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After identification of the algebra of exponential generating series with the shuf-
fle algebra of ordinary formal power series, the exponential map

exp ! : XK[[X ]] −→ 1+ XK[[X ]]

for the associated Lie group with multiplication given by the shuffle product is
well-defined over an arbitrary field K by a result going back to Hurwitz. The
main result of this paper states that exp ! and its reciprocal map log ! induce
a group isomorphism between the subgroup of rational, respectively algebraic
series of the additive group XK[[X ]] and the subgroup of rational, respectively
algebraic series in the group 1+ XK[[X ]] endowed with the shuffle product, if
the field K is a subfield of the algebraically closed field Fp of characteristic p.

1. Introduction

The equality( ∞∑
n=0

αn
Xn

n!

)( ∞∑
n=0

βn
Xn

n!

)
=

∞∑
n=0

n∑
m=0

(n+m
n

)
αnβm

Xn+m

(n+m)!
(1)

shows that we can define an algebra structure on the vector space

E(K)=

{ ∞∑
n=0

αn
Xn

n!
∣∣α0, α1, . . . ∈ K

}
of formal exponential generating series with coefficients α0, α1, . . . in an arbitrary
field or ring K. For the sake of simplicity, we will work only over fields. The
expression αn/n! should be considered formally, since the numerical value of n! is
zero over a field of positive characteristic p ≤ n.
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Motivation for this work is given by the fact that the formula (1) allows us to
define the shuffle product

∞∑
n=0

γn Xn
=

( ∞∑
n=0

αn Xn
) ( ∞∑

n=0

βn Xn
)

of two formal power series
∑
∞

n=0 αn Xn and
∑
∞

n=0 βn Xn by setting

γn =

n∑
k=0

(n
k

)
αkβn−k . (2)

The definition of the shuffle product arises in the theory of divided powers; see, for
example, [Berthelot and Ogus 1978, Definition 3.1]. The main properties needed in
this paper are already in [Hurwitz 1899]. I have the impression that the main results
of the present paper, given by Theorems 1.1 and 1.3, do not fit very well into the
theory of divided powers: they are based on an interplay between ordinary power
series (used for defining rationality and algebraicity) and exponential power series
(used for defining an analogue of the exponential map in positive characteristic).
A special instance of this exponential map is a standard ingredient for divided
powers [Berthelot and Ogus 1978, Appendix A, Proposition A1], but ordinary
formal power series do not seem to play a significant role there.

Definition (2) is also a particular case of a shuffle product defined more gen-
erally for formal power series in several noncommuting variables. The associated
shuffle algebras arise, for example, in the study of free Lie algebras [Reutenauer
1993], Hopf algebras and polyzetas [Zagier 1994; Cartier 2002], formal languages
[Berstel and Reutenauer 1988], etc.

I became interested in this subject through the study of the properties of the
algebra of recurrence matrices, a subset of sequences of matrices displaying a kind
of self-similarity structure used in [Bacher 2006; 2008] for studying reductions of
the Pascal triangle modulo suitable Dirichlet characters. Such recurrence matrices
are closely related to automata groups and complex dynamical systems; see, for
example, [Nekrashevych 2005] for details. Over a finite field, they can be iden-
tified with rational formal power series in several noncommuting variables (the
underlying algebras are however very different) and it is thus natural to investigate
properties of other possible products preserving these sets. The main results of this
paper, Theorems 1.1 and 1.3 (and their effective analogues, Theorems 1.5 and 1.6),
deal with properties of the shuffle product for formal power series in one variable
that have gone unnoticed in the existing literature, as far as I am aware.

We denote by

mE =

{ ∞∑
n=1

αn
Xn

n!
∣∣α1, α2, · · · ∈K

}
⊂ E(K)
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the maximal ideal of the local algebra E(K). A straightforward computation,
already known to Hurwitz [1899], shows that an/n! is always well-defined for
a ∈mE. Endowing K with the discrete topology and E(K) with the topology given
by coefficientwise convergence, the functions

exp(a)=
∞∑

n=0

an

n!
and log(1+ a)=−

∞∑
n=1

(−a)n

n

are always defined for a ∈mE.
Switching back to ordinary generating series

A =
∞∑

n=1

αn Xn, B =
∞∑

n=1

βn Xn
∈m,

contained in the maximal ideal m = XK[[X ]], of (ordinary) formal power series,
we write

exp! A = 1+ B

if

exp
( ∞∑

n=1

αn
Xn

n!

)
= 1+

∞∑
n=1

βn
Xn

n!
.

It is easy to see that exp! defines a one-to-one map between m and 1+ m with
reciprocal map

1+ B 7→ A = log!(1+ B).

It satisfies

exp!(A+ B)= exp! A exp! B

for all A, B ∈m, where the shuffle product( ∞∑
n=0

αn Xn
) ( ∞∑

n=0

βn Xn
)
=

∞∑
n,m=0

(n+m
n

)
αnβm Xn+m

corresponds to the ordinary product of the associated exponential generating series.
The map exp! defines thus an isomorphism between the additive group (m,+) and
the special shuffle group (1+m, ) with group-law given by the shuffle product.
It coincides with the familiar exponential map from the Lie algebra m into the
special shuffle group, considered as an infinite-dimensional Lie group.

It follows from [Fliess 1974] that rational, respectively algebraic elements form
a subgroup in (1+m, ) if one works over a subfield of Fp. It is thus natural
to consider the corresponding subgroups (under the reciprocal map log! of the Lie
exponential exp! : m 7→ 1+m) in the isomorphic additive group (m,+) forming
the Lie algebra of (1+m, ). The answer, which is the main result of this paper,



922 Roland Bacher

is surprisingly simple: the corresponding subgroup is exactly the subgroup of all
rational, respectively algebraic elements in the additive group m. We have thus:

Theorem 1.1. Let K be a subfield of the algebraically closed field Fp of positive
characteristic p. Given a series A ∈ m = XK[[X ]], the following two assertions
are equivalent:

• A is rational.

• exp! A is rational.

