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The main purpose of this paper is to provide explicit computations of the fun-
damental groups of several algebras. For this purpose, given a k-algebra A, we
consider the category of all connected gradings of A by a group G and we study
the relation between gradings and Galois coverings. This theoretical tool gives
information about the fundamental group of A, which allows its computation
using complete lists of gradings.

1. Introduction

We provide explicit computations of the intrinsic fundamental groups of some al-
gebras. For this, we study in detail the relation between gradings and Galois cov-
erings of each algebra considered as a k-linear category with one object. Particular
attention is paid to matrix algebras, since the problem of classifying gradings of
these algebras has been extensively treated in the literature [Aljadeff et al. 2010;
Bahturin et al. 2001; Bahturin and Zaicev 2002; Bahturin and Shestakov 2001;
Boboc 2003; Boboc and Dăscălescu 2001; 2006; 2007; Caenepeel et al. 2002;
Chun and Lee 2007; Dăscălescu et al. 1999; Khazal et al. 2003].

We recall that the intrinsic fundamental group of an algebra was defined in
[Cibils et al. 2007] using Galois coverings. We make use of an equivalence between
the category of Galois coverings and its full subcategory with objects obtained from
the smash product construction, which is deeply attached to connected gradings.
We replace algebras by linear categories over a base ring: a category over a ring k
is considered as an algebra with several objects [Mitchell 1972], and a k-algebra A
can be viewed as a k-category with a single object and endomorphism ring equal to
A. Note that in [Green 1983; Green and Marcos 1994], a relation between gradings
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and coverings is established for quivers with relations. In this paper we consider
an intrinsic context, where the categories are not given by a presentation.

When computing the fundamental group of an algebra, one faces the problem of
classifying and organizing its connected gradings. The methods we introduce allow
the computation of the fundamental groups of matrix algebras, triangular matrix
algebras, group algebras and diagonal algebras. We restrict to connected gradings
and prove that the matrix algebras do not admit a universal grading. Indeed, there
exist at least two nonisomorphic Galois coverings or, equivalently, two nonisomor-
phic connected gradings that are simply connected, in the sense that they have no
nontrivial Galois coverings. In particular, this confirms that the fundamental group
of an algebra takes into account the matrix structure; in other words, it is not a
Morita invariant.

In Section 2, we show that the connectedness of gradings is the right notion that
corresponds to the connectedness of the associated smash product. We recall the
concept of Galois covering and observe that the smash product construction gives
examples of Galois coverings. We describe in detail the morphisms between smash
coverings.

In Section 3, we make an explicit comparison between Galois coverings and
smash coverings of a k-category B. More precisely, we provide an equivalence
between the category Gal(B, b0) of Galois coverings of B and its full subcategory
Gal#(B, b0), whose objects are the smash product coverings. We consider the
fundamental group defined in [Cibils et al. 2007] using Galois coverings and show
that we can restrict to smash coverings when computing the fundamental group
π1(B, b0).

In the subsequent sections, we focus on the description of connected gradings
of certain algebras in order to compute their fundamental groups. As a rule, we
wonder about the existence of a universal grading, since when such a grading exists,
the grading group is isomorphic to the fundamental group of the algebra.

In Section 4, we consider matrix algebras, proving that there is no universal
covering by providing two nonisomorphic simply connected gradings. Despite
the fact that they appear to be very different in nature, we show that they have a
unique largest common nontrivial quotient. Using the classification of gradings of
M2(k) given in [Khazal et al. 2003] and of M3(k) given in [Boboc and Dăscălescu
2007], we compute the fundamental groups of these algebras in the cases where the
field is algebraically closed of characteristic different from 2 and 3, respectively.
Using analogous methods and the classification in [Bahturin and Zaicev 2002], we
compute the fundamental group of Mp(k), where p is prime and k an algebraically
closed field of characteristic zero, which is the direct product of the free group on
p− 1 generators with the cyclic group of order p. We compute the fundamental
group of triangular matrix algebras, using results in [Valenti and Zaicev 2007],
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without any hypothesis on the characteristic of the field k. The fundamental group
in this case is the free group on n− 1 generators.

In Section 5, we first prove that the natural grading of a group algebra is simply
connected. Next we consider in detail the group algebra of the cyclic group of
order p, where p is a prime, in the case of a field of characteristic p. This algebra
is isomorphic to the truncated polynomial algebra k[x]/(x p), and we show that it
does not admit a universal grading. Nevertheless, we provide a complete descrip-
tion of its connected gradings, and we conclude that the fundamental group of the
truncated polynomial algebra in characteristic p is the product of the infinite cyclic
group and the cyclic group of order p.

Finally, in Section 6 we consider the group algebra kG, for G an abelian group
of order n and k a field with enough n-th roots of unity or, equivalently, the algebra
k E of all maps from E to k, where E is a set with n elements. In the case where
n is not square-free, we show that kn has no universal covering. A special case
occurs when n = 2 and k is a field of characteristic different from 2: there exists a
universal covering. More precisely, we prove that there is only one nontrivial group
providing a connected grading of the set algebra k2, namely the cyclic group of
order 2, which in turn is the fundamental group of this algebra.

We end the paper by computing the fundamental group of the set algebras k3

and k4, using a description of all the gradings of k E given in [Dăscălescu 2008]. In
the case where k is a field containing all roots of unity of order 2 and 3, we prove
that π1(k3) = C2×C3, while if k contains all roots of unity of order 3 and 4, we
obtain

π1(k4)= (C2 ∗C2)×C6×C4×C2.

A detailed study of Dăscălescu’s classification and the relations among the grading
groups, together with the techniques presented in this paragraph, should lead to the
computation of the fundamental group for arbitrary diagonal algebras.

2. Gradings and coverings

Let k be a commutative ring and let B be a small category such that each morphism
set yBx from an object x to an object y is endowed with a k-module structure such
that composition of morphisms is k-bilinear. Such a category is called a k-category;
note that each endomorphism k-module x Bx is a k-algebra and yBx is a yBy-x Bx -
bimodule. Each k-algebra A provides in this way a single object k-category.

In [Cibils and Marcos 2006; Green 1983] it was shown that connected group
gradings and Galois coverings are in one-to-one correspondence. We recall the
definition of these categories and, even if they are not equivalent, we make precise
the relation between them.



628 Claude Cibils, María Julia Redondo and Andrea Solotar

Definition 2.1. A grading X of a k-category B by a group 0 is given by a direct
sum decomposition of each k-module of morphisms

yBx =
⊕
s∈0

X s(yBx),

such that X t(zBy)X s(yBx) ⊂ X ts(zBx). The homogeneous component of degree
s from x to y is the k-module X s(yBx).

