (if p # 0). Initially, we also assume that a, b € |K*|.
For each r € |[K*| N [a, b], let W, be the inverse image in W of the circle Ck[r].
Then the connected components of W,, which we denote by {V,1, ..., V.5, }, are
affinoids over K, with each V,; finite and étale of degree d,; over Ck[r], such that
> dyi=d. Asd < por p=0, each V,; must be finite and étale of degree d,; over
Ck[r] = G,,. Thus, there must exist an isomorphism o,; : V,; — Cg [r1/4ri] such
that f o ar_l.l reduces to x — x%i on G,, (with respect to the standard parameters).
Moreover, this implies by Lemma 2.5 that for each » € |K*| N (a, b) there exist
or, fr € Rla, b] with a, <r < f,, and an embedding

my
Fo:o [ ] Ak (@), gl — w
i=1

such that Im(F,) = f~'Ak(a,, B). In fact, F! can be defined on the i-th com-
ponent of f~'Ag(a,, ) by a parameter S,; such that Sfl’." = f*T (where T is
the natural parameter on Ak (a,, f,)). Similarly, we have embeddings F, and F,
each of a disjoint union of semiopen annuli into W, with images f~!'Ak[a, f.)
and f~'Ag (ap, b.

Suppose further that [a, b] = [a, B4) U (ap, b]U Ure|K*|ﬂ(a,b) (ar, Br). Then by
compactness of [a, b], we may choose a finite set {rq, ..., r,} C |K*|N(a, b) such
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that [a, b] is covered by [a, B,), (ap,b] and the intervals (a,,, f;,) for 1 <i <n.
Whenever two of these intervals overlap, it is clear from the properties of F, that
the inverse images in W of the corresponding subannuli of Ag[a, b] must have
the same number of connected components. Therefore, as W is connected, it
follows that m, = 1 for all r € |K*| N [a, b]. Thus, F, is an isomorphism of
Ak (o, l/d l/d) onto f~'Ak(a,, B;), given by a parameter S, with S¢ = f*T
(for r € |K*| N (a, b), and similarly for r = a or b). We claim that F,, Fj,
and the £}, can be used to construct an isomorphism of Agla'/?,b"/4] onto W.
Indeed, whenever (a,,, B,,) N (a,j, ﬁrj) = (a,j, Br.), we have a parameter S,, on
f~'Ak(ay,, B) such that Sﬁi = f*T, and likewise for r.,-. After adjusting by a d-th
root of unity in K if necessary, S, and S,; agree on f~ TA k (ar;, Br;). Therefore
the two parameters patch to a parameter S, ; that identifies f~ YAk (ay,, Br;) with

Ak (o Ld s Brj M d) After finitely many such patching steps, we have constructed a
parameter S on W over K such that §¢ equals f*T and thus defines an isomorphism
from W onto Ag[a'/4, b1/4].

More generally, without making the above two suppositions, for each r € [a, b]
take M, to be a finite Galois extension of K such that r € |[M[| if r € R and K,
(defined as above) otherwise. Then we may choose a,, f, € Ry, [a, b] and an
embedding F, that is defined over M,, precisely as was done over K. Now, we
know that [a, b] is covered by [a, B,), (ap, b], and {(a,, B;) : r € (a, b)}. So by
compactness, there exists a finite set t1, ..., t,, € (a, b) such that [a, b] is covered
by la, fa), (ap, b], and {(ay,, B,) : 1 <i <m}. Choose a finite Galois extension L
of K so that the images of the #; in RY /|L*| generate a torsion-free abelian group.
Then choose ry, ..., r, € R% so that their images form a basis for this group. Then
the argument above can be applied to produce a parameter S on W, which is defined
over L, ., such that S = f*T

Now, 1fa € Auteon (L., ,n/L), the map o — (o) := S§? /S is a 1-cocycle with
values in uq(A(Wg, ). Since W is connected, this equals uq(Ly,,...,r,), which
is pq(L). It follows from Lemma 2.4 that {(¢) = 1 for all ¢ in a subgroup whose
fixed field is L. Thus S is defined over L. Then, for ¢ € Gal(L/K), S° = h(0)S,
where h is a 1-cocycle. So by Hilbert’s Theorem 90 there exists y € L* such
that 4(¢) = y?/y. Then H := S/y is defined over K and H¢ = T for some
a € K*. Therefore H defines an isomorphism of W onto Ag[a'/4c, b'/?¢c], where
c=lal'l.

To deal with open annuli Ak (a, b), choose sequences {a,} and {b,} in Rk (a, b)
such that a, < b,, a, — a and b, — b. For large n, Wi, p,] := f_lAK[a,,, b,
is connected, and it is finite étale over Aklay, b,] of degree d. Therefore, it is
isomorphic to Agla, l/ dc,,, b,i/ dc,,] by what we have proven. The theorem follows
when we let n go to infinity. O

-----
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Remark 2.7. (i) When K is algebraically closed, there exists a = ¢y < -+ <
Cpt1 = b in R such that f_lA(c,-, ci+1) is a disjoint union of open annuli
[Liitkebohmert 1993, Lemma 2.3]. One could then use Hilbert’s Theorem 90
and Lemma 2.5, as in the proof above, to give another proof of the theorem.

(i) One can obtain the same conclusion about W, for any finite étale surjection
f whose Galois closure has degree prime to p when p # 0.

If X is a reduced affinoid over K and P € X (Fx), we let Rx(P) denote the
residue class of P. When the context makes it clear, we will drop the subscript X.
This is the open rigid subspace of X whose C-valued points reduce to P, or equiv-
alently, the subspace Red™! P, where P is naturally identified with a subscheme
of X. Alternatively, suppose fi, ..., fin € A°(X) are such that fl, e fm gener-
ate the maximal ideal of P. Then R(P) is admissibly covered by the increasing
sequence of affinoids whose C valued points are

xeX©O):|fix)| <ry, 1 <i=<m},

where r, € R, r, <rp41 and lim,,_, o 7, = 1. If x is a point of X such that x = P
(which always exists by [Tate 1971, Theorem 6.4]), this is naturally isomorphic to
the formal fiber X (x) of Bosch (by [1977a, Satz 6.1]).

