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Joseph Gubeladze San Francisco State University, USA

Ehud Hrushovski Hebrew University, Israel

Craig Huneke University of Kansas, USA

Mikhail Kapranov Yale University, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Hendrik W. Lenstra Universiteit Leiden, The Netherlands

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Andrei Okounkov Princeton University, USA

Raman Parimala Emory University, USA

Victor Reiner University of Minnesota, USA

Karl Rubin University of California, Irvine, USA

Peter Sarnak Princeton University, USA

Michael Singer North Carolina State University, USA

Ronald Solomon Ohio State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium
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Hochschild cohomology and homology of
quantum complete intersections

Steffen Oppermann

We compute the Hochschild cohomology and homology for arbitrary finite-
dimensional quantum complete intersections. It turns out that their behavior
varies widely, depending on the choice of commutation parameters, and we give
precise criteria for when to expect what behavior.

1. Introduction

Quantum complete intersections were first discussed by Avramov, Gasharov, and
Peeva [Avramov et al. 1997]. Based on the introduction of quantized versions of
polynomial rings in [Manin 1987], they introduced the notion of quantum regular
sequences.

In this paper we restrict to finite-dimensional quantum complete intersections,
that is, algebras of the form k〈x1, . . . , xc〉/I , where I is an ideal generated by xni

i
for some ni ∈N≥2, and x j xi −qi j xi x j for some commutation parameters qi j from
the multiplicative group of the field.

In particular, in the case of two variables it is known that the homological behav-
ior of finite-dimensional quantum complete intersections varies greatly, depending
on the commutation parameters.

Buchweitz, Green, Madsen, and Solberg [Buchweitz et al. 2005] gave a finite-
dimensional quantum complete intersection as the first example of an algebra of
infinite global dimension which has finite Hochschild cohomology. This result was
generalized in [Bergh and Erdmann 2008], which showed that a finite-dimensional
quantum complete intersection of codimension 2 (c = 2 in the description above)
has an infinite Hochschild cohomology if and only if the commutation parameter
is a root of unity.

On the other hand, in [Bergh and Oppermann 2008a] we showed that in the situa-
tion that all commutation parameters are roots of unity, the Hochschild cohomology
of a quantum complete intersection is as well behaved as in the commutative case:

The author was supported by NFR Storforsk grant no. 167130.
MSC2000: primary 16E40; secondary 81R50, 16U80, 16S80.
Keywords: Hochschild cohomology, Hochschild homology, quantum complete intersection.
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822 Steffen Oppermann

It is a finitely generated k algebra, and any Ext∗(M, N ) for any finite-dimensional
modules M and N over the quantum complete intersection is finitely generated as
a module over the Hochschild cohomology ring.

This paper gives a general description of the Hochschild cohomology and ho-
mology of finite-dimensional quantum complete intersections. Here is an outline:

In Theorems 3.4 and 7.4 we explicitly determine a k-basis for the Hochschild
cohomology and homology, respectively.

Using these results we study the size of the Hochschild cohomology and homol-
ogy in the following sense: Let N be the set of nonnegative integers (i.e., 0 ∈ N).
We denote by

γ(HH∗(3))= inf
{

t ∈ N

∣∣∣∣ lim sup
dimk HHn(3)

nt−1 <∞

}
the rate of growth of the Hochschild cohomology (and similarly for the Hochschild
homology). In Theorems 4.5 and 8.2, we obtain explicit combinatorial formulas
for γ(HH∗(3)) and γ(HH∗(3)). In particular it will be shown (Corollary 4.6) that
whenever not all commutation parameters are roots of unity we have γ(HH∗(3))≤
c−2. For c= 2 that means that the Hochschild cohomology is finite. This explains
why there are essentially only two cases for c = 2, while we obtain additional
behaviors for larger c.

We will also generalize the result of [Bergh and Erdmann 2008] in another way:
It will be shown that whenever the commutation parameters are sufficiently generic
the Hochschild cohomology of the quantum complete intersection is finite (see
Example 6.2).

Finally we will study the multiplicative structure of the Hochschild cohomology
ring. It will turn out (Theorem 5.5) that it always contains a subring S which is
finitely generated over k, and isomorphic to the quotient of the Hochschild coho-
mology modulo its nilpotent elements. We will give a criterion for when the entire
Hochschild cohomology ring is finitely generated over this subring (Theorem 5.9).
We will give examples (Examples 6.4 and 6.5) that all the following behaviors
occur (for c ≥ 3):

• S= k, but γ(HH∗(3))= c− 2.

• γ(S)= γ(HH∗(3))= c− 2, and HH∗(3) is finitely generated over S.

• γ(S)= γ(HH∗(3))= c− 2, but HH∗(3) is not finitely generated over S.

2. Notation and background

Throughout this paper we assume k to be field.

Quantum complete intersections. (See also [Bergh and Erdmann 2008; Bergh and
Oppermann 2008a; 2008b].) A finite-dimensional quantum complete intersection
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of codimension c is a k-algebra of the form

3n
q =

k〈x1, . . . , xc〉(
xni

i for 1≤ i ≤ c
x j xi − qi j xi x j for 1≤ i < j ≤ c

)
with n= (n1, . . . , nc)∈Nc

≥2 and q= (qi j | i < j)∈ (k×)n(n−1)/2, where k× denotes
the multiplicative group k \ {0}. For convenience of notation we also define qi j for
i ≥ j : We set qi i = 1 for any i ∈ {1, . . . , c} and qi j = q−1

j i for 1 ≤ j < i ≤ c. The
relations x j xi − qi j xi x j for 1≤ j ≤ i ≤ c are automatically satisfied in 3n

q .
Note that 3n

q is a Zc-graded algebra by |xi | = degree xi = ei , the i-th unit
vector. We will denote by ≤ the partial order on Zc defined by comparing vectors
componentwise, and by 1=

∑
ei the vector with 1 in every component. With this

notation, the dimensions of the graded component of degree d (with d ∈ Zc) are

dim(3n
q)d =

{
1 if 0≤ d ≤ n− 1,
0 otherwise.

For a ∈ Nc we will write xa
= xa1

1 . . . xac
c . Note that the multiplication yields

something different if we multiply in another order. In particular we do not have
xa xb

= xa+b. By setting

q〈a | b〉 =
∏

i, j∈{1...c}
i< j

qa j bi
i j

we obtain the multiplication formula xa xb
= q〈a | b〉xa+b.

Hochschild (co)homology. Let 3 be a finite-dimensional algebra. We denote by
3en
= 3⊗k 3

op the enveloping algebra. Then 3en-modules are 3-3 bimodules
on which k acts centrally. In particular 3 has a natural structure of a 3en-module.
Then

HH∗(3)= Ext∗3en(3,3) and HH∗(3)= Tor3
en

∗
(3,3)

are the Hochschild cohomology and Hochschild homology of3, respectively. With
the Yoneda multiplication of extensions HH∗ becomes a Z-graded k-algebra, which
is graded commutative [Yoneda 1958].

If 3 is graded then so is 3en, and 3 is a graded 3en-module. It follows that for
any i ∈N the Hochschild homology and cohomology groups HHi (3) and HHi (3)

are also graded.

Projective resolutions. In order to determine the Hochschild homology and co-
homology of a quantum complete intersection 3 = 3n

q we need to find a projec-
tive resolution of 3 as a 3en-module. Moreover we want to keep track of the
Zc-grading, so we will need a graded projective resolution.
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We have shown in [Bergh and Oppermann 2008a, Lemma 4.5] that such a graded
projective resolution can be found by tensoring together the projective resolu-
tions of k[xi ]/(x

ni
i ) as (k[xi ]/(x

ni
i ))

en modules. To simplify the notation we set
3i = k[xi ]/(x

ni
i ). Then the graded projective resolution of 3i as a bimodule is

Pi :3
en
i 3en

i 〈1〉
xi⊗1−1⊗xioo 3en

i 〈ni 〉

∑ni−1
k=0 xk

i ⊗x
ni−1−k
ioo 3en

i 〈ni+1〉
xi⊗1−1⊗xioo . . . ,oo

where 3en
i 〈s〉 is the graded module obtained from 3en

i by increasing the degree of
all homogeneous elements by s. Note that here all the bimodules are shifted into
place in such a way that all the morphisms have degree 0.

With this notation, the total complex

Tot(P1⊗k P2⊗k · · · ⊗k Pc)

is a graded projective resolution of 3.
The term in position p ∈ Nc of the c-tuple complex P1⊗k P2⊗k · · · ⊗k Pc is

3en
1 〈s( p)1〉⊗ · · ·⊗3en

c 〈s( p)c〉,

where for notational compactness we have defined a function s : Zc
→ Zc by

s( p)i =

{
1
2 pi ni if pi is even,
1
2(pi−1)ni + 1 if pi is odd.

We will also need a left inverse p : Zc
→ Zc of s given by

p(s)=min{ p ∈ Zc
| s( p)≥ s}.

In the c-tuple complex P1⊗k P2⊗k · · · ⊗k Pc all terms are of the form

3en
1 〈s1〉⊗k · · · ⊗k 3

en
c 〈sc〉

for some s∈Nc. We recall how these are identified with 3en
〈s〉.

Lemma 2.1 [Bergh and Oppermann 2008a, Lemma 4.3]. For s ∈Zc we choose an
identification

3en
1 〈s1〉⊗k · · · ⊗k 3

en
c 〈sc〉 =3

en
〈s〉

such that (1⊗1)⊗ · · ·⊗ (1⊗1) maps to 1⊗1. Under such an identification,

(xa1
1 ⊗ xb1

1 )⊗ · · ·⊗ (x
ac
c ⊗ xbc

c ) maps to
q〈s | s〉

q〈a+s | b+s〉 x
a
⊗ xb.

Remark 2.2. The differentials occurring in the various directions of the c-tuple
complex being of particular interest, we note that the identification of Lemma 2.1
maps (1⊗1)⊗ · · ·⊗ (1⊗1)⊗ (xi⊗1− 1⊗ xi )⊗ (1⊗1)⊗ · · ·⊗ (1⊗1) to

1
q〈ei | s〉

xi ⊗ 1−
1

q〈s | ei 〉
1⊗ xi
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and (1⊗1)⊗ · · ·⊗ (1⊗1)⊗
(∑ni−1

j=0 x j
i ⊗ xni−1− j

i

)
⊗ (1⊗1)⊗ · · ·⊗ (1⊗1) to

ni−1∑
j=0

1
q〈 jei |s〉q〈s|(ni−1− j)ei 〉

x j
i ⊗xni−1− j

i =

ni−1∑
j=0

( 1
q〈ei |s〉

) j( 1
q〈s|ei 〉

)ni−1− j
x j

i ⊗xni−1− j
i .

Technical notation. We need some definitions to keep the notation short in the
rest of the paper.

I. We set Q = (qi j )i j , and think of Q as a (skew symmetric) matrix with entries
in the abelian group k×. That is, Q represents the morphism of abelian groups

Q : Zc
→ (k×)c, (di )i 7→

( c∏
j=1

qd j
i j

)
i
.

As usual for matrices we will denote the image of d ∈ Zc under this map by
Qd, and its i-th component by (Qd)i .

For A, B ⊆ {1, . . . , c}, denote by Q A×B the submatrix containing only
the rows indexed by A and the columns indexed by B: that is, the matrix
representing the composition

ZB � � // Zc Q // (k×)c // // (k×)A.

II. We set Ri =

{
{ζ | ζ ni = 1} if char k divides ni ,

{ζ | ζ ni = 1 and ζ 6= 1} otherwise.

III. For a Z-submodule K of Za , denote by pos.rk K the rank of the Z-submodule
K ′ of K generated by K ∩Na . For example,

pos.rk

〈(
1
0
0

)
,

(
0
1
−1

)〉
= 1.

3. Hochschild cohomology

For d ∈ Zc, we will calculate the degree-d part of the Hochschild cohomology.
Then we will obtain the entire Hochschild cohomology by adding up these parts.

To find the degree-d part of the cohomology we first have to understand the set

Homd
3en(3

en
〈s〉,3)

of degree-d morphisms from the terms of the projective resolution to 3.

Lemma 3.1. The set Homd
3en(3en

〈s〉,3) is nonzero if and only if 0≤ s+d≤n−1,
and then it is the one-dimensional k-vector space generated by

ϕs,d
:3en
〈s〉 →3, xa

⊗ xb
7→ q〈a+s+d | b+s+d〉xa+s+d+b.
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Proof. Clearly any 3en-homomorphism from 3en
〈s〉 to any other module is uni-

quely determined by the image of 1⊗1. If the morphism is to be of degree d, this
image can only be a scalar multiple of xs+d . We choose the image of 1⊗1 to be
q〈s+d | s+d〉xs+d and obtain the formula of the lemma by extending3en-linearly. �

Corollary 3.2. dim Homd
3en

(
3en
〈s( p)〉,3

)
=

{
1 if p(−d)≤ p ≤ p(−d)+ 1,
0 otherwise.

This means that for d ≤ n− 1 the c-tuple complex Homd
3en(P1⊗ · · · ⊗Pc,3)

is concentrated in a cube of sides 1 or 0 (the latter case occurring in directions i
with p(−d)i = −1, i.e., di = ni − 1), where there is a one-dimensional space in
each corner of the cube.

Since by Remark 2.2 these are the terms occurring in the projective resolution,
we are in particular interested in what the maps ϕs,d of Lemma 3.1 do to terms of
the form

1
q〈ei | s〉

xi ⊗ 1−
1

q〈s | ei 〉
1⊗ xi and

ni−1∑
j=0

( 1
q〈ei | s〉

) j( 1
q〈s | ei 〉

)ni−1− j
x j

i ⊗xni−1− j
i .

Lemma 3.3. Let s and d be such that 0≤ s+ d ≤ n− 1, and let i ∈ {1 . . . c}.

(1) Assume that si + di + 1< ni . Then

ϕs,d
(

1
q〈ei | s〉

xi ⊗ 1−
1

q〈s | ei 〉
1⊗ xi

)
= 0

if and only if (Qd)i = 1. (For the definition of Q see Technical notation I.)

(2) Assume that si + di = 0. Then

ϕs,d
(ni−1∑

j=0

(
1

q〈ei | s〉

) j( 1
q〈s | ei 〉

)ni−1− j

x j
i ⊗ xni−1− j

i

)
= 0

if and only if (Qd)i ∈ Ri . (For the definition of Q see Technical notation II.)

Proof. We only prove (2). The proof of (1) is a similar and simpler calculation
using Lemma 3.1. By that lemma we have

ϕs,d
(ni−1∑

j=0

(
1

q〈ei | s〉

) j( 1
q〈s | ei 〉

)ni−1− j

x j
i ⊗ xni−1− j

i

)

=

ni−1∑
j=0

(
1

q〈ei | s〉

) j( 1
q〈s | ei 〉

)ni−1− j

q〈 jei+s+d | (ni−1− j)ei+s+d〉xs+d+(ni−1)ei .
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Upon rearrangement of the right-hand side this becomes

q〈s+d | s+d〉
ni−1∑
j=0

(q〈ei | d〉) j (q〈d | ei 〉)ni−1− j xs+d+(ni−1)ei

= q〈s+d | s+d〉︸ ︷︷ ︸
6=0

xs+d+(ni−1)ei ·


ni

6=0︷ ︸︸ ︷
(q〈ei | d〉)ni−1 if q〈ei | d〉 = q〈d | ei 〉,

(q〈ei | d〉)ni − (q〈d | ei 〉)ni

q〈ei | d〉− q〈d | ei 〉
otherwise.

Now the claim follows from the fact that
q〈d | ei 〉

q〈ei | d〉
=
∏c

j=1 qd j
i j = (Qd)i . �

We have shown that the vanishing of the maps on the edges in direction i of
the cube Homd

3en(P1 ⊗ · · · ⊗ Pc,3) does not depend on s, that is, if one edge
in direction i vanishes, then all vanish. Also, if all the edges in one direction are
isomorphisms, the total complex is acyclic. Hence, if we partition the set {1, . . . , c}
into subsets

Imax =
{
i ∈ {1, . . . , c} : ni = di + 1

}
,

I1 =
{
i ∈ {1, . . . , c} : ni | di + 1

}
\ Imax,

I2 =
{
i ∈ {1, . . . , c} : ni - di + 1

}
,

we have shown the following:

Theorem 3.4. Let 3=3n
q be a quantum complete intersection, and let d ≤ n−1.

Then HH∗,d(3) 6= 0 if and only if

• (Qd)i ∈ Ri for all i ∈ I1, and

• (Qd)i = 1 for all i ∈ I2.

In this situation HH∗,d(3) has the k-vector space basis{
E d

p | 0≤ p and p(−d)≤ p ≤ p(−d)+ 1
}
, (∗)

where E d
p is represented by the (degree-d) map from the c-tuple complex

P1⊗ · · ·⊗Pc

to 3 (shifted to position p) sending 1⊗1 to xd+s( p) in position p. In particular,

E p
d has extension degree

c∑
i=1

pi .

The assumptions on p in (∗) just ensure that 0 ≤ d + s( p) ≤ n− 1: in other
words, we are in the cube where Homd

3en(P1⊗ · · ·⊗Pc,3) does not vanish.
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Now let us compare this result to the description of Ext∗3(k, k) obtained in
[Bergh and Oppermann 2008a]. More precisely: tensoring over 3 with k yields a
map from the Hochschild cohomology to the Ext-algebra of the 3-module k. Our
aim now is to determine its image. By Theorem 5.3 of that reference, the latter
ring has the form

Ext∗3(k, k)=
k〈y1, . . . , yc, z1, . . . , zc〉
y j yi + qi j yi y j for i 6= j
y j zi − qni

i j zi y j for all i, j
z j zi − qni n j

i j zi z j for all i, j
y2

i − zi if ni = 2
y2

i if ni 6= 2



,

where |yi | = (1,−ei ) and |zi | = (2,−ni ei ), and where the quotient is by the ideal
generated by the polynomials indicated.

Corollary 3.5. The image of the map (−⊗3 k)∗ :HH∗(3)→ Ext∗3(k, k) is⊕
d∈D

Ext∗,d(k, k), (†)

where the sum runs over graded pieces where the corresponding graded piece of
the Hochschild cohomology does not vanish:

D=
{

d ∈ Zc
: (Qd)i ∈ Ri for i ∈ Imax ∪ I1, (Qd)i = 1 for i ∈ I2

}
.

Proof. By construction the image cannot be bigger than the sum in (†). To see that
any Ext∗,d(k, k) with d ∈ D is contained in the image, first note that

dimk Ext∗,d(k, k)=
{

1 if ∀i : di ≤ 0 and ni | di ∨ ni | di + 1,
0 otherwise.

The condition for Ext∗,d(k, k) not vanishing is equivalent to asking that d=−s( p)
for some p ∈ Nc. By definition, E d

p is represented by a map sending 1⊗1 to 1
in position p, and hence it does not vanish when being tensored over 3 by k.
Therefore the image is at least one-dimensional in degree d. �

4. The rate of growth of the Hochschild cohomology

In this section we study how big the Hochschild cohomology of a finite-dimensional
quantum complete intersection is. Our way to measure for measuring the size is
the rate of growth, as explained in the following definition.
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Definition 4.1. Let X =
∐
∞

i=0 X i be an N-graded k-module such that the X i have
finite k-dimension. The rate of growth of X , denoted by γ(X), is defined as

γ(X)= inf{t ∈ N | ∃a ∈ N such that ∀i : dimk X i ≤ ai t
}.

If X is a graded commutative ring that is finitely generated over k, then γ(X)=
Krull.dim X . However this assumption is not always satisfied for the Hochschild
cohomology ring of quantum complete intersections (see Sections 5 and 6).

We first decompose the Hochschild cohomology as follows:

Construction 4.2. For G ⊆ {1, . . . , c} we denote by HH∗G the k-span of the E d
p

for which d and n satisfy the condition

G =
{
i ∈ {1, . . . , c}

∣∣ di < ni − 1 or (Qd)i ∈ Ri
}
.

That is, we take all those E d
p from Theorem 3.4 such that G contains exactly the

indices not in Imax plus those in Imax that fulfill the requirements for elements of I1.
Clearly this yields a decomposition HH∗(3)=

⊕
G⊆{1,...,c}HH∗G

, and hence

γ
(
HH∗(3)

)
= max

G⊆{1,...,c}
γ(HH∗G).

Proposition 4.3. For G ⊆ {1, . . . , c} the rate of growth of HH∗G is

γ(HH∗G)=
{

0 if HH∗G = 0,
pos.rk Ker QG×G otherwise.

(For the definition of pos.rk see Technical notation III.) In particular we always
have γ(HH∗G)≤ |G|.

For the proof we will need the following observation.

Observation 4.4. Let K ≤ Za be a submodule. The k-module with basis K ∩Na

is Z-graded by |x| =
∑a

i=1 xi for x ∈ K . With this grading, its rate of growth is
γ(k(K ∩Na))= pos.rk K .

Proof of Proposition 4.3. By construction, HH∗G has the k-basis{
E d

p | p ≥ 0, d ≤ n− 1, p(−d)≤ p ≤ p(−d)+ 1, di = ni − 1 for i /∈ G,

(Qd)i 6∈ Ri for i /∈G, (Qd)i ∈ Ri for i ∈G \ I2, (Qd)i = 1 for i ∈G∩ I2
}
,

and the extension degree of E d
p is

∑c
i=1 pi .

Note that the map p is linear up to some rounding. Hence we may calculate the
rate of growth with respect to the grading given by −

∑c
i=1 di .

Since for any d there are at least one and at most 2c values of p satisfying the
conditions of the set above, we may disregard the number of different choices for
p for a given d.
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Next, since d is fixed outside G, we may restrict our attention to the G part of
the indices. Write G = {1, . . . , c} \G and define, for G ⊆ G ′ ⊆ {1, . . . , c} the set

BG ′ =

{
dG ∈ZG

| dG ≤ nG−1, Q{i}×G dG ·Q{i}×G(nG−1)
6∈ Ri for i ∈G ′ \G,
∈ Ri for i ∈G \ I2,

= 1 for i ∈ I2

}
.

We need to understand the rate of growth of the k-module with basis B{1,...,c}.
Note that B{1,...,c} ⊆ BG (more generally, for G ′ ⊆ G ′′ we have BG ′ ⊇ BG ′′).

Now BG is invariant under adding elements of the set

−

( ∏
i∈G

ni N
)
∩Ker QG×G,

and contains only finitely many elements which are not obtained from another
element by such an addition. Hence, if BG is nonempty, the rate of growth of the
k-module with basis BG is identical to the rate of growth of the k-module with
basis NG

∩Ker QG×G , which, by Observation 4.4, is pos.rk Ker QG×G .
It follows that γ(HH∗G)≤ pos.rk Ker QG×G .
Now we let Ĝ be maximal with G⊆ Ĝ⊆{1, . . . , c} such that pos.rk Ker QĜ×G=

pos.rk Ker QG×G . It follows, as in the discussion above, that if BĜ 6= ∅ then the
rate of growth of the k-module with basis BĜ is pos.rk Ker QG×G .

Finally let i 6∈ Ĝ. Using arguments similar to the foregoing, one sees that the
rate of growth of the free module with basis BG \BG∪{i} is strictly smaller than
pos.rk Ker QG×G .

Since
B{1,...,c} =BĜ \

( ⋃
i 6∈Ĝ

(
BG \BG∪{i}

))
,

it follows that, provided B{1,...,c} 6= ∅, the rate of growth of the k-module with
basis B{1,...,c} is pos.rk Ker QG×G . �

Summing up the results for HH∗G , we have shown:

Theorem 4.5. The rate of growth of the Hochschild cohomology of a finite-dimen-
sional quantum complete intersection is the maximum of pos.rk Ker QG×G over

G =
{
i ∈ {1, . . . , c} | di < ni − 1 or (Qd)i ∈ Ri

}
,

where d ranges over elements of Zc such that d ≤ n−1, (Qd)i ∈ Ri for all i with
ni | di + 1 and di < 0, and (Qd)i = 1 for all i with ni - di + 1.

Corollary 4.6. For a finite quantum complete intersection either all qi j are roots
of unity, or the rate of growth of the Hochschild cohomology is at most c− 2.

Proof. Assume not all qi j are roots of unity. Then rk Ker Q≤ c−2, since Q is skew
symmetric. Hence pos.rk Ker Q ≤ c− 2. Now we consider G with |G| = c− 1,
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that is, G = {1, . . . , c} \ {h} for some h. If rk Ker QG×G ≤ c− 2 there is nothing
to show, so assume QG×G only contains roots of unity. Since Q does not only
contain roots of unity there is i ∈ G such that qih is not a root of unity. But then
(Qd)i cannot be a root of unity for any d ∈ Zc with dh = nh − 1 6= 0. Hence this
G is not to be considered in the maximum of Theorem 4.5. �

5. On the multiplicative structure of the Hochschild cohomology

In this section we will identify a subring S of the Hochschild cohomology ring,
which is a finitely generated commutative k-algebra without zero divisors, and
is isomorphic to the Hochschild cohomology modulo nilpotent objects. We will
completely describe S, determine its Krull dimension, and determine when the
entire Hochschild cohomology ring is finitely generated as a module over S.

By Theorem 3.4 we know that the Hochschild cohomology has a k-vector space
basis{

E d
p
∣∣ p ≥ 0, p(−d)≤ p ≤ p(−d)+ 1,

(Qd)i ∈ Ri for all i with ni | di+1> 0, (Qd)i = 1 for all i with ni - di+1.
}

For simplicity of notation we set E d
p = 0 whenever d and p do not satisfy the

conditions above. Then we always have

E d
p · E

d ′
p′ ∈ k E d+d ′

p+ p′ .

Lemma 5.1. Assume s( p) 6= −d. Then E d
p is nilpotent.

Proof. Let i be such that s( p)i >−di . Then

s(ni p)i ≥ nis( p)i ≥ ni (1− di )≥ ni − ni di ,

and hence (E d
p)

ni ∈ k Eni d
ni p = 0. �

We are particularly interested in the nonnilpotent elements of the Hochschild
cohomology ring. For simplicity of notation, we give the remaining candidates a
new name:

s p := E−s( p)
p .

Lemma 5.2. Let p ∈Nc such that there is i ∈ {1, . . . , c} with ni > 2 and pi is odd.
Then s p is nilpotent.

Proof. A straightforward calculation shows that (s p)
2 satisfies the assumption of

Lemma 5.1. �

Now we set

S= k

〈
s p | (Qs( p))i = 1 for all i with pi even,

(Qs( p))i =−1 and ni = 2 for all i with pi odd
〉
.
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By the preceding two lemmas, the composition S ↪→ HH∗(3) � HH∗(3)
(nilpotence)

is
onto.

Our next aim is to understand how the elements of S are multiplied with each
other and with the other E d

p. To do so we lift the map representing s p, with p as
in the definition of S, to a map of c-tuple complexes.

Lemma 5.3. The element s p with p as in the definition of S is represented by the
map of c-tuple complexes P1⊗ · · ·⊗Pc→ (P1⊗ · · ·⊗Pc)[ p] that sends 1⊗1 to
(1/q〈s(r) | s( p)〉) · 1⊗1 in position p+ r .

Proof. It suffices to verify that the map given in the lemma is a map of c-tuple
complexes, since then it clearly does the right thing in position p. This amounts
to checking that the various squares commute — a straightforward, if somewhat
tiresome, calculation involving four different cases, according to the parities of the
pi and ri . �

Note that when passing from c-tuple complexes to their total complexes some
maps need to be multiplied by −1. One choice for doing so is to multiply the map
in direction i from position p+ ei to p by

∏
j<i (−1)pi . With this convention we

have the following immediate consequence of Lemma 5.3.

Corollary 5.4. We have s p E d
p′ =

∏
j<i (−1)p j p′i

q〈s( p′) | s( p)〉 E d−s( p)
p+ p′ . In particular,

s ps p′ =

∏
j<i (−1)p j p′i

q〈s( p′) | s( p)〉 s p+ p′ . (‡)

From these results we obtain:

Theorem 5.5. The Hochschild cohomology ring of a quantum complete intersec-
tion has a subring S isomorphic to

k

〈
y p1n1/2

1 . . . y pcnc/2
c ∈k[y1, . . . yc]

∣∣(Qs( p))i=1 for all i with pi even,

(Qs( p))i=−1 and ni=2 for all i with pi odd
〉
.

In particular, S is a finitely generated k-algebra without zero-divisors.
Moreover the composition

S ↪→ HH∗(3)�
HH∗(3)

(nilpotence)

is an isomorphism. Hence HH∗(3)
(nilpotence)

is a split quotient of HH∗(3) and is iso-
morphic to S.

Proof. That the s p commute can be checked directly, using (‡) in Corollary 5.4.
Alternatively, note that, since (‡) implies s2

p 6= 0, either s p lies in the even part of
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the Hochschild cohomology or char k = 2. In both cases it follows from general
theory that s p lies in the center of the Hochschild cohomology ring.

Thus S has the form described in the theorem.
To see that S is finitely generated as a k-algebra we partially order the set
{y p1n1/2

1 . . . y pcnc/2
c ∈ S} by comparing the exponents componentwise. Since the

ideal in k[y1, . . . , yc] generated by this set is finitely generated, it follows there
are only finitely many minimal elements with respect to this partial order. We
claim that they generate S as a k-algebra. Assume that y p1n1/2

1 . . . y pcnc/2
c ∈ S is

not minimal. Then one easily sees that y p1n1/2
1 . . . y pcnc/2

c is the product of two
smaller elements of this form (for instance, one of them could be chosen minimal).
Iterating we see that any y p1n1/2

1 . . . y pcnc/2
c ∈ S is a product of minimal ones.

The final part of the theorem follows from the comment at the top of page 832
and from Corollary 5.4. �

We conclude this section by giving a precise criterion for when the entire Hoch-
schild cohomology ring is finitely generated over S.

Lemma 5.6. The decomposition HH∗(3) =
⊕

G⊆{1,...,c}
HH∗G of Construction 4.2

respects the S-module structure.

Proof. This follows immediately from the definition of HH∗G and the multiplication
formula in Corollary 5.4. �

Proposition 5.7. The module HH∗G is finitely generated over S if and only if it is
zero or pos.rk Ker QG×G = pos.rk Ker Q{1,...,c}×G .

Proof. Clearly we may assume HH∗G 6= 0. Note that the s p with pi 6= 0 for some
i ∈ {1, . . . , c} \ G annihilate HH∗G , and hence HH∗G 6= 0 is actually a module
over the split quotient SG := k〈s p ∈ S | ∀i : i ∈ G ∨ pi = 0〉. By Observation 4.4,
γ(SG)= pos.rk Ker Q{1,...,c}×G .

Moreover SG acts on HH∗G without zero-divisors: Since both SG and HH∗G are
Zc-graded it suffices to look at graded parts. For these, this is immediate from the
multiplication formula in Corollary 5.4. The claim follows. �

Corollary 5.8. For any finite-dimensional quantum complete intersection HH∗
{1,...,c}

is a finitely generated S-module.

Theorem 5.9. The Hochschild cohomology ring is finitely generated as a module
over S if and only if pos.rk Ker QG×G = pos.rk Ker Q{1,...,c}×G for any subset
G ⊆ {1, . . . , c} for which there exists d ∈ Zc satisfying

• d ≤ n− 1,

• di = ni − 1 for all i ∈ {1, . . . , c} \G,

• (Qd)i ∈ Ri for all i ∈ G with ni | di + 1,

• (Qd)i = 1 for all i ∈ G with ni - di + 1.
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6. Examples

Example 6.1 [Bergh and Erdmann 2008]. Let 3 = 3n1,n2
q12

be a codimension-2
quantum complete intersection such that q12 is not a root of unity. Take d =
(d1, d2) ≤ (n1−1, n2−1). Then HH∗,d(3) does not vanish if and only if for any
i ∈ {1, 2} we have di = ni − 1 or ni - di + 1 and qd3−i

12 = 1. Since q12 is not a root
of unity this means that for any i with di < ni − 1 we have d3−i = 0. Therefore
the only d that contribute to the Hochschild cohomology are (n1−1, n2−1) and
(0, 0). For d = (n1−1, n2−1) we obtain Imax = {1, 2}, I1 = ∅, I2 = ∅, and
p(−d)= (−1,−1). Hence

HH∗,d(3)=
k

〈
E (n1−1,n2−1)
(0,0)

〉
.

For d= (0, 0) we obtain Imax=∅, I1=∅, I2={1, 2}, and p(−d)= (0, 0). Hence

HH∗,d(3)=
k

〈
E (0,0)(0,0), E (0,0)(0,1), E (0,0)(1,0), E (0,0)(1,1)

〉
.

Summing up we obtain

HH∗,d(3)=
k

〈
E (n1−1,n2−1)
(0,0) , E (0,0)(0,0), E (0,0)(0,1), E (0,0)(1,0), E (0,0)(1,1)

〉
,

and hence
dim HH∗(3)= (2, 2, 1, 0, . . . ).

We generalize this example to arbitrary codimensions:

Example 6.2. Let c ≥ 2 and assume the qi j are generic, meaning that (Qd)i is a
root of unity only if d j = 0 for all j 6= i . Then HH∗,d(3) 6= 0 only for d = n− 1
or d = 0. Similarly to Example 6.1 we obtain

HH∗,n−1(3)= k〈E
n−1
0 〉, HH∗,0(3)=

k
〈E0

p | 0≤ p ≤ 1〉.

In particular,

dim HH∗(3)=
(

1+
(c

0

)
,
(c

1

)
,
(c

2

)
,
(c

c

)
, . . .

)
.

Since the total dimension is finite, the rate of growth γ(HH∗(3)) is 0 and S= k.

Now let us look at the other extreme case.

Example 6.3 [Bergh and Oppermann 2008a]. Let c ≥ 2 and let all qi j be roots of
unity. Then

pos.rk Ker QG ′×G = rk Ker QG ′×G = |G|

for any G,G ′ ⊆ {1, . . . , c}. Hence HH∗(3) is finitely generated over S, and

Krull.dim S= γ
(
HH∗(3)

)
= c.

The final two examples illustrate that when γ(HH∗(3)) = c− 2 very different
kinds of behavior can occur.
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Example 6.4. Let q ∈ k× not be a root of unity and let c ∈ N≥3. Let 3 be a
quantum complete intersection of codimension c, with

qi j = 1 for i, j < c− 1, qi,c−1 = q for i < c− 1,

qic = q−1 for i < c− 1, qc−1,c = q−1.

One easily sees that S= k. A case-by-case study (according to the values of i for
which di = ni − 1) shows that the subspace HH∗

{1,...,c−2} has a finite-dimensional
complement in HH∗(3). It is nonempty if and only if nc−1 = nc, and in that case

γ
(
HH∗(3)

)
= γ

(
HH∗
{1,...,c−2}

)
= pos.rk Ker Q{1,...,c−2}×{1,...,c−2}︸ ︷︷ ︸

=0

= c− 2.

Example 6.5. Let q ∈ k× not be a root of unity, let c ∈ N≥3, and (for simplicity)
let char k 6= 2. Let 3 be a quantum complete intersection of codimension c with

qi j = 1 for i, j < c− 1, qi,c−1 = q for i < c− 1,

qic = q−1 for i < c− 1, qc−1,c = q.

Then S=
k

〈
s p

∣∣∣pi even and
(

Q
( p j n j

2

)
j

)
i
= 1 for all i

〉
=

k

〈
s p

∣∣∣pi even and
c−2∑
j=0

p j n j = pc−1nc−1 = pcnc for all i
〉
.

In particular,
Krull.dim S= c− 2,

and hence also γ(HH∗(3))= c− 2, by Corollary 4.6 .
Similarly to Example 6.4 one sees that HH∗

{1,...,c−2}+HH∗
{1,...,c} form a subspace

of HH∗(3) which has a finite-dimensional complement. Since by Corollary 5.8
HH∗
{1,...,c} is always finitely generated over S, we only have to look at HH∗

{1,...,c−2}.
As in Example 6.4, one sees that HH∗

{1,...,c−2} 6= 0 if and only if nc−1 = nc. Since

pos.rk Ker Q{1,...,c−2}×{1,...,c−2} = c− 2 6= 0= pos.rk Ker Q{1,...,c}×{1,...,c−2}

it follows that HH∗(3) is finitely generated over S if and only if nc−1 6= nc.

7. Hochschild homology

To calculate the Hochschild homology, we proceed as for the Hochschild coho-
mology. That is, we calculate for any d ∈ Zc the degree-d part of the Hochschild
homology. The actual calculations are very similar to the corresponding ones in
Section 3, and will therefore be omitted here.

Observation 7.1. The degree-d part (3en
〈s〉 ⊗3en 3)d is nonzero if and only if

s ≤ d ≤ s+ n− 1. In that case it is one-dimensional.
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As in the case of the cohomology, it follows that the c-tuple complex

(P1⊗ · · ·⊗Pc⊗3en 3)d

is concentrated in a cube (with sides of length 0 or 1), where there is a one-
dimensional space in each corner of the cube.

Next we need to understand what happens to a map f :3en
〈s〉→3en

〈s′〉 when
it is tensored over 3en with 3.

Lemma 7.2. Let f :3en
〈s〉→3en

〈s′〉. Then f ⊗3en 3 :3〈s〉→3〈s′〉 is given by

( f ⊗3en 3)(xa)=
∑

i

f i
2 xa f i

1 ,

where f (1⊗1)=
∑

i f i
1 ⊗ f i

2 .

Now we are ready to calculate what tensoring over3en with3 does to the maps
occurring in the c-tuple complex P1⊗ · · ·⊗Pc.

Lemma 7.3. Let s and d be such that s ≤ d ≤ s+ n− 1 and let i ∈ {1, . . . , c}.

(1) Assume that di > si . The map (3〈s+ ei 〉)d→ (3〈s〉)d obtained by tensoring
with 3 the map over 3en given by

3en
〈s+ ei 〉 →3en

〈s〉 mapping 1⊗1 7→
1

q〈ei | s〉
xi ⊗ 1−

1
q〈s | ei 〉

1⊗ xi

and then taking the part of degree d vanishes if and only if (Qd)i = 1.

(2) Assume that di = si+ni−1. The map (3〈s+(ni−1)ei 〉)d→ (3〈s〉)d obtained
by tensoring with 3 the map over 3en given by

3en
〈s+ ei 〉 →3en

〈s〉
mapping

1⊗1 7→
ni−1∑
j=0

(
1

q〈ei | s〉

) j( 1
q〈s | ei 〉

)ni−1− j

x j
i ⊗ xni−1− j

i

and then taking the part of degree d vanishes if and only if (Qd)i ∈ Ri .

As for the cohomology, it follows that if the map on one edge of the cube (P1⊗

· · ·⊗Pc⊗3en 3)d vanishes then all parallel maps also vanish.

Theorem 7.4. Let 3 = 3n
q be a quantum complete intersection, and let d ∈ Nc.

Divide the set {1 . . . c} into the three parts

I0 = {di = 0}, I1 = {ni | di } \ I0, I2 = {ni - di }.

Then HH∗,d(3) 6= 0 if and only if

• (Qd)i ∈ Ri for any i ∈ I1, and

• (Qd)i = 1 for any i ∈ I2.
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In this situation HH∗,d(3) has a k-vector space basis

{T p
d | p ≥ 0 and p(d+ 1)− 2≤ p ≤ p(d+ 1)− 1}.

Here T p
d is represented by xd−s( p) in position p. In particular, T p

d has torsion
degree

∑c
i=1 pi .

8. The rate of growth of the Hochschild homology

To study the rate of growth of the Hochschild homology, we decompose it similarly
to our decomposition of the Hochschild cohomology in Construction 4.2.

Construction 8.1. For G ⊆ {1, . . . , c} we denote by HHG
∗

the k-span of T p
d with

G =
{
i ∈ {1, . . . , c}

∣∣ di > 0 or (Qd)i ∈ Ri
}
.

This yields a decomposition HH∗(3)=
⊕

G⊆{1,...,c}HHG
∗

, and hence

γ
(
HH∗(3)

)
= max

G⊆{1,...,c}
γ(HHG

∗
).

As in the proof of Theorem 4.5, one obtains:

Theorem 8.2. the rate of growth of the Hochschild homology of a finite-dimen-
sional quantum complete intersection, is the maximum of pos.rk Ker QG×G over

G =
{
i ∈ {1, . . . , c}

∣∣ di>0 or (Qd)i ∈ Ri
}
,

where d ranges over element of Nc such that (Qd)i ∈ Ri for all i with ni | di and
di > 0, and (Qd)i = 1 for all i with ni - di .

We conclude this paper by showing that the Hochschild homology of 3 is
closely related to the Hochschild homologies of certain subalgebras.

For I ⊂ {1, . . . , c}, denote by 3I the subalgebra of 3 generated by xi with
i ∈ I . Then 3I is a split quotient of 3 (that is, we have algebra homomorphisms
3I→3→3I whose composition is the identity on3I ). It follows from the func-
toriality of Hochschild homology that HH∗(3I ) can be embedded into HH∗(3).

The following theorem shows that the Hochschild homologies of these subalge-
bras determine the Hochschild homology of 3 to a large extent.

Theorem 8.3. Let M be the maximum of the rates of growth of HH∗(3{i}), where
i ∈ {1, . . . , c} and {i} = {1, . . . , c} \ {i}. Then the rate of growth of HH∗(3) is M
if HH{1,...,c}∗ = 0, and max{M, pos.rk Ker Q} if HH{1,...,c}∗ 6= 0.

Proof. We will need to look at the sets HHG
∗

as well as their analogs for HH∗(3{i}).
To avoid confusion we write HHG

∗
(3) and HHG

∗
(3
{i}), respectively, for these

vector spaces.
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Let i0 ∈ {1, . . . , c} and G ⊆ {i0}. It follows from the explicit description of
bases in Theorem 7.4 and Construction 8.1 that HHG

∗
(3) can be identified with a

subspace of HHG
∗
(3
{i0}
), and that the set of T p

d such that

G =
{
i ∈ {i0}

∣∣ di > 0 or (Qd)i ∈Ri
}

and
G 6=

{
i ∈ {1, . . . , c}

∣∣ di > 0 or (Qd)i ∈Ri
}

is a basis of the quotient space. This clearly means that{
i ∈ {1, . . . , c}

∣∣ di > 0 or (Qd)i ∈ Ri
}
= G ∪ {i0},

so the quotient embeds naturally into HHG∪{i0}
∗ .

It follows that

γ
(
HHG
∗
(3)

)
≤ γ

(
HHG
∗
(3
{i0}
)
)
≤max

{
γ
(
HHG
∗
(3)

)
, γ
(
HHG∪{i0}
∗

(3)
)}
.