Theorem 1.1 fails in characteristic zero: the series

log!(1− X)=−
∞∑

n=1

(n− 1)!Xn

is obviously transcendental. (This series also shows that Theorem 1.3 does not
hold in characteristic zero.)

Example 1.2. The Bell numbers B0, B1, B2, . . . (see [Comtet 1970, pp. 45–46]
or [Stanley 1999, Example 5.2.4]) are the natural integers defined by

∞∑
n=0

Bn
xn

n!
= eex

−1,

and have combinatorial interpretations.
Since ex

−1 is the exponential generating series of the sequence 0, 1, 1, . . . , we
have

∑
∞

n=0 Bnxn
= exp!(x/(1− x)) for the ordinary generating series

∞∑
n=0

Bnxn
= 1+ x + 2x2

+ 5x3
+ 15x4

+ 52x5
+ 203x6

+ 877x7
+ 4140x8

+ · · ·

of the Bell numbers.
The reduction of

∑
∞

n=0 Bnxn modulo a prime p is thus always a rational element
of Fp[[x]]. A few such reductions are

1
1+x+x2 (mod 2), 1+x+x2

1−x2−x3 (mod 3), 1+x+2x2
−x4

1−x4−x5 (mod 5).

Theorem 1.3. Let K be a subfield of the algebraically closed field Fp of positive
characteristic p. Given a series A ∈ m = XK[[X ]], the following two assertions
are equivalent:

• A is algebraic.

• exp! A is algebraic.

Theorems 1.1 and 1.3 are the main results of this paper and can be restated as
follows.
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Corollary 1.4. Over a subfield K ⊂ Fp, the group isomorphism

exp! : (m,+)−→ (1+m, )

restricts to an isomorphism between the subgroups of rational elements in (m,+)
and in (1+m, ).

It restricts also to an isomorphism between the subgroups of algebraic elements
in (m,+) and in (1+m, ).

In particular, the subgroup of rational, respectively algebraic elements in the
shuffle group (1+m, ) is a Lie-group whose Lie algebra (over K⊂ Fp) is given
by the additive subgroup of all rational, respectively algebraic elements in (m,+).

Theorems 1.1 and 1.3 can be made more precise as follows.
Given a rational series A ∈K[[X ]] represented by a reduced fraction f/g, where

f, g with g 6= 0 are two coprime polynomials of degrees deg f and deg g, we set
||A|| =max(1+deg f, deg g); see also Proposition 2.1 for a well-known equivalent
description of ||A||.

Theorem 1.5. We have

|| exp! A|| ≤ pq ||A|| and || log!(1+A)|| ≤ 1+ ||1+A||p

for a rational series A in m⊂ Fp[[X ]] having all its coefficients in a finite subfield
Fq ⊂ Fp containing q = pe elements.

The bounds for log! (and the analogous bounds in the algebraic case) can be
improved; see Proposition 7.1.

Theorem 1.5 could be called an effective version of Theorem 1.1: given a ra-
tional series represented by f/g ∈ m with f, g ∈ Fp[X ], Theorem 1.1 ensures the
existence of polynomials u, v such that exp!( f/g) = u/v. Theorem 1.5 shows
that u and v are of degree at most pq || f/g||

. They can thus be recovered as suitable
Padé approximants from the series development of exp!( f/g) up to order 2pq || f/g||

.
Experimentally, the number || exp! A|| is generally much smaller.

Since the bounds for log! are better than for exp!, the determination of the ra-
tional series B = exp! A with A ∈ m rational is best done as follows: start by
“guessing” the rational series B and check (or improve the guess for B in case of
failure) that A = log!(B) using the bounds for log!.

Given a prime p and a formal power series C =
∑
∞

n=0 γn Xn in K[[X ]] with
coefficients in a subfield K of Fp, we define for f ∈ N, k ∈ N, k < p f the series

Ck, f =

∞∑
n=0

γk+np f Xn.
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The vector space K(C) = KC +
∑

k, f KCk, f spanned by C and by all series of
the form Ck, f , k ∈ {0, . . . , p f

−1}, f ∈ {1, 2, . . . } is called the p-kernel of C . We
denote its dimension by κ(C)= dim K(C).

Algebraic series in K[[X ]] for K a subfield of Fp are characterized by a theorem
of Christol [Allouche and Shallit 2003, Theorem 12.2.5] stating that a series C in
Fp[[X ]] is algebraic if and only if its p-kernel K(C) is of finite dimension κ(C) <
∞. We have κ(A+ B) ≤ κ(A)+ κ(B), and an algebraic series A ∈ Fp[[X ]] has a
minimal polynomial of degree at most pκ(A) with respect to A.

Theorem 1.6. We have

κ(exp! A)≤ qκ(A)−1 pqκ(A) and κ(log!(1+A))≤ 1+ 4(κ(1+A))p

for a nonzero algebraic series A in m⊂ Fp[[X ]] having all its coefficients in a finite
subfield Fq ⊂ Fp containing q = pe elements.

Considerations similar to those made after Theorem 1.5 are valid and Theorem
1.6 can be turned into an algorithmically effective version of Theorem 1.3.

A map µ : V −→W between two K-vector spaces is a homogeneous form of
degree d if l ◦µ :V−→K is homogeneous of degree d (given by a homogeneous
polynomial of degree d with respect to coordinates) for all linear forms l :W−→K.

A useful ingredient for proving Theorems 1.1, 1.3 and their effective versions
is the following characterization of log!:

Proposition 1.7. Over a field K ⊂ Fp, the application log! : 1+m−→m extends
to a homogeneous form of degree p from K[[X ]] into m.

Example 1.8. In characteristic 2, we have

log!

( ∞∑
n=0

αn Xn
)
=

∞∑
n=0

α2
2n X2n+1

+

∑
0≤i< j

( i+ j
i

)
αiα j X i+ j ,

for
∑
∞

n=0 αn Xn in 1+ XF2[[X ]].

Remark 1.9. Defining f! as

f!

( ∞∑
n=1

αn Xn
)
=

∞∑
n=1

βn Xn

if

f
( ∞∑

n=1

αn
Xn

n!