Proposition 2.8. Let K be a stable field. Suppose X is a reduced pure d-dimen-
sional affinoid over K, ||A(X)| = |K| (equivalently, A°(X) ®g, Fx is reduced),
and P € X (Fg). Then A(R(P)) = Ox p

Proof. Let I(P) be the closure of mKA"(R(P)) in A°(R(P)). Bosch [1977a,
p. 44] proved that A"(R(P)) /I(P) = @X p When there exists a surjective map
¢ : T, — A(X) such that ¢ is surjective.’ That such a map exists when K is stable
and ||A(X)||x = |K| follows from [Bosch et al. 1984, Corollary 6.4.3/6]. It is clear
that 7 (P) € AT(R(P)) C rad(I (P)). Since X is reduced, so is @X p» and hence
I(P) = AT (R(P)). The proposition follows. ([l

Definition 2.9. Let P be a point on a curve C over a field k. We say that P is an
ordinary double point over k if Oc_p = k[[u, v]l/(uv).

Hypothesis B. Rx contains a bald subring [Bosch et al. 1984, Definition 1.7.2/1]
with the same residue field.

K satisfies Hypothesis B if it is discretely valued, if its residue field is perfect,
or if its residue field lifts to a subfield. In particular, this is the case if K satisfies
Hypothesis T. We do not know if all complete, nonarchimedean-valued fields K
satisfy Hypothesis B.

3As the example at the end of [Bosch et al. 1984, §6.4] implies, ¢ need not be distinguished; see
[Bosch et al. 1984, Definition 6.4.3/2].



Stable reduction of Xg(p3) 367

Proposition 2.10. Let X be a reduced, irreducible affinoid over a stable field K
satisfying Hypothesis B. Suppose that X is a reduced curve and P € X (Fx). Then
P is an ordinary double point over Fx if and only if the residue class R(P) is
isomorphic to Ak (r, 1) for some r € |K*|.

This was proven in [BL 1985, Proposition 2.3] when K is algebraically closed,
and we adapt their proof to our case here.

Lemma 2.11. Let I be a bald subring of Rk, and {r1,r2, ...} a zero sequence
in Rk. Then there exists a bald subring of Rk containing I and ry, for all n > 1.

Proof. The proof is almost identical to that of [Bosch et al. 1984, Corollary 1.7.2/5];
just replace the I in the proof of 1.7.2/4 with this 1. ([

Lemma 2.12. Let X be a reduced, one-dimensional affinoid, with reduced reduc-
tion, over a stable field K satisfying Hypothesis B. Suppose that f, g € C := A(X)
generate a maximal ideal M = (f, g), such that C /M = Fx and fg € M>. Let

_ {X if fg=0,
T lixeXx: fGx)=g(&) =0} otherwise.

Then there exist F, G € A°(U) and c € Rk such that
F—feMAU), G-geM*AU), and FG=c,
where we use Proposition 2.8 to identify A(U) with 0 X.0

Proof. Suppose that fi, g, € A°(X) are such that f = f; and g = g;, and that
a : X — Bg[1] is a finite morphism. That X is reduced implies |A(X)|x = |K].
So by [Bosch et al. 1984, Corollary 6.4.1/4], a™* : A°(Bg[1]) — A°(X) is finite.
Now suppose a*(A°(Bk[1])) = Rk (T). As C is torsion-free (because X is flat
over A!) and finitely generated over Fx [T, it is free. Choose hy, ..., h, € A°(X)
sothathy, ..., h, is abasis for C over Fx[T]. Then A, ..., h, is a basis for A%(X)
over Rx(T). Thus B := {h;T/ : 1 <i <n, j € Ny} is an orthonormal Schauder
basis [ibid., Definition 2.7.2/1] for A(X). As C = M & Fg, the ring C has a basis
over Fx of the form {1, a; f, ,B_jg :i, j € N} for some a;, £; in a subring of A°(X)
finitely generated over a bald subring of Rx with residue field Fg. It follows from
Lemma 2.11 that the change of basis matrix from B to {1, «; f1, ;g1 :i, j € N}
has entries in a bald subring of Rg [ibid., Definition 1.7.2/1]. Hence by the lifting
theorem of [ibid., Theorem 2.7.3/2], this is also an orthonormal Schauder basis.
Hence A°(X) = Rx + M, where M = (f1, f2).
We have
fisgi=mci+ filwar +by) + gi1(waz + by),

with ¢| € Rk, a; € A°(X), b; € M? (and b; = 0 if fg = 0) for some 7= € Rk,
|| <1.LetI=n Rx + f1A°(X)+ g1 A°(X) =7 A°(X)+ M, and let J = 7 A°(X)
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if fg =0 and I otherwise. Let f, = fi — (wax + by), and g = g1 — (wa; + by).
Then
frga=mc1+ (war +bi)(wax + by)

=nc 4+, mod (xA°(X)+ M)
=nci+n°cy mod z’M if fg=0,

for some c’2 € Rg. Now I" =n"Rg + fll”_1 +g1]"_1, so this implies
fgr=mei+aler+ fira+gira,
where ¢, € R, 10, € J?. Letk,=2"24+1forn>2and k; = 1. Suppose
fagn=mer+ i+ ates+o e+ firay 481

for some r,; € Jkn . Set Sot1 = fon—rn2and g,41 = gy — Fn.1. Then

2kn—l

2 4
fori@nit =mci+rler+ates+o Ao, 4

2 4 2 2%
=rnci+rncr+nez+ AT e+ e + f1lng1,1 8170412,
where 1,41, € Jhnt1,

Finally, let 71, = ma; + by and r1 o = was +by. Set F = fi — > . 7y 2 and
G=g — anl 7y,1. Then these are elements of A°(U) that satisfy

-2
FG=c:=7rc1+7rzcz+znz3n'2n 2¢,. O

Proof of Proposition 2.10. Suppose P € X (Fx) is an ordinary double point. We can
apply Lemma 2.12 to conclude that there exist F, G € A°(R(P)) and ¢ € Rk such
that (F, G) = Alp and FG = c. Thus we have a morphism R(P) — Ag(|c|, 1).
That this is an isomorphism follows, as in the proof of [BL 1985, Proposition 2.3].