Next we consider connected gradings, in order to establish the correspondence
with Galois coverings. We use the following notation: given a morphism f , its
source object is denoted by s( f ) and its target object by t ( f ).

We will also make use of walks. For this purpose we consider the set of formal
pairs ( f, ε) as morphisms with sign, where f is a morphism in B and ε ∈ {−1, 1}.
We extend source and target maps to this set:

s( f, 1)= s( f ), s( f,−1)= t ( f ), t ( f, 1)= t ( f ), t ( f,−1)= s( f ).

Definition 2.2. Let B be a k-category. A nonzero walk in B is a sequence of
nonzero morphisms with signs ( fn, εn) . . . ( f1, ε1) such that

s( fi+1, εi+1)= t ( fi , εi ).

We say that this walk goes from s( f1, ε1) to t ( fn, εn).

A nonzero walk α = ( fn, εn) . . . ( f1, ε1) is called homogeneous if each fi is a
homogeneous morphism in the graded category B. We shall denote by deg f the
degree of a homogeneous morphism f . We define the degree of a homogeneous
nonzero walk α:

degα = (deg fn)
εn . . . (deg f1)

ε1 .

As expected, a k-category B is called connected if any two objects of B can be
joined by a nonzero walk. Moreover, a 0-grading of B is connected if given any
two objects in B and any element g ∈0, they can be joined by a nonzero homoge-
neous walk of degree g. Of course, if a grading of a k-category is connected, then
the underlying category is connected. Conversely, the following easy result holds.

Lemma 2.3. Let B be a connected k-category equipped with a 0-grading and let
x0 be an object of B. Assume there exist homogeneous walks of any degree from
x0 to itself. Then the grading is connected.

The definition of a connected grading restricts to algebras as follows. First recall
that the support of a grading X of a k-algebra A by a group 0 is

Supp X = {s ∈ 0 | X s A 6= 0}.
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If the category has only one object, the following result describes the notion of
a connected grading of an algebra. Note that [Dăscălescu 2008] gives the name
faithful to this kind of grading.

Proposition 2.4. Let A be a k-algebra and X be a 0-grading of A. The grading is
connected if and only if Supp X is a set of generators of 0.

Proof. Consider the k-category BA with a single object ∗ such that ∗(BA)∗ = A.
Assume that the grading is connected. Then for any element g of 0, there is a
homogeneous nonzero walk α = ( fn, εn) . . . ( f1, ε1) such that degα = g, which
precisely means that Supp X generates 0. Conversely, let g ∈ 0. Since Supp X
generates 0, we have that g = gεn

n . . . gε1
1 where gi ∈ Supp X and εi = ±1. Let

an, . . . , a1 be nonzero homogeneous elements of A such that deg ai = gi . Then
(an, εn) . . . (a1, ε1) is a nonzero closed homogeneous walk from ∗ to itself, of de-
gree g. �

Remark 2.5. Clearly each 0-grading of an algebra provides a unique connected
grading by restricting 0 to the subgroup generated by the support.

We recall now the smash product category associated to a grading, as defined
in [Cibils and Marcos 2006]. This construction is compatible with the one in the
algebra case, in the sense that for a finite group 0 and a 0-graded algebra A, we
recover the smash product A#0 given in that reference.

Definition 2.6. Let X be a 0-grading of the k-category B. The objects of the smash
product category B#0 are B0×0, while the module of morphisms from (b, g) to
(c, h) is Xh−1g

cBb. In other words, morphisms are provided by homogeneous
components, and composition in B#0 is given by the original composition in B.
The composition of morphisms is well-defined, as an immediate consequence of
the definition of a graded category.

Remark 2.7. Consider this definition for a single object k-category BA associated
to a k-algebra A, and write A#0 = BA#0. Then the set of objects of A#0 is 0,
while the morphisms from g to h are the homogeneous elements of degree h−1g.
If 0 is finite, the matrix algebra obtained as the direct sum of all the morphisms of
this category is precisely the smash product algebra of [Cibils and Marcos 2006].

Proposition 2.8. B#0 is a connected category if and only if the 0-grading of B is
connected.

Proof. Note first that there is a canonical functor F : B#0→ B given on objects
by F(b, g) = b, while, on morphisms, F is the inclusion map of homogeneous
components. Assume that B#0 is connected and let b and c be objects of B and g
in 0. Consider the objects (b, 10) and (c, g) in B#0. Let α = ( fn, εn) . . . ( f1, ε1)

be a nonzero walk from (b, 10) to (c, g). Each fi is a homogeneous morphism in
B, by definition of B#0.



630 Claude Cibils, María Julia Redondo and Andrea Solotar

Note also that the target in B#0 of ( f1, ε1) is (t ( f1, ε1), (deg f1)
−ε1). Moreover,

the target in B#0 of ( f2, ε2) is (t ( f2, ε2), (deg f1)
−ε1(deg f2)

−ε2). Thus we get

g = (deg f1)
−ε1(deg f2)

−ε2 . . . (deg fn)
−εn ,

so α is a homogeneous nonzero walk from b to c of degree g.
Conversely, assume that the 0-grading of B is connected. Let (b, g) and (c, h)

be objects of B#0, and consider α = ( fn, εn) . . . ( f1, ε1) a homogeneous nonzero
walk in B from b to c of degree h−1g. Then α provides a nonzero walk from (b, g)
to (c, h). �

Coverings of k-categories were introduced in [Bongartz and Gabriel 1982] in
order to study representation theory. We recall the definition given in [Cibils et al.
2007]. First we define the star Stb0B at an object b0 of a k-category B as the
direct sum of all k-modules of morphisms with source or target b0. A k-functor
F : C→B induces a k-linear map F : Stx C→ StFx B for any object x of C.

Definition 2.9. Let C and B be k-categories. A k-functor F :C→B is a covering
if it is surjective on objects and if F induces k-isomorphisms between the corre-
sponding stars. More precisely, for each b0 ∈B0 and each x in the nonempty fiber
F−1(b0), the map

F x
b0
: Stx C→ Stb0B

provided by F is a k-isomorphism.

A morphism from a covering F : C→ B to a covering G : D→ B is a pair
of k-linear functors (H, J ), where H : C→ D, J : B→ B are such that J is an
isomorphism, J is the identity on objects, and GH = JF .

We consider, within the group of automorphisms of a covering F : C→B, the
subgroup Aut1 F of invertible endofunctors G of C such that FG = F .

Let b ∈B and let F−1(b) be the corresponding fiber. This fiber is nonempty by
definition, and Aut1 F acts freely on it [Le Meur 2007; Cibils et al. 2007].

