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Algebraic error-correcting codes that achieve the optimal trade-off between rate
and fraction of errors corrected (in the model of list decoding) were recently
constructed by a careful “folding” of the Reed–Solomon code. The “low-degree”
nature of this folding operation was crucial to the list decoding algorithm. We
show how such folding schemes useful for list decoding arise out of the Artin–
Frobenius automorphism at primes in Galois extensions. Using this approach,
we construct new folded algebraic-geometric codes for list decoding based on
cyclotomic function fields with a cyclic Galois group. Such function fields
are obtained by adjoining torsion points of the Carlitz action of an irreducible
M ∈ Fq [T ]. The Reed–Solomon case corresponds to the simplest such extension
(corresponding to the case M = T ). In the general case, we need to descend to
the fixed field of a suitable Galois subgroup in order to ensure the existence of
many degree 1 places that can be used for encoding.

Our methods shed new light on algebraic codes and their list decoding, and
lead to new codes with optimal trade-off between rate and error correction radius.
Quantitatively, these codes provide list decoding (and list recovery/soft decod-
ing) guarantees similar to folded Reed–Solomon codes but with an alphabet size
that is only polylogarithmic in the block length. In comparison, for folded RS
codes, the alphabet size is a large polynomial in the block length. This has
applications to fully explicit (with no brute-force search) binary concatenated
codes for list decoding up to the Zyablov radius.
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1. Introduction

1A. Background, context, and motivation. Error-correcting codes enable reliable
transmission of information over a noisy communication channel (as well as re-
liable data storage and retrieval from a storage medium). The idea behind error-
correcting codes is to encode the message to be transmitted (or stored) into a longer,
redundant string called a codeword, which is then communicated over the noisy
channel. This is accompanied by a decoding procedure that recovers the correct
message even when several symbols in the transmitted codeword are corrupted. In
this work, we focus on the worst-case model of errors; here, the channel noise has
a single parameter ρ ∈ (0, 1). We do not assume anything about how the errors
are distributed beyond an upper bound of ρ on the total fraction of positions where
errors may be caused.

The principal trade-off in this theory is between the redundancy and the fraction
ρ of errors that can be corrected. Formally, a code is given by an injective encoding
function E :6k

→6n . The block length of the code equals n, and6 is its alphabet.
The redundancy is measured by the rate R of the code, defined as the ratio k/n
of the number of information symbols to the number of codeword symbols. The
larger the rate, the less redundant the code. We are interested in an asymptotically
good family of codes, that is, an infinite family of codes of increasing block lengths
whose rates are lower bounded by R. The goal is to correct a fraction ρ of errors
with as high a rate R as possible for the code family. It is simple to see that this
rate R cannot exceed 1− ρ. Indeed, the channel could corrupt the last ρ fraction
of symbols, and the first (1−ρ)n symbols should thus contain enough information
to recover the Rn message symbols, implying R 6 1− ρ.

Quite remarkably, this simplistic upper bound can in fact be met, via a natural
family of algebraic codes together with efficient decoding algorithms. Specifically,
recent progress in algebraic coding theory [Parvaresh and Vardy 2005; Guruswami
and Rudra 2008] has led to the construction of explicit codes over large alphabets
that achieve the optimal rate versus error correction radius trade-off — namely,
they admit efficient list decoding algorithms to correct close to the optimal fraction
1− R of errors with rate R. List decoding is an error correction model where the
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decoder is allowed to output a small list of messages which must include the correct
message. Allowing such a list is essential in order to correct more than a fraction
(1−R)/2 of errors with rate R. In practice, having more than one codeword on the
list is a rare event, and in case of multiple candidates, one can also return the closest
codeword (as the one with the highest likelihood). Also, for many applications of
codes, pinning down the message to a small list suffices, and some application-
specific context information can be used to identify the correct message from the
list. See, for instance, [Guruswami 2007, Chapter 1] or [Guruswami 2004] for
more detailed background on list decoding.

We now return to the mathematics of optimal rate codes for list decoding. The
algebraic codes constructed in [Guruswami and Rudra 2008] are folded Reed–
Solomon (RS) codes, where the RS encoding ( f (1), f (γ), . . . , f (γn−1)) of a low-
degree polynomial f ∈ Fq [T ] is viewed as a codeword of length N = n/m over the
alphabet Fm

q by identifying successive blocks of m symbols. Here γ is a primitive
element of the field Fq .

Simplifying matters somewhat, the principal algebraic engine behind the list de-
coding algorithm in [Guruswami and Rudra 2008] was the identity f (γT )≡ f (T )q

(mod (T q−1
− γ)), and the fact that (T q−1

− γ) is irreducible over Fq . This
gave a low-degree algebraic relation between f (T ) and f (γT ) in the residue field
Fq [T ]/(T q−1

−γ). This together with an algebraic relation found by a certain “in-
terpolation step” during decoding enabled us to find the list of all relevant message
polynomials f (T ) efficiently. Essentially, this gave two algebraically independent
low-degree polynomial relations between the residues of f (T ) and f (γT ) in the
extension field Fq [T ]/(T q−1

− γ). Solving these gives the list of possible values
for f (T ) mod (T q−1

−γ), which also suffices to identify the message polynomial
f (T ), as its degree is less than q − 1.

One of the motivations of this work is to gain a deeper understanding of the
general algebraic principles underlying the above folding, with the hope of extend-
ing it to more general algebraic-geometric (AG) codes — an interesting algebraic
question in its own right, but also important for potentially improving the alphabet
size of the codes, as well as the decoding complexity and output list size of the
decoding algorithm. (The large complexity and list size of the folded RS decoding
algorithm in [Guruswami and Rudra 2008] are a direct consequence of the large
degree q in the identity relating f (γT ) and f (T ).)

The precursor to the folded RS codes were the Parvaresh–Vardy codes [2005].
Here the encoding of a message polynomial f (T ) consists of the evaluations of f
at distinct elements of Fq together with the evaluations of a few other algebraically
related polynomials f1(T ), . . . , fm(T ) (for some parameter m> 1) at these points.
The algebraic relations between fi and f are used at the decoder together with
a multivariate polynomial relation between f (T ), f1(T ), . . . , fm(T ) to solve for
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f (T ). An extension of the Parvaresh–Vardy codes [2005] to arbitrary AG codes
was achieved in [Guruswami and Patthak 2008]. But in these codes, there is a
substantial loss in rate since the encoding includes the evaluations of additional
function(s) explicitly picked to satisfy a low-degree relation over some residue
field. The crucial insight in the construction of folded RS codes was the fact that
this additional function could just be the closely related function f (γT )— the im-
age of f (T ) under the automorphism T 7→ γT of Fq(T ). It is a priori not clear for
which algebraic function fields one can have a similar algebraic phenomenon and
thereby deduce constructions of folded list-decodable codes analogous to folded
RS codes.

1B. Summary of our contributions. We explain how folding schemes conducive
to list decoding (such as the above relation between f (γT ) and f (T )) arise out
of the Artin–Frobenius automorphism at primes in Galois extensions. We then use
this approach to construct new list-decodable folded AG codes based on cyclotomic
function fields with a cyclic Galois group. Cyclotomic function fields [Carlitz 1938;
Hayes 1974] are obtained by adjoining torsion points of the Carlitz action of an
irreducible M ∈ Fq [T ]. The RS case corresponds to the simplest such extension
(corresponding to the case M = T ). In the general case, we need to descend to the
fixed field of a suitable Galois subgroup in order to ensure the existence of many
degree 1 places that can be used for encoding. We establish some key algebraic
lemmas that characterize the desired subfield in terms of the appropriate generator
µ in the algebraic closure of Fq(T ) and its minimal polynomial over Fq(T ). We
then tackle the computational algebra challenge of computing a representation of
the subfield and its rational places, and the message space, that is conducive for
efficient encoding and decoding of the associated AG code.

Our constructions lead to some substantial quantitative improvements in the
alphabet size, which we discuss in Section 1D. We also make some simplifications
in the list decoding algorithm and avoid the need of a zero-increasing basis at each
code place (Lemma 6.2). This, together with several other ideas, lets us implement
the list decoding algorithm in polynomial time assuming only the natural represen-
tation of the code needed for efficient encoding, namely a basis for the message
space. Computing such a basis remains an interesting challenge in computational
function field theory. Our description and analysis of the list decoding algorithm
in this work is self-contained, though it builds strongly on the framework of the
algorithms in [Sudan 1997; Parvaresh and Vardy 2005; Guruswami and Patthak
2008; Guruswami and Rudra 2008].

1C. Galois extensions and Artin automorphisms in list decoding. We will now
discuss how and why Artin–Frobenius automorphisms arise in the seemingly dis-
tant world of list decoding, and why we make the choice of cyclotomic function
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fields for the underlying function field. In order to generalize the folding operation
from the RS case, it is natural to look for function fields whose automorphisms we
understand reasonably well. Galois extensions are a natural subclass of function
fields to consider, with the hope that some automorphism in the Galois group will
give a low-degree relation over some residue field. Unfortunately, the explicit
constructions of good AG code families are typically based on a tower of function
fields [Garcia and Stichtenoth 1995; 1996], where each step is Galois, but the
whole extension is not. (Stichtenoth [2006] recently showed the existence of a
Galois extension with the optimal trade-off between genus and number of rational
places, but this extension is not, and cannot be, cyclic, as we require.)