Conversely, suppose that R(P) is isomorphic to the annulus Ak (r, 1) for some
r € |K*| with r < 1. Then A°(R(P)) = Rk[[T, cT '], where ¢ € K with |c| =r.
So applying Proposition 2.8 we have

Ox.p = AR(P)) = Fx[x, Y1/ (xy),
and hence P is an ordinary double point of X. ]
For a rigid space W over K, set
D'(W/K) =Ker(d: Qi x (W) — Qi [ (W))/dQy, / (W),

where if A(W) is the ring of rigid functions on W, then Qlﬁ/ ) x (W) is the A(W)
module of rigid i-forms on W.
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Lemma 2.13. Suppose W = Ag(r, s) or Bx(r) \ {0}, where r, s € |L*| for some
finite extension L/K. Then

D°(W/K)= D' (W/K) =K.

Proof. If r, s € | K*|, the lemma is clear. For in this case, we may choose a, b € K
with |a| =r and |b| = s, and let x = T/b and y = a/T, where T is the natural
parameter on A}<. Then Ag (W) is equal to the set of functions represented by

00 00
2 anx"+ 2 ba",
n=0 n=1

where a,, b, € K, a,t" — 0 and b,t" — 0 as n — oo, for |¢t| < 1. There is a natural
continuous linear map pg from Q{y sk (W) onto K such that pg (dv/v) =1 for any
parameter v on W such that |v(u)| > |v(w)]| if |u| > |w| and u, w € Ak (r, s)(C).
Moreover, for any w € Q%,V/K(W), w € dAg (W) if and only if pg (w) = 0.

More generally, suppose L is a finite Galois extension of K with Galois group G,
and that r,s € |L*|. Then G acts on Q!(A;(r, s)) such that Q' (A (r, )¢ =
Q'(Ag(r, s)) and pr(@?) = pr(w)?. Also, if r, s € |K*|, then PLIQ(Ag) = PK-
Suppose @ € Q! (A (r, s)) and pr(w) = 0. Then Hilbert’s additive Theorem 90
gives w € dA(Ak(r, s)). Thus we have an injective K-linear map D'(W/K) —
LC=K. IfoeQ (AL(r,s)), pr(@)=landv=>__;®°, thenv e Q' (Ak(r,s))
and prv =[L : K]. So this map is an isomorphism. O

From the proof we see that for any open annulus W over K, there are two residue
maps from Q%V onto K. In particular, they are res, s o f* and —res, s o f*, where
f:Ap(r,s) — W is an isomorphism and res, ; = pr.|qi(a,) for any extension L
of K such that r, s € |L*|. By an oriented annulus over K, we mean a pair (W, p),
where W is an open annulus and p is a choice of one of the residue maps.

An end of arigid space W over K is an element of the inverse limit of the set of
connected components of W\ Z, where Z ranges over finite unions of subaffinoids
of W defined over K (ordered by containment). We let €(W) denote the set of
ends of W, and we let e(W) = |€(W)| (which may be infinite). For example,
e(W) = 2 whenever W is an open annulus. If W is admissibly covered by a
countable number of affinoids, and f is a real-valued function of W(C), it makes
sense to compute the limit of f at an end e € €(W). In particular, we define
limy—, f(x) =1im,— f(x,), Where {x,} is any sequence in W (C) such that for
any Z as above, x, is contained in a connected component of W \ Z that maps
to e for sufficiently large n (provided this limit exists and is independent of the
sequence).

The following result is used in the proof of [CM 2006, Theorem 5.2].
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Proposition 2.14. Suppose K is discretely valued and U is a rigid space over K
with two ends such that for some finite extension L of K, Uy is isomorphic to the
open annulus Ay (|u|, 1), where u € K* and |u| < 1. Then U = Ak (|u|, 1).

Proof. We may suppose that e(L/K) > 1 and L is a Galois extension of K with
Galois group G. Let M = A(U.). Then G naturally acts on M, and M = A(U).
Let R = R;, and let [, and Fx denote the residue fields of L and K. Let = be a
uniformizing parameter on L.

Let a and b denote the ends of U, and suppose F € M is an isomorphism from
Uy onto Ay (|ul], 1) such that lim,_,,|F(x)| = 1. Then we may use F to identify
M with L{{T, u/T}}, and the group M, of orientation-preserving automorphisms
of Ar(|ul], 1) with (under composition)

o o
{T(ZaiTi+Zbi(u/T)i) ta;,b; € R and ag € R*}.
i=0 i=1

The group G preserves M,. For o € G, set 6 (T) = G,(T). For

o o
WT) =D aT' + biw/T) € LUT,u/T}),
i=0 i=1
set 00 00
hO(T)=>"alT'+ D b7 /T).
i=0 i=1
Then
G’ oG, =Gy (1)

We will show that there exists F' € M, such that
FCoF'=¢G,. )

This will imply that F~(T) € A(U), and as F~!(T) is a parameter on U, it will
then follow that U is an annulus over K.

So first let I be the ideal in C := R[[T,u/T] generated by =, T and u/ T, and
suppose that

G,(T)=a(c)T mod TI, wherea(c) € R*.

Then, from (1), we have a(¢)*a(r) = a(ot) mod n. Using Hilbert’s Theorem 90
applied to [y /Fg, one can show there exists a ¢ € R* such that ¢’ /c=a(c) mod x.
Let h(T) = cT. Then we have

(h?0Gs0h)(T)=T mod TI.
Now, suppose G, (T) = T (1 + h,(T)), where h, (T) € I*.
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Lemma 2.15. Suppose h(T) := > o, B_i(u/T)" + > 2y BiT" is in C. Then
h(T) € I¥ if and only if B; = 0 mod 7~V R.

Proof. Let S; be the R-module of series whose coefficients satisfy the bounds
above. The lemma is clearly true for k = 0. Suppose it is true for k. Let I be the
continuous involution of the R-algebra C that takes T to u/T. Then I and S are
preserved by . As z¥~IT? € I* for 0 <i <k, and TFH'R[T] < I**!, it follows
that Sy € I**T!. We have
and because v (u) > 2v(x),
. . . . k1=G=D G/ TYV=IR ifi >0
T k—i TYY) = k—i T i—1 c T >
(@ /T)) =un™"(/T) ZkH-ITR ifi =0,
Thus I¥+1 C §;44. a
Now suppose
o o
he(T)=>_B_i(@)(/T) + > Bi(o)T".
i=l i=0
Then, since

T(1+ho (T)(1+hE (T + e (T)))) = T(1+hE(T) +he (T)) mod TI%,

it follows that

GZoG.(T) =
2k 2k

T(l + D (Bi(0)+ B_i(0))w/T) + D _(Bi(r) +Bi(a)f)T") mod T7*.
i=1 i=0

Therefore, by Lemma 2.15 we have
Bi(67) = Bi(t) + Bi(6)® mod x %1,
Finally, using Hilbert’s Theorem 90 again, we can find C; € z¥~1/R N R such that

C! —C; = Bi(r) mod z%*7lil for —2k <i < 2k.