Definition 2.10. A covering F : C→ B of k-categories is a Galois covering if C

is connected and if Aut1 F acts transitively on some fiber.

Remark 2.11. One can prove that for a Galois covering F , the group Aut1 F acts
transitively on any fiber [Le Meur 2007; Cibils et al. 2007].

As an example of Galois coverings, we have those coming from the smash prod-
uct construction: if X is a 0-grading of the k-category B, the functor B#0→B,
given by (b, g) 7→ b and the inclusion on morphisms, is a Galois covering with 0
as group of automorphisms.

It is useful to observe that the evident action of 0 on the smash product category
B#0 is given as follows. The action on objects is given by the left action of 0 on
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itself. It is a free action. Observe that for any u ∈ 0, a morphism from (b, g) to
(c, h) is also a morphism from (b, ug) to (c, uh) since h−1g = (uh)−1ug.

We now consider Galois coverings together with a fixed object as follows. Given
a k-category B and a fixed object b0 of B, the objects of the category Gal(B, b0)

are Galois coverings F : C → B. Morphisms are Galois covering morphisms
(H, J ) : F1→ F2, where H : C1→ C2 and J : B→ B is an isomorphism that is
the identity on objects.

We proved in [Cibils et al. 2007] that a morphism (H, J ) induces a unique group
epimorphism λH :Aut1 F1→Aut1 F2 verifying H f =λH ( f )H , for all f ∈Aut1 F1.

The following proposition describes morphisms of smash coverings in terms of
the corresponding λ.

Proposition 2.12. Let b0 ∈ B, and let F1 : B#G1 → B and F2 : B#G2 → B be
Galois coverings associated to connected gradings X1 and X2 of B with groups
G1 and G2. Given a morphism of coverings (H, J ) : F1 → F2 in Gal(B, b0),
there exists a map h : G1 → G2 such that H(b0, g) = (b0, h(g)) for all g ∈ G1.
Moreover, h is a G1-morphism and h(g) = λH (g)h(1), where λH : G1 → G2 is
the group morphism associated to H.

Proof. It is clear that H(b0, g)= (b0, g′) for some g′ ∈G2, since b0= JF(b0, g)=
FH(b0, g). We write h(g)= g′.

We have thus obtained that given b0 ∈B, the morphism H induces a map

h : F−1
1 (b0)→ F−1

2 (b0).

Moreover, F−1
i (b0) is a Gi -set (i = 1, 2), by identifying Gi with Aut1 Fi , and

λH makes F−1
2 (b0) a G1-set; more precisely, if f ∈ G1 and y ∈ F−1

2 (b0), then
f · y = λH ( f ) · y. We assert that h is a morphism of G1-sets. For this purpose,
take x ∈ F−1

1 (b0) and f ∈ G1; then

(b0, h( f · x))= H(b0, f · x)= H f (b0, x)

= λH ( f )H(b0, x)= λH ( f )(b0, h(x))= (b0, λH ( f )h(x)).

Finally, h(g)= h(g · 1)= λH (g)h(1). �

3. The fundamental group

In [Cibils et al. 2007], we defined the fundamental group of a connected k-category
using Galois coverings. Our purpose is to relate this fundamental group to con-
nected gradings. Let us recall the definition given in [Cibils et al. 2007]. Consid-
ering the fiber functor

8 : Gal(B, b0)→ Sets

given by 8(F)= F−1(b0), we have defined π1(B, b0)= Aut8.
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To study the fundamental group we introduce the full subcategory Gal#(B, b0)

of Gal(B, b0)whose objects are the smash product Galois coverings F :B#0→B.

Theorem 3.1. The categories Gal#(B, b0) and Gal(B, b0) are equivalent.

Proof. It is immediate from [Cibils and Marcos 2006], since any Galois covering
F : C→ B is isomorphic to the Galois covering B#Aut1 F → B. Note that the
grading of B by Aut1 F is not canonical; it depends on a choice of an object in
each fiber. �

The next proposition shows that we can restrict to the subcategory Gal#(B, b0)

of Gal(B, b0) when considering the fundamental group π1(B, b0).

Proposition 3.2. Let F : C→ D be an equivalence of categories, 8C : C→ Sets,
8D : D → Sets such that 8D F = 8C. Then there exists an isomorphism F∗ :
Aut8D→ Aut8C.

Proof. Recall that an element τ ∈ Aut8D is an invertible natural transformation,
that is, a family of invertible set maps τd : 8D(d)→ 8D(d) for every object d in
D, which are compatible with morphisms in D. Since F is a functor, it is clear that
F∗(τ ) defined by F∗(τ )c = τF(c) is an element in Aut8C.

Let τ ∈Aut8D be such that F∗(τ )= id. Since F is dense, for any object d in D

there exists c in C with an isomorphism α : d→ F(c); the naturality of τ induces
the commutative diagram

8D(d)

8D(α)

��

τd // 8D(d)

8D(α)

��
8D(F(c))

τF(c) // 8D(F(c)).

Since τF(c) = id for all c ∈ C, this implies that τd = id, and hence τ = id.
In order to prove that F∗ is surjective, let σ ∈ Aut8C and consider σ̂ defined

in the following way. For any object d in D, we choose c and an isomorphism
α : d→ F(c); in the case where d = F(c), we choose α = id. Now we define σ̂d

such that the following diagram is commutative:

8D(d)

8D(α)

��

σ̂d // 8D(d)

8D(α)

��
8C(c)=8D(F(c))

σc // 8D(F(c))=8C(c).

Since F is full, we have that σ̂ is a natural transformation and F∗(σ̂ )= σ . �

Corollary 3.3. Let 8#
: Gal#(B, b0)→ Sets be the functor given by

8(F :B#G→B)= F−1(b0)= G.
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Then π1(B, b0)∼= Aut8#.

Corollary 3.4. If B only admits the trivial connected grading, then π1(B, b0)= 1.

An advantage of considering Gal#(B, b0) instead of Gal(B, b0) is explained by
the following proposition, which describes the automorphisms of the fiber functor.

Proposition 3.5. Let σ ∈ Aut8#, and let G be a group grading the category B in
a connected way. The map σG : G→ G is given by σG(x) = xg, where g ∈ G is
uniquely determined.

