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We introduce a notion of Hecke-monicity for functions on certain moduli spaces
associated to torsors of finite groups over elliptic curves, and show that it implies
strong invariance properties under linear fractional transformations. Specifically,
if a weakly Hecke-monic function has algebraic integer coefficients and a pole
at infinity, then it is either a holomorphic genus-zero function invariant under a
congruence group or of a certain degenerate type. As a special case, we prove the
same conclusion for replicable functions of finite order, which were introduced
by Conway and Norton in the context of monstrous moonshine. As an applica-
tion, we introduce a class of Lie algebras with group actions, and show that the
characters derived from them are weakly Hecke-monic. When the Lie algebras
come from chiral conformal field theory in a certain sense, then the characters
form holomorphic genus-zero functions invariant under a congruence group.
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Introduction

We define a holomorphic genus-zero function to be a holomorphic function f :
H → C on the complex upper half-plane, with finite-order poles at cusps, such
that there exists a discrete group 0f ⊂ SL2(R) for which f is invariant under the
action of 0f by Möbius transformations, inducing a dominant injection H/0f →C.
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A holomorphic genus-zero function f therefore generates the field of meromor-
phic functions on the quotient of H by its invariance group. In this paper, we are
interested primarily in holomorphic congruence genus-zero functions, especially
those f for which 0(N ) ⊂ 0f for some N > 0. These functions are often called
Hauptmoduln.

The theory of holomorphic genus-zero modular functions began with Jacobi’s
work on elliptic and modular functions in the early 1800’s, but did not receive
much attention until the 1970’s, when Conway and Norton found numerical rela-
tionships between the Fourier coefficients of a distinguished class of these functions
and the representation theory of the largest sporadic finite simple group M, called
the monster. Using their own computations together with work of Thompson and
McKay, they formulated the monstrous moonshine conjecture, which asserts the
existence of a graded representation V \

=
⊕

n≥−1 Vn of M such that for each
g ∈M, the graded character Tg(τ ) :=

∑
n≥−1 Tr(g|Vn)qn is a normalized holomor-

phic genus-zero function invariant under some congruence group 00(N ), where the
normalization indicates a q-expansion of the form q−1

+ O(q). More precisely,
they gave a list of holomorphic genus-zero functions fg as candidates for Tg, whose
first several coefficients arise from characters of the monster, and whose invariance
groups 0 fg contain some 00(N ) [Conway and Norton 1979]. By unpublished work
of Koike, the power series expansions of fg satisfy a condition known as complete
replicability, given by a family of recurrence relations, and the relations determine
the full expansion of fg from only the first seven coefficients of fgn for n ranging
over powers of two.

Borcherds [1992] proved this conjecture using a combination of techniques from
the theory of vertex algebras and infinite-dimensional Lie algebras: V \ was con-
structed by Frenkel, Lepowsky, and Meurman [1988] as a vertex operator algebra,
and Borcherds used it to construct the monster Lie algebra, which inherits an action
of the monster. Since the monster Lie algebra is a generalized Kac–Moody algebra
with a homogeneous action of M, it admits twisted denominator formulas, which
relate the coefficients of Tg to characters of powers of g acting on the root spaces.
In particular, each Tg is completely replicable, and Borcherds completed the proof
by checking that the first seven coefficients matched the expected values.

Knowing this theorem and some additional data, one can ask at least two natural
questions:

(1) The explicit checking of coefficients at the end of the proof has been called
a “conceptual gap” in [Cummins and Gannon 1997], and this problem has been
rectified in some sense by replacing that step with noncomputational theorems:

• Borcherds [1992] pointed out that the twisted denominator formulas imply
that the functions Tg are completely replicable.
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• Kozlov [1994] showed that completely replicable functions satisfy lots of
modular equations.

• Cummins and Gannon [1997] showed that power series satisfying enough
modular equations are either holomorphic genus-zero and invariant under
00(N ), or of a particular degenerate type resembling trigonometric functions.

• One can eliminate the degenerate types, either by appealing to a result of
Martin [1996] asserting that completely replicable series that are “J -final” (a
condition that holds for all Tg, since T1 = J ) are invariant under 00(N ) for
some N , or by using a result of Dong, Li, and Mason [2000] that restricts the
form of the q-expansions at other cusps.

Since modular functions live on moduli spaces of structured elliptic curves, one
might ask how these recursion relations and replicability relate to group actions
and moduli of elliptic curves.

(2) One might wonder if similar behavior applies to groups other than the monster.
Conway and Norton [1979] suggested that other sporadic groups may exhibit prop-
erties resembling moonshine, and [Queen 1981] produced strong computational
evidence for this. Norton [Mason 1987, Appendix] organized this data into the
generalized moonshine conjecture, which asserts the existence of a generalized
character Z that associates a holomorphic function on H to each commuting pair
of elements of the monster, satisfying the following conditions:

• Z(g, h, τ ) is invariant under simultaneous conjugation of g and h.

• For any
(a

c
b
d

)
∈SL2(Z), there exists a nonzero constant γ (said to be a twenty-

fourth root of unity in [Norton 2001]) such that

Z(gahc, gbhd , τ )= γZ
(

g, h, aτ+b
cτ+d

)
.

• The coefficients of the q-expansion of Z(g, h, τ ) for fixed g form characters
of a graded representation of a central extension of CM(g).

• Z(g, h, τ ) is either constant or holomorphic congruence genus-zero.

• Z(g, h, τ )= j (τ )−744= q−1
+196884q+21493760q2

+· · · if and only if
g = h = 1.

This conjecture is still open, but if we fix g=1, it reduces to the original moonshine
conjecture. One might hope that techniques similar to those used in [Borcherds
1992] can be applied to attack this conjecture in other cases, and the answer seems
to be affirmative. For example, Höhn [2003] has proved it for the case when g
is an involution in conjugacy class 2A, using a construction of a vertex algebra
with baby monster symmetry, and roughly following the outline of Borcherds’
proof. However, there are obstructions to making this technique work in general,
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since there are many elements of the monster for which we do not know character
tables of centralizers or their central extensions. One might ask whether there
is a reasonably uniform way of generating holomorphic congruence genus-zero
functions from actions of groups on certain Lie algebras.

This paper is an attempt to unify the two questions, and set the stage for a
more detailed study of the infinite-dimensional algebraic structures involved. The
main result is that modular functions (and more generally, singular q-expansions
with algebraic integer coefficients) that are holomorphic on H and satisfy a certain
Hecke-theoretic property are holomorphic congruence genus-zero or degenerate
in a specified way. As a special case, we find that finite-order replicable func-
tions with algebraic integer coefficients, as defined in Section 4, satisfy the same
property. The algebraic integer condition is sufficient for our purposes, since we
intend to use this theorem in the context of representations of finite groups. Since
modular functions with algebraic coefficients that are holomorphic on H and in-
variant under a congruence group have bounded denominators (see [Shimura 1971,
Theorem 3.52] and divide by a suitable power of 1), it is reasonable to conjecture
that all holomorphic congruence genus-zero functions whose poles have integral
residue and constant term have algebraic integer coefficients.

We apply the theory to show that when a group acts on an infinite-dimensional
Lie algebra with a special form, the character functions are holomorphic congru-
ence genus-zero. We call these algebras Fricke compatible because they have the
form we expect from elements g ∈M for which the function Tg is invariant under
a Fricke involution τ 7→ −1/Nτ . Later papers in this series will focus on con-
structing these and other (non-Fricke compatible) Lie algebras, first by generators-
and-relations, and then by applying a version of the no-ghost theorem to abelian
intertwiner algebras. At the time of writing, this strategy does not seem to yield a
complete proof of generalized moonshine, because of some subtleties in computing
eigenvalue multiplicities for certain cyclic groups of composite order acting on
certain irreducible twisted modules of V \. It is possible that some straightforward
method of controlling these multiplicities has escaped our attention, but for the
near future we plan to rest the full result on some precisely stated assumptions.

Most of the general ideas in the proof are not new, but our specific implementa-
tion bears meaningful differences from the existing literature. In fact, Hecke oper-
ators have been related to genus-zero questions since the beginning of moonshine,
under the guise of replicability, and the question of relating replication to holomor-
phic genus-zero modular functions was proposed in the original paper [Conway and
Norton 1979]. However, the idea of using an interpretation via moduli of elliptic
curves with torsors is relatively recent, and arrives from algebraic topology. Equi-
variant Hecke operators, or more generally, isogenies of (formal) groups, can be
used to describe operations on complex-oriented cohomology theories like elliptic
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cohomology, and they were introduced in various forms in [Ando 1995; Baker
1998]. More precise connections to generalized moonshine were established in
[Ganter 2009].