]

So let 2o

> CiTi).
i=0

Then H € TI* and H° o H~' = G, mod TI?*. Thus we can find a convergent
sequence Fy € M, such that F}/ o Fk_1 — G, in M,. The limit, F € M,, must
satisfy (2). U

2k
H(T) = T(l +>CLiu/T) +
i=l1
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Remark 2.16. Suppose K is discretely valued and U is a rigid space with one
end over K, such that Uy is isomorphic to the open disk By (1) for some finite
extension L of K. Then it follows from a similar argument that U = Bk (1).

2B. Wide open spaces. In [Coleman 1989, §III] we defined wide open spaces
over C,. Now we need to use them over more general fields. Suppose W is a
one-dimensional smooth rigid space over K. Then W is a wide open space, or
wide open, over K if it contains affinoid subdomains X and Y such that

(1) W\ X is a disjoint union of finitely many open annuli,
(i1) X is relatively compact in Y, and
(iii) Y NV is a semiopen annulus for all connected components V of W \ X.

We call X an underlying affinoid of W. From the definition, it is immediate that
there is a natural bijection between €(W), the set of ends of W, and CC(W \ X),
the set of connected components of W \ X. And X is connected to each element
of CC(W\ X). So e(W) is finite in this case. We call the connected component of
W \ X that corresponds to an element ¢ of €(W) an annulus at e.

Remark 2.17. It is not immediate that the intrinsic definition of a wide open space
given above is equivalent to the one given in [Coleman 1989, §III] when K =C,,.
However, this will follow in one direction from Theorem 2.18 and in the other from
Theorem 2.40.

Theorem 2.18. Let W be a wide open over K with underlying affinoid X. Then W
may be completed to a proper algebraic curve C over K by gluing open disks onto
the connected components of W \ X.

Proof. More specifically, let & be the set of connected components of W \ X. For
each open annulus V € &, let ay : V — By be an embedding of V into an open
disk over K such that By \ ay (V') is connected for any concentric annulus V' C V
that is connected to X. We will show that

C:= (WU 11 Bv) / lav(V)=V}vey
Ve¥
is isomorphic to a complete algebraic curve.

It is clear that C is smooth of dimension one. Therefore, to establish the claim,
by the Riemann existence theorem (Theorem A.2), we need only show that C is
proper [Bosch et al. 1984, Definition 9.6.2/2]. The number of connected compo-
nents of W is finite and equals the number of connected components of X, and so
we may assume without loss of generality that W is connected. In this case X is
contained in a residue class R(P) of ¥ (where P is the image of X in Y). Choose
an f € A°(Y) such that P is an isolated zero of f. This can be done by first passing
to a finite extension L of K so that ¥ is reduced and so that there is such a function
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g€ A°(Yy). Thenlet f be the norm of g. Now by [BL 1985, Lemma 2.4], if a € R,
and a is less than and sufficiently close to 1, then {x € R(P) : |f(x)| > a} is the
set of C-valued points in a subdomain U, of W which, after a finite extension (the
field in that lemma is algebraically closed), becomes isomorphic to a finite union
of semiopen annuli. In fact, for a sufficiently close to 1, U, must decompose
as [[ycq Aq,v, Where each A, v is a concentric semiopen annulus in V. Thus
Biy := By \ay(VNY)and B,y := Bi,y Uay(A,yv) are closed disks. Also,
we may define X, to be the rigid subdomain of W whose C-valued points are
{x e R(P):|f ()| = a}.

Then, W:={Xg, Bgy:V eF}tand ¥V :={Y, B,y : V € ¥}, for any g € R with
a < f <1, are two finite admissible affinoid coverings of C such that each element
of U is relatively compact in an element of V'. So C is proper if it is separated. To
verify that C is separated, we must show that the diagonal map A : C — C xx C
is a closed immersion. This can be checked locally using the admissible affinoid
cover of C xg C given by {Z xg Z' : Z, Z' € U}. Indeed, for every Z, Z' € U,
A™NZ xx Z') = ZN Z' is an affinoid and A* : A(Z xx Z') — A(ZN Z) is
surjective. This is obvious when Z = Z’. Otherwise, when Z N Z' # & we must
have {Z, Z'} = {Xp, Bg,v} for some V € &. So in this case, Z N Z' is a circle
over K, and in particular the concentric circle in V N'Y defined by | f(x)| = £.
To obtain surjectivity, first make a finite base extension L of K so that (Xg); and
(Bp,v)r are reduced. Then @((XW) is isomorphic to a subring of

Foltr, ..., tn]/(titj)ix

that contains a power of the ideal (¢, ..., fx). Also, if #; is the particular parameter
corresponding to V, then O((Bg,v).) can be identified via the gluing map with
[FL[ti_l]. So A* is surjective, as 0(Z N Z") =F.[1;, tl._l]. Thus, C is separated over
K [Bosch et al. 1984, Definition 9.6.1/1], and hence proper [Bosch et al. 1984,
Definition 9.6.2/2]. Therefore, C is an algebraic curve by the Riemann existence
theorem. O

When a wide open W is completed to a curve C as above, the underlying affinoid
X is the complement in C of a finite union of open disks. As we will now show,
this results in a close connection between the reductions of C and the canonical
reduction of X. Of particular interest will be the case when (W, X) is basic (defined
below), in which case, provided K is stable and assuming Hypothesis T, we show
that X is the minimal underlying affinoid and C has a model that reduces to X¢.

Lemma 2.19. Assume Hypothesis T. Let C be a smooth complete curve over K,
and let Z be a nonempty subset of C(K) that is Galois stable over K and open in
the canonical topology [Bosch et al. 1984, §7.2.1]. If Q is a point in C(K), there
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exists a function f on C, defined over K, with a pole only at Q and zeroes only
inZ.