)
=

∞∑
n=1

βn
Xn

n!
,

Theorems 1.1, 1.3, 1.5 and 1.6 have analogues for the functions sin! and tan! (and
for their reciprocal functions arcsin! and arctan!).
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The rest of the paper is organized as follows. In Sections 2–6, we recall a
few definitions and well-known facts that are essentially standard knowledge in
the theory of divided powers; see [Berthelot and Ogus 1978] or the original work
[Roby 1963; 1965]. Section 7 contains the proofs for all results mentioned above.

In a second part, starting at Section 8, we generalize Theorems 1.1 and 1.5 to
formal power series in several noncommuting variables.

2. Rational and algebraic elements in K[[X]]

This section recalls a few well-known facts concerning rational and algebraic ele-
ments in the algebra K[[X ]] of formal power series.

We denote by τ : K[[X ]] −→ K[[X ]] the shift operator

τ

( ∞∑
n=0

αn Xn
)
=

∞∑
n=0

αn+1 Xn

acting on formal power series. The following well-known result characterizes ra-
tional series:

Proposition 2.1. A formal power series A =
∑
∞

n=0 αn Xn of K[[X ]] is rational
if and only if the series A, τ (A), τ 2(A), . . . , τ k(A) =

∑
∞

n=0 αn+k Xn, . . . span a
finite-dimensional vector space in K[[X ]].

More precisely, the vector space spanned by A, τ (A), τ 2(A), . . . , τ i (A), . . .
has dimension ||A|| =max(1+deg f, deg g) if f/g, with f, g ∈K[X ], is a reduced
expression of a rational series A.

The function A 7→ ||A|| satisfies the inequality

||A+ B|| ≤ ||A|| + ||B||

for rational series A, B in K[[X ]]. As a particular case, we have

||A|| − 1≤ ||1+A|| ≤ ||A|| + 1.

Given a prime p and a formal power series C =
∑
∞

n=0 γn Xn in Fp[[X ]], we
denote by κ(C) ∈ N∪ {∞} the dimension of its p-kernel

K(C)= KC +
∑
f,k

FpCk, f ,

spanned by C and all series of the form

Ck, f =

∞∑
n=0

γk+np f Xn,

with k ∈ N such that k < p f for f ∈ {1, 2, . . . }.
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Algebraic series of K[[X ]], for K a subfield of the algebraic closure Fp of fi-
nite prime characteristic p, are characterized by the following theorem of Christol
[1979] (see also [Allouche and Shallit 2003, Theorem 12.2.5]):

Theorem 2.2. A formal power series C =
∑
∞

n=0 γn Xn of Fp[[X ]] is algebraic if
and only if the dimension κ(C)= dim K(C) of its p-kernel K(C) is finite.

Finiteness of κ(C) amounts to recognizability of C , which has the following
well-known consequence.

Corollary 2.3. An algebraic series of Fp[[X ]] has all its coefficients in a finite
subfield of Fp.

Proposition 2.4. Let C =
∑
∞

n=0 γn Xn be an algebraic series with coefficients in a
subfield K ⊂ Fp.

(i) K(τ (C))⊂ K(C)+ τ(K(C)), which implies κ(τ(C))≤ 2κ(C).

(ii) K(C)⊂ K+K(τ (C))+ XK(τ (C)), which implies κ(C)≤ 1+ 2κ(τ(C)).

Proof. Assertion (i) follows from an iterated application of the easy computations

(τ (C))k,1 = Ck+1,1,

if 0≤ k < p− 1 and

(τ (C))p−1,1 = τ(C0,1).

The proof of assertion (ii) is similar. �

3. The shuffle algebra

This section recalls mostly well-known results concerning shuffle products of ele-
ments in the set K[[X ]] of formal power series over a commutative field K, which
is arbitrary unless specified otherwise.

The shuffle product

A B = C =
∞∑

n=0

γn Xn

of A =
∑
∞

n=0 αn Xn and B =
∑
∞

n=0 βn Xn is defined by

γn =

n∑
k=0

(n
k

)
αkβn−k,

and corresponds to the usual product ab = c of the associated exponential gener-
ating series

a =
∞∑

n=0

αn
Xn

n!
, b =

∞∑
n=0

βn
Xn

n!
, c =

∞∑
n=0

γn
Xn

n!
.
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The shuffle algebra is the algebra (K[[X ]], ) obtained by endowing the vector
space K[[X ]] of ordinary generating series with the shuffle product. By construc-
tion, the shuffle algebra is isomorphic to the algebra E(K) of exponential generating
series. In characteristic zero, the trivial identity

∞∑
n=0

αn Xn
=

∞∑
n=0

(n!αn)
Xn

n!

gives an isomorphism between the usual algebra K[[X ]] of ordinary generating
series and the shuffle algebra (K[[X ]], ).

The identity (∑
n≥0

λn Xn
) (∑

n≥0

µn Xn
)
=

∑
n≥0

(λ+µ)n Xn,

equivalent to eλX eµX
= e(λ+µ)X , implies that the convergence radius of the shuffle

product of two complex series with strictly positive convergence radii ρ1, ρ2 is at
least the harmonic mean 1/(1/ρ1+ 1/ρ2) of ρ1 and ρ2.

Proposition 3.1. The shift operator

τ

( ∞∑
n=0

αn Xn
)
=

∞∑
n=0

αn+1 Xn

acts as a derivation on the shuffle algebra.

Proof. The map τ is clearly linear. The computation

τ

( ∑
i, j≥0

( i+ j
i

)
αiβ j X i+ j

)
=

∑
i, j≥0

i+ j≥1

( i+ j
i

)
αiβ j X i+ j−1

=

∑
i, j≥0

i+ j≥1

(( i+ j−1
i−1

)
+

( i+ j−1
j−1

))
αiβ j X i+ j−1

shows that τ satisfies the Leibniz rule τ(A B)= τ(A) B+ A τ(B). �

Proposition 3.1 is trivial and well-known in characteristic zero: the usual deriva-
tion d/dX acts obviously as the shift operator on the algebra E(K) of exponential
generating series over a field of characteristic zero.