In Galois extensions K/F , for each place A′ in the extension field K , there is
a special and important automorphism called the Artin–Frobenius automorphism
(see, for example, [Marcus 1977, Chapter 4]) that simply powers the residue of any
(regular) function at that place. The exponent or degree of this map is the norm
of the place A of F lying below A′. Since the degree dictates the complexity of
decoding, we would like this norm to be small. On the other hand, the residue
field at A′ needs to be large enough so that the message functions can be uniquely
identified by their residue modulo A′. The most appealing way to realize this is if
the place A is inert, that is, has a unique A′ lying above it. However, this condition
can only hold if the Galois group is cyclic, a rather strong restriction. For example,
it is known [Frey et al. 1992] that even abelian extensions must be asymptotically
bad.

In order to construct AG codes, we also need to have a good control of how
certain primes split in the extension. For cyclotomic function fields, and of course
their better-known number-theoretic counterparts Q(ω) obtained by adjoining a
root of unity ω, this theory is well-developed. As mentioned earlier, the cyclotomic
function field we use itself has very few rational places. So we need to descend
to an appropriate subfield where many degree 1 places of Fq(T ) split completely,
and develop some underlying theory concerning the structure of this subfield that
can be exploited for efficient computation with them.

The Artin–Frobenius automorphism1 is of course a well-known and fundamental
notion in algebraic number theory, playing a role in the Chebotarev density theorem
and Dirichlet’s theorem on infinitude of primes in arithmetic progressions, as well
as quadratic and more general reciprocity laws. We find it rather intriguing that
this notion ends up playing an important role in algorithmic coding theory as well.

1Following [Rosen 2002], we will henceforth refer to the Artin–Frobenius automorphisms as
simply Artin automorphisms. Many texts refer to these as Frobenius automorphisms. Since the
latter term is most commonly associated with automorphism x 7→ xq of Fqm , we use the term Artin
automorphism to refer to the general notion that applies to all Galois extensions. The association of
a place with its Artin–Frobenius automorphism is called the Artin map.



438 Venkatesan Guruswami

1D. Long codes achieving list decoding capacity and explicit binary concate-
nated codes. Quantitatively, our cyclotomic function field codes achieve list de-
coding (and list recovery2) guarantees similar to folded RS codes, but with an
alphabet size that is only polylogarithmic in the block length. In comparison,
for folded RS codes, the alphabet size is a large polynomial in the block length.
We note that Guruswami and Rudra [2008] also present capacity-achieving codes
of rate R for list decoding a fraction (1 − R − ε) of errors with alphabet size
|6| = 2(1/ε)

O(1)
, a fixed constant depending only on ε. But these codes do not have

the strong “list recovery” (or more generally, soft decoding) property of folded RS
codes.

Our codes inherit the powerful list recovery property of folded RS codes, which
makes them very useful as outer codes in constructions of concatenated codes.3 In
fact, due to their small alphabet size, they are even better in this role. Indeed, they
can serve as outer codes for a family of concatenated codes list-decodable up to
the so-called Zyablov radius, with no brute-force search for the inner codes. This
is the first such construction for list decoding. It is similar to the “Justesen-style”
explicit constructions for rate versus distance from [Justesen 1972; Shen 1993],
except even easier, as one can use the ensemble of all linear codes instead of the
succinct Wozencraft ensemble at the inner level of the concatenated scheme.

1E. Related work. Codes based on cyclotomic function fields have been consid-
ered previously in the literature. Some specific (nonasymptotic) constructions of
function fields with many rational places over small fields Fq (q 6 5) appear in
[Niederreiter and Xing 1996; 1997]. Cyclotomic codes based on the action of
polynomials T a for small a appear in [Quebbemann 1988], but decoding algo-
rithms are not discussed for these codes, nor are these extensions cyclic as we
require. Our approach is more general and works based on the action of an arbitrary
irreducible polynomial. Exploiting the Artin automorphism of cyclotomic fields for
an algorithmic purpose is also new to this work.

Independent of our work, Huang and Narayanan [2008] have considered AG
codes constructed from Galois extensions, and observed how automorphisms of
large order can be used for folding such codes. To our knowledge, the only in-
stantiation of this approach that improves on folded RS codes is the one based
on cyclotomic function fields from our work. As an alternate approach, they also

2List recovery is a generalization of list decoding where for each position a set of possible sym-
bols is provided as input to the decoder, and the goal is to find all codewords that agree with some
element of the input sets for at least a certain fraction of positions; see Remark 6.11.

3In binary concatenated codes, the message is first encoded by an “outer” code over a large
alphabet 6, and then each outer codeword symbol is encoded by an “inner” binary code Cin : 6→
{0, 1}b. Despite its simplicity, code concatenation remains the preeminent method for constructing
good codes over small alphabets such as binary codes.
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propose a decoding method that works with folding via automorphisms of small
order. This involves computing several coefficients of the power series expansion
of the message function at a low-degree place. Unfortunately, piecing together
these coefficients into a function could lead to an exponential list size bound. The
authors suggest a heuristic assumption under which they can show that for a random
received word, the expected list size and running time are polynomially bounded.

2. Background on cyclotomic function fields

We assume familiarity with basic background on global fields and their extensions
such as valuations and places, Galois extensions, decomposition of primes, ramifi-
cation, Artin–Frobenius automorphism, etc. In this section, we will focus on back-
ground material concerning cyclotomic function fields. These are the function-field
analog of the classic cyclotomic number fields from algebraic number theory. This
theory was developed by Hayes [1974], building upon ideas due to Carlitz [1938].
The objective was to develop an explicit class field theory classifying all abelian
extensions of the rational function field Fq(T ), analogous to classic results for Q

and imaginary quadratic extensions of Q. The common idea in these results is to
allow a ring of “integers” in the ground field to act on part of its algebraic closure,
and obtain abelian extensions by adjoining torsion points of this action. We will
now describe these extensions of Fq(T ).

Let T be an indeterminate over the finite field Fq . Let RT = Fq [T ] denote the
polynomial ring, and F = Fq(T ) the field of rational functions. Let Fac be a fixed
algebraic closure of F . Let EndFq (F

ac) be the ring of Fq -endomorphisms of Fac,
thought of as a Fq -vector space. We consider two special elements of EndFq (F

ac):

(i) the Frobenius automorphism τ defined by τ(z)= zq for all z ∈ Fac, and

(ii) the map µT defined by µT (z)= T z for all z ∈ Fac.

The substitution T→ τ+µT yields a ring homomorphism from RT to EndFq (F
ac)

given by
f (T ) 7→ f (τ +µT ).

Using this, we can define the Carlitz action of RT on Fac as follows: for M ∈ RT ,

CM(z)= M(τ +µT )(z) for all z ∈ Fac.

This action endows Fac with the structure of an RT -module, which is called the
Carlitz module. For a nonzero polynomial M ∈ RT , define the set

3M = {z ∈ Fac
| CM(z)= 0},

to consist of the M-torsion points of Fac, that is, the elements annihilated by the
Carlitz action of M (this is also the set of zeroes of the polynomial CM(Z)∈RT [Z ]).
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Since RT is commutative, 3M is in fact an RT -submodule of Fac. It is in fact a
cyclic RT -module, naturally isomorphic to RT /(M).

The cyclotomic function field F(3M) is obtained by adjoining the set 3M of
M-torsion points to F .4 The following result summarizes some fundamental facts
about cyclotomic function fields, stated for the special case when M is irreducible
(we will only use such extensions). Proofs can also be found in graduate texts
[Rosen 2002, Chapter 12; Villa Salvador 2006, Chapter 12]. In what follows, we
will often use the convention that an irreducible polynomial P ∈ RT is identified
with the place of F that is the zero of P , and also denote this place by P . Recall
that these are all the places of F , with the exception of the place P∞, which is the
unique pole of T .

For a place P , we denote by OP the ring of regular functions at P (that is, the
valuation ring corresponding to the place P). Thus OP/P is the residue field at P .

Proposition 2.1 [Hayes 1974]. Let M ∈ RT be a nonzero degree d monic polyno-
mial that is irreducible over Fq . Let K = F(3M).

(i) CM(Z) is a separable polynomial in Z of degree qd over RT , of the form∑d
i=0[M, i]Zq i

where the degree of [M, i] as a polynomial in T is q i (d − i),
and further [M, 0] = M.
The polynomial ψM(Z) = CM(Z)/Z is irreducible in RT [Z ]. The field K is
equal to the splitting field of ψM(Z), and is generated by any nonzero element
λ ∈3M , that is, K = F(λ).

(ii) K/F is a Galois extension of degree (qd
− 1) and Gal(K/F) is isomorphic

to (RT /(M))∗, the cyclic multiplicative group of units of the field RT /(M).
The Galois automorphism σN associated with N̄ ∈ (RT /(M))∗ is given by
σN (λ)= CN (λ).
The Galois automorphisms commute with the Carlitz action: for any σ ∈
Gal(K/F) and A ∈ RT , σ(CA(x))= CA(σ (x)) for all x ∈ K .