Proof. Consider a covering F :B#G→B. Each g ∈ G induces an automorphism
of the covering F , which is the identity on B and the left action of G on itself. We
shall denote it by lg. Given σ ∈ Aut8#, we get a map σG : G→ G. It must make
the diagram

G
σG //

l̃g
��

G

l̃g
��

G
σG // G

commutative, where l̃g is induced by lg. So, for all x ∈ G, we get σG(g0x) =
g0σG(x). Taking x = 1 we obtain σG(g0) = g0σG(1). Note that g0 is an arbitrary
element of G. �

4. The fundamental group of matrix and triangular algebras

Let k be a field containing a primitive n-th root of unity q , and let Mn(k) be the
k-algebra of n× n matrices. The problem of classifying all the gradings of Mn(k)
is not solved. Lists of gradings have been described by several authors [Aljadeff
et al. 2010; Bahturin et al. 2001; Bahturin and Zaicev 2002; Boboc 2003; Boboc
and Dăscălescu 2001; 2006; Caenepeel et al. 2002; Dăscălescu et al. 1999], and
the complete lists for n = 2 and n = 3 are obtained in [Khazal et al. 2003; Boboc
and Dăscălescu 2007].

We consider connected gradings of the algebra Mn(k). In the case of a noncon-
nected grading, we shall restrict to the subgroup generated by the support, in order
to study the unique associated connected grading.

We briefly recall the definition of the universal covering of a k-category.

Definition 4.1. A universal covering U :U→B is an object in Gal(B) such that for
any Galois covering F :C→B, and for any u0 ∈U0, c0 ∈C0 with U (u0)= F(c0),
there exists a unique morphism (H, 1) from U to F verifying H(u0)= c0.

Theorem 4.2 [Cibils et al. 2007, Theorem 4.6]. Suppose that a connected k-
category B admits a universal covering U. Then

π1(B, b0)' Aut1U.
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Definition 4.3. A connected k-category is simply connected if its only connected
grading is the trivial grading. A connected grading is simply connected if the cor-
responding Galois covering is simply connected.

We will prove that there is no universal cover for Mn(k). Indeed there exist at
least two nonisomorphic connected gradings of Mn(k) that provide simply con-
nected Galois coverings. Recall that a covering is simply connected if it admits no
proper Galois covering.

Proposition 4.4 [Bahturin et al. 2001; Chun and Lee 2007]. There exists a con-
nected Cn ×Cn-grading of Mn(k).

Proof. The algebra Mn(k) has a well-known presentation

Mn(k)= k{x, y}/〈xn
= 1, yn

= 1, yx = qxy〉,

where

x =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0

 , y =


q 0 0 · · · 0
0 q2 0 · · · 0
0 0 q3

· · · 0
...

. . .
...

0 0 0 · · · qn

 ,
with q a primitive n-th root of unity. We provide a connected grading of k{x, y}
by assigning degree (t, 1) to x and degree (1, t) to y, where t is a generator of Cn .
The group is abelian and the order of the generators is n, and hence the ideal of
relations is homogeneous. Since the support coincides with Cn ×Cn , the grading
is connected. �

Proposition 4.5. Let C be a k-category with a finite set of objects and one-dimen-
sional vector spaces of morphisms between any pair of objects b and c, denoted by
cCb = k c fb, verifying

(d fc)(c fb)= qd,c,b (d fb)

for any triple of objects of C, where qd,c,b ∈ k∗ are the structure constants. Then C

is simply connected.

Proof. Let G be a group providing a grading of the category C. As noted above,
we consider connected gradings. Since all the k-vector spaces of morphisms are
one-dimensional, they are homogeneous. Let csb be the degree of cCb. Note that
for each object b we have bCb = k; hence bsb = 1 and bsc = cs−1

b . We assert that
any nonzero homogeneous closed walk has degree 1. Indeed, since composition of
nonzero morphisms is nonzero in C, and since bsc= cs−1

b , a nonzero homogeneous
closed walk at b can be replaced by a nonzero endomorphism of b with the same
degree. Since endomorphisms of b have degree 1, the assertion is proved. Recall
that a grading is connected if for any pair of objects, any group element appears
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as the degree of a nonzero homogeneous walk between them. Since the grading is
connected, the group is trivial. �

Corollary 4.6. Let C be a category as above. Then π1(C)= 1.

Let j Ei be the matrix whose entries are zero, except the ( j, i) entry, which equals
1. We recall that a good grading of a matrix algebra is a grading where the ele-
mentary matrices j Ei , also called matrix units, are homogeneous; see for instance
[Dăscălescu et al. 1999]. Note that the k-category Mn(k) associated to a matrix
algebra with respect to the idempotent elementary matrices i Ei is precisely a cat-
egory as in the proposition above, where all the structure constants equal 1.

Clearly good gradings of Mn(k) and gradings of the k-category Mn(k) coincide.

Corollary 4.7. Let G be a group providing a good grading of a matrix algebra,
and assume that the corresponding grading of the k-category Mn(k) is connected.
Then G is trivial.

Remark 4.8. A good grading by a nontrivial group G of a matrix algebra Mn(k)
can be connected when Mn(k) is viewed as a category with a single object. This
means that the support of the grading generates G. Corollary 4.7 makes precise
that the corresponding grading of the k-category Mn(k) will not be connected.

Theorem 4.9. The connected grading of the matrix algebra Mn(k) by the group
Cn ×Cn of Proposition 4.4 is simply connected.

Proof. We will prove that the Galois covering C = Mn(k)#(Cn × Cn) is simply
connected. The category C = Mn(k)#(Cn × Cn) has set of objects Cn × Cn =

{ai b j
| 0≤ i, j ≤ n− 1} and

asbl Cai b j = Xai−sb j−l
Mn(k)= k(x i−s y j−l).

Hence the k-vector spaces of morphisms are one-dimensional with basis elements

(s,l) f(i, j) = x i−s y j−l

and
(u,v) f(s,l)(s,l) f(i, j) = x s−u yl−vx i−s y j−l

= ql+i−v−s
(u,v) f(i, j).

Finally, Proposition 4.5 asserts that such categories are simply connected. �

Each time a universal covering exists, the fundamental group is isomorphic to its
Galois group. Clearly, if there exist at least two nonisomorphic simply connected
coverings, there is no universal covering.

We will now show that this is the case for Mn(k), that is, there exists at least
another simply connected grading of Mn(k). For this purpose we first provide
another presentation of the matrix algebra as a quotient of a path algebra.
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Proposition 4.10. Let Q be the quiver with n vertices labelled 1, . . . , n, and ar-
rows xi from i to i+1 as well as reverse arrows yi from i+1 to i for 1≤ i < n. We
denote by e1, . . . , en the idempotents of the path algebra k Q corresponding to the
vertices. Let I be the two-sided ideal of k Q generated by yi xi − ei and xi yi − ei+1

for 1≤ i < n. Then k Q/I is isomorphic to Mn(k).