Taking the maximum over all G and i0 proves the theorem. �
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Meromorphic continuation for the zeta
function of a Dwork hypersurface

Thomas Barnet-Lamb

We consider the one-parameter family of hypersurfaces in P5 over Q with projec-
tive equation (X5

1+X5
2+X5

3+X5
4+X5

5)=5t X1 X2 . . . X5, proving that the Galois
representations attached to their cohomologies are potentially automorphic, and
hence that the zeta function of the family has meromorphic continuation to the
whole complex plane.

1. Introduction

Harris, Shepherd-Barron, and Taylor have proved in [Harris et al. 2010] a potential
modularity theorem, showing that certain Galois representations become automor-
phic after a sufficiently large totally real base change. In their argument, a key
role is played by certain families of hypersurfaces, called Dwork families — in
particular, by the part of the cohomology of the family which is invariant under
a certain group action. (We will write F for the motive given by this part of the
cohomology.) The importance of F to their argument is reflected in the statement
of the theorem they prove: in order to prove an l-adic Galois representation r is
potentially modular using their theorem, one requires, among other conditions,
that the restriction of the residual representation of r to inertia at primes above l
be isomorphic to the restriction of the residual representation of some element of
the family F.

They give two applications in their paper. On the one hand, through considerable
ingenuity (and the fact that the Dwork family includes the Fermat hypersurface,
whose cohomology restricted to inertia is easy to analyze) they are able to deduce
that the odd symmetric powers of the cohomology of an elliptic curve over Q are
modular, and (through further ingenuity) to deduce the Sato–Tate conjecture. On
the other hand, the form of the condition on the inertial representation makes it very
inviting to apply their modularity theorem to F itself. It turns out to be fairly simple

The author was partially supported by NSF grant DMS-0600716 and by a Jean E. de Valpine
Fellowship.
MSC2000: primary 11G40; secondary 11R39, 11F23.
Keywords: Dwork hypersurface, potential automorphy, zeta function.
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to show that the other conditions of the potential modularity theorem are satisfied,
and one can deduce the modularity of F and hence the meromorphic continuation
and functional equation of the zeta function of this part of the cohomology of the
Dwork family.

A very natural question presents itself: is it possible to gain enough control of the
other parts of the cohomology of the Dwork family that one can prove meromorphic
continuation for the whole zeta function? In this paper, I answer this question in the
affirmative for N =5, and also make some remarks on why further generalization of
these methods is likely to be hard absent very significant advances in the technology
of lifting theorems. In the analysis here, a key role is played by [Katz 2009], which
describes the relative cohomology sheaf of the Dwork family over the base, and its
decomposition under the group action alluded to above, in great detail.

Note. Since this paper was written, the technology of potential automorphy has
advanced somewhat; in particular, [Barnet-Lamb et al. 2010] proves certain rather
general potential automorphy theorems for regular, crystalline, self-dual represen-
tations of the Galois group of totally real and CM fields. Using those results, the
argument for Proposition 5 — which is perhaps rather involved at present — could
be replaced with an appeal to the theorems for compatible systems proved in the
new manuscript. The remainder of the present paper, in particular the analysis of
the pieces of the cohomology in Section 3, does not seem to be able to be simplified,
even with these new results.

2. Dwork families

Note. My notation for Dwork families broadly follows [Katz 2009], with N in
place of n, except that Katz works throughout with sheaves with coefficients in
Ql , whereas we will need the flexibility gained by working initially with Ql coeffi-
cients, and extending to Ql only as necessary to apply Katz’s results. Our notation
is not directly comparable with the notation of [Harris et al. 2010].

Let N be a positive integer. Fix a base ring

R0 = Z[1/N , µN ],

where µN denotes the N -th roots of unity. For most of this paper, we work over
Q(µ5) and all Galois representations are representations of subgroups of GQ(µ5).
We will eventually return to working over Q, but when we do so, this will be made
explicit. We consider the scheme

Y ⊂ PN−1
×P1

over R0 defined by the equations

µ(X N
1 + X N

2 + · · ·+ X N
N )= NλX1 X2 . . . X N ,
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using (X1 : · · · : X N ) and (µ : λ) as coordinates on PN−1 and P1 respectively. We
consider Y as a family of schemes over P1 by projection to the second factor. We
will label points on this P1 using the affine coordinate t=λ/µ, and will write Yt for
the fiber of Y above t . From now on (apart from some remarks in the conclusion)
we will be concerned exclusively with the case N = 5.

The family Y is smooth over the open set U = Spec R0[1/(t5
− 1)] away from

the roots of unity. We are interested in the sheaf of relative cohomology of the
family Y above the set U . Let l be a prime number which splits in Q(µ5).1 Let
T0 =U [1/ l], and form lisse sheaves

Fi
l := Riπ∗Ql, (1)

Fi
[l] := Riπ∗Z/ lZ (2)

on T0. (We remark that Katz’s Fi
l would be Fi

l⊗Ql in our notation, since he works
with algebraically closed coefficients throughout.) As a family of hypersurfaces,
much of the cohomology of Yλ is controlled by the hard Lefschetz theorem: for
i 6= N − 2= 3, we have

Fi
l =


0 (i < 0),
0 (i > 6),
0 (i odd, 0≤ i ≤ 6),
Ql(− j) (i = 2 j even, 0≤ i ≤ 6, i 6= 3).

The contribution to the zeta function from the characters Ql(− j) is of course well
understood. Thus in order to prove the functional equation for the zeta function of
the whole variety, it suffices to control the zeta function of F3

l . We will refer to the
sheaf F3

l as Priml from now on. As discussed in the introduction, there is a natural
group action on Priml , allowing us to break down the cohomology into simpler
pieces. Let us now introduce this group action. We will write 0 for (µ5)

5, the
5-fold product of the group of roots of unity, and 0W for the subgroup of elements
(ζ1, . . . ζ5) with

∏5
i=1 ζi = 1. 0W acts on Y with (ζ1, . . . ζ5) acting via(
(X1 : · · · : X5), t

)
7→
(
(ζ1 X1 : · · · : ζ5 X5), t

)
.

The image of µ5 embedded diagonally in 0 lies in 0W and acts trivially under this
action. We will write 1 for this image.

Harris et al. [2010] focus their attention on the invariants under this group action,
a sheaf they refer to as V . They prove the following theorem:

1I believe that this assumption could be dispensed with. However, we will only ever need the
theory we are about to develop for one particular choice of l, and we will always be able to make
this choice such that l splits in Q(µ5). Therefore, I have chosen to make this assumption, since it
simplifies the argument. In particular, it means that the sheaves Priml which we define later will have
coefficient ring Ql , rather than an extension field.
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Theorem 1 [Harris et al. 2010, Theorem 4.4]. Suppose that t ∈Q−Z[1/5]. Then
the function L(Vt , s) is defined and has meromorphic continuation to the whole
complex plane, satisfying the functional equation

L(V, s)= ε(V, s)L(V, 4− s).

As I have said, our aim in this paper is to analyze the remaining parts of the
cohomology and so establish the functional equation for the zeta function of the
variety as a whole. As a first step to doing so, let us consider what other parts there
actually are.

3. The pieces of the cohomology

The character group of 0 is (Z/5Z)5; that of 0W is (Z/5Z)5/〈W 〉 where we write
W for the element (1, 1, . . . , 1); and that of 0W/1 is (Z/5Z)50/〈W 〉where we write
(Z/5Z)50 for {(v1, . . . , v5) ∈ (Z/5Z)5 |

∑
i vi = 0}. Thus the eigensheaves of Priml

under the action described in Section 2 are labeled by elements v of (Z/5Z)50/〈W 〉:
we may write such an element as (v1, . . . , v5)mod W with the vi elements of
Z/5Z; it will often be convenient to abbreviate this to [(v1, . . . , v5)]. Note that
our assumption that µ5 ∈Ql is critical here in ensuring that the decomposition into
eigensheaves is indeed defined with Ql coefficients (and not with coefficients in
some extension field). Note also that the labeling is not canonical, but depends on
a choice of an identification of the copies of µ5 in Ql and in R0: equivalently, it
depends on a choice of embedding R0 ↪→Ql . Having made such a choice, we shall
write Priml,[(v1,...,v5)] for the piece of Priml where 0W/1 acts via [(v1, . . . , v5)].
(Thus, for instance, Vl = Priml,[(0,0,0,0,0)].) Again, we remark that Katz’s Priml,v

would correspond to our Priml,v ⊗Ql .
The obvious action of S5 on (Z/5Z)5 preserves (Z/5Z)50 and W , and hence

induces an action of S5 on (Z/5Z)50/〈W 〉. Note that, if we permute the (vi ) in this
manner, the resulting sheaf Priml,v is isomorphic to the original (the isomorphism
being induced from the map on Y which permutes the X i according to the same
permutation). Thus to show that all the sheaves Priml,v are automorphic it will
suffice to consider a set of v representing all the orbits of (Z/5Z)50/〈W 〉 under S5.

Proposition 2. All orbits of (Z/5Z)50/〈W 〉 under S5 are represented in the list

[(0, 1, 2, 3, 4)], [(0, 0, 1, 1, 3)], [(0, 0, 1, 2, 2)], [(0, 0, 2, 4, 4)],

[(0, 0, 3, 3, 4)], [(0, 0, 0, 1, 4)], [(0, 0, 0, 2, 3)], [(0, 0, 0, 0, 0)].

Thus, if Priml,v is automorphic for each of these v ∈ (Z/5Z)50, it is automorphic
for all v.

Proof. We start with an arbitrary element v of (Z/5Z)50/〈W 〉, and pick a represen-
tative (v1, . . . , vn) ∈ (Z/5Z)50. By changing the representative of the congruence
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class mod W , we may ensure that in the list (v1, . . . , v5), the 0 occurs at least as
often as any other element of Z/5Z. Then, applying an appropriate permutation to
v (and hence to the vi ), we may ensure that the vi increase. (We order congruence
classes mod 5 according to the order of their unique representatives in {0, . . . , 4}.)

Since 0 occurs at least as often as anything else, there must be at least one zero
at the beginning of the list (v1, . . . , v5). We split into several cases according to
the number of zeroes there. Clearly, if there is 1 zero then v = [(0, 1, 2, 3, 4)]; if
there are 4 or more zeros then v = [(0, 0, 0, 0, 0)]; and if there are 3 then the two
remaining vi are 1 and 4 or 2 and 3.

If there are 2 zeroes, then we split into cases according to the value of v3. If,
for instance, v3 = 1, then v4+v5 = 4, so v4, v5 must be {1, 3}, {2, 2}, or {0, 4}, the
last being impossible since the vi must increase. The other cases are similar. �

Proposition 3. Assume we have chosen an arbitrary embedding of R0 into Ql . For
each v in the following table, the dimension and Hodge–Tate numbers of Priml,v

are as given:

v dim Priml,v HT(Priml,v)

[(0, 1, 2, 3, 4)] 0 {}

[(0, 0, 1, 1, 3)] 2 {1, 2}
[(0, 0, 1, 2, 2)] 2 {1, 2}
[(0, 0, 2, 4, 4)] 2 {1, 2}
[(0, 0, 3, 3, 4)] 2 {1, 2}
[(0, 0, 0, 1, 4)] 2 {1, 2}
[(0, 0, 0, 2, 3)] 2 {1, 2}

In particular, Priml,[(0,1,2,3,4)] is zero-dimensional, and although the Hodge–Tate
numbers depend in principle on the choice of embedding of R0 into Ql , in practice
they are independent of this choice.

Proof. Recall that at the beginning of this section we chose a particular embedding
R0 → Ql in order to label the pieces of the cohomology. (We remark that since
R0=Z[1/N , µn] and we have a running assumption that µN ⊂Ql , this is the same
thing as choosing an embedding R0 ↪→Ql .) Katz makes a corresponding choice in
[Katz 2009, §1], and the Hodge–Tate numbers at this particular embedding (as well
as the dimension, which does not depend on the choice of an embedding) may then
be calculated by applying the procedure described in [ibid., Lemma 3.1]. (We will
investigate what happens for Hodge–Tate numbers at the other embeddings later.)
More precisely, Katz’s procedure computes the Hodge–Tate numbers for his sheaf
Priml,v, which is our Priml,v ⊗Ql Ql , but of course the Hodge–Tate numbers of
Priml,v and Priml,v ⊗Ql Ql are the same.
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As an example, we will compute the dimension and Hodge–Tate numbers for
v = [(0, 0, 1, 1, 3)]. We are asked to consider the coset of elements of (Z/5Z)50
representing v = [(0, 0, 1, 1, 3)], that is to say the particular embedding R0→Ql

which was chosen arbitrarily at the beginning of this section (or in [ibid., §1]) and
used to label the pieces of the cohomology

{(0, 0, 1, 1, 3), (1, 1, 2, 2, 4), (2, 2, 3, 3, 0), (3, 3, 4, 4, 1), (4, 4, 0, 0, 2)}.

The lemma then tells us that the dimension of Priml can be computed as the number
of elements of this set which are totally nonzero; that is, contain no 0’s. There are
two of these. Then, the Hodge–Tate numbers are computed by taking the de-
grees of the totally nonzero representatives above, where the degree of an element
(v1, . . . , vn)∈ (Z/5Z)50 is

∑
i ṽi , and where (in turn) for each i , ṽi is the integer rep-

resenting vi in the range 0 to 4. Then the multiset of these degrees is the multiset of
Hodge–Tate numbers, with each element increased by 1. In our case, the HT num-
bers are therefore {(1+ 1+ 2+ 2+ 4)/5− 1, (3+ 3+ 4+ 4+ 1)/5− 1} = {1, 2}.

For the other v’s, the totally nonzero representatives are as follows:

v Totally nonzero representatives

[(0, 0, 1, 2, 2)] {(1, 1, 2, 3, 3), (2, 2, 3, 4, 4)}
[(0, 0, 2, 4, 4)] {(2, 2, 4, 1, 1), (4, 4, 1, 3, 3)}
[(0, 0, 3, 3, 4)] {(3, 3, 1, 1, 2), (4, 4, 2, 2, 3)}
[(0, 0, 0, 1, 4)] {(2, 2, 2, 3, 1), (3, 3, 3, 4, 2)}
[(0, 0, 0, 2, 3)] {(1, 1, 1, 3, 4), (4, 4, 4, 1, 2)}

The result, for the Hodge–Tate numbers at our chosen embedding, follows.
Now, when we change our choice of embedding, the effect is to relabel the

various pieces of the cohomology, by multiplying their labels v by an element of
(Z/5Z)×. It is easy to see from the table that such relabeling sends an eigenspace to
another eigenspace where the calculated Hodge–Tate numbers from the algorithm
are the same. Hence we are done. �

4. Controlling the L functions

We will now try to control the L functions of the two-dimensional pieces we have
singled out.

Lemma 4. Let v be taken from the table in Proposition 3. There is a constant D
such that if M is an integer divisible only by primes p > D and if t ∈ U then the
map

π1(U, t)→ SL(Prim[M]v,t)
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is surjective. (Here SL(Prim[M]t) denotes the group of automorphisms of the two-
dimensional module Prim[M]t with determinant 1.)

Proof. The monodromy of Priml⊗Ql is Zariski dense in SL2(Priml), using [Katz
2009, Lemma 10.3], and remembering that Sp2 = SL2. The same is then seen
to hold for Priml . We can then deduce the result using [Matthews et al. 1984,
Theorem 7.5 and Lemma 8.4] or [Nori 1987, Theorem 5.1]. �

We now proceed to analyze the two-dimensional pieces. We shall write Prim∗,v
to mean the motive whose l-adic realizations are the Priml,v as l varies.

Proposition 5. For each v in the table of Proposition 3 with Prim∗,v two-dimen-
sional, and for each t ∈Q−Z[1/10], the function L(Prim∗,v,t , s) is defined and has
meromorphic continuation to the whole complex plane, satisfying the functional
equation

L(Prim∗,v,t , s)= ε(Prim∗,v,t , s)L(Prim∗,v∗,t , 4− s),

where we write v∗ for {5− k | k ∈ v}.

Before proving this, let us briefly remind ourselves of the significance of the
words “is defined” in the statement of the theorem. The point is that, for each prime
p, we wish to construct a local L factor L p, and we do so by looking at our motive’s
l-adic cohomology Priml,v,t for some l 6= p. Given an embedding Q ↪→ Ql , we
can associate a Weil–Deligne representation WD(Priml,v,t |Gal(Qp/Qp)

)F-ss to this l-
adic cohomology at p, and to this, in turn, we can associate an L factor. To get an
unambiguous L factor, we must insist that the Weil–Deligne representation (and
hence the L factor) do not depend on the choices we made: that is, the choice of l
and of an embedding Q ↪→Ql . Thus the statement “L(Prim∗,v,t , s) is defined” is
saying that for every p, the local Weil–Deligne representation at p constructed in
this way is independent of these choices.

Proof of Proposition 5. Our argument draws heavily on Theorem 3.3 of [Harris
et al. 2010]. We first choose q to be a rational prime dividing the denominator of
t , so that vq(t) < 0 and q - 10.

Step 1. The goal of this step is to choose certain primes l and l ′ which will be instru-
mental to the argument. In order to be in a position to do this we must first analyze
the Zariski closure of the image of Gal(Q/Q(µ5)) in the group GL(Priml,v,t) of
automorphisms of the Ql vector space Priml,v,t . We will write Gl for this image
and G0

l for the connected component of the identity in it.
By [Katz 2009, Lemma 10.1] the local monodromy of Priml,v,t ⊗Ql at ∞ is

unipotent with a single Jordan block. (Condition 4 of the equivalent conditions in
that lemma may be verified by direct inspection of each case in Section 3.) We
immediately deduce the same for Priml,v,t itself. By the argument used to estab-
lish [Harris et al. 2010, Lemma 1.15], and recalling that vq(t) < 0, we conclude
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that inertia at q acts via a maximal unipotent. Thus Gl
0 contains such a maximal

unipotent, and hence, by [Scholl 2006, Proposition 3], acts irreducibly.
Moreover, the determinant map to Gm is dominating. To see this, note that

Poincaré duality furnishes us with a perfect pairing between Priml,v,t and Priml,v∗,t

towards Q(−3), and that Priml,v∗,t is the complex conjugate of Priml,v,t . Thus we
have

Primc
l,v,t = Prim∨l,v,tε

−3
l , (3)

which tells us in turn that (det Priml,v,t)(det Priml,v,t)
c
= ε−6

l , which would be
impossible if the determinant character did not dominate Gm .

Thus by [Katz 1988, Theorem 9.10], we may conclude that G0
l is GL2. The

main theorem of [Larsen 1995] then tells us that the set of primes l for which we
fail to have

PSL2(Prim[l]v,t)⊂ 0l ⊂ PGL2(Prim[l]v,t) (4)

has Dirichlet density 0.
By mimicking the argument for Proposition 3.4.2 of [Barnet-Lamb 2008], we

can construct a field F∗(v) such that if a prime l splits in F∗(v), the determinant of
the natural polarization on Prim[l]v coming from Poincaré duality will be a square.
(We also take from this paper two notations which we will use a few lines below:
the field F∗(2, 10) and the integer C(2, 10), defined respectively in Proposition
3.4.2 and Corollary 2.1.2 there.) Now, since the set of primes for which (4) holds
had Dirichlet density 1, the set of primes for which (4) holds and for which l
splits in Q(µ10), in F∗(v) and in F∗(2, 10) has positive density. We may therefore
choose l to be such a prime, and in addition insist that

vl(t5
− 1)= 0

and that l be greater than n, C(2, 10) and D (see Lemma 4 for the latter).
We choose l ′ to be a distinct rational prime enjoying the same list of properties.

Note that (4) will ensure that the image of Gal(Q/Q(ζl)) in GL(Prim[l]t) is big,
via (say) [Clozel et al. 2008, Lemma 2.5.5], and the simplicity of PSL2(Fl) will
ensure that ζl 6∈Qker Prim[l]t .

Step 2. Our next step in the proof is to establish that there exists a CM field
F1/Q(µ10) and a t ′ ∈ T (F1) such that we have

Prim[l]v,t ′ ≡ Prim[l]v,t , (5)

Prim[l ′]v,t ′ |IF1,w
≡ ε−1

l ⊕ ε
−2
l , (6)

vq(t ′) < 0 if q | q, (7)

vw((t ′)5− 1)= 0 if w | ll ′. (8)

First, pick a point t ′′ ∈Q(µ10)
+ satisfying the following conditions:
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• If w|ll ′ then w((t ′′)5− 1)= 0.
• If w|l ′ then Prim[l ′]t ′′ |Iw ≡ ε

−1
l ⊕ ε

−2
l .

• Gal(Q/Q(µ10)
+)→ SL(Prim[l ′]t ′′) is surjective.

As in [Harris et al. 2010], the existence of such a t ′′ relies on the form of Hilbert
irreducibility with weak approximation; see [Ekedahl 1990]. We may achieve the
second condition by taking t ′′ to be l ′-adically close to zero, since Prim[l ′]0|Iw
is ε−1

l ⊕ ε
−2
l . (This last is because we know Prim[l ′]0|Iw to be a direct sum of

characters, as in [Deligne et al. 1982], and we know from Proposition 3 that they
are crystalline with Hodge–Tate numbers 1, 2.)

We introduce the character φl as is done in Section 3.2 of [Barnet-Lamb 2008].
All references through the end of this step are to that paper.2 We will also consider
the l ′-adic version of φ, as well as the mod M := ll ′ version; we will abuse notation
by writing φ for all of these.

Now, we follow the argument of the proof of Proposition 3.4.1, with this setup:
l1= l, l2= l ′, ρ̄1= Prim[l]v,t⊗ φ−1, ρ̄2= Prim[l ′]v,t ′′⊗ φ−1, the q j are the primes
above q , and N = 5. Details follow:

The first part of the argument works in exactly the same way: we set M := ll ′,
introduce a mod M character φl and a mod M representation ρ̄Z/MZ, and note that
Prim[M] and ρ̄Z/MZ become isomorphic once we disregard the Galois action and
keep only the modules with a pairing, using the assumption that l splits in F∗(v).

We next study the determinant of Prim. From the fact that ψ1 maps into the
image of geometric monodromy, we can deduce that it is trivial, since we saw above
that geometric monodromy was trivial. Thus we deduce that det(Prim[l]s⊗φ−1) is
independent of s — in fact, from an argument analogous to that establishing Lemma
3.2.1, we know that det(Prim[l]s ⊗ φ−1)= ε−1

l . Similarly, det(Prim[l]s ⊗ φ−1) is
independent of s.

This tells us that det ρ̄1=det Prim[l]v,t⊗φ−1 and det ρ̄2=det Prim[l ′]v,t ′′⊗φ−1,
and we can choose an isomorphism η : det(Prim[M]⊗ φ−1)→ det ρ̄Z/MZ.

In item (1) in the proof of Proposition 3.4.1, the set of automorphisms preserving
this fixed isomorphism between determinants is seen to be SL(Z/MZ). We know
that the monodromy would be dense in this set, since l, l ′ > D.

Finally, in item (3) in the proof, we see that the �w are nonempty sets, since
those above l contain points above t and those above l ′ contain points above t ′′.

It follows that there is a CM field F1/Q(µ10) and a t ′ ∈ TW(F1) satisfying the
conditions (5)–(8) above. (For (6), namely Prim[l ′]v,t ′ |IFw

≡ ε−1
l ⊕ε

−2
l , use the fact

that Prim[l ′]v,t ′ agrees with Prim[l ′]t ′′ , which was chosen to have this property.)

2We depart from the notation there in not writing (Eh) for the twist by this character, since in
fact h(σ ) = 1 for all σ , so one might think that (Eh) means (1), but this is not true: φ−1 is not the
cyclotomic character.
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Step 3. We will now apply Theorem 1.1.3 of [Barnet-Lamb 2008] to show that there
exists a CM field F/F1/Q(µ10) such that Priml ′,v,t ′⊗φ

−1
|Gal(Q/F) is automorphic,

by taking L = ∅, N = 10, and r = Priml,v,t ′ ⊗ φ
−1. Let us verify the conditions

of that theorem in turn. First of all, l splits in Q(µ10) by our choice of l, and q - 10
by our by choice of q . Then we address the numbered conditions:

(1) r ramifies only at finitely many primes. This is trivial, being true for all Galois
representations that come from geometry.

(2) r c ∼= r∨ε−1
l . For the same reason as for (3) (page 846), we have

Primc
l,v,t ′ = Prim∨l,v,t ′ε

−3
l ,

whence we have what we want, since r = Prim∨l,v,t ′ ⊗ φ
−1 and φφc

= ε−2
l .

(3) The Bellaı̈che–Chenevier sign is +1. This is because the Poincaré duality
pairing is symplectic and the multiplier of complex conjugation is odd.

(4) r is crystalline with the right Hodge–Tate numbers. This follows immediately
from the calculations of the previous proposition, once we note that the twist
by φ changes the Hodge–Tate numbers by 1.

(5) r is unramified at all the primes of L. This is vacuous.

(6) r |Gal(F̄vq /Fvq )
ss is unramified and r |Gal(F̄vq /Fvq )

ss has Frobenius eigenvalues 1,
#k(vq), . . . , (#k(vq))

n−1. By [Katz 2009, Lemma 10.1] the local monodromy
of Priml,v,t ′⊗Ql at∞ is unipotent with a single Jordan block. We immediately
deduce the same for Priml,v,t ′ . By the argument used to establish [Harris et al.
2010, Lemma 1.15], and recalling that vq(t ′) < 0, we conclude that inertia at
q acts via a maximal unipotent and that the Frobenius eigenvalues are of the
form required.

(7) det r ≡ ε−1
l . We saw above that det(Prim[l]s ⊗ φ−1)= ε−1

l , as required.

(8) Let r̄ denote the semisimplification of the reduction of r , and let r ′ denote
the extension of r to a continuous homomorphism Gal(F̄/F+)→ Gn(Ql) (as
described in [Clozel et al. 2008, §1]); then r̄ ′(Gal(F̄/F(ζl)) is big (in the
sense of “big image”). This is true by [Clozel et al. 2008, Lemma 2.5.5],
since we chose t ′ such that Prim[l ′]t ′ ≡ Prim[l ′]t ′′ , and we chose t ′′ such that
Gal(Q/Q(µ10)

+)→ GL(Prim[l ′]t ′′) is surjective.

(9) F̄ker ad r̄ does not contain F(ζl). This is true by the simplicity of PSL2(Fl)

for l > 3, again using the fact that Gal(Q/Q(µ10)
+) → GL(Prim[l ′]t ′) is

surjective.

(10) r has the right restriction to inertia. This was guaranteed by the choice of t ′,
once we note that the twist by φ changes restriction to inertia by εl .
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(11) We can choose a polarization with a square determinant. This follows from
the fact that l ′ splits in F∗(v).

Having got that Priml ′,v,t ′ ⊗ φ−1
|Gal(Q/F) is also automorphic, we deduce that

Priml,v,t ′ ⊗ φ
−1
|Gal(Q/F) is automorphic since Yt ′ has good reduction at l, since

we chose t ′ such that vw((t ′)5−1)= 0 for w over l. Hence also Priml,v,t ′ |Gal(Q/F)
is automorphic.

Step 4. Next, I claim that Priml,v,t |Gal(Q/F) is automorphic, by an appeal to Theo-
rem 4.3.4 of [Clozel et al. 2008]. Conditions (1), (3), and (4) of that theorem are
verified just like the corresponding conditions of [Barnet-Lamb 2008, Theorem
1.1.3], while (2) is trivial. We justify the remaining four conditions of Theorem
4.3.4 of [Clozel et al. 2008]:

(5) r is discrete series somewhere. We saw in Step 2 that inertia at q acts via a
maximal unipotent, which suffices.

(6) F̄ker ad r̄ does not contain F(ζl). True by the remarks just before Step 2.

(7) r̄ ′(Gal(F̄/F(ζl)) is big. Again, true by the remarks just before Step 2.

(8) The residual representation is automorphic. Indeed, we have just verified that
Prim[l]v,t ′ is automorphic, and Prim[l]v,t ′ ≡ Prim[l]v,t .

Step 5. We now use a rather standard argument to deduce the functional equation
of the L function from the potential automorphy which we have just derived. As a
virtual representation of Gal(F/Q), we use Brauer’s theorem to write

1=
∑

j

a j IndGal F/Q
Gal(F/F j )

χ j ,

where the F j are intermediate fields between F and Q with Gal(F/F j ) soluble,
a j ∈Z, and for each j , χ j :Gal(F/F j )→C× is an isomorphism. By solvable base
change, since Priml,v,t |Gal(Q/F) is automorphic, so is Priml,v,t |Gal(Q/F j ) for each j ;
that is, we can find a RAESDC representation π j of weight 0 and type {Spn(1)}{v|q}
such that for any rational prime l∗ and isomorphism ι :Ql

∼
→ C we have

rl∗,ι(π j )≡ Priml∗,v,t |Gal(Q/F j )
,

where
Priml∗,v,t =

∑
j

a j IndGal F/Q
Gal(F/F j )

rl∗,ι
(
π j ⊗ (χ j ◦ArtF j )

)
.

We deduce, using [Taylor and Yoshida 2007, Theorem 3.2 and Lemma 1.3(2)], that
the L function of Prim∗,v,t is defined and that

L(Prim∗,v,t)=
∏

j

L
(
π j ⊗ (χ j ◦ArtF j ), s

)a j
,
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which gives the result, since each of the multiplicands on the right hand side obeys
the expected functional equation, whence the left hand side does too. �

We now put together what we know, to control the overall L function of Priml .

Corollary 6. The L function of Priml has meromorphic continuation to the whole
complex plane, for t ∈Q−Z[1/10].

Proof. Proposition 2 gives us a list of pieces whose L functions we must control.
We may control Priml,[(0,0,0,0,0)] by Theorem 1 and the rest by Proposition 5. �

As we have set things up, the sheaf Priml has base defined over Q(µ5); but it
could also have been defined over Q (unlike the various pieces Priml,v, most of
which are not defined over Q, as Gal(Q(µ5)/Q) intermixes the various pieces).
From now on, we will consider Priml to have been defined over Q. Recapitulating
the last part of the proof of Proposition 5 we get:

Theorem 7. The L function of Prim∗,t (now considered to be defined over Q) has
meromorphic continuation to the whole complex plane, for t ∈Q−Z[1/10].

Proof. By Steps 1–4 of the proof of Proposition 5, there are fields F (v) such
that Priml,v,t |Gal(Q/F (v)) is automorphic for each v in the table in Proposition 3;
by the proof of Theorem 1 given in [Harris et al. 2010] the same is true for
v = (0, 0, 0, 0, 0), and by Proposition 2, the symmetry of the situation allows us
to deduce this for all other v. We can modify the proofs of these theorems to en-
sure that a single field extension F makes all of these representations automorphic
simultaneously. (For instance, the proof of [Harris et al. 2010, Theorem 3.1] can
handle multiple representations simultaneously; there are no essential difficulties
other than those of bookkeeping.) Then the whole sheaf Priml,t becomes automor-
phic when restricted to GF .

We can then use the argument of Step 5 of the proof of Proposition 5 with
Prim∗,t taking the place of Prim∗,v,t to deduce the expected functional equation
for L(Prim∗,t , s) and thus meromorphic continuation. �

Corollary 8. The zeta function of Yt , for t ∈Q−Z[1/10], has meromorphic con-
tinuation.

Proof. By the remarks preceding Theorem 1, the remaining parts of the cohomol-
ogy are well understood using the hard Lefschetz theorem. �

5. Concluding remarks

We have seen that the zeta function of the hypersurface with projective equation

(X5
1 + X5

2 + X5
3 + X5

4 + X5
5)= 5t X1 X2 . . . X5

has a meromorphic continuation and satisfies the expected functional equation.
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It is perhaps natural to wonder whether the techniques used might generalize to
more general hypersurfaces of a similar type. For instance, [Harris et al. 2010]
shows that the 0W/1 invariants in the cohomology of the variety

(X N
1 + X N

2 + X N
3 + X N

4 + · · ·+ X N
N )= Nt X1 X2 . . . X N (9)

will be automorphic for all odd N , so we might wonder whether the result of this
paper can be generalized to other N ’s. The methods of [Katz 2009] work in an even
more general context, replacing the monomial X1 X2 . . . X N on the right-hand side
of the defining equation with an arbitrary monomial of the required degree, so
one might also ask if there are any cases of that form to which we might try to
generalize the result of this paper. I feel that a few remarks on these cases may be
useful to the reader.

5.1. Smaller N’s in (9). It is worth beginning by noting that the cases N = 1, 2
are trivial, and the case N = 3 is also uninteresting since then (9) describes a
family of elliptic curves, and the zeta function is already understood. Thus the
only interesting case with smaller N is N = 4.

At first sight, it might seem difficult to analyze this case using the methods of
this paper, since the result of [Harris et al. 2010] which gives the automorphicity
of Priml,[(0,...,0)] requires N to be odd. But [Barnet-Lamb 2010] generalizes their
methods to cover odd-dimensional cases, and it is then possible to extend the meth-
ods of this paper to cover that case, too. In particular, an analysis like that in Section
3 will reveal that all the pieces of the cohomology apart from Priml,[(0,0,0,0)] are
one- or zero-dimensional, and so trivially automorphic.

I have chosen not to give this argument in full detail, since a very beautiful
geometric argument of N. Elkies and M. Schütt (personal communication) tells us
that, for the case N = 4, each Dwork hypersurface is isogenous to the Kummer
surface of a product E1 × E2, where E1 and E2 are elliptic curves defined over
a quadratic extension of Q, conjugate to each other over Q, and related by a 2-
isogeny. This allows one to quite directly see the automorphicity required in this
case, and little would be served by giving the full details of the argument above.

5.2. Larger values of N in (9). If we try to extend the methods of this paper to
larger N , we face the following problem.

Proposition 9. (1) Let N ≥ 8 be an integer. Then the Hodge–Tate numbers of
Priml,[(4,N−2,N−2,0,...,0)] include 2 with multiplicity at least 2.

(2) Let N = 6. Then the Hodge–Tate numbers of Priml,[(0,0,0,2,2,2)] include 3 with
multiplicity at least 2.

Proof. Again, we use [Katz 2009, Lemma 3.1]. For the first statement, the totally
nonzero representatives include (5, N−1, N−1, 1, . . . , 1) and (7, 1, 1, 3, . . . , 3).
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We have
5+(N−1)+(N−1)+1+· · ·+1

N
− 1= 7+1+1+3+· · ·+3

N
− 1= 2,

so 2 occurs as a Hodge–Tate weight with multiplicity at least 2.
The proof of the second statement is similar: consider the nonzero representa-

tives (2, 2, 2, 4, 4, 4) and (5, 5, 5, 1, 1, 1). �

Thus in all cases with N even (recall that we need N even for [Harris et al. 2010]
to apply3) and N ≥ 6, at least one of the pieces of the cohomology of (9) will have
a repeated Hodge–Tate number. At present, apart from some work in the case of
two-dimensional Galois representations, there are no modularity lifting theorems
for representations with repeated Hodge–Tate numbers, and hence (since such the-
orems are a key ingredient in proving the potential modularity theorems such as
[Taylor 2006; Harris et al. 2010] on which this paper relies) it seems unlikely that
the approach of this paper can be extended to cover such cases.

(One might briefly wonder whether some larger algebra of correspondences
could be used to cut the cohomology into smaller pieces, small enough that they no
longer have repeated Hodge–Tate weights; but this is impossible, since the results
of Katz on the monodromy of the cohomology tell us that all the pieces in the
decomposition of the cohomology into eigenspaces for 0W/1 cannot be broken
up further, as the monodromy acts transitively on each piece.)

5.3. Other monomials in (9). Katz studies the more general equation

(X N
1 + X N

2 + X N
3 + · · ·+ X N

N )= Nλ
∏

i

Xwi
i , (10)

where W = (w1, . . . , wN ) is a sequence of nonnegative integers summing to N . It
is natural to ask whether the methods of this paper can be extended to any varieties
of this form, beyond the cases already considered. Unfortunately, the answer is no.

Let’s imagine an analysis based on the same techniques used above. As before,
the main challenge would be to analyze the middle-dimensional cohomology, since
the rest is determined by hard Lefschetz. We can define PrimN−2

l , as in [Katz
2009], to correspond to the part of the middle-dimensional cohomology not coming
from Lefschetz. Following the method above, our next step is to decompose this
cohomology into eigensheaves.

The natural group acting on (10) is easily seen to be{
(ζ1, . . . , ζN ) ∈ (µN )

N
∣∣∣∏ ζ

wi
i = 1

}/
1,

where1, as before, is µN embedded diagonally. The character group in this case is

3Even if this were not an obstacle, the N = 7 case also has a piece of the cohomology with a
repeated Hodge–Tate number.
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(Z/NZ)0/〈W 〉, where we abuse notation by considering W as a class in (Z/NZ)0.
We will write an element of (Z/NZ)0/〈W 〉 as either vmod W or simply [v] and
define PrimN−2

l,[v] in a similar manner as before.
Suppose now that we have fixed some W . The main challenge in applying the

methods to this paper to show that the zeta function of the family (10) is mero-
morphic will be showing that PrimN−2

l,[v] is automorphic for each v. Since this will
rely, in the final analysis, on the application of a lifting theorem, we will certainly
require that PrimN−2

l,[v] has distinct Hodge numbers for all v. This, unfortunately,
will never happen except in the cases already considered.

Proposition 10. Suppose N ≥ 3 and W 6= (1, 1, . . . , 1). Then there exists some v
such that the Hodge–Tate numbers of PrimN−2

l,[v] are not all distinct.

Proof. Since W 6= (1, 1, . . . , 1), some wi — say w1 — vanishes. For i > 1, write
hi for hcf(wi , N ). For each i > 1 where hi = 1, set vi = 0; then, for k ∈ Z,

vi + kwi ≡ 0 (mod N ) ⇐⇒ k ≡ 0 (mod N ).

For i > 1 where hi > 1, we can choose vi = 1; then vi + kwi will always be
≡ 1 mod hi , and we will never have vi+kwi ≡ 0 mod N . Finally, v1 is fixed by the
condition that the vi sum to 0. (Note that ṽ1 > 1, since if not hi = 1 for all i > 1,
hence vi > 1 for all such i , which is impossible.)

The elements of (Z/NZ)0 representing [v] are v + kW for k ∈ Z/NZ; it is
immediate that the element v + kW is totally nonzero for all k ∈ Z/NZ except
k = 0, so the totally nonzero representatives are {v, v +W, . . . , v + (N − 1)W },
and the multiset of Hodge–Tate numbers is the multiset

{deg(v)− 1, deg(v+W )− 1, deg(v+ 2W )− 1, . . . , deg(v+ (N − 1)W − 1}.

If we suppose for contradiction that these numbers are distinct, the N−1 integers
deg(v+W ), deg(v+2W ), . . . , deg(v+(N−1)W ) are distinct. We now note that
the degree of an element of (Z/NZ)0 is trivially ≤ N − 1, and that, writing u for
some v + kW , we have N deg u ≥ ũ1 + (N − 1) since u is totally nonzero), and
this in turns equals ṽ1 + (N − 1) > N , since w1 = 0. Since deg(v + kW ) > 1,
we have N − 1 distinct integers deg(v+ kW ) with 1 < deg(v+ kW ) ≤ N − 1, a
contradiction. �
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Equations for Chow and Hilbert quotients
Angela Gibney and Diane Maclagan

We give explicit equations for the Chow and Hilbert quotients of a projective
scheme X by the action of an algebraic torus T in an auxiliary toric variety.
As a consequence we provide geometric invariant theory descriptions of these
canonical quotients, and obtain other GIT quotients of X by variation of GIT
quotient. We apply these results to find equations for the moduli space M0,n

of stable genus-zero n-pointed curves as a subvariety of a smooth toric variety
defined via tropical methods.

1. Introduction

When a reductive group G acts linearly on a projective scheme X , a fundamental
problem is to describe a good notion of a quotient X/G. This question frequently
arises in the construction and compactification of moduli spaces. In many situa-
tions, there is an open subset U ⊂ X on which G acts freely, such that a scheme
U/G exists as a geometric quotient. Constructing the quotient X/G is thus choos-
ing a good compactification of U/G. One way to compactify is by forming the
Chow quotient X//Ch G or Hilbert quotient X//H G of X by G (see [Kapranov
1993]). These quotients are taken to be the closure of U/G in an appropriate
Chow variety or Hilbert scheme. They are natural canonical quotients with proper
birational maps to any GIT (geometric invariant theory) quotient. See also [Hu
2005; Keel and Tevelev 2006].

In this paper we treat the case where G = T d is a d-dimensional algebraic
torus acting equivariantly on a subscheme X of Pm . Given the ideal I of X as
a subscheme of Pm , we describe equations for X//Ch T d and X//H T d in the Cox
rings of toric subvarieties of the Chow and Hilbert quotients of Pm .

As a first application of our results, we give GIT constructions of X//Ch T d and
X//H T d and we prove that all GIT quotients of X by T d can be obtained from the
Chow and Hilbert quotients by variation of the GIT.

As a second application we study the action of an (n − 1)-dimensional torus
T n−1 on the Grassmannian G(2, n). Here we can take U to be the points with

MSC2000: primary 14L30; secondary 14M25, 14L24, 14H10.
Keywords: Chow quotient, Hilbert quotient, moduli of curves, space of phylogenetic trees.
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nonvanishing Plücker coordinates, and the quotient U/T n−1 is the moduli space
M0,n of smooth n-pointed genus-zero curves. In this case the desired compactifi-
cation is the celebrated moduli space M0,n of stable n-pointed genus-zero curves.
[Kapranov 1993] showed that M0,n is isomorphic to both the Chow and Hilbert
quotients of G(2, n) by the T n−1-action. We give explicit equations for M0,n as
a subvariety of a smooth toric variety X1 whose fan is the well-studied space of
phylogenetic trees. We show that the equations for M0,n in the Cox ring S of X1
are generated by the Plücker relations homogenized with respect to the grading
of S.

We now describe our results in more detail. The notation X//?T d is used to
refer to either the Chow or the Hilbert quotient. We assume that no irreducible
component of X lies in any coordinate subspace. This means that X//?T d is a
subscheme of Pm//?T d . The quotient Pm//?T d is a not necessarily normal toric
variety [Kapranov et al. 1992] whose normalization we denote by X6? . By X//?n T d

we mean the pullback of X//?T d to X6? . Our main theorem, in slightly simplified
form, is the following. This is proved in Theorems 3.2 and 4.6 and Proposition 4.3.

Theorem 1.1. Let T d ∼= (k×)d act on Pm and let X ⊂ Pm be a T d-equivariant
subscheme with corresponding ideal I (X) = 〈 f1, . . . , fg〉 ⊂ k[x0, . . . , xm]. Let
X6 ⊂ X6? be any toric subvariety with X ⊆ X6 ⊆ X6? .

(1) (Equations) The ideal I of the Hilbert or Chow quotient X//?n T d in the Cox
ring S = k[y1, . . . yr ] of X6 can be computed effectively. Explicitly, I is
obtained by considering the fi as polynomials in y1, . . . , ym+1, homogenizing
them with respect to the Cl(X6)-grading of S, and then saturating the result
by the product of all the variables in S.