(iii) If P ∈ RT is a monic irreducible polynomial different from M , then the Artin
automorphism at the place P is equal to σP .

(iv) The integral closure of RT in F(λ) equals RT [λ].

(v) The genus gM of F(3M) satisfies 2gM − 2= d(qd
− 2)− (q/q − 1)(qd

− 1).

The splitting behavior of primes in the extension F(3M)/F will be crucial for
our construction. We record this as a separate proposition below.

4It is instructive to compare this with the more familiar setting of cyclotomic number fields.
There, one lets Z act on the multiplicative group (Qac)∗ with the endomorphism corresponding to
n ∈ Z sending ζ 7→ ζ n for ζ ∈ Qac. The n-torsion points now equal {ζ ∈ Qac

| ζ n
= 1}, that is, the

n-th roots of unity. Adjoining these gives the various cyclotomic number fields.
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Proposition 2.2. Let M ∈ RT , M 6= 0, be a monic, irreducible polynomial of
degree d.

(i) Ramification at M : the place M is totally ramified in the extension F(3M)/F.
If λ ∈ 3M is a root of CM(z)/z and M̃ is the unique place of F(3M) lying
above M , then λ is a M̃-prime element, that is, vM̃(λ)= 1.

(ii) Ramification at P∞: the infinite place P∞ of F , that is, the pole of T , splits
into (qd

−1)/(q−1) places of degree 1 in F(3M)/F , each with ramification
index (q − 1). Its decomposition group equals F∗q .

(iii) Splitting at other places: if P ∈ RT is a monic, irreducible polynomial different
from M , then P is unramified in F(3M)/F , and splits into (qd

−1)/ f primes
of degree f deg P where f is the order of P modulo M (that is, the smallest
positive integer e such that Pe

≡ 1 (mod M)).

3. Reed–Solomon codes as cyclotomic function field codes

We now discuss how RS codes arise out of the simplest cyclotomic extension
F(3T )/F . This serves both as a warm-up for our later results, and as a method to
illustrate that one can view the folding employed in [Guruswami and Rudra 2008]
as arising naturally from the Artin automorphism at a certain prime in the extension
F(3T )/F .

We have 3T = {u ∈ Fac
| uq
+T u = 0}. Pick a nonzero λ∈3T . By Proposition

2.2, the only ramified places in F(3T )/F are T and the pole P∞ of T . Both of
these are totally ramified and have a unique place above them in F(3T ). Denote
by Q∞ the place above P∞ in F(3T ).

We have λq−1
=−T , so λ has a pole of order one at Q∞, and no poles elsewhere.

The place T + 1 splits completely into n = q − 1 places of degree 1 in F(3T ).
The evaluation of λ at these places corresponds to the roots of xq−1

= 1, that
is, to nonzero elements of Fq . Thus the places above T + 1 can be described
as P1, Pγ, . . . , Pγq−2 , where γ is a primitive element of Fq and λ(Pγi ) = γi for
i = 0, 1, . . . , q − 2.

For k < q − 1, define Mk =
{∑k−1

i=0 βiλ
i
| βi ∈ Fq

}
. Mk has qk elements, each

with at most (k − 1) poles at Q∞ and no poles elsewhere. Consider the Fq -linear
map ERS :Mk→ Fn

q defined as

ERS( f )=
(

f (P1), f (Pγ), . . . , f (Pγq−2)
)
.

Clearly this just defines an [n, k]q RS code, consisting of evaluations of polyno-
mials of degree < k at elements of F∗q .

Consider the place T+γ of F . The condition (T+γ) f
≡ 1 (mod T ) is satisfied

if and only if γ f
= 1, which happens if and only if (q−1)| f . Therefore, the place
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T + γ remains inert in F(3T )/F . Let A denote the unique place above T + γ in
F(3T ). The degree of A equals q − 1.

The Artin automorphism at A, σA, is given by σA(λ)=CT+γ(λ)=Cγ(λ)= γλ.
Note that this implies f (Pγi+1)= σA( f )(Pγi ) for 06 i < q−2. By the property of
the Artin automorphism, we have σA( f ) ≡ f q (mod A) for all f ∈ RT [λ]. Note
that this is same as the condition f (γλ) ≡ f (λ)q (mod (λq−1

− γ)) treating f as
a polynomial in λ. This corresponds to the algebraic relation between f (X) and
f (γX) in the ring Fq [X ] that was used by Guruswami and Rudra [2008] in their
decoding algorithm, specifically in the task of finding all f (X) of degree less than k
satisfying Q(X, f (X), f (γX))= 0 for a given Q ∈ Fq [X, Y, Z ]. In the cyclotomic
language, this corresponds to finding all f ∈ RT [λ] with fewer than k poles at Q∞
satisfying Q( f, σA( f )) = 0 for Q ∈ RT [λ](Y, Z). Since deg A = q − 1 > k, f is
determined by its residue at A, and we know σA( f ) ≡ f q (mod A). Therefore,
we can find all such f by finding the roots of the univariate polynomial Q(Y, Y q)

mod A over the residue field OA/A.

4. Subfield construction from cyclic cyclotomic function fields

In this section, we will construct the function field construction that will be used for
our AG codes, and establish the key algebraic facts concerning it. The approach
will be to take the cyclotomic field K = F(3M), where M is an irreducible of
degree d > 1, and get a code over Fq . But the only places of degree 1 in F(3M)

are the ones above the pole P∞ of T . There are only (qd
−1)/(q−1) such places

above P∞, which is much smaller than the genus. So we descend to a subfield
where many degree 1 places split completely. This is done by taking a subgroup
H of (Fq [T ]/(M))∗ with many degree 1 polynomials and considering the fixed
field E = K H . For every irreducible N ∈ RT such that N̄ = N mod M ∈ H , the
place N splits completely in the extension E/F (this follows from the fact that CN

is the Artin automorphism at the place N ). This technique has also been used in
works mentioned earlier [Quebbemann 1988; Niederreiter and Xing 1996; 1997],
though our approach is more general and works with any irreducible M . The study
of algorithms for cyclotomic codes and the role played by the Artin automorphism
in their list decoding is also novel to our work.

4A. Table of parameters. Since there is an unavoidable surfeit of notation and pa-
rameters used in this section and Section 5, we summarize them for easy reference
in the Appendix.

4B. Function field construction. Let Fr be a subfield of Fq . Let M ∈ Fr [T ] be a
monic polynomial that is irreducible over Fq (note that we require M(T ) to have
coefficients in the smaller field Fr , but demand irreducibility in the ring Fq [T ]).
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The following lemma follows from the general characterization of when binomials
T m
−α are irreducible in Fq [T ] [Lidl and Niederreiter 1986, Chapter 3].

Lemma 4.1. Let d > 1 be an odd integer such that every prime factor of d divides
(r − 1) and gcd(d, (q − 1)/(r − 1)) = 1. Let γ be a primitive element of Fr . Then
T d
− γ ∈ Fr [T ] is irreducible in Fq [T ].

A simple choice for which the above conditions are met is r = 2a , q = r2, and
d = r − 1 (we will need a more complicated choice for our list decoding result in
Theorem 7.1). For the sake of generality as well as clarity of exposition, we will
develop the theory without making specific choices for the parameters, a somewhat
intricate task we will undertake in Section 7.

For the rest of this section, fix M(T ) = T d
− γ as guaranteed by Lemma 4.1.

We continue with the notation F = Fq(T ), RT = Fq [T ], and K = F(3M). Fix a
generator λ ∈3M of K/F so that K = F(λ).

Let G be the Galois group of K/F , which is isomorphic to the cyclic multi-
plicative group (Fq [T ]/(M))∗. Let H ⊂ G be the subgroup F∗q · (Fr [T ]/(M))∗.
The cardinality of H is (rd

−1) ·(q−1)/(r − 1). Note that since G is cyclic, there
is a unique subgroup H of this size. Indeed, if 0 ∈ G is an arbitrary generator of
G, then H = {1, 0b, 02b, . . . , 0qd

−1−b
}, where

b = |G|
|H |
=

qd
−1

rd−1
·

r−1
q−1

. (4-1)

Let A ∈ RT be an arbitrary polynomial such that A mod M is a generator of
(Fq [T ]/(M))∗. We can then take 0 so that 0(λ) = CA(λ). We fix a choice of
A in the sequel and assume that A is precomputed and known. In Section 5C
we will pick such an A of appropriately large degree D. The effective version of
Dirichlet’s theorem for irreducible polynomials in arithmetic progressions guaran-
tees the existence of such polynomials A for large enough degree [Rosen 2002,
Theorem 4.8].

Note that by Proposition 2.1(ii), the Galois action commutes with the Carlitz
action and therefore 0 j (λ)= CA j (λ) for all j > 1. Thus knowing the polynomial
A lets us compute the action of the automorphisms of H on any desired element
of K = F(λ).