Proof. Consider the morphism of algebras ϕ : k Q→ Mn(k) given by ϕ(ei )= i Ei ,
ϕ(xi )= i+1 Ei and ϕ(yi )= i Ei+1, which is well-defined by the universal property of
path algebras, which are in fact tensor algebras over the semisimple commutative
algebra given by the length zero paths. This map is surjective, since the matrices
j Ei are clearly images of paths of Q. Also I ⊂ Kerϕ and dimk k Q/I ≤ n2. �

Let Fn−1 be the free group on n−1 generators s1, . . . , sn−1. First we introduce an
Fn−1 grading of k Q as follows: for 1≤ i ≤ n, let deg ei = 1, while for 1≤ i ≤ n−1
we set deg xi = si and deg yi = (si )

−1. The path algebra is a free algebra on
the set of arrows with respect to the semisimple subalgebra of vertices, so this
provides a well-defined grading of k Q. More precisely, the degree of any path
is the corresponding product of the degrees of the arrows. Since the ideal I is
homogeneous with respect to this grading, we obtain a grading of k Q/I , and hence
of Mn(k). Note that this grading, considered as a grading of the algebra Mn(k), that
is, as a grading of the single object category with endomorphism algebra Mn(k),
is connected, since the generators of the free group are in the support.

Proposition 4.11. The Fn−1-grading of Mn(k) just described is simply connected.

Proof. The set of objects of Mn(k)#Fn−1 is Fn−1. For j> i , let j si = s j−1 . . . si+1si .
There is a one-dimensional vector space of morphisms from a wordw in Fn−1 con-
sidered as an object of Mn(k)#Fn−1 to each object j siw with basis vector denoted
by j Ei

w. Similarly, for j < i there is a one-dimensional vector space of morphisms
from w to j s−1

i w, with basis j Ei
w. From w to w, the n-dimensional vector space

of morphisms has basis {1 E1
w, . . . , n En

w
}. Note that the endomorphism algebra of

each object is the n-dimensional diagonal algebra k(1E1
w)× · · ·× k(n En

w). Con-
sider now a grading of this category by a group G. Since the spaces of morphisms
between different objects are one-dimensional, they are homogeneous. This fact
implies that for each object w, the subvector space k (i Ei

w) is homogeneous, since

i E j
( jsiw)

j Ei
w
= i Ei

w.

Observe that an idempotent homogeneous element necessarily has degree 1, so
each endomorphism algebra has trivial grading (all elements have degree 1). As a
consequence,

deg
(

i E j
( jsiw)

)
=
(
deg j Ewi

)−1
.
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Moreover, for j > i ,

deg( j Ei
w)= deg

(
j E j−1

( j−1siw)
)
· · · deg(i+2 Ei+1

siw) deg(i+1 Ei
w).

For j < i , the statement is analogous considering the inverses of the degrees above.
This complete description of any possible grading of the smash category shows that
any closed homogeneous nonzero walk has degree 1. Consequently the grading is
connected only if the group is trivial. �

The complete list of good gradings of a matrix algebra is obtained in [Caenepeel
et al. 2002]. In order to compute the fundamental groups of matrix algebras, we
make this classification explicit using Proposition 4.10.

Theorem 4.12. There is a one-to-one correspondence between good connected G-
gradings of Mn(k) and maps {1, . . . , n−1}→G such that the image generates G.

Proof. Let m be a map from {1, . . . , n − 1} to G. We obtain a grading of the
algebra k Q defined in Proposition 4.10 as before, namely deg(i+1 Ei ) = m(i) and
deg(i Ei+1) = m(i)−1. The ideal of relations of Proposition 4.10 is homogeneous
and we obtain a good grading of Mn(k). If the image of m generates G, then the
grading is connected. Conversely, consider a good connected grading of Mn(k) by a
group G. The image of the map m : {1, . . . , n−1}→G given by m(i)=deg(i+1 Ei )

generates G. �

Note that relaxing the connectedness requirement for good gradings is equivalent
to removing the condition that the image of each map m generates G. In [Caenepeel
et al. 2002], the algebra Mn(k) is viewed as the endomorphism algebra of a vector
space V, and good gradings are obtained from a grading of V, considering graded
endomorphisms as homogeneous components.

Definition 4.13. The quotient of a G-grading X of a category B by a normal
subgroup N of G is a G/N -grading X/N of B, where the homogeneous component
of degree α is

(X/N )αcBb =
⊕
g∈α

X g
cBb.

Observe that if X is connected then X/N is also connected.
The corresponding functor between the smash product coverings is precisely the

canonical projection obtained through the quotient of B#G→B by N .

Proposition 4.14. Any good connected G-grading of Mn(k) is a quotient of the
Fn−1-grading considered before.

Proof. Let m0 : {1, . . . , n− 1} → Fn−1 be the map corresponding to this grading,
given by m0(i)= si , and let m : {1, . . . , n− 1}→ G be another map such that the
image of m generates G. Then the group homomorphism given by si 7→ m(i) is a
surjective group morphism. �
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We recall that a simply connected grading is a grading that is maximal in the
sense that it is not isomorphic to a proper quotient of a connected grading.

Proposition 4.15. Let k be a field containing a primitive n-th root of unity. The
grading by Cn×Cn of Proposition 4.4 and the grading by the free group of Propo-
sition 4.11 have a unique maximal common quotient Cn-grading.

Proof. We denote by X the grading by Cn × Cn and we observe that the vector
space X1 of homogeneous elements of trivial degree is one-dimensional. Let Y be
the grading by Fn−1: observe that Y 1 is the n-dimensional subalgebra of diagonal
matrices. Assume that Z is a common quotient of X and Y , and let N be the
normal subgroup of Cn × Cn that provides Z as a quotient of X . Since Z is a
quotient of Y , clearly Z1 contains at least Y 1, the diagonal matrices. Observe that
the elementary diagonal matrices are homogeneous for X , and consequently their
degrees must be elements of N in order to become trivial. The set of degrees of the
diagonal matrices for X is precisely 1×Cn . Hence 1×Cn is the smallest subgroup
of Cn × Cn that has a chance to meet a quotient of Y ; let N = 1× Cn . In fact
we assert that X/N is already a good grading; in other words, elementary matrices
are homogeneous. Indeed, consider the n-dimensional subvector space E of Mn(k)
with basis {2 E1, 3 E2, . . . , n En−1, 1 En}. Recall that x is the circulant matrix, which
is the sum of all the previous basis vectors of E , while y is the diagonal matrix made
with powers of the primitive root of unity q. Then the set {x, xy, xy2, . . . , xyn−1

}

is clearly contained in E . Also the elements xyi , for 0≤ i ≤n−1, are homogeneous
for the grading X , of different degrees (t, t i ) where t is the generator of Cn . Hence
they are linearly independent and they form a basis of E . Finally we observe that
for X/N , all these elements have the same degree (t, 1), and hence E is contained
in the set of homogeneous elements of degree (t, 1) of X/N .