Summary. In Section 1, we introduce Hecke operators, first as operators on mod-
ular functions, and then on general power series. In Section 2, we define Hecke-
monicity and prove elementary properties of Hecke-monic functions. In Section
3, we relate Hecke-monicity to equivariant modular equations. Most of this step
is a minor modification of part of Kozlov’s master’s thesis [1994]. In Section 4,
we prove a holomorphic congruence genus-zero theorem, and our proof borrows
heavily from [Cummins and Gannon 1997]. Most of the arguments require minimal
alteration from the form given in that paper, so in those cases we simply indicate
which changes need to be made. In Section 5, we focus on the special case of
replicable functions, and we show that those with finite order and algebraic integer
coefficients are holomorphic congruence genus-zero or of a specific degenerate
type. In Section 6, we conclude with an application to groups acting on Lie alge-
bras, and show that under certain conditions arising from conformal field theory,
the characters from the action on homology yield holomorphic congruence genus-
zero functions.

1. Equivariant Hecke operators

The aims of this section are to introduce a combinatorial formula for equivariant
Hecke operators for functions that are not necessarily modular, and to prove some
elementary properties. The geometric language of stacks and torsors is only used in
this section, and only to justify the claim that these Hecke operators occur naturally.
It is not strictly necessary for understanding the formula, and the reader may skip
everything in this section except for the statements of the lemmata without missing
substantial constituents of the main theorem.

Let G be a finite group, and let MG
Ell denote the analytic stack of elliptic curves

equipped with G-torsors (also known as the Hom stack Hom(MEll, BG)). Objects
in the fibered category are diagrams

P→ E
e
� S

of complex analytic spaces satisfying:

• P→E is a G-torsor (that is, an analytically locally trivial principal G-bundle).

• E→ S is a smooth proper morphism, whose fibers are genus-one curves.

• e is a section of E→ S.

Morphisms are fibered diagrams satisfying the condition that the torsor maps are
G-equivariant. This is a smooth Deligne–Mumford stack (in the sense of [Behrend
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and Noohi 2006]). For each positive integer n, we consider the degree-n G-Hecke
correspondence, given by the diagram

IG
n

s
⇒

t
MG

Ell

defined as follows: IG
n is the stack of n-isogenies of elliptic curves with G-torsors.

Its objects are diagrams
P2

π

��
E1

f //

��

E2

��

S
e2

FF

e1

XX

of complex analytic spaces, where:

• π is a G-torsor.

• E1→ S and E2→ S are smooth proper morphisms, whose geometric fibers
are genus-one curves.

• e1 and e2 are sections of the corresponding maps.

• f is an n-isogeny, that is, a homomorphism whose kernel is a finite flat T -
group scheme of length n (in particular, f makes the evident triangle diagrams
commute).

As before, morphisms are fibered diagrams satisfying the condition that the torsor
maps are G-equivariant. The two canonical maps s, t : IG

n →MG
Ell are defined by

s(E1, E2, P2, S)= (E1×E2 P2→ E1 � S) and t (E1, E2, P2, S)= (P2→ E2 � S)
for objects, and the evident diagrams are given for morphisms. One can show that
s and t are finite étale morphisms of degree ψ(n) =

∏
p | n(1+ 1/p), essentially

by transferring the arguments of [Katz and Mazur 1985, Proposition 6.5.1] to the
analytic setting.

The Hecke operator nTn is defined as the canonical trace map s∗t∗ on the struc-
ture sheaf of MG

Ell. Over each point, it satisfies the formula

nTn( f )(P
G
→ E)=

∑
0→H→E ′

π
→E→0

|H |=n

f (π∗P
G
→ E ′),

where the sum is over all degree-n isogenies to E . When G is trivial, this is the
usual weight-zero Hecke operator.

We wish to describe these operators in terms of functions on the complex upper
half-plane, and this requires an analytic uniformization of the moduli problem.
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Following the unpublished book [Conrad ≥ 2010] and [Deligne 1971], the upper
half-plane classifies pairs (π, ψ), where π : E→ S is an elliptic curve, and

ψ : R1π∗Z→ Z2

is an isomorphism whose exterior square induces the (negative of the) canon-
ical isomorphism R2π∗Z(1)→ Z. By dualizing, one has a universal diagram
Z2
× H → C × H → H defining a family of elliptic curves E → H equipped

with oriented bases of fiberwise H1. There is an SL2(Z)-action from the left via
Möbius transformations (equivalently, changing the oriented homology basis of
a curve), that induces a surjection onto MEll. When we consider G-torsors over
elliptic curves equipped with homology bases, we find that they are classified up
to isomorphism by their monodromy along the basis, given by a conjugacy class
of a pair of commuting elements in G. Since a pair of commuting elements is a
homomorphism from Z×Z→G, there is also an action of SL2(Z) on commuting
pairs of elements from the right via (g, h)

(a
c

b
d

)
= (gahc, gbhd). We obtain an

identification on the level of points:

MG
Ell
∼= Hom(Z×Z,G)/G ×

SL2(Z)
H,

where the quotient by G arises from the action by conjugation on the target. The
identification can be promoted to an equivalence of analytic stacks by choosing a
uniformizing moduli problem of triples (P→ E→ S, ψ, ẽ : S→ P), where ψ is
as above, and ẽ is a lift of e : S→ E to the G-torsor. It is represented by a disjoint
union of upper half-planes in bijection with Hom(Z×Z,G), and one obtains the
quotient via commuting actions of G (on the set of lifts ẽ) and SL2(Z) (on the set
of ψ).

With this presentation, we can recast the Hecke operators in terms of holomor-
phic functions on the complex upper half-plane H. We can write any f :MG

Ell→C

as f (g, h, τ ), for g and h commuting elements of G, and τ ∈H. Also, f is invari-
ant under simultaneous conjugation on g and h, and satisfies f (gahc, gbhd , τ ) =

f (g, h, (aτ+b)/(cτ+d)). In particular, for fixed g and h, f (g, h, τ ) is a holomor-
phic modular function, invariant under 0(lcm(|g|, |h|)). Following [Ganter 2009],
we map the homology basis to (−1, τ ), so (g, h, τ ) describes an elliptic curve
C/〈−1, τ 〉 equipped with a G-torsor with monodromy (g, h). (Many texts use the
basis (1, τ ) when studying modular functions, mostly because τ then becomes the
ratio of periods, but our convention is what we need for the left SL2(Z) action to
work correctly.) Any degree-n isogeny from an elliptic curve E ′ to C/〈−1, τ 〉 can
be described as the identity map on C, where E ′ is the quotient by a unique index-n
sublattice of 〈−1, τ 〉. Since we are assuming SL2(Z)-equivariance of f , we can
choose any basis, and get the same value from f . We preferentially choose bases
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(−d, aτ + b), where d is the index in Z of the intersection of the sublattice with
Z, and we get

Tn( f )(g, h, τ )= 1
n

∑
ad=n

0≤b<d

f
(

gd , g−bha,
aτ+b

d

)
.

Suppose we wanted to extend the notion of Hecke operator to a larger class
of functions, particularly ones that are not a priori completely independent of the
choice of homology basis of our elliptic curve. One might hope that we could have
a good notion for all functions on Hom(Z×Z,G)/G×H. Unfortunately, there is no
canonical choice of homology basis for E ′ (that is, a basis for the index-n sublattice
of 〈−1, τ 〉), and it is difficult make choices in a systematic way that makes the sum
a canonical quantity, so we do not know of any definition of Hecke operator for
arbitrary functions on Hom(Z×Z,G)/G×H that is particularly natural. However,
there is an intermediate form of equivariance for which we can make a canonical
definition, using the subgroup ±Z := {±

( 1
0

n
1

)
: n ∈ Z} ∼= Z× Z/2Z. Invariance

under this group implies that for a function f on

Hom(Z×Z,G)/G ×
±Z

H, (1)

we have f (g, gh, τ )= f (g, h, τ + 1), so the Fourier expansion of f (g, h, τ ) is a
power series in q1/|g| that converges on the punctured open unit disc parametrized
by q1/|g|, |q| < 1. We will assume the existence of a lower bound on exponents,
that is, that all of our power series are Laurent series.

We can interpret this geometrically. The quotient (1) is a disjoint union of punc-
tured unit discs, and parametrizes G-torsors over elliptic curves that are equipped
with a distinguished primitive element of H1 (up to sign — the −1 automorphism
inverts the monodromy and fixes the curve, so as long as we remember that any
function is invariant under this transformation, we can safely ignore it). This ele-
ment functions as the first element in the homology basis, since the action of ±Z

renders all choices of second oriented basis element equivalent. It also uniquely
determines a multiplicative uniformization C×

π
→ E with kernel 〈q〉, |q|< 1. One

can classify the G-torsors over an elliptic curve with multiplicative uniformization
by studying its monodromy. Monodromy along the primitive homology element
gives a distinguished element g, up to conjugacy. Monodromy along a path from
1 to q in C× yields a commuting element h that is unique up to conjugation that
is simultaneous with g. However, the set of homotopy classes of paths to q is a
Z-torsor given by winding number around zero, and the action changes this mon-
odromy by powers of g, so the equivalence classes of G-torsors are determined by
assigning a commuting element h not to q, but to a choice of q1/|g|.
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Definition. Given an elliptic curve E equipped with a multiplicative uniformiza-
tion, a restricted degree-n isogeny is a pullback diagram

C× //

��

C×

��
E ′ // E

where the bottom row is a degree-n isogeny of elliptic curves.