Let E ⊂ K be the subfield of K fixed by the subgroup H , that is,

E = {x ∈ K | σ(x)= x for all σ ∈ H}.

The field E will be the one used to construct our codes. We first record some
basic properties of the extension E/F , and how certain places decompose in this
extension.
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Proposition 4.2. Let E = F(3M)
H .

(i) E/F is a Galois extension of degree [E : F] = b.

(ii) The place M is the only ramified place in E/F , and it is totally ramified with
a unique place M ′ above it in E.

(iii) The infinite place P∞ of F , that is, the pole of T , splits completely into b
degree 1 places in E.

(iv) The genus gE of E equals d(b− 1)/2+ 1.

(v) For each β ∈ Fr , the place T −β of F splits completely into b degree 1 places
in E.

(vi) If A ∈ RT is irreducible of degree `> 1 and A mod M is a primitive element
of RT /(M), then the place A is inert in E/F. The Artin automorphism σA at
A satisfies

σA(x)≡ xq` (mod A′) (4-2)

for all x ∈ OA′ , where A′ is the unique place of E lying above A.

Proof. By Galois theory, [E : F]= |G|/|H | = b. Since G is abelian, E/F is Galois
with Galois group isomorphic to G/H . Since E ⊂ K , and M is totally ramified
in K , it must also be totally ramified in E . The only other place ramified in K
is P∞, and since H contains the decomposition group F∗q of P∞, P∞ must split
completely in E/F .

The genus of E is easily computed, since E/F is a tamely ramified exten-
sion [Stichtenoth 1993, Sec. III.5]. Since only the place M of degree d is ramified,
we have 2gE − 2= d(b− 1).

Since H ⊃ Fr [T ], for β ∈ Fr , the Artin automorphism σT−β of the place T −β
in K/F belongs to H . The Artin automorphism of T −β in the extension E/F is
the restriction of σT−β to E , which is trivial since H fixes E . It follows that T −β
splits completely in E .

For an irreducible polynomial A ∈ RT which has order qd
− 1 modulo M , by

Proposition 2.2(iii), the place A remains inert in the extension K/F , and therefore
also in the subextension E/F . Since the degree of the place A equals `, (4-2)
follows from the definition of the Artin automorphism at A. �

4C. A generator for E and its properties. We would like to represent elements
of E and to be able to evaluate them at the places above T − β. To this end, we
will exhibit a µ ∈ Fac such that E = F(µ) along with a defining equation for µ
(which will then aid in the evaluations of µ at the requisite places).

Theorem 4.3. Let λ be an arbitrary nonzero element of 3M (so that K = F(λ)).
Define

µ
def
=

∏
σ∈H

σ(λ)= CAb(λ)CA2b(λ) · · ·CAqd−1(λ). (4-3)
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Then the fixed field E = K H equals the extension field F(µ). The minimal poly-
nomial h ∈ RT [Z ] of µ over F is given by

h(Z)=
b−1∏
j=0

(Z −0 j (µ)).

Further, the polynomial h(Z) can be computed in q O(d) time.

Proof (sketch). By definition, µ is fixed by each π ∈ H and so µ ∈ E . Therefore
F(µ)⊆ E . To show E = F(µ), we will argue that [F(µ) : F] = b, which in turn
follows if we show that h(Z) has coefficients in F and is irreducible over F . It is
easy to see that the coefficients of h are fixed by 0 and hence by all of Gal(K/F),
and so must belong to F . Since λ and all its Galois conjugates CAi (λ) are integral
over F , each 0 j (µ) is integral over F , and thus so is each coefficient of h. But
since we already know they belong to F , the coefficients must in fact lie in RT .

The irreducibility of h over RT can be shown using Eisenstein’s criterion with
respect to M . Indeed, except the leading coefficient, every other coefficient of h is
divisible by λ, and since λ ∈ M̃ (by Proposition 2.2), these coefficients belong to
the ideal F ∩ M̃ = M . The constant term of h equals

∏
06i<qd−1 CAi (λ), which is

also the constant term of
CM(Z)/Z =

∏
06i<qd−1

(Z −CAi (λ)).

The latter equals M by Proposition 2.1(i). Thus the constant term of h is not
divisible by M2. By Eisenstein’s criterion, h must be irreducible over F .

Finally, we address how the coefficients of h(Z) can be computed efficiently.
Note that for j = 0, 1, . . . , b− 1,

0 j (µ)=
∏

06i<qd
−1

i mod b= j

0i (λ)=
∏

06i<qd
−1

i mod b= j

CAi (λ). (4-4)

Using this, we can compute 0 j (µ) for 06 j 6 b− 1 as a formal polynomial in λ
with coefficients from RT . We can divide this polynomial by the monic polynomial
CM(λ)/λ (formally, over the polynomial ring RT [λ]) and represent 0 j (µ) as a
polynomial of degree less than (qd

− 1) in λ. Using this representation, we can
compute the polynomials

h(i)(Z)=
i∏

j=0

(Z −0 j (µ)) for 16 i 6 b− 1

iteratively, as an element of RT [λ][Z ], with all coefficients having degree less than
(qd
− 1) in λ. When i = b− 1, we would have computed h(Z)— we know at the

end all the coefficients will have degree 0 in λ and belong to RT . �
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Using
∏b−1

j=0 0
j (µ)= M from the above argument, and vM ′(0

j (µ))= vM ′(µ),
we conclude that vM ′(µ) = 1, that is, µ (as well as each of its Galois conjugates
0 j (µ)) is M ′-prime. We record this fact below. It will useful to establish that the
integral closure of RT in E equals RT [µ] (Proposition 5.1), a fact we will use en
route characterizing the message space in Theorem 5.2.

Lemma 4.4. The element µ has a simple zero at M ′, that is, vM ′(µ)= 1.

With the minimal polynomial h(Z) of µ at our disposal, we turn to comput-
ing the evaluations of µ at the b places above T − β; call them P (β)j for j =
0, 1, . . . , b− 1, for each β ∈ Fr . (Recall that the place T − β splits completely in
E/F by Proposition 4.2(v).) The following lemma identifies the set of evaluations
of µ at these places. This method is related to Kummer’s theorem on splitting of
primes [Stichtenoth 1993, Section III.3].

Lemma 4.5. Consider the polynomial h̄(β)(Z) ∈ Fq [Z ] obtained by evaluating the
coefficients of h(Z), which are polynomials in T , at β. Then

h̄(β)(Z)=
b−1∏
j=0

(Z −µ(P (β)j )).

In particular, the set of evaluations of µ at the places above (T − β) equals the
roots of h̄(β) in Fq , and can be computed in bO(1) time given h ∈ RT [Z ].

Proof. We know h(Z)=
b−1∏
j=0
(Z −0 j (µ)). Therefore

h̄(β)(Z)=
b−1∏
j=0

(Z −0 j (µ)(P (β)0 ))=

b−1∏
j=0

(
Z −µ

(
0− j (P (β)0 )

))
=

b−1∏
j=0

(Z −µ(P (β)j )),

where the last step uses the fact that 0− j (P (β)0 ) for j = 0, 1, . . . , b−1 is precisely
the set of places above T −β. �

5. Code construction from cyclotomic function fields

We will now describe the AG codes based on the function field E . A tempting
choice for the message space is perhaps

{∑b−1
i=0 ai (T )µi

}
⊂ RT [µ], where ai (T )

are polynomials of some bounded degree. This is certainly a Fq -linear space and
messages in this space have no poles outside the places lying above P∞. However,
the valuations of µ at these places are complicated — one needs the Newton poly-
gon method to estimate them [Villa Salvador 2006, Section 12.4] — and since µ
has both zeroes and poles among these places, it is hard to get good bounds on the
total pole order of such messages at each of the places above P∞.



List error correction with optimal rate 447

5A. Message space. Let M ′ be the unique totally ramified place M ′ in E lying
above M ; deg M ′ = deg M = d . We will use as message space elements of RT [µ]

that have no more than a certain number ` of poles at the place M ′ and no poles
elsewhere. These can equivalently be thought of (via a natural correspondence) as
elements of E that have bounded (depending on `) pole order at each place above
P∞, and no poles elsewhere, and we can develop our codes and algorithms in this
equivalent setting. Since the literature on AG codes typically focuses on one-point
codes where the messages have poles at a unique place, we work with functions
with poles restricted to M ′.

Formally, for an integer ` > 1, let L(`M ′) be the space of functions in E that
have no poles outside M ′ and at most ` poles at M ′. L(`M ′) is an Fq -vector
space, and by the Riemann–Roch theorem, dim L(`M ′) > `d − g + 1, where
g = d(b − 1)/2 + 1 is the genus of E . We will assume that ` > b, in which
case dim L(`M ′)= `d − g+ 1.

We will represent the code by a basis of L(`M ′) over Fq . Of course, we first need
to understand how to represent a single function in L(`M ′). Theorem 5.2 below
suggests a representation for elements of L(`M ′) that we can use. Its proof uses
the following claim, which can be established using Lemma 4.4 and an argument
similar to the one used to prove that the integral closure of RT in K = F(λ) equals
RT [λ] [Rosen 2002, Proposition 12.9].