Proof. We can assume g = g(C) > 0 and Q ¢ Z. Identify C with its image in its
Jacobian J by x — (x) — (Q). Then U :=[gl;Z = Z[+]s - - - [+]1,sZ is open in
J(I?). Let P # 0 € U. We claim that there is a sequence my, my, ... of positive
integers such that [m,]; P — 0.

By [BL 1984, Theorems 5.1, 6.6, 7.4 and 7.5] (see [Cherry 1994, Theorems 2.1
and 2.2] also), there is a finite extension L of K,* a commutative rigid analytic
group J, and formal analytic groups J'™ and B over L [Bosch 1977b, Defini-
tion 1.4] (see also [Bosch 1976, introduction] and [Cherry 1994, p. 397]), such
that B is proper and we have an injective composition (J™)2 — J— ng such
that the image of (J™) in ng is a maximal connected subgroup with a formal
analytic structure.’ Moreover, there is a diagram with exact rows and columns

0

|
Zt
{
0_>(G§§)t—>j—>3rg_>o
|
J

|

0

where ¢ € N (the toric rank) and the image of Z is a discrete closed subgroup.
This induces an exact sequence 0 — (GI™) — J™M — B — 0, of formal analytic
groups® and implies that J (L)/J™(L) is isomorphic to (G5 (L)/GM™ (L))" and the
reduction of J™™ over the residue field of L is semiabelian.’

So J(L)/J™(L) is isomorphic to (G,5(L)/G™(L))!/ T, where T is the injec-
tive image of Z' — J(L)/J™(L) — (G (L)/G™(L))". Assuming Hypothesis T
for L, Gy (L)/G™(L) = L*/R} is isomorphic to a subgroup of @, and hence it
follows that J(L)/J™(L) is torsion. As all elements on a semiabelian variety over
a finite field are torsion, some multiple [k]; P of P lies in the image of the kernel
of reduction of J™, and then [ p'kl; P — 0.

Now, since U is open and [m,]; P — 0, there is a positive integer m such that
—[m —1];P = P[—]s;[m]; P € U. Thus 0 € [mg];Z. More specifically, there is

4While the field is assumed to be algebraically closed in [BL 1984], it is explained on [BL 1984,
p- 257] how to show that J may be defined over a finite extension.

SIf Y is a scheme or formal analytic space, Y™ will denote the associated rigid space.

6Gf,‘1n denotes the formal completion of G, along its reduction.

TFormal analytic spaces have canonical reductions.
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a principal divisor D of the form

g g
(m—1) D> (P)+ > (Ri) —mg(Q),
i=1 i=1
where P; and R; € Z. If g is a function over L with this divisor, we can take
f =11, g7, where o ranges over embeddings of L/K into C/K. O

Lemma 2.20. Suppose C is a complete curve over K and U is an open disk in C.
Then Y := C\ U is a nonempty open in the canonical topology.

Proof. Let P be any point in Y, which is nonempty since U is not proper and so
cannot equal C. By Riemann—Roch, we can choose a meromorphic function g on
C with a pole only at P. Then because g|y is holomorphic and finite to one, g(U)
is an open disk in A!. Let E be an open disk around infinity in P!\ g(U). Then
g '(E) is an open neighborhood of P in Y, in the canonical topology. ([

Proposition 2.21. Assume Hypothesis T. Suppose C is a smooth complete curve
over K. Let L be a finite Galois extension of K, and let T be a finite, nonempty,
Galois stable subset of C(L). Suppose D ={D; :t € T} is a Galois stable collection
of disjoint open disks over L in C, such that D, N\T = {t} forallt € T. Then if
U=, then X := C\U is a one-dimensional affinoid over K, and the image of
the ring of algebraic functions, Oc(C \ T), is dense in A(X).

Proof. X is nonempty, since U is not proper, and X is open in the canonical
topology by Lemma 2.20. Therefore, Lemma 2.19 implies that for each Galois
orbit § C T there exists a function fg € O¢(C\ S), defined over K, that has a pole
at each s € S and zeroes only on X. Set %9 =%, Xo = X, and Uy = U. Then for
each n > 1, choose a Galois stable collection %,, of |T'| open disks over L in C,
such that 9%, | S %, foralln>0and (), 9, =T. Set U, =J D, and X, =C\U,.
Let D,, be the disk in %), that contains any particular ¢t € T, and for any Galois
orbit § C T, set Ms, = inf{| fs(x)| : x € |J,cg Dsn}. (Note that this infimum is
positive and does not belong to the set, since |g|sp exists and is not equal to |g(x)]
for any x € D when g is a rigid function on an open disk D that vanishes at only
finitely many points.) We claim

Xp=27Z,:={xeC:|fs(x)| < Mg, for all Galois orbits S C T}.

It is clear that Z,, C X, since Z, cannot intersect D,, for any t € T. For the
other direction, note that fs is defined over K and has poles only on S, and so
fs : C — P! has degree |S|ds where dg := — ord, fs for any s € S. Moreover,
since fs has no zeroes on %, fs|p,, is a ds to 1 map onto the disk P'\ Bx[Ms,].
It follows that Mg, € ® and || fs||x, = Ms,. Thus, X, € Z,. So X,, = Z,,, and in
particular X, is an affinoid.
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For each n and S, we may choose es, € N and as, € K* such that |ag, | = M;il".
Then, using the notation of [Bosch et al. 1984, §7.2.3], we have

Zy = Zpt1(fs*" Jasy : S is a Galois orbit in T).

It follows from [Bosch et al. 1984, Proposition 7.2.3/1] that the image of A(X,,+1)
is dense in A(X,). Suppose g € A(X) and € > 0. Then there exist functions
hn, € A(X,) such that |h; — gllx < € and ||h,41 — hyllx, < €/n forn > 1. It
follows that the sequence h, converges to an element &, € A(C \ T) such that
lhe — gllx < €. The proposition follows from the fact that O¢(C \ T) is dense in
A(C\T). O

Corollary 2.22. Assume Hypothesis T. Let W be a wide open over K. Then the
image of A(W) is dense in A(X) for each underlying affinoid X.

Proof. Glue open disks By to W to make a complete curve C as in the proof of
Theorem 2.18. For each V € &, choose a point ty € By \ W defined over K. Then
let T = {ty : V € ¥} and follow the procedure above, noting that the map from
Oc(C\T) to A(X) factors through A(W). O

Corollary 2.23. With the same hypotheses and notation as Proposition 2.21, set
Ag={f €0c(C\T): | fllx <1}. If Ao ®Fx is reduced, then Spec Ag ® Fx = X.