The map on top is then given by a d-th power map, for some d | n. If we examine
kernels of the uniformization, we find that this induces an inclusion Z → Z by
multiplication by a := n/d . If we let q generate the kernel of the uniformization
on the target, the isogenies that pull back to the d-th power map on C× are then
classified by d-th roots of qa in the source, and there are exactly d of them. In
particular, there is a bijection between degree-n isogenies in the classical sense
and degree-n restricted isogenies. Each restricted isogeny then has the form

C×/q(a/d)Z
z 7→zd

// C×/qZ .

We can rephrase this using lattices: A uniformized elliptic curve is given by an
equivalence class of lattices 〈−1, τ 〉, where we consider two lattices equivalent if
the second elements differ by an integer. The isogeny condition is equivalent to
demanding that the distinguished homology basis element is −d for some d | n, as
we chose before.

We can now define our Hecke operators by summing over pullbacks along our
restricted isogenies.

Lemma 1.1. Given a function f on (1), define the function nT̂n f on the same space
by assigning to each elliptic curve equipped with a G-torsor and multiplicative
uniformization the sum of f evaluated on the sources of restricted isogenies of
degree n. Then

nT̂n f (g, h, τ )=
∑

ad=n

∑
0≤b<d

f
(

gd , g−bha,
aτ+b

d

)
,

that is, we get the same formula for Hecke operators as we would over MG
Ell.

Proof. Fix an elliptic curve E with a multiplicative uniformization and a G-torsor.
We may assume that E ∼=C/〈−1, τ 〉 for some τ ∈H, where the path from 0 to −1
along R maps to the distinguished homology element. Let g be the monodromy of
the G-torsor along the image of this path, and let h be the monodromy along the
image of a path from 0 to τ . Fix a restricted isogeny, that is, an index-n sublattice
of 〈−1, τ 〉 together with a (uniquely defined) fixed negative integer −d , d | n. The
path from 0 to −d is the chosen primitive homology element of the source elliptic
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curve. The monodromy of the G-torsor along the image of this path is gd . The
sublattice is characterized by a second homology generator aτ+b for a= n/d, and
b is uniquely determined modulo d . The generator then has monodromy hag−b,
and by applying the (1/d)-dilation homothety, the elliptic curve is given by the
point (aτ + b)/d . To show that the formula above holds, it suffices to show that
f , evaluated on these generators, does not depend on which coset representative
modulo d we choose. This independence arises from the ±Z-equivariance, that is,
if we choose b and b′ such that b− b′ = kd , then

f
(

gd , g−b′ha,
aτ+b′

d

)
= f

(
gd , g−bhagkd ,

aτ+b−kd
d

)
= f

(
gd , g−bha,

aτ+b
d
− k+ k

)
= f

(
gd , g−bha,

aτ+b
d

)
. �

From now on, we will use the notation nTn for this Hecke operator, instead of nT̂n .

Lemma 1.2. If f is a function on Hom(Z×Z,G)/G ×
±Z

H, then

Tk Tm f (g, h, τ )=
∑

t | (k,m)

1
t

Tkm/t2 f (gt , ht , τ ).

Proof.

Tk Tm f (g, h, τ )= Tk
1
m

∑
ad=m
0≤b<d
(a,b,d)=1

f
(

gd , g−bha,
aτ+b

d

)

=
1

km

∑
a′d ′=k

0≤b′<d ′

∑
ad=m
0≤b<d

f
(

gdd ′, g−bd ′−ab′haa′,
aa′τ+ab′+bd ′

dd ′
)

=
1

km

∑
a′d ′=k
ad=m

t=(a,d ′)

∑
0≤b′<d ′
0≤b<d

f
(

gt (dd ′/t), gt ((−bd ′−b′a)/t)ht (aa′/t),
a′ at τ + b′ at + b d ′

t

d d ′
t

)

=
1

km

∑
t | (k,m)

∑
a′d ′=k/t
ad=m/t
(a,d ′)=1

∑
0≤b′<td ′
0≤b<d

f
(

gtdd ′, gt (−bd ′−ab′)htaa′,
aa′τ+ab′+bd ′

dd ′
)

=
1

km

∑
t | (k,m)

∑
a′′d ′′=km/t2

t
∑

0≤b′′<d ′′
f
(

gtd ′′, g−tb′′hta′′,
a′′τ+b′′

d ′′
)

=

∑
t | (k,m)

1
t

Tkm/t2 f (gt , ht , τ ).
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We explain the second-to-last equality using Kozlov’s argument [1994]. In this
step, we substitute a′′ = aa′, d ′′ = dd ′, and b′′ for any solution to the congruence
ab′ + bd ′ ≡ b′′ (mod dd ′). By ±Z-invariance, it remains to show that for any
0 ≤ b′′ < dd ′, this congruence has exactly t solutions. There are exactly tdd ′

possible values of b and b′ satisfying 0≤ b< d , 0≤ b′< td ′, and dd ′ values of b′′

satisfying 0≤ b′′ < d ′′. The first value is t times the second value, so it suffices to
show that for any fixed admissible pair (b, b′) there are exactly t solutions (c, c′)
satisfying 0 ≤ c < d and 0 ≤ c′ < td ′ to the congruence ab′ + bd ′ ≡ ac′ + cd ′

(mod dd ′). Any such solution yields the identity dd ′ | a(b′ − c′)+ d ′(b − c), so
d ′ | a(b′ − c′). Since (a, d ′) = 1, d ′ | b′ − c′, so we write c′ = b′ + sd ′, and there
are t choices of s that satisfy 0 ≤ c′ < td ′. Canceling d ′ in the identity yields
d | as + b− c, so each choice of s gives a uniquely defined value of c satisfying
0≤ c < d . �

It is also possible to prove this by working one prime at a time, or by invoking
the moduli interpretation and enumerating restricted isogenies.

2. Hecke-monicity

Definition. Let f be a holomorphic function on (1). We say that f is Hecke-monic
if on each connected component, the restriction of nTn( f ) is a monic polynomial
of degree n in the restriction of f , for all positive integers n.

Remark. Since we only require our functions to admit translation-equivariance,
and the Hecke operators only involve transformations of the form τ 7→ (aτ+b)/d ,
Hecke-monicity only depends on the values of f when the monodromy around
the first homology basis element lies in a subset of G that is closed under taking
power maps. We will find it useful to weaken the condition that f be defined on
all components. For example, if we choose g ∈ G, we only need to consider the
functions { f (1, gi , τ )}i>0 to define Hecke operators on f (1, g, τ ).

Definition. Let g, h ∈ G be commuting elements, and let f be a function on the
connected components of (1) corresponding to pairs (gd , g−bha) for a, b, d > 0.
We say that f is weakly Hecke-monic for (g, h) if for all n> 0, nTn f (g, h, τ ) is a
monic polynomial of degree n in f (g, h, τ ). We say that f is semiweakly Hecke-
monic for (g, h) if for all n > 0, nTn f (gd , g−bha, τ ) is a monic polynomial of
degree n in f (gd , g−bha, τ ) for all a, b, d > 0.

We use the notation e(x) to denote e2π i x for the rest of this paper.

Lemma 2.1. Let f be a weakly Hecke-monic function for (g, h), and let N > 0
satisfy gN

= hN
= 1. If f (g, h, τ ) has a singularity at infinity, then its q-expansion

has the form ζqC/|g|
+O(1) for C a negative integer and ζ a root of unity satisfying

ζ N
= 1 if N is even and ζ 2N

= 1 if N is odd.
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Proof. Let f (g, h, τ )=
∑

n∈(1/|g|)Z anqn
= an0qn0 +an1qn1 +· · · for an0 nonzero,

n0 < 0, and let p be a prime congruent to 1 mod N . Then

pTp f (g, h, τ )= f (g, h p, pτ)+
p−1∑
b=0

f
(

g p, g−bh, τ+b
p

)

= f (g, h, pτ)+
p−1∑
b=0

f
(

g, h, τ+b
p
− b

)
=

∑
n

anq pn
+

∑
n

an

∑
b

e
(

n
(
τ+b

p
− b

))
=

∑
n

anq pn
+

∑
n

anqn/p
∑

b

e
(

nb 1− p
p

)
.