Proposition 5.1. The integral closure of RT in E equals

RT [µ] =
{b−1∑

i=0

aiµ
i
∣∣ ai ∈ RT

}
.

Theorem 5.2. A function f in E with poles only at M ′ has a unique representation
of the form

f =
∑b−1

i=0 aiµ
i

Me , (5-1)

where e > 0 is an integer, each ai ∈ RT , and not all the ai’s are divisible by M (as
polynomials in T ).

Proof. If f has poles only at M ′, there must be a smallest integer e > 0 such that
Me f has no poles outside the places above P∞. This means that Me f must belong
to the integral closure (ring of integers) of RT in E , that is, the minimal polynomial
of Me f over RT is monic. By Proposition 5.1, we have Me f ∈ RT [µ] and so we
can write f = M−e ∑b−1

i=0 aiµ
i as claimed. The uniqueness of the representation

follows since {1, µ, . . . , µb−1
} forms a basis of E over F . �

5B. Succinctness of representation. In order to be able to efficiently compute
with the representation (5-1) of functions in L(`M ′), we need the guarantee that
the representation will be succinct, that is, of size polynomial in the code length.
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We show that this will be the case by obtaining an upper bound on the degree of
the coefficients ai ∈ RT in Lemma 5.3 below. This is not as straightforward as
one might hope, and we thank G. Anderson and D. Thakur for help with its proof.
For the choice of parameters we will make (in Theorems 6.10 and 7.1), this upper
bound will be polynomially bounded in the code length. Therefore, the assumed
representation of the basis functions is of polynomial size.

Lemma 5.3. Suppose f ∈ L(`M ′) is given by f = M−e ∑b−1
i=0 aiµ

i for ai ∈ RT

(not all divisible by M) and e > 0. Then the degree of each ai is at most `+ qdb.

Proof. Let g = Me f =
∑b−1

i=0 aiµ
i . We know that g has at most eb poles at each

place of E that lies above P∞ (since f has no poles at these places). Using the
fact that f has at most ` poles at M ′, and the uniqueness of the representation
f = M−e ∑b−1

i=0 aiµ
i , it is easy to argue that eb 6 `+ b. So, g has at most `+ b

poles at each place of E lying above P∞.
Let σ =σA; we know that σ is a generator of Gal(E/F). For j =0, 1, . . . , b−1,

we have σ j (g) =
∑b−1

i=0 aiσ
j (µi ). Let a = (a0, a1, . . . , ab−1)

T be the (column)
vector of coefficients, and let g = (g, σ (g), . . . , σ b−1(g))T . Denoting by 8 the
b×b matrix with8 j i =σ

j (µi ) for 06 i, j 6b−1, we have the system of equations
8a = b.

We can thus determine the coefficients ai by solving this linear system. By
Cramér’s rule, ai = det8i / det8, where 8i is obtained by replacing the i-th
column of 8 by the column vector g. The square of the denominator det8 is
the discriminant of the field extension E/F , and belongs to RT . Thus the degree
of ai is at most the pole order of det8i at an arbitrary place, say P̃ , above P∞. By
the definition (4-3) of µ, and the fact that λ and its conjugates have at most one
pole at the places above P∞ in F(3M), it follows that µ has at most (qd

− 1)/b
poles at P̃ . The same holds for all its conjugates σ j (µ). The function g and its
conjugates σ j (g) have at most `+b poles at P̃ . All in all, this yields a crude upper
bound of

qd
−1
b

(b−1)b
2
+ `+ b 6 `+ qdb

for the pole order of det8i at P̃ , and hence also the degree of the polynomial
ai ∈ RT . �

5C. Rational places for encoding and their ordering. So far, the polynomial A ∈
RT was any monic irreducible polynomial that was a primitive element modulo
M , so that its Artin automorphism σA generates Gal(E/F). We will now pick A
to have degree D satisfying

D >
`d
b

and D > 3d, (5-2)
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where the latter condition (in fact even D>2d+o(d) suffices) ensures that there are
at least q D/2Dqd irreducible polynomials of degree D with any desired residue
modulo M . This follows from the effective version of Dirichlet’s theorem for
polynomials; see for instance [Rosen 2002, Theorem 4.8].

For D satisfying the above conditions, an irreducible polynomial A of degree D
that is primitive modulo M can be found by a Las Vegas algorithm in (Dqd)O(1)

time by picking a random polynomial and checking that it works, or deterministi-
cally by brute force in q O(d+D) time. Both of these bounds are within the decoding
time claimed in Theorem 6.10, and will be polynomial in the block length for our
parameter choices in Theorem 7.1. By Proposition 2.1, A remains inert in E/F ,
and let us denote by A′ the unique place of E that lies over A. The degree of A′

equals Db.
For each β ∈ Fr , fix an arbitrary place P (β)0 lying above T − β in E . For

j = 0, 1, . . . , b− 1, define

P (β)j = σ
− j
A (P (β)0 ) . (5-3)

Since Gal(E/F) acts transitively on the set of primes above a prime, and σA gener-
ates Gal(E/F), these constitute all the places above T−β. Lemma 4.5 already tells
us the set of evaluations of µ at these places, but not which evaluation corresponds
to which point. We have µ(σ− j

A (P (β)0 )) = σ
j
A(µ)(P

(β)
0 ); hence, to compute the

evaluations of µ at all these b places according to the ordering (5-3), it suffices to
know

(i) the value at µ(P (β)0 ), which we can find by simply picking one of the roots
from Lemma 4.5 arbitrarily, and

(ii) a representation of σA(µ) as an element of RT [µ] (since σA(µ) is integral over
RT , it belongs to RT [µ] by virtue of Proposition 5.1). Note that T (P (β)0 )= β,
so once we know µ(P (β)0 ), we can evaluate any element of RT [µ] at P (β)0 .

We now show that σA(µ) ∈ RT [µ] can be computed efficiently.

Lemma 5.4. (i) The values of σ j
A(µ) for 06 j 6 b−1 as elements of RT [µ] can

be computed in q O(d) time.

(ii) The values µ(P (β)j ) for β ∈ Fr and j = 0, 1, . . . , b − 1 can be computed
in q O(d) time. Knowing these values, we can compute any function in the
message space L(`M ′) represented in the form (5-1) at the places P (β)j in
poly(`, qd) time.

Proof. Part (ii) follows from (i) and the discussion above. To prove (i), note that
once we compute σA(µ), we can recursively compute σ j

A(µ) for j > 2, using the
relation h(µ)= 0 to replace µb and higher powers of µ in terms of 1, µ, . . . , µb−1.
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By definition (4-3), we have µ=
∏

06i<(qd−1)/b CAib mod M(λ). Thus one can com-
pute an expression

µ=

qd
−2∑

i=0

eiλ
i
∈ RT [λ]

with coefficients ei ∈ RT in q O(d) time. By successive multiplication in the ring
RT [λ] (using the relation CM(λ)= 0 to express λqd

−1 and higher powers in terms
of 1, λ, . . . , λqd

−2), we can compute, for l = 0, 1, . . . , b− 1, expressions

µl
=

qd
−2∑

i=0

eilλ
i

with eil ∈ RT in q O(d) time.
We have

σA(µ)=

qd
−2∑

i=0

eiσA(λ)
i
=

qd
−2∑

i=0

ei CA mod M(λ)
i .

So one can likewise compute an expression σA(µ)=
∑qd

−2
i=0 fiλ

i with fi ∈ RT in
q O(d) time. The task now is to rewrite this expression for σA(µ) as an element of
RT [µ], of the form

∑b−1
l=0 alµ

l , for unknowns al ∈ RT that are to be determined.
We will argue that this can be accomplished by solving a linear system.

Indeed, using the expressions µl
=
∑qd

−2
i=0 eilλ

i , the coefficients al satisfy the
following system of linear equations over RT :

b−1∑
l=0

eilal = fi for i = 0, 1, . . . , qd
− 2 . (5-4)

Since the representation σA(µ) =
∑b−1

l=0 alµ
l is unique, the system has a unique

solution. By Cramér’s rule, the degree of each al is at most q O(d). Therefore, we
can express the system (5-4) as a linear system of size q O(d) over Fq in unknowns
the coefficients of all the polynomials al ∈ RT . By solving this system in q O(d)

time, we can compute the representation of σA(µ) as an element of RT [µ]. �

5D. The basic cyclotomic algebraic-geometric code. The basic AG code C0 based
on subfield E of the cyclotomic function field F(3M) is defined as

C0
=

{(
f (P (β)j )

)
β∈Fr ,06 j<b

∣∣ f ∈ L(`M ′)
}
, (5-5)

where the ordering of the places P (β)j above T − β is as in (5-3). We record the
standard parameters of the above AG code, which follows from Riemann–Roch,
the genus of E from Proposition 4.2, and that a nonzero f ∈ L(`M ′) can have at
most ` deg M ′ = `d zeroes.
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Lemma 5.5. Suppose `> b. Then C0 is an Fq -linear code of block length n = rb,
dimension k = `d − d(b− 1)/2, and distance at least n− `d.