The following two results seem to be due to Fliess [1974, Proposition 6].

Proposition 3.2. Shuffle products of rational power series are rational.
More precisely, we have

||A B|| ≤ ||A|| ||B||,

for two rational series A, B in K[[X ]].
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Proof. Proposition 3.1 implies τ n(A B) =
∑n

k=0
(n

k

)
τ k(A) τ n−k(B). The

series τ n (A B) belongs thus to the vector space spanned by shuffle products
with factors in the vector spaces

∑
n≥0 Kτ n(A) and

∑
n≥0 Kτ n(B). This implies

the inequality. Proposition 2.1 ends the proof. �

Proposition 3.3. Shuffle products of algebraic series in Fp[[X ]] are algebraic.
More precisely, we have

κ(A B)≤ κ(A)κ(B).

Proof. Denoting by Ck, f the series

Ck, f =

∞∑
n=0

γk+np f Xn

associated to a series C =
∑
∞

n=0 γn Xn , as in Section 2, and by κ(C) the dimension
of the vector space K(C)= KC +

∑
k, f FpCk, f , Lucas’s identity [1878](n

k

)
≡

∏
i≥0

(
νi
κi

)
(mod p),

for n =
∑
i≥0
νi pi and k =

∑
i≥0
κi pi with νi , κi ∈ {0, . . . , p− 1}, implies

(A B)k,1 =
k∑

i=0

(k
i

)
Ai,1 Bk−i,1,

for k= 0, . . . , p−1. Iteration of this formula shows that (A B)k, f (for arbitrary
k, f ∈N such that k< p f ) belongs to the vector space spanned by shuffle products
with factors in the vector spaces K(A) and K(B) of dimension κ(A) and κ(B).

Christol’s Theorem (Theorem 2.2) ends the proof. �

Remark 3.4. Given a subfield K of Fp, let A ⊂ K[[X ]] denote a vector space of
finite dimension a= dim A containing the p-kernel K(A) of every element A ∈A.

We consider an element B = A1 A2 · · · Ak given by the shuffle prod-
uct of k series A1, . . . , Ak ∈ A. Expressing all elements A1, A2, . . . as linear
combinations of elements in a fixed basis of A and using commutativity of the
shuffle product, the proof of Proposition 3.3 shows that the inequality κ(B) ≤
κ(A1)κ(A2) · · · ≤ ak

= (dim A)k can be improved to

κ(B)≤
(k+a−1

a−1

)
,

where the binomial coefficient gives the dimension of the vector space of homo-
geneous polynomials of degree k in a (commuting) variables X1, X2, . . . , Xa .
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4. The special shuffle group

We call the group of units of the shuffle algebra (K[[X ]], ) the shuffle group.
Its elements are given by the set K∗+ XK[[X ]] underlying the multiplicative unit
group. The shuffle group is the direct product of the unit group K∗ of K with the
special shuffle group (1+ XK[[X ]], ).

The inverse in the shuffle group of 1− A ∈ (1+ XK[[X ]], ) is given by

∞∑
n=0

A
n
= 1+A+ A A+ A A A+ · · · ,

where A
0
= 1 and A

n+1
= A A

n
for n ≥ 1.

The trivial identity X Xn
=
(n+1

1

)
Xn+1

= (n + 1)Xn+1
∈ K[[X ]] implies

(1− X)
(∑
∞

n=0 n!Xn
)
= 1. Invertible rational (analytical) power series have

thus generally a transcendental (nonanalytical) shuffle inverse over the complex
numbers.

Proposition 4.1. The special shuffle group (1+ XK[[X ]], ) is isomorphic to an
infinite-dimensional Fp-vector space if the field K is of positive characteristic p.

Proposition 4.1 shows that (1+ XK[[X ]], ) is not isomorphic to the multi-
plicative group structure on 1+ XK[[X ]] if K is of positive characteristic.

Proof of Proposition 4.1. It follows from the fact that exp! is a group isomorphism
between the Fp-vector space m and the special shuffle group. �

Proposition 4.1 follows also as a special case from Proposition 8.1. This yields
a different proof, which is not based on properties of exp!.

Remark 4.2. One can show that a rational fraction A ∈ 1+ XC[[X ]] has a rational
inverse for the shuffle product if and only if A= 1/(1−λX) with λ∈C. (Compute
A B = 1 using the decomposition into simple fractions of the rational series
A, B.)

5. The exponential and the logarithm for exponential generating functions

Hurwitz showed that 1/(k!)ak is well-defined for a ∈ mE with coefficients in an
arbitrary field or commutative ring [Hurwitz 1899, Satz 1]. We give a different
proof of this fact, that implies that exp! and log! are well-defined over fields of
positive characteristic.

Proposition 5.1. For all natural numbers j, k ≥ 1, the set {1, . . . , jk} can be par-
titioned in exactly

( jk)!
( j !)k k!

(3)
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different ways into k unordered disjoint subsets of j elements. In particular, the
rational number in (3) is an integer for all natural numbers j, k such that j ≥ 1.

Proof. The multinomial coefficient ( jk)!/( j !)k counts the number of ways of par-
titioning {1, . . . , jk} into an ordered sequence of k disjoint subsets containing all
j elements. Dividing by k! removes the order on these k subsets.

This proves that the formula defines an integer for all j, k ≥ 1, and integrality
obviously also holds for k = 0 and j ≥ 1. �

Remark 5.2. A slightly different proof of Proposition 5.1 follows from the ob-
servation that ( jk)!/(( j !)k k!) is the index in the symmetric group over jk ele-
ments of the subgroup formed by all permutations stabilizing a partition of the set
{1, . . . , jk} into k disjoint subsets of j elements.

A different proof is given by the formula

( jk)!
( j !)k k!

=

k∏
n=1

(nj−1
j−1

)
,

easily shown using induction on k; see [Berthelot and Ogus 1978, Section 3] (which
contains a small misprint).

Proposition 5.3. For any natural integer k ∈ N, there exist polynomials Pk,n ∈

N[α1, . . . , αn] such that

1
k!