A basic wide open pair over K is a pair (W, X) where W is a connected
wide open over K and X is an underlying affinoid. In addition, we require that
IA(X)||lx = |K]|, that X have irreducible reduction with at worst ordinary double
points as singularities, and that the components of W \ X be isomorphic to annuli
of the form Ak (1, s). If (W, X) is a basic wide open pair for some X, we say that
W is a basic wide open. By Proposition 2.21 and Corollary 2.23, basic wide open
pairs can be constructed by taking (W, X) = (C\ Ui_, Di, C\ U}, U;). Here C
is a connected smooth complete curve over K that has a model € over Rx whose
reduction is irreducible and has at worst ordinary double points as singularities,
{Ui, ..., U,} is a finite collection of distinct residue classes of smooth points, and
each D; is an affinoid disk in U;. The converse, that all basic wide open pairs can be
constructed in this manner, follows, when K is stable and assuming Hypothesis T,
from Theorem 2.27 (and thus the two notions are equivalent in this case).

Lemma 2.24. Assume Hypothesis T. Suppose f : X — Y is a map between smooth
one-dimensional affinoids over K, and X is irreducible.
() If f : X — Y is a surjection, then f is a surjection.

(i) If f(X) C Y is an open affine and X (C) — Y (C) is an injection, then f is an
injection.
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Proof. For both parts, we may extend scalars to C. To prove (i), suppose f is a
surjection but that there exists a y € Y that is not in the image of f. Let A € A°(Y)
be a function that vanishes only at y and such that ||1]y = 1.3 On the one hand,
if we let L = f*(1), the fact that f is a surjection implies that || L| x = 1. On the
other hand, since L does not vanish on X, L~! exists and we may choose ¢ € C
such that |c| = |L™!|x. Now the fact that f is a surjection implies that |c| > 1.
Thus, if we let M = ¢~ 'L~!, we have L, M # (0 but LM = 0. So X must be
reducible.

For (ii), let Y’ C Y be the Zariski subaffinoid for which f(X) = Y’. Suppose
there are distinct points x, x, € X for which f(x;) = f(x2). Let X’ = X \ R(x2).
Then f restricts to a map f': X’ — Y’ that reduces to a surjection. Thus, by (i),
f' is a surjection. But this is a contradiction since f(R(x2)) € Y’ and f is an
injection. Therefore, f must also be an injection. ([

Lemma 2.25. Suppose h : B — Y is an analytic map from an open annulus or
open disk into a reduced affinoid. Then the image of B is contained in a residue
class of Y.

Proof. This is clear when Y is an affinoid disk. The general case follows. ]

Remark 2.26. The same statement is true with B a connected wide open in place
of an open annulus.

Theorem 2.27. Suppose K is stable and satisfies Hypothesis T. Let (W, X) be a
basic wide open pair over K. Attach disks By to W to obtain a complete curve C,
as in the proof of Theorem 2.18. Then C has a model over Rx whose reduction
is X¢. Also, if x is a point at oo in X¢(F), then x € X°(Fx) and {P € C(C) : P = x}
is equal to By (C) for some V € ¥ = CC(W \ X).

Proof. Choose a finite, Galois stable set of points Y C X (L), for some finite exten-
sion L of K, that reduce to distinct smooth points in X (F). The set {R(}):y € Y}
of residue classes of X is a Galois stable set of open disks in C over L. There-
fore, by Proposition 2.21, Z := C \|J yer R () is an affinoid over K. Moreover,
X1 := X NZ is a formal subdomain of X [BL 1985, p. 351], whose reduction is
X\ {y:yeY}. We will show that X is also a formal subdomain of Z, and hence
% :={X, Z} is a formal covering of C.

To do this, let Zg := Z \|Jy g By for any § C &. This is an affinoid over
K by Proposition 2.21. We claim that Zg has irreducible reduction, and that By
is a residue class of Zg for each V € ¥\ J. This is clearly true for I = &,
because Zg = X \Uer R(y) is a Zariski subaffinoid of X and &\ J is empty.
Suppose it holds for some 7, and suppose also that V € 7. Let 7' = J \ {V}, so

8This can be done by embedding Y in a smooth, complete curve [Van der Put 1980, Theorem 1.1]
and applying Lemma 2.19.
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that Zg» = Zg || By. By Lemma 2.25, applied to the inclusion of By into Zg,
By is contained in the residue class R(fy). If By # R(ty), the map Zg — Zg
is a surjection. But this is impossible by Lemma 2.24 since Zg has irreducible
reduction and Zg # Zg. Therefore, By is a residue class of Zg/, Zg is a Zariski
subaffinoid of Zg, and in particular Zg+ has irreducible reduction. The claim now
follows for all J by induction. Taking J = &, we see that Z has irreducible
reduction, and that each disk By is a residue class of Z. Thus, X; is a formal
subdomain of Z, and % is a formal covering of C. Moreover, by Proposition 2.8,
the reduction of Z is the disjoint union of X, and finitely many smooth points. Thus
C has semistable reduction with respect to 6 [BL 1985, Definition 1.5]. So using
the argument of [BL 1985, p. 377], it follows that C has a model with reduction X¢.
Moreover, the residue classes of the points at infinity on X¢ are precisely the disks
By over K. O

It may be proven that over C, all wide opens that are not disks or annuli have
minimal underlying affinoids. In fact, one can show that if W is a wide open over
K that is not a disk or an annulus, W has an affinoid subdomain that becomes
the minimal underlying affinoid of W, where L is a finite extension of K; see
Remark 2.41. However, this fact is not used in this paper.

Lemma 2.28. Suppose K is stable and assume Hypothesis T. If (W, Z) is a basic
wide open pair over K, and W is not a disk or annulus, then Z is a minimal
underlying affinoid of W.

Proof. Suppose there are e ends. Glue in disks, as above, to get a smooth complete
curve C, so that C\ Z is the union of e open disks Uy . . . U,. Then by Theorem 2.27,
C will have a model % with reduction isomorphic to the completion of Z.

We can and will extend scalars to C. Suppose V is any underlying affinoid of
W and A is a component of W\ V. Then ANU; # & for some i. Set U = U;. We
claim that A is contained in U.