Lemma 5.4(ii) implies the following.

Lemma 5.6 (Efficient encoding). Given a basis for the message space L(`M ′)
represented in the form (5-1), the generator matrix of the cyclotomic code C0 can
be computed in poly(`, qd , q D) time.

5E. The folded cyclotomic code. Let m > 1 be an integer. For convenience, we
assume m|b (though this is not really necessary). Analogously to the construction
of folded RS codes [Guruswami and Rudra 2008], the folded cyclotomic code C

is obtained from C0 by bundling together successive m-tuples of symbols into a
single symbol to give a code of length N = n/m over Fm

q . Formally,

C=
{(

f (P (β)mı ), f (P (β)mı+1), . . . , f (P (β)mı+m−1)
)
β∈Fr ,06ı<b/m

∣∣ f ∈L(`M ′)
}
. (5-6)

We will index the N positions of codewords in C by pairs (β, ı) for β ∈ Fr and
ı ∈ {0, 1, . . . , (b/m)− 1}.

The generator matrix of unfolded code C0, which can be computed given a
basis for L(`M ′) according to Lemma 5.6, obviously suffices for encoding. Later
we will argue that the same representation also suffices for polynomial time list
decoding.

5F. Folding and Artin–Frobenius automorphism. The unique place A′ that lies
above A has degree D′ def

= Db. The residue field at A′, denoted by K A′ , is isomor-
phic to Fq D′ . By our choice Db > `d , this immediately implies that a message in
L(`M ′) is uniquely determined by its evaluation at A′.

Lemma 5.7. The map evA′ :L(`M ′)→ K A′ given by evA′( f )= f (A′) is one-one.

The key algebraic property of our folding is the following.

Lemma 5.8. For every f ∈ L(`M ′):

(i) For every β ∈ Fr and 06 j < b− 1, σA( f )(P (β)j )= f (P (β)j+1).

(ii) σA( f )(A′)= f (A′)q
D

.

Proof. Part (i) follows since we ordered the places above T − β such that P (β)j+1 =

σ−1
A (P (β)j ).
Part (ii) follows from the property of the Artin automorphism at A, since the

norm of the place A equals qdeg A
= q D . (A nice discussion of the Artin–Frobenius

automorphism, albeit in the setting of number fields, appears in [Marcus 1977,
Chapter 4].) �
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6. List decoding algorithm

We now turn to list decoding the folded cyclotomic code C defined in (5-6). The
underlying approach is similar to that of the algorithm for list decoding folded RS
codes [Guruswami and Rudra 2008] and AG generalizations of Parvaresh–Vardy
codes [2005; Guruswami and Patthak 2008]. We will therefore not repeat the entire
rationale and motivation behind the algorithm development. But our technical pre-
sentation and analysis is self-contained. In fact, our presentation here does offer
some simplifications over previous descriptions of AG list decoding algorithms
from [Guruswami and Sudan 1999; 2001; Guruswami and Patthak 2008]. A princi-
pal strength of the new description is that it avoids the use of zero-increasing bases
at each code place P (β)j . This simplifies the algorithm as well as the representation
of the code needed for decoding.

The list decoding problem for C up to e errors corresponds to solving the fol-
lowing function reconstruction problem. Recall that the length of the code is N =
n/m=rb/m, and the codeword positions are indexed by Fr×{0, 1, . . . , (b/m)−1}.

Input: Collection T of N tuples
(
y(β)mı , y(β)mı+1, . . . , y(β)mı+m−1

)
∈ Fm

q for β ∈ Fr

and 06 ı < b/m.

Output: A list of all f ∈ L(`M ′) whose encoding according to C agrees with
the (β, ı)-th tuple for at least N − e codeword positions.

6A. Algorithm description. We describe the algorithm at a high level below and
later justify how the individual steps can be implemented efficiently, and under
what condition the decoding will succeed. We stress that regardless of complexity
considerations, even the combinatorial list-decodability property “proved” by the
algorithm is nontrivial.

Algorithm List-Decode(C)

Parameters: • An integer parameter s, 26 s 6m, for s-variate interpolation;
• an integer parameter w > 1 that governs the zero order (multiplicity)

guaranteed by interpolation; and
• an integer parameter 1 > 1 that is the total degree of the interpolated

s-variate polynomial.

Step 1 (Interpolation): Find a nonzero polynomial Q(Z1, Z2, . . . , Zs) of total
degree at most 1 with coefficients in L(`M ′) such that for each β ∈ Fr ,
06 ı < b/m, and j ′ ∈ {0, 1, . . . ,m− s}, the shifted polynomial

Q
(
Z1+ y(β)mı+ j ′, Z2+ y(β)mı+ j ′+1, . . . , Zs + y(β)mı+ j ′+s−1

)
(6-1)

has the property that the coefficient of the monomial Zn1
i Zn2

2 · · · Z
ns
s vanishes

at P (β)mı+ j ′ whenever its total degree n1+ n2+ · · ·+ ns <w.
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Step 2 (Root-finding): Find a list of all f ∈ L(`M ′) satisfying

Q( f, σA( f ), . . . , σAs−1( f ))= 0.

Output those whose encoding according to C agrees with at least N−e of the
m-tuples in T.

6B. Analysis of error correction radius.

Lemma 6.1. If k(1 + 1)s > N (m − s + 1)(w + s − 1)s (where, as we recall,
k = `d − d(b − 1)/2 is the dimension of L(`M ′)), then a nonzero polynomial
Q with the stated properties exists. If we know the evaluations of the functions
in a basis {φ1, φ2, . . . , φk} of L(`M ′) at the places P(β)j , then such a Q can be
found by solving a homogeneous system of linear equations over Fq with at most
Nm(w+ s)s equations and unknowns.

Proof. The proof is standard and follows by counting degrees of freedom versus
number of constraints. One can express the desired polynomial as∑

n1,n2,...,ns

q(n1,...,ns)Z
n1
1 · · · Z

ns
s ,

with unknowns q(n1,...,ns)∈Fq . The number of coefficients is k
(1+s

s

)
>k(1+1)s/s!.

One can express for each place P (β)mı+ j ′ the required condition at that place by(w+s−1
s

)
linear conditions (this quantity is the number of monomials of total degree

less than w), for a total of

N (m− s+ 1)
(
w+ s− 1

s

)
< N (m− s+ 1)(w+s−1)s

s!

constraints. When the number of unknowns exceeds the number of constraints,
a nonzero solution must exist. A solution can also be found efficiently once the
linear system is set up, which can clearly be done if we know the evaluations of
φi ’s at the code places (that is, a generator matrix of the code). �

Lemma 6.2. Let Q be the polynomial found in Step 1. If the encoding of some
f as per C agrees with (y(β)mı , y(β)mı+1, · · · , y(β)mı+m−1) for some position (β, ı), then
Q( f, σA( f ), . . . , σAs−1( f )) has at least w zeroes at each of the (m− s+1) places
P (β)mı+ j ′ for j ′ = 0, 1, . . . ,m− s.

Proof. The proof differs slightly from earlier proofs of similar statements (for
example, [Guruswami and Patthak 2008, Lemma 6.6]) in that it avoids the use of
zero-increasing bases and is thus simpler. We will prove the claim for j ′ = 0, and
the same proof works for any j ′ 6 m − s. Note that agreement on the m-tuple at
position (b, ı) implies that

f (P (β)mı )= y(β)mı , f (P (β)mı+1)= y(β)mı+1, . . . , f (P (β)mı+s−1)= y(β)mı+s−1.
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By Lemma 5.8(i), this implies

f (P (β)mı )= y(β)mı , σA( f )(P (β)mı )= y(β)mı+1, . . . , σAs−1( f )(P (β)mı )= y(β)mı+s−1.

Denote by Q∗ the shifted polynomial (6-1) for the triple (β, ı, 0). We have

Q
(

f, σA( f ), . . . , σAs−1( f )
)

= Q∗
(

f − y(β)mı , σA( f )− y(β)mı+1, · · · , σ
s−1
A ( f )− y(β)mı+s−1

)
=

∑
n1,n2,...,ns

w6n1+···+ns61

q∗(n1,...,ns)

(
f − f (P (β)mı )

)n1
(
σA( f )− σA( f )(P (β)mı )

)n2

· · ·
(
σAs−1( f )− σAs−1( f )(P (β)mı )

)ns .

for some coefficients q∗(n1,...,ns)
∈ Fq . Since each term of the function in the last

expression has valuation at leastw at P (β)mı , so does Q( f, σA( f ), . . . , σAs−1( f )). �

Lemma 6.3. If the encoding of f ∈ L(`M ′) has at least N − e agreements with
the input tuples T, and (N − e)(m− s+ 1)w > d`(1+ 1), then

Q( f, σA( f ), . . . , σAs−1( f ))= 0.