Hecke-monicity implies that an0q pn0 = (an0qn0)p for all p congruent to 1 mod N ,
so ζ = an0 is an M-th root of unity, where M is the greatest common divisor of
{p− 1 : p prime, p ≡ 1(N )}. M = k N for some integer k, and (k, N ) = 1, since
otherwise (k/(k, N ))N + 1 would be a residue class mod M that is coprime to M
but not congruent to 1. By the Chinese Remainder Theorem, k must have a unique
residue class mod k that is coprime to k. Therefore, the only possible values of k
are 1 or 2, and k = 2 is only possible when N is odd.

If f (g, h, τ ) is a singular monomial ζqC/|g| with C < 0, then we are done.
Otherwise, we assume an1 6= 0, and from the calculation above, we have

pTp f (g, h, τ )=

an0q pn0 + an0qn0/p
∑

b

e
(

n0b p−1
p

)
+ · · · n1 > n0/p2

an0q pn0 + an1q pn1 + · · · n1 < n0/p2.

We will not bother with the case of equality, because we will let p become large. If
n1 < 0, then the second case will hold for almost all p congruent to 1 mod N , and
if n1 ≥ 0, then the first case will hold for all such p. If n1 < 0 and p is sufficiently
large, then

an0q pn0 + an1q pn1 + · · · = (an0qn0 + an1qn1 + · · · )p
+ c(an0qn0 + · · · )p−1

+ · · ·

= an0q pn0 + pa p−1
n0

an1q(p−1)n0+n1 + · · ·

= an0q pn0 + pan1q(p−1)n0+n1 + · · · .

This yields an equality an1q pn1 = pan1q(p−1)n0+n1 , which under our assumptions
is a contradiction. Therefore, n1 ≥ 0, and we are done. �

Lemma 2.2. Let f be a weakly Hecke-monic function for (g, h) such that

f (g, h, τ )= ζqC/|g|
+ O(1)
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for some C < 0 and some root of unity ζ . Then there exists some N such that
pTp f (g, h, τ )= ζ pqCp/|g|

+ O(1) for all primes p > N.

Proof. Since 〈g, h〉 has finite order, we can choose N such that N/|g| is greater than
the order of any pole of f (gk, glhm, τ ) at infinity, as k and l range over Z/|g|Z
and m ranges over Z/|h|Z. Suppose p > N , and write any singular functions
f (g p, g−bh, τ ) as ζbqCb/|g|+ O(1). Then

pTp f (g, h, τ )= f (g, h p, pτ)+
∑

0≤b<d

f
(

g p, g−bh, τ+b
p

)
= f (g, h p, pτ)+

∑
b

ζbe
( bCb

p |g|

)
qCb/p |g|

+ O(1).

Since p > |Cb|, Cb/p |g| > −1/|g| for all b such that f (g p, g−bh, τ ) has a pole
at infinity. However, the above sum is a polynomial in f (g, h, τ ), and therefore a
power series in q1/|g|, so the only contribution with a negative power of q comes
from f (g, h p, pτ). We have f (g, h p, pτ)= ζ ′qC ′ p/|g|

+O(1) for some ζ ′ and C ′,
and since this is a monic polynomial of degree p in f (g, h, τ ), we have ζ ′ = ζ p

and C ′ = C . �

Proposition 2.3. Let f be a weakly Hecke-monic function for (g, h), such that
f (g, h, τ ) = ζqC/|g|

+ O(1) for some C < 0 and some root of unity ζ . Then
f (g, h, τ ) is invariant under translation by |g|/C , that is, the only nonzero terms
in the q-expansion are those with integer powers of qC/|g|.

Proof. Suppose f (g, h, τ ) is not a power series in qC/|g|, and let n0 be the smallest
integer such that n0 is not a multiple of C , and the coefficient an0 of qn0/|g| in the
q-expansion of f (g, h, τ ) is nonzero. Choose N as in Lemma 2.2, and let p be
a prime satisfying p > N , p ≡ 1 (mod |g|) and (p− 1)C + n0 < 0 (that is, p is
large).

By the lemma, pTp f (g, h, τ ) has q-expansion ζ pqCp/|g|
+ O(1). However,

pTp f (g, h, τ ) is a monic polynomial of degree p in f (g, h, τ ), so we can write
its q-expansion as a sum of a series in qC/|g| and a series with initial term

pζ p−1an0q(p−1)C+n0 .

Since the coefficient is nonzero and the exponent is negative, we have a contradic-
tion. �

3. Modular equations

Cummins and Gannon found a characterization of holomorphic genus-zero func-
tions invariant under 00(N ) as power series satisfying many modular equations.
We show that weakly Hecke-monic functions satisfy a similar condition, and we
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modify the first half of their proof to get global symmetries. In particular, any
Hecke-monic function on MG

Ell is holomorphic congruence genus-zero on noncon-
stant components.

Lemma 3.1. Fix a positive integer n, and let f be weakly Hecke-monic for (gt , ht)

for all t |n. Then the power sum symmetric polynomials in{
f
(

gd , g−bha,
aτ+b

d

)
: ad = n, 0≤ b < d

}
are polynomials in f (gt , ht , τ ) for t ranging over positive integers dividing n.
Furthermore, the term with highest degree in f (g, h, τ ) has coefficient equal to
one. In particular, if n is a prime satisfying gn

= g and hn
= h, then the power

sums are polynomials in f (g, h, τ ).

Proof. This is essentially the same as in [Kozlov 1994]. We apply nTn to the
equation f m

= mTm( f )− am−1 f m−1
− · · ·− a1 f − a0 to find that the power sum∑

ad=n
0≤b<d

f
(

gd , g−bha,
aτ+b

d

)m
= nTn( f (g, h, τ )m)

can be written as a sum of mnTnTm( f )(g, h, τ ) and a linear combination of Tn

applied to lower degree polynomials in f (g, h, τ ). By induction on m, these are
polynomials in f (gt , ht , τ ) for t | n. �

Lemma 3.2. Fix n ≥ 2 square-free, and let f be a weakly Hecke-monic function
for (gt , ht) for all t | n. Then there exists a monic polynomial Fn(x) of degree
n
∏

p | n(p+ 1)/p, whose coefficients are polynomials in f (gt , ht , τ ) for t | n, and
with roots { f (gd , g−bha, (aτ +b)/d) : ad = n, 0≤ b< d, (a, b, d)= 1} for any τ .

Proof. Since n is square-free, the condition (a, b, d) = 1 is a consequence of
ad = n. The power sums generate the ring of symmetric polynomials in{

f
(

gd , g−bha,
aτ+b

d

)}
,

from which we draw the coefficients of Fn . �

A holomorphic function f on H is said to satisfy a modular equation of order n
if there exists a monic polynomial Fn(x) of degree n

∏
p | n(p+ 1)/p whose coef-

ficients are polynomials in f , and with roots f ((aτ + b)/d) for a, b, d satisfying
ad = n, 0 ≤ b < d, (a, b, d) = 1. We will use a slightly altered notion to account
for invariance under congruence groups other than 00(N ).

Definition. Let g, h ∈ G be a commuting pair, and let f be a function on

({(g, gnh)}n∈Z) ×
±Z

H.
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If p is a prime satisfying g p
= g and h p

= h, we say f (g, h, τ ) satisfies an equi-
variant modular equation of order p if there exists a monic polynomial Fn(x) of
degree p + 1, whose coefficients are polynomials in f (g, h, τ ) and whose roots
are f (g, g−bh, (aτ + b)/d) for a, b, d satisfying ad = p, 0≤ b < d .

When g = 1 and f (1, h, τ ) has q-expansion q−1
+ O(q), this agrees with the

nonequivariant notion.

Proposition 3.3. Suppose g, h ∈ G commute. If a function f is weakly Hecke-
monic for (g, h), then f (g, h, τ ) satisfies equivariant modular equations of order
p for all primes p congruent to 1 modulo lcm(|g|, |h|).

Proof. Since g p
= g and h p

= h, this is a special case of Lemma 3.2. �

If f (g, h, τ ) satisfies an equivariant modular equation of order p, we can write
the polynomial Fp(x) as a two-variable polynomial Fp(y, x) ∈ C[x, y], where
we set y = f (g, h, τ ), and expand the coefficients of Fp(x) as polynomials in
f (g, h, τ ). If f (g, h, τ ) is a nonconstant holomorphic function, then Fp(y, x) is
uniquely defined by the properties that it is monic of degree p+ 1 in x and that it
vanishes under the substitutions f (g, h, τ ) for y and f (g, g−bh, (aτ+b)/d) for x
for any τ ∈H. This is because a polynomial in one variable is uniquely determined
by its values on a nonempty open subset of C, and the coefficients of Fp(x) are
polynomials in f (g, h, τ ), which includes such an open subset in its range.

Lemma 3.4. Let p be a prime satisfying g p
= g and h p

= h. Suppose f (g, h, τ )
is a nonconstant holomorphic function satisfying an equivariant modular equation
of order p. Then Fp(y, x)= Fp(x, y).