(2) (GIT) There is a GIT construction of the Chow and Hilbert quotients of X , and
these are related to the GIT quotients of X by variation of the GIT quotient.
This gives equations for all quotients in suitable projective embeddings. Let
H = Hom(Cl(X6), k×). There is a nonzero cone G⊂ Cl(X6)⊗R for which
X//?n T d is the GIT quotient

X//?n T d
= Z(I )//α H

for any rational α ∈ relint(G), where Z(I ) is the subscheme of Ar defined by
I . For any GIT quotient X//β T d of X , there are choices of α outside G for
which Z(I )//α H = X//β T d .

A more precise formulation of the homogenization is given in Theorem 3.2 and
Remark 3.3. We explain in Corollary 4.4 how each choice of α ∈ relint(G) gives
an embedding of X//?n T d into some projective space.

We use tropical algebraic geometry in the spirit of [Tevelev 2007] to embed M0,n

in a smooth toric variety X1. The combinatorial data describing 1 and the simple
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equations for M0,n in the Cox ring of X1 are described in the following theorem.
Let [n] = {1, . . . , n} and set I= {I ⊂ [n] : 1 ∈ I, |I | ≥ 2, |[n] \ I | ≥ 2}. The set I

indexes the boundary divisors of M0,n.

Theorem 1.2. Let 1 be the fan in R(
n
2)−n described in Section 5 (the space of

phylogenetic trees). The rays of 1 are indexed by the set I.

(1) (Equations) Equations for M0,n in the Cox ring S = k[x I : I ∈ I] of X1 are
obtained by homogenizing the Plücker relations with respect to the grading of
S and then saturating by the product of the variables of S. Specifically, the
ideal is

IM0,n
=

(〈 ∏
i, j∈I
k,l 6∈I

−

∏
i,k∈I
j,l 6∈I

x I +
∏
i,l∈I
j,k 6∈I

x I

〉
:

(∏
I

x I

)∞)
,

where the generating set runs over all {i, j, k, l} with 1 ≤ i < j < k < l ≤ n,
and x I = x[n]\I if 1 6∈ I .

(2) (GIT) There is a nonzero cone G ⊂ Cl(X1)⊗R ∼= Pic(M0,n)⊗R for which
for rational α ∈ int(G) we have the GIT construction of M0,n as

M0,n= Z(IM0,n
)//α H,

where Z(IM0,n) ⊂ A|I| is the affine subscheme defined by IM0,n
, and H is the

torus Hom(Cl(X1), k×)∼= (k×)|I|−(
n
2)+n .

(3) (VGIT) Given β ∈ Zn there is α ∈ Z|I|−(
n
2)+n for which

Z(IM0,n
)//α H = G(2, n)//β T n−1,

so all GIT quotients of G(2, n) by T n−1 can be obtained from M0,n by varia-
tion of the GIT.

Statement (3) relates to [Howard et al. 2009], where GIT quotients of G(2, n)
by T n−1, or equivalently of (P1)n by Aut(P1), were studied.

Keel and Tevelev, in an article titled “Equations for M0,n” [2009], studied the im-
age of the particular embedding of M0,n into a product of projective spaces given by
the complete linear series of the very ample divisor κ = KM0,n

+
∑

I∈I δI . Theorem
1.2 concerns projective embeddings of M0,n corresponding to a full-dimensional
subcone of the nef cone of M0,n, including that given by κ .

A key idea of this paper is to work in the Cox ring of sufficiently large toric
subvarieties of X6? . This often allows one to give equations in fewer variables.
Also, a truly concrete description of X6? may be cumbersome or impossible, as in
the case of M0,n, but a sufficiently large toric subvariety such as X1 can often be
obtained.
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We now summarize the structure of the paper. Section 2 contains some tools
from toric geometry that will be useful in the rest of the paper. The first part of
Theorem 1.1 is proved in Section 3, while the GIT results are proved in Section 4.
In Section 5 we explicitly describe the toric variety X1 that contains M0,n. In
Sections 6 and 7 we prove Theorem 1.2. We end the paper with some natural
questions about M0,n arising from this work.

2. Toric tools

In this section we develop some tools to work with toric varieties that will be
used in our applications to Chow and Hilbert quotients. We generally follow the
notational conventions for toric varieties of [Fulton 1993], with the exception that
we do not always require normality. Throughout k is an algebraically closed field,
and k

×
= k \ {0}. We denote by T d an algebraic torus isomorphic to (k×)d . If

I is an ideal in k[x0, . . . , xm] then Z(I ) is the corresponding subscheme of either
Am+1 or Pm depending on the context.

2A. Producing equations for quotients of subvarieties of tori. We first describe
how to obtain equations for the quotient of a subvariety of a torus by a subtorus.
Let Y be a subscheme of a torus T m that is equivariant under a faithful action of
T d on T m given by (t · x) j = (

∏d
i=1 tai j

i )x j , and let I (Y ) ⊂ k[x±1
1 , . . . , x±1

m ] be
the ideal of Y . Write A for the d × m matrix with i j-th entry ai j . Let D be a
(m − d)×m matrix of rank m − d whose rows generate the integer kernel of A,
so ADT

= 0. The matrix D is a Gale dual for the d ×m matrix A = (ai j ) (see
[Ziegler 1995, Chapter 6]).

Proposition 2.1. Let φ :k[z±1
1 , . . . , z±1

m−d ]→k[x±1
1 , . . . , x±1

m ] be given by φ(zi )=∏m
j=1 x Di j

j . Then the ideal of Y/T d in the coordinate ring k[z±1
1 , . . . , z±1

m−d ] of
T m/T d is given by φ−1(I (Y )). This is generated by polynomials g1, . . . , gs for
which I (Y )= 〈φ(g1), . . . , φ(gs)〉.

Proof. The coordinate ring of the quotient Y/T d is by definition the ring of in-
variants of k[x±1

1 , . . . , x±1
m ]/I (Y ) under the induced action of T d . The T d action

on T m gives a Zd-grading of k[x±1
i ] by setting deg xi = ai , where ai is the i-th

column of the matrix A. Since T d acts equivariantly on Y , the ideal I (Y ) is homo-
geneous with respect to this grading, so k[x±1

i ]/I (Y ) is also Zd-graded. The ring
of invariants is precisely the degree-zero part of this ring.

To prove that this is isomorphic to k[z±1
1 , . . . , z±1

m−d ]/φ
−1(I (Y )), we first define

an automorphism of the torus T m so that T d is mapped to the subtorus having first
m−d coordinates equal to one. Choose any m×m integer matrix U with determi-
nant one whose first d rows consist of the matrix D. This is possible because by
the definition of D the cokernel Zm/ im(DT ) is torsion-free, so Zm ∼= im(DT )⊕Zd .
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Then the map φ̃ :k[z±1
1 , . . . , z±1

m ]→k[x±1
1 , . . . , x±1

m ] defined by φ̃(zi )=
∏m

j=1 xUi j
j

determines an automorphism of the torus T m . Note that the map φ is φ̃ restricted
to the ring k[z±1

1 , . . . , z±1
m−d ].

The ring k[z±1
1 , . . . , z±1

m ] gets an induced Zd-grading from the grading on k[x±1
j ]

by setting deg zi =
∑m

j=0 Ui j a j , which is the i-th column of AU T . Since the
first m − d rows of U are the rows of D, and ADT

= 0, we thus have deg zi =

0 ∈ Zd for 1 ≤ i ≤ m − d . The degrees of the d variables zm−d+1, . . . , zm are
linearly independent, since rank(AU T ) is d. This means that the degree zero part
of k[z±1

1 , . . . , z±1
m ] is k[z±1

1 , . . . , z±1
m−d ], which proves that the coordinate ring of

Y/T d is given by k[z±1
1 , . . . , z±1

m−d ]/J , where J = φ̃
−1
(I (Y ))∩k[z±1

1 , . . . , z±1
m−d ].

The result then follows since J = φ−1(I (Y )). The statement about generators
follows from the fact that φ is injective, since φ̃ is an isomorphism. �

Example 2.2. Let Y be the subscheme of T 10 defined by the ideal

I = 〈x12x34− x13x24+ x14x23, x12x35− x13x25+ x15x23,

x12x45− x14x25+ x15x24, x13x45− x14x35+ x15x34, x23x45− x24x35+ x25x34〉

⊆ k[x±1
i j : 1≤ i < j ≤ 5].

This is the intersection with the torus of A10 of the affine cone over the Grassman-
nian G(2, 5) in its Plücker embedding into P9. The torus T 5 acts equivariantly on
Y by t · xi j = ti t j xi j , giving rise to matrices

A =


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

, D =


0 1 −1 0 −1 1 0 0 0 0
0 1 0 −1 −1 0 1 0 0 0
1 0 −1 0 −1 0 0 1 0 0
1 0 0 −1 −1 0 0 0 1 0
1 1 −1 −1 −1 0 0 0 0 1

,
where the columns are ordered {12, 13, . . . , 35, 45}. The map φ : k[z±1

1 , . . . , z±1
5 ]

→k[x±1
i j :1≤ i < j ≤5] is given by φ(z1)= x13x24/x14x23, φ(z2)= x13x25/x15x23,

φ(z3)= x12x34/x14x23, φ(z4)= x12x35/x15x23, and φ(z5)= x12x13x45/x14x15x23.
The ideal φ−1(I ) is then

〈z3− z1+ 1, z4− z2+ 1, z5− z2+ z1, z5− z4+ z3, z5− z1z4+ z2z3〉

= 〈z3− z1+ 1, z4− z2+ 1, z5− z2+ z1〉 ⊂ k[z±1
1 , . . . , z±1

5 ].

For this it is essential that we work in the Laurent polynomial ring; for example,
φ(z5−z2+z1)= x13/(x14x15x23)(x12x45−x14x25+x15x24). The variety of φ−1(I )
is the moduli space M0,5. Note that this shows that M0,5 is a complete intersection
in T 5, cut out by three linear equations. This example is continued in Example 3.1
and Sections 5, 6, and 7.
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2B. Producing equations for closures in toric varieties. The next proposition de-
scribes how to find the ideal of the closure of a subvariety of a torus in a toric variety.
We use the notation T m−d for ease of connection with the rest of this section, but
there is no requirement that this torus be obtained as a quotient.

Recall that the Cox ring of a normal toric variety X6 (see [Cox 1995; Mustaţă
2002]) is the polynomial ring S = k[y1, . . . , yr ], where r = |6(1)| is the number
of rays of 6. It is graded by the divisor class group of X6 , so that deg yi = [Di ],
where [Di ] ∈Cl(X6) is the class of the torus-invariant divisor Di associated to the
i-th ray ρi of 6. An ideal I ⊂ S determines an ideal sheaf Ĩ on X6 , and thus a
closed subscheme of X6 , and conversely, every ideal sheaf on X6 is of the form
Ĩ for some ideal I of S (Theorem 1.1 of [Mustaţă 2002] removes the need for the
simplicial hypothesis in [Cox 1995, Theorem 3.7]). The sheaf Ĩ is given on an
affine chart Uσ of X6 by Iσ = (I S∏

i 6∈σ yi )0. The correspondence between ideals
in S and closed subschemes of X6 is not bijective, but for any closed subscheme
Z ⊂ X6 there is a largest ideal I (Z)⊂ S with Ĩ (Z)= IZ .

Recall also that if I is an ideal in a ring R and y ∈ R, then (I : y∞) = {r ∈
R : r yk

∈ I for some k > 0}. Geometrically this removes irreducible components
supported on the variety of y.

Proposition 2.3. Let X6 be an (m − d)-dimensional toric variety with Cox ring
S = k[y1, . . . , yr ]. Set y =

∏r
i=1 yi so that

ρ : k[T m−d
] = k[z±1

1 , . . . , z±1
m−d ] −→ (Sy)0

is the isomorphism given by the inclusion of the torus T m−d into X6 . If Y ⊂ T m−d

is given by ideal I (Y ) = 〈 f1, . . . , fs〉 ⊂ k[T m−d
], then the ideal I for the closure

Y of Y in X6 is (ρ(I (Y ))Sy)∩ S, which is

I =
(〈
ρ̃( fi ) : 1≤ i ≤ s

〉
: y∞

)
,

where ρ̃( fi ) is obtained by clearing the denominator of ρ( fi ).

Proof. Let J = ρ(I (Y ))⊂ (Sy)0. The closure Y of Y in X6 is the smallest closed
subscheme of X6 containing Y . Since the torus T m−d is the affine toric variety
corresponding to the cone σ consisting of just the origin in 6, for this σ we have
Iσ = (I Sy)0 for any ideal I ⊆ S. As the correspondence between subschemes Z
of X6 and ideals I (Z) of S is inclusion reversing, we have that I (Y ) is the largest
ideal I in S with (I Sy)0 ⊆ J for which I = I (Z) for some subscheme Z of X6 .

There is a monomial, and thus a unit, in any degree a for which (Sy)a is nonzero,
so if K is an ideal in Sy , then K0Sy = K , and (K ∩ S)Sy = K . Thus ((J Sy ∩

S)Sy)0 = (J Sy)0 = J , and if I is any homogeneous ideal in S with (I Sy)0 ⊂ J
then I ⊆ I Sy ∩ S ⊂ J Sy ∩ S. Thus to show that I = J Sy ∩ S is the ideal of
I (Y ), we need only show that I is of the form I (Z) for some subscheme Z of
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X6 . Indeed, let I ′ be the largest ideal in S with Ĩ ′ = Ĩ . Then by construction we
have (I ′Sy)0 = (I Sy)0 = J , so by above I ′ ⊆ I , and thus I = I ′. This shows that
I (Y )= J Sy ∩ S.

Suppose now that I (Y ) is generated by { f1, . . . , fs} ⊂ k[z±1
1 , . . . , z±1

m−d ]. Then
J Sy is generated by {ρ( f1), . . . , ρ( fs)}. The denominator of each ρ( fi ) is a
monomial, which is a unit in Sy , so J Sy is also generated by the polynomials
ρ̃( fi ) obtained by clearing the denominators in the ρ( fi ). The result follows from
the observation that if K is an ideal in Sy , generated by {g1, . . . , gs} ⊂ S, then
K ∩ S = (〈g1, . . . , gs〉 : y∞). See, for example, [Eisenbud 1995, Exercise 2.3]. �

2C. Sufficiently large subvarieties via tropical geometry. A key idea of this paper
is to work in toric varieties whose fan has few cones. This is made precise in the
following definition.

Definition 2.4. A toric subvariety X1 of a toric variety X6 with torus T m is suf-
ficiently large with respect to a subvariety Y ⊆ X6 if the fan 1 contains all cones
of 6 corresponding to T m-orbits of X6 that intersect Y .

Tropical geometry provides the tools to compute whether a given toric subvariety
X1 ⊆ X6 is sufficiently large for Y ⊆ X6 . We now review the version we use in
this paper. Let Y ⊂ T m ∼= (k×)m be a subscheme defined by the ideal I = I (Y )⊂
S := k[x±1

1 , . . . , x±1
m ]. Given a vector w ∈ Rm we can compute the leading form

inw( f ) of a polynomial f ∈ S, which is the sum of those terms cu xu in f with w ·u
minimal. The initial ideal inw(J ) is 〈inw( f ) : f ∈ J 〉. Let K be any algebraically
closed field extension of k with a nontrivial valuation val : K× → R such that
val(k)= 0. We denote by VK (I ) the set {u ∈ (K×)m : f (u)= 0 for all f ∈ I }.

Definition/Theorem 2.5. Let Y be a subvariety of T m . The tropical variety of Y ,
denoted Trop(Y ), is the closure in Rm of the set{

(val(u1), . . . , val(um)) ∈ Rm
: (u1, . . . , um) ∈ VK (J )

}
.

This equals the set
{w ∈ Rm

: inw(I ) 6= 〈1〉}.

There is a polyhedral fan 6 whose support is Trop(Y ).

Versions of this result appear in [Speyer and Sturmfels 2004, Theorem 2.1]
and [Einsiedler et al. 2006; Draisma 2008; Jensen et al. 2008; Payne 2009]. We
consider here only the “constant coefficient” case, where the coefficients of polyno-
mials generating defining ideal I live in k, so have valuation zero. This guarantees
there is the structure of a fan on Trop(Y ), rather than a polyhedral complex. We
note that we follow the conventions for tropical varieties as tropicalizations of usual
varieties as in, for example, [Speyer and Sturmfels 2004; Gathmann 2006] rather
than the more intrinsic definition used by [Mikhalkin 2006]. For readers familiar
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with these works we emphasize that we follow the min convention for the tropical
semiring rather than the max convention of [Gathmann 2006].

The key result is the following fundamental lemma and its immediate corollary.

Lemma 2.6 [Tevelev 2007, Lemma 2.2]. Let Y be a subvariety of the torus T m ,
and let F be an l-dimensional cone in Qm whose rays are spanned by part of a
basis for Zm

⊆ Qm . Let UF = Al
× (k×)m−l be the corresponding affine toric

variety. Then the closure Y of Y in UF intersects the closed orbit of UF if and only
if the interior of the cone F intersects the tropical variety of Y .

Corollary 2.7. Let Y be a subvariety of the torus T m . Let X6 be an m-dimensional
toric variety with dense torus T m and fan 6 ⊆ Rm . Let Trop(Y ) ⊆ Rm be the
tropical variety of Y ⊆ T m . Then the closure Y of Y in X6 intersects the T m-orbit
of X6 corresponding to a cone σ ⊆6 if and only if Trop(Y ) intersects the interior
of σ .

Thus a toric subvariety X1 of X6 with 1 a subfan of 6 is sufficiently large
with respect to Y exactly when 1 contains every cone of 6 whose relative interior
intersects the Trop(Y ).

Proof. Since 6 is not assumed to be smooth, or even simplicial, we first resolve
singularities. Let π : X6′ → X6 be a toric resolution of singularities, so 6′ is
a refinement of the fan 6, and let Y ′ be the strict transform of Y in X6′ , which
is the closure of Y in X6′ . It suffices to prove the corollary for Y ′ ⊆ X6′ , as Y
intersects the orbit corresponding to a cone σ ∈ 6 if and only if Y ′ intersects the
orbit corresponding to a cone σ ′ ∈6′ with σ ′⊆σ . Since the orbit corresponding to
a cone σ ′ ∈6′ is the closed orbit of the corresponding Uσ ′ , this result now follows
from Lemma 2.6. �

Example 2.8. Let 61 and 62 be the two complete fans with rays as pictured in
Figure 1. If Y ⊂ T 2 is a subvariety with tropicalization the dotted line shown in
both figures, then the shaded fans define sufficiently large toric subvarieties with
respect to the respective closures of Y in X61 and X62 .

Figure 1. Sufficient toric subvarieties of X6 with respect to Y .
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3. Equations for Chow and Hilbert quotients

Given equations for a T d-equivariant subscheme X ⊂ Pm , we show in this section
how to effectively compute generators for the ideal of the Chow or Hilbert quotient
in the Cox ring of a suitably chosen toric variety.

3A. Definition of Chow and Hilbert quotients. We first recall the definition of the
Chow and Hilbert quotients X//Ch T d and X//H T d of a projective variety by the
action of a d-dimensional algebraic torus T d . We assume that X is equivariantly
embedded into a projective space Pm with no irreducible component contained in
a coordinate subspace.

Identifying T d with (k×)d+1/(k×) so that points in T d are equivalence classes
t = [t0 : · · · : td ], we can write

T d
×Pm

→ Pm, (t, [x0, . . . , xm]) 7→

[( d∏
j=0

ta j0
j

)
x0, . . . ,

( d∏
j=0

ta jm
j

)
xm

]
, (1)

and let A be the (d + 1)× (m + 1) matrix with i j-th entry ai j for 0 ≤ i ≤ d and
0≤ j ≤m. We assume that the T d-action on Pm is faithful, so A has rank d+1. The
compatibility of the action with the diagonal k× action on (k×)d+1 and (k×)m+1

means that all column sums of A agree, so the row space of A contains the all-
ones vector. Let X A ⊂ Pm be the closure of the T d-orbit of e = [1 : · · · : 1] ∈ T m .
Then X A is a toric variety with associated torus T d and corresponding toric ideal
IA = 〈xu

− xv : Au = Av〉 ⊂ k[x0, . . . , xm] (see [Gel’fand et al. 1994, Chapter 5]
and [Sturmfels 1996, Chapter 4]).

We identify T m with the quotient (k×)m+1/(k×), so a point on T m is an equiv-
alence class s = [s0 : · · · : sm]. Then T m acts on Pm by s · x = [s0x0 : · · · :

sm xm] and every point in the geometric quotient T m/T d corresponds to an orbit
of T d whose closure in Pm is a d-dimensional subscheme of Pm having ideal
Is A = 〈svxu

− su xv : Au = Av〉 ⊂ k[x0, . . . , xm], with s ∈ T m . These orbit
closures all have the same Hilbert polynomial, and so define closed points on
the same connected component of Hilb(Pm), and there is an induced morphism
φH :T m/T d

→Hilb(Pm). The Hilbert quotient X//H T d is defined to be the closure
in Hilb(Pm) of φH ((X ∩ T m)/T d). Since Pm//H T d is the closure of φH (T m/T d)

in Hilb(Pm), X//H T d
⊂ Pm//H T d .

Analogously, there is a morphism φCh :T m/T d
→Chow(Pm) (see [Kollár 1996,

Sections 1.3 and 1.4]). The Chow quotient X//Ch T d is defined to be the closure in
Chow(Pm) of φCh((X ∩ T m)/T d) and X//Ch T d

⊂ Pm//Ch T d .
We remark that while the definitions given here appear to depend on the choice of

projective embedding, the Chow and Hilbert quotients of X are in fact independent
of this choice. See [Kapranov 1993] for a more intrinsic formulation. See also
[Białynicki-Birula and Sommese 1987] for original work on the Hilbert quotient.
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For the most part the Chow and Hilbert quotients can be treated uniformly, and we
use the notation X//?T d to denote either of X//Ch T d or X//H T d .

The following example will be developed more in Section 5.

Example 3.1. Consider the action of the (n−1)-dimensional torus

T n−1∼=(k
×)n/k×

on P
(n

2)−1
C

given by

[t1 : · · · : tn] · [{xi j }1≤i< j≤n] = [{ti t j xi j }1≤i< j≤n]. (2)

Recall that the Plücker embedding of the Grassmannian G(2, n) into P(
n
2)−1 is

given by taking a subspace V to V ∧ V , or by taking a 2× n matrix representing
a choice of basis for V to its vector of 2× 2 minors. The ideal I2,n of G(2, n)
in the homogeneous coordinate ring of P(

n
2)−1 is generated by the set of Plücker

equations 〈pi jkl = xi j xkl − xik x jl + xil x jk : 1 ≤ i < j < k < l ≤ n〉 and hence is
T n−1-equivariant. Let G0(2, n) be the open set inside G(2, n) consisting of those
points with nonvanishing Plücker coordinates, corresponding to those two-planes
that do not have a nonzero intersection with any two coordinate hyperplanes. The
torus T n−1 acts freely on G0(2, n) and all orbits have maximal dimension. The
moduli space M0,n parametrizing smooth n-pointed rational curves is equal to the
geometric quotient G0(2, n)/T n−1. By [Kapranov 1993, Theorem 4.1.8]

G(2, n)//Ch T n−1
= G(2, n)//H T n−1

= M0,n.

3B. Chow and Hilbert quotients of projective spaces. The Chow and the Hilbert
quotients of Pm by T d are both not necessarily normal toric varieties [Kapranov
et al. 1992]. We next describe the fans6Ch and6H associated to the normalizations
of Pm//Ch T d and Pm//H T d . The fan 6Ch is the secondary fan of the matrix A
given in (1). Top-dimensional cones of the secondary fan correspond to regular
triangulations of the vector configuration determined by the columns of A. These
are also indexed by radicals of initial ideals of IA by [Sturmfels 1996, Theorem
8.3]. See [Gel’fand et al. 1994] for a description of the secondary fan. The fan
6H is the saturated Gröbner fan, whose cones are indexed by the saturation of
initial ideals of IA with respect to the irrelevant ideal 〈x0, . . . , xm〉. See [Bayer and
Morrison 1988; Mora and Robbiano 1988] for the original work on the Gröbner
fan, and [Sturmfels 1996; Maclagan and Thomas 2007] for expositions. When we
want to refer to both fans simultaneously we use the notation 6?.

We denote by N the common lattice of the fans 6Ch and 6H. Note that N =
N/N ′, where N ∼=Zm+1 and N ′ is the integer row space of the matrix A. The torus
T d+1 with T d

= T d+1/k× is equal to N ′⊗k×, and T m−d
= T m+1/T d+1∼= N⊗k×.

The images of the basis elements ei ∈ Zm+1 ∼= N correspond to rays of 6?. We
can thus identify these rays with the columns of the Gale dual D of the matrix
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A (see Section 2A). By the construction of D the integer column space of D is
Zm−d ∼= N .

3C. Equations for Chow and Hilbert quotients. In this section we show how to
give equations for the Chow or Hilbert quotient of X in the Cox ring of a toric
variety X6 . Throughout this section X is a T d-equivariant subscheme of Pm with
no irreducible component lying in any coordinate subspace, and we choose X6 to
be a sufficiently large toric subvariety of the normalization X6? of Pm//?T d with
respect to the pullback of X//?T d to X6? . We recall that the notation X//?T d stands
for either the Chow or Hilbert quotient, and any statement using this notation is
short-hand for two separate results; one for the Chow quotient, and one for the
Hilbert quotient. We denote by I (X)⊆ k[x0, . . . , xm] the saturated ideal defining
X . Let the (d + 1)× (m + 1) matrix A record the weights of the T d action, and
let D be its Gale dual (see (1)). Let R be the matrix whose columns are the first
integer lattice points on the rays of 6. Since the columns of D span the lattice N
of 6?, one has that

R = DV,

for some (m + 1)× r matrix V . We denote by X//?n T d the pullback of X//?T d to
the normalization X6? of Pm//?T d .

Theorem 3.2. Let T d act on Pm and let X ⊂ Pm be a T d-equivariant subscheme
with I (X) = 〈 f1, . . . , fg〉 ⊆ k[x0, . . . , xm]. Let X6 be a toric subvariety of X6?
containing X//?n T d , and let S = k[y1, . . . yr ] be the Cox ring of X6 . Let

ν : k[x0, . . . , xm] → k[y±1
1 , . . . , y±1

r ] be given by ν(xi )=

r∏
j=1

yVi j
j .

The ideal of X//?n T d in S is I = ν(I (X))∩S, and is obtained by clearing denom-
inators in {ν( fi ) : 1 ≤ i ≤ g}, and then saturating the result by the product of all
the variables in S. If X//?T d is irreducible and normal, it is isomorphic to X//?n T d

and I is the ideal of X//?T d in S.

Remark 3.3. When X6 contains all rays of 6? corresponding to columns of D,
and D has no repeated columns, we can write V = (I |CT ), where I is the (m+1)×
(m + 1) identity matrix and C is an integer (r −m − 1)× (m + 1) matrix. Thus
the map ν may be thought of as homogenizing the ideal I (X) with respect to the
grading of S. This is the formulation assumed in Theorem 1.1(1).

Proof of Theorem 3.2. The proof of the first claim proceeds in three parts. First,
using Proposition 2.1, we find equations in k[z±1

1 , . . . , z±1
m−d ], the coordinate ring

of the torus T m/T d of X6 , for (X ∩ T m)/T d . Second, we use the isomorphism
ρ : k[z±1

1 , . . . , z±1
m−d ] → S(5r

i=1 yi ), and apply Proposition 2.3 to obtain generators
for the ideal in S of the closure of (X ∩ T m)/T d in X6? . Since this is X//?n T d , we
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last check that this is the same as the ideal obtained by clearing denominators and
saturating.

The key diagram is the following, where U is as in the proof of Proposition 2.1
and the i are inclusions:

k[z±1
1 , . . . , z±1

m+1]
∼

U T
// k[x±1

0 , . . . , x±1
m ]
∼= k[M]

k[z±1
1 , . . . , z±1

m−d ]

i

OO

∼

DT
//

∼ RT

��

k[x±1
0 , . . . , x±1

m ]0

i

OO

V T

∼

uu
(Sy)0

The content of Proposition 2.1 is that the ideal in k[z±1
1 , . . . , z±1

m−d ] of (X∩T m)/T d

is given by i−1(U T−1
(I (X))), which is well-defined since U T−1

(I (X)) is in the
image of i . The ideal i−1(U T−1

(I (X))) is taken under the map DT to the degree
zero part of the ideal I (X) in k[x±1

0 , . . . , x±1
m ], since U is chosen in Proposition 2.1

to have its first d+1 rows equal to D. We thus see that the choice of identification of
the lattice N of the fan6 with Zm−d identifies k[M] with k[z±1

1 , . . . , z±1
m−d ], where

M is the lattice dual to N . This means that the isomorphism k[M]∼= (Sy)0 given in
[Cox 1995, Lemma 2.2] is given by the matrix RT , so the function ρ of Proposition
2.3 is given by ρ(zi )=

∏r
j=1 y Ri j

j . It thus follows from Proposition 2.3 that the ideal
in S of the closure of (X ∩T m)/T d in X6 is given by applying RT

◦ i−1
◦U T−1 to

the generators of I (X), clearing denominators, and then saturating by the product
of the variables of S.

To complete the proof, it thus suffices to observe that RT
◦ i−1
◦U T−1 restricted

to the degree zero part of k[x±1
0 , . . . , x±1

m ] is given by the matrix V T . This follows
from the fact that RT

= V T DT and the bottom triangle of the above commutative
diagram is made of three isomorphisms.

We now consider the case where X//?T d is irreducible and normal, and show
that it isomorphic to X//?n T d . Set Y = X//?T d , and Z = Pm//?T d . Let Ỹ and
Z̃= X6? denote the respective normalizations. Begin by reducing to the case where
Z = Spec(A) and Y = Spec(A/I ) are irreducible affine schemes with I an ideal in
a ring A. Note that Y intersects the torus T m−d of the not necessarily normal toric
variety Z , and thus intersects the smooth locus of Z . Since Y is irreducible, this
means that the map Y ×Z Z̃ → Y is birational, and so A and A/I have the same
total quotient ring. Normalization is a finite morphism, and the pullback of a finite
morphism is finite, so Ã/I Ã is integral over A/I . The isomorphism Ã/I Ã∼= A/I
then follows from the fact that Y is normal, so A/I is integrally closed. Finally
since all maps are inclusions, everything glues to prove Y ×Z Z̃ ∼= Y . �
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Remark 3.4. The choice of the matrix V in Theorem 3.2 is not unique. This does
not affect the computation, however, as the induced map ν is unique when restricted
to the degree zero part of k[x±1

0 , . . . , x±1
m ].

Example 3.5. Theorem 3.2 lets us compute equations for M0,5. Kapranov’s de-
scription of M0,5 as the Chow or Hilbert quotient of the Grassmannian G(2, 5)
by the T 4 action, described in Example 3.1, gives embeddings of M0,5 into the
normalizations of P9//Ch T 4 and P9//H T 4. These are both five-dimensional toric
varieties whose rays include the columns of the matrix D of Example 2.2, plus ten
additional rays, being the columns of the matrix−D. Let1 be the two-dimensional
fan with rays the columns di j of D, and cones pos(di j , dkl : {i, j} ∩ {k, l} = ∅).
By direct computation, or by Theorem 5.7, the fan 1 is a subfan of the fan of both
6Ch and 6H that defines a sufficiently large toric subvariety. For this fan we have
R = D, so V is the

(10
2

)
×
(10

2

)
identity matrix.

The ideal in k[xi j : 1 ≤ i < j ≤ 5] defining G(2, 5) as a subscheme of P9 is
generated by the Plücker equations given in Example 2.2. The Cox ring of P1

is k[yi j : 1 ≤ i < j ≤ 5], and the map ν of Theorem 3.2 is the identity map
ν(xi j ) = yi j . The ideal of the normal irreducible variety M0,5 in the Cox ring of
P1 is thus generated by the Plücker relations. The saturation step is unnecessary
in this case as this ideal is prime.

4. GIT constructions of Chow/Hilbert quotients

In this section we give a GIT construction of the Chow and Hilbert quotients of
X . This follows from their description in the Cox ring of a toric variety in Section
3. We also recover all GIT quotients of X by T d by variation of the GIT quotient.
As before X is a T d-equivariant subscheme of Pm with no irreducible component
lying in any coordinate hyperplane.

Let X6 be a sufficiently large toric subvariety of X6? . We assume in addition
that X6 has a torsion-free divisor class group, which can be guaranteed, for ex-
ample, by taking X6 to contain the rays of 6? corresponding to columns of the
matrix D (see Section 2A). Let I be the ideal of X//?n T d in the Cox ring of X6 .
We next define a cone which will index our choices of GIT quotient.

Definition 4.1. Let {[Di ] :1≤ i ≤|6(1)|} be the set of classes of the torus invariant
divisors on X6 . Set

G(X6)=
⋂
σ∈6

pos([Di ] : i 6∈ σ).

We note that G(X6) is the cone in Cl(X6) ⊗ R spanned by divisor classes
[D] ∈ Cl(X6) for which [D] is globally generated.

Lemma 4.2. The cone G(X6) has positive dimension.
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Proof. Since 6 is a subfan of the fan 6? we can number the rays of 6? so that the
first p live in 6, while the last s do not. If i : X6→ X6? is the inclusion map, then
the pullback from Cl(X6?) to Cl(X6) is given by i?

([∑p+s
i=1 ai Di

])
=
[∑p

i=1 ai Di
]
.

Since X6? is a projective toric variety, its nef cone G(X6?) =
⋂
σ∈6? pos([Di ] :

i 6∈ σ) is a positive-dimensional cone that can be viewed as living in Cl(X6?)⊗R.
The image of G(X6?) under the map i∗ is contained in G(X6). We now show
that some nonzero vector in G(X6?) is taken to a nonzero vector under i∗. Indeed,
otherwise every element of G(X6?) could be written in the form

∑p+s
i=p+1 ai [Di ],

so G(X6?) ⊆ pos([Di ] : p + 1 ≤ i ≤ s). But by the relation between the cones
of G(X6?) and chambers of the chamber complex [Billera et al. 1990], this means
that the cone spanned by all the rays of 6 lies in 6?. However X6 was assumed
to be sufficiently large, which means that 6 contains all cones of 6? intersecting
the tropical variety of X , so the balancing condition on tropical varieties [Speyer
2005, Theorem 2.5.1] implies that the rays of 6 positively span the entire space
Rm−d . This would mean that the cone spanned by the rays of 6 was all of Rm−d ,
contradicting it lying in the fan 6?. We thus conclude that there are elements
v ∈ G(X6?) with i∗(v) 6= 0, so G(X6) is a positive-dimensional cone. �

Let l = |6(1)|− dim(X6) be the rank of Cl(X6). Let H be the algebraic torus
Hom(Cl(X6), k×) ∼= (k×)l . We can regard Cl(X6) ⊗ R as the space of (real)
characters of the torus H , and G(X6) as a subcone of the character space. The
torus H acts on Ar by h · xi = h([Di ])xi . Recall that the torus of X6 is T m/T d .
We denote by relint(G(X6)) the relative interior of the cone G(X6).

Let r =|6(1)|. Recall that for α∈Zl the GIT quotient Y//α H of an affine variety
Y ⊂ Ar is

Y//α H = Proj
(⊕

j≥0(k[x1, . . . , xr ]/I (Y )) jα
)
,

where the Zl grading on the polynomial ring comes from the H -action on Ar . For
α ∈Ql we define Y//α H to be Y//sα H for any integral multiple sα.

Proposition 4.3. Let Y ⊆ Ar be the subscheme defined by the ideal I ⊆ Cox(X6)
of X//?n T d . For rational α ∈ relint(G(X6)) we have

X//?n T d
= Y//α H.

Proof. It follows from the results of [Cox 1995] and the chamber complex de-
scription of the secondary fan that X6′ = Ar//α H is a projective toric variety
whose fan 6′ has same rays as 6 and contains 6 as a subfan. The dense torus
of X6′ is also T m/T d . The quotient Y//α H is a subvariety of X6′ . Let (Y//α H)0=
(Y//α H)∩T m/T d

= (Y ∩T r )/H = (X ∩T m)/T d , where the last equality follows
from the fact that T r/H ∼= T m/T d . Then Y//α H is the closure of (Y//α H)0 in
X6′ . By Corollary 2.7, to show that Y//α H is the closure of (Y//α H)0 inside X6 it
suffices to show that the tropical variety of (X ∩ T m)/T d

⊆ T m/T d is contained



Equations for Chow and Hilbert quotients 869

in the support of 6. This follows from the hypothesis that X6 is sufficiently large,
again by Corollary 2.7. Since X//?n T d is the closure of (X ∩ T m)/T d in X6 , the
proposition follows. �

This GIT description gives projective embeddings of X//?n T d , as we now de-
scribe. Let S = k[x1, . . . , xr ] be the Cox ring of X6 . For α ∈ G(X6), write Sα

for the subring
⊕

j≥0 S jα of S. Note that Sα has a standard Z-grading, by setting
deg f = j for all f ∈ S jα. If J is an ideal in S, write Jα for the ideal J ∩ Sα of
Sα. The GIT description above gives that

X//?n T d
= Proj(Sα/I α).

Corollary 4.4. The GIT description of X//?n T d gives a projective embedding of
X//?n T d with the pullback of O(1) on PN equal to π∗(α) for a large enough multi-
degree α ∈ G(X6), where π is the embedding of X//?n T d into X6 .

Proof. Assume α is large enough so that Sα/I α is generated in degree one. If
not, we can replace α by lα for l � 0. Let xu0, . . . , xuN ∈ Sα generate Sα/I α,
and define a map φ : k[z0, . . . , zN ] → Sα/I α by φ(zi ) = xui . Let J = kerφ.
Then X//?n T d

= Proj(k[z0, . . . , zN ]/J ), and by construction the pullback of O(1)
is π∗(α). �

Example 4.5. We continue the discussion of M0,5 begun in Examples 3.1 and 3.5.
Example 3.5 shows that M0,5 is the GIT quotient of the affine cone over the
Grassmannian G(2, 5) by a five-dimensional torus, so M0,5 = G(2, 5)//α T 4 for
all α in the relative interior of G(X1). The cone G(X1) is the intersection of
the cones pos(dpq : {p, q} 6= {i, j}, {k, l}) for all choices of i, j, k, l distinct,
where dpq is the column of the matrix D of Example 2.2 indexed by {p, q}.
This cone thus contains the vector α = (2, 2, 2, 2, 2) in its relative interior. The
Cox ring of X1, S = k[xi j : 1 ≤ i < j ≤ 5], has an action of the symmetric
group S5 permuting the variables, and Sα is generated in degree one by monomials
x2

12x34x35x45 and x12x23x34x45x15 and their S5-orbits, which are of size 10 and 12
respectively. Thus this gives an embedding of M0,5 into P21. The ideal I α is then
cut out by linear equations induced from multiples of the Plücker relations such as
x15x12x34x23x45 − x15x12x34x24x35 + x15x12x2

34x25 and its S5-orbit. Thus M0,5 is
cut out as a subscheme of P21 by these linear relations and the binomial relations
coming from the kernel of the surjective map k[z0, . . . , z21] → Sα.

We now show that other GIT quotients of X can be obtained from X//?n T d by
variation of the GIT quotient (VGIT). We assume that6 contains all the rays of6?

corresponding to rays of the Gale dual matrix D (see Section 2A), and also that D
has no repeated columns. This means that we can write R= (D |DCT )=D(I |CT )

for some s × (m + 1) matrix C . Let S = Cox(X6) = k[x0, . . . , xm, y1, . . . , ys],
where s= r−(m+1)= l−(d+1) and S̃= k[x0, . . . , xm]. Grade S̃ by deg xi = ai ,
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where ai is the i-th column of the matrix A. Our assumption on 6 means that the
grading matrix for S can be written in block form as(

A 0
−C Is

)
. (3)

We write NA for the subsemigroup of Zd+1 generated by the columns of the matrix
A. Let π : Zl

→ Zd+1 be the projection onto the first d + 1 coordinates, and let
π2 : Z

l
→ Zs be the projection onto the last s = l − (d + 1) coordinates. Recall

the homomorphism ν : k[x0, . . . , xm] → k[x0, . . . , xm, y±1
1 , . . . , y±1

s ] given in the
statement of Theorem 3.2. Since D does not have repeated columns this is given
by ν(xu) = xu yCu . Again Y = Z(I ) is the subscheme of Am+1+s defined by the
ideal I of X//?n T d .

Theorem 4.6. With the notation given above, fix β ∈ NA. Then if α ∈ Zl satisfies
π(α)= β, and αi ≥−min{(Cu)i : Au = β, u ∈Qm+1

≥0 } for 1≤ i ≤ s, then

Y//α H ∼= X//π(α)T d .

Proof. We will show that the map ν described above induces an isomorphism
between S̃β/I (X)β and Sα/I α.

The map ν sends a monomial xu to xu yCu . Define ν ′ : S̃β → Sα by setting
ν ′(xu) = xu ylπ2(α)+Cu , when deg xu

= lβ. By construction if deg xu
= lβ then

deg ν ′(xu) = lα, and the assumption on α implies that lπ2(α) + Cu ∈ Nl−d−1,
so the map is well-defined. Note also that ν ′ is injective and surjective, as if
xu yv ∈ Slα, then deg xu

= lβ, and v must equal Cu. We denote by ν̄ ′ the in-
duced map from S̃β to Sα/I α, and let J = ker ν̄ ′. Since ν̄ ′ is surjective as ν ′ is,
it remains to show that J = I (X)β . Since ν ′ is a graded homomorphism, J is a
homogeneous ideal, so it suffices to check that each homogeneous polynomial in
J lies in I (X) and vice versa. Recall from Theorem 3.2 that I = (ν(I (X))Sy)∩ S,
where y=

∏m
i=0 xi

∏s
j=1 y j . If f =

∑
u cu xu

∈ (I (X))lβ , then ν( f )=
∑

u cu xu yCu ,
so ν ′( f )=

∑
cu xu ylπ2(α)+Cu

= ylπ2(α)ν( f ) ∈ Ilα, and thus I (X)β ⊆ J .
Suppose now that f ∈ Jlβ , so ν ′( f ) ∈ Ilα, and thus ν ′( f ) =

∑
i hiν(gi ) for

gi ∈ I (X) and hi ∈ Sy , where we may assume that the hi are constant multiples
of Laurent monomials, and the gi are homogeneous. Write f =

∑
u cu xu , gi =∑

v dv,i xv, and hi = ci xu+i /xu−i yvi , where u+i , u−i ∈ Nm+1, and vi ∈ Zs . Note that
ν(ci xu+i gi )= ci xu+i yCu+i ν(gi ), so by changing vi and gi we may assume that ci = 1
and u+i = 0 for all i . Also, note that the map ν lifts to a map from k[x±1

0 , . . . , x±1
m ]

to k[x±1
0 , . . . , x±1

m , y±1
1 , . . . , y±1

s ], and I ′(X) := I (X)k[x±1
0 , . . . , x±1

m ]∩ S̃= I (X)
(as no irreducible component of X is contained in a coordinate subspace). Also
ν(I ′(X))Sy = ν(I (X))Sy , so we may also assume that u−i = 0 for all i . Thus we
have ν ′( f ) =

∑
i yvi ν(gi ) where vi ∈ Zs , and gi ∈ I ′(X)lβ with g̃ =

∑
i gi ∈ S̃
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because g̃ = ν ′( f )
∣∣

yi=1 and thus g̃ ∈ (I (X))β . Since deg ν ′( f ) = lα, and each
gi is homogeneous, we have deg(yvi ν(gi )) = lα, so ν ′(gi ) = yvi ν(gi ), and thus
ν ′(g̃)= ν ′( f ). From this it follows that g̃= f , since ν ′ is injective by construction,
and thus f ∈ I (X)lβ , so J = I (X)β as required. �

Corollary 4.7. The Chow and Hilbert quotients X//Ch T d and X//H T d and the
GIT quotients X//α T d are related by variation of the GIT quotient.