Proof. Since f has no poles outside M ′, neither do σAi ( f ) for 16 i < s. Moreover,
vM ′(σA( f )) = vσ−1

A (M ′)( f ) = vM ′( f ) (since M ′ is the unique place above M and
is thus fixed by every Galois automorphism). Since f ∈ L(`M ′), this implies
σAi ( f )∈L(`M ′) for every i . Since each coefficient of Q also belongs to L(`M ′),
we conclude that Q( f, σA( f ), . . . , σAs−1( f ))∈L((`+`1)M ′). On the other hand,
by Lemma 6.2, Q( f, σA( f ), . . . , σAs−1( f )) has at least (N−e)(m−s+1)w zeroes.
If (N − e)(m − s + 1)w > `(1+ 1)d , then Q( f, σA( f ), . . . , σAs−1( f )) has more
zeroes than poles and must thus equal 0. �

Putting together the above lemmas, we can conclude the following about the list
decoding radius guaranteed by the algorithm. Note that we have not yet discussed
how Step 2 may be implemented, or why it implies a reasonable bound on the
output list size. We will do this in Section 6C.

Theorem 6.4. For every s, 26 s6m, and any ζ > 0, for the choicew=ds/ζe and
a suitable choice of the parameter 1, the algorithm List-Decode(C) successfully
list decodes up to e errors whenever

e < (N − 1)− (1+ ζ )
( k

m−s+1

)1−1/s
N 1/s

(
1+ d(b−1)

2k

)
. (6-2)

Proof. Picking w = ds/ζe and

1+ 1=
⌈(N (m−s+1)

k

)1/s
(w+ s− 1)

⌉
,

the requirement of Lemma 6.1 is met. By Lemma 5.5, the dimension k satisfies
`d = k + d(b− 1)/2. A straightforward computation reveals that for this choice,
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the bound (6-2) implies the decoding condition (N−e)(m−s+1)w > `d(1+1),
under which Lemma 6.3 guarantees successful decoding. �

Remark 6.5. The error correction radius above is nontrivial only when s > 2.
We will see later how to pick parameters so that the error fraction approaches
1 − R1−1/s . For AG codes, even s = 1 led to a nontrivial guarantee of about
1−
√

R in [Guruswami and Sudan 1999], and for folded RS codes the error fraction
with s-variate interpolation was 1− Rs/(s+1). The weaker bound we get is due to
restricting the pole order of coefficients of Q to at most `, the number of poles
allowed for messages. This is similar to the algorithm in [Guruswami and Patthak
2008, Section 5]. Since we let grow s anyway, this does not hurt us. It also avoids
some difficult technical complications that would arise otherwise (discussed in,
for example, [Guruswami and Patthak 2008]), and allows us to implement the
interpolation step just using the natural generator matrix of the code.

6C. Root-finding using the Artin automorphism. So far we have not discussed
how Step 2 of decoding can be performed, and why in particular it implies a rea-
sonably small upper bound on the number of solutions f ∈ L(`M ′) that it may
find in the worst case. We address this now. This is where the properties of the
Artin automorphism σA will play a crucial role. Recall that K A′ = OA′/A′ denotes
the residue field at the place A′ of E lying above A, and that we picked A so that
D = deg A obeyed Db > `d .

Lemma 6.6. Suppose f ∈ OA′ satisfies

Q( f, σA( f ), . . . , σAs−1( f ))= 0

for some Q ∈OA′[Z1, Z2, . . . , Zs]. Let Q ∈K A′[Z1, Z2, . . . , Zs] be the polynomial
obtained by reducing the coefficients of Q modulo A′. Then f (A′) ∈ K A′ obeys

Q
(

f (A′), f (A′)q
D
, f (A′)q

2D
, . . . , f (A′)q

D(s−1))
= 0. (6-3)

Proof. If Q( f, σA( f ), . . . , σAs−1( f ))= 0, then surely

Q
(

f (A′), σA( f )(A′), . . . , σAs−1( f )(A′)
)
= 0.

The claim (6-3) now follows immediately from Lemma 5.8(ii). �

Lemma 6.7. If Q(Z1, . . . , Zs) is a nonzero polynomial of total degree at most1<
q D all of whose coefficients belong to L(`M ′), then the polynomial 8 ∈ K A′[Y ]
defined as

8(Y ) def
= Q

(
Y, Y q D

, . . . , Y q D(s−1))
is a nonzero polynomial of degree at most 1 · q D(s−1).
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Proof. If ψ ∈ L(`M ′) is nonzero, then ψ(A′) 6= 0. (Otherwise, the degree of the
zero divisor of ψ will be at least deg A′ = bD > `d, and thus exceed the degree of
the pole divisor of ψ .) It follows that if Q 6= 0, then Q(Z1, . . . , Zs) obtained by
reducing coefficients of Q modulo A′ is also nonzero.5 Since the degree of Q in
each Zi is at most 1 < q D , it is easy to see that 8(Y ) = Q

(
Y, Y q D

, . . . , Y q D(s−1))
is also nonzero. The degree of 8 is at most q D(s−1) times the total degree of Q,
which is at most 1. �

By the above two lemmas, we see that one can compute the set of residues f (A′)
of all f satisfying Q( f, σA( f ), . . . , σAs−1( f ))= 0 by computing the roots in K A′

of 8(Y ). Since evA′ is injective on L(`M ′) (Lemma 5.7), this also lets us recover
the message f ∈ L(`M ′).

Lemma 6.8. Given a nonzero polynomial Q(Z1, . . . , Zs) with coefficients from
L(`M ′) and degree 1< q D , the set of functions

S= { f ∈ L(`M ′) | Q
(

f, σA( f ), . . . , σAs−1( f )
)
= 0}

has cardinality at most q Ds .
Moreover, knowing the evaluations of a basis B = {φ1, φ2, . . . , φk} of L(`M ′)

at the place A′, one can compute the coefficients expressing each f ∈S in the basis
B in q O(Ds) time.

Proof. As argued above, any desired f ∈L(`M ′) has the property that8( f (A′))=
0, so the evaluations of functions in S take at most degree(8)61q D(s−1) 6 q Ds

values. Since evA′ is injective on S, this implies |S|6q Ds . The second part follows
since we can compute the roots of8 in K A′ in time poly(q Ds, log |K A′ |)6 q O(Ds).
Knowing f (A′), we can recover f (in terms of the basis B) by solving a linear
system if we know the evaluations of the functions in the basis B at A′. The next
section discusses a convenient representation for computations in K A′ . �

6C.1. Representation of the residue field K A′ . The following gives a convenient
representation for elements of K A′ which can be used in computations involving
this field.

Lemma 6.9. The elements {1, µ(A), . . . , µ(A)b−1
} form a basis for K A′ over the

field RT /(A)' Fq D . In other words, elements of K A′ can be expressed in a unique
way as

b−1∑
i=0

bi (T )µ(A)i ,

where each bi ∈ RT has degree less than D.

5This is simplicity we gain by restricting the coefficients of Q to also belong to L(`M ′).
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Proof. Since A is inert in E/F , the minimal polynomial h(Z) of µ over F has
the property that h(Z), obtained by reducing the coefficients of h modulo A, is
irreducible over the residue field RT /(A). Thus µ(A) generates K A′ over RT /(A),
and in fact the minimal polynomial of µ(A) with respect to K A equals h(Z). Note
that the coefficients of h, which belong to RT /(A), have a natural representation
as a polynomial in RT of degree less than deg A = D. �

We note that given the representation of the basis B = {φ1, φ2, . . . , φk} in the
form guaranteed by Theorem 5.2, one can trivially compute the evaluations of
φi (A′) in the above form. There is no need to explicitly compute µ(A) ∈ OA/A.
Therefore, the decoding algorithm requires no additional preprocessed informa-
tion beyond a basis for the message space L(`M ′)— the rest can all be computed
efficiently from the basis alone.

6D. Wrap-up. We are now ready to state our final decoding claim.

Theorem 6.10. For any s, 2 6 s 6 m, and ζ > 0, the folded cyclotomic code
C⊆ (Fm

q )
N defined in (5-6) can be list decoded in time (Nm)O(1)(s/ζ )O(s)

+q O(Ds)

from a fraction ρ of errors

ρ = 1− (1+ ζ )
( R0m

m− s+ 1

)1−1/s(
1+

d
2R0r

)
, (6-4)

where R0 = k/n is the rate of the code. The size of the output list is at most q Ds .
The decoding algorithm assumes polynomial amount of preprocessed information
consisting of basis functions {φ1, . . . , φk} for the message space L(`M ′) repre-
sented in the form (5-1). (This is the same representation used for encoding, and it
is succinct by Lemma 5.3.)