( ∞∑
n=1

αn
Xn

n!

)k

=

∞∑
n=0

Pk,n(α1, α2, . . . , αn)
Xn

n!
.

Proof. The contribution of a monomial

α
j1
1 α

j2
2 . . . α

js
s

X
∑s

i=1 i ji(∑s
i=1 i ji

)
!
,

with j1+ j2+ · · ·+ js = k, to 1
k!

( ∞∑
n=1

αn Xn/n!
)k

is given by

1
k!

k!
( j1)!( j2)! . . . ( js)!

(∑s
i=1 i ji

)
!∏s

i=1(i !) ji
=

( s∏
i=1

(i ji )!
(i !) ji ( ji )!

)(∑s
i=1 i ji

)
!∏s

i=1(i ji )!
,

where the last expression is a product of a natural integer by Proposition 5.1 and
of a multinomial coefficient. It is thus a natural integer. �

Corollary 5.4. For a =
∑
∞

n=1 αn Xn/n!, the formulae

exp
( ∞∑

n=1

αn
Xn

n!

)
=

∞∑
k=0

∞∑
n=0

Pk,n(α1, . . . , αn)
Xn

n!
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and

log
(

1+
∞∑

n=1

αn
Xn

n!

)
=

∞∑
k=1

∞∑
n=0

(−1)k+1(k− 1)!Pk,n(α1, . . . , αn)
Xn

n!

define the exponential function and the logarithm of an exponential generating
series in a ∈mE and 1+a ∈ 1+mE, respectively, over an arbitrary field K. These
functions are one-to-one and mutually reciprocal.

The following result shows that the functions exp! and log! behave as expected
under the derivation τ :

∑
∞

n=0 αn Xn
7→
∑
∞

n=0 αn+1 Xn of the shuffle algebra.

Proposition 5.5. For all A ∈m= XK[[X ]] over an arbitrary field K, we have

τ(exp! A)= (exp! A) τ (A)

and
τ(log!(1+A))= (1+A)

−1
τ(A),

where (1+A)
−1

denotes the shuffle inverse of (1+A).

Proof. Proposition 3.1 implies the formal identities

τ

( ∞∑
n=0

A
n

n!

)
=

∞∑
n=0

n A
n−1

n!
τ(A)=

( ∞∑
n=0

A
n

n!

)
τ(A),

for A ∈m. By Proposition 5.1, this identity holds over the ring Z and thus over an
arbitrary commutative field. This establishes the formula for exp!.

For log! we get similarly

τ

(
−

∞∑
n=1

(−A)
n

n

)
=

∞∑
n=1

n (−A)
n−1

n
τ(A)=

( ∞∑
n=0

(−A)
n
)

τ(A),

which implies the result, by Proposition 5.1 and by the trivial identity

(1+A)
−1
=

∞∑
n=0

(−A)
n
,

for the shuffle inverse (1+A)
−1

of 1+A ∈ 1+m. �

6. The logarithm as a p-homogeneous form over F p[[x]]

Given a fixed prime number p, Proposition 4.1 implies that there exist polynomials
Q p,n ∈ N[α0, . . . , αn] for n ≥ 1 such that( ∞∑

n=0

αn Xn
) p

= α
p
0 + p

∞∑
n=1

Q p,n(α0, . . . , αn)Xn.
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The polynomials Q p,n are homogeneous of degree p with respect to the variables
α0, . . . , αn , and we denote by

µp

( ∞∑
n=0

αn Xn
)
=

∞∑
n=1

Q p,n(α0, . . . , αn)Xn

the p-homogeneous form defined by the ordinary generating series of the polyno-
mials Q p,1, Q p,2, . . . .

Proposition 6.1. The restriction of µp to 1+m⊂ Fp[[X ]] coincides with the func-
tion log!.

Proof. We have
τ(µp(1+A))= (1+A)

p−1
τ(1+A)

for A in m, where τ
(∑
∞

n=0 αn Xn
)
=
∑
∞

n=0 αn+1 Xn is the shift operator of Propo-
sition 3.1. This identity defines the restriction of the p-homogeneous form µp to
1+m. Proposition 5.5 and the identity

(1+A)
p−1

(1+A)= 1

show that the function log! satisfies the same equation

τ(log!(1+A))= (1+A)
p−1

τ(1+A).

Since both series µp(1+A) and log!(1+A) are without constant term, the equal-
ity τ(µp(1+A))= τ(log!(1+A)) implies µp(1+A)= log!(1+A). �

7. Proofs

Proposition 7.1. If A in XFp[[X ]] is rational (respectively algebraic), then the
formal power series log!(1+A) is rational (respectively algebraic).

More precisely,

|| log!(1+A)|| ≤ 1+
( p+||1+A||−1

p

)
≤ 1+ ||1+A||p

for A rational in m= XFp[[X ]], and

κ(log!(1+A))≤ 1+ 4κ(A)
( p+κ(1+A)−2

p−1

)
≤ 1+ 4(κ(1+A))p

for A algebraic in m.

Proposition 7.2. If A in XFp[[X ]] is rational (respectively algebraic), then exp! A
is rational (respectively algebraic).

More precisely, denoting by q = pe the cardinality of a finite field Fq ⊂ Fp

containing all coefficients of A,

|| exp! A|| ≤ pq ||A||
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for A rational in m, and

κ(exp! A)≤ qκ(A)−1 pqκ(A)

for A algebraic and nonzero in m.

Theorems 1.1, 1.3, 1.5 and 1.6 are now simple reformulations of Propositions
7.1 and 7.2.

Proof of Proposition 7.1. Apply the identity (1+A)
p
= 1, which follows from

Proposition 4.1, to

τ(log!(1+A))= (1+A)
−1

τ(A)

of Proposition 5.5, to establish

τ(log!(1+A))= (1+A)
p−1

τ(A),

already encountered in the proof of Proposition 6.1. This shows

||τ(log!(1+A)|| ≤ ||1+A||p−1
||τ(A)|| ≤ ||1+A||p

and implies
|| log!(1+A)|| ≤ 1+ ||1+A||p.