Proof. It remains to check that an α satisfying the hypotheses of Theorem 4.6
actually exists. This means checking that the set {(Cu)i : Au = β, u ∈ Qm+1

≥0 } is
bounded below so the minimum exists. This follows from the fact that {u : Au=β,
u ∈ Qm+1

≥0 } is a polytope, since the all-ones vector is in the row space of A. Thus
the lower bound is the minimum of a linear functional on a polytope, which is
finite. �

5. A toric variety containing M0,n

In the remainder of the paper we apply the previous theorems to obtain equations
for M0,n. Using the construction given in Example 3.1, M0,n is a subvariety of the
normalization of the Chow or Hilbert quotient of P(

n
2)−1 by T n−1. In this section

we describe a smooth normal toric variety X1 that is a sufficiently large toric
subvariety of both X6Ch and X6H . We prove in Theorem 5.7 that M0,n is contained
in X1.

We first define a simplicial complex and set of vectors that form the underly-
ing combinatorics of 1. Recall that [n] = {1, . . . , n}, and for I ⊂ [n] we have
I c
= [n] \ I .

Definition 5.1. Let I={I ⊂[n] : 1∈ I, |I | ≥ 2, |I c
| ≥ 2}. The simplicial complex

1̃ has vertices I and σ ⊆I is a simplex of 1̃ if for all I and J ∈ σ we have I ⊆ J ,
J ⊆ I , or I ∪ J = [n].

Let E = {i j : 2 ≤ i < j ≤ n, i j 6= 23} be an indexing set for a basis of R(
n
2)−n .

For each I ∈ I, define the vector

rI = (Ri j,I )i j∈E ∈ Z(
n
2)−n, Ri j,I =


1 if |I ∩ {i j}| = 0, |I ∩ {23}|> 0,

−1 if |I ∩ {i j}|> 0, |I ∩ {23}| = 0,

0 otherwise.

Form the
((n

2

)
− n

)
× |I| matrix R with I -th column rI .

Note that the set I also labels the boundary divisors δI of M0,n, and a simplex
σ lies in 1̃ precisely if the corresponding boundary divisors intersect nontrivially.

Proposition 5.2. The collection of cones {pos(rI : I ∈ σ) : σ ∈ 1̃} is a polyhedral
fan 1 in R(

n
2)−n of dimension n − 3. The associated toric variety X1 is smooth,

and the support of 1 is the tropical variety of M0,n ⊂ T (
n
2)−n .
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This fan is well known in the literature as the space of phylogenetic trees [Speyer
and Sturmfels 2004, Section 4, Buneman 1974; Vogtmann 1990; Billera et al.
2001]. To prove Proposition 5.2 and for results in the remainder of this section,
we use the following notation.

Definition 5.3. Fix n ≥ 6. Let An be the n ×
(n

2

)
-dimensional matrix with i j-th

column equal to ei + e j and let D be the
((n

2

)
− n

)
×
(n

2

)
matrix

D=(Di j,kl) i j∈E
1≤k<l≤n

, Di j,kl=


1 if kl = i j, or kl ∈ {12, 13}, |{i j} ∩ {kl}| =∅,
−1 if kl = 23, or kl ∈ {1i,1 j}, |{23} ∩ {kl}| =∅,

0 otherwise.

Let C be the
(
|I|−

(n
2

))
×
(n

2

)
matrix with rows indexed by I ∈I with 3≤|I |≤n−3,

columns indexed by {i j : 1≤ i < j ≤ n}, and entries

C I,i j =

{
1 if i, j ∈ I,
0 otherwise.

A straightforward calculation from the definition of D shows that

R = D(I | CT ). (4)

The matrix An is the vertex-edge incidence matrix for the complete graph on n
vertices and D is its Gale dual, so D AT

n = 0. Note that the square
((n

2

)
− n

)
×((n

2

)
− n

)
submatrix of D with columns indexed by E is the identity matrix. In

particular, D has rank
(n

2

)
− n.

Proof of Proposition 5.2. Let the lattice L be the integer row space of An . The
affine cone over the Grassmannian G(2, n) in its Plücker embedding is a subvariety
of A(

n
2) and we denote by AG0(2, n) its intersection with T (

n
2). In [Speyer and

Sturmfels 2004] it is shown that the tropical variety of AG0(2, n) is a (2n−3)-
dimensional fan in R(

n
2) with lineality space L ⊗ R, and the simplicial complex

corresponding to the fan structure on Trop(AG0(2, n)) is 1̃. Specifically, the cone
corresponding to the cone σ ∈ 1̃ is pos(eI : I ∈ σ)+ L , where

eI =
∑

i∈I, j 6∈I

ei j ∈ Z(
n
2).

Recall from Example 3.1 that M0,n = G0(2, n)/T n−1. Using Proposition 2.1,
one can show that for any X ⊆ T m that is invariant under the action of a torus
T d
⊂ T m , the tropical variety of X/T d

⊂ T m/T d is equal to the quotient of the
tropical variety of X ⊂ T m by the tropical variety of T d . Thus Trop(M0,n) =

Trop(G0(2, n))/Trop(T n−1) = Trop(AG0(2, n))/L . To prove the first part of the
proposition it then suffices to show that the image of eI in R(

n
2)/L is rI . Since the

matrix D of Definition 5.3 is a Gale dual for An , the map R(
n
2)→R(

n
2)/L ∼=R(

n
2)−n
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given by sending the basis vector ei j of R(
n
2) to−1

2 di j is an isomorphism, where di j

is the i j-th column of D. The image of eI under this map is then − 1
2

∑
i∈I, j 6∈I di j .

Since
∑

1≤i< j≤n di j = 0, this is 1
2

∑
i, j∈I di j +

1
2

∑
i, j∈I c di j . Let li denote the i-th

row of the matrix An , and note that
∑

i∈I li−
∑

i 6∈I li =
∑

i, j∈I ei j−
∑

i, j∈I c ei j , so∑
i, j∈I di j =

∑
i, j∈I c di j . Thus the image of eI =

∑
i, j∈I di j =

∑
i, j∈I c di j . Since

this is equal to (D(I | CT ))I = rI , we conclude that rI is the image of eI . Note
that this map is induced from a map of lattices, as the relevant lattice in R(

n
2) is the

index two sublattice of Z(
n
2) with even coordinate sum.

The fact that 1 is simplicial of dimension n−3 is due to [Robinson and White-
house 1996]. Recall that a fan is smooth if for each cone the intersection of the
lattice with the linear span of that cone is generated by the first lattice points on
each ray of the cone. The fact that the fan is smooth follows from the work of
Feichtner and Yuzvinsky. In [Feichtner 2006] it is shown that the fan 1 is the one
associated to the nested set complex for a related hyperplane arrangement, while in
[Feichtner and Yuzvinsky 2004, Proposition 2] it is shown that the fans associated
to nested set complexes are smooth. �

Notation 5.4. Let An and D be the matrices described in Definition 5.3. Recall
that the chamber complex 6(D) is the polyhedral fan in R(

n
2)−n subdividing the

cone spanned by the columns of D obtained by intersecting all simplicial cones
spanned by columns of D. This is equal to the secondary fan of An , and thus to the
fan of the toric variety X6Ch (see [Billera et al. 1990]). Recall also that the regular
subdivision 1w of the configuration of the columns ai j of An corresponding to a
vector w ∈ R(

n
2) has pos(ai j : i j ∈ σ) as a cell for σ ⊆ {i j : 1 ≤ i < j ≤ n} if and

only if there is some c ∈ Rn such that c · ai j =wi j for i j ∈ σ , and c · ai j <wi j for
i j 6∈ σ (see [Gel’fand et al. 1994; Sturmfels 1996; Maclagan and Thomas 2007]
for background on regular subdivisions). We denote by NAn the subsemigroup of
Nn generated by the columns of An , and by R≥0 An the cone in Rn whose rays are
the positive spans of the columns of An .

Proposition 5.5. The fan1 is a subfan of the fan X6Ch , so X1 is a toric subvariety
of X6Ch .

Proof. Let σ be a top-dimensional cone of 1. Then σ = pos(rI1, . . . , rIn−3), where
Ii ⊆ I j , I j ⊆ Ii , or Ii ∪ I j = [n]. There is a trivalent (phylogenetic) tree τ with n
labeled leaves such that the I j correspond to the splits obtained by deleting internal
edges of τ .

Since σ is a cone in V = R(
n
2)/ row(A), we can chose a lift w ∈ Ṽ = R(

n
2) for a

vector in σ , and thus consider the regular subdivision 1w of the configuration An ,
which does not depend on the choice of lift.

To show that σ is a cone in the chamber complex of D we first characterize the
subdivision 1w coming from a lift w of a vector in σ . To an internal vertex v of
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the phylogenetic tree τ we associate the set Cv of pairs i j such that the path in τ
between the vertices labeled i and j passes through v, and the cone Cv = pos(ei j :

i j ∈ Cv) ⊆ Rn . The cone Cv is obtained by taking the cone over the polytopes
M(∼=v) of [Kapranov 1993, Remark 1.3.7].

We claim that for any lift w ∈ R(
n
2) of a vector in σ the subdivision 1w has

cones Cv for v an internal vertex of τ . To see this, for each rI ∈ σ set I ′ = [n] \ I
if the path from leaf i to leaf j in τ passes through v for some i, j ∈ I , and I ′ = I
otherwise. This ensures that i j 6∈ Cv for i, j ∈ I ′. If

∑n−3
i=1 ai rIi is a point in σ with

ai > 0 for all i , we can choose the lift w =
∑n−3

i=1 ai
∑

i, j∈I ′i
ei j . Since wi j > 0 for

i j 6∈ Cv, and wi j = 0 for i j ∈ Cv, taking c= 0 we see that Cv is a face of 1w.
This shows that the given collection are cones in the subdivision 1w. That they

cover all of the cone generated by the ai j is [Kapranov 1993, Claim 1.3.9]. For
the reader’s convenience we give a self-contained proof. To show that we are not
missing anything, it suffices to show that any v ∈ NAn lies in Cv for some Cv,
which will show that the Cv cover R≥0 An . If v lies in NAn then there is a graph 0
on n vertices with degree sequence v. We may assume that 0 has the largest edge
sum out of all graphs with degree sequence v, where an edge i j has weight the
number of internal edges in the path between i and j in the tree τ . This means that
if i j and kl are two edges of 0 with |{i, j, k, l}|= 4, the paths in τ corresponding to
these two edges must cross, as otherwise we could get a larger weight by replacing
these two edges by the pair with the same endpoints that do cross. We claim that
there is then some vertex v ∈ τ for which the path in τ corresponding to each edge
in 0 passes through v, which will show that v ∈ Cv. The statement is trivial if 0
has at most two edges, since any two paths must intersect. The set of collections
of edges of 0 for which the corresponding paths share a common vertex forms a
simplicial complex, so if the claim is false, we can find a subgraph 0′ of 0 for
which there is no vertex of τ through which all of the corresponding paths pass,
but every proper subgraph of 0′ has the desired property (0′ is a minimal nonface
of the simplicial complex). The subgraph 0′ must have at least three edges. Pick
three edges e1, e2, e3 of 0′, and let vi for i ∈ {1, 2, 3} be a vertex of τ for which
the path corresponding to each vertex of 0′ except ei passes. Since τ is a tree one
of these vertices lies in the path between the other two; without loss of generality
we assume that v2 lies between v1 and v3. But the path corresponding to e2 passes
through v1 and v3 while avoiding v2, a contradiction.

This shows that the subdivision corresponding to a vector in the interior of σ
is the same subdivision 1σ for any vector in σ , and that σ lies inside the cone⋂
v pos(ri j : i j 6∈ Cv) of the chamber complex of D. To finish the proof, we

show that this cone lies in σ . The cone σ has the following facet description: for
each quadruple i, j, k, l two of the pairs of paths {i j, kl}, {ik, jl}, and {il, jk} in
the tree τ have the same combined length, and one pair is shorter. Without loss
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of generality we assume that i j, kl is the shorter pair. This gives the inequality
wi j + wkl ≥ wik + w jl = wil + w jk . The set of these inequalities as {i, j, k, l}
ranges over all 4-tuples of [n] gives a description of the lift in R(

n
2) of the cone

σ (see [Speyer and Sturmfels 2004, Theorem 4.2]). Note that row(A) lies in this
cone, so to show that a vector v in the relative interior of

⋂
v pos(ri j : i j 6∈ Cv)

lies in σ , it suffices to show that for each inequality there is some lift of v to R(
n
2)

that satisfies that inequality. Given such a v, and a 4-tuple {i, j, k, l} giving the
inequality wi j +wkl ≥ wik +w jl = wil +w jk , pick a vertex v in τ that lies in all
of the paths ik, jl, il, and jk. Then since v ∈ relint(pos(ri j : i j 6∈ Cv)), there is a
lift w of v with wik = w jl = wil = w jk = 0, and wi j , wkl ≥ 0, which satisfies the
given inequality. We conclude that

⋂
v pos(ri j : i j 6∈ Cv) ⊆ σ , and thus we have

equality, so σ is a cone in the chamber complex of D. �

Recall that an open cone σ ∈ 6H consists of w for which the saturation of
inw(IA) is constant, where we here follow the standard convention that the leading
form inw( f ) of a polynomial f consists of terms of largest w-degree.

Proposition 5.6. The fan 1 is a subfan of the fan 6H, so X1 is a toric subvariety
of X6H .

Proof. Continuing with the notation from the proof of Proposition 5.5, we first
show that inw(IAn ) is constant for all lifts w of vectors in a maximal cone σ of
1 corresponding to a phylogenetic tree τ . A planar representation of τ with the
vertices on a circle determines a circular order on [n]. Without loss of generality
we may assume that this is the standard increasing order. Draw the complete graph
Kn on the circle with the same order. By [Sturmfels 1996, Theorem 9.1] a reduced
Gröbner basis B for IAn is given by binomials of the form xi j xkl − xik x jl , where
the edges ik and jl of Kn cross but the edges i j and kl do not. The open Gröbner
cone corresponding to this is C= {w ∈R(

n
2) :wi j+wkl >wik+w jl}. Note that, as

in the proof of Proposition 5.5, the lift of any vector in σ lies on the boundary of
C, and so there is a term order ≺ for which the initial ideal in≺(inw(IAn )) equals
the ideal 〈xi j xkl : i j, kl do not cross in Kn〉, where w is a lift of any vector in σ .
Thus by [Sturmfels 1996, Corollary 1.9], a Gröbner basis for IAn with respect to
the weight order given by such a w is obtained by taking the initial terms with
respect to w of the Gröbner basis B. For a binomial xi j xkl − xik x jl , where the
edges ik and jl of Kn cross but the edges i j and kl do not, either the paths ik and
jl also cross in τ , or they do not. If the paths do cross, the lift w of a vector in
σ has wik +w jl = wi j +w jl , and if they do not there is an internal edge of τ in
the paths ik and jl but not the paths i j and kl, so if w lies in the interior of σ we
have wik +w jl <wi j +w jl . This means that the initial ideal is determined by the
tree τ , so inw(IAn ) is constant for all lifts w of vectors in σ . This shows that σ is
contained in a cone σ ′ of 6H.
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It remains to show that σ = σ ′. This follows from Proposition 5.5, which shows
that σ is a cone in the secondary fan of IAn , since the Gröbner fan refines the
secondary fan [Sturmfels 1996, Proposition 8.15]. The fan 6H is obtained from
the Gröbner fan of IAn by amalgamating cones corresponding to initial ideals with
the same saturation with respect to 〈xi j : 1≤ i < j ≤ n〉, so the result follows, since
ideals with the same saturation have the same radical and thus the cones live in the
same secondary cone. �

We are now able to show that M0,n is a subvariety of X1. As described in
Example 3.1 the moduli space M0,n is both the Chow and Hilbert quotient of the
Grassmannian G(2, n) by the torus T n−1.

Theorem 5.7. The toric variety X1 is the union of those T (
n
2)−n-orbits of X6?

intersecting the closure of M0,n in this X6? . The closure of M0,n ⊆ T (
n
2)−n inside

X1 is equal to M0,n.

We remark that the second part of this result was originally observed by related
methods in [Tevelev 2007, Theorem 5.5].

Proof of Theorem 5.7. By Propositions 5.5 and 5.6 we know that 1 is a subfan of
both 6Ch and 6H, and by Proposition 5.2 we know that the support of 1 is the
tropical variety of M0,n ⊂ T (

n
2)−n . Corollary 2.7 says that the closure of M0,n ⊂

T (
n
2)−n inside X6? intersects the orbit corresponding to a cone σ ∈6? if and only

the tropical variety of M0,n intersects the interior of σ . Thus the orbits of X6?
intersecting this closure are precisely the orbits in the toric subvariety X1. This
proves the first assertion of the theorem. For the second, note that the closure of
M0,n in X1 is G(2, n)//?n T n−1, and since M0,n= G(2, n)//?T n−1 is smooth and
irreducible, this is equal to M0,n by Theorem 3.2. �

Remark 5.8. We emphasize that although we know that the fans 6Ch and 6H are
the secondary and saturated Gröbner fans respectively, we do not even know how
many rays each has. So while in theory one could describe equations for M0,n in
the Cox rings of these toric varieties, this is not possible in practice. On the other
hand, 1 has a completely explicit description for all n. In particular, this makes
the Cox ring of X1 accessible and enables us to derive equations for M0,n inside it.

6. Equations for M0,n

In this section we apply Theorem 3.2 to give equations for M0,n in the Cox ring of
the toric variety X1 described in Section 5.

Recall that I= {I ⊂ [n] : 1∈ I, |I |, |I c
| ≥ 2}, and there is a ray pos(rI ) of 1 for

each I ∈I. The Cox ring of X1 is S= k[x I : I ∈I], with deg x I = [DI ] ∈Cl(X1),
where DI is the torus-invariant divisor corresponding to the ray through rI . We
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construct the grading matrix as follows. Set b = |I| −
(n

2

)
for n ≥ 5. Let G be the

(n+ b)× |I| matrix that is given in block form by

G =
(

An 0
−C Ib

)
, (5)

where 0 denotes the n× b zero matrix, An and C are as in Definition 5.3, and Ib

is the b× b identity matrix. For n = 4 we set G =
(
1 1 1

)
.

As the following lemma shows, this form of G is consistent with the choice of
grading matrix for the Cox ring of X1 suggested in (3). The lemma also shows that
Cl(X1) ∼= Pic(M0,n), so we first recall the description of Pic(M0,n). For I ⊂ [n]
with 1 6∈ I the notation eI means the basis element eI c of Z|I|.

Proposition 6.1 [Keel 1992, Theorem 1]. Let W be the sublattice of Z|I| spanned
by the vectors

wi jkl =
∏

i, j∈I
k,l 6∈I

eI −
∏
i,l∈I
j,k 6∈I

eI ,

where {i, j, k, l} ⊆ [n] has size four. The Picard group of M0,n is isomorphic to
Z|I|/W .

Lemma 6.2. For n ≥ 5 the divisor class group of X1 is isomorphic to Zb+n , with
the image of [DI ] under this isomorphism equal to the column gI of the matrix G
indexed by I ∈ I. We have Cl(X1)∼= Pic(M0,n), with the isomorphism taking [DI ]

to the boundary divisor δI .

Proof. That Cl(X1)∼= Zb+n follows from the short exact sequence (†) computing
the class group of a toric variety [Fulton 1993, p. 63], together with Proposition
5.2, since smooth toric varieties have torsion-free divisor class groups. To see that
the image of [DI ] is gI , the I -th column of G, it suffices to show that the matrix
G is a Gale dual for the matrix R, so the exact sequence (†) is

0→ M
RT

→ Z|I|
G
→ Cl(X1)→ 0.

Now G RT
= G(I | CT )T DT , so

G RT
=

(
An 0
−C I

)(
I
C

)
DT
=

(
ADT

0

)
= 0.

Finally, to show that Cl(X1) ∼= Pic(M0,n), since Cl(X1) ∼= Z|I|/ imZ RT and
Pic(M0,n)∼=Z|I|/W , it suffices to show that W = imZ RT . Since imZ RT

= kerZ G,
both lattices W and im RT are saturated, and rank W = rank RT

=
(n

2

)
−n, it suffices

to show that each wi jkl lies in the kernel of G. Now wi jkl restricted to the sets I
with |I | = 2 or |I | = n−2 is ei j + ekl − eil − e jk , which lies in ker An . Restricting
wi jkl to {est : s, t ∈ I } ∪ {eI } we see that

(
−C Ib

)
wi jkl = 0. For example, if
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1, i, j, k, l ∈ I then the sum is −1− 1+ 1+ 1+ 0 = 0. Thus wi jkl ∈ ker G as
required. �

For n = 4 we have Cl(X1)∼= Pic(M0,4)∼= Z, and the image of the gi j is 1 ∈ Z,
which is also equal to each [Di j ].

We begin by proving the first part of Theorem 1.2. Recall that

I= {I ⊂ [n] : 1 ∈ I, |I | ≥ 2, |I c
| ≥ 2}.

If 1 6∈ I ⊆[n] then by x I we mean the variable x[n]\I in the Cox ring S=k[x I : I ∈I]

of X1.

Theorem 6.3. For n≥ 5 the equations for M0,n in the Cox ring of X1 are obtained
by homogenizing the Plücker relations with respect to the grading of S and then
saturating by the product of the variables of S. Specifically, the ideal is

I (M0,n)=

(〈∏
i j∈I
kl 6∈I

−

∏
ik∈I
jl 6∈I

x I +
∏
il∈I
jk 6∈I

x I

〉
:

(∏
I

x I

)∞)
,

where the generating set runs over all {i, j, k, l} with 1≤ i < j < k < l ≤ n.

Before proving the theorem, we first find equations for the intersection M0,n

of M0,n with the torus T = T (
n
2)−1/T n−1 ∼= (k×)(

n
2)−n of the toric variety X1.

The coordinates for T are labeled by E = {i j : 2 ≤ i < j ≤ n, i j 6= 23}. Recall
that the ideal of G(2, n) ⊂ P(

n
2)−1 is generated by the Plücker relations pi jkl =

xi j xkl − xik x jl + xil x jk :

I2,n = 〈xi j xkl − xik x jl + xil x jk : 1≤ i < j < k < l ≤ n〉.

Proposition 6.4. The intersection M0,n =
(
Z(I2,n)∩ T (

n
2)
)
/T n
⊆ T is cut out by

the equations

J = 〈zkl − z2l + z2k : 3≤ k ≤ l ≤ n〉 ⊆ k[z±1
i j : i j ∈ E],

where we set z23 = 1.

Proof. We first show that
(
Z(I2,n)∩ T (

n
2)
)
/T n is defined by the ideal

J ′ = 〈zi j zkl − zikz jl + zil z jk : 1≤ i < j < k < l ≤ n〉 ⊆ k[z±1
i j : i j ∈ E],

where we set zi j = 1 when i j 6∈ E. The content of Proposition 2.1 is that the
relevant ideal is φ−1(I2,n), where φ : k[z±1

i j : i j ∈ E] → k[x±1
i j : 1 ≤ i < j ≤ n] is

given by φ(zi j )=
∏

kl x Di j,kl
kl .

Since the map φ is an injection, to show that J ′ is the desired ideal we just need
to show that the generators of J ′ are taken to a generating set for I2,n ⊆ k[x±1

i j ]
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by φ. When i j ∈ E we have

φ(zi j )=


(xi j x12x13)/(x1i x1 j x23) if i, j ≥ 4,

(x2 j x13)/(x1 j x23) if i = 2,

(x3 j x12)/(x1 j x23) if i = 3.

The proof breaks down into several cases, depending on how many of 1, 2, 3 lie
in {i, j, k, l}. For example, if 1, 2, 3 6∈ {i, j, k, l}, then zi j zkl − zikz jl + zil z jk =

(xi j xkl−xik x jl+xil x jk)(x12x13)
2/(x1i x1 j x1k x1l x2

23). The other cases to check are:

• i = 1, 2, 3 6∈ { j, k, l},

• i = 1, j = 2, 3 6∈ {k, l}, or j = 3, 2 6∈ {k, l},

• i = 1, j = 2, k = 3,

• i = 2, 1, 3 6∈ { j, k, l} or j = 3, 1, 2 6∈ {i, k, l}, and

• i = 2, j = 3, 1 6∈ {k, l}.

In every case we see that the polynomial φ(zi j zkl − zikz jl + zil z jk) is equal to
xi j xkl − xik x jl + xil x jk times a monomial in the xmn . This shows that φ takes a
generating set for J ′ to a generating set for I2,n ⊂ k[x±1

i j : 1≤ i < j ≤ n], and thus
J ′ is the ideal of

(
Z(I2,n)∩ T (

n
2)
)
/T n .

To see that J = J ′, it suffices to show that all other generators of J ′ lie in the
ideal generated by these linear ones. Indeed,

zi j zkl − zikz jl + zil z jk

= zi j (zkl−z2l+z2k)− zik(z jl−z2l+z2 j )+ zil(z jk−z2k+z2 j )

+(z2l−z2k)(zi j−z2 j+z2i )+(z2k−z2 j )(zil−z2l+z2i )+(z2 j−z2l)(zik−z2k+z2i ).

�

Remark 6.5. Consider the ideal J̃ ⊂ k[zi j : i j ∈ E ∪ {23}] obtained by homog-
enizing the ideal J by adding the variable z23. The variety Z( J̃ ) ⊆ P(

n−1
2 )−1 is

the linear subspace equal to the row space of the (n− 1)×
(n−1

2

)
matrix Ã whose

columns are the positive roots of the root system An−2. Specifically, the rows of Ã
are indexed by 2, . . . , n, and the columns are indexed by {{i, j} : 2 ≤ i < j ≤ n},
with Ãi,{ j,k} equal to 1 if i = j , −1 if i = k, and zero otherwise. The variety
M0,n is the intersection of Z( J̃ ) ⊆ P(

n−1
2 )−1 with the torus T (

n−1
2 )−1 of P(

n−1
2 )−1.

This exhibits M0,n as a hyperplane complement and as a very affine variety in its
intrinsic torus [Tevelev 2007].

Proof of Theorem 6.3. By Theorem 5.7 X1 is a sufficiently large toric subvariety of
X6? , so Theorem 3.2 describes how to get equations for M0,n inside X1. Equation
(4) defines V =

(
I(n

2)
| CT

)
, so the map ν : k[xi j : 1≤ i < j ≤ n]→ k[x±1

I : I ∈ I]
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of Theorem 3.2 is given by ν(xi j )= xi j
∏

i, j∈I x I , where the product is over I ∈ I

with 1 ∈ I , and 3≤ |I | ≤ n− 3. Thus, for i , j , k, and l distinct, we have

ν(xi j xkl)= xi j xkl

∏
i j∈I

x I

∏
kl∈I

x I ,

with the same restrictions on the products. Using the convention x I = x[n]\I , we
can write this as

ν(xi j xkl)= xi j xkl

∏
i j∈I
kl 6∈I

x I

∏
1∈I

|{i, j,k,l}∩I |=3

x I

∏
1,i, j,k,l∈I

x2
I ,

where here the products are over all I ∈ I with 3 ≤ |I | ≤ n − 3, and there is no
restriction that 1 ∈ I in the first product. Write

Mi jkl =
∏
1∈I

|{i, j,k,l}∩I |=3

x I

∏
1,i, j,k,l∈I

x2
I .

Then

ν(pi jkl)= Mi jkl

(∏
i j∈I
kl 6∈I

x I −
∏
ik∈I
jl 6∈I

x I +
∏
il∈I
jk 6∈I

x I

)
.

Note that ν(pi jkl) is already a polynomial, so there is no need to clear denominators.
Thus by Theorem 3.2 the ideal IM0,n

in the Cox ring of X1 is given by

IM0,n
=

(〈(∏
i j∈I
lk 6∈I

x I −
∏
ik∈I
jl 6∈I

x I +
∏
il∈I
jk 6∈I

x I

)
Mi jkl

〉
:

(∏
I∈I

x I

)∞)

=

(〈∏
i j∈I
kl 6∈I

x I −
∏
ik∈I
jl 6∈I

x I +
∏
il∈I
jk 6∈I

x I

〉
:

(∏
I∈I

x I

)∞)
,

where the generating sets run over all {i, j, k, l} with 1≤ i < j < k < l ≤ n. �

Example 6.6. (1) The case n = 5 is covered in Examples 2.2, 3.5, and 4.5.

(2) When n=6, the ideal I2,6 is generated by the equations pi jkl = xi j xkl−xik x jl+

xil x jk , where 1≤ i < j < k < l ≤ 6 in the ring k[xi j : 1≤ i < j ≤ 6]. The Cox ring
of X1 is k[x I : I ∈ I]. Applying the change of coordinates given by the matrix
R the pi jkl become p̃i jkl = xi j xkl xi jm xi jn− xik x jl xikm xikn+ xil x jk xilm xiln , where
{i, j, k, l,m, n} = {1, 2, 3, 4, 5, 6}. The ideal IM0,6

has additional generators

qi j = xik x jk x2
i jk xlm xlnxmn − xil x jl x2

i jl xkm xknxmn

+ xim x jm x2
i jm xkl xknxln − xinx jnx2

i jnxkl xkm xlm,

for 1≤ i < j ≤ 6, where again {i, j, k, l,m, n} = {1, . . . , 6}.
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Remark 6.7. When n = 4 we can still follow the recipe of Section 3 to obtain the
equations for M0,4 ∼= P1 inside X6∗ ∼= P2. The Grassmannian G(2, 5)⊆ P5 is the
hypersurface Z(x12x34− x13x24+ x14x23). In this case M0,4 = Z(z34− z24+ 1) in
T 2
= Spec(k[z±1

24 , z±1
34 ]). Also

R =
(

1 0 −1 −1 0 1
0 1 −1 −1 1 0

)


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


, so V =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

.

Thus ν(x12x34− x13x24+ x14x23)= y1− y2+ y3 ⊆ k[y1, y2, y3] = Cox(P2).

7. VGIT and the effective cone of M0,n

An important invariant of a projective variety Y is its pseudoeffective cone Eff(Y ),
and one of the primary goals of Mori theory is to understand the decomposition
of this cone into Mori chambers. In this section we prove Theorem 7.1, which is
the second part of Theorem 1.2. We identify a subcone G of the effective cone of
M0,n for which one has that M0,n can be constructed as a GIT quotient of an affine
variety with linearization determined by a given D ∈ G. This prompts Question
7.4(3), which asks whether the cone E of divisors spanned by boundary classes is
a Mori dream region of the effective cone.

Let H = Hom(Cl(X1), k×)∼= (k×)b+n . The torus H acts on A|I| with weights
given by the columns of the matrix G of (5). Recall the cone

G(X1)=
⋂
σ∈1

pos([DI ] : I 6∈ σ)

from Definition 4.1. Let i : M0,n→ X1 be the inclusion of Theorem 5.7. The
pullback i∗(G(X1))⊂ N 1(M0,n)⊗R is a subcone of the nef cone of M0,n.

Theorem 7.1. (1) For rational α ∈ int(G(X1)) we have the GIT construction of
M0,n as

M0,n= Z(IM0,n
)//α H,

where Z(IM0,n
)⊂ A|I| is the affine subscheme defined by IM0,n

.

(2) Let n ≥ 5. Given β ∈ NAn there is α ∈ NG for which

Z(IM0,n
)//α H = G(2, n)//β T n−1,

so all GIT quotients of G(2, n) by T n−1 can be obtained from M0,n by varia-
tion of the GIT.
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Proof. The first part of the theorem is a direct application of Proposition 4.3. For
the second, note that for n ≥ 5 there are no repeated columns in the matrix D, so
the result follows from Theorem 4.6 and Corollary 4.7. �

Remark 7.2. (1) The second part of the theorem is still true for n= 4, as M0,4∼=

P1, which is also equal to one of the GIT quotients of G(2, 4).

(2) When n = 5, IM0,5
= I2,5, so we see that M0,5 = G(2, 5)//α T 4 for α ∈

int(G(X1)). In this case the second part of the theorem is a tautology.

(3) For larger n, since A and C are nonnegative matrices, expression

−min{(Cu)i : Au = β, u ∈Qm+1
≥0 }

of Theorem 4.6 is a nonpositive integer, and thus we can choose α = (β, 0).

Remark 7.3. A natural problem is to give a combinatorial description of these
equations for M0,n, similar to that given for the GIT quotient G(2, n)//β T n−1 in
[Howard et al. 2009]. Generators for the corresponding ring can still be described
by graphs on n vertices, but an added complication is that their Kempe lemma is
not true; the generators corresponding to noncrossing graphs no longer give a basis
for the degree-one part of the ring.

Hu and Keel Hu and Keel 2000 Mori dream spaces are introduced, which are
varieties whose effective cones are polyhedral and for which the Mori chamber
decomposition breaks this cone into a finite number of polyhedral pieces. They
prove that if a variety Y is a Mori dream space, then there is an embedding of Y
into a projective toric variety X6 , and thus a GIT construction of Y , so that Y and
X6 have isomorphic Picard groups and effective cones, and all small Q-factorial
modifications of Y can be obtained by variation of the GIT quotient from Y . They
also define the weaker notion of subcone C ⊆ Eff(Y ) being a Mori dream region.
This holds if

R =
⊕
D∈C

H 0(V, D)

is finitely generated.
Hu and Keel raised the question of whether M0,n is a Mori dream space. Theo-

rem 5.7 shows that M0,n embeds into X1 and Lemma 6.2 shows that Pic(M0,n)∼=

Cl(X1). However, for n≥ 6, Keel and Vermeire showed that the cone E generated
by the boundary divisors of M0,n is a proper subcone of Eff(M0,n) [Vermeire 2002],
so the effective cones of M0,n and X1 differ. On the other hand, Castravet [2009]
showed M0,6 is indeed a Mori dream space. We believe that E may be a Mori
dream region. Indeed, the GIT chambers of Z(IM0,n

)//α H divide E into polyhedral
chambers, each of which corresponds to a different compactification of M0,n . The
chamber containing G(X1) corresponds to the compactification M0,n.
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Question 7.4. (1) Let M0,6→ X6 be the embedding of M0,6 into a toric variety of
dimension 24 with isomorphic Picard group and effective cone guaranteed by
the Mori dream space construction. Let X6′ be the toric subvariety obtained
from X6 by removing T 24-orbits of X6 not intersecting M0,6. Is X6′ obtained
from X1 in a natural way (such as by tropical modifications) that generalizes
to n > 6?

(2) Is there a toric embedding M0,n→ X6 with M0,n and X6 having isomorphic
Picard groups and effective cones that can be obtained from X1 by tropical
modifications? This would support the conjecture that M0,n is a Mori dream
space.

(3) Let E be the closed subcone of Eff(M0,n) spanned by the boundary divisors,
let S be the Cox ring of X1 and IM0,n

the ideal of M0,n in S. Is

(S/IM0,n
)D ∼= H 0(M0,n, D)

for all D ∈ E? This would imply that E is a Mori dream region for M0,n.
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Haglund–Haiman–Loehr type formulas
for Hall–Littlewood polynomials

of type B and C
Cristian Lenart

In previous work we showed that two apparently unrelated formulas for the
Hall–Littlewood polynomials of type A are, in fact, closely related. The first
is the tableau formula obtained by specializing q = 0 in the Haglund–Haiman–
Loehr formula for Macdonald polynomials. The second is the type A instance
of Schwer’s formula (rephrased and rederived by Ram) for Hall–Littlewood
polynomials of arbitrary finite type; Schwer’s formula is in terms of so-called
alcove walks, which originate in the work of Gaussent and Littelmann and of
the author with Postnikov on discrete counterparts to the Littelmann path model.
We showed that the tableau formula follows by “compressing” Ram’s version
of Schwer’s formula. In this paper, we derive new tableau formulas for the
Hall–Littlewood polynomials of type B and C by compressing the corresponding
instances of Schwer’s formula.

1. Introduction

Hall–Littlewood polynomials are at the center of many recent developments in
representation theory and algebraic combinatorics. They were originally defined
in type A, as a basis for the algebra of symmetric functions depending on a pa-
rameter t . This basis interpolates between two fundamental bases: the one of
Schur functions, at t = 0, and the one of monomial functions, at t = 1. Besides
the original motivation for defining Hall–Littlewood polynomials, which comes
from the Hall algebra [Littlewood 1961], there are many other applications; see
for example [Lenart 2011] and the references therein.

Macdonald [1971] showed that there is a formula for the spherical functions cor-
responding to a Chevalley group over a p-adic field that generalizes the formula for
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Keywords: Hall–Littlewood polynomials, Macdonald polynomials, alcove walks, Schwer’s
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the Hall–Littlewood polynomials. Thus, the Macdonald spherical functions gener-
alize the Hall–Littlewood polynomials to all root systems, and the two names are
used interchangeably in the literature. There are two families of Hall–Littlewood
functions of arbitrary type, called P and Q, which form dual bases for the Weyl
group invariants. The P-polynomials specialize to the Weyl characters at t=0. The
transition matrix between Weyl characters and P-polynomials is given by Lusztig’s
t-analog of weight multiplicities (Kostka–Foulkes polynomials of arbitrary type),
which are certain affine Kazhdan–Lusztig polynomials [Kato 1982; Lusztig 1983].
On the combinatorial side, we have the Lascoux–Schützenberger formula [1979]
for the Kostka–Foulkes polynomials in type A, but no generalization of this for-
mula to other types is known. Other applications of the type A Hall–Littlewood
polynomials that extend to arbitrary type are those related to fermionic multiplicity
formulas [Ardonne and Kedem 2007] and affine crystals [Lecouvey and Shimozono
2007]. We refer to [Nelsen and Ram 2003; Stembridge 2005] for surveys on Hall–
Littlewood polynomials of arbitrary type.

Macdonald [1992; 2000] defined a remarkable family of orthogonal polyno-
mials depending on parameters q, t , which bear his name. These polynomials
generalize the spherical functions for a p-adic group, the Jack polynomials, and
the zonal polynomials. At q = 0, the Macdonald polynomials specialize to the
Hall–Littlewood polynomials, and thus they further specialize to the Weyl charac-
ters (upon setting t = 0 as well). There has been considerable interest recently in
the combinatorics of Macdonald polynomials. This stems in part from a combi-
natorial formula for the ones corresponding to type A, which is due to Haglund,
Haiman, and Loehr [Haglund et al. 2005]. This formula is in terms of fillings of
Young diagrams, and uses two statistics, called inv and maj, on such fillings. The
Haglund–Haiman–Loehr formula has already found important applications, such
as new proofs of the positivity theorem for Macdonald polynomials, which states
that the two-parameter Kostka–Foulkes polynomials have nonnegative integer co-
efficients. One of these proofs is based on Hecke algebras [Grojnowski and Haiman
2007], while the other is purely combinatorial and leads to a positive formula for
the two-parameter Kostka–Foulkes polynomials [Assaf 2010]. Moreover, in the
one-parameter case (that is, when q = 0), the Haglund–Haiman–Loehr formula
was used to give a concise derivation of the Lascoux–Schützenberger formula for
the Kostka–Foulkes polynomials of type A [Haglund et al. 2005, Section 7].

An apparently unrelated development, at the level of arbitrary finite root systems,
led to Schwer’s formula [2006], rephrased and rederived by Ram [2006], for the
Hall–Littlewood polynomials of arbitrary type. The latter formulas are in terms of
so-called alcove walks, which originate in the work of Gaussent and Littelmann
[2005] and of the author with Postnikov [Lenart and Postnikov 2007; 2008] on dis-
crete counterparts to the Littelmann path model [Littelmann 1994; 1995]. Schwer’s
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formula was recently generalized by Ram and Yip [2011] to a similar formula for
the Macdonald polynomials. The generalization consists in the fact that the latter
formula is in terms of alcove walks with both “positive” and “negative” foldings,
whereas in the former only “positive” foldings appear.

In [Lenart 2011], we related Schwer’s formula to the Haglund–Haiman–Loehr
formula. More precisely, we showed that we can group the terms in the type A
instance of Schwer’s formula (in fact, we used Ram’s version of it) for Pλ(x; t)
into equivalence classes, such that the sum in each equivalence class is a term
in the Haglund–Haiman–Loehr formula for q = 0. An equivalence class consists
of all the terms corresponding to alcove walks that produce the same filling of
a Young diagram λ (indexing the Hall–Littlewood polynomial) via a simple con-
struction. In fact, we first considered the case when the partition λ has no two
parts identical (that is, it is a regular weight); the general case, which displays
additional complexity, was considered in the Appendix to the same paper, written
with Lubovsky. The work referring to a regular weight λ was then extended in
[Lenart 2009], by showing that the type A instance of the Ram–Yip formula for
Macdonald polynomials compresses, in a similar way, to a formula analogous to
the Haglund–Haiman–Loehr one, but with fewer terms.

In this paper we extend the results in [Lenart 2011] to types B and C . More
precisely, we derive new formulas for the Hall–Littlewood polynomials of type
B and C indexed by regular weights in terms of fillings of Young diagrams; we
do this by compressing the corresponding instances of Schwer’s formula (in fact,
we again use Ram’s version of it). Note that no tableau formula for the Hall–
Littlewood or Macdonald polynomials exists beyond type A so far. Our approach
provides a natural way to obtain such formulas, and suggests that this method
could be further extended to type D (this case is slightly more complex than types
B and C , as seen below), as well as to Macdonald polynomials; these problems
are currently explored, as is the compression in the case of a Hall–Littlewood
polynomial indexed by a nonregular weight (by extending the type A result in the
Appendix of [Lenart 2011]). Our formula is more complex than the corresponding
one in type A (that is, the Haglund–Haiman–Loehr formula at q = 0). However,
the statistic we use is, in the case of some special fillings, completely similar to the
Haglund–Haiman–Loehr inversion statistic (which is the more intricate of their
two statistics). The naturality of our formula is also supported by the fact that
the Kashiwara–Nakashima tableaux [1994] of type B and C are, essentially, the
surviving fillings in this formula when we set t = 0. We also note that the passage
from (Ram’s version of) Schwer’s formula to ours results in a considerably larger
reduction in the number of terms in type B and C compared to type A. In terms of
applications, it would be very interesting to see whether our formula could be used
to derive, in the spirit of [Haglund et al. 2005, Section 7], a positive combinatorial
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formula for Lusztig’s t-analog of weight multiplicities in type B and C , which has
been long sought.