Consequently, each elementary matrix is homogeneous for X/N . Considering
Y , we obtain X/N as the quotient Y/M , where M is the smallest normal subgroup
of Fn−1 such that in Fn−1/M all the generators of Fn−1 are equal, and this element
is of order n. �

Theorem 4.16. Let k be an algebraically closed field.

(1) If char(k) 6= 2, then π1 M2(k)' Z×C2.

(2) If char(k) 6= 3, then π1 M3(k)' F2×C3.

Proof. Under these assumptions, the classifications of [Khazal et al. 2003; Boboc
and Dăscălescu 2001] show that all gradings are good gradings or quotients of the
one given by Proposition 4.4. The latter and the grading by the free group have a
common quotient described in Proposition 4.15. Recall that we have proved that
all good gradings of Mn(k) are quotients of the Fn−1-grading. We now prove the
first assertion. We construct two inverse group morphisms between π1 M2(k) and
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F1 × C2. Let σ ∈ Aut8#, where 8#
: Gal#(M2(k))→ Sets is the fiber functor.

Consider the good F1-grading of M2(k). By Proposition 3.5, the map σF1 verifies
σF1(x) = xg for some uniquely determined g ∈ F1. Analogously, the C2 × C2-
grading provides σC2×C2 and an element (ta, tb), where C2=〈t〉. The compatibility
condition obtained when considering the maximal common quotient C2 says that
ta equals the class of g in C2. We associate the pair (g, tb) to σ .

Conversely, given (g, tb)∈ F1×C2, we will construct σ ∈Aut8# associated to it.
One needs to have maps σG :G→G for each group G providing a connected grad-
ing of M2(k). Using the classification of the gradings given in [Khazal et al. 2003]
and Proposition 4.15, it is sufficient to describe σF1 and σC2×C2 . Fix σF1(x) = xg
and σC2×C2(x)= x(g, tb). Note that these maps satisfy the compatibility condition.
Of course, for the other quotients G of F1 or of C2×C2, the map σG is uniquely
determined thanks to the quotient compatibility conditions.

The proof of the second statement is completely analogous. �

Next we prove a generalization of the preceding theorem for matrices of prime
size. Consider an algebraically closed field k of characteristic zero. The main
result — Theorem 5.1 — of [Bahturin and Zaicev 2002] states that any grading of
Mn(k) by a group G is a tensor product of gradings, in the sense that there exists
a decomposition n = n1n2, a fine grading of Mn1(k) by a subgroup G1 of order
n2

1, and a good G-grading of Mn2(k) such that Mn(k) is isomorphic as a G-graded
algebra to the tensor product algebra Mn1(k)⊗Mn2(k) that is obtained as an induced
grading. The construction of an induced grading resembles a tensor construction,
but is well-defined only in the case where one of the graded algebras involved is a
matrix algebra with a good grading [Bahturin and Zaicev 2002].

Proposition 4.17. Let p be a prime and k be an algebraically closed field of char-
acteristic zero. Let X be a maximal connected grading by a group G of Mp(k).
Then either the group G is isomorphic to C p × C p and the grading is fine as in
Proposition 4.4, or the grading is a good grading given by m : {1, . . . , p−1}→G
such that Im(m) generates G.

Proof. Since p is a prime, [Bahturin and Zaicev 2002, Theorem 5.1] shows that the
grading is either good, or fine with group of order p2. We already know that good
connected gradings are as described in Proposition 4.14. If the grading is fine,
the order p2 of the group is precisely the dimension of the matrix algebra, and
hence Supp X = G. Moreover, for fine gradings of matrix algebras, homogeneous
nonzero elements are invertible by Corollary 2.7 of the same article. Then we assert
that the group is not cyclic: indeed, if G has a generator t of order p2, let x be a
nonzero element of degree p2, and thus invertible. Note that X1 Mp(k)= k. Hence
x p2
∈ k and x p2

6= 0, and we can normalize x by dividing it by a scalar in order to
obtain x ′ ∈ X t Mp(k) such that x ′p

2
= 1. Then Mp(k) would be isomorphic to the
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group algebra of the cyclic group of order p2, which is false since (for instance)
the former is commutative.

Consequently, a fine connected grading of Mp(k) is given by C p × C p. As
before, Supp X = G for dimensional reasons. Let t be a generator of C p and let
x and y be nonzero elements of degree (t, 1) and (1, t) respectively. Again, x
and y are invertible and we normalize them in order to have x p

= y p
= 1. They

do not commute, since otherwise the algebra would be the commutative algebra
k(C p ×C p). In fact, xy and yx are both nonzero and have common degree (t, t).
Hence they differ by a scalar: yx = qxy. Moreover q p

= 1, since x = y px =
q pxy p

= q px . Then q is a primitive root of unity and the grading corresponds to
the grading of Proposition 4.4. �

Theorem 4.18. Let k be an algebraically closed field of characteristic zero, and
let p be a prime. Then

π1 Mp(k)' Fp−1×C p.

The proof is completely analogous to the proof of Theorem 4.16.
We end this section with a computation of the fundamental group of triangular

matrix algebras, based on [Valenti and Zaicev 2007].
A grading of an upper triangular matrix algebra Tn(k) is good if the elementary

matrices j Ei are homogeneous. Clearly any good grading is completely determined
by assigning group elements to subdiagonal elementary matrices i+1 Ei , since the
idempotents i Ei necessarily have trivial degree. In other words, a good grading is
determined as before by a map m : {1, . . . , n−1}→G. The grading is connected if
and only if Im m generates G. As before, any good connected grading is a quotient
of the grading given by the free group Fn−1 on a set {s1, . . . , sn−1} and a map m
such that Im m = {s1, . . . , sn−1}.

Theorem 7 of [Valenti and Zaicev 2007] states that any grading of a triangular
algebra is good, without any hypothesis concerning the field. As an immediate
consequence we obtain:

Theorem 4.19. Let k be a field and let Tn(k) be the algebra of triangular matrices
of size n. Then

π1Tn(k)' Fn−1.

5. The fundamental group of truncated polynomial algebras

In this section we compute the fundamental group of the group algebra of the cyclic
group of order p in characteristic p, that is, we compute the fundamental group of
k[x]/(x p).

Proposition 5.1. Let G be a finite group and let k be any field. The usual G-
grading of the group algebra kG is simply connected.
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Proof. The Galois covering kG#G has G as set of objects and, given s, t ∈ G,

t(kG#G)s = k(t−1s).