This proves the cruder inequality in the rational case. The finer inequality follows
from the fact that all p factors of

(1+A)
p−1

τ(A)= τ(log!(1+A))

belong to a common vector space of dimension ||1+A|| that is closed for the shift
map. The details are the same as for Remark 3.4.

For algebraic A we have similarly

κ(τ(log!(1+A)))≤ (κ(1+A))p−1 κ(τ(A))= (κ(1+A))p−1 κ(τ(1+A))

≤ (κ(1+A))p−12κ(1+A)≤ 2(κ(1+A))p,

using Proposition 2.4(i). This shows

κ(log!(1+A))≤ 1+ 2κ(τ(log!(1+A)))≤ 1+ 4(κ(1+A))p,

by Proposition 2.4(ii), and ends the proof for the cruder inequality.
The finer inequality follows from Proposition 2.4 and Remark 3.4. �

Given a vector space V ⊂ K[[X ]] containing K, we denote by 0(V) the shuffle
subgroup generated by all elements of V∩ (1+ XK[[X ]]).

Lemma 7.3. Every element of a vector space V⊂K[[X ]] containing the field K of
constants can be written as a linear combination of elements in 0(V).
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Proof. We have the identity

A = (1− ε(A)+ A)+ (ε(A)− 1),

where ε
(∑
∞

n=0 αn Xn
)
= α0 is the augmentation map and where (1− ε(A)+ A)

and the constant (ε(A)− 1) are both in K0(V) for A ∈ V. �

Proof of Proposition 7.2 for A rational. Corollary 2.3 shows that we can work over
a finite subfield K = Fq of Fp consisting of q = pe elements.

Given a rational series A in m= XK[[X ]], we denote by 0A the shuffle subgroup
generated by all elements of the set{ ∞⋃

n=0

(
τ n(A)+K

)}
∩ {1+ XK[[X ]]}.

This generating set of 0A contains at most q ||A|| elements. Proposition 4.1 im-
plies thus that 0A is a finite group having at most pq ||A|| elements. The subalgebra
K[0A] ⊂K[[X ]] spanned by all elements of 0A is thus of dimension ≤ pq ||A|| . The
identity

τ(exp! A)= exp! A τ(A)

of Proposition 5.5 and the fact that the derivation τ of K[[X ]] restricts to a derivation
of the subalgebra K[0A] show the inclusion

τ n(exp! A) ∈ exp! A K[0A]

for all n ∈N by Lemma 7.3. This ends the proof, since the right side is a K-vector
space of dimension at most pq ||A|| . �

Proposition 7.4. We have, for every prime number p and for all natural integers
j, k such that j ≥ 1, the identity

( jk)!
( j !)k k!

≡
(pjk)!

((pj)!)k k!
(mod p).

Proof. The fraction on the right side yields the cardinality of the set E of all
partitions of {1, . . . , pjk} into k subsets of pj elements. Consider the group G gen-
erated by the jk cycles of length p of the form (i, i+ jk, i+2 jk, . . . , i+(p−1) jk)
for i = 1, . . . , jk. The group G has p jk elements and acts on the set of partitions
by preserving their type defined as the multiset of cardinalities of all involved parts.
In particular, it acts by permutation on the set E. A partition P ∈ E is a fixpoint
for G if and only if every part of P is a union of G-orbits. Choosing a bijection
between {1, . . . , jk} and G-orbits of {1, . . . , pjk}, fixpoints of E are in bijection
with partitions of the set {1, . . . , jk} into k subsets of j elements. The number of
fixpoints of the G-action on E equals thus ( jk)!/(( j !)k k!). Since G is a p-group,
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the cardinalities of all nontrivial G-orbits of E are strictly positive powers of p.
This ends the proof. �

Corollary 7.5. exp! and log! commute with the “Frobenius substitution”

ϕ

( ∞∑
n=0

αn Xn
)
=

∞∑
n=0

αn X pn

for series in XFp[[X ]] and 1+ XFp[[X ]], respectively.

This implies (exp! A)0, f = exp! A0, f , where Ck, f =
∑
∞

n=0 γk+np f Xn for C =∑
∞

n=0 γn Xn .

Lemma 7.6. (B C)0,1 = B0,1 C0,1.

Proof. Follows from the identity
( pn

k

)
≡ 0 (mod p) if k 6≡ 0 (mod p). �

Proof of Proposition 7.2 for A algebraic. We work again over a finite subfield
K = Fq ⊂ Fp containing all coefficients of A. Let 0A denote the shuffle subgroup
generated by all elements in

(K(A)+K)∩ (1+ XK[[X ]]),

where
K(A)= K A+

∑
k, f

K Ak, f

denotes the p-kernel of A. We denote by K[0A] ⊂ (K[[X ]], ) the shuffle sub-
algebra of dimension at most pqκ(A) spanned by all elements of the group 0A ⊂

(1+ XK[[X ]], ).
Using the convention A0,0 = A, we have, for B ∈ K[0(A)] and for k such that

0≤ k < p,

(exp!(A0, f ) B)k,1 = (τ k(exp!(A0, f ) B))0,1

=

( k∑
j=0

(k
j

)
τ j (exp! A0, f ) τ k− j (B)

)
0,1

=

k∑
j=0

(k
j

)
(τ j (exp! A0, f ))0,1 Bk− j,1,

where the last equality is due to Lemma 7.6 (and to the equality (τ k(C))0,1 =Ck,1

for 0≤ k < p).
Proposition 5.5 gives τ(exp! A0, f ) = (exp! A0, f ) τ (A0, f ); iterating this

identity shows that τ j (exp! A0, f ) is of the form (exp! A0, f ) F , where F is
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a linear combination of shuffle products involving at most j factors of the set
{τ(A0, f ), τ

2(A0, f ), . . . , τ
j (A0, f )}. Applying Lemma 7.6, we get

(τ j (exp! A0, f ))0,1 = (exp0, f+1(A)) F0,1.