2. The tableau formula in type C

Let us start by recalling the Weyl group of type B/C , viewed as the group of signed
permutations Bn . Such permutations are bijections w from

[n] := {1< 2< · · ·< n < n < n−1< · · ·< 1}

to [n] satisfying w(ı)=w(i). Here ı is viewed as −i , so ı = i . We use the window
notation w=w(1) . . . w(n). Given 1≤ i < j ≤ n, we denote by (i, j) the reflection
that transposes the entries in positions i and j (upon right multiplication). Simi-
larly, we denote by (i, ), again for i < j , the transposition of entries in positions
i and j followed by the sign change of those entries. Finally, we denote by (i, ı)
the sign change in position i . Given w in Bn , we define

`+(w) :=
∣∣{(k, l) : 1≤ k < l ≤ n, w(k) > w(l)}

∣∣,
`−(w) :=

∣∣{(k, l) : 1≤ k ≤ l ≤ n, w(k) > w(l)}
∣∣. (2-1)

Then the length of w is given by `(w) := `+(w)+ `−(w).
Let λ be a partition corresponding to a regular weight in type Cn for n ≥ 2,

that is, λ = (λ1 > λ2 > · · · > λn > 0) with λi ∈ Z. We identify λ with its Young
(or Ferrers) diagram, as usual, but we draw this diagram in “Japanese style” (as
opposed to the more common English or French styles), that is, we embed it in the
third quadrant, where n = 3:

λ= (4, 3, 2)= .

Consider the shape λ̂ obtained from λ by replacing each column of height k with k
or 2k−1 (adjacent) copies of it, depending on the given column being the rightmost
one or not. In this example, we have

λ̂= (12, 11, 8)= .

Here λ̂ is shown divided into rectangular blocks, each of which corresponds to a
column of λ; the heights of the blocks (from right to left) are given by the conjugate
partition λ′ = (3, 3, 2, 1).

We are representing a filling σ of λ̂ as a concatenation of columns Ci j and C ′ik ,
where i = 1, . . . , λ1, while for a given i we have j = 1, . . . , λ′i if i > 1, j = 1 if
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i = 1, and k = 2, . . . , λ′i ; the columns Ci j and C ′ik have height λ′i . More precisely,
we let

σ = Cλ1 . . .C1, (2-2)

where
Ci
:=

{
C ′i2 . . .C

′

i,λ′i
Ci1 . . .Ciλ′i

if i > 1,
C ′i2 . . .C

′

i,λ′i
Ci1 if i = 1.

Note that the leftmost column is Cλ1,1 and the rightmost column is C11.

Example 2.1. The following is a filling for the partition considered above, where
we use the same division into blocks as above:

σ =

C4 C3 C2 C1

C41 C ′32 C31 C32 C ′22 C ′23 C21 C22 C23 C ′12 C ′13 C11

1 1 1 3

2 2 2

2 2 1 1 1

3 3 2 2 2

1 1 3 3 3

1 1 1

2 2 2

3 3 3

.

Essentially, the description (2-2) of a filling of λ̂ says that the column to the
right of Ci j is Ci,j+1, whereas the column to the right of C ′ik is C ′i,k+1. Here we
are assuming that the mentioned columns exist, up to the conventions

Ci,λ′i+1 =

{
C ′i−1,2 if i > 1 and λ′i−1 > 1,
Ci−1,1 if i > 1 and λ′i−1 = 1,

C ′i,λ′i+1 = Ci1. (2-3)

The entry in position i , counted from the top, in some column C is denoted by
C(i). We also write C[i, j] for the portion of column C consisting of the entries in
positions i, i+1, . . . , j ; this is empty if i > j .

We consider the set F(λ) of fillings of λ̂ with entries in [n] that satisfy the
following conditions:

(1) The rows are weakly decreasing from left to right.

(2) No column contains two entries a, b with a =±b.

(3) Each column after the first is related to its left neighbor as indicated in the next
paragraph. (Essentially, consecutive columns differ by a signed cycle, that is,
a composition (r1, ) . . . (rp, ), where 1 ≤ r1 < · · · < rp < j ; furthermore,
j varies from 1 to the length of the column in question, as we consider the
columns from left to right.)

Here we let the reflections in Bn act on columns C like they do on signed per-
mutations; for instance, C(a, b) is the column obtained from C by transposing
the entries in positions a, b and by changing their signs. Let us first explain the
passage from some column Ci j to Ci, j+1. There exist positions 1≤r1< · · ·<rp< j
(possibly p = 0) such that Ci, j+1 differs from D = Ci j (r1, ) . . . (rp, ) only in
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position j , while Ci,j+1( j)≤ D( j). To include the case j = λ′i in this description,
just replace Ci,j+1 everywhere by Ci,j+1[1, λ′i ] and use the conventions (2-3). Let
us now explain the passage from some column C ′ik to C ′i,k+1. There exist positions
1 ≤ r1 < · · · < rp < k (possibly p = 0) such that C ′i,k+1 = C ′ik(r1, k) . . . (rp, k).
This description includes the case k = λ′i , based on the conventions (2-3).

Note that the filling σ in Example 2.1 satisfies the above conditions. Indeed,
conditions (1) and (2) are clearly verified. Then compare, for instance,

C33[1, 2] = C ′22[1, 2] = 2
3

and D = C32(1, 2)= 3
2
(1, 2)= 2

3
;

they only differ in position 2, while C ′22(2)= 3< D(2)= 3. Similarly, we have

C ′24 = C21 = C ′23(1, 3)(2, 3).

Also note that, while the rows are weakly decreasing (from left to right), the
columns need not be always increasing or always decreasing (compare C ′32 = C31

with the other columns).
Let us now define the content of a filling. For this purpose, we first associate

with a filling σ a compressed version of it, namely the filling σ of the partition 2λ.
This is defined as follows:

σ = C
λ1
. . .C

1
, where C

i
:= C ′i2Ci1, (2-4)

where the conventions (2-3) are used again. Now define ct σ = (c1, . . . , cn), where
ci is half the difference between the number of occurrences of the entries i and ı
in σ . Sometimes, this vector is written in terms of the coordinate vectors εi :

ct σ = c1ε1+ · · ·+ cnεn =
1
2

∑
b∈σ

εσ(b); (2-5)

here the last sum is over all boxes b of σ , and we set εı := −εi . In our running
example, we have

σ =
1 1 1 1 2 1 1 1

2 2 3 2 2 2
1 3 3 3

,

so ct σ = (−1, 1, 1).
We now define two statistics on fillings in F(λ) that will be used in our com-

pressed formula for Hall–Littlewood polynomials. Intervals refer to the totally
ordered set [n]. Let

σab :=

{
1 if a, b ≥ n,
0 otherwise.

(2-6)

Given a word w, we use the notation Nab(w) for the number of entries in w con-
tained in the interval (a, b).
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Given two columns D,C of the same height d such that D≥C componentwise,
we will define two statistics N (D,C) and des(D,C) in some special cases, as
specified below.

Case 0. If D = C , then N (D,C) := 0 and des(D,C) := 0.

Case 1. Assume that C = D(r, ) with r < j . Let a := D(r) and b := D( j). In
this case, we set

N (D,C) := Nba(D[r+1, j−1])+
∣∣(b, a) \ {±D(i) : i = 1, . . . , j}

∣∣+ σab,

and des(D,C) := 1 .

Case 2. Assume that C = D(r1, ) . . . (rp, ), where 1 ≤ r1 < · · · < rp < j . Let
Di := D(r1, ) . . . (ri , ) for i = 0, . . . , p, so that D0= D and Dp =C . We define

N (D,C) :=
p∑

i=1

N (Di−1, Di ), des(D,C) := p.

For instance, in the example above, we have

N (C ′23C21)=N

(
2 1
3 2
1 3

)
=N

(
2 1
3 3
1 2

)
+N

(
1 1
3 2
2 3

)
=N12

(
3
)
+N23(∅)=0,

and des(C ′23C21)= 2.

Case 3. Assume that C differs from D′ := D(r1, ) . . . (rp, ) with 1≤ r1 < · · ·<

rp < j (possibly p = 0) only in position j , while C( j) < D′( j). We define

N (D,C) := N (D, D′)+ NC( j),D′( j)(D[ j+1, d]), des(D,C) := p+ 1.

For instance, in our running example, we have

N (C31C32)= N
(

1 3
2 2

)
= N31

(
2
)
= 1,

and des(C31C32)= 1.

If the height of C is larger than the height d of D (necessarily by 1), and
N (D,C[1, d]) can be computed as above, we let N (D,C) := N (D,C[1, d]) and
des(D,C) := des(D,C[1, d]). For instance, we have

N (C32C ′22)= N
(

3 2
2 3

)
= N

(
3 2
2 3

)
+ N33(∅)= N23(∅)= 0,

and des(C32C ′22)= 2.
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Given a filling σ in F(λ) with columns Cm, . . . ,C1, we set

N (σ ) :=
m−1∑
i=1

N (Ci+1,Ci )+ `+(C1);

here `+(C1) is defined as in (2-1). We also set

des σ :=
m−1∑
i=1

des(Ci+1,Ci ).

Note that des σ essentially counts the descents in the rows of σ . In our running
example, we have N (σ )= 1 and des σ = 6.

We can now state our new formula for the Hall–Littlewood polynomials of type
C , which follows as a corollary of our main result, Theorem 4.6. A completely
similar formula in type B is discussed in Section 5. We refer to Proposition 2.4
and Remarks 4.7 for more insight into our formula. In particular, the Kashiwara–
Nakashima tableaux of type C are, essentially, the surviving fillings in this formula
when we set t = 0. Furthermore, in some special cases, the statistic N (σ ) is com-
pletely similar to the Haglund–Haiman–Loehr inversion statistic (the more intricate
of their two statistics); more precisely, this happens when the related chains in
Bruhat order contain no reflections of type B, that is (i, ), where i and j are less
than the height of the corresponding column of the filling (see Proposition 2.4).

Theorem 2.2. Given a regular weight λ, we have

Pλ(X; t)=
∑
σ∈F(λ)

t N (σ )(1− t)des σ xct σ , (2-7)

where x (c1,...,cn) := xc1
1 . . . x

cn
n .

Example 2.3. Consider the simplest case, namely n= 2 and λ= (2, 1). This leads
to considering fillings of the shape (3, 2) with elements in [2], namely

e c a
d b

.

The fillings need to satisfy the following conditions:

• a ≤ c ≤ e, b ≤ d .

• a 6= ±b.

• either c = a and d = b, or c = b and d = a.

For i ∈ {1, 2}, let ni be half the difference between the number of i’s and ı’s in the
multiset {a, b, c, d, e, e}. Given a proposition A, we let χ(A) be 1 or 0, depending
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on the logical value of A being true or false. Then

P(2,1)(x1, x2; t)=
∑

(a,b,c,d,e)

tχ(a>b)+χ(a,b≤2, a 6=c)(1− t)χ(a 6=c)+χ(c 6=e)xn1
1 xn2

2 .

It turns out that there are 27 terms in this sum, versus 70 terms in (Ram’s version
of) Schwer’s formula. For instance, the terms contributing to the coefficient of x2

correspond to the fillings

1 1 1
2 2

,
1 2 2

1 1
,

2 2 1
1 2
;

the associated polynomials in t are

1− t, t (1− t), 1− t,

respectively. Note that these polynomials are obtained by compressing 3, 2, and 2
terms in Schwer’s formula, respectively. By symmetry, the coefficients of x1, x2,
x−1

1 , and x−1
2 in P(2,1)(x1, x2; t) are all (t + 2)(1− t). Other fillings have an even

larger number of terms in Schwer’s formula corresponding to them, such as

1 2 2
1 1

,

which has 7; in other words, the associated polynomial in t , namely 1− t , which
contributes to the coefficient of x−2

1 x−1
2 , is the sum of 7 polynomials of the form

tr (1− t)s in Schwer’s formula. In conclusion, we have

P(2,1)(x1, x2; t)= x2
1 x2+ x1x2

2 + x2
1 x−1

2 + x1x−2
2 + x−1

1 x2
2 + x−2

1 x2

+ x−1
1 x−2

2 + x−2
1 x−1

2 + (t + 2)(1− t)(x1+ x2+ x−1
1 + x−1

2 ).

In order to relate our statistic N (σ ) to the Haglund–Haiman–Loehr inversion
statistic and to compare our formula to its type A counterpart (see [Haglund et al.
2005, Proposition 8.1] or [Lenart 2011, Theorem 2.10]), let us recall some defini-
tions from [Haglund et al. 2005; Lenart 2011]. We start by considering fillings τ
of the shape λ with entries in [n], which are again displayed in Japanese style, as
a sequence of columns τ = Cλ1 . . .C1; here Ci is a sequence (Ci (1), . . . ,Ci (λ

′

i )),
so the entry in cell u = (i, j) is τ(u)= C j (i). Two cells u, v ∈ λ are said to attack
each other if they are in one of the following two relative positions:

•

•
,

•

•
.



896 Cristian Lenart

An inversion of τ is a pair of attacking cells (u, v) that have one of the following
two relative positions, where a := τ(u) < b := τ(v):

a

b
,

b

a .

The Haglund–Haiman–Loehr statistic inv τ is defined as the number of inversions
of τ . The descent statistic, denoted des τ (which is similar to des for fillings of
λ̂ defined above, as seen below), is the number of cells u = (i, j) with j 6= 1 and
τ(u) > τ(v), where v = (i, j−1). As usual, let

n(λ) :=
∑

i
(i − 1)λi ,

and assume that τ has the following two properties: (i) τ(u) 6= τ(v)whenever u and
v attack each other; and (ii) τ is weakly decreasing in rows. Then it was shown in
[Lenart 2011, Proposition 2.12] that the so-called complementary inversion statistic
cinv τ := n(λ)− inv τ counts the triples of cells filled with a < b< c that have the
following relative position (here the cell supposed to contain c might be outside
the shape λ, in which case we only require a < b):

b

c a .

Proposition 2.4. Let σ in F(λ) be a filling satisfying the properties that C ′i,j+1 =

C ′i,j for all i and j = 2, . . . , λ′i ; and that Ci, j+1 differs from Ci j at most in position
j , for all i and j = 1, . . . , λ′i . Let σ̃ be the filling of λ given by

σ̃ := Cλ1,1Cλ1−1,1 . . .C11.

Then N (σ )= cinv σ̃ and des σ = des σ̃ .

Before presenting the proof, let us exhibit an example.

Example 2.5. For the partition λ= (4, 3, 2) considered above, a filling satisfying
the conditions in Proposition 2.4 is

σ =

C4 C3 C2 C1

C41 C ′32 C31 C32 C ′22 C ′23 C21 C22 C23 C ′12 C ′13 C11

1 2 2 1

3 3 3

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

1 1 1

2 2 2

3 3 3

.
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We have

σ̃ =
1 2 1 1

3 2 2
3 3

.

It is easy to check that N (σ )= cinv σ̃ = 1 and des σ = des σ̃ = 4. Indeed, the only
triple of cells in σ̃ contributing to statistic cinv, which in this case is missing one
cell, is formed by the cells in the unique column of height 2.

Proof of Proposition 2.4. The equality des σ = des σ̃ is clear, so we concentrate
on the other equality. Let m := λ1 be the number of columns of λ, and let Cm =

Cm1, . . . ,C1 = C11 be the columns of σ̃ , of lengths cm := λ
′
m, . . . , c1 := λ

′

1; let
C ′k :=Ck[1, ck+1], for k= 1, . . . ,m−1. We refer to a pair (i, j) with 1≤ i < j ≤ ck

and Ck(i)>Ck( j) as a (type A) inversion in Ck . It is easy to see that σ̃ satisfies the
properties considered above: (i) σ̃ (u) 6= σ̃ (v) whenever u and v attack each other;
(ii) σ̃ is weakly decreasing in rows. We start by evaluating N (CkCk−1,1), with
Ck as in (2-2). By definition, N (CkCk−1,1) =

∑ck−1
i=1 NCk−1(i),Ck(i)(Ck[i+1, ck]).

This is the number of inversions (i, j) in Ck for which Ck−1(i) < Ck( j). If (i, j)
is an inversion in Ck not satisfying the previous condition, then Ck−1(i) > Ck( j)
(by property (i) of σ̃ ), and thus (i, j) is an inversion in C ′k−1 (by property (ii) of
σ̃ ). Moreover, the only inversions of C ′k−1 that do not arise in this way are those
counted by the statistic cinv(CkC ′k−1), so

N (CkCk−1,1)= `+(Ck)− (`+(C
′

k−1)− cinv(CkC ′k−1)).

We conclude that

N (σ )− `+(C1)=

m∑
k=2

`+(Ck)− `+(C
′

k−1)+ cinv(CkC ′k−1).

Now recall that λ has no two parts identical. We clearly have cm=1, so `+(Cm)=0.
Therefore,

N (σ )=
m∑

k=2
`+(Ck−1)− `+(C

′

k−1)+ cinv(CkC ′k−1)=
m∑

k=2
cinv(CkCk−1)

= cinv σ̃ . �

3. Background on Ram’s version of Schwer’s formula

We recall some background information on finite root systems and affine Weyl
groups.

3.1. Root systems. Let g be a complex semisimple Lie algebra, and h a Cartan
subalgebra, whose rank is r . Let 8 ⊂ h∗ be the corresponding irreducible root
system, h∗R ⊂ h∗ the real span of the roots, and 8+ ⊂ 8 the set of positive roots.
Let α1, . . . , αr ∈ 8

+ be the corresponding simple roots. We denote by 〈 · , · 〉 the
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nondegenerate scalar product on h∗R induced by the Killing form. Given a root α,
we consider the corresponding coroot α∨ := 2α/〈α, α〉 and reflection sα.

Let W be the corresponding Weyl group, whose Coxeter generators are denoted,
as usual, by si := sαi . The length function on W is denoted by `( · ). The Bruhat
graph on W is the directed graph with edges u → w, where w = usβ for some
β ∈8+, and `(w) > `(u); we usually label such an edge by β and write u β

−→w.
The reverse Bruhat graph is obtained by reversing the directed edges above. The
Bruhat order on W is the transitive closure of the relation corresponding to the
Bruhat graph.

The weight lattice 3 is given by

3 := {λ ∈ h∗R : 〈λ, α
∨
〉 ∈ Z for any α ∈8}. (3-1)

The weight lattice 3 is generated by the fundamental weights ω1, . . . , ωr , which
form the dual basis to the basis of simple coroots, that is, 〈ωi , α

∨

j 〉 = δi j . The set
3+ of dominant weights is given by

3+ := {λ ∈3 : 〈λ, α∨〉 ≥ 0 for any α ∈8+}.

The subgroup of W stabilizing a weight λ is denoted by Wλ, and the set of minimum
coset representatives in W/Wλ by W λ. Let Z[3] be the group algebra of the weight
lattice3, which has a Z-basis of formal exponents {xλ : λ∈3} with multiplication
xλ · xµ := xλ+µ.

Given α ∈8 and k ∈Z, we denote by sα,k the reflection in the affine hyperplane

Hα,k := {λ ∈ h∗R : 〈λ, α
∨
〉 = k}. (3-2)

These reflections generate the affine Weyl group Waff for the dual root system8∨ :=
{α∨ : α ∈ 8}. The hyperplanes Hα,k divide the real vector space h∗R into open
regions, called alcoves. The fundamental alcove A◦ is given by

A◦ := {λ ∈ h∗R : 0< 〈λ, α
∨
〉< 1 for all α ∈8+}.

3.2. Alcove walks. We say that two alcoves A and B are adjacent if they are dis-
tinct and have a common wall. Given two such alcoves, we write A β

−→ B if the
common wall is of the form Hβ,k and the root β ∈ 8 points in the direction from
A to B.

Definition 3.1. An alcove path is a sequence of alcoves such that any two consec-
utive ones are adjacent. We say that an alcove path (A0, A1, . . . , Am) is reduced
if m is the minimal length of all alcove paths from A0 to Am .

We need the following generalization of alcove paths.



Hall–Littlewood polynomials of type B and C 899

Definition 3.2. An alcove walk is a sequence

�= (A0, F1, A1, F2, . . . , Fm, Am, F∞)

such that A0, . . . , Am are alcoves; Fi is a codimension-one common face of the
alcoves Ai−1 and Ai , for i = 1, . . . ,m; and F∞ is a vertex of the last alcove Am .
The weight F∞ is called the weight of the alcove walk, and is denoted by µ(�).

The folding operator φi is the operator that acts on an alcove walk by leaving
its initial segment from A0 to Ai−1 intact and by reflecting the remaining tail in
the affine hyperplane containing the face Fi . In other words, we define

φi (�) := (A0, F1, A1, . . . , Ai−1, F ′i = F i , A′i , F ′i+1, A′i+1, . . . , A′m, F ′
∞
);

here A′j :=ρi (A j ) for j ∈ {i, . . . ,m}, F ′j :=ρi (F j ) for j ∈ {i, . . . ,m}∪{∞}, and ρi

is the affine reflection in the hyperplane containing Fi . Note that any two folding
operators commute. An index j such that A j−1 = A j is called a folding position
of �. Let fp(�) := { j1 < · · · < js} be the set of folding positions of �. If this
set is empty, � is called unfolded. We define the operator “unfold”, producing an
unfolded alcove walk, by

unfold(�)= φ j1 . . . φ js (�).

Definition 3.3. An alcove walk � = (A0, F1, A1, F2, . . . , Fm, Am, F∞) is called
positively folded if, for any folding position j , the alcove A j−1 = A j lies on the
positive side of the affine hyperplane containing the face F j .

We now fix a dominant weight λ and a reduced alcove path

5 := (A0, A1, . . . , Am)

from A◦ = A0 to its translate A◦+ λ= Am . Assume that

A0
β1
−→ A1

β2
−→ · · ·

βm
−→ Am,

where 0 := (β1, . . . , βm) is a sequence of positive roots. This sequence, which de-
termines the alcove path, is called a λ-chain (of roots). Two equivalent definitions
of λ-chains (in terms of reduced words in affine Weyl groups, and an interlacing
condition) can be found in [Lenart and Postnikov 2007, Definition 5.4] and [Lenart
and Postnikov 2008, Definition 4.1 and Proposition 4.4]; note that the λ-chains
considered in the these papers are obtained by reversing the ones in this paper. We
also let ri := sβi , and let r̂i be the affine reflection in the common wall of Ai−1 and
Ai , for i = 1, . . . ,m; in other words, r̂i := sβi ,li , where li := |{ j ≤ i : β j = βi }| is
the cardinality of the corresponding set. Given

J = { j1 < · · ·< js} ⊆ [m] := {1, . . . ,m},
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we define the Weyl group element φ(J ) and the weight µ(J ) by

φ(J ) := r j1 . . . r js , µ(J ) := r̂ j1 . . . r̂ js (λ). (3-3)

Given w ∈W , we define the alcove path w(5) := (w(A0), w(A1), . . . , w(Am)).
Consider the set of alcove paths

P(0) := {w(5) : w ∈W λ
}.

We identify any w(5) with the obvious unfolded alcove walk of weight

µ(w(5)) := w(λ).

Let us now consider the set of alcove walks

F+(0) := {positively folded alcove walks � : unfold(�) ∈ P(0)}.

We can encode an alcove walk � in F+(0) by the pair (w, J ) in W λ
×2[m], where

fp(�)= J and unfold(�)= w(5).

Clearly, we can recover � from (w, J ) with J = { j1 < · · ·< js} by

�= φ j1 . . . φ js (w(5)).

Let A(0) be the image of F+(0) under the map� 7→ (w, J ). We call a pair (w, J )
in A(0) an admissible pair, and the subset J ⊆ [m] in this pair a w-admissible
subset.

Proposition 3.4 [Lenart 2011]. If � 7→ (w, J ), then µ(�)=w(µ(J )). Moreover,

A(0)=
{
(w, J ) ∈W λ

× 2[m] : J = { j1 < · · ·< js},

w > wr j1 > · · ·>wr j1 . . . r js = wφ(J )
}
; (3-4)

where the decreasing chain is in the Bruhat order on the Weyl group, its steps not
being covers necessarily.

The formula for the Hall–Littlewood P-polynomials in [Schwer 2006] was red-
erived in [Ram 2006] in a slightly different version, based on positively folded
alcove walks. Based on Proposition 3.4, we now restate the latter formula in terms
of admissible pairs.

Theorem 3.5 [Ram 2006; Schwer 2006]. Given a dominant weight λ, we have

Pλ(X; t)=
∑

(w,J )∈A(0)

t (1/2)(`(w)+`(wφ(J ))−|J |)(1− t)|J |xw(µ(J )). (3-5)
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4. Specializing Ram’s version of Schwer’s formula to type C

We now restrict ourselves to the root system of type Cn . We can identify the space
h∗R with V := Rn , the coordinate vectors being ε1, . . . , εn . The root system 8 can
be represented as 8 = {±εi ± ε j : 1 ≤ i < j ≤ n} ∪ {±2εi : 1 ≤ i ≤ n}. The
simple roots are αi = εi−εi+1, for i = 1, . . . , n−1 and αn = 2εn . The fundamental
weights are ωi = ε1+ · · · + εi , for i = 1, . . . , n. The weight lattice is 3 = Zn . A
dominant weight λ= λ1ε1+· · ·+λn−1εn−1+λnεn is identified with the partition
(λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn ≥ 0) of length at most n. A dominant weight is regular
if all these inequalities are strict: that is, the corresponding partition has all parts
distinct and nonzero. We fix such a partition λ for the remainder of this paper.

The corresponding Weyl group W is the group of signed permutations Bn . For
simplicity, we use the same notation for roots and the corresponding reflections
(see Section 2). For instance, given 1≤ i < j ≤ n, we denote by (i, j) the positive
root εi − ε j , by (i, ) the positive root εi + ε j , and by (i, ı) the positive root 2εi .

Let
0(k) := 0′2 . . . 0

′

k01(k) . . . 0k(k),
where

0′j :=
(
(1, ), (2, ), . . . , ( j−1, )

)
;

0 j (k) :=
(
(1, ), (2, ), . . . , ( j−1, ),
( j, k+ 1), ( j, k+ 2), . . . , ( j, n), ( j, ),
( j, n), ( j, n−1), . . . , ( j, k+1)

)
.

Lemma 4.1. 0(k) is an ωk-chain.

Proof. We use the criterion for λ-chains given in [Lenart and Postnikov 2008, Def-
inition 4.1 and Proposition 4.4] (see also Proposition 10.2 of the same reference).
This criterion says that a chain of roots 0 is a λ-chain if and only if it satisfies the
following conditions:

(R1) The number of occurrences of any positive root α in 0 is 〈λ, α∨〉.

(R2) For each triple of positive roots (α, β, γ ) with γ∨ = α∨ + β∨, the subse-
quence of 0 consisting of α, β, γ is a concatenation of pairs (γ, α) and
(γ, β) (in any order).

Letting λ=ωk = ε1+· · ·+εk , the first condition is easily checked; for instance,
a root (a, b) appears twice in 0(k) if a < b ≤ k, once if a ≤ k < b, and zero times
otherwise. For the second condition, we use a case by case analysis, as follows,
where a < b < c:

(1) α = (a,b), β = (b,c), γ = (a,c); (2) α = (a,b), β = (b,c), γ = (a,c);

(3) α = (a,c), β = (b,c), γ = (a,b); (4) α = (b,c), β = (a,c), γ = (a,b);

(5) α = (a,b), β = (b,b), γ = (a,a); (6) α = (a,a), β = (b,b), γ = (a,b).
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Case (1) is the same as in type A. Cases (2)–(4) each have the three subcases k≥ c,
b≤ k < c, and a ≤ k < b; while cases (5) and (6) each have the two subcases k ≥ b
and a ≤ k < b. For instance, if b ≤ k < c in case (3), the subsequence of 0(k)
consisting of α, β, γ is ((a, b), (a, c), (a, b), (b, c)). �

Hence, we can construct a λ-chain as a concatenation 0 := 0λ1 . . . 01, where

0i
= 0(λ′i )= 0

′

i2 . . . 0
′

i,λ′i
0i1 . . . 0i,λ′i and 0i j = 0 j (λ

′

i ), 0
′

i j = 0
′

j . (4-1)

This λ-chain is fixed for the remainder of this paper. Thus, we can replace the
notation A(0) with A(λ).

Example 4.2. Consider n = 3 and λ = (3, 2, 1), for which we have the λ-chain
below. The factorization of 0 into subchains is indicated with vertical bars, while
the double vertical bars separate the subchains corresponding to different columns.
The underlined pairs are only relevant in Example 4.3 below.

0 = 031 ||0
′

22021022 ||0
′

120
′

13011012013

=
(
(1, 2), (1, 3), (1, 1), (1, 3), (1, 2) ||

(1, 2) | (1, 3), (1, 1), (1, 3) | (1, 2), (2, 3), (2, 2), (2, 3) ||

(1, 2) | (1, 3), (2, 3) | (1, 1) | (1, 2), (2, 2) | (1, 3), (2, 3), (3, 3)
)
. (4-2)

We represent the Young diagram of λ inside a broken 3× 2 rectangle, as below.
In this way, a reflection in 0 can be viewed as swapping entries and/or changing
signs in the two parts of each column, or only the top part.

1 1 1
2 2

3

2
3 3

Given the λ-chain 0 above, in Section 3.2 we considered subsets

J = { j1 < · · ·< js}

of [m], where m is the length of 0. Instead of J , it is now convenient to use the
subsequence T of the roots in 0 whose positions are in J . This is viewed as a
concatenation with distinguished factors Ti j and T ′ik induced by the factorization
(4-1) of 0.

All the notions defined in terms of J are now redefined in terms of T . As such,
from now on we will write φ(T ), µ(T ), and |T |, the latter being the size of T ;
see (3-3). If J is a w-admissible subset for some w in Bn , we will also call the
corresponding T a w-admissible sequence, and (w, T ) an admissible pair. We
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will use the notation A(0) and A(λ) accordingly. We denote by wTλ1,1 . . . Ti j and
wTλ1,1 . . . T

′

ik the permutations obtained from w via right multiplication by the
transpositions in Tλ1,1, . . . , Ti j and Tλ1,1, . . . , T ′ik , considered from left to right.
This agrees with the convention of using pairs to denote both roots and the corre-
sponding reflections. As such, φ(T ) can now be written simply as T .

Example 4.3. We continue Example 4.2, by picking the admissible pair (w, J )
with w = 1 2 3 ∈ B3 and J = {2, 6, 12, 13} (see the underlined positions in (4-2)).
Thus, we have

T = T31 || T ′22T21T22 || T
′

12T ′13T11T12T13= ((1, 3) || (1, 2)| |(2, 2), (2, 3) || | | | | ).

The corresponding decreasing chain in Bruhat order is the following, where the
swapped entries are shown in bold (we represent permutations as broken columns
starting with w, as discussed in Example 4.2, and we display the splitting of the
chain into subchains induced by the splitting of T just given):

1

2
3

>

3

2
1

||

3
2

1

>

2
3

1

|

2
3

1

|

2
3

1

>

2
3

1

>

2
1

3

||

2
1
3
|

2
1
3
|

2
1
3
|

2
1
3
|

2
1
3
.

Given a (not necessarily admissible) pair (w, T ), with T split into factors Ti j

and T ′ik as above, we consider the permutations

πi j = πi j (w, T ) := wTλ1,1 . . . Ti, j−1, π ′ik = π
′

ik(w, T ) := wTλ1,1 . . . T
′

i,k−1;

when undefined, Ti, j−1 and T ′i,k−1 are given by conventions similar to (2-3), based
on the corresponding factorization (4-1) of the λ-chain 0. In particular, πλ1,1 =w.

Definition 4.4. The filling map is the map f from pairs (w, T ), not necessarily
admissible, to fillings σ = f (w, T ) of the shape λ̂, defined (based on the notation
(2-2)) by

Ci j = πi j [1, λ′i ], C ′ik = π
′

ik[1, λ
′

i ]. (4-3)

Example 4.5. Given (w, T ) as in Example 4.3, we have

f (w, T )=
1 3 2 2 2 2 2

2 3 3 1 1 1
3 3 3

.

The following theorem describes the way in which our tableau formula (2-7) is
obtained by compressing Ram’s version of Schwer’s formula (3-5). Recall that λ
is a regular weight, so Bλn = Bn , and thus the pairs (w, J ) in A(λ) are only subject
to the decreasing chain condition in (3-4); this fact is implicitly used in the proof
of the theorem.
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Theorem 4.6. (i) We have f (A(λ))= F(λ).

(ii) Given any σ ∈ F(λ) and (w, T ) ∈ f −1(σ ), we have ct f (w, T )= w(µ(T )).

(iii) The following compression formula holds:∑
(w,T )∈ f −1(σ )

t
1
2 (`(w)+`(wT )−|T |)(1− t)|T | = t N (σ )(1− t)des σ . (4-4)

Proof. We start with part (i). That we have f (A(λ)) ⊆ F(λ) is clear from the
definition of the set of fillings F(λ) in Section 2 and the construction (4-1) of the
fixed λ-chain 0. Vice versa, given a filling σ in F(λ), it is not hard to construct
an admissible pair (w, T ) in f −1(σ ). We will assign to the columns Ci j and C ′i j
signed permutations ρi j and ρ ′i j in Bn recursively, starting with ρ11 := C11; in
parallel, we construct the reverse rev T of the mentioned chain of roots T , and
conclude by letting w := ρλ1,1. Each time we pass to the left neighbor C ′ik of
a column C ′i,k+1 = C ′ik(r1, k) . . . (rp, k), we append to the part of rev T already
constructed the roots (rp, k), . . . , (r1, k) and let ρ ′ik := ρ

′

i,k+1(rp, k) . . . (r1, k). We
proceed similarly when passing to the left neighbor Ci j of a column Ci,j+1, where
Ci,j+1 differs from D=Ci j (r1, ) . . . (rp, ) only in position j ; the only difference
is that, in this case, we start by applying to ρi, j+1 and appending to rev T the
reflection that exchanges the entry Ci,j+1( j) with D( j), and then we proceed as
above.

Parts (ii) and (iii) of the theorem are proved in Sections 6 and 7. �

Remarks 4.7. (i) The Kashiwara–Nakashima tableaux [1994] of shape λ index
the basis elements of the irreducible representation of sp2n of highest weight λ. It
is shown in Proposition 4.8 below that these tableaux correspond precisely to the
surviving fillings in our formula (2-7) when we set t = 0.

(ii) In (4-4), in general, we cannot replace the filling map f with the map f ,
sending (w, T ) to the compressed version f (w, T ) of f (w, T ). Indeed, consider
n = 2, λ= (3, 2), and the following filling of 2λ= (6, 4), which happens to be the
“doubled” version of a Kashiwara–Nakashima tableau:

σ =
2 2 2 2 1 1

1 1 2 2
.

If (w, T ) ∈ f −1(σ ), we must have w = 21 and

T ⊆ 021022 =
(
(1, 1)|(1, 2), (2, 2)

)
,

where the full λ-chain factors as follows:

0 = 031 ||0
′

22021022 ||0
′

12011012.
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There are two elements (w, T 1) and (w, T 2) in f −1(σ ), namely

T 1
=
(
(1, 2)

)
and T 2

=
(
(1, 1), (1, 2), (2, 2)

)
.

But we have∑
(w,T )∈ f −1(σ )

t (1/2)(`(w)+`(wT )−|T |)(1− t)|T | = t (1− t)+ (1− t)3 = (1− t)(1− t+ t2).

In general, this sum has several factors not of the form t or (1− t), which are hard
to control.

(iii) To measure the compression phenomenon, we define the compression factor
c(λ) as in [Lenart 2011], as the ratio of the number of terms in Ram’s version of
Schwer’s formula for λ and the number of terms in the tableau formula. The com-
pression factor is considerably larger in type C . For instance, for λ = (3, 2, 1, 0)
in C4 we have 23,495 terms in the compressed formula, while c(λ)= 44.9.

Proposition 4.8. The map σ 7→σ defined by (2-4) is a bijection between the fillings
σ in F(λ) with N (σ ) = 0 and the “doubled” versions of the type C Kashiwara–
Nakashima tableaux of shape λ.

Proof. Adamczak and the author [2009] proved that for each type C Kashiwara–
Nakashima tableau of shape λ there is a unique admissible pair (w, T ) whose
associated chain in Bruhat order is saturated and ends at the identity, such that the
compressed version σ of σ = f (w, T ) is the “doubled” version of the given tableau.
It follows that the term associated to (w, T ) in (3-5) is t0(1− t)|T |xw(µ(T )), and
therefore N (σ )= 0, by (4-4). On the other hand, since Pλ(x; 0) is the irreducible
character indexed by λ, which is expressed in terms of Kashiwara–Nakashima
tableaux, we conclude that all σ in F(λ) with N (σ )= 0 arise in this way. �

5. The tableau formula in type B

We now restrict ourselves to the root system of type Bn . This can be represented
as 8 = {±εi ± ε j : 1 ≤ i < j ≤ n} ∪ {±εi : 1 ≤ i ≤ n}. The simple roots are
αi = εi − εi+1, for i = 1, . . . , n−1 and αn = εn . The fundamental weights are
ωi = ε1 + · · · + εi , for i = 1, . . . , n−1 and ωn =

1
2(ε1 + · · · + εn). A dominant

weight λ = α1ω1 + · · · + αnωn , where αi ∈ Z≥0, is identified with the partition
µ = (nαn , . . . , 1α1); we let `(µ) := α1+ · · · + αn , and write µ = (µ1, . . . , µ`(µ)).
A dominant weight is regular if αi > 0 for all i . Let us now fix such a weight λ.

The corresponding Weyl group W is the same group of signed permutations Bn

considered above. For simplicity, we again use the same notation for roots and the
corresponding reflections; see Section 2. The pairs (i, j) and (i, ) have the same
meaning as in type C , whereas (i) denotes the positive root εi . Note that, as a
reflection in Bn , (i) is the same as (i, ı) in type C .
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The canonical ωk-chains and λ-chains are very similar to those in type C . If
k < n, let

0(k) := 0′1 . . . 0
′

k01(k) . . . 0k(k),

where
0′j :=

(
(1, ), (2, ), . . . , ( j−1, ), ( j)

)
;

0 j (k) :=
(
(1, ), (2, ), . . . , ( j−1, ),
( j, k+ 1), ( j, k+ 2), . . . , ( j, n),
( j),
( j, n), ( j, n−1), . . . , ( j, k+1)

)
.

On the other hand, we let

0(n) := 0′1 . . . 0
′

n = 01(n) . . . 0n(n).

As in the type C case, we can prove that 0(k) is an ωk-chain for any k. Hence, we
can construct a λ-chain as a concatenation 0 := 0`(µ) . . . 01, where 0i

= 0(µi ).
The filling map is defined as in Definition 4.4. This gives rise to fillings

σ = C`(µ) . . .C1,

where each Ci is a concatenation of columns of height µi :

Ci
:=


C ′i1 . . .C

′

i,µi
Ci1 . . .Ciµi

if µi < n,
Ci1 . . .Ci,µi if i 6= 1 and µi = n,
C11 if i = 1.

The fillings are subject to the same conditions (1)–(3) as in type C in Section 2,
where condition (3) is made more precise below. In fact, the λ-chain 0 above
specifies the way in which each column is related to its left neighbor. Essentially,
everything is similar to type C , except for a small difference in the passage from
some column C ′ik to C ′i,k+1. Namely, there exist positions 1 ≤ r1 < · · · < rp < k
(possibly p=0) such that C ′i,k+1=C ′ik(r1, k) . . . (rp, k), like in type C , or C ′i,k+1=

C ′ik(r1, k) . . . (rp, k)(k), in which case we also require C ′i,k+1(k)≤ n.
The weight of a filling and the statistics N (σ ) and des σ are defined completely

similarly to type C . The only minor addition is the definition of N (D,C) and
des(D,C) when C = D(r1, k) . . . (rp, k)(k). With the notation in Case 2 of the
definition of N (D,C), we set

N (D,C) := N (D, Dp)+ N (Dp,C), des(D,C) := p+ 1.

Here N (D, Dp) is defined in Case 2, whereas N (Dp,C) is given by the second
formula in (7-1); more precisely,

N (Dp,C) := 1
2

∣∣(a, a) \ {±Dp(i) : i = 1, . . . , k}
∣∣,

where a := Dp(k).



Hall–Littlewood polynomials of type B and C 907

Given these constructions, the proof of the following theorem is completely
similar to its counterparts in type C , since no new situations arise.

Theorem 5.1. Theorems 2.2 and 4.6 hold in type B, with the appropriate construc-
tions explained above.

Remark 5.2. The situation in type D is slightly more complex. In this case, ap-
plying the preceding ideas leads to an analog of the compression formula (4-4) that
contains factors of the form 1− tk with k > 1 in the right side. However, these
factors are not hard to control, while no extra factors appear.

6. Proof of Theorem 4.6(ii)

Recall the λ-chain 0 in Section 4. Let us write 0= (β1, . . . , βm), as in Section 3.2.
As such, we recall the hyperplanes Hβk ,lk and the corresponding affine reflections
r̂k = sβk ,lk = sβk + lkβk .

Now fix a signed permutation w in Bn and a subset J = { j1 < · · ·< js} of [m]
(not necessarily w-admissible). Let 5 be the alcove path corresponding to 0, and
define the alcove walk � as in Section 3.2, by

� := φ j1 . . . φ js (w(5)).

Given k in [m], let i = i(k) be the largest index in [s] for which ji < k, and
let γk := wr j1 . . . r ji (βk). Then the hyperplane containing the face Fk of � (see
Definition 3.2) is of the form Hγk ,mk ; in other words,

Hγk ,mk = wr̂ j1 . . . r̂ ji (Hβk ,lk ).

Our first goal is to describe mk purely in terms of the filling associated to (w, J ).
Let t̂k be the affine reflection in the hyperplane Hγk ,mk . Note that

t̂k = wr̂ j1 . . . r̂ ji r̂k r̂ ji . . . r̂ j1w
−1.

Thus, we can see that
wr̂ j1 . . . r̂ ji = t̂ ji . . . t̂ j1w.