The composition is given by the product of G. In other words, all k-vector spaces
of morphisms are one-dimensional and all of the structure constants are 1. By
Proposition 4.5, this category is simply connected. �

Remark 5.2. As a consequence of this proof, we recover the Cohen–Montgomery
duality theorem for coactions [Cohen and Montgomery 1984]: the algebras kG#G
and M|G|(k) are isomorphic. The algebra associated to a finite object category is
obtained as the direct sum of all the vector spaces of morphisms. In particular, if
all the vector spaces of morphisms are one-dimensional, we get the matrix algebra.
Hence the algebra associated to the category kG#G is M|G|(k). On the other hand,
it was proved in [Cibils and Marcos 2006] that the algebra corresponding to the
categorical smash product by a finite group is precisely the usual smash product
algebra.

Next we provide an example of a path k-algebra of a quiver with admissible
relations, which does not admit a universal cover when the field is of characteristic
p. The quiver is a loop, and the relation is given by the p-th power of the loop.
There are at least two simply connected coverings by smash categories. One of
them is not a covering of “quivers with relations” in the sense of [Gabriel 1981].

Proposition 5.3. Let k be a field of characteristic p. The truncated polynomial
algebra k[x]/(x p) does not admit a universal covering.

Proof. First, note that k[x]/(x p) is isomorphic to the k-group algebra of the cyclic
group C p of order p, and hence the preceding proposition provides a simply con-
nected covering with group C p. Note that this covering is the category with p
vertices, where all vector spaces of morphisms are one-dimensional and all the
structure constants are 1.

On the other hand, consider the usual Z-grading of k[x]. Since (x p) is a homoge-
neous ideal — this holds in any characteristic — it induces a grading in k[x]/(x p).
For this grading, [k[x]/(x p)] #Z is the category that has Z as set of objects, one-
dimensional vector spaces of morphisms from i to j if 0 ≤ j − i < p, and 0
otherwise. In other words, the morphisms in the category are generated by mor-
phisms from i to i +1 for each integer i , with relations such that any composition
of p generators is zero. As a consequence of this description, each grading of
[k[x]/(x p)] #Z is freely determined by assigning a degree to the one-dimensional
vector space of morphisms from i to i + 1. Hence, any homogeneous nonzero
closed walk has trivial degree.

Recall that by the definition of a connected grading, any element of the group
should be the degree of a homogeneous walk between objects. Then the unique
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group that grades this smash product category in a connected way is the trivial
one. As a consequence, this covering category is simply connected. Finally note
that the Galois coverings are not isomorphic, since their groups of automorphisms
are not isomorphic. In this way we have constructed two nonisomorphic simply
connected coverings. �

It is well-known and easy to prove that the trivial homogeneous component of
any grading always contains the ground field k.

A grading is called fine if the dimension of each homogeneous component is at
most one; see for instance [Bahturin et al. 2001].

Theorem 5.4. Let k be a field of characteristic p and let A= k[x]/(x p). There are
two types of connected gradings of A, with no common quotient except the trivial
one. The first type corresponds to the group algebra case, and its grading group is
C p. In the second one, the grading group is either Z or any of its quotients.

Proof. Let X be a connected basic grading of A. There are two cases, according
to the existence of an invertible homogeneous element of nontrivial degree. First
we suppose that there exists an invertible homogeneous element a of degree s 6= 1.
We write a = a0+ a+, where a0 ∈ k∗ and a+ ∈ (x), and we normalize a in order
to have a0 = 1. Since the characteristic of k is p, we obtain that a p

= 1 and p
is the order of a. For i < p we infer that ai

6= 0, and thus X si
A 6= 0. Moreover,

X si
A 6= X s j

A for i 6= j , i, j < p. Also 1= a p
∈ X s p

A implies s p
= 1. Since the

grading is connected, by computing dimensions we deduce that the group is cyclic
of order p, and the grading is fine.

As a second case, assume that all homogeneous elements of nontrivial degree
belong to the maximal ideal (x):⊕

s∈G, s 6=1

X s A ⊆ (x).

Consider now the usual valuation ν on A: namely, for f 6= 0 we have that ν( f ) is
the smallest exponent of x appearing in f . Of course ν( f )= 0 if and only if f is
invertible. The valuation ν has the following properties:

• ν( f + g)≥ inf{ν( f ), ν(g)} for f, g, f + g 6= 0.

• ν( f g)= ν( f )+ ν(g) for f, g, f g 6= 0.

Then for f 6= 0 we obtain f = xν( f )u, where u is invertible.
Assume first that there exists a homogeneous g1 ∈ X1 A of valuation 1, that

is, g1 = x + u with u ∈ (x2). Since g p−1
1 = x p−1 and g p−1

1 is homogeneous,
we infer that x p−1 is homogeneous of degree 1. Now, g p−2

1 = x p−2
+ λx p−1, so

x p−2
= g p−2

1 − λx p−1 and thus x p−2 is homogeneous of degree 1. If we continue
with this procedure, we finally get that x is homogeneous of degree 1 and the
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grading is trivial. Finally, assume ν(g1) ≥ 2 for any homogeneous g1 ∈ X1 A. We
claim that there exists a homogeneous f of valuation 1. If not, for any g ∈ (x)
we have ν(g) ≥ 2, by decomposing g as a sum of its homogeneous components
and using the property of a valuation just discussed, which is clearly false since
ν(x) = 1. Now ν( f i ) = i for i < p. Since f i

∈ X si
A, the latter is not zero. For

dimensional reasons, we infer that the support of the grading is {1, s, . . . , s p−1
},

which generates a cyclic group. �

Corollary 5.5. Let k be a field of characteristic p. Then π1(k[x]/(x p))= Z×C p.

6. The fundamental group of diagonal algebras

Let E be a finite set and k a field. The diagonal algebra k E is the vector space
of maps from E to k with pointwise multiplication. Next we consider connected
gradings of diagonal algebras [Dăscălescu 2008; Bichon 2008]. The following
result shows that any abelian group with the cardinality of a given set grades the
diagonal algebra in a connected way, if the field contains enough roots of unity.

Proposition 6.1. Let E be a finite set of order n, and let k be a field with enough
n-th roots of unity. Let G be any abelian group of order n. Then there is a simply
connected G-grading of k E .

Proof. We first sketch the proof of the following well-known result. Let G be any
abelian group of order n, E a set of cardinal n, and k a field containing n different
n-th roots of unity; then the algebras kG and k E are isomorphic. First assume that
G is cyclic. Let t be a generator of G and let µn be the set of n-th roots of unity
in k. Note that under our assumptions p does not divide n in the case where k is a
field of characteristic p > 0. Then the set{

eζ =
1
n

n−1∑
i=0

ζ i t i

}
ζ∈µn

is a complete set of orthogonal idempotents of kG and has n elements. This set
provides a new basis of kG, proving that kG is isomorphic to

⊕
ζ∈µn

keζ , which
in turn is identified with k E through a bijection between E and µn by considering
the Dirac masses in k E .