Identify A with Ac(r, s) so that Ac(z, s) is connected to V for any t € R(r, s).
It follows from [BL 1985, Proposition 5.4(c)] that every circle in A that intersects
a residue class of C is contained in that class. Hence ANU contains C¢[¢] for any
t € R(r,s) with Cc[t]NU # &. In fact, ANU D Ac(r, t] for any such 7. Let
q =LUB{t € R(r,s): Ac(r,t) C U}. Suppose that g < s, and let

v = LUB{t € R[q, s]: Cclt]NZ # @} = GLB{t € R[q, 5] : Cclt]NZ = 2).

The number v exists since U is disconnected from U; for j #i. For u € R[q, v),
Cclu] € Z (again by [BL 1985, Proposition 5.4(c)]). Let w =q if g € R, and w €
Rlg, u) otherwise, and set ¥ = Ac[w, u]. We have arigid morphism Y — Z. Since
Y is either a line or two lines crossing at a point, and Z is irreducible, not isomorphic
to A! or G,,, with only ordinary double points as singularities, it follows that the
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map Y — Z is constant. This means A \ U is contained in a residue class R of
Z. Thus {U, R} is a disjoint admissible cover of A. This is impossible as A is
connected.

From the contradiction, we know that g = s, and thus A C U. Now, since each
component of W\ V is contained in W \ Z, we have shown that Z C V. ([

The final two results of this section provide useful criteria for determining when
a rigid space is a wide open.

Theorem 2.29. Suppose X is a smooth, one-dimensional affinoid over a stable
field K satisfying Hypothesis B, and x is a point of degree one on X. Then, if
U = Rx(x), there is a finite extension L of K such that Uy is a connected wide
open over L. Moreover, the number of ends of U equals the number of branches
of X, through x.

This is a consequence of the following lemma. Recall that Fx C F.

Lemma 2.30. Suppose X is a pure, one-dimensional reduced affinoid over a stable
field K satisfying Hypothesis B, with reduced reduction, and x € X (Fg) is a degree
one point. Choose any f € A°(X) such that f has an isolated zero at x, that is,
such that x is the only zero in a Zariski neighborhood. Forr € R(0, 1), let V(r) be
the subspace of X such that

V(r)(C)={y e R(x)(C):r <[f(¥I < 1}.

Then for r sufficiently close to 1, there is a finite extension L of K such that Vi (r)
is a disjoint union of m := |(n"'x)(F)| open annuli, where n : Y — Xg is the
normalization of Xz := X ®f,F.

Proof. Without loss of generality, we may assume that x is the only zero of f
(otherwise replace X with a suitable Zariski subaffinoid). Let Z := Z, be the
subaffinoid of X whose C-valued points are {y € X (C):|f(y)| >r}. Let X, be the
curve obtained from Y by identifying n~!(x’) to a point for each x’ € XE(F) \ {x}
(thus, X is the minimal finite surjective cover of X that is smooth at all points
above x). Itis proven in the remark after [BL 1985, Lemma 2.4] that for r e R (0, 1)
sufficiently close to 1, the reduction of Z¢ is isomorphic to the union of X, and m
lines, each crossing a single point above x normally.’

There is a finite extension M of K such that Zj, is reduced, so Z¢ = (Z M)E-
Thus, there is a finite extension L of K such that Z; is isomorphic to the union
of a finite surjective cover of X F, that is smooth at all points above x, and m lines
each crossing a single point above x normally. Now apply Proposition 2.10.  [J

9This is a minor correction of the statement in [BL 1985].
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Proposition 2.31. Assume Hypothesis T. Suppose f :U — W is a finite surjective
morphism over K of a smooth, one-dimensional rigid space onto a wide open, with
finitely many branch points all defined over K. If f has degree strictly less than p,
then U is a wide open over K.

Proof. First we claim that an underlying affinoid X € W can be chosen so that it
contains the set % of branch points of f. Indeed, let X; be any underlying affinoid
of W. Glue disks By onto W for each annulus V € W \ X, as in the proof of
Theorem 2.18, to obtain a complete curve C. Then for each V, choose an open
disk Dy over K such that By \ ay (V) C Dy € By and Dy N R = @. The rigid
subspace X := C \|J Dy is, by Proposition 2.21, an affinoid that is disjoint from
% and easily shown to be underlying in W.

Now suppose X is relatively compact in some affinoid ¥ € W. Then f~!(X)
and f~'(Y) are affinoids in U. Moreover, as f is finite, and the image of X in
Y is finite, it follows that the image of f~!(X) in f~1(Y) is finite. So f~'(X) is
relatively compact in £~!(Y). All that remains is to check that U \ f~!(X) is the
disjoint union of open annuli, and for this Theorem 2.6 suffices. ([

2C. Semistable coverings. For a wide open W over K, let
Hjr(W/K) = D'(W/K).

Using Lemma 2.13, the arguments in the proof of [Coleman 1989, Theorem 4.2]
generalize and allow us to conclude that H g #(W/K) is finite-dimensional over K.
We define the genus of W, which we denote by g(W), to be

L (dimg Hpx(W/K) —e(W) +1).

Then 2g(W) can be interpreted as the dimension of the first compactly supported
de Rham cohomology group of W. For example, in Corollary 2.33, we show that

2g(W) = dimg (ker(Hp g (W/K) — Hp)r (W \ X)/K))),

where X is any underlying affinoid of W. We also show in Proposition 2.32 that
if a wide open W is completed to a projective curve C by attaching disks at the
ends, as in Theorem 2.18, then g(W) = g(C). As an immediate corollary of this
and of Theorem 2.27, if (W, X) is a basic wide open pair over a complete, stable
field K satisfying Hypothesis T, and X has good reduction X, then (X)¢ will also
have genus g(W).

