Vol. 4, No. 4, 2010

Download this article
Download this article For screen
For printing
Recent Issues

Volume 10
Issue 10, 2053–2310
Issue 9, 1845–2052
Issue 8, 1601–1843
Issue 7, 1373–1600
Issue 6, 1147–1371
Issue 5, 939–1146
Issue 4, 695–938
Issue 3, 451–694
Issue 2, 215–450
Issue 1, 1–214

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Author Index
To Appear
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Cyclotomic function fields, Artin–Frobenius automorphisms, and list error correction with optimal rate

Venkatesan Guruswami

Vol. 4 (2010), No. 4, 433–463

Algebraic error-correcting codes that achieve the optimal trade-off between rate and fraction of errors corrected (in the model of list decoding) were recently constructed by a careful “folding” of the Reed–Solomon code. The “low-degree” nature of this folding operation was crucial to the list decoding algorithm. We show how such folding schemes useful for list decoding arise out of the Artin–Frobenius automorphism at primes in Galois extensions. Using this approach, we construct new folded algebraic-geometric codes for list decoding based on cyclotomic function fields with a cyclic Galois group. Such function fields are obtained by adjoining torsion points of the Carlitz action of an irreducible M Fq[T]. The Reed–Solomon case corresponds to the simplest such extension (corresponding to the case M = T). In the general case, we need to descend to the fixed field of a suitable Galois subgroup in order to ensure the existence of many degree 1 places that can be used for encoding.

Our methods shed new light on algebraic codes and their list decoding, and lead to new codes with optimal trade-off between rate and error correction radius. Quantitatively, these codes provide list decoding (and list recovery/soft decoding) guarantees similar to folded Reed–Solomon codes but with an alphabet size that is only polylogarithmic in the block length. In comparison, for folded RS codes, the alphabet size is a large polynomial in the block length. This has applications to fully explicit (with no brute-force search) binary concatenated codes for list decoding up to the Zyablov radius.

list decoding, algebraic-geometric codes, Galois extensions, Cyclotomic function fields, Reed–Solomon codes, Frobenius automorphisms
Mathematical Subject Classification 2000
Primary: 11R60
Secondary: 14Q05, 11G30, 94B27, 12Y05, 68Q30
Received: 29 June 2009
Revised: 5 January 2010
Accepted: 17 February 2010
Published: 13 June 2010
Venkatesan Guruswami
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
United States