Proof. This is a modification of [Kozlov 1994, Proposition 3.2].
If d = 1, then Fp( f (g, h, τ ), f (g, h, pτ)) = 0. We make the substitution τ :=

(τ ′+ b)/p− b for 0≤ b < p, and we get

0= Fp

(
f
(

g, h, τ
′
+b
p
− b

)
, f (g, h, τ ′+ b− pb)

)
= Fp

(
f
(

g, g−bh, τ
′
+b
p

)
, f (g, h, τ ′)

)
.

Then f (g, g−bh, (τ ′+ b)/p) is a root of Fp(y, f (g, h, τ ′)).
If d = p, then Fp( f (g, h, τ ), f (g, h, (τ +b)/p−b))= 0. We make the substi-

tution τ = pτ ′+ pb− b for 0≤ b < p, and we get

0= Fp
(

f (g, h, pτ ′+ pb− b), f (g, h, τ ′)
)
= Fp

(
f (g, h, pτ ′), f (g, h, τ ′)

)
.

Then f (g, h, pτ ′) is a root of Fp(y, f (g, h, τ ′)).
This proves that Fn(y, f (g, h, τ )) has roots f (g, g−bh, (aτ + b)/d), which

means that for any fixed τ ∈ H, Fp( f (g, h, τ ), x) = Fp(x, f (g, h, τ )) ∈ C[x].
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The coefficients of Fp(x) = Fp(x, f (g, h, τ )) are polynomials in f , so they are
uniquely determined by finitely many values. If f is nonconstant and holomor-
phic on some nonempty open set, then the coefficients of Fp(x, y) match those of
Fp(y, x), so we get a polynomial equality. �

Proposition 3.5. If f is weakly Hecke-monic for (g, h) and f (g, h, τ ) has a pole
at infinity, f (g, h, τ ) admits global symmetries; in other words, if f (g, h, τ1) =

f (g, h, τ2) for given τ1, τ2 ∈ H, there exists γ ∈ SL2(R) such that τ1 = γτ2, and
f (g, h, τ )= f (g, h, γτ ) for all τ ∈ H.

Proof. By Proposition 3.3, f (g, h, τ ) satisfies equivariant modular equations of
degree p for infinitely many primes p congruent to 1 modulo lcm(|g|, |h|).

We give a list of modifications of the first half of [Cummins and Gannon 1997]
(up to Proposition 4.6) to allow equivariance. Note that the summands for d = p
are f (g, g−bh, (τ + b)/p) = f (g, h, (τ + b)/p− b), 0 ≤ b < p, so we make the
global modification that

A(p)=
{(1 (1−p)b

0 p

)
: 0≤ b < p

}
∪

{(p 0
0 1

)}
.

The proof of existence of global symmetries in [Cummins and Gannon 1997]
needs the following cosmetic changes:

• The statement of Lemma 2.2, Condition 1 should be changed from z1−z2 ∈Z

to z1− z2 ∈ (|g|/C)Z.

• In Lemma 2.5, β should be changed to
(n/d r−dr

0 d

)
; the proof uses the

symmetry of Fp(x, y) (Lemma 3.4).

• The statement of Lemma 3.2 requires the form of β ∈ A(p) to be changed as
above.

• All instances of Z in the proof of Lemma 3.3 should be replaced by (|g|/C)Z.

• The phrase “translating by integers if necessary” in the proof of Proposition
4.3 should become “translating by integer multiples of (|g|/C) if necessary.”

• In the proof of Proposition 4.6, the form of β ∈ A(p) needs to be suitably
adjusted. �

Corollary 3.6. Let f be a Hecke-monic function on MG
Ell. If f (g, h, τ ) is noncon-

stant, then it is a holomorphic congruence genus-zero function.

Proof. From our hypotheses, we know that f (g, h, τ ) is invariant under some
0(N ), and we are assuming that f has no essential singularities at cusps. There-
fore, if f (g, h, τ ) is nonconstant, then there is some

(a
c

b
d

)
∈ SL2(Z) such that

f (g, h, (aτ + b)/(cτ + d)) has a pole at infinity. Then f (gahc, gbhd , τ ) has
a pole at infinity, and satisfies the hypotheses of the proposition. This implies
f (gahc, gbhd , τ ) is holomorphic congruence genus-zero, so f (g, h, τ ) is also. �
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4. Finite level

Theorem 1.3 of [Cummins and Gannon 1997] asserts that any series q−1
+ O(q)

with algebraic integer coefficients satisfying modular equations of all orders co-
prime to some n is either holomorphic genus-zero and invariant under some 00(N ),
or a function of the form q−1

+ ζq for ζ either zero or a twenty-fourth root of
unity. The hypotheses we use to prove Theorem 4.6 are weaker, since the functions
satisfy equivariant modular equations only for primes congruent to 1 (mod n), and
the functions have the form qC/|g|

+ O(1). However, our conclusions are weaker,
since even if we normalize to an integral-powered q-series, we only have invariance
under 01(N ), much like the situation in [Cummins 2002].

Definition. Let G be a subgroup of SL2(R), and let M , N , and C be nonzero inte-
gers such that M | N . We say that the quadruple (G,M, N ,C) satisfies properties
(1)–(3) if:

(1) G is a discrete group.

(2) The stabilizer of infinity G∞ ⊂ G is 〈−Id,
(

1 M
0 1

)
〉.

(3) For all primes p congruent to 1 mod N , and all
(a

c
b
d

)
∈G, there exist integers

l and k such that l | p, 0≤−k < p/ l, and such thatap
l

k(1− p)a
C

+ lb

c
l

1
p

(k(1− p)c
C

+ ld
)
 ∈ G.

Lemma 4.1. If (G,M, N ,C) satisfies properties (1)–(3), and γ ∈ G, then there
exists λ ∈ R such that λγ ∈ GL+2 (Q).

Proof. This is a minor variation of [Cummins and Gannon 1997, Lemma 5.4]. Our
G∞ is a subgroup of theirs, so double coset invariants surject. We define rm ≡ a/c
(mod M) instead of mod 1, but it is still a G∞ double coset invariant for our G∞.
The proof there uses a slightly different property (3) for G, but the two left entries
of the matrices match, and that is what is needed. �

Following [Cummins and Gannon 1997], we say that
(a

c
b
d

)
is primitive if a, b, c, d

are integers with no common factors. By the previous lemma, there exists for any
γ ∈ G some λ ∈ R (unique up to sign) such that λγ is primitive, and we define |γ|
to be the determinant of λγ. This is an invariant of the double coset G∞γG∞.

Lemma 4.2. Let (G,M, N ,C) satisfy properties (1)–(3), let γ1 ∈ G, let

λγ1 =

(a1 b1

c1 d1

)
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be primitive, and assume c1 6= 0. Choose a prime p ≡ 1 (mod NC), and choose a
sequence of elements {γn}n≥1 ⊂ G by iteratively applying property (3). Define

λγi =

(ai bi

ci di

)
∈ M2(Q),

and let li , ki ∈Z be the corresponding integers arising in each application of prop-
erty (3).

(a) The sequence {ci }i≥1 eventually stabilizes to some c∞ = c1/
∏

i≥1 li ∈Q, that
is, all but finitely many li are equal to 1.

(b) If c∞ ∈ Z, then di ∈ Z for all i ≥ 1.

(c) If c∞ is a nonzero integer multiple of p, then p divides di for all i ≥ 1.

(d) There exists W > 0, depending only on c1 and λ, such that if p > W , then
li = 1 and di ∈ Z for all i ≥ 1.

Proof. This is a minor alteration of [Cummins and Gannon 1997, Lemma 5.7], and
we point out the necessary changes.

Statement (a) follows from [Shimura 1971, Lemma 1.25], which asserts that
the lower left entries of elements of a discrete subgroup of SL2(R) that don’t fix
infinity are bounded away from zero.

Statements (b) and (c) can be proved by following the proofs of [Cummins and
Gannon 1997, Lemma 5.7a and 5.7b], and changing n to p, ki to ki (1 − p)/C
(which is an integer by our assumption on p), and p2(( j−i)η+s)+s′ to p2(i−i0+s)+s′ .
The last alteration is mostly to rectify a typographical error.

The assertion about li = 1 in (d) follows from [Shimura 1971, Lemma 1.25],
and the assertion about di follows from (b). �

Lemma 4.3. Suppose (G,M, N ,C) satisfies properties (1)–(3), and G does not
stabilize infinity. Then G contains an element of the form

( 1
n

0
1

)
for n a nonzero

multiple of NC.

Proof. Since G does not stabilize infinity, then G contains γ such that the primitive
λγ =

(a
c

b
d

)
has c 6= 0, and hence

γ′ = γ
(1 −NC |γ|

0 1

)
γ−1
=

(1+ NCac −NCa2

NCc2 1− NCac

)
∈ G ∩0(N ).