Let T = ((a1, b1), . . . , (as, bs)) be the subsequence of0 indexed by the positions
in J ; see Section 4. Let T i be the initial segment of T with length i , let wi :=wT i ,
and let σi := f (w, T i ); see (2-4). In particular, σ0 is the filling with all entries in
row i equal to w(i), and σ := σs = f (w, T ). The columns of a filling of 2λ are
numbered left to right by 2λ1 to 1. We split each segment 0k of 0 into two parts:
the head, which is a concatenation of 0′k·, and the tail, which is a concatenation
of 0k·; see (4-1). We say that the head corresponds to column 2k of the Young
diagram 2λ, whereas the tail corresponds to column 2k − 1 (see the construction
of f (w, T ) in Section 4 and (2-4)). If β ji+1 = (ai+1, bi+1) = (a, b) falls in the
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segment of 0 corresponding to column p of 2λ, then σi+1 is obtained from σi by
replacing the entry wi (a) with wi (b) in the columns p−1, . . . , 1 of σi , as well as,
possibly, the entry wi (b) with wi (a) in the same columns.

Now fix a position k, and consider i = i(k) and the roots βk , γ := γk , as
above, where γk might be negative. Assume that βk falls in the segment of 0
corresponding to column q of 2λ. Given a filling φ, we denote by φ[p] the part
of φ consisting of columns 2λ1, 2λ1−1, . . . , p, and by φ(p,q] the part consisting
of columns p−1, p−2, . . . , q. We also recall the definition (2-5) and conventions
related to the content of a filling; this definition now applies to any filling of some
Young diagram.

Proposition 6.1. With the same notation, we have

mk = 〈ct σ [q], γ∨〉.

Proof. We apply induction on i , which starts at i = 0, when the verification is
straightforward. We now proceed from j1 < · · ·< ji < k, where i = s or k ≤ ji+1,
to j1 < · · ·< ji+1 < k, and we freely use the notation above.

Assume that β ji+1 falls in the segment of 0 corresponding to column p of 2λ,
where p ≥ q .

We need to compute

wr̂ j1 . . . r̂ ji+1(Hβk ,lk )= t̂ ji+1 . . . t̂ j1w(Hβk ,lk )= t̂ ji+1(Hγ,m),

where m = 〈ct σ [q]i , γ∨〉, by induction. Let γ ′ := γ ji+1 , and t̂ ji+1 = sγ ′,m′ , where
m′ = 〈ct σ [p]i , (γ ′)∨〉, by induction. We use the formula

sγ ′,m′(Hγ,m)= Hsγ ′ (γ ),m−m′〈γ ′,γ∨〉.

Thus, the proof is reduced to showing that

m−m′〈γ ′, γ∨〉 = 〈ct σ [q]i+1, sγ ′(γ∨)〉.

An easy calculation, based on the information above, shows that the latter equality
is nontrivial only if p > q , in which case it is equivalent to

〈ct σ (p,q]i+1 − ct σ (p,q]i , γ∨〉 = 〈γ ′, γ∨〉〈ct σ (p,q]i+1 , (γ ′)∨〉.

This equality is a consequence of

ct σ (p,q]i+1 = sγ ′(ct σ (p,q]i ),

which follows from the construction of σi+1 from σi explained above. �

Proof of Theorem 4.6(ii). We apply induction on the size of T , using freely the
notation above. We prove the statement for T = (β j1, . . . , β js+1), assuming it holds
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for T s
= (β j1, . . . , β js ). We have

w(µ(T ))= wr̂ j1 . . . r̂ js+1(λ)= t̂ js+1 . . . t̂ j1w(λ)= t̂ js+1(ct σs),

by induction. We need to show that

t̂ js+1(ct σs)= ct σs+1. (6-1)

Let γ := γ js+1 and assume that β js+1 falls in the segment of 0 corresponding to
column p of 2λ. Based on Proposition 6.1, (6-1) is rewritten as

sγ (ct σs)+〈ct σ [p]s , γ∨〉γ = ct σs+1. (6-2)

Decomposing ct σs as ct σ [p]s + ct σ (p,1]s (using the notation above), and ct σs+1 in
a similar way, (6-2) would follow from

sγ (ct σ [p]s )+〈ct σ [p]s , γ∨〉γ = ct σ [p]s+1,

sγ (ct σ (p,1]s )= ct σ (p,1]s+1 .

The first equality is clear since σ [p]s = σ
[p]
s+1, while the second one follows from the

construction of σs+1 from σs explained above. �

7. Proof of Theorem 4.6(iii)

We start by recalling some basic facts about the group Bn and some notation from
Section 2. We will use the following notation related to a word w=w1 . . . wl with
integer letters, which is sometimes identified with its set of letters

w[i, j] :=wi . . . w j , Nab(w) := |(a, b)∩w|, Nab(±w) := Nab(w)+Nab(−w),

where −w := w1 . . . wl . Given words w1, . . . , w p, we let

Nab(w
1, . . . , w p) := Nab(w

1)+ · · ·+ Nab(w
p).

We also let
τab :=

{
1 if a, b ≤ n,
0 otherwise.

With this notation, given a signed permutationw in Bn and 1≤ i< j ≤n, a :=w(i),
b := w( j), we have

`(w(i, j))− `(w)− 1
2

= Nab(w[i, j]),

`(w(i, ı))− `(w)− 1
2

= Naa(w[i, n]),

`(w(i, ))− `(w)− 1
2

= Nab

(
w[i, j−1],±w[ j+1, n]

)
+ τab,

(7-1)
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assuming that the left side is nonnegative (that is, that we go up in Bruhat order
upon applying the indicated reflection); these facts are used implicitly throughout.

Given a chain of roots 1, we define Ar (1) as in (3-4) except that we impose
an increasing chain condition and w ∈ W . The following simple lemma will be
useful throughout, for splitting chains into subchains.

Lemma 7.1. Consider (w, T ) with T written as a concatenation S1 . . . Sp. Let
wi := wS1 . . . Si , so w0 = w. Then

1
2(`(w)+`(wT )−|T |)= 1

2(`(wp−1)+`(wp)−|Sp|)+

p−1∑
i=1

1
2(`(wi−1)−`(wi )−|Si |).

Let 1 be the chain

1 :=
(
(1, p+1), (1, p+2), . . . , (1, n),
(1, 1),
(1, n), (1, n− 1), . . . , (1, p+ 1)

)
.

Proposition 7.2. Consider a signed permutationw in Bn with a :=w(1), a position
1≤ p ≤ n, and a value b ∈ {±a} ∪ (±w[p+1, n]) such that b ≥ a. Then∑

T :(w,T )∈Ar (1)
wT (1)=b

t
1
2 (`(wT )−`(w)−|T |)(1− t)|T | = t Nab(w[2,p])(1− t)1−δab , (7-2)

where δab is the Kronecker delta.

Proof. Given s ∈ {1,±(p+ 1), . . . ,±n}, we let 1s be the subchain of 1 starting
with (1, s). We also let

S(w, s) :=
∑

T :(w,T )∈Ar (1s)
wT (1)=b

t
1
2 (`(wT )−`(w)−|T |)(1− t)|T |.

We consider three cases: b = w(q), b = w(q), and b = a. The proof in the first
case is identical to that of the analogous result for type A, namely [Lenart 2011,
Proposition 5.3].

Case (ii): b = w(q). Let c := w(q)= b and p < q ≤ s. We start by showing that

S(w, s)= t Nac(w[2,q−1],w[q+1,s],±w[s+1,n])+τac(1− t). (7-3)

We use induction on s, which starts at s = q. For s > q , let w1
:= w[2, q−1],

w2
:=w[q+1, s−1], w3

:=w[s+1, n], and d :=w(s). The sum S(w, s) splits into
two sums: over s such that (1, s) 6∈ T and such that (1, s) ∈ T . By induction, the
first sum is

S(w, s− 1)= t Nac(w
1,w2,±dw3)+τac(1− t).
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Again by induction, if a < d < c, then the second sum is

t Nad (w
1cw2,±w3)+τad (1− t)S(w(1, s), s− 1)

= t Nad (w
1cw2,±w3)+Ndc(w

1,w2,±aw3)+τad+τdc(1− t)2;

otherwise, it is empty. Adding up the two sums into which S(w, s) splits, we obtain

t Nac(w
1,w2d,±w3)+τac(1− t).

This last claim rests on the easily verified facts that if a < d < c, then

τad + τdc = τac, Nad(c)+ Ndc(a)= Nac(d).

Still assuming that c = w(q)= b and p < q , we now show that

S(w, 1)= t Nac(w[2,q−1],w[q+1,n])+τ ′ac(1− t), (7-4)

where
τ ′ac :=

{
1 if a < c ≤ n,
0 otherwise.

Let w1
:=w[2, q−1], as before, and let w2

:=w[q+1, n]. The sum S(w, 1) splits
into two sums, depending on whether (1, 1) 6∈ T or and (1, 1) ∈ T . By (7-3), the
first sum is

S(w, n)= t Nac(w
1,w2)+τac(1− t).

Again by (7-3), if c < a ≤ n, then the second sum is

t Naa(w
1cw2)(1− t)S(w(1, 1), n)= t Naa(w

1cw2)+Nac(w
1,w2)+τac(1− t)2;

otherwise, it is empty. Adding up the two sums into which S(w, s) splits, we obtain

t Nac(w
1,w2)+τ ′ac(1− t).

Assuming that c = w(q)= b and p < q < s, we now show that

S(w, s)= t Nac(w[2,q−1],w[q+1,s−1])+τ ′ac(1− t). (7-5)

We use decreasing induction on s. As before, we let w1
:= w[2, q−1], w2

:=

w[q+1, s−1], and d := w(s). The sum S(w, s) splits into two sums, depending
on whether (1, s) 6∈ T or (1, s) ∈ T . By induction, the first sum is

S(w, s+ 1)= t Nac(w
1,w2d)+τ ′ac(1− t).

Again by induction, if a < d < c, then the second sum is

t Nad (w
1cw2)(1− t)S(w(1, s), s+ 1)= t Nad (w

1cw2)+Ndc(w
1,w2a)+τ ′dc(1− t)2;
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otherwise, it is empty. (In both calculations, induction works by substituting 1 for
n+ 1 when s = n, and by using (7-4) in this case.) Adding up the two sums into
which S(w, s) splits, we obtain

t Nac(w
1,w2)+τ ′ac(1− t).

This last claim rests on the easily verified fact that if a < d < c, then

Nad(c)+ τ ′dc = τ
′

ac.

Case (iii): b = a. We need to show that

S(w, p+1)= t Naa(w[2,p])(1− t). (7-6)

We use decreasing induction on p, which starts at p = n; in this case 1 only
contains the pair (1, 1), so the convention of substituting 1 for n + 1 works well
here too. For p < n, we let d := w(p+ 1). The sum S(w, p+1) splits into two
sums, depending on whether (1, p+1) 6∈ T or (1, p+1)∈ T . By induction, the first
sum is

S(w, p+2)= t Naa(w[2,p]d)(1− t).

If a < d < a, then by (7-5) of case (ii), the second sum is

t Nad (w[2,p])(1− t)S
(
w(1, p+1), p+2

)
= t Nad (w[2,p])+Nda(w[2,p])+τ ′da (1− t)2;

otherwise, it is empty. Adding up the two sums into which S(w, p+1) splits, we
obtain the desired result.

Case (ii) (continued). Assuming that c=w(q)= b and p < q , we now show that

S(w, q)= t Nac(w[2,q−1])(1− t). (7-7)

The sum S(w, q) splits into two sums, depending on whether (1, q) 6∈ T or (1, q)∈
T . By (7-5) of case (ii), the first sum is

S(w, q+1)= t Nac(w[2,q−1])+τ ′ac(1− t).

If a < c ≤ n, then by (7-6) of case (iii), the second sum is

t Nac(w[2,q−1])(1− t)S(w(1, q)), q+1)= t Nac(w[2,q−1])+Ncc(w[2,q])(1− t)2;

otherwise, it is empty. Adding up the two sums into which S(w, q) splits, we
obtain the desired result.

The final step in case (ii) is to prove that

S(w, p+1)= t Nac(w[2,p])(1− t). (7-8)
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This can be done by decreasing induction on p, starting with p = q − 1, which is
the case proved in (7-7). The procedure is completely similar to the ones above,
and, in fact, to the one for type A in [Lenart 2011, Proposition 5.3]. �

Consider the chain

8 := 01(n) . . . 0n(n)=
(
(1, 1),
(1, 2), (2, 2),

. . .

(1, n), (2, n), . . . , (n−1, n)
)
. (7-9)

We denote by 8i j the subchain of 8 starting with (i, ). Given a signed per-
mutation w, recall the definition (2-1) of `+(w) and `−(w). Given (i, j) with
1≤ i ≤ j ≤ n, we also define

`
i j
−(w) := |{(k, l) : (k, l) ∈8 \8i j , w(k) > w(l)}|,

`
i j
−
:= `−(w)− `

i j
−(w).

(7-10)

Proposition 7.3. Fix (i, j) with 1 ≤ i ≤ j ≤ n and a signed permutation w in Bn .
We have ∑

T :(w,T )∈A(8i j )

t
1
2 (`(w)+`(wT )−|T |)(1− t)|T | = t`+(w)+`

i j
−(w). (7-11)

In particular, if this sum is over (w, T ) ∈A(8), then the right side is t`+(w).

Proof. Let us denote the sum in the left side of (7-11) by S(w, i, j), and the cor-
responding sum over (w, T ) ∈A(8i j \ {(i, )}) by S′(w, i, j). We view the chain
8 as a total order on the pairs (i, ), with (1, 1) being the smallest pair. With
this in mind, we use decreasing induction on pairs (i, ). Given such a pair, if
w(i) < w( j), then the induction step is clear, so assume the contrary. We can now
split S(w, i, j) into two sums, depending on whether (i, ) 6∈ T or (i, ) ∈ T . By
induction, the first sum is

S′(w, i, j)= t1+`+(w)+`
i j
−(w).

By induction and Lemma 7.1, the second sum is

(1− t)t
1
2 (`(w)−`(w(i,))−1)S′(w(i, ), i, j)

= (1− t)t
1
2 (`(w)−`(w(i,))−1)+`+(w(i,))+`

i j
−(w(i,)).

The induction step is completed once we show that

`+(w)+ `
i j
−(w)=

1
2 (`(w)− `(w(i, ))− 1)+ `+(w(i, ))+ `

i j
−(w(i, )).
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This equality can be rewritten as

1`+(w)+1`
i j
−(w)− 1=1`

i j
−
(w),

where 1`+(w) := `+(w)−`+(w(i, )), and similarly for the other two variations.
To prove this, we first fix k between i and j , and analyze the contribution to the
three variations of the pairs (i, k) and (k, j); see (2-1) and (7-10). For simplicity,
let a := w(i), b := w(k), and c := w( j), where a > c. The nonzero contributions
are as follows:

• the pair (i, k) contributes 1 to 1`+(w) if a > b > c;

• the pair (k, j) contributes −1 to 1`+(w) if a < b < c, which is equivalent to
a > b > c;

• the pair (i, k) contributes 1 to 1`i j
−(w) if a > b > c;

• the pair (k, j) contributes 1 to 1`
i j
−
(w) if a > b > c.

The second and third contributions cancel out, whereas the first and fourth are
equal. The analysis is completely similar if k < i or k > j . The pair (i, j) only
contributes 1 to 1`i j

−(w). As far as the pairs (i, i) and ( j, j) are concerned, the
contribution of the first one to 1`i j

−(w) and of the second one to 1`
i j
−
(w) are both

equal to σac; see (2-6). �

Proof of Theorem 4.6(iii). Fix a filling σ in F(λ) with columns Ci j and C ′i j , as
explained in Section 2. Recall the chain 8 := 01(n) . . . 0n(n) = 011 . . . 01n in
(7-9). By splitting the λ-chain 0 into the tail 8 and its complement, and by using
Lemma 7.1, the sum in the left side of (4-4) can be rewritten as∑
(w,T )∈ f −1(σ )

t
1
2 (`(w)+`(wT )−|T |)(1− t)|T |

=

( ∑
(w,T )∈ f −1(σ )
T11=···=T1n=∅

t (1/2)(`(w)−`(wT )−|T |)(1− t)|T |
)

×

( ∑
T :(C11,T )∈A(8)

t
1
2 (`(C11)+`(C11T )−|T |)(1− t)|T |

)
. (7-12)

Here the column C11, which has height n, is viewed as a signed permutation in Bn .
By Proposition 7.3, the second bracket is t`+(C11).

To evaluate the first bracket, we reverse all chains. Let us start by recalling
the construction (4-1) of the λ-chain 0, and in particular the order in which the
subchains 0i j and 0′i j are concatenated (including the conventions in Section 2 re-
lated to 0i, j+1 and 0′i, j+1). We denote by 0r

i j and (0′i j )
r the corresponding reverse

chains. Also recall that we defined Ar ( · ) as in (3-4) except that we imposed an
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increasing chain condition and w ∈W . We consider pairs (wi j , Si j ) in Ar (0r
i j ) and

(w′i j , S′i j ) in Ar ((0′i j )
r ), where wi j and w′i j are defined by

wi j := C11S′1,λ′1 . . . Si, j+1, w′i j := C11S′1,λ′1 . . . Si, j+1,

where the concatenation order for Si j and S′i j comes from that for 0i j and 0′i j ; in
particular, w′1,λ′1

= C11. Given this notation, we define the sum

6i j :=
∑

Si j :(wi j ,Si j )∈Ar (0r
i j )

wi j Si j [1,λ′i ]=Ci j

t
1
2 (`(wi j Si j )−`(wi j )−|Si j |)(1− t)|Si j |,

and the similar sum 6′i j . We can now evaluate the first bracket in the right side of
(7-12): ∑

(w,T )∈ f −1(σ )
T11=···=T1n=∅

t
1
2 (`(w)−`(wT )−|T |)(1− t)|T | =6λ1,1 . . . 6

′

i j . . . 6i j . . . 6
′

1,λ′1
.

In fact, we first write the sum in the left side as an iterated sum, which factors
in the way shown above because 6i j only depends on wi j [1, λ′i ] = Ci, j+1[1, λ′i ]
(rather than the whole wi j ), by Proposition 7.2.

We conclude the proof by calculating the sum 6i j , the calculation for 6′i j being
similar but simpler. For simplicity, let d := λ′i , w = wi j , C := Ci,j+1[1, λ′i ], and
D := Ci j . Assume that C differs from D′ := D(r1, ) . . . (rp, ) with 1 ≤ r1 <

· · ·< rp < j (possibly p = 0) only in position j . Let 0r
i j =11

′, where

1 :=
(
( j, d+1), ( j, d+2), . . . , ( j, n),
( j, ),
( j, n), ( j, n− 1), . . . , ( j, d + 1)

)
,

1′ :=
(
( j−1, ), . . . , (2, ), (1, )

)
.

Correspondingly, the chains Si j split into a head S, which can vary, and a fixed tail

S′ := ((rp, ), . . . , (r1, )).

We have
6i j = te(1− t)p

∑
S:(w,S)∈Ar (1)
wS( j)=D′( j)

t
1
2 (`(wS)−`(w)−|S|)(1− t)|S|,

where e := 1
2(`(wSS′)−`(wS)− p). By Proposition 7.2, the sum in the right side

is
t NC( j),D′( j)(D[ j+1,d])(1− t);

note that this sum is missing when D′ = C , which is another possibility. The
exponent e is calculated based on (7-1). �
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On exponentials of
exponential generating series

Roland Bacher

After identification of the algebra of exponential generating series with the shuf-
fle algebra of ordinary formal power series, the exponential map

exp ! : XK[[X ]] −→ 1+ XK[[X ]]

for the associated Lie group with multiplication given by the shuffle product is
well-defined over an arbitrary field K by a result going back to Hurwitz. The
main result of this paper states that exp ! and its reciprocal map log ! induce
a group isomorphism between the subgroup of rational, respectively algebraic
series of the additive group XK[[X ]] and the subgroup of rational, respectively
algebraic series in the group 1+ XK[[X ]] endowed with the shuffle product, if
the field K is a subfield of the algebraically closed field Fp of characteristic p.

1. Introduction

The equality( ∞∑
n=0

αn
Xn

n!

)( ∞∑
n=0

βn
Xn

n!

)
=

∞∑
n=0

n∑
m=0

(n+m
n

)
αnβm

Xn+m

(n+m)!
(1)

shows that we can define an algebra structure on the vector space

E(K)=

{ ∞∑
n=0

αn
Xn

n!
∣∣α0, α1, . . . ∈ K

}
of formal exponential generating series with coefficients α0, α1, . . . in an arbitrary
field or ring K. For the sake of simplicity, we will work only over fields. The
expression αn/n! should be considered formally, since the numerical value of n! is
zero over a field of positive characteristic p ≤ n.

MSC2000: primary 11B85; secondary 11B73, 11E08, 11E76, 22E65.
Keywords: Bell numbers, exponential function, shuffle product, formal power series, divided

powers, rational series, algebraic series, homogeneous form, automaton sequence.
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Motivation for this work is given by the fact that the formula (1) allows us to
define the shuffle product

∞∑
n=0

γn Xn
=

( ∞∑
n=0

αn Xn
) ( ∞∑

n=0

βn Xn
)

of two formal power series
∑
∞

n=0 αn Xn and
∑
∞

n=0 βn Xn by setting

γn =

n∑
k=0

(n
k

)
αkβn−k . (2)

The definition of the shuffle product arises in the theory of divided powers; see, for
example, [Berthelot and Ogus 1978, Definition 3.1]. The main properties needed in
this paper are already in [Hurwitz 1899]. I have the impression that the main results
of the present paper, given by Theorems 1.1 and 1.3, do not fit very well into the
theory of divided powers: they are based on an interplay between ordinary power
series (used for defining rationality and algebraicity) and exponential power series
(used for defining an analogue of the exponential map in positive characteristic).
A special instance of this exponential map is a standard ingredient for divided
powers [Berthelot and Ogus 1978, Appendix A, Proposition A1], but ordinary
formal power series do not seem to play a significant role there.

Definition (2) is also a particular case of a shuffle product defined more gen-
erally for formal power series in several noncommuting variables. The associated
shuffle algebras arise, for example, in the study of free Lie algebras [Reutenauer
1993], Hopf algebras and polyzetas [Zagier 1994; Cartier 2002], formal languages
[Berstel and Reutenauer 1988], etc.

I became interested in this subject through the study of the properties of the
algebra of recurrence matrices, a subset of sequences of matrices displaying a kind
of self-similarity structure used in [Bacher 2006; 2008] for studying reductions of
the Pascal triangle modulo suitable Dirichlet characters. Such recurrence matrices
are closely related to automata groups and complex dynamical systems; see, for
example, [Nekrashevych 2005] for details. Over a finite field, they can be iden-
tified with rational formal power series in several noncommuting variables (the
underlying algebras are however very different) and it is thus natural to investigate
properties of other possible products preserving these sets. The main results of this
paper, Theorems 1.1 and 1.3 (and their effective analogues, Theorems 1.5 and 1.6),
deal with properties of the shuffle product for formal power series in one variable
that have gone unnoticed in the existing literature, as far as I am aware.

We denote by

mE =

{ ∞∑
n=1

αn
Xn

n!
∣∣α1, α2, · · · ∈ K

}
⊂ E(K)
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the maximal ideal of the local algebra E(K). A straightforward computation,
already known to Hurwitz [1899], shows that an/n! is always well-defined for
a ∈mE. Endowing K with the discrete topology and E(K) with the topology given
by coefficientwise convergence, the functions

exp(a)=
∞∑

n=0

an

n!
and log(1+ a)=−

∞∑
n=1

(−a)n

n

are always defined for a ∈mE.
Switching back to ordinary generating series

A =
∞∑

n=1

αn Xn, B =
∞∑

n=1

βn Xn
∈m,

contained in the maximal ideal m = XK[[X ]], of (ordinary) formal power series,
we write

exp! A = 1+ B

if

exp
( ∞∑

n=1

αn
Xn

n!

)
= 1+

∞∑
n=1

βn
Xn

n!
.

It is easy to see that exp! defines a one-to-one map between m and 1+ m with
reciprocal map

1+ B 7→ A = log!(1+ B).

It satisfies

exp!(A+ B)= exp! A exp! B

for all A, B ∈m, where the shuffle product( ∞∑
n=0

αn Xn
) ( ∞∑

n=0

βn Xn
)
=

∞∑
n,m=0

(n+m
n

)
αnβm Xn+m

corresponds to the ordinary product of the associated exponential generating series.
The map exp! defines thus an isomorphism between the additive group (m,+) and
the special shuffle group (1+m, ) with group-law given by the shuffle product.
It coincides with the familiar exponential map from the Lie algebra m into the
special shuffle group, considered as an infinite-dimensional Lie group.

It follows from [Fliess 1974] that rational, respectively algebraic elements form
a subgroup in (1+m, ) if one works over a subfield of Fp. It is thus natural
to consider the corresponding subgroups (under the reciprocal map log! of the Lie
exponential exp! : m 7→ 1+m) in the isomorphic additive group (m,+) forming
the Lie algebra of (1+m, ). The answer, which is the main result of this paper,
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is surprisingly simple: the corresponding subgroup is exactly the subgroup of all
rational, respectively algebraic elements in the additive group m. We have thus:

Theorem 1.1. Let K be a subfield of the algebraically closed field Fp of positive
characteristic p. Given a series A ∈ m = XK[[X ]], the following two assertions
are equivalent:

• A is rational.

• exp! A is rational.

Theorem 1.1 fails in characteristic zero: the series

log!(1− X)=−
∞∑

n=1

(n− 1)!Xn

is obviously transcendental. (This series also shows that Theorem 1.3 does not
hold in characteristic zero.)

Example 1.2. The Bell numbers B0, B1, B2, . . . (see [Comtet 1970, pp. 45–46]
or [Stanley 1999, Example 5.2.4]) are the natural integers defined by

∞∑
n=0

Bn
xn

n!
= eex

−1,

and have combinatorial interpretations.
Since ex

−1 is the exponential generating series of the sequence 0, 1, 1, . . . , we
have

∑
∞

n=0 Bnxn
= exp!(x/(1− x)) for the ordinary generating series

∞∑
n=0

Bnxn
= 1+ x + 2x2

+ 5x3
+ 15x4

+ 52x5
+ 203x6

+ 877x7
+ 4140x8

+ · · ·

of the Bell numbers.
The reduction of

∑
∞

n=0 Bnxn modulo a prime p is thus always a rational element
of Fp[[x]]. A few such reductions are

1
1+x+x2 (mod 2), 1+x+x2

1−x2−x3 (mod 3), 1+x+2x2
−x4

1−x4−x5 (mod 5).

Theorem 1.3. Let K be a subfield of the algebraically closed field Fp of positive
characteristic p. Given a series A ∈ m = XK[[X ]], the following two assertions
are equivalent:

• A is algebraic.

• exp! A is algebraic.

Theorems 1.1 and 1.3 are the main results of this paper and can be restated as
follows.



On exponentials of exponential generating series 923

Corollary 1.4. Over a subfield K ⊂ Fp, the group isomorphism

exp! : (m,+)−→ (1+m, )

restricts to an isomorphism between the subgroups of rational elements in (m,+)
and in (1+m, ).

It restricts also to an isomorphism between the subgroups of algebraic elements
in (m,+) and in (1+m, ).

In particular, the subgroup of rational, respectively algebraic elements in the
shuffle group (1+m, ) is a Lie-group whose Lie algebra (over K⊂ Fp) is given
by the additive subgroup of all rational, respectively algebraic elements in (m,+).

Theorems 1.1 and 1.3 can be made more precise as follows.
Given a rational series A ∈K[[X ]] represented by a reduced fraction f/g, where

f, g with g 6= 0 are two coprime polynomials of degrees deg f and deg g, we set
||A|| =max(1+deg f, deg g); see also Proposition 2.1 for a well-known equivalent
description of ||A||.

Theorem 1.5. We have

|| exp! A|| ≤ pq ||A|| and || log!(1+A)|| ≤ 1+ ||1+A||p

for a rational series A in m⊂ Fp[[X ]] having all its coefficients in a finite subfield
Fq ⊂ Fp containing q = pe elements.

The bounds for log! (and the analogous bounds in the algebraic case) can be
improved; see Proposition 7.1.

Theorem 1.5 could be called an effective version of Theorem 1.1: given a ra-
tional series represented by f/g ∈ m with f, g ∈ Fp[X ], Theorem 1.1 ensures the
existence of polynomials u, v such that exp!( f/g) = u/v. Theorem 1.5 shows
that u and v are of degree at most pq || f/g||

. They can thus be recovered as suitable
Padé approximants from the series development of exp!( f/g) up to order 2pq || f/g||

.
Experimentally, the number || exp! A|| is generally much smaller.

Since the bounds for log! are better than for exp!, the determination of the ra-
tional series B = exp! A with A ∈ m rational is best done as follows: start by
“guessing” the rational series B and check (or improve the guess for B in case of
failure) that A = log!(B) using the bounds for log!.

Given a prime p and a formal power series C =
∑
∞

n=0 γn Xn in K[[X ]] with
coefficients in a subfield K of Fp, we define for f ∈ N, k ∈ N, k < p f the series

Ck, f =

∞∑
n=0

γk+np f Xn.
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The vector space K(C) = KC +
∑

k, f KCk, f spanned by C and by all series of
the form Ck, f , k ∈ {0, . . . , p f

−1}, f ∈ {1, 2, . . . } is called the p-kernel of C . We
denote its dimension by κ(C)= dim K(C).

Algebraic series in K[[X ]] for K a subfield of Fp are characterized by a theorem
of Christol [Allouche and Shallit 2003, Theorem 12.2.5] stating that a series C in
Fp[[X ]] is algebraic if and only if its p-kernel K(C) is of finite dimension κ(C) <
∞. We have κ(A+ B) ≤ κ(A)+ κ(B), and an algebraic series A ∈ Fp[[X ]] has a
minimal polynomial of degree at most pκ(A) with respect to A.

Theorem 1.6. We have

κ(exp! A)≤ qκ(A)−1 pqκ(A) and κ(log!(1+A))≤ 1+ 4(κ(1+A))p

for a nonzero algebraic series A in m⊂ Fp[[X ]] having all its coefficients in a finite
subfield Fq ⊂ Fp containing q = pe elements.

Considerations similar to those made after Theorem 1.5 are valid and Theorem
1.6 can be turned into an algorithmically effective version of Theorem 1.3.

A map µ : V −→W between two K-vector spaces is a homogeneous form of
degree d if l ◦µ :V−→K is homogeneous of degree d (given by a homogeneous
polynomial of degree d with respect to coordinates) for all linear forms l :W−→K.

A useful ingredient for proving Theorems 1.1, 1.3 and their effective versions
is the following characterization of log!:

Proposition 1.7. Over a field K ⊂ Fp, the application log! : 1+m−→m extends
to a homogeneous form of degree p from K[[X ]] into m.

Example 1.8. In characteristic 2, we have

log!

( ∞∑
n=0

αn Xn
)
=

∞∑
n=0

α2
2n X2n+1

+

∑
0≤i< j

( i+ j
i

)
αiα j X i+ j ,

for
∑
∞

n=0 αn Xn in 1+ XF2[[X ]].

Remark 1.9. Defining f! as

f!

( ∞∑
n=1

αn Xn
)
=

∞∑
n=1

βn Xn

if

f
( ∞∑

n=1

αn
Xn

n!

)
=

∞∑
n=1

βn
Xn

n!
,

Theorems 1.1, 1.3, 1.5 and 1.6 have analogues for the functions sin! and tan! (and
for their reciprocal functions arcsin! and arctan!).
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The rest of the paper is organized as follows. In Sections 2–6, we recall a
few definitions and well-known facts that are essentially standard knowledge in
the theory of divided powers; see [Berthelot and Ogus 1978] or the original work
[Roby 1963; 1965]. Section 7 contains the proofs for all results mentioned above.

In a second part, starting at Section 8, we generalize Theorems 1.1 and 1.5 to
formal power series in several noncommuting variables.

2. Rational and algebraic elements in K[[X]]

This section recalls a few well-known facts concerning rational and algebraic ele-
ments in the algebra K[[X ]] of formal power series.

We denote by τ : K[[X ]] −→ K[[X ]] the shift operator

τ

( ∞∑
n=0

αn Xn
)
=

∞∑
n=0

αn+1 Xn

acting on formal power series. The following well-known result characterizes ra-
tional series:

Proposition 2.1. A formal power series A =
∑
∞

n=0 αn Xn of K[[X ]] is rational
if and only if the series A, τ (A), τ 2(A), . . . , τ k(A) =

∑
∞

n=0 αn+k Xn, . . . span a
finite-dimensional vector space in K[[X ]].

More precisely, the vector space spanned by A, τ (A), τ 2(A), . . . , τ i (A), . . .
has dimension ||A|| =max(1+deg f, deg g) if f/g, with f, g ∈K[X ], is a reduced
expression of a rational series A.

The function A 7→ ||A|| satisfies the inequality

||A+ B|| ≤ ||A|| + ||B||

for rational series A, B in K[[X ]]. As a particular case, we have

||A|| − 1≤ ||1+A|| ≤ ||A|| + 1.

Given a prime p and a formal power series C =
∑
∞

n=0 γn Xn in Fp[[X ]], we
denote by κ(C) ∈ N∪ {∞} the dimension of its p-kernel

K(C)= KC +
∑
f,k

FpCk, f ,

spanned by C and all series of the form

Ck, f =

∞∑
n=0

γk+np f Xn,

with k ∈ N such that k < p f for f ∈ {1, 2, . . . }.
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Algebraic series of K[[X ]], for K a subfield of the algebraic closure Fp of fi-
nite prime characteristic p, are characterized by the following theorem of Christol
[1979] (see also [Allouche and Shallit 2003, Theorem 12.2.5]):

Theorem 2.2. A formal power series C =
∑
∞

n=0 γn Xn of Fp[[X ]] is algebraic if
and only if the dimension κ(C)= dim K(C) of its p-kernel K(C) is finite.

Finiteness of κ(C) amounts to recognizability of C , which has the following
well-known consequence.

Corollary 2.3. An algebraic series of Fp[[X ]] has all its coefficients in a finite
subfield of Fp.

Proposition 2.4. Let C =
∑
∞

n=0 γn Xn be an algebraic series with coefficients in a
subfield K ⊂ Fp.

(i) K(τ (C))⊂ K(C)+ τ(K(C)), which implies κ(τ(C))≤ 2κ(C).

(ii) K(C)⊂ K+K(τ (C))+ XK(τ (C)), which implies κ(C)≤ 1+ 2κ(τ(C)).

Proof. Assertion (i) follows from an iterated application of the easy computations

(τ (C))k,1 = Ck+1,1,

if 0≤ k < p− 1 and

(τ (C))p−1,1 = τ(C0,1).

The proof of assertion (ii) is similar. �

3. The shuffle algebra

This section recalls mostly well-known results concerning shuffle products of ele-
ments in the set K[[X ]] of formal power series over a commutative field K, which
is arbitrary unless specified otherwise.

The shuffle product

A B = C =
∞∑

n=0

γn Xn

of A =
∑
∞

n=0 αn Xn and B =
∑
∞

n=0 βn Xn is defined by

γn =

n∑
k=0

(n
k

)
αkβn−k,

and corresponds to the usual product ab = c of the associated exponential gener-
ating series

a =
∞∑

n=0

αn
Xn

n!
, b =

∞∑
n=0

βn
Xn

n!
, c =

∞∑
n=0

γn
Xn

n!
.
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The shuffle algebra is the algebra (K[[X ]], ) obtained by endowing the vector
space K[[X ]] of ordinary generating series with the shuffle product. By construc-
tion, the shuffle algebra is isomorphic to the algebra E(K) of exponential generating
series. In characteristic zero, the trivial identity

∞∑
n=0

αn Xn
=

∞∑
n=0

(n!αn)
Xn

n!

gives an isomorphism between the usual algebra K[[X ]] of ordinary generating
series and the shuffle algebra (K[[X ]], ).

The identity (∑
n≥0

λn Xn
) (∑

n≥0

µn Xn
)
=

∑
n≥0

(λ+µ)n Xn,

equivalent to eλX eµX
= e(λ+µ)X , implies that the convergence radius of the shuffle

product of two complex series with strictly positive convergence radii ρ1, ρ2 is at
least the harmonic mean 1/(1/ρ1+ 1/ρ2) of ρ1 and ρ2.

Proposition 3.1. The shift operator

τ

( ∞∑
n=0

αn Xn
)
=

∞∑
n=0

αn+1 Xn

acts as a derivation on the shuffle algebra.

Proof. The map τ is clearly linear. The computation

τ

( ∑
i, j≥0

( i+ j
i

)
αiβ j X i+ j

)
=

∑
i, j≥0

i+ j≥1

( i+ j
i

)
αiβ j X i+ j−1

=

∑
i, j≥0

i+ j≥1

(( i+ j−1
i−1

)
+

( i+ j−1
j−1

))
αiβ j X i+ j−1

shows that τ satisfies the Leibniz rule τ(A B)= τ(A) B+ A τ(B). �

Proposition 3.1 is trivial and well-known in characteristic zero: the usual deriva-
tion d/dX acts obviously as the shift operator on the algebra E(K) of exponential
generating series over a field of characteristic zero.

The following two results seem to be due to Fliess [1974, Proposition 6].

Proposition 3.2. Shuffle products of rational power series are rational.
More precisely, we have

||A B|| ≤ ||A|| ||B||,

for two rational series A, B in K[[X ]].
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Proof. Proposition 3.1 implies τ n(A B) =
∑n

k=0
(n

k

)
τ k(A) τ n−k(B). The

series τ n (A B) belongs thus to the vector space spanned by shuffle products
with factors in the vector spaces

∑
n≥0 Kτ n(A) and

∑
n≥0 Kτ n(B). This implies

the inequality. Proposition 2.1 ends the proof. �

Proposition 3.3. Shuffle products of algebraic series in Fp[[X ]] are algebraic.
More precisely, we have

κ(A B)≤ κ(A)κ(B).

Proof. Denoting by Ck, f the series

Ck, f =

∞∑
n=0

γk+np f Xn

associated to a series C =
∑
∞

n=0 γn Xn , as in Section 2, and by κ(C) the dimension
of the vector space K(C)= KC +

∑
k, f FpCk, f , Lucas’s identity [1878](n

k

)
≡

∏
i≥0

(
νi
κi

)
(mod p),

for n =
∑
i≥0
νi pi and k =

∑
i≥0
κi pi with νi , κi ∈ {0, . . . , p− 1}, implies

(A B)k,1 =
k∑

i=0

(k
i

)
Ai,1 Bk−i,1,

for k= 0, . . . , p−1. Iteration of this formula shows that (A B)k, f (for arbitrary
k, f ∈N such that k< p f ) belongs to the vector space spanned by shuffle products
with factors in the vector spaces K(A) and K(B) of dimension κ(A) and κ(B).

Christol’s Theorem (Theorem 2.2) ends the proof. �

Remark 3.4. Given a subfield K of Fp, let A ⊂ K[[X ]] denote a vector space of
finite dimension a= dim A containing the p-kernel K(A) of every element A ∈A.

We consider an element B = A1 A2 · · · Ak given by the shuffle prod-
uct of k series A1, . . . , Ak ∈ A. Expressing all elements A1, A2, . . . as linear
combinations of elements in a fixed basis of A and using commutativity of the
shuffle product, the proof of Proposition 3.3 shows that the inequality κ(B) ≤
κ(A1)κ(A2) · · · ≤ ak

= (dim A)k can be improved to

κ(B)≤
(k+a−1

a−1

)
,

where the binomial coefficient gives the dimension of the vector space of homo-
geneous polynomials of degree k in a (commuting) variables X1, X2, . . . , Xa .
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4. The special shuffle group

We call the group of units of the shuffle algebra (K[[X ]], ) the shuffle group.
Its elements are given by the set K∗+ XK[[X ]] underlying the multiplicative unit
group. The shuffle group is the direct product of the unit group K∗ of K with the
special shuffle group (1+ XK[[X ]], ).

The inverse in the shuffle group of 1− A ∈ (1+ XK[[X ]], ) is given by

∞∑
n=0

A
n
= 1+A+ A A+ A A A+ · · · ,

where A
0
= 1 and A

n+1
= A A

n
for n ≥ 1.

The trivial identity X Xn
=
(n+1

1

)
Xn+1

= (n + 1)Xn+1
∈ K[[X ]] implies

(1− X)
(∑
∞

n=0 n!Xn
)
= 1. Invertible rational (analytical) power series have

thus generally a transcendental (nonanalytical) shuffle inverse over the complex
numbers.

Proposition 4.1. The special shuffle group (1+ XK[[X ]], ) is isomorphic to an
infinite-dimensional Fp-vector space if the field K is of positive characteristic p.

Proposition 4.1 shows that (1+ XK[[X ]], ) is not isomorphic to the multi-
plicative group structure on 1+ XK[[X ]] if K is of positive characteristic.

Proof of Proposition 4.1. It follows from the fact that exp! is a group isomorphism
between the Fp-vector space m and the special shuffle group. �

Proposition 4.1 follows also as a special case from Proposition 8.1. This yields
a different proof, which is not based on properties of exp!.

Remark 4.2. One can show that a rational fraction A ∈ 1+ XC[[X ]] has a rational
inverse for the shuffle product if and only if A= 1/(1−λX) with λ∈C. (Compute
A B = 1 using the decomposition into simple fractions of the rational series
A, B.)

5. The exponential and the logarithm for exponential generating functions

Hurwitz showed that 1/(k!)ak is well-defined for a ∈ mE with coefficients in an
arbitrary field or commutative ring [Hurwitz 1899, Satz 1]. We give a different
proof of this fact, that implies that exp! and log! are well-defined over fields of
positive characteristic.

Proposition 5.1. For all natural numbers j, k ≥ 1, the set {1, . . . , jk} can be par-
titioned in exactly

( jk)!
( j !)k k!

(3)
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different ways into k unordered disjoint subsets of j elements. In particular, the
rational number in (3) is an integer for all natural numbers j, k such that j ≥ 1.

Proof. The multinomial coefficient ( jk)!/( j !)k counts the number of ways of par-
titioning {1, . . . , jk} into an ordered sequence of k disjoint subsets containing all
j elements. Dividing by k! removes the order on these k subsets.

This proves that the formula defines an integer for all j, k ≥ 1, and integrality
obviously also holds for k = 0 and j ≥ 1. �

Remark 5.2. A slightly different proof of Proposition 5.1 follows from the ob-
servation that ( jk)!/(( j !)k k!) is the index in the symmetric group over jk ele-
ments of the subgroup formed by all permutations stabilizing a partition of the set
{1, . . . , jk} into k disjoint subsets of j elements.

A different proof is given by the formula

( jk)!
( j !)k k!

=

k∏
n=1

(nj−1
j−1

)
,

easily shown using induction on k; see [Berthelot and Ogus 1978, Section 3] (which
contains a small misprint).