Proposition 2.32. Let W be a connected wide open over K. Suppose C is a
smooth, complete curve (over K) obtained by attaching disks at the ends of W,
as in Theorem 2.18. Then g(W) = g(C).
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Proof. The main idea is to view W and the attached disks as an admissible covering
of C, and then to apply the (generalized) Mayer—Vietoris sequence of de Rham
cohomology (over K). So first suppose Dy, ..., D, are the disks, and set Dy = W.
Then Mayer—Vietoris gives us the exact sequence

0— H)R(C) - EP HY r(Di) > @D Hpr(D: N D)) —
i i#]
Hpp(C) > €D Hpp(Di) > €D Hpr(Di N Dj) — HjR(C) — 0.
i i#j

Using Lemma 2.13, the definition above of g(W), and the fact that H Ll) r(Di)=0
for i > 0, we count dimensions to obtain

I—(eW)+ 1) +e(W)—2g(C)+ Rg(W)+e(W)—1)—e(W)+1=0.
From this we conclude that g(C) = g(W). O

Corollary 2.33. Suppose W is a wide open over K, and X is an underlying affinoid
of W. Then

2¢(W) = dimg (ker(H}, o (W/K) — HJ o (W \ X)/K))).

Proof. Suppose C is a smooth complete curve obtained by gluing disks to the ends
of W. Then arguing from Mayer—Vietoris exactly as in the above proof, we have
the exact sequence

0— Hpp(C)— H)p(W) — Hpp(W\ X) - K — 0.
Now apply Proposition 2.32. U

Let C be a wide open or a smooth proper curve over K. Let € be a finite set
of basic wide open pairs (U, U") over K such that €* :={U, (U, U") € €} is an
admissible covering of C. Then we call € a semistable covering over K if the
following conditions hold:

(1) If U,V € 6" and U # V, the intersection of U and V is a disjoint union of
connected components of U \ U (by definition, annuli of the form A (1, 5)).

(i) If U, V and W are three distinct elements of €%, their intersection is empty.

We say that a semistable covering € is stable if none of the elements of € are
disks or annuli. Having a semistable covering is not immediately equivalent to
having a semistable reduction in the sense of [BL 1985, Definition 1.5]. When the
context is clear, we will abuse notation by dropping the superscript w and writing
U €€ tomean U € €".
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Proposition 2.34. Suppose € is a semistable covering of a smooth proper curve C
over K. Let I'¢ be the unoriented graph without loops whose vertices correspond
to the elements of € and whose edges with endpoints corresponding to distinct
U,V €€ correspond to the connected components of U N\'V. Then

g(C) =" g(U)+Betti(I').
Ue%

Proof. Again, we begin with the Mayer—Vietoris sequence (of de Rham cohomol-
ogy over K) associated to this covering.

o> P HpRUNV) > Hyp(C) > @) Hpp(U) — -+
U,Veé Ue%

It is immediate that

Hpp(C)= HRR(O)ZK, @D HppU)=0, and @D Hpp(U)=K*.
Ue% Uc%

Also, by applying Lemma 2.13 and condition (i) from above, we see that

P H V)= P Hp(UnV)=K",
U,vVee U,Vee

where € is the edge set of I'¢. Now to prove the proposition, we simply count di-
mensions over K and compute the dimension of H 11) #(C) using the exact sequence.
We have

26(C) = > 2g(U) +e(U) — 1) —#6 +2 = 2(2 g(U) +#& — #6 + 1)
Ue% Uec%

= 2(2 g(U) + Betti(l“q;)). 0

Uec%

Definition 2.35. A semistable model % of a curve C over K is a flat, proper scheme
over Rx whose generic fiber is C, such that all of the singular points of the special
fiber of & have degree 1 and are ordinary double points. We say that 9B is stable if
it is the final object in the category of semistable models over K.!°

See [BL 1985] and [Van der Put 1984] for a rigid analytic treatment of the
theory of stable models of curves over complete nonarchimedean fields, and in
particular, for a rigid analytic proof of the generalization to arbitrary complete

10This weakens the definition of the semistable model in [Mumford 1977] since it allows smooth
rational components that meet the other components in only one point. Requiring the singular points
to have degree 1 means that Xo(p) usually does not have a stable model over @, but does over
w ([sz) ®Qp.
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nonarchimedean fields [Van der Put 1984, Corollary 3.3] (see also [BL 1985]'!) of
the existence theorem of Deligne and Mumford. Moreover, we will use the results
of [BL 1984; 1985] to prove the following theorem, which relates stable coverings
to stable models. This result generalizes [Coleman 2003, Proposition 2.1], and the
proof we give is more complete than the one given there.

Theorem 2.36. Let C be a smooth complete curve over a stable field K satisfying
Hypothesis B.

(1) If C has a semistable model over Rg whose reduction has at least two com-
ponents, then C has an associated semistable covering over K.

(i1) If K satisfies Hypothesis T, and C has a semistable covering over K, then C
has an associated semistable model over Rg whose reduction has at least two
components.'?

Stable coverings are precisely those that correspond to stable models whose reduc-
tions have at least two components.

Proof. Suppose € is a semistable model for C over Rk, and let $¢ be the set of
irreducible components in the reduction of ‘6. For each I' € ¥, let

rr=r\ |J T

Tedq,T'#£T

Assume, without loss of generality, that € is connected.

For each affine open U C %, there is a natural affinoid subdomain of C'¢, which
we denote by Red ™! U, whose points are all the points of C™ that reduce to points
of U. To see this, let Spec S be any affine open subscheme of € that reduces to U
and § = 1<i1_nn S/x"S for some 7 € Rx with O < |z| < 1. Then S is an admissible
Rk -algebra in the sense of [BL 1993, p. 293], as can be seen from [BL 1993,
Lemma 1.2]. Then S ®Rry K is an affinoid algebra over K [BL 1993, §4] that up
to canonical isomorphism does not depend on the choices. We refer to the affinoid
Sp(S’ Qry K) as Red™! U. Because U is reduced, Red™' U = U. More generally,
suppose V is the union of finitely many subschemes W of €, with each contained
in some affine open Uy,. Then we let Red~!' V be the open rigid subspace that is
the union in C™ of the subspaces Red ! W C Red™! Uy, as was defined in the
beginning of Section 2. This subspace is independent of the choices of Uy .

If T € $¢, let W =Red™ ! T and X = Red™! I'?. We claim that {(Wr, X1):
I' € 94} is a semistable covering. First, Wr is a smooth, one-dimensional rigid

1TBosch and Liitkebohmert [BL 1985, p. 3771, while proving the theorem of Deligne and Mum-
ford, remark that their argument does not require the field to be discretely valued.

1211 fact, when K satisfies Hypothesis T we have a natural one-to-one correspondence between
semistable coverings and semistable models whose reductions have at least two components. It
would be interesting to know if this is tr