Let W (γ′) be the constant given by the fourth part of Lemma 4.2. After trans-
lating on the right by multiples of

(
1 NC
0 1

)
, we find that G has an element

g =
(1+ NCac b′

NCc2 p

)
,
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with p≡1 (mod NC) a prime larger than W (γ′). Since both matrices have primitive
multipliers λ = 1 and the same bottom left entries, W (γ′) = W (g). We apply
Lemma 4.2(d) and use property (3) to find that G contains((1+ NCac)p k(1− p)(1− NCac)/C + b′

NCc2 k(1− p)Nc2
+ 1

)
∈ 0(NC)

for some 0 ≤ k < p. Since M | N , we can multiply on the right by
(

1 km N
0 1

)
∈ G,

where m = (p− 1)/(NC) ∈ Z, and this yields(
∗ ∗

NCc2 1

)
∈ 0(N ).

We multiply on the left by a suitable multiple of
(

1 N
0 1

)
to get

( 1 0
NCc2 1

)
∈ G. �

Lemma 4.4. Let X be a set of matrices
(1+ an bn

cn 1+ dn

)
∈ 0(n), satisfying:

• For every integer c0, there exists an element of X as above with c = c0.

• For all nonzero c, and all a0 and d0 satisfying (1+a0n, cn)= (1+d0n, cn)=1,
there exists an element of X as above such that a ≡ a0 (mod |c|n) and d ≡ d0

(mod |c|n).

Then X is a complete set of double coset representatives for 0(n) with respect to
the subgroup 〈

(
1 n
0 1

)
〉.

Proof.
(1 en

0 1

)(1+ an bn
cn 1+ dn

)(1 f n
0 1

)
=

(1+ an+ cen2 (b+ e+ f )n+ (a f + de)n2
+ ce f n3

cn 1+ dn+ c f n2

)
.

To find all double coset representatives, it suffices to cover the possible lower tri-
angular entries, since for c 6= 0, the top right entry is uniquely determined by the
fact that the determinant is one. Any element of X satisfying c= 0 lies in the group
〈
(

1 n
0 1

)
〉, so the corresponding double coset is equal to this group. �

Lemma 4.5. Suppose (G,M, N ,C) satisfies properties (1)–(3), and suppose G
contains

( 1
n

0
1

)
for some nonzero integer n for NC | n. Then G contains 0(n).

Proof. It suffices to produce double coset representatives with respect to transla-
tions, so suppose we are given a, c, d satisfying the conditions in the above lemma,
with c 6= 0. Let r > 0 be a lower bound on absolute value of nonzero lower
left entries of elements of G, guaranteed by [Shimura 1971, Lemma 1.25]. By
Dirichlet, there exist primes p and q such that p≡ 1+an (mod |c|n2), q ≡ 1+dn
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(mod |c|n2), and p>max(|c|n/r, |c|n). Since (1+an)(1+dn)−bcn2
= 1, there

exists an integer m such that pq = mcn2
+ 1. Then( 1 0

cn 1

)(1 mn
0 1

)
=

( 1 mn
cn pq

)
∈ G.

By Lemma 4.2(d), any application of property (3) for our choice of p to this matrix
requires l = 1, so G contains( p k(1− p)p/C +mn

cn k(1− p)cn/pC + q

)
,

with (k(1− p)cn)/pC ∈ Z. By our assumptions on p, (1− p)cn is coprime to
p, so k = 0. Therefore, G contains

( p mn
cn q

)
, and this is the desired double coset

representative. �

We say that a function on H is of trigonometric type if after some transformation
τ 7→ aτ + b, it has the form q−1

+ a0+ ζq , for ζ a root of unity or zero.

Theorem 4.6. Let f be weakly Hecke-monic for (g, h), and suppose f (g, h, τ )
has a pole at infinity, and q-expansion coefficients that are algebraic integers. Then
f (g, h, τ ) is either of trigonometric type or holomorphic congruence genus-zero.

Proof. By Proposition 2.3, the q-expansion of f (g, h, τ ) has the form ζqC/|g|
+

O(1) ∈ Q((q−C/|g|)) for some root of unity ζ and some negative integer C . By
Proposition 3.3, f (g, h, τ ) satisfies equivariant modular equations for all primes
p satisfying g p

= g, h p
= h. Following the proof of [Cummins and Gannon 1997,

Lemma 7.1] (changing (az+b)/d to (az+b(1−d))/d and Z to (|g|/C)Z), we find
that f (g, h, τ ) is invariant under a discrete subgroup of SL2(R). By Proposition
3.5, f (g, h, τ ) admits global symmetries, and in particular, an altered version of
[Cummins and Gannon 1997, Lemma 3.2] holds, where A(p) is replaced by the
equivariant version. In summary, the group G of global symmetries of f (g, h, τ )
satisfies the following three conditions:

(1) G is a discrete group.

(2) The stabilizer of infinity G∞ ⊂ G is
〈
−Id,

( 1 |g|/C
0 1

)〉
.

(3) For all primes p congruent to 1 mod lcm(|g|, |h|), and all
(a

c
b
d

)
∈ G, there

exist integers l and k such that l | p, 0≤−k < p/ l, and such that( p 0
0 1

)(a b
c d

)( l k(p− 1)
0 p/ l

)−1
=

(ap/ l k(1− p)a+ lb
c/ l (k(1− p)c+ ld)/p

)
∈ G.

We now consider the function f (g, h,−τ/C), which is a power series in q1/|g|.
Let G ′ denote the subgroup of SL2(R) that fixes f (g, h,−τ/C), so

G ′ =
(
−1/C 0

0 1

)
G
(
−C 0

0 1

)
.
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The quadruple (G ′, |g|, lcm(|g|, |h|),C) then satisfies conditions (1)–(3).
If G ′ does not fix infinity, then by the previous lemmata, G ′ contains 0(n)

for some n, and G contains some congruence group. Therefore f (g, h, τ ) is a
holomorphic congruence genus-zero function.

If G ′ fixes infinity, then G=G∞=
〈
−Id,

( 1 |g|/C
0 1

)〉
. The proof that f (g, h, τ ) is

of trigonometric type is given by following the first half of the proof of [Cummins
and Gannon 1997, Lemma 7.2], and replacing modular equations with equivariant
modular equations, and q with q−C/|g|. �

Remark. The proof of [Cummins and Gannon 1997, Lemma 7.2] allows us to
make a slightly stronger statement: If we don’t necessarily have algebraic integer
coefficients, but we know that f (g, h, τ )= ζqC/|g|

+
∑

n≥0 anq−nC/|g| satisfies∑
n |an|

2 > 1, then f (g, h, τ ) is a holomorphic congruence genus-zero function.

5. Replicability

In this paragraph, we summarize some results and assertions in [Norton 1984].
One can start with a formal power series f (q) = q−1

+
∑

n>0 anqn and define
numbers Hm,n for m, n ∈ Z>0 by the bivarial transform:

log
f (p)− f (q)
p−1− q−1 =−

∞∑
m,n=1

Hm,n pmqn.

For each n > 0, there is a unique normalized Faber polynomial 8n(x) (depending
on f ), defined by the property that 8n( f (q)) = q−n

+ O(q). The polynomial in
f (q) that is n times the coefficient of pn in the formal series− log p( f (p)− f (q))
also has this form, so we have 8n( f (q)) = q−n

+ n
∑

m Hm,nqm . We say that
f (q) is replicable if and only if for any t > 0 there exists a series f (t)(q)= q−1

+

O(q) such that 8n( f (q))=
∑

ad=n,0≤b<d f (a)((aτ + b)/d). The series f (t) =∑
n>0 a(t)n qn is called the t-th replicate of f , and by suitable use of induction, one

can show that it is unique if it exists, and its coefficients satisfy the relation

Hm,n =
∑

t | (m,n)

1
t

a(t)mn/t2

In particular, if f is replicable, Hm,n only depends on (m, n) and mn. Another
induction argument implies the converse of this, that is, that one can define repli-
cability by this independence.

Note. Replicability was originally defined only for power series with rational in-
teger coefficients, and for more general series, there is some disagreement in the
literature regarding the correct definition. Norton has proposed a definition of
replicability for series that have irrational cyclotomic integer coefficients, and it
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seems to involve a Galois action. This is potentially useful when considering
functions invariant under some 00(N ). One can instead extend one of the integral
definitions above to allow arbitrary complex coefficients, without alteration of the
formulas, and this was done in [Kozlov 1994]. We use the latter generalization of
the condition here, because we can prove something about series that satisfy it.

Definition. A replicable function is a replicable power series that converges on
the open unit q-disc, that is, one that expands to a holomorphic function on H. A
replicable function has order n if f (m) = f (m+n) for all m > 0.

We note that a replicable function of finite order has a unique minimal order, but
not a unique order. If f is a replicable function, then all 8m( f ) are holomorphic
on H, and hence all f (m) are also holomorphic on H.

We would like to relate replicability to Hecke-monicity.