Proof. We first note that bound on fraction of errors follows from Theorem 6.4,
and the fact that k = R0n= R0 Nm = R0br . By Lemma 6.1 and its proof, in Step 1
of the algorithm we can find a nonzero polynomial Q (of degree less than q D) such
that for any f ∈L(`M ′) that needs to be output by the list decoder, we must have
Q( f, σA( f ), . . . , σAs−1( f ))= 0. We can evaluate the basis functions φi at P (β)j in
(`qd)O(1) time by Lemma 5.4, and with this information, the running time of this
interpolation step can be bounded by (Nm)O(1)(w+ s)O(s)

= (Nm)O(1)(s/ζ )O(s)

(since w= O(s/ζ )). We can also efficiently compute the evaluations of φi at A′ in
the representation suggested by Lemma 6.9. Therefore, by Lemma 6.8, we can then
find a list of the at most q Ds functions f satisfying Q( f, σA( f ), . . . , σAs−1( f ))= 0
in q O(Ds) time. �

Remark 6.11 (List recovery). A similar claim holds for the more general list recov-
ery problem, where for each position we are given as input a set of up to l elements
of Fm

q , and the goal is to find all codewords which agree with some element of the
input sets for at least a fraction (1−ρ) of positions. In this case, 1−ρ only needs
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to be only a factor l1/s larger than the bound (6-4). By picking s � l, the effect
of l can be made negligible. This feature is very useful in concatenation schemes;
see Section 7A and [Guruswami and Rudra 2008] for further details.

7. Long codes with optimal rate for list decoding

We now describe the parameter choices which lead to capacity-achieving list-
decodable codes, that is, codes of rate R0 that can correct a fraction 1− R0− ε of
errors (for any desired 0< R0 < 1), and whose alphabet size is polylogarithmic in
the block length; the formal statement appears in Theorem 7.1 below. (Recall that
for folded RS codes, the alphabet size is a large polynomial in the block length.)
Using concatenation and expander-based ideas, [Guruswami and Rudra 2008] also
presents capacity-achieving codes over a fixed alphabet size (that depends on the
distance ε to capacity alone). The advantage of our codes is that they inherit strong
list recovery properties similar to the folded RS codes (Remark 6.11). This is very
useful in concatenation schemes, and indeed our codes can be used as outer codes
for an explicit family of binary concatenated codes list-decodable up to the Zyablov
radius, with no brute-force search for the inner code (see Section 7A below).

We now describe our main result on how to obtain the desired codes from the
construction C and Theorem 6.10. The underlying parameter choices to achieve
this require a fair bit of care.

Theorem 7.1 (Main theorem). For every R0, 0< R0< 1, and every constant ε > 0,
the following holds for infinitely many integers q which are powers of two. There
is a code of rate at least R0 over an alphabet of size q with block length

N > 2q�(ε2/ log(1/R0))

that can be list decoded up to a fraction 1− R0 − ε of errors in time bounded by
(N log(1/R0)/ε

2)O(1/(R0ε)
2).

Proof. Suppose R0, 0 < R0 < 1, and ε > 0 are given. Let c = 2b 10
R0ε
c+ 1, and let

φ(c) denote the Euler’s totient function of c.
Let u > 1 be an arbitrary integer; we will get a family of codes by varying u.

The code we construct will be a folded cyclotomic code C defined in (5-6). Let
x = φ(c)u. Note that 2x

≡ 1 (mod c). We first pick q, r, d as follows: r = 2x ,
q = r2, and d = (2x

−1)/c. For this choice, d|r −1 and (q−1)/(r −1)= r +1 is
coprime to d, as required in Lemma 4.1. So we can take M(T )= T d

− γ ∈ Fr [T ]
for γ primitive in Fr as the irreducible polynomial over Fq .

For the above choice, d/r < 1/c6 εR0/20, so that d/2R0r < ε/10. By picking

s =2(ε−1 log(1/R0)), m =2(s/ε), and ζ = ε/20,
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we can ensure that the decoding radius ρ guaranteed in (6-4) by Theorem 6.10 is
at least 1− (1+ ε)R0.

The degree b of the extension E/F , introduced in (4-1), is given by

b = (rd
+ 1)/(r + 1).

The length of the unfolded cyclotomic code C0 (defined in (5-5)) equals n = rb>
rd/2. We need to ensure that the rate of C0, which is equal to the rate of the folded
cyclotomic code C, is at least R0. To this end, we will pick

`=
⌈b

2
+

R0rb
d

⌉
. (7-1)

It is easily checked that for our choice of parameters, ` > b. By Lemma 5.5, the
rate of C0 equals d(`− (b− 1)/2)/rb, which is at least R0 for the above choice
of `.

We next pick the value of D, the degree of the irreducible A, which is the key
quantity governing the list size and decoding complexity. To satisfy the condition
(5-2), we need D>max{`d/b, 3d}. For the ` chosen above, this condition is surely
met if D > 3r . We can thus pick

D =2(r)=2(dc)=2(d/(R0ε)) .

The running time of the list decoding algorithm is dominated by the q O(Ds) term,
and for the above choice of parameters can be bounded by q O(d/(R0ε)

2). The block
length of the code N satisfies

N = n
m
>

rd

2m
=

qd/2

2m
=�

(
ε2qd/2

log(1/R0)

)
.

As a function of N , the decoding complexity is therefore bounded by

(N log(1/R0)/ε
2)O(1/(R0ε)

2).

The alphabet size of the folded cyclotomic code is q= qm , and we can bound the
block length N from below as a function of q as:

N > qd/2

2m
> q�(r/c)

2m
> q�(εR0

√
q)

2m
> 2
√

q (for large enough q compared to 1/R0, 1/ε)

= 2q1/(2m)
> 2q�(ε2/ log(1/R0)))

.

This establishes the claimed lower bound on block length, and completes the proof
of the theorem. �
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7A. Concatenated codes list-decodable up to Zyablov radius. Using the strong
list recovery property of folded RS codes, a polynomial time construction of binary
codes list-decodable up to the Zyablov radius was given in [Guruswami and Rudra
2008, Theorem 5.3]. The construction used folded RS codes as outer codes in
a concatenation scheme, and involved an undesirable brute-force search to find a
binary inner code that achieves list decoding capacity. The time to construct the
code grew faster than N�(1/ε), where ε is the distance of the decoding radius to
the Zyablov radius. This result as well as our result below hold not only for binary
codes but also codes over any fixed alphabet; for sake of clarity, we state results
only for binary codes.

As the folded cyclotomic codes from Theorem 7.1 are much longer than the
alphabet size, by using them as outer codes, it is possible to achieve a similar result
without having to search for an inner code, by using as inner codes all possible
binary linear codes of a certain rate!

Theorem 7.2. Let 0 < R0, r < 1 and ε > 0. Let C be a folded cyclotomic code
guaranteed by Theorem 7.1 with rate at least R0 and a large enough block length
N. Let C∗ be a binary code obtained by concatenating C with all possible binary
linear maps of rate r (each one used a roughly equal number of times). Then C∗ is
a binary linear code of rate at least R0 · r that can be list decoded from a fraction
(1− R0)H−1(1− r)− ε of errors in N (1/ε)O(1)

time.

We briefly discuss the idea behind proving the above claim. As the alphabet size
of folded cyclotomic codes is polylogarithmic in N , each outer codeword symbol
can be expressed using Oε(log log N ) bits. Hence the total number of such inner
codes S will be at most 2Oε((log log N )2)

� N for large enough N . The N outer
codeword positions will be partitioned into S (roughly) equal parts in an arbitrary
way, and each inner code used to encode all the outer codeword symbols in one of
the parts. Most of the inner codes achieve list decoding capacity — if their rate is
r , they can list decode H−1(1− r)− ε fraction of errors with constant sized lists
(of size 2O(1/ε)). This suffices for analyzing the standard algorithm for decoding
concatenated codes (namely, list decode the inner codes to produce a small set of
candidate symbols for each position, and then list recover the outer code based on
these sets). Arguing as in [Guruswami and Rudra 2008, Theorem 5.3], we can thus
prove Theorem 7.2.

Appendix: List of parameters

Since the construction of the cyclotomic function field and the associated error-
correcting code used a large number of parameters, we summarize them below for
easy reference.
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We begin by recalling the parameters concerning the function field construction.

q size of the ground finite field
r size of the subfield Fr ⊂ Fq

F the field Fq(T ) of rational functions
RT the ring of polynomials Fq [T ]
P∞ the place of F that is the unique pole of T
M polynomial T d

− γ ∈ Fr [T ], irreducible over Fq

d degree of the irreducible polynomial M
CM the Carlitz action corresponding to M
3M the M-torsion points in Fac under the action CM

K the cyclotomic function field F(3M)

λ nonzero element of 3M that generates K over F ; K = F(λ)
G the Galois group of K/F , naturally isomorphic to (RT /(M))∗

H the subgroup F∗q · Fr [T ] of G
E the fixed field K H of H
µ primitive element for E/F ; E = F(µ)
b the degree [E : F] of the extension E/F
g the genus of E/F , equals d(b− 1)/2+ 1

The construction of the code C0 from lrefeqbasic-cycl and its folded version C

from lrefeqcode-def used further parameters, listed here:

M ′ the unique place of E lying above M
` maximum pole order at M ′ of message functions; `> b
L(`M ′) Fq -linear space of messages of the codes
n block length of C0, n = br
k dimension of the Fq -linear code C, k = `d − g+ 1
m folding parameter
N block length of folded code C, N = n/m
P (β)j the rational places lying above T−β in E , for β ∈ Fr and 06 j<b
A an irreducible polynomial (place of F) that remains inert in E/F
D the degree of the polynomial A; satisfies Db > `d
σA the Artin automorphism of the extension E/F at A
A′ the unique place of E lying above A
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