Proposition 5.3. For any natural integer k ∈ N, there exist polynomials Pk,n ∈

N[α1, . . . , αn] such that

1
k!

( ∞∑
n=1

αn
Xn

n!

)k

=

∞∑
n=0

Pk,n(α1, α2, . . . , αn)
Xn

n!
.

Proof. The contribution of a monomial

α
j1
1 α

j2
2 . . . α

js
s

X
∑s

i=1 i ji(∑s
i=1 i ji

)
!
,

with j1+ j2+ · · ·+ js = k, to 1
k!

( ∞∑
n=1

αn Xn/n!
)k

is given by

1
k!

k!
( j1)!( j2)! . . . ( js)!

(∑s
i=1 i ji

)
!∏s

i=1(i !) ji
=

( s∏
i=1

(i ji )!
(i !) ji ( ji )!

)(∑s
i=1 i ji

)
!∏s

i=1(i ji )!
,

where the last expression is a product of a natural integer by Proposition 5.1 and
of a multinomial coefficient. It is thus a natural integer. �

Corollary 5.4. For a =
∑
∞

n=1 αn Xn/n!, the formulae

exp
( ∞∑

n=1

αn
Xn

n!

)
=

∞∑
k=0

∞∑
n=0

Pk,n(α1, . . . , αn)
Xn

n!
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and

log
(

1+
∞∑

n=1

αn
Xn

n!

)
=

∞∑
k=1

∞∑
n=0

(−1)k+1(k− 1)!Pk,n(α1, . . . , αn)
Xn

n!

define the exponential function and the logarithm of an exponential generating
series in a ∈mE and 1+a ∈ 1+mE, respectively, over an arbitrary field K. These
functions are one-to-one and mutually reciprocal.

The following result shows that the functions exp! and log! behave as expected
under the derivation τ :

∑
∞

n=0 αn Xn
7→
∑
∞

n=0 αn+1 Xn of the shuffle algebra.

Proposition 5.5. For all A ∈m= XK[[X ]] over an arbitrary field K, we have

τ(exp! A)= (exp! A) τ (A)

and
τ(log!(1+A))= (1+A)

−1
τ(A),

where (1+A)
−1

denotes the shuffle inverse of (1+A).

Proof. Proposition 3.1 implies the formal identities

τ

( ∞∑
n=0

A
n

n!

)
=

∞∑
n=0

n A
n−1

n!
τ(A)=

( ∞∑
n=0

A
n

n!

)
τ(A),

for A ∈m. By Proposition 5.1, this identity holds over the ring Z and thus over an
arbitrary commutative field. This establishes the formula for exp!.

For log! we get similarly

τ

(
−

∞∑
n=1

(−A)
n

n

)
=

∞∑
n=1

n (−A)
n−1

n
τ(A)=

( ∞∑
n=0

(−A)
n
)

τ(A),

which implies the result, by Proposition 5.1 and by the trivial identity

(1+A)
−1
=

∞∑
n=0

(−A)
n
,

for the shuffle inverse (1+A)
−1

of 1+A ∈ 1+m. �

6. The logarithm as a p-homogeneous form over F p[[x]]

Given a fixed prime number p, Proposition 4.1 implies that there exist polynomials
Q p,n ∈ N[α0, . . . , αn] for n ≥ 1 such that( ∞∑

n=0

αn Xn
) p

= α
p
0 + p

∞∑
n=1

Q p,n(α0, . . . , αn)Xn.
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The polynomials Q p,n are homogeneous of degree p with respect to the variables
α0, . . . , αn , and we denote by

µp

( ∞∑
n=0

αn Xn
)
=

∞∑
n=1

Q p,n(α0, . . . , αn)Xn

the p-homogeneous form defined by the ordinary generating series of the polyno-
mials Q p,1, Q p,2, . . . .

Proposition 6.1. The restriction of µp to 1+m⊂ Fp[[X ]] coincides with the func-
tion log!.

Proof. We have
τ(µp(1+A))= (1+A)

p−1
τ(1+A)

for A in m, where τ
(∑
∞

n=0 αn Xn
)
=
∑
∞

n=0 αn+1 Xn is the shift operator of Propo-
sition 3.1. This identity defines the restriction of the p-homogeneous form µp to
1+m. Proposition 5.5 and the identity

(1+A)
p−1

(1+A)= 1

show that the function log! satisfies the same equation

τ(log!(1+A))= (1+A)
p−1

τ(1+A).

Since both series µp(1+A) and log!(1+A) are without constant term, the equal-
ity τ(µp(1+A))= τ(log!(1+A)) implies µp(1+A)= log!(1+A). �

7. Proofs

Proposition 7.1. If A in XFp[[X ]] is rational (respectively algebraic), then the
formal power series log!(1+A) is rational (respectively algebraic).

More precisely,

|| log!(1+A)|| ≤ 1+
( p+||1+A||−1

p

)
≤ 1+ ||1+A||p

for A rational in m= XFp[[X ]], and

κ(log!(1+A))≤ 1+ 4κ(A)
( p+κ(1+A)−2

p−1

)
≤ 1+ 4(κ(1+A))p

for A algebraic in m.

Proposition 7.2. If A in XFp[[X ]] is rational (respectively algebraic), then exp! A
is rational (respectively algebraic).

More precisely, denoting by q = pe the cardinality of a finite field Fq ⊂ Fp

containing all coefficients of A,

|| exp! A|| ≤ pq ||A||
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for A rational in m, and

κ(exp! A)≤ qκ(A)−1 pqκ(A)

for A algebraic and nonzero in m.

Theorems 1.1, 1.3, 1.5 and 1.6 are now simple reformulations of Propositions
7.1 and 7.2.

Proof of Proposition 7.1. Apply the identity (1+A)
p
= 1, which follows from

Proposition 4.1, to

τ(log!(1+A))= (1+A)
−1

τ(A)

of Proposition 5.5, to establish

τ(log!(1+A))= (1+A)
p−1

τ(A),

already encountered in the proof of Proposition 6.1. This shows

||τ(log!(1+A)|| ≤ ||1+A||p−1
||τ(A)|| ≤ ||1+A||p

and implies
|| log!(1+A)|| ≤ 1+ ||1+A||p.

This proves the cruder inequality in the rational case. The finer inequality follows
from the fact that all p factors of

(1+A)
p−1

τ(A)= τ(log!(1+A))

belong to a common vector space of dimension ||1+A|| that is closed for the shift
map. The details are the same as for Remark 3.4.

For algebraic A we have similarly

κ(τ(log!(1+A)))≤ (κ(1+A))p−1 κ(τ(A))= (κ(1+A))p−1 κ(τ(1+A))

≤ (κ(1+A))p−12κ(1+A)≤ 2(κ(1+A))p,

using Proposition 2.4(i). This shows

κ(log!(1+A))≤ 1+ 2κ(τ(log!(1+A)))≤ 1+ 4(κ(1+A))p,

by Proposition 2.4(ii), and ends the proof for the cruder inequality.
The finer inequality follows from Proposition 2.4 and Remark 3.4. �

Given a vector space V ⊂ K[[X ]] containing K, we denote by 0(V) the shuffle
subgroup generated by all elements of V∩ (1+ XK[[X ]]).

Lemma 7.3. Every element of a vector space V⊂K[[X ]] containing the field K of
constants can be written as a linear combination of elements in 0(V).



934 Roland Bacher

Proof. We have the identity

A = (1− ε(A)+ A)+ (ε(A)− 1),

where ε
(∑
∞

n=0 αn Xn
)
= α0 is the augmentation map and where (1− ε(A)+ A)

and the constant (ε(A)− 1) are both in K0(V) for A ∈ V. �

Proof of Proposition 7.2 for A rational. Corollary 2.3 shows that we can work over
a finite subfield K = Fq of Fp consisting of q = pe elements.

Given a rational series A in m= XK[[X ]], we denote by 0A the shuffle subgroup
generated by all elements of the set{ ∞⋃

n=0

(
τ n(A)+K

)}
∩ {1+ XK[[X ]]}.

This generating set of 0A contains at most q ||A|| elements. Proposition 4.1 im-
plies thus that 0A is a finite group having at most pq ||A|| elements. The subalgebra
K[0A] ⊂K[[X ]] spanned by all elements of 0A is thus of dimension ≤ pq ||A|| . The
identity

τ(exp! A)= exp! A τ(A)

of Proposition 5.5 and the fact that the derivation τ of K[[X ]] restricts to a derivation
of the subalgebra K[0A] show the inclusion

τ n(exp! A) ∈ exp! A K[0A]

for all n ∈N by Lemma 7.3. This ends the proof, since the right side is a K-vector
space of dimension at most pq ||A|| . �

Proposition 7.4. We have, for every prime number p and for all natural integers
j, k such that j ≥ 1, the identity

( jk)!
( j !)k k!

≡
(pjk)!

((pj)!)k k!
(mod p).

Proof. The fraction on the right side yields the cardinality of the set E of all
partitions of {1, . . . , pjk} into k subsets of pj elements. Consider the group G gen-
erated by the jk cycles of length p of the form (i, i+ jk, i+2 jk, . . . , i+(p−1) jk)
for i = 1, . . . , jk. The group G has p jk elements and acts on the set of partitions
by preserving their type defined as the multiset of cardinalities of all involved parts.
In particular, it acts by permutation on the set E. A partition P ∈ E is a fixpoint
for G if and only if every part of P is a union of G-orbits. Choosing a bijection
between {1, . . . , jk} and G-orbits of {1, . . . , pjk}, fixpoints of E are in bijection
with partitions of the set {1, . . . , jk} into k subsets of j elements. The number of
fixpoints of the G-action on E equals thus ( jk)!/(( j !)k k!). Since G is a p-group,
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the cardinalities of all nontrivial G-orbits of E are strictly positive powers of p.
This ends the proof. �

Corollary 7.5. exp! and log! commute with the “Frobenius substitution”

ϕ

( ∞∑
n=0

αn Xn
)
=

∞∑
n=0

αn X pn

for series in XFp[[X ]] and 1+ XFp[[X ]], respectively.

This implies (exp! A)0, f = exp! A0, f , where Ck, f =
∑
∞

n=0 γk+np f Xn for C =∑
∞

n=0 γn Xn .

Lemma 7.6. (B C)0,1 = B0,1 C0,1.

Proof. Follows from the identity
( pn

k

)
≡ 0 (mod p) if k 6≡ 0 (mod p). �

Proof of Proposition 7.2 for A algebraic. We work again over a finite subfield
K = Fq ⊂ Fp containing all coefficients of A. Let 0A denote the shuffle subgroup
generated by all elements in

(K(A)+K)∩ (1+ XK[[X ]]),

where
K(A)= K A+

∑
k, f

K Ak, f

denotes the p-kernel of A. We denote by K[0A] ⊂ (K[[X ]], ) the shuffle sub-
algebra of dimension at most pqκ(A) spanned by all elements of the group 0A ⊂

(1+ XK[[X ]], ).
Using the convention A0,0 = A, we have, for B ∈ K[0(A)] and for k such that

0≤ k < p,

(exp!(A0, f ) B)k,1 = (τ k(exp!(A0, f ) B))0,1

=

( k∑
j=0

(k
j

)
τ j (exp! A0, f ) τ k− j (B)

)
0,1

=

k∑
j=0

(k
j

)
(τ j (exp! A0, f ))0,1 Bk− j,1,

where the last equality is due to Lemma 7.6 (and to the equality (τ k(C))0,1 =Ck,1

for 0≤ k < p).
Proposition 5.5 gives τ(exp! A0, f ) = (exp! A0, f ) τ (A0, f ); iterating this

identity shows that τ j (exp! A0, f ) is of the form (exp! A0, f ) F , where F is
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a linear combination of shuffle products involving at most j factors of the set
{τ(A0, f ), τ

2(A0, f ), . . . , τ
j (A0, f )}. Applying Lemma 7.6, we get

(τ j (exp! A0, f ))0,1 = (exp0, f+1(A)) F0,1.

An iterated application of Lemma 7.6 now shows that F0,1 is a linear combination
of shuffle products involving at most j factors in {A1, f+1, . . . , A j, f+1}. We thus
have F0,1 ∈ K[0A], by Lemma 7.3, and we get the inclusion

(exp!(A0, f ) K[0A])k,1 ⊂ exp!(A0, f+1) K[0A]

for all f ∈ N and for all k ∈ {0, . . . , p− 1}.
Setting

E A = {exp! B | B ∈ K(A)∩ XK[[X ]]},

we have the inclusion

K(exp! A)⊂ E A K[0A] ⊂ K[E A] K[0A],

where K(exp! A) denotes the p-kernel of exp! A. This implies

κ(exp! A)≤ dim K[E A] dim K[0A].

We suppose now A that is nonzero. The vector space K(A)∩ XK[[X ]] is thus
of codimension 1 in K(A). The image E A of K(A) ∩ XK[[X ]] under the group
isomorphism exp! : (XK[[X ]],+) 7→ (1+ XK[[X ]], ) is hence a subgroup of
cardinality qκ(A)−1 in (1+ XK[[X ]], ). We have thus

κ(exp! A)≤ dim K[E A] dim K[0A] ≤ qκ(A)−1 pqκ(A),

which ends the proof. �

8. Power series in free noncommuting variables

This and the next section recall a few basic and well-known facts concerning (ra-
tional) power series in free noncommuting variables; see, for instance, [Stanley
1999] or [Berstel and Reutenauer 1988]. Sometimes, however, we use a different
terminology, motivated by [Bacher 2008].

We denote by X∗ the free monoid on a finite set X = {X1, . . . , Xk}. We write
1 for the identity element and we use a boldface capital X for a noncommutative
monomial X = X i1 X i2 . . . X il ∈ X∗. We denote by

A =
∑

X∈X∗

(A, X)X ∈ K〈〈X1, . . . , Xk〉〉

a noncommutative formal power series, where X∗ 3 X 7→ (A, X) ∈ K stands for
the coefficient function.



On exponentials of exponential generating series 937

We denote by m ⊂ K〈〈X1, . . . , Xk〉〉 the maximal ideal consisting of formal
power series without constant coefficient, and by K∗ +m = K〈〈X1, . . . , Xk〉〉 \m

the unit group of the algebra K〈〈X1, . . . , Xk〉〉 consisting of all (multiplicatively)
invertible elements in K〈〈X1, . . . , Xk〉〉. The unit group is isomorphic to the direct
product K∗ × (1 + m), where K∗ is the central subgroup consisting of nonzero
constants and where 1+m denotes the multiplicative subgroup given by the affine
subspace formed by power series with constant coefficient 1. We have (1−A)−1

=

1+
∑
∞

n=1 An for the multiplicative inverse (1− A)−1 of an element 1− A ∈ 1+m.

The shuffle algebra. The shuffle product X X ′ of two noncommutative mono-
mials X, X ′ ∈ X∗ of degrees a = deg X and b = deg X ′ (for the obvious grading
given by deg X1 = · · · = deg Xk = 1) is the sum of all

(a+b
a

)
monomials of degree

a+ b obtained by shuffling in all possible ways the linear factors (elements of X)
involved in X with the linear factors of X ′. A monomial involved in X X ′ can
be thought of as a monomial of degree a + b whose linear factors are colored by
two colors with X corresponding to the product of all linear factors of the first color
and X ′ corresponding to the product of the remaining linear factors. The shuffle
product X X ′ can also be recursively defined by X 1= 1 X = X and

(X Xs) (X ′X t)= (X (X ′X t))Xs + ((X Xs) X ′)X t ,

where Xs, X t ∈ X= {X1, . . . , Xk} are monomials of degree 1.
Extending the shuffle product in the obvious way to formal power series endows

the vector space K〈〈X1, . . . , Xk〉〉 with an associative and commutative algebra
structure called the shuffle algebra. In the case of one variable X = X1, we recover
the definition of Section 3.

The group GLk(K) acts on the vector space K〈〈X1, . . . , Xk〉〉 by linear substi-
tutions. This action induces an automorphism of the multiplicative (noncommuta-
tive) algebra-structure or of the (commutative) shuffle algebra-structure underlying
the vector space K〈〈X1, . . . , Xk〉〉.

Substitution of all variables X j of formal power series in K〈〈X1, . . . , Xk〉〉 by X
(or more generally by arbitrary not necessarily equal formal power series without
constant term) yields a homomorphism of (shuffle) algebras into the commutative
(shuffle) algebra K[[X ]].

The commutative unit group (set of invertible elements for the shuffle product)
of the shuffle algebra, given by the set K∗+m, is isomorphic to the direct product
K∗× (1+m), where 1+m is endowed with the shuffle product. The inverse of an
element 1− A ∈ (1+m, ) is given by

∞∑
n=0

A
n
= 1+A+ A A+ A A A+ · · · .
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The following result generalizes Proposition 4.1:

Proposition 8.1. Over a field of positive characteristic p, the subgroup 1+m of
the shuffle group is an infinite-dimensional Fp-vector space.

Proof. Contributions to a p-fold shuffle product A1 A2 · · · Ap are given
by monomials with linear factors colored by p colors {1, . . . , p} keeping track of
their “origin” with coefficients given by the product of the corresponding “mono-
chromatic” coefficients in A1, . . . , Ap. A permutation of the colors {1, . . . , p} (and
in particular, a cyclic permutation of all colors) leaves such a contribution invariant
if A1 = · · · = Ap. Coefficients of strictly positive degree in A

p
are thus zero in

characteristic p. �

As in the one-variable case, one can prove that

1
k!

A
k

is defined over an arbitrary field K for A ∈ m. Monomials contributing to A
k

can be considered as colored by k colors and the k! possible color-permutations
yield identical contributions.

For A ∈m, we denote by

exp! A =
∞∑

n=0

1
n!

A
n

the resulting exponential map from the Lie algebra m into the infinite-dimensional
commutative Lie group (1+m, ). As expected, its reciprocal function is

log!(1+A)=
∞∑

n=1

(−1)n+1

n
A

n
.

In the case of a field K of positive characteristic p, the function log! is again given
by the restriction to 1+m of a p-homogeneous form µp.

The form µp has all its coefficients in N and is again defined by the equality

A
p
= (A, 1)p

+ pµp(A)

over Z. It can thus be defined over an arbitrary field.

9. Rational series

We say that a formal power series A is rational if it belongs to the smallest subal-
gebra in K〈〈X1, . . . , Xk〉〉 that contains the free associative algebra K〈X1, . . . , Xk〉

of noncommutative polynomials and intersects the group of multiplicative units of
K〈〈X1, . . . , Xk〉〉 in a subgroup.
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Given a monomial T ∈ X∗, we denote by

ρ(T ) : K〈〈X1, . . . , Xk〉〉 −→ K〈〈X1, . . . , Xk〉〉

the linear application defined by

ρ(T )A =
∑

X∈X∗

(A, XT )X

for A =
∑

X∈X∗(A, X)X in K〈〈X1, . . . , Xk〉〉. The identity

ρ(T )(ρ(T ′)A)= ρ(T T ′)A

shows that we have a representation

ρ : X∗ −→ End(K〈〈X〉〉)

of the free monoid X∗ on X. The recursive closure A of a power series A is the
vector space spanned by its orbit ρ(X∗)A under ρ(X∗). We call the dimension
dim A of A the complexity of A.

We call a subspace A ⊂ K〈〈X1, . . . , Xk〉〉 recursively closed if it contains the
recursive closure of all its elements.

Rational series coincide with series of finite complexity by a theorem of Schüt-
zenberger [Berstel and Reutenauer 1988, Theorem 1].

Remark 9.1. In the case of one variable, the complexity dim A of a reduced
nonzero rational fraction A = f/g with f ∈ K[X ] and g ∈ 1 + XK[X ] equals
dim A =max(1+ deg f, deg g).

Remark 9.2. The (generalized) Hankel matrix H = H(A) of

A =
∑

X∈X∗

(A, X)X ∈ K〈〈X1, . . . , Xk〉〉

is the infinite matrix with rows and columns indexed by the free monoid X∗ of
monomials and entries HX X ′= (A, X X ′). The rank of H is given by the complexity
dim A of A, and A corresponds to the column-span of H .

Given subspaces A,B of K〈〈X〉〉, we denote by A B the vector space spanned
by all products A B with A ∈A and B ∈B.

Proposition 9.3. We have the inclusion A B ⊂ A B for the shuffle product
A B of A, B ∈ K〈〈X1, . . . , Xk〉〉.

Corollary 9.4 [Fliess 1974, Proposition 4]. We have

dim(A B)≤ dim A dim B

for the shuffle product A B of A, B ∈ K〈〈X1, . . . , Xk〉〉. In particular, shuffle
products of rational elements in K〈〈X1, . . . , Xk〉〉 are rational.
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Proof of Proposition 9.3. For Y ∈ A, Z ∈ B and X in {X1, . . . , Xk}, the recursive
definition of the shuffle product given in Section 8 shows

ρ(X)(Y Z)= (ρ(X)Y ) Z + Y (ρ(X)Z).

We thus have the inclusions ρ(X)(Y Z) ∈ A Z + Y B ⊂ A B, which
show that the vector space A B is recursively closed. Proposition 9.3 follows
now from the inclusion A B ∈ A B. �

Remark 9.5. Similar arguments show that the set of rational elements in K〈〈X1,

. . . , Xk〉〉 is also closed under the ordinary product (and multiplicative inversion of
invertible series), Hadamard product and composition (where one considers A ◦
(B1, . . . , Bk) with A ∈ K〈〈X1, . . . , Xk〉〉 and B1, . . . , Bk ∈m⊂ K〈〈X1, . . . , Xk〉〉).

Remark 9.6. The shuffle inverse of a rational element in K∗+m is in general not
rational in characteristic 0. An exception is given by geometric progressions(

1−
k∑

j=1

λ j X j

)−1

=

∞∑
n=0

( k∑
j=1

λ j X j

)n

,

since we have

1
1−

∑k
j=1 λ j X j

1
1−

∑k
j=1 µ j X j

=
1

1−
∑k

j=1(λ j+µ j )X j

corresponding to eλX eµX
= e(λ+µ)X in the one-variable case.

There are no other such elements in 1+m ⊂ K[[X ]]; see Remark 4.2. I do not
know whether the maximal rational shuffle subgroup of 1+m ⊂ C〈〈X1, . . . , Xk〉〉

(defined as the set of all rational elements in 1+m with rational inverse for the
shuffle product) contains other elements if k ≥ 2.

Remark 9.7. Any finite set of rational elements in K〈〈X1, . . . , Xk〉〉 over a field
K of positive characteristic is included in a unique minimal finite-dimensional
recursively closed subspace of K〈〈X1, . . . , Xk〉〉 that intersects the shuffle group
(K∗+m, ) in a subgroup.

10. Main result for generating series in noncommuting variables

The following statement is our main result in a noncommutative framework.

Theorem 10.1. Let K be a subfield of Fp. Given a noncommutative formal power
series A ∈m⊂ K〈〈X〉〉, the following two assertions are equivalent:

• A is rational.

• exp! A is rational.
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More precisely, we have for a rational series A in m the inequalities

dim log!(1+A)≤ 1+
(
dim 1+A

)p

and
dim exp! A ≤ pqdim A

,

where q = pe is the cardinality of a finite field Fq containing all coefficients of A.

Proof. The identity

log!(1+A)=
∑
X∈X

(
(1+A)

p−1
ρ(X)A

)
X

and Corollary 9.4 show

dim log!(1+A)≤ 1+
(
dim 1+A

)p
.

For the opposite direction we denote by K=Fq a finite subfield of Fp containing
all coefficients of A. We have

exp! A ⊂ exp! A K[0(A)],

where K[0(A)] is the shuffle subalgebra of dimension at most pqdim A
spanned by

all elements of the group 0 generated by all elements of the form

(A+K)∩ (1+m).

This implies the inequality dim exp! A ≤ pqdim A
, which ends the proof. �
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On families of ';
L
-modules

Kiran Kedlaya and Ruochuan Liu

Berger and Colmez (2008) formulated a theory of families of overconvergent
étale .'; �/-modules associated to families of p-adic Galois representations over
p-adic Banach algebras. In contrast with the classical theory of .'; �/-modules,
the functor they obtain is not an equivalence of categories. In this paper, we
prove that when the base is an affinoid space, every family of (overconvergent)
étale .'; �/-modules can locally be converted into a family of p-adic represen-
tations in a unique manner, providing the “local” equivalence. There is a global
mod p obstruction related to the moduli of residual representations.

Introduction

Berger and Colmez [2008] introduced a theory of families of overconvergent étale
.'; �/-modules associated to families of p-adic Galois representations over p-adic
Banach algebras. The p-adic families of local Galois representations emerging
from number theory are usually over rigid analytic spaces. So we are mainly inter-
ested in the case where the bases are reduced affinoid spaces. However, even in this
case, the functor of Berger and Colmez is far from an equivalence of categories,
in contrast with the classical theory of .'; �/-modules. This was first noticed by
Chenevier [Berger and Colmez 2008, remarque 4.2.10]: if the base is the p-adic
unit circle M.QhX;Y i=.XY �1//, then it is easy to see that the free rank-1 over-
convergent étale .'; �/-module D with a basis e such that '.e/DY e and 
 .e/D e

for 
 2 � does not come from a family of p-adic representations over the same
base.

On the other hand, in his proof of the density of crystalline representations,
Colmez [2008, proposition 5.2] proved that for certain families of rank-2 triangu-
lar étale .'; �/-modules, one can locally convert such a family into a family of
p-adic representations using his theory of Espaces Vectoriels de dimension finie (it
is clear that we can also convert Chenevier’s example locally). Moreover, Colmez

While writing this paper, Kedlaya was supported by NSF CAREER grant DMS-0545904, the MIT
NEC Research Support Fund, and the MIT Cecil and Ida Green Career Development Professorship,
while Liu was a postdoctoral fellow of Foundation Sciences Mathématiques de Paris.
MSC2000: primary 11F80; secondary 11S20.
Keywords: p-adic Galois representations, .'; �/-modules.
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remarked [2008, remarque 5.3(2)]: On aurait pu aussi utiliser une version «en
famille» des théorèmes à la Dieudonné–Manin de Kedlaya. Il y a d’ailleurs une
concordance assez frappante entre ce que permettent de démontrer ces théorèmes
de Kedlaya et la théorie des Espaces Vectoriels de dimension finie.

Unfortunately, as noted in [Liu 2008], there is no family version of Kedlaya’s
slope filtrations theorem in general, because the slope polygons of families of
Frobenius modules are not necessarily locally constant. Nonetheless, one may
still ask to what extent one can convert a globally étale family of .'; �/-modules
back into a Galois representation. As Chenevier’s example shows, this cannot be
done in general over an affinoid base. The best one can hope for in general is
the following theorem, which extends a result of Dee [2001]. (In the statement,
the distinction between a .'; �/-module and a family of .'; �/-modules is that
the former is defined as a module over a ring, whereas the latter is defined as a
coherent sheaf over a rigid analytic space.)

Theorem 0.1. Let S be a Banach algebra over Qp of the form R˝Zp
Qp, where

R is a complete noetherian local domain of characteristic 0 whose residue field is
finite over Fp. Then for any finite extension K of Qp, the categories of S -linear
representations of GK , of étale .'; �/-modules over B|

K
y̋Qp

S , and of families of
étale .'; �/-modules over B|

rig;K
y̋Qp

S are all equivalent.

For instance, if S is an affinoid algebra and we are given an étale .'; �/-module
over B|

K
y̋Qp

S , we recover a linear representation over each residue disc of S (and
every affinoid subdomain of such a disc), but these representations may not glue.
This is what happens in Chenevier’s example, because the mod p representations
cannot be uniformly trivialized. In fact, the obstruction to converting a .'; �/-
module back into a representation exists purely at the residual level; it suggests a
concrete realization of the somewhat murky notion of “moduli of residual (local)
representations”.

By combining Theorem 0.1 with the results of [Liu 2008], we obtain a result that
applies when only one fiber of the .'; �/-module is known to be étale. (Beware
that the natural analogue of this statement in which the rigid analytic point x is
replaced by a Berkovich point is trivially false.)

Theorem 0.2. Let S be an affinoid algebra over Q, and let MS be a family of
.'; �/-modules over B|

rig;K
y̋Qp

S . If Mx is étale for some x 2M.S/, then there
exists an affinoid neighborhood M.B/ of x and a B-linear representation VB of
GK whose associated .'; �/-module is isomorphic to MS y̋ S B. Moreover, VB is
unique for this property.

To prove the Fontaine–Colmez theorem, Berger [2008] constructed a morphism
from the category of filtered .';N /-modules to the category of .'; �/-modules. It



On families of ';
L
-modules 945

should be possible to generalize Berger’s construction to families of filtered .';N /-
modules; upon doing so, one would get a family version of the Fontaine–Colmez
theorem by Theorem 0.2. That is, one would know that a weakly admissible family
of filtered .';N /-modules over an affinoid base (with trivial '-action on the base)
becomes admissible in a neighborhood of each rigid analytic point.

1. Rings of p-adic Hodge theory

We begin by introducing some of the rings used in p-adic Hodge theory. This
is solely to fix notation; we do not attempt to expose the constructions in any
detail. For that, see for instance [Berger 2004]. Here, whenever a ring is defined
whose notation includes a boldface A, the same notation with A replaced by B will
indicate the result of inverting p.

Let Cp be a completed algebraic closure of Q, with valuation subring OCp
and

p-adic valuation vp normalized with vp.p/D1. Let vp WOCp
=.p/! Œ0; 1/[fC1g

be the semivaluation obtained by truncation. Define zEC to be the ring of sequences
.xn/

1
nD0

in OCp
=.p/ such that x

p
nC1
D xn for all n. Define a function

vE W zEC! Œ0;C1�

by sending the zero sequence to C1, and sending each nonzero sequence .xn/ to
the common value of pnvp.xn/ for all n with xn¤ 0. This gives a valuation under
which zEC is complete. Moreover, if we put zED Frac.zEC/, and let �D .�n/ be an
element of zEC with �0 D 1 and �1 ¤ 1, then zE is a completed algebraic closure of
Fp..�� 1//.

Let zA be the p-typical Witt ring W .zE/, which is the unique complete discrete
valuation ring with maximal ideal .p/ and residue field zE. For each positive integer
n, W .zE/=pnW .zE/ inherits a topology from the valuation topology on zE, under
which it is complete. We call the inverse limit of these the weak topology on zA.
We similarly obtain a weak topology on zB.

For any n � 0, we let �pn denote the set of pn-th roots of unity in Qp, and let
�p1 D

S
n�0 �pn . For K a finite extension of Q, let

K1DK.�p1/; HK DGal.K=K1/; �D�K DGal.K1=K/; K00DQur
p \K1:

Put � D Œ���1, where brackets denote the Teichmüller lift. Using the complete-
ness of zA for the weak topology, we may embed Zp..�// into zA. Let A be the
p-adic completion of the integral closure of Zp..�// in zA, and put AK D AHK .
These rings carry actions of GK that are continuous for the weak topology on the
rings and the profinite topology on GK . They also carry endomorphisms ' (which
are weakly and p-adically continuous) induced by the Witt vector Frobenius on zA.
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For s > 0, the subset

zA|;s
D

n
x2 zA

ˇ̌
xD

P
k2Z

pk Œxk �; vzE.xk/C
psk

p�1
�0; lim

k!C1
vzE.xk/C

psk

p�1
DC1

o
is a subring of zA that is complete for the valuation

ws.x/D inf
k

n
vzE.xk/C

psk

p�1

o
:

Put
zB| D

S
s>0

zB|;s; B|;s
K
D BK \

zB|;s; B|
K
D
S

s>0

B|;s
K
;

A|;s
K
D AK \

zA|;s; A|
K
D A\B|

K
:

(This last ring is strictly larger than
S

s>0 A|;s
K

.) These rings carry an action of '.
with the proviso that ' gtakes a ring with a superscript of s to the corresponding
ring with s replaced by ps. For n a positive integer, write

A|;s
K ;n
D '�n.A|;pns

K
/:

Let zB|;s
rig be the Fréchet completion of zB|;s0 under the valuations ws0 for all s0 � s,

and put zB|
rig D

S
s>0
zB|;s

rig . Similarly, let B|;s
rig;K

be the Fréchet completion of B|;s0

K

under the valuations ws0 for all s0 � s, and put B|
rig;K
D
S

s>0 B|;s
rig;K

. It turns out
that .B|;s

rig /
HK D B|;s

rig;K
.

Some of these rings admit more explicit descriptions, as follows. It turns out
that BK is isomorphic to the p-adic local field

EK 0
0
D

n
f D

C1P
iD�1

aiT
i
ˇ̌
ai 2K00; inf

i
fvp.ai/g> �1; lim

i!�1
vp.ai/DC1

o
with valuation w.f /D mini2Z vp.ai/ and imperfect residue field k 0..T //, where
k 0 is the residue field of K0

0
. There is no distinguished such isomorphism in general

(except for K D Qp, where one may take T D �), but suppose we fix a choice.
Then B corresponds to the completion of the maximal unramified extension of BK .
For s� 0 (depending on K and the choice of the isomorphism BK Š EK 0

0
), B|;s

K

corresponds to the subring Es
K 0

0

of EK 0
0

defined as

Es
K 0

0

D

n
f D

C1P
iD�1

aiT
i
ˇ̌
ai 2K00; inf

i
fvp.ai/g>�1; lim

i!�1
iC

ps

p�1
vp.ai/DC1

o
;

that is, the bounded Laurent series in T convergent on the annulus 0<vp.T /�1=s.
Meanwhile, B|;s

rig;K
corresponds to the ring

Rs
K 0

0

D

n
f D

C1P
iD�1

aiT
i
ˇ̌
ai 2K00; lim

i!C1
i C rvp.ai/DC1 for all r > 0;

lim
i!�1

i C
ps

p�1
vp.ai/DC1

o
;
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that is, the unbounded Laurent series in T convergent on 0 < vp.T / � 1=s. The
union RK 0

0
D
S

s>0 Rs
K 0

0

is commonly called the Robba ring over K0
0
.

2. p-adic representations and .'; �/-modules

We next introduce p-adic representations and the objects of semilinear algebra used
to describe them. Fix a finite extension K of Qp. For R a topological ring, we will
mean by an R-linear representation a finite R-module equipped with a continuous
linear action of GK . (We will apply additional adjectives like “free”, which are
to be passed through to the underlying R-module.) Fontaine [1990] constructed a
functor giving an equivalence of categories between Q-linear representations and
certain linear (or rather semilinear) algebraic data, as follows. (We may extend to
L-linear representations for finite extensions L of Q by restricting the coefficient
field to Q and then keeping track of the L-action separately.)

An étale '-module over AK is a finite module N over AK equipped with a
semilinear action of ' such that the AK -linear map '�N ! N induced by the
'-action is an isomorphism. An étale '-module over BK is a finite module M

over BK , equipped with a semilinear action of ', that contains an AK -lattice N

(that is, a finite AK -submodule such that the induced map N ˝AK
BK ! M is

an isomorphism) that forms an étale '-module over AK . An étale .'; �/-module
over AK or BK is an étale '-module equipped with a semilinear action of � which
commutes with the '-action and is continuous for the profinite topology on � and
the weak topology on AK . Note that an étale .'; �/-module over BK may contain
an AK -lattice that forms an étale '-module over AK but is not stable under �;
on the other hand, the images of such a lattice under � span another lattice which
forms an étale '-module over AK .

For T a Z-linear representation, define D.T / D .A˝Zp
T /HK ; this gives an

AK -module equipped with commuting semilinear actions of ' and � . Similarly,
for V a Q-linear representation, define D.V /D .B˝Qp

V /HK .

Theorem 2.1 [Fontaine 1990]. The functor T 7! D.T / (resp. V 7! D.V /) is an
equivalence from the category of Z-linear representations (resp. Q-linear repre-
sentations) of GK to the category of étale .'; �/-modules over AK (resp. BK ); a
quasiinverse functor is given by D 7! .A˝AK

D/'D1 (resp. D 7! .B˝BK
D/'D1).

Dee [2001] extended Fontaine’s results to families of Z-representations, as follows.
Let R be a complete noetherian local ring whose residue field kR is finite over Fp,
equipped with the topology defined by its maximal ideal mR; we may then view
R as a topological Z-algebra. We form the completed tensor product R y̋ Z A by
completing the ordinary tensor product for the ideal pACmR, and similarly with
A replaced by AK .
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We define .'; �/-modules and étale .'; �/-modules over R y̋ Z AK by anal-
ogy with the definitions over AK . For TR an R-representation, define D.TR/ D

..R y̋ Z A/˝R TR/
HK .

Theorem 2.2 [Dee 2001]. The functor

TR 7! D.TR/

is an equivalence from the category of R-representations to the category of étale
.'; �/-modules over R y̋ Z AK ; a quasiinverse functor is given by

D 7! ..R y̋ Z A/˝R y̋ Z AK
D/'D1.

We next cite a refinement of Fontaine’s result. We define .'; �/-modules and
étale .'; �/-modules over A|

K
and B|

K
by analogy with the definitions over AK

and BK . For V a Qp-linear representation, define D|;r
K
.V / D .B|;r ˝Qp

V /HK

(where B|;r D B\ zB|;r ) and D|
K
.V /D

S
r>0 D|;r

K
.V /D .B|˝Qp

V /HK .

Theorem 2.3 [Cherbonnier and Colmez 1998]. For any Qp-linear representation
V , there exists r.V / > 0 such that

DK .V /D BK ˝B|;r

K

D|;r
K
.V / for all r > r.V /:

Equivalently, D|
K
.V / is an étale .'; �/-module over B|

K
of dimension dimQV .

Therefore V 7! D|
K
.V / is an equivalence from the category of p-adic representa-

tions of GK to the category of étale .'; �/-modules over B|
K

. Furthermore, D|
K
.V /

is the unique maximal étale .'; �/-submodule of DK .V / over B|
K

.

Berger and Colmez [2008] extended these results to families of p-adic repre-
sentations. However, unlike Dee’s families, the families considered by Berger and
Colmez are over Banach algebras over Q. (Berger and Colmez were forced to
make a freeness hypothesis on the representation space; we relax this hypothesis
later in the case of an affinoid algebra. See Definition 3.12.)

For S a commutative Banach algebra over Qp, let OS be the ring of elements
of S of norm at most 1, and let IS be the ideal of elements of OS of norm strictly
less than 1. Note that it makes sense to form a completed tensor product with S

or OS when the other tensorand carries a norm under which it is complete — for
example, for the rings zA|;s;A|;s

L;n
; zB|;s;B|;s

L
using the norm corresponding to the

valuation ws .

Proposition 2.4 [Berger and Colmez 2008, proposition 4.2.8]. Let S be a com-
mutative Banach algebra over Qp. Let TS be a free OS -linear representation of
rank d . Let L be a finite Galois extension of K such that GL acts trivially on
TS=12pTS . Then there exists n.L;TS /� 0 such that for n� n.L;TS /,

.OS y̋ Zp
QA|;.p�1/=p/˝OS

TS
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has a unique sub-.OS y̋ Zp
A|;.p�1/=p

L;n
/-module D|;.p�1/=p

L;n
.TS / that is free of rank

d , is fixed by HL, has a basis almost invariant under �L (that is, for each 
 2 �L,
the matrix of action of 
 � 1 on the basis has positive valuation), and satisfies

.OS y̋ Zp
QA|;.p�1/=p/˝

OS
y̋ Zp A|;.p�1/=p

L;n

D|;.p�1/=p
L;n

.TS /

D .OS y̋
QA|;.p�1/=p/˝OS

TS :

Theorem 2.5 [Berger and Colmez 2008, théorème 4.2.9]. Let S be a commutative
Banach algebra over Qp. Let VS be an S -linear representation admitting a free
Galois-stable OS -lattice TS . There exists an s.VS /�0 such that for any s� s.VS /,
we may define

D|;s
K
.VS /D ..S y̋Qp

B|;s
L
/˝

OS
y̋ Zp A|;s.VS /

L

'n.D|;p�1=p
L;n

.TS ///
HK

for some L and n, so that the construction does not depend on the choices of TS ,
L, and n, and the following statements hold.

(a) The .S y̋Qp
B|;s

K
/-module D|;s

K
.VS / is locally free of rank d .

(b) The natural map D|;s
K
.VS /˝S y̋Qp B|;s

K

.S y̋Qp
zB|;s/! VS ˝S .S y̋Qp

zB|;s/

is an isomorphism.

(c) For any maximal ideal mx of S , for Vx D VS ˝S .S=mx/, the natural map
D|;s

K
.VS /˝S .S=mx/! D|;s

K
.Vx/ is an isomorphism.

We write S y̋Qp
B|

K
D
S

s>0.S y̋Qp
B|;s

K
/ and S y̋Qp

zB| D
S

s>0.S y̋Qp
zB|;s/.

(Note that S y̋Qp
B|

K
does not necessarily embed into S y̋Qp

BK , due to the in-
compatibility between the topologies used for the completed tensor products.) We
then put

D|
K
.VS /D D|;s

K
.VS /˝S y̋Qp B|;s

K

.S y̋Qp
B|

K
/:

We may recover VS from D|
K
.VS / as follows.

Lemma 2.6. .S y̋Qp
zB|/'D1 D S .

Proof. We reduce at once to the case where S is countably topologically generated
over Qp. In this case, by [Bosch et al. 1984, Proposition 2.7.2/3], we can find a
Schauder basis of S over Q; in other words, there exists an index set I such that
S is isomorphic as a topological Q-vector space to the Banach space

l1
0
.I;Q/D f.ai/i2I j ai 2Q; ai! 0g.

(The supremum norm need only be equivalent to the Banach norm on S ; the two
need not be equal.) We can then write S y̋Qp

zB|, as a topological Q-vector space,
as

l10 .I; zB|/D f.ai/i2I j ai 2
zB|; ai! 0g:
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In this presentation, the '-action carries .ai/i2I to .'.ai//i2I . It is then clear that
.S y̋Qp

zB|/'D1 D .l1
0
.I; zB|//'D1 D l1

0
.I;Q/D S . �

Proposition 2.7. .D|
K
.VS /˝S y̋Qp B|

K

.S y̋Qp
zB|//'D1 D VS .

Proof. From Theorem 2.5(b) we get

D|
K
.VS /˝S y̋Qp B|

K

.S y̋Qp
zB|/D VS ˝S .S y̋Qp

zB|/:

By Lemma 2.6, it follows that

.D|
K
.VS /˝S y̋Qp B|

K

.S y̋Qp
zB|//'D1

D VS ˝S .S y̋Qp
zB|/'D1

D VS : �

This suggests that the object D|
K
.VS / merits the following definition.