Lemma 5.1. If f is a weakly Hecke-monic function for (1, g) such that

f (1, g, τ )= q−1
+ O(q),

then f (1, gm, τ ) has the form q−1
+ O(1), and is uniquely defined by the Hecke-

monic property up to a constant.

Proof. For the purposes of induction, we assume f (1, gk, τ )= q−1
+O(1) for all

k < m. Then

mTm f (1, g, τ )=
∑

ad=m
0≤b<d

f
(

1, ga,
aτ+b

d

)
= f (1, gm,mτ)+

∑
d |m
d<m

∑
0≤b<d

e(b/d)qm/d2
+ O(1).

Since mTm f (1, g, τ ) is monic of degree m in f (1, g, τ ), the leading term is q−m ,
and all of the other summands have poles of lower order. By subtracting those
summands, we find that the leading term of f (1, gm,mτ) is q−m , so f (1, gm, τ )

has leading term q−1. Since f (1, gm, τ ) is a power series in q , it has the form we
want.

To show uniqueness, suppose there were some f ′(1, gm, τ )= q−1
+O(1) such

that f ′(1, gm,mτ)+
∑

ad=m, d<m, 0≤b<d f (1, gd , (aτ + b)/d) is monic of degree
m in f (1, g, τ ). Since this sum and mTm f (1, g, τ ) have the same coefficients in
negative degree, f ′(1, gm,mτ)− f (1, gm,mτ)= O(1). However, this difference
must be a polynomial in f (1, g, τ ), so it is constant. �

Lemma 5.2. If f is a weakly Hecke-monic function for (1, g) such that

f (1, gm, τ )= q−1
+ O(q)
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for all m > 0, then nTn f (1, g, τ ) is the unique polynomial in f (1, g, τ ) whose
expansion is q−n

+ O(q).

Proof. nTn f (1, g, τ )=
∑

ad=n
0≤b<d

f
(

1, ga,
aτ+b

d

)

=

∑
d | n

∑
0≤b<d

e
(
−(n/d)τ−b

d

)
+ O(q1/n)

=

∑
d | n

e(−nτ/d2)
∑

0≤b<d

e(−b/d)+ O(q1/n)

=

∑
d | n

e(−nτ/d2)δd,1+ O(q1/n)= q−n
+ O(q1/n).

Because f (1, g, τ ) is a power series in q and nTn f (1, g, τ ) is a polynomial in
f (1, g, τ ), we can refine the O(q1/n) to O(q). If we add any other polynomial in
f (1, g, τ ), the leading term will yield a nontrivial contribution to the nonpositive
powers in the expansion, so the polynomial is unique. �

Proposition 5.3. The map f (m)(τ ) 7→ f (1, gm, τ ) induces a bijection between
replicable functions of order N and weakly Hecke-monic functions for (1, g) on

Hom(Z×Z,Z/NZ) ×
±Z

H

whose expansions at infinity have the form q−1
+ O(q), where g is a generator of

Z/NZ.

Proof. We first assume that f (1) is replicable, so 8n( f (1)) =
∑

ad=n
0≤b<d

f (a)
(aτ+b

d

)
.

Then

8n( f (1)(τ ))=
∑

ad=n
0≤b<d

f (a)
(aτ+b

d

)
=

∑
ad=n

0≤b<d

f
(

1, ga,
aτ+b

d

)
= nTn f (1, g, τ ).

Therefore, nT n f (1, g, τ ) is a monic polynomial in f (1, g, τ ) for all n, and f is
weakly Hecke-monic for (1, g).

Now let f be a weakly Hecke-monic function for (1, g) satisfying f (1, gi , τ )=

q−1
+O(q). By Lemma 5.2, mTm f (1, g, τ )= q−m

+O(q), and is a monic poly-
nomial in f (1, g, τ ), so it is equal to q−m

+m
∑

k Hk,mqk
=8n( f ). If we assume

for the purposes of induction that f (1, gk, τ )= f (k)(τ ) for all k |m, k 6= m, then∑
ad=m
0≤b<d

f
(

1, ga,
aτ+b

d

)
= mTm f (1, g, τ )=8m( f )=

∑
ad=m
0≤b<d

f (a)
(aτ+b

d

)

implies f (m) = f (1, gm, τ ). �
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Corollary 5.4. If f is a replicable function of finite order with algebraic inte-
ger coefficients, then f is either of trigonometric type or holomorphic congruence
genus-zero for a group containing 01(N ) for some N.

Proof. By the above proposition, f together with its replicates forms a weakly
Hecke-monic function for (1, g), where g generates a cyclic group whose order is
that of f . By Theorem 4.6, f (1, g, τ ) is either of trigonometric type or holomor-
phic congruence genus-zero and invariant under a group containing 0(N ) for some
N . Since f is invariant under translation by 1, it is invariant under 01(N ). �

Norton [1984] also defined a stronger notion: f is completely replicable if all
f (t) are replicable, or equivalently, if the s-th replication power of f (t) is f (st) for
all s and t [Kozlov 1994, Proposition 2.5]. He also pointed out that

−J (z+ 1
2)= q−1

+ 196884q − 21493760q2
+ · · ·

is a function that is replicable but not completely replicable.

Corollary 5.5. The above bijection specializes to a bijection between completely
replicable functions of order N and semiweakly Hecke-monic functions for (1, g)
on

Hom(Z×Z,Z/NZ) ×
±Z

H

whose expansions at infinity have the form q−1
+ O(q).

Proof. Using the proposition, we get a chain of equivalent statements:

• f (1) is completely replicable.

• f (m) is replicable for all m.

• f is weakly Hecke-monic for all (1, gm).

• f is semiweakly Hecke-monic for (1, g). �

Corollary 5.6. The above bijection specializes to a bijection between completely
replicable functions f (1) with rational integer coefficients invariant under 00(N )
and Hecke-monic functions f on M

Z/NZ

Ell satisfying the property that the q-expan-
sions of f (1, gi , τ ) have the form q−1

+ O(q), with rational integer coefficients.

Proof. It suffices to show that if f (1) is invariant under 00(N ), then f (m) is in-
variant under 00(N/(m, N )). The completely replicable functions with integer
coefficients were exhaustively enumerated in [Alexander et al. 1992], and their
fixing groups were found to obey this condition in [Ferenbaugh 1993]. �

Replicable functions without a specified order also have an interpretation in
terms of Hecke-monicity, if we allow our group G to be infinite. If we let g generate
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a copy of Z, we can think of replicable functions together with their replicable
powers as weakly Hecke-monic functions for (1, g) on

Hom(Z×Z,Z) ×
±Z

H.

Unfortunately, the finite order condition is essential for our techniques to produce
a genus-zero statement.

6. twisted denominator formulas

Given a Lie algebra of a rather specialized form described below, we can make
strong statements about certain characters of automorphisms acting on homology.
When this Lie algebra arises from conformal field theory in a certain way, we
show that in fact the characters are holomorphic congruence genus-zero functions.
The particular constraints on the Lie algebra force it to be “mostly free” in the
sense that its higher homology is very small. This is somewhat related to work
of Jurisich [1998] on free Lie subalgebras of generalized Kac–Moody algebras
like the monster Lie algebra. Some connections to elliptic cohomology appear in
unpublished work of Lurie [2005] concerning exponential operations on elliptic
λ-rings.

Let G be a finite group, and let g be an element of order N in the center of G.
Suppose we have a collection

V= {V i, j/N
k : i, j ∈ Z/NZ, k ∈ (1/N )Z}

of G-modules, such that the action of g on V i, j/N
k is given by constant multiplica-

tion by the root of unity e( j/N ), and such that dim V i, j/N
k grows subexponentially

with k, that is, for any ε > 0, there is some C > 0 such that dim V i, j/N
k < Ceεk for

all i, j, k.

Note. We occasionally write V i, j/N
k where i and j are given as integers, tacitly re-

ducing modulo N , so V i, j/N
k is the same G-module as V i+aN , j/N+b

k for all integers
a and b.

Definition. A complex Lie algebra E is Fricke compatible with V if the following
conditions are satisfied:

• E is graded by Z>0×
1
N Z, with finite- dimensional homogeneous components

Ei, j . We introduce degree indicator symbols p and q, which denote grading
shifts by (1, 0) and (0, 1

N ), respectively, and write the graded vector space de-
composition as E =

⊕
i>0, j∈(1/N )Z Ei, j pi q j . We can view this as a character

decomposition of E under an action of a two-dimensional torus H .

• E admits a homogeneous action of G by Lie algebra automorphisms, such
that we have G-module isomorphisms Ei, j ∼= V i, j

1+i j .
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• The homology of E is given by H0(E)= C,

H1(E)=
⊕

n∈(1/N )Z

V 1,n
1+n pqn, H2(E)= p

∞⊕
m=0

V 1,−1/N
1−1/N ⊗ V m,1/N

1+m/N pm,

and Hi (E)= 0 for i > 2.