An iterated application of Lemma 7.6 now shows that F0,1 is a linear combination
of shuffle products involving at most j factors in {A1, f+1, . . . , A j, f+1}. We thus
have F0,1 ∈ K[0A], by Lemma 7.3, and we get the inclusion

(exp!(A0, f ) K[0A])k,1 ⊂ exp!(A0, f+1) K[0A]

for all f ∈ N and for all k ∈ {0, . . . , p− 1}.
Setting

E A = {exp! B | B ∈ K(A)∩ XK[[X ]]},

we have the inclusion

K(exp! A)⊂ E A K[0A] ⊂ K[E A] K[0A],

where K(exp! A) denotes the p-kernel of exp! A. This implies

κ(exp! A)≤ dim K[E A] dim K[0A].

We suppose now A that is nonzero. The vector space K(A)∩ XK[[X ]] is thus
of codimension 1 in K(A). The image E A of K(A) ∩ XK[[X ]] under the group
isomorphism exp! : (XK[[X ]],+) 7→ (1+ XK[[X ]], ) is hence a subgroup of
cardinality qκ(A)−1 in (1+ XK[[X ]], ). We have thus

κ(exp! A)≤ dim K[E A] dim K[0A] ≤ qκ(A)−1 pqκ(A),

which ends the proof. �

8. Power series in free noncommuting variables

This and the next section recall a few basic and well-known facts concerning (ra-
tional) power series in free noncommuting variables; see, for instance, [Stanley
1999] or [Berstel and Reutenauer 1988]. Sometimes, however, we use a different
terminology, motivated by [Bacher 2008].

We denote by X∗ the free monoid on a finite set X = {X1, . . . , Xk}. We write
1 for the identity element and we use a boldface capital X for a noncommutative
monomial X = X i1 X i2 . . . X il ∈ X∗. We denote by

A =
∑

X∈X∗

(A, X)X ∈ K〈〈X1, . . . , Xk〉〉

a noncommutative formal power series, where X∗ 3 X 7→ (A, X) ∈ K stands for
the coefficient function.
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We denote by m ⊂ K〈〈X1, . . . , Xk〉〉 the maximal ideal consisting of formal
power series without constant coefficient, and by K∗ +m = K〈〈X1, . . . , Xk〉〉 \m

the unit group of the algebra K〈〈X1, . . . , Xk〉〉 consisting of all (multiplicatively)
invertible elements in K〈〈X1, . . . , Xk〉〉. The unit group is isomorphic to the direct
product K∗ × (1 + m), where K∗ is the central subgroup consisting of nonzero
constants and where 1+m denotes the multiplicative subgroup given by the affine
subspace formed by power series with constant coefficient 1. We have (1−A)−1

=

1+
∑
∞

n=1 An for the multiplicative inverse (1− A)−1 of an element 1− A ∈ 1+m.

The shuffle algebra. The shuffle product X X ′ of two noncommutative mono-
mials X, X ′ ∈ X∗ of degrees a = deg X and b = deg X ′ (for the obvious grading
given by deg X1 = · · · = deg Xk = 1) is the sum of all

(a+b
a

)
monomials of degree

a+ b obtained by shuffling in all possible ways the linear factors (elements of X)
involved in X with the linear factors of X ′. A monomial involved in X X ′ can
be thought of as a monomial of degree a + b whose linear factors are colored by
two colors with X corresponding to the product of all linear factors of the first color
and X ′ corresponding to the product of the remaining linear factors. The shuffle
product X X ′ can also be recursively defined by X 1= 1 X = X and

(X Xs) (X ′X t)= (X (X ′X t))Xs + ((X Xs) X ′)X t ,

where Xs, X t ∈ X= {X1, . . . , Xk} are monomials of degree 1.
Extending the shuffle product in the obvious way to formal power series endows

the vector space K〈〈X1, . . . , Xk〉〉 with an associative and commutative algebra
structure called the shuffle algebra. In the case of one variable X = X1, we recover
the definition of Section 3.

The group GLk(K) acts on the vector space K〈〈X1, . . . , Xk〉〉 by linear substi-
tutions. This action induces an automorphism of the multiplicative (noncommuta-
tive) algebra-structure or of the (commutative) shuffle algebra-structure underlying
the vector space K〈〈X1, . . . , Xk〉〉.

Substitution of all variables X j of formal power series in K〈〈X1, . . . , Xk〉〉 by X
(or more generally by arbitrary not necessarily equal formal power series without
constant term) yields a homomorphism of (shuffle) algebras into the commutative
(shuffle) algebra K[[X ]].

The commutative unit group (set of invertible elements for the shuffle product)
of the shuffle algebra, given by the set K∗+m, is isomorphic to the direct product
K∗× (1+m), where 1+m is endowed with the shuffle product. The inverse of an
element 1− A ∈ (1+m, ) is given by

∞∑
n=0

A
n
= 1+A+ A A+ A A A+ · · · .
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The following result generalizes Proposition 4.1:

Proposition 8.1. Over a field of positive characteristic p, the subgroup 1+m of
the shuffle group is an infinite-dimensional Fp-vector space.

Proof. Contributions to a p-fold shuffle product A1 A2 · · · Ap are given
by monomials with linear factors colored by p colors {1, . . . , p} keeping track of
their “origin” with coefficients given by the product of the corresponding “mono-
chromatic” coefficients in A1, . . . , Ap. A permutation of the colors {1, . . . , p} (and
in particular, a cyclic permutation of all colors) leaves such a contribution invariant
if A1 = · · · = Ap. Coefficients of strictly positive degree in A

p
are thus zero in

characteristic p. �

As in the one-variable case, one can prove that

1
k!

A
k

is defined over an arbitrary field K for A ∈ m. Monomials contributing to A
k

can be considered as colored by k colors and the k! possible color-permutations
yield identical contributions.

For A ∈m, we denote by

exp! A =
∞∑

n=0

1
n!

A
n

the resulting exponential map from the Lie algebra m into the infinite-dimensional
commutative Lie group (1+m, ). As expected, its reciprocal function is

log!(1+A)=
∞∑

n=1

(−1)n+1

n
A

n
.