For an arbitrary abelian group G of order n, note that G is a direct product of
finite cyclic groups. Note also that a group algebra k(G1 × G2) is isomorphic to
kG1 ⊗ kG2, while the algebras k E1×E2 and k E1 ⊗ k E2 are also isomorphic. The
previous case provides the required isomorphism.

Next we prove the statement of the proposition. Consider the algebra k E , an
arbitrary abelian group G of order n, and an algebra isomorphism between kG and
k E as before. The usual G-grading of kG provides a grading of k E by transporting
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the structure through the isomorphism. Consequently any abelian group of order
n provides a simply connected grading of the algebra k E . �

Corollary 6.2. Let n be a nonsquare free positive integer and let k be a field as
above. The algebra kn does not admit a universal covering.

Proof. If n is not square-free, there exist at least two nonisomorphic groups of
order n. Proposition 6.1 provides at least two nonisomorphic simply connected
coverings, so kn does not admit a universal cover. Moreover, each abelian group
G of order n provides a simply connected grading through the isomorphism of kn

with kG. �

The following result is based on the fact that k×k admits precisely one connected
grading. We provide a proof of this, which is also a particular case of Dăscălescu’s
classification [2008] (see also [Bichon 2008]).

Proposition 6.3. Let k be a field of characteristic different from 2. The fundamen-
tal group π1(k× k) is cyclic of order 2.

Proof. Let X be a connected G-grading of k × k for some group G. The trivial
homogeneous component X1(k×k) contains the unit of the algebra. If X1(k×k)=
k × k, then the group is trivial since the support of X is just the trivial element of
G and the grading is connected. Otherwise there is exactly one more nonzero
homogeneous component X s(k × k) that is one-dimensional. Note that s has to
generate G. We prove that s is of order 2. Let (x, y) be a nonzero element of
degree s. Clearly (x, y)2 6= 0, and also (x, y)2 ∈ X s2

(k × k). Since there are
only two homogeneous components, we infer that X s2

(k × k) = X1(k × k) or
X s2
(k × k) = X s(k × k). In the first case s2

= 1, while in the second case s = 1.
Consequently, there are precisely two connected gradings and the fundamental
group is cyclic of order two. �

Lemma 6.4. Let A and B be algebras with connected G A and G B-gradings X and
Y . Then the algebra C = A× B has a natural (G A ∗ G B)-connected grading Z.
As a consequence, all quotients of G A ∗G B grade C connectedly.

Proof. Consider the following subspaces of C :

Z1 C = X1 A× Y 1 B,

Z s C = X s A× 0, if s 6= 1 and s ∈ G A,

Z t C = 0× Y t B, if t 6= 1 and t ∈ G B ,

ZwC = 0, in the remaining cases.

The support of the grading Z is the union of the supports of X and Y . These
supports generate G A and G B respectively, and hence the support of Z generates
G A ∗G B . �
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Example 6.5. Let E5 be a set with five elements. There exists a connected C6-
grading of k E5 .

Indeed, let E2 and E3 be sets with two and three elements respectively. Then
k E5 ∼= k E2×k E3 and we consider the previous fine and connected gradings given by
C2 and C3 of k E2 and k E3 respectively. Lemma 6.4 shows that the product group
C2 ∗C3 grades the product algebra k E5 in a connected way, as well as any of its
quotients, in particular C6.

This example is the basis of the general procedure developed by Dăscălescu in
order to describe all the connected gradings of a diagonal algebra. We rephrase
one of his results.

Lemma 6.6 [Dăscălescu 2008, Lemma 1]. Let kn be a diagonal algebra. Any con-
nected G-grading with one-dimensional trivial homogeneous component is given
by the usual G-grading of kG, where G is any abelian group of order n.

Note that Dăscălescu calls ergodic a grading with one-dimensional trivial ho-
mogeneous component. For n = 2, a nontrivial grading has to be ergodic, and
hence we recover the fact that there is only one nontrivial grading of k × k as in
Proposition 6.3.

Theorem 5 of [Dăscălescu 2008] provides a description of all the gradings of
k E , which is based on ergodic ones. We shall use it in order to compute π1(kn)

for small values of n. In order to state his result, we fist consider the following
specific connected gradings of a diagonal algebra, modeled on Example 6.5.

Roughly speaking, the specific gradings are free product gradings of connected
ergodic ones based on a product algebra decomposition of a diagonal algebra. Note
that connected ergodic gradings of diagonal algebras are classified by Lemma 6.6.

More precisely, let A = k E be a diagonal algebra and let M1, . . . ,Ms be a
partition of E . Let AMi be the algebra A.eMi , where

eMi =

∑
x∈Mi

δx

with δx the Dirac mass at x . It is easy to prove that any direct product decomposi-
tion of k E is obtained in this way. Let Hi be an abelian group of order #(Mi ), and
finally let X i be the corresponding Hi -ergodic grading of AMi . Then by Lemma
6.4, the group H1 ∗· · ·∗Hs provides a connected grading of A= AM1×· · ·× AMs ,
which we call specific.

Theorem 6.7 [Dăscălescu 2008]. Let E be a finite set and let k be a field contain-
ing all roots of unity of order less than or equal to #E. Any connected grading of
k E is a quotient of a specific grading.

Corollary 6.8. Let k be a field containing all roots of unity of order 2 and 3. Then
π1(k3)= C2×C3.
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Group Dimension Dimensions
of the trivial component of other components

{1} 4 0
C2 ∗C2 2 1, 1

C3 2 1, 1
C2 3 1
C4 1 1, 1, 1

C2×C2 1 1, 1, 1

Proof. The two nontrivial partitions of {1, 2, 3} provide connected gradings by C2

and C3. Clearly they do not have nontrivial common quotients. �

Theorem 6.9. Let k be a field containing all roots of unity of order 2, 3 and 4.
Then π1(k4)= (C2 ∗C2)×C4×C2×C2×C3 = (C2 ∗C2)×C6×C4×C2.

Proof. The specific gradings of k4 are given by the partitions of the set {1, 2, 3, 4}
as shown in the table above. An inspection of the possible common quotients,
taking into account the structure of the groups and the dimension of the trivial
homogeneous components, shows that the C2-grading is a quotient of the C2 ∗C2-
grading. Moreover, there is no other nontrivial common quotient. �
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Brian D. Conrad University of Michigan, USA

Hélène Esnault Universität Duisburg-Essen, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada
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