• E1,−1/N ∼= V 1,−1/N
1−1/N is one-dimensional.

Remark. Our use of the term “Fricke compatible” is motivated by considerations
from conformal field theory. If g is a Fricke element of the monster, that is, if the
McKay–Thompson series Tg(τ ) = Tr(gq L0−1

|V \) is invariant under the transfor-
mation τ 7→ −1/Nτ for some N , and if G is a central extension of the centralizer
of g in the monster, then we expect the Lie algebra of physical states of the g-
orbifold intertwiner algebra to be a generalized Kac–Moody algebra whose positive
subalgebra is isomorphic to E as a Lie algebra with a homogeneous action of G by
automorphisms, and we expect the unique irreducible g-twisted module of V \ to
be isomorphic to H1(E) as a graded G-module. If g is a non-Fricke element, then
we expect the compatible Lie algebra to have a large abelian subalgebra and higher
homology described by its exterior powers. We explore this further in [Carnahan
2009; ≥ 2010].

Proposition 6.1 (Twisted denominator formula). Suppose E is Fricke compatible
with V. Then for any h ∈ G,

p−1
+

∑
m>0

Tr
(
h|V 1,−1/N

1−1/N

)
Tr
(
h|V m,1/N

1+m/N

)
pm
−

∑
n∈(1/N )Z

Tr
(
h|V 1,n

n+1

)
qn

= p−1 exp
(
−

∑
i>0

∑
m>0

n∈(1/N )Z

Tr
(
hi
|V m,n

1+mn

)
pimq in/ i

)
.

Proof. This is essentially identical to [Borcherds 1992, Section 8]. The Chevalley–
Eilenberg resolution yields the equation H(E)=

∧
(E) of virtual H×G-represen-

tations, and the left side is given by taking traces on the homology groups given
above. By Adams’ exponential formula from K -theory, we have∧

(U )= exp
(
−

∑
i>0

ψ i (U )/ i
)

for any finite-dimensional H×G-module U (which we take to be the homogeneous
components Ei, j or finite sums thereof). The ψ i are the i-th Adams operations,
which satisfy the identity Tr(g|ψ i (U ))= Tr(gi

|U ). The right side of the equation
is then given by extending this to a formal sum on the infinite-dimensional direct
sum of homogeneous components, and this is allowed because their degrees are
supported in a strict half-space. �
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For any h ∈ G, we define formal orbifold partition functions:

Z(gk, glhm, τ ) :=
∑

n∈(1/N )Z

∑
r∈(1/N )Z/Z

n∈kr+Z

Tr
(
glhm
|V k,r

1+n

)
e(nτ).

We refer to the collection of these functions as Z , and they converge on H, by the
subexponential growth condition. We can then define equivariant Hecke operators:

Tn Z(g, h, τ )= 1
n

∑
ad=n

0≤b<d

Z
(

gd , g−bha,
aτ+b

d

)
.

Proposition 6.2. Suppose E is Fricke compatible with V. Then Z is weakly Hecke-
monic for (g, h).

Proof. We multiply both sides of the twisted denominator formula by p, and view-
ing the equality as an identification of formal expansions, we take logarithms.

log
(

1− p
∑

n∈(1/N )Z

Tr
(
h|V 1,n

1+n

)
qn
+

∑
m>0

Tr
(
h|V 1,−1/N

1−1/N

)
Tr
(
h|V m,1/N

1+m/N

)
pm+1

)
=−

∑
i>0

∑
m>0

n∈(1/N )Z

Tr
(
hi
|V m,n

1+mn

)
pimq in/ i

=−

∑
m>0

∑
a |m

1
a

∑
n∈(1/N )Z

Tr
(
ha
|V m/a,n

1+mn/a

)
pmqan

=−

∑
m>0

∑
ad=m

1
a

∑
0≤b<d

1
d

∑
n∈(1/N )Z

Tr
(
ha
|V d,n

1+dn

)
pmqan

=−

∑
m>0

∑
ad=m

1
a

∑
0≤b<d

1
d

∑
n∈(1/N )Z

∑
r∈(1/N )Z/Z

n∈dr+Z

e(−br)Tr
(
ha
|V d,r

1+n

)
e(br)qan/d pm

=−

∑
m>0

1
m

∑
ad=m
0≤b<d

∑
n∈(1/N )Z

∑
r∈(1/N )Z/Z

n∈dr+Z

Tr
(
g−bha

|V d,r
1+n

)
e
(

n aτ+b
d

)
pm

=−

∑
m>0

1
m

∑
ad=m
0≤b<d

Z
(

gd , g−bha,
aτ+b

d

)
pm
=−

∑
m>0

Tm Z(g, h, τ )pm .

Isolating the terms that are degree k in p on the first line yields a polynomial
of degree k in Z(g, h, τ ), with leading coefficient −1/k. This implies that for all
k, kTk Z(g, h, τ ) as a formal q-series is a monic polynomial of degree k in the
q-expansion of Z(g, h, τ ). All of the formal orbifold partition functions uniquely
define holomorphic functions on H, so for all k, kTk Z(g, h, τ ) is a monic polyno-
mial of degree k in Z(g, h, τ ), where they are viewed as functions on H. �
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We describe a connection to generalized moonshine. Recall that one of the key
hypotheses in the conjecture was the existence of certain representations of central
extensions of centralizers of elements. An interpretation of these representations
was given in [Dixon et al. 1988], where they were said to be twisted Hilbert spaces
of an orbifold conformal field theory. In our language, these are twisted modules of
the vertex operator algebra V \. The theoretical details of vertex operator algebras
and twisted modules are outside the scope of this paper, but we can think of these
objects as graded vector spaces, where the grading is given by eigenvalues of a
semisimple operator L0. When a vertex operator algebra has a unique irreducible
g-twisted module for some automorphism g, Schur’s lemma produces a natural
action of some central extension of the centralizer of g on the twisted module. The
two facts we need concerning twisted modules are from [Dong et al. 2000]:

(1) (Theorem 10.3) If V is a holomorphic C2-cofinite vertex operator algebra with
central charge 24, and g is a conformal automorphism of finite order, then
there exists a unique irreducible g-twisted module V (g) up to isomorphism.

(2) (Theorems 5.4, 6.4, and 8.1) Let M > 0 satisfy gM
= hM

= 1, and suppose
we have a G-module isomorphism

V (gi )∼=
⊕

k∈(1/N )Z

⊕
j∈Z/NZ

V i, j/N
k ,

where V (gi ) is the irreducible gi -twisted module, and the outer sum gives the
L0-eigenvalue decomposition. For any

(a
c

b
d

)
∈ SL2(Z),

Z
(

gi , h, aτ+b
cτ+d

)
lies in a certain space of holomorphic functions on H, each element of which
is annihilated by a differential operator of the form

( d
dτ
)m
+

m−1∑
j=0

r j (q)
( d

dτ
) j
,

where m > 0 and r j (q) ∈ C[[q1/M
]] converges on H.

Proposition 6.3. Suppose that E is a Lie algebra Fricke compatible with V, and
suppose that G acts conformally on a holomorphic C2-cofinite vertex operator
algebra V of central charge 24, such that for all i ∈ Z/NZ, we have G-module
isomorphisms V (gi )∼=

⊕
k∈(1/N )Z

⊕
j∈Z/NZ V i, j/N

k as in Fact (2). Then Z(g, h, τ )
is a holomorphic congruence genus-zero function.
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Proof. By Proposition 6.2, Z is weakly Hecke-monic for (g, h). Since E1,−1/N =

V 1,−1/N
1−1/N is one-dimensional, the trace of h on this space is nonzero, so Z(g, h, τ )

has a pole at infinity. By Theorem 4.6, Z(g, h, τ ) is then either a holomorphic
congruence genus-zero function, or of trigonometric type. However, the expansion
of any function of trigonometric type at a cusp other than infinity is not annihilated
by any differential operator of the form given in Fact (2). �

The hypotheses for this proposition are quite strong, but it is not a vacuous
statement. When G = M and g = 1, this implies the McKay–Thompson series
are holomorphic congruence genus-zero modular functions, assuming the positive
subalgebra of the monster Lie algebra is Fricke compatible with V \. This compat-
ibility was proved in [Borcherds 1992, Section 8]. When G = 2.B, the nontrivial
central extension of the baby monster simple group, and g is the central element
of order two, this yields holomorphic congruence genus-zero characters for the
conjugacy class 2A case of generalized moonshine, assuming there exists a Lie
algebra Fricke compatible with the suitable twisted modules. The holomorphic
congruence genus-zero result was proved in [Höhn 2003] using a construction of
a Fricke compatible Lie algebra, and Proposition 6.3 allows one to eliminate the
explicit computations in the final step of the proof, which involved matching the
first 25 coefficients of the character for every conjugacy class of G with Norton’s
list of known replicable functions.
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