In the case of a field K of positive characteristic p, the function log! is again given
by the restriction to 1+m of a p-homogeneous form µp.

The form µp has all its coefficients in N and is again defined by the equality

A
p
= (A, 1)p

+ pµp(A)

over Z. It can thus be defined over an arbitrary field.

9. Rational series

We say that a formal power series A is rational if it belongs to the smallest subal-
gebra in K〈〈X1, . . . , Xk〉〉 that contains the free associative algebra K〈X1, . . . , Xk〉

of noncommutative polynomials and intersects the group of multiplicative units of
K〈〈X1, . . . , Xk〉〉 in a subgroup.
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Given a monomial T ∈ X∗, we denote by

ρ(T ) : K〈〈X1, . . . , Xk〉〉 −→ K〈〈X1, . . . , Xk〉〉

the linear application defined by

ρ(T )A =
∑

X∈X∗

(A, XT )X

for A =
∑

X∈X∗(A, X)X in K〈〈X1, . . . , Xk〉〉. The identity

ρ(T )(ρ(T ′)A)= ρ(T T ′)A

shows that we have a representation

ρ : X∗ −→ End(K〈〈X〉〉)

of the free monoid X∗ on X. The recursive closure A of a power series A is the
vector space spanned by its orbit ρ(X∗)A under ρ(X∗). We call the dimension
dim A of A the complexity of A.

We call a subspace A ⊂ K〈〈X1, . . . , Xk〉〉 recursively closed if it contains the
recursive closure of all its elements.

Rational series coincide with series of finite complexity by a theorem of Schüt-
zenberger [Berstel and Reutenauer 1988, Theorem 1].

Remark 9.1. In the case of one variable, the complexity dim A of a reduced
nonzero rational fraction A = f/g with f ∈ K[X ] and g ∈ 1 + XK[X ] equals
dim A =max(1+ deg f, deg g).

Remark 9.2. The (generalized) Hankel matrix H = H(A) of

A =
∑

X∈X∗

(A, X)X ∈ K〈〈X1, . . . , Xk〉〉

is the infinite matrix with rows and columns indexed by the free monoid X∗ of
monomials and entries HX X ′= (A, X X ′). The rank of H is given by the complexity
dim A of A, and A corresponds to the column-span of H .

Given subspaces A,B of K〈〈X〉〉, we denote by A B the vector space spanned
by all products A B with A ∈A and B ∈B.

Proposition 9.3. We have the inclusion A B ⊂ A B for the shuffle product
A B of A, B ∈ K〈〈X1, . . . , Xk〉〉.

Corollary 9.4 [Fliess 1974, Proposition 4]. We have

dim(A B)≤ dim A dim B

for the shuffle product A B of A, B ∈ K〈〈X1, . . . , Xk〉〉. In particular, shuffle
products of rational elements in K〈〈X1, . . . , Xk〉〉 are rational.
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Proof of Proposition 9.3. For Y ∈ A, Z ∈ B and X in {X1, . . . , Xk}, the recursive
definition of the shuffle product given in Section 8 shows

ρ(X)(Y Z)= (ρ(X)Y ) Z + Y (ρ(X)Z).

We thus have the inclusions ρ(X)(Y Z) ∈ A Z + Y B ⊂ A B, which
show that the vector space A B is recursively closed. Proposition 9.3 follows
now from the inclusion A B ∈ A B. �

Remark 9.5. Similar arguments show that the set of rational elements in K〈〈X1,

. . . , Xk〉〉 is also closed under the ordinary product (and multiplicative inversion of
invertible series), Hadamard product and composition (where one considers A ◦
(B1, . . . , Bk) with A ∈ K〈〈X1, . . . , Xk〉〉 and B1, . . . , Bk ∈m⊂ K〈〈X1, . . . , Xk〉〉).

Remark 9.6. The shuffle inverse of a rational element in K∗+m is in general not
rational in characteristic 0. An exception is given by geometric progressions(

1−
k∑

j=1

λ j X j

)−1

=

∞∑
n=0

( k∑
j=1

λ j X j

)n

,

since we have

1
1−

∑k
j=1 λ j X j

1
1−

∑k
j=1 µ j X j

=
1

1−
∑k

j=1(λ j+µ j )X j

corresponding to eλX eµX
= e(λ+µ)X in the one-variable case.

There are no other such elements in 1+m ⊂ K[[X ]]; see Remark 4.2. I do not
know whether the maximal rational shuffle subgroup of 1+m ⊂ C〈〈X1, . . . , Xk〉〉

(defined as the set of all rational elements in 1+m with rational inverse for the
shuffle product) contains other elements if k ≥ 2.

Remark 9.7. Any finite set of rational elements in K〈〈X1, . . . , Xk〉〉 over a field
K of positive characteristic is included in a unique minimal finite-dimensional
recursively closed subspace of K〈〈X1, . . . , Xk〉〉 that intersects the shuffle group
(K∗+m, ) in a subgroup.

10. Main result for generating series in noncommuting variables

The following statement is our main result in a noncommutative framework.

Theorem 10.1. Let K be a subfield of Fp. Given a noncommutative formal power
series A ∈m⊂ K〈〈X〉〉, the following two assertions are equivalent:

• A is rational.

• exp! A is rational.
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More precisely, we have for a rational series A in m the inequalities

dim log!(1+A)≤ 1+
(
dim 1+A

)p

and
dim exp! A ≤ pqdim A

,

where q = pe is the cardinality of a finite field Fq containing all coefficients of A.

Proof. The identity

log!(1+A)=
∑
X∈X

(
(1+A)

p−1
ρ(X)A

)
X

and Corollary 9.4 show

dim log!(1+A)≤ 1+
(
dim 1+A

)p
.

For the opposite direction we denote by K=Fq a finite subfield of Fp containing
all coefficients of A. We have

exp! A ⊂ exp! A K[0(A)],

where K[0(A)] is the shuffle subalgebra of dimension at most pqdim A
spanned by

all elements of the group 0 generated by all elements of the form

(A+K)∩ (1+m).

This implies the inequality dim exp! A ≤ pqdim A
, which ends the proof. �
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