Definition 2.8. Define a .'; �/-module over S y̋Qp
B|

K
to be a finite locally free

module over S y̋Qp
B|

K
, equipped with commuting continuous .'; �/-actions such

that '�DS!DS is an isomorphism. We say a .'; �/-module MS over S y̋Qp
B|

K

is étale if it admits a finite .'; �/-stable .OS y̋ Zp
A|

K
/-submodule NS such that

'�NS !NS is an isomorphism and the induced map

NS ˝OS
y̋ Zp A|

K

S y̋Qp
B|

K
!MS

is an isomorphism. In this language, Theorem 2.5 implies that D|
K
.VS / is an étale

.'; �/-module over S y̋Qp
B|

K
.

3. Gluing on affinoid spaces

Throughout this section, let S denote an affinoid algebra over Qp. We explain
how to perform gluing for finite modules over S y̋Qp

B|
K

. We start with some
basic notions from [Bosch et al. 1984].

Definition 3.1. Let M.S/ be the set of maximal ideals of S , that is, the affinoid
space associated to S . For X a subset of M.S/, an affinoid subdomain of X is a
subset U of X for which there exists a morphism S!S 0 of affinoid algebras such
that the induced map M.S 0/!M.S/ is universal for maps from an affinoid space
to M.S/ landing in U . The algebra S 0 is then unique up to unique isomorphism,
and the resulting map M.S/! U is a bijection.

The set M.S/ carries two canonical G-topologies, defined as follows. In the
weak G-topology, the admissible open sets are the affinoid subdomains, and the
admissible coverings are the finite coverings. In the strong G-topology, the ad-
missible open sets are the subsets U of M.S/ admitting a covering by affinoid
subdomains such that the induced covering of any affinoid subdomain of U can
be refined to a finite cover by affinoid subdomains, and the admissible coverings
are the ones whose restriction to any affinoid subdomain can be refined to a finite
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cover by affinoid subdomains. The categories of sheaves on these two topologies
are equivalent, because the strong G-topology is slightly finer than the weak one
[Bosch et al. 1984, §9.1].

We need a generalization of the Tate and Kiehl theorems on coherent sheaves
on affinoid spaces.

Definition 3.2. For A a commutative Banach algebra over Qp, define the presheaf
A on the weak G-topology of M.S/ by declaring that

A.M.S 0//D S 0 y̋Qp
A:

Lemma 3.3. For A a commutative Banach algebra over Qp, the presheaf A is a
sheaf for the weak G-topology of M.S/, and hence extends uniquely to the strong
G-topology.

Proof. Since every finite covering of an affinoid space by affinoid subdomains
can be refined to a Laurent covering, it is enough to check the sheaf condition
for Laurent coverings [Bosch et al. 1984, Proposition 8.2.2/5]. This reduces to
checking for coverings of the form

M.S/DM.Shf i/[M.Shf �1
i/

for f 2 S . The claim then is that the sequence

0! S y̋Qp
A! .Shf i y̋Qp

A/� .Shf �1
i y̋Qp

A/
d0

! Shf; f �1
i y̋Qp

A! 0

is exact; this follows from the corresponding assertion for ADQp, for which see
[Bosch et al. 1984, §8.2.3]. �

From now on, we consider only the strong G-topology on M.S/.

Definition 3.4. For A a commutative Banach algebra over Qp, an A-module N

on M.S/ is coherent if there exists an admissible covering fM.Si/gi2I of M.S/

by affinoid subdomains such that for each i 2 I , we have

N jM.Si / D coker.' WAm
jM.Si /!An

jM.Si //

for some morphism ' of A-modules. By Lemma 3.3, this is equivalent to requiring
N jM.Si / to be the sheaf associated to some finitely presented .Si y̋Qp

A/-module.

Lemma 3.5. Let A be a commutative Banach algebra over Qp such that for each
Tate algebra Tn over Qp, Tn y̋Qp

A is noetherian. Then for any coherent A-
module N on M.S/, the first Čech cohomology LH 1.N / vanishes.

Proof. As in Lemma 3.3, it suffices to check vanishing of the first Čech cohomology
computed on a cover of M.S/ of the form

M.S/DM.Shf i/[M.Shf �1
i/
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for some f 2 S , such that N is represented on each of the two covering sub-
sets by a finite module. For this, we may follow the proof of [Bosch et al. 1984,
Lemma 9.4.3/5] verbatim. (The noetherian condition is needed so that the invoca-
tion of [Bosch et al. 1984, Proposition 3.7.3/3] within the proof of [Bosch et al.
1984, Lemma 9.4.3/5] remains valid.) �

To recover an analogue of Kiehl’s theorem, however, we need an extra condition.

Proposition 3.6. Let A be a commutative Banach algebra over Qp such that for
each Tate algebra Tn over Qp, Tn y̋Qp

A is noetherian and the map

Spec.Tn y̋Qp
A/! Spec.Tn/

carries M.Tn y̋Qp
A/ to M.Tn/. Then any coherent A-module N on M.S/ is

associated to a finite .S y̋Qp
A/-module.

Proof. There must exist a finite covering of M.S/ by affinoid subdomains M.S1/;

: : : ;M.Sn/ such that N jM.Si / is associated to a finite .Si y̋Qp
A/-module Ni . As

in [Bosch et al. 1984, Lemma 9.4.3/6], we may deduce from Lemma 3.5 that for
each m 2M.Si/, the map N.M.S//! .N=mN /.M.Si// is surjective. By the
hypothesis on A, each maximal ideal of Si y̋Qp

A lies over a maximal ideal of Si ;
we may thus deduce that N.M.S//˝S Si surjects onto N.M.Si//. Since the latter
is a finite Si b̋QA-module, we can choose finitely many elements of N.M.S// that
generate all of the N.M.Si//. That is, we have a surjection An!N for some n;
repeating the argument for the kernel of this map yields the claim. �

To use the above argument, we need to prove a variant of the Nullstellensatz; for
simplicity, we restrict to the case where K is discretely valued (the case of interest
in this paper). We first prove a finite generation result using ideas from the theory
of Gröbner bases.

Lemma 3.7. Let K be a complete discretely valued field extension of Qp. Let A

be a commutative Banach algebra over K such that A has the same set of nonzero
norms as K, and the ring OA=IA is noetherian. Then Tn y̋Qp

A is also noetherian.

Proof. Equip the monoid Zn
�0

with the componentwise partial ordering � and the
lexicographic total ordering �. That is, .x1; : : : ;xn/� .y1; : : : ;yn/ if xi � yi for
all i , whereas .x1; : : : ;xn/� .y1; : : : ;yn/ if there exists an index i 2f1; : : : ; nC1g

such that xj D yj for j < i , and either i D nC1 or xi � yi . Recall that � is a well
partial ordering and that � is a well total ordering; in particular, any sequence in
Zn
�0

has a subsequence that is weakly increasing under both orderings.
For I D .i1; : : : ; in/ 2 Zn

�0
, write tI for t

i1

1
� � � t

in
n . We represent each element

x 2 Tn y̋Qp
A as a formal sum

P
I xI tI with xI 2 A, such that for each � > 0,

there exist only finitely many indices I with jxI j � �. For x nonzero, define the
degree of x, denoted deg.x/, to be the maximal index I under � among those
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indices maximizing jxI j. Define the leading coefficient of x to be the coefficient
xdeg.x/.

Let J be any ideal of Tn y̋Qp
A. We apply a Buchberger-type algorithm to

construct a generating set m1; : : : ;mk for J , as follows. Start with the empty list
(that is, kD0). As long as possible, given m1; : : : ;mk , choose an element mkC1 of
J\OA with leading coefficient akC1, for which we cannot choose I1; : : : ; Ik 2Zn

�0

and b1; : : : ; bk 2 OA satisfying both

(a) deg.mkC1/D deg.mi t
Ii / whenever bi ¤ 0 and

(b) akC1� a1b1� � � � � akbk 2 IA.

In particular, we must have jakC1j D 1.
We claim this process must terminate. Suppose the contrary; then there must

exist a sequence of indices i1< i2< � � � such that deg.mi1
/�deg.mi2

/�� � � . Then
the sequence of ideals .ai1

/; .ai1
; ai2

/; : : : in OA=IA must be strictly increasing, but
this violates the hypothesis that OA=IA is noetherian. Hence the process terminates.

Let j � j1 denote the 1-Gauss norm on Tn y̋Qp
A. We now write each element of

J as a linear combination of m1; : : : ;mk using a form of the Buchberger division
algorithm. Start with some nonzero x 2 J and put x0 D x. Given xl 2 J , if
xl D 0, put yl;1 D � � � D yl;k D 0 and xlC1 D 0. Otherwise, choose � 2 A� with
j�xl j1D 1. By the construction of m1; : : : ;mk , there must exist I1; : : : ; Ik 2 Zn

�0

and b1; : : : ; bk 2 OA satisfying conditions (a) and (b) with mkC1 replaced by �xl .
Put yl;i D �

�1bi t
Ii and xlC1 D xl �yl;1m1� � � � �yl;kmk .

If jxlC1j1 D jxl j1, we must have deg.xlC1/ � deg.xl/. Since � is a well
ordering, we must have jxl 0 j1 < jxl j1 for some l 0 > l . Since K is discretely valued
and A has the same group of nonzero norms as K, we conclude that jxl j1! 0 as
l!1.

Since jyl;i j1 � jxl j1, we may set yi D
P1

lD0 yl;i to get elements of Tn y̋Qp
A

such that xD y1m1C� � �Cykmk . This proves that J is always finitely generated,
so Tn y̋Qp

A is noetherian. �
Next we establish an analogue of the Nullstellensatz by combining the previous

argument with an idea of Munshi [May 2003].

Lemma 3.8. Take K and A as in Lemma 3.7, but suppose also that the intersec-
tion of the nonzero prime ideals of A is zero. Then for any maximal ideal m of
Tn y̋Qp

A, the intersection m\A is nonzero.

Proof. Suppose on the contrary that m is a maximal ideal of Tn y̋Qp
A such that m\

AD 0. Since Tn y̋Qp
A is noetherian by Lemma 3.7, m is closed by [Bosch et al.

1984, Proposition 3.7.2/2]. Hence mCA is also a closed subspace of Tn y̋Qp
A.

Let  W Tn y̋Qp
A! .Tn y̋Qp

A/=A be the canonical projection; it is a bounded
surjective morphism of Banach spaces with kernel A. Put V D  .mCA/; since
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mCAD  �1.V /, the open mapping theorem [Bosch et al. 1984, §2.8.1] implies
that V is closed. Hence  induces a bounded bijective map m ! V between
two Banach spaces; by the open mapping theorem again, the inverse of  is also
bounded.

Using the power series representation of elements of Tn y̋Qp
A, let us represent

.Tn y̋Qp
A/=A as the set of series in Tn y̋Qp

A with zero constant term. We may
then represent  as the map that subtracts off the constant term. Define the non-
constant degree of x 2 Tn y̋Qp

A as deg0.x/D deg. .x//, and define the leading
nonconstant coefficient of x to be the coefficient xdeg0.x/.

We construct m1; : : : ;mk 2 m using the following modified Buchberger algo-
rithm. As long as possible, choose an element mkC1 of m \ OA with noncon-
stant leading coefficient akC1, for which we cannot choose I1; : : : ; Ik 2 Zn

�0
and

b1; : : : ; bk 2 OA satisfying both

(a) deg0.mkC1/D deg0.mi t
Ii / whenever bi ¤ 0 and

(b) akC1� a1b1� � � � � akbk 2 IA.

Again, this algorithm must terminate.
By the hypothesis on A, we can choose a nonzero prime ideal p of A not

containing the product a1 � � � ak . By our earlier hypothesis that m \ A D 0, we
have m \ p D 0. Hence m C p.Tn y̋Qp

A/ is the unit ideal, so we can find
x0 2 p.Tn y̋Qp

A/ such that 1Cx0 2m.
We now perform a modified division algorithm. Given xl 2 p.Tn y̋Qp

A/ such
that 1 C xl 2 m, we cannot have xl 2 A. We may thus choose � 2 A� with
j .�xl/j1 D 1. By the construction of m1; : : : ;mk , there must exist I1; : : : ; Ik 2

Zn
�0

and b1; : : : ; bk 2 A satisfying conditions (a) and (b) with mkC1 replaced by
�xl . Put yl;i D �

�1bi t
Ii and xlC1 D xl �yl;1m1� � � � �yl;kmk .

As in the proof of Lemma 3.7, we see that j .xl/j1 ! 0 as l !1. Since  
has bounded inverse, we also conclude that jxl j1! 0 as l !1. However, since
m is closed, this yields the contradiction 1 2 m. We conclude that m\A ¤ 0, as
desired. �

Lemma 3.9. For any Tate algebra Tn over Qp, any rational s > 0, and any com-
plete discretely valued field extension K of Qp, Tn y̋Qp

Es
K

is noetherian and each
of its maximal ideals has residue field finite over K. In particular, every maximal
ideal of Tn y̋Qp

Es
K

lies over a maximal ideal of Tn.

Proof. The Banach norm on Es
K

is the maximum of the p-adic norm and the norm
induced by ws . By enlarging K, we may assume that the nonzero values of this
norm are all achieved by elements of K. In this case, we check that A D Es

K

satisfies the hypotheses of Lemma 3.8. First, the nonzero norms of elements of
A are all realized by units of the form �t i with � 2 K� and i 2 Z. Second, the
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residue ring OA=IA is isomorphic to a Laurent polynomial ring over a field, which
is noetherian. Third, for each nonzero element x of A, we can construct y 2 A

whose Newton polygon has no slopes in common with that of x; this implies that
x and y generate the unit ideal (see, for example, [Kedlaya 2005b, §2.6]), so any
maximal ideal containing y fails to contain x. Hence the intersection of the nonzero
prime ideals of A is zero; moreover, the quotient of A by any nonzero ideal is finite
over K. We may thus apply Lemma 3.8 to deduce the claim. �

By combining Proposition 3.6 with Lemma 3.9, we deduce the following. (The
second assertion follows from the first because for a coherent module, local free-
ness can be checked at each maximal ideal.)

Proposition 3.10. For any s > 0 and any finite extension K of Qp, for A D Es
K

,
any coherent A-module V on M.S/ is associated to a finite .S y̋Qp

A/-module V .
Moreover, V is locally free if and only if V is.

Using this, we may extend Theorem 2.5 for affinoid algebras, to eliminate the
hypothesis requiring a free Galois-stable lattice. We first handle the case where
VS is itself free.

Theorem 3.11. Let S be an affinoid algebra over Qp. Let VS be a free S -linear
representation. There exists s.VS / � 0 such that for s � s.VS /, we may construct
a .S y̋Qp

B|;s
K
/-module D|;s

K
.VS / satisfying the following conditions.

� The .S y̋Qp
B|;s

K
/-module D|;s

K
.VS / is locally free of rank d .

� The natural map D|;s
K
.VS /˝S y̋Qp B|;s

K

.S y̋Qp
zB|;s/! VS ˝S .S y̋Qp

zB|;s/

is an isomorphism.

� For any maximal ideal mx of S , for Vx D VS ˝S .S=mx/, the natural map
D|;s

K
.VS /˝S .S=mx/! D|;s

K
.Vx/ is an isomorphism.

� The construction is functorial in VS , compatible with passage from K to a
finite extension, and compatible with Theorem 2.5 in case VS admits a Galois-
stable free lattice.

Proof. Let TS be any free OS -lattice in VS . Since the Galois action is continuous,
there exists a finite Galois extension L of K such that GL carries TS into itself. For
such L, for s sufficiently large, D|;s

L
.VS / is locally free of rank d by Theorem 2.5;

moreover, it carries an action of Gal.L=K/. If we restrict scalars on this module
back to S y̋Qp

B|;s
K

, then D|;s
K
.VS / appears as a direct summand; this summand

is then finite projective, and hence locally free (since Tn y̋Qp
Es

K
is noetherian by

Lemma 3.9). Moreover, the Gal.L=K/-action on D|;s
L
.VS / allows us to extend the

�L-action on D|;s
K
.VS / to a �K -action. This yields the desired assertions. �

Definition 3.12. Let S be an affinoid algebra over Qp. Let VS be a locally free
S -linear representation; we can then choose a finite covering of M.S/ by affinoid
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subdomains M.S1/; : : : ;M.Sn/ such that ViDVS˝S Si is free over Si for each i .
We may then apply Theorem 3.11 to Vi to produce D|;s

K
.Vi/ for s sufficiently large.

By Proposition 3.10, these glue to form a finite .S y̋Qp
B|;s

K
/-module D|;s

K
.VS /,

which satisfies the analogues of the assertions of Theorem 3.11. We may then
define

D|
K
.VS /D D|;s.VS /˝S y̋Qp B|;s

K

.S y̋Qp
B|

K
/;

and this will be an étale .'; �/-module over S y̋Qp
B|

K
. The analogue of Proposi-

tion 2.7 will also carry over.

Remark 3.13. Chenevier has pointed out that Theorem 3.11 is also an easy con-
sequence of [Chenevier 2009, Lemme 3.18]. That lemma implies that for S an
affinoid algebra over Qp and VS a locally free S -linear representation, there exist
an affine formal scheme Spf.R/ of finite type over Z, equipped with an isomor-
phism R˝Z Qp Š S , and a locally free R-linear representation TR admitting an
isomorphism TR˝Zp

Qp ŠVS . This makes it possible to glue the Berger–Colmez
theorem by doing so on a suitable formal model of S .

4. Local coefficient algebras

Here we show that in a restricted setting, it is possible to invert the .'; �/-module
functor D

|
K

.

Definition 4.1. By a coefficient algebra, we mean a commutative Banach algebra
S over Q satisfying the following conditions.

� The norm on S restricts to the norm on Q.

� For each maximal ideal m of S , the residue field of m is finite over Q.

� The Jacobson radical of S is zero; in particular, S is reduced.

For instance, any reduced affinoid algebra over Q is a coefficient algebra.
By a local coefficient algebra, we mean a coefficient algebra S of the form

R˝Zp
Qp, where R is a complete noetherian local domain of characteristic 0 with

residue field finite over Fp. For instance, if S is a reduced affinoid algebra over
Qp equipped with the spectral norm, and R is the completion of OS at a maximal
ideal, then R˝Zp

Qp is a local coefficient algebra.

One special property of local coefficient algebras is the following. (Compare
the discussion preceding Lemma 2.6.)

Proposition 4.2. Let R be a complete noetherian local domain of characteristic 0

with residue field finite over Fp, and let S be the local coefficient algebra R˝Zp
Qp.

(1) We may naturally identify .R y̋ Zp
AK /˝Zp

Qp with the p-adic completion of
S y̋Qp

B|
K

.
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(2) We may naturally identify .R y̋ Zp
zAK /˝Zp

Qp with a subring of the p-adic
completion of S y̋Qp

zB|
K

.

Proof. Let P1;n;s;P2;n;s;P3;n;s denote the completed tensor products

.R=pnR/ y̋ Zp
.A|;s=pnA|;s/

formed using the following choices for the topologies on the two sides.

� For P1;n;s , use on the left side the discrete topology, and on the right side the
topology induced by ws .

� For P2;n;s , use on the left side the topology induced by mR, and on the right
side the topology induced by ws .

� For P3;n;s , use on the left side the topology induced by mR, and on the right
side the discrete topology.

These constructions relate to our original question as follows. If we take the inverse
limit of the P1;n;s as n!1, then invert p, then take the union over all choices of s,
we recover S y̋Qp

B|. If we take the union of the P3;n;s over all choices of s, then
take the inverse limit as n!1, and finally invert p, we recover .R y̋ Zp

A/˝Zp
Qp.

To establish (1), it thus suffices to check that the natural maps P1;n;s ! P2;n;s

and P3;n;s ! P2;n;s are both bijections. Put A D mR.R=p
nR/ and I D mRA.

Put B D A|;s=pnA|;s and choose an ideal of definition J � B for the topology
induced by ws . In this notation, A is I -adically complete and separated, B is
J -adically complete and separated, and both A and B are flat over Z=pnZ. Put
C D A˝Z=pnZ B. The IC -adic completion of C is then the inverse limit over
m of the quotients C=ImC D .A=ImA/˝Z=pnZ B. Since B is flat over Z=pnZ

and A=ImA has finite cardinality, the completeness of B with respect to J implies
the completeness of C=ImC with respect to J.C=ImC /. It follows that C is
complete with respect to ICCJC , which means that P1;n;s!P2;n;s is a bijection.
Similarly, we may argue that P3;n;s!P2;n;s is bijective using the fact that B=J mB

is of finite cardinality.
This yields (1). The whole argument carries over in the case of (2) except for

the finiteness of B=J mB; hence in this case, we only have that P1;n;s! P2;n;s is
a bijection and P3;n;s! P2;n;s is injective. �

Theorem 4.3. Let S be a local coefficient algebra. Let MS be an étale .'; �/-
module over S y̋Qp

B|
K

, and put

VS D .MS ˝S y̋Qp B|
K

.S y̋Qp
zB|//'D1:

Then VS is an S -linear representation for which the natural map D|
K
.VS /!MS

is an isomorphism.
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Proof. By Proposition 4.2(1), we may identify the p-adic completion of S y̋Qp
B|

K

with .R y̋ Zp
A/˝Zp

Qp. This allows us to define

V 0S D
�
MS ˝S y̋Qp B|

K

..R y̋ Zp
zA/˝Zp

Qp/
�'D1

:

By Theorem 2.2, the natural map

V 0S ˝.R y̋ Zp A/˝ZpQp
..R y̋ Zp

zA/˝Zp
Qp/!MS ˝S y̋Qp B|

K

..R y̋ Zp
zA/˝Zp

Qp/

is an isomorphism.
By Proposition 4.2(2), we may identify .R y̋ Zp

zA/˝Zp
Qp with a subring of the

p-adic completion of S y̋Qp
zB|. Using this identity, we may argue as in [Kedlaya

2008, Proposition 1.2.7] to show that V 0
S
� VS , which is enough to establish the

desired result. �

5. A lifting argument

While one cannot invert the functor D|
K

for an arbitrary S , one can give a partial
result.

Lemma 5.1. For any commutative Banach algebra S over Qp, any s > 0, and any
x 2 S y̋Qp

zB|;s , the equation

y �'�1.y/D x

has a solution y 2S y̋Qp
zB|;s . More precisely, we may choose y such that vp.y/�

vp.x/ and ws.y/� ws.x/.

Proof. For S DQp, the existence of a solution y 2 zB follows from the fact that zB
is a complete discretely valued field with algebraically closed residue field. Write
x D

P
k pk Œxk � and y D

P
k pk Œyk �. We claim that y can be chosen such that for

each k,
inffvzE.y`/ W `� kg � inffvzE.x`/ W `� kg;

which yields the desired results. This choice can be made because for any x 2 zE,
the equation y �y1=p D x always has a solution y 2 zE with

vzE.y/�

�
vzE.x/ if vzE.x/� 0;

pvzE.x/ if vzE.x/� 0:

For general S , write x as a convergent sum
P

i ui˝xi with ui 2S and xi 2
zB|;s .

For each i , let yi 2
zB|;s be a solution of yi �'

�1.yi/D xi with ws.yi/�ws.xi/.
Then the sum y D

P
i ui ˝yi converges with the desired effect. �



On families of ';
L
-modules 959

Theorem 5.2. Let S be a commutative Banach algebra over Qp. Let MS be a free
étale .'; �/-module over S y̋Qp

B|
K

. Suppose that there exists a basis of MS on
which ' � 1 acts via a matrix whose entries have positive p-adic valuation. Then

VS D .MS ˝S y̋Qp B|
K

.S y̋Qp
zB|//'D1

is a free S -linear representation for which the natural map D|
K
.VS /!MS is an

isomorphism.

Proof. Choose a basis of

M 0
S DMS ˝S y̋Qp B|

K

.S y̋Qp
zB|/

on which ' � 1 acts via a matrix A whose entries belong to S y̋Qp
B|;s

K
for some

s>0 and have p-adic valuation bounded below by c>0. We may apply Lemma 5.1
to choose a matrix X such that X has entries in S y̋Qp

B|;s
K

with p-adic valuation
bounded below by c, mini;j fws.Xi;j /g�mini;j fws.Ai;j /g, and X�'�1.X /DA.
We can thus change basis to get a new basis of M 0

S
on which ' � 1 acts via the

matrix
.In�'

�1.X //�1.InCA/.In�X /� In;

whose entries have valuation bounded below by 2c. If we repeat this process, we
get a sequence of matrices X1;X2; : : : such that ws.Xi/ is bounded below, and the
p-adic valuation of Xi is at least ci . It follows that ws0.Xi/ tends to infinity for
any s0 > s, so the product .InCX1/.InCX2/ � � � converges in S y̋Qp

B|;s0

K
and

defines a basis of M 0
S

fixed by '. This proves the claim. �

Remark 5.3. The hypothesis about the basis of MS is needed in Theorem 5.2 for
the following reason. For R an arbitrary Fp-algebra, if ' acts as the identity on
R and as the p-power Frobenius on zE, given an invertible square matrix A over
R˝Fp

zE, we cannot necessarily solve the matrix equation U�1A'.U /DA for an
invertible matrix U over R˝Fp

zE. For instance, in Chenevier’s example, there is
no solution of the equation '.z/D Yz.

One may wish to view the collection of isomorphism classes of .'; �/-modules
over R˝Fp

Fp..��1//, for R an Fp-algebra, as the “R-valued points of the moduli
space of mod p representations of GQp

.” To replace Qp with K, one should replace
Fp..�� 1// with the HK -invariants of its separable closure.

6. Families of .'; �/-modules and étale models

We turn from .'; �/-modules over S y̋Qp
B|

K
to those over S y̋Qp

B|
rig;K

. In the
absolute case, these have important applications to the study of de Rham represen-
tations, as shown by Berger; see for instance [2004]. In the relative case, however,
they do not form a robust enough category to be useful; it is better to pass to
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a more geometric notion. For this, we must restrict to the case where S is an
affinoid algebra.

Definition 6.1. Let K be a finite extension of Qp, and let S be an affinoid algebra
over K. Recall that Rs

K
denotes the ring of Laurent series with coefficients in K in

a variable T convergent on the annulus 0<vp.T /�1=s, and that RK D
S

s>0 Rs
K

.
By a vector bundle over S y̋K Rs

K
, we will mean a coherent locally free sheaf over

the product of this annulus with M.S˝K K/ in the category of rigid analytic spaces
over K. (In case S is disconnected, we insist that the rank be constant, not just
locally constant.) By a vector bundle over S y̋K RK , we will mean an object in
the direct limit as s!1 of the categories of vector bundles over S y̋Qp

Rs
K

.
Recall that for s sufficiently large, we can produce an isomorphism

B|;s
rig;K
ŠRs

K 0
0

:

We thus obtain the notion of a vector bundle over S y̋Qp
B|;s

rig;K
, dependent on

the choice of the isomorphism. However, the notion of a vector bundle over
S y̋Qp

B|
rig;K

does not depend on any choices.

Remark 6.2. For S DK discretely valued, every vector bundle over Rs
K

is freely
generated by global sections [Kedlaya 2005a, Theorem 3.4.1]. On the other hand,
for S an affinoid algebra over Qp, we do not know whether any vector bundle
over S y̋Qp

Rs
K

is S -locally free; this does not follow from [Lütkebohmert 1977],
which only applies to closed annuli.

Definition 6.3. Let K be a finite extension of Qp, and let S be an affinoid algebra
over Qp. By a family of .'; �/-modules over S y̋Qp

B|
rig;K , we mean a vector

bundle V over S y̋Qp
B|

rig;K equipped with an isomorphism '�V ! V , viewed as
a semilinear '-action, and a semilinear �-action commuting with the '-action. Call
a family of .'; �/-modules over S y̋Qp

B|
rig;K étale if it arises by base extension

from an étale .'; �/-module over S y̋Qp
B|

K
, called an étale model of the family.

It turns out that étale models are unique when they exist. To check this without
any reducedness hypothesis on S , we need a generalization of the fact that a re-
duced affinoid algebra embeds into a product of complete fields [Berkovich 1990,
Proposition 2.4.4].

Lemma 6.4. Let K be a finite extension of Qp, and let S be an affinoid algebra
over Qp. Then there exists a strict inclusion S !

Qn
iD1 Ai of topological rings,

in which each Ai is a finite connected algebra over a complete discretely valued
field.

Proof. Let T be the multiplicative subset of OS consisting of elements whose im-
ages in OS=IS are not zero divisors. For any s 2S and t 2T , we have jst jD jsjjt j,
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so the norm on S extends uniquely to the localization S ŒT �1�. The completion of
this localization has the desired form. �
Proposition 6.5. Let K be a finite extension of Qp, and let S be an affinoid algebra
over Qp. Then the natural base change functor from étale .'; �/-modules over
S y̋Qp

B|
K

to families of .'; �/-modules over S y̋Qp
B|

rig;K
is fully faithful. In

fact, this holds even without the �-action.

Proof. Note that if we replace S by a complete discretely valued field L, we may
deduce the analogous claim by [Kedlaya 2005b, Theorem 6.3.3] after translating
notations. (Families of .'; �/-modules over B|

rig;K
are finite free over B|

rig;K
, by

Remark 6.2.) In fact, if we replace S by a finite algebra over L, we may make the
same deduction by restricting scalars to L. We may thus deduce the original claim
by embedding S into a product of finite algebras over complete discretely valued
fields using Lemma 6.4. �
Corollary 6.6. Let K be a finite extension of Qp, and let S be an affinoid algebra
over Qp. Then an étale model of a family of .'; �/-modules over S y̋Qp

B|
rig;K

is
unique if it exists.

Definition 6.7. Let S be an affinoid algebra over Qp. Let VS be a locally free
S -linear representation. We define D|

K
.VS / as in Definition 3.12, then put

D|
rig;K

.VS /D D|
K
.VS /˝S y̋Qp B|

K

.S y̋Qp
B|

rig;K
/:

This is an étale .'; �/-module over S y̋Qp
B|

rig;K
, from which we may recover VS

by taking
VS D .D

|
rig;K

.VS /˝S y̋Qp B|
rig;K

.S y̋Qp
zB|

rig//
'D1:

We may now obtain Theorem 0.1 by combining Theorem 4.3 (via Definition 3.12)
with Proposition 6.5.

7. Local étaleness

We now turn to Theorem 0.2 of the introduction. Given what we already have
proven, this can be obtained by invoking some results from [Liu 2008]. For the
convenience of the reader, we recall these results in detail.

Lemma 7.1. Let K be a finite extension of Qp, and let S be an affinoid algebra
over K. For any x 2M.S/ and � > 0, there exists an affinoid subdomain M.B/

of M.S/ containing x such that if f 2 S vanishes at x, then jf .y/j � �jf jS for
any y 2M.B/.

Proof. We first prove the lemma for S D Tn DKhx1; : : : ;xni, the n-dimensional
Tate algebra over K. It is harmless to enlarge K, so we may suppose without loss
of generality that x is the origin x1 D � � � D xn D 0. Choosing a rational number
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�0 < �, the affinoid subdomain f.x1; : : : ;xn/ 2M.S/
ˇ̌
jx1j � �

0; : : : ; jxnj � �
0g

satisfies the required property.
For general S , the reduction S D OS=mK OS is a finite type scheme over the

residue field k of K. For n sufficiently large, we take a surjective k-algebra homo-
morphism ˛ WkŒx1; : : : ;xn��S . We lift ˛ to a K-affinoid algebra homomorphism
˛ WKhx1; : : : ;xni!S by mapping xi to a lift of ˛.xi/ in OS . Then it follows from
Nakayama’s lemma that ˛ maps OK hx1; : : : ;xni onto OS . Let ˛ also denote the
induced map from M.S/ to M.Khx1; : : : ;xni/. By the case of Khx1; : : : ;xni, we
can find an affinoid neighborhood M.B/ of ˛.x/ satisfying the required property
for �=p. Now for any nonzero f 2 S vanishing at x, we choose c 2 Q such
that jcj � jf jS � pjcj, yielding pf=c 2 OS . Pick f 0 2 OK hx1; : : : ;xni such
that ˛.f 0/ D pf=c. Then f 0.˛.x// D .pf=c/.x/ D 0 implies that jf 0.y/j �
.�=p/jf 0jTn

� �=p for any y 2 M.B/. Then for any y 2 ˛�1.M.B//, we
have jpf .y/j=jcj D jf 0.˛.y//j � �=p, yielding jf .y/j � �jcj � �jf jS . Hence
˛�1.M.B// is an affinoid neighborhood of x satisfying the property we need. �

Definition 7.2. For S a commutative Banach algebra over Qp and I a subinterval
of R, let RI

S
be the ring of Laurent series over S in the variable T convergent for

v.T /�1 2 I . Let vS be the valuation on S , and for s 2 I and x D
P

i xiT
i 2RI

S

put
ws.x/D inf

i
fi C svS .xi/g:

Put Rs
S
DR

Œs;C1/
S

, which we may identify with the completed tensor product
S y̋Qp

Rs
Qp

for the Fréchet topology on the right, and put RS D
S

s>0 Rs
S

. Let

Rint;s
S

be the subring of Rs
S

consisting of series with coefficients in OS .

Lemma 7.3 (based on [Kedlaya 2005b, Lemma 6.1.1]). Let K be a finite extension
of Qp, and let S be an affinoid algebra over K. Pick s0 > 0. Let ' WRs0=p

S
!Rs0

S

be a map of the form
P

i ciT
i 7!

P
i 'S .ci/W

i , where 'S W S! S is an isometry
and W 2Rs0

S
satisfiesws0

.W �T p/>ws0
.T p/. For some s� s0, suppose D is an

invertible n�n matrix over R
Œs;s�
S

, and put hD�ws.D/�ws.D
�1/; it is clear that

h�0. Let F be an n�n matrix over R
Œs;s�
S

such thatws.FD�1�In/� cCh=.p�1/

for a positive number c. Then for any positive integer k satisfying 2.p�1/sk � c,
there exists an invertible n�n matrix U over R

Œs=p;s�
S

such that U�1F'.U /D�1�

In has entries in pkRint;s
S

and ws.U
�1F'.U /D�1� In/� cC h=.p� 1/.

Proof. For i 2 R, s > 0, f D
PC1

jD�1 aj T j 2RS , we set

vi.f /Dminfj W vS .aj /� ig and vi;s.f /D vi.f /C si:

It is clear that vi;s.f /�ws.f /. (If S is a field, these quantities are similar to vnaive
i ,

vnaive
i;r in [Kedlaya 2005b, p. 458], albeit with a slightly different normalization.)
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We define a sequence of invertible matrices U0;U1; : : : over R
Œs=p;s�
S

and a se-
quence of matrices F0;F1; : : : over R

Œs;s�
S

as follows. Set U0 D In. Given Ul , put
Fl D U�1

l
F'.Ul/. Suppose

FlD
�1
� In D

1X
mD�1

VmT m;

where the Vm’s are n�n matrices over S . Let Xl D

X
vS .Vm/<k

VmT m, and put UlC1D

Ul.InCXl/. Set

cl D inf
i�k�1

fvi;s.FlD
�1
� In/� h=.p� 1/g:

We now prove by induction that cl � ..l C 1/=2/c,ws.FlD
�1�In/� cCh=.p�1/

and Ul is invertible over R
Œs=p;s�
S

for any l � 0. This is obvious for l D 0. Suppose
that the claim is true for some l � 0. Then for any t 2 Œs=p; s�, since

cl �
lC1

2
c � .p� 1/sk;

we have

wt .Xl/� ws.Xl/� .s� t/k � .cl C h=.p� 1//� .s� t/k > 0:

Hence UlC1 is also invertible over R
Œs=p;s�
S

. Furthermore, we have

ws.D'.Xl/D
�1/� ws.D/Cws.'.Xl//Cws.D

�1/D pws=p.Xl/� h

> p
�
cl C

h

p�1

�
� h� .p� 1/sk D pcl C

h

p�1
� .p� 1/sk

� cl C
1
2
cC

h

p�1
C .1

2
c � .p� 1/sk/�

lC2

2
cC

h

p�1
;

since cl �
lC1

2
c by the inductive assumption. Note that

FlC1D
�1
�In D .InCXl/

�1FlD
�1.InCD'.Xl/D

�1/�In

D ..InCXl/
�1FlD

�1
�In/C.InCXl/

�1.FlD
�1/D'.Xl/D

�1:

Since ws.FlD
�1/� 0 and ws..InCXl/

�1/� 0, we have

ws..InCXl/
�1.FlD

�1/D'.Xl/D
�1/�

lC2

2
cC

h

p�1
:

Write
.InCXl/

�1FlD
�1
� In D .InCXl/

�1.FlD
�1
� In�Xl/

D

1P
jD0

.�Xl/
j .FlD

�1
� In�Xl/:
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For j � 1, we have

ws..�Xl/
j .FlD

�1
� In�Xl//� cC cl C

2h

p�1
>

lC2

2
cC

h

p�1
:

By the definition of Xl , we also have vi.FlD
�1 � In �Xl/ D 1 for i < k and

ws.FlD
�1� In�Xl/� cC h=.p� 1/. Putting these together, we get that

vi;s.FlC1D
�1
� In/�

lC2

2
cC

h

p�1

for any i < k, that is, clC1 �
lC2

2
c, and that ws.FlC1D

�1�In/� cC
h

p�1
. The

induction step is finished.
Now sincewt .Xl/� clCh=.p�1/�.p�1/ps=k for t 2 Œs=p; s�, and cl!1 as

l!1, the sequence Ul converges to a limit U , which is an invertible n�n matrix
over R

Œs=p;s�
S

satisfying ws.U
�1F'.U /D�1� In/� cCh=.p�1/. Furthermore,

vm;s.U
�1F'.U /D�1

� In/D lim
l!1

vm;s.U
�1
l F'.Ul/D

�1
� In/

D lim
l!1

vm;s.FlC1D
�1
� In/D1;

for any m< k. Therefore U�1F'.U /D�1� In has entries in pkRint;s
S

. �

Theorem 7.4. Let S be an affinoid algebra over Qp, and let MS be a family of
.'; �/-modules over S y̋Qp

B|
rig;K

, such that for some x 2 M.S/ whose residue
field is contained in S , the fiber Mx of MS over x is étale. Then there exist an
affinoid neighborhood M.B/ of x and a finite extension L of K such that the base
extension MB of MS to B y̋Qp

B|
rig;L

has an étale model in which the entries of
the matrix of ' � 1 have positive p-adic valuation.

Proof. Because Proposition 6.5 does not require the �-action, it suffices to con-
struct an étale model just for the '-action. Choose an isomorphism

B|;s0

rig;K
ŠRs0

K 0
0

for some s0 > 0, via which ' induces a map from R
s0=p

K 0
0

to Rs0

K 0
0

satisfying

ws0
.'.T /�T p/ > ws0

.T p/:

Choose s� s0 such that MS is represented by a vector bundle VS over S y̋Qp
R

s=p

K 0
0

equipped with an isomorphism '�VS ! VS of vector bundles over S y̋Qp
Rs

K 0
0

.
By hypothesis, Mx is étale. After increasing s, we may therefore assume that

Mx admits a basis ex on which ' acts via an invertible matrix over Rint;s
S=mx

. Lift
this matrix to a matrix D over Rint;s

S
, using the inclusion S=mx ,! S which was

assumed to exist. By enlarging K, we can ensure that D � 1 has positive p-adic
valuation (by first doing so modulo mx).
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By results of Lütkebohmert [1977, Sätze 1 and 2], the restriction of VS to
S y̋Qp

R
Œs=p;s�

K 0
0

is S -locally free. By replacing M.S/ with an affinoid subdomain
containing x, we may reduce to the case where this restriction admits a basis eS .
Let A be the matrix via which ' acts on this basis; it has entries in S y̋Qp

R
Œs;s�

K 0
0

. Let
V be a matrix over S y̋Qp

R
Œs=p;s�

K 0
0

lifting (again using the inclusion S=mx ,! S )
the change-of-basis matrix from the mod-mx reduction of eS to ex .

By Lemma 7.1, we can shrink S so as to make D invertible over Rint;s
S

. We can
also force V to become invertible, and we may make V �1A'.V / �D as small
as desired. We may thus put ourselves in a position to apply Lemma 7.3 with
F D V �1A'.V /, to produce an invertible n � n matrix U over S y̋Qp

R
Œs=p;s�

K 0
0

such that
W D U�1F'.U /D�1

� In

has entries in pOS y̋ Zp
Rint;s

K 0
0

and ws.W / > 0.
Changing basis from eS via the matrix V U gives another basis e0

S
of VS over

S y̋Qp
R

Œs=p;s�

K 0
0

, on which ' acts via the matrix W C In.
We may change the basis e0

S
using .W C In/D to get a new basis of VS over

S y̋Qp
R

Œs;ps�

K 0
0

; since the matrix .W C In/D is invertible over OS y̋ Zp
Rint;s

K 0
0

, it is
also the case that the basis e0

S
also generates VS over S y̋Qp

R
Œs;ps�

K 0
0

. Repeating
the argument, we can deduce that e0

S
is actually a basis of VS generating an étale

model. This proves the claim. �
Combining Theorem 5.2 with Theorem 7.4 yields Theorem 0.2. Note that be-

fore applying Theorem 7.4, we must first extend scalars from S to S ˝Qp
L for

LD S=mx; we then use Galois descent for the action of Gal.L=Qp/ to recover a
statement about S itself.

Remark 7.5. Unfortunately, there is no natural extension of Theorem 7.4 to the
Berkovich analytic space M.S/ associated to S . For instance, take K D Qp,
S DQphyi, and let MS be free of rank 2 with the action of ' given by the matrix�

0 1

1 y=p

�
(in which T does not appear). The locus of x 2 M.S/ where Mx is étale is
precisely the disc jyj � jpj, which does not correspond to an open subset of M.

On the other hand, it may still be the case that MS is étale if and only if Mx is
étale (in an appropriate sense) for each x 2M.S/.

Remark 7.6. It should be possible to generalize Berger’s construction [2008] to
families of filtered .';N /-modules. With such a generalization, one would de-
duce immediately from Theorem 7.4 that any family of weakly admissible .';N /-
modules over an affinoid base (with trivial '-action on the base) arises from a
Galois representation in a neighborhood of any given rigid analytic point. However,



966 Kiran Kedlaya and Ruochuan Liu

in view of Remark 7.5, we cannot make the corresponding assertion for Berkovich
points.

Remark 7.7. The families of .'; �/-modules considered here are “arithmetic” in
the sense that ' acts trivially on the base S . They correspond to “arithmetic”
families of Galois representations, such as the p-adic families arising in the theory
of p-adic modular forms. There is also a theory of “geometric” families of .'; �/-
modules, in which ' acts as a Frobenius lift on the base S . These correspond
to representations of arithmetic fundamental groups via the work of Faltings, An-
dreatta, Brinon, Iovita, et al. In this theory, one does expect the étale locus to
be open, as in [Hartl 2006, Theorem 5.2]. One also expects a family of .'; �/-
modules to be globally étale if and only if it is étale over each Berkovich point
(but not if it is only étale over each rigid point, as shown by the Rapoport–Zink
spaces). We hope to consider this question in subsequent work.
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