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Let k be a complete discretely valued field of equal characteristic p > 0 with
possibly imperfect residue field, and let Gk be its Galois group. We prove that the
conductors computed by the arithmetic ramification filtrations on Gk defined by
Abbes and Saito (Amer. J. Math 124:5, 879–920) coincide with the differential
Artin conductors and Swan conductors of Galois representations of Gk defined
by Kedlaya (Algebra Number Theory 1:3, 269–300). As a consequence, we
obtain a Hasse–Arf theorem for arithmetic ramification filtrations in this case.
As applications, we obtain a Hasse–Arf theorem for finite flat group schemes;
we also give a comparison theorem between the differential Artin conductors
and Borger’s conductors (Math. Ann. 329:1, 1–30).
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Introduction

Let k be a complete discretely valued field and let Gk be the Galois group of a fixed
separable closure ksep over k. When the residue field κk of k is perfect, classical
ramification theory gives Artin conductors and Swan conductors, which measure
the ramification of representations of Gk of finite local monodromy (i.e., the image
of the inertia group being finite). A fundamental result, the Hasse–Arf theorem,
states that Artin and Swan conductors are nonnegative integers. However, when the
residue field κk is not perfect, classical ramification theory is no longer applicable.

MSC2000: primary 11S15; secondary 14G22, 12H25.
Keywords: ramification, p-adic differential equation, Swan conductors, Artin conductors,

Hasse–Arf theorem.
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For one thing, the transition functions φ and ψ in [Serre 1979, §IV.3] fail the basic
properties; for another, the extension of the rings of integers may not be generated
by a single element (compare [Serre 1979, §III.6, Proposition 12]).

Kato [1989] defined Swan conductors for one-dimensional representations when
the residue field is not perfect. Later, Abbes and Saito [2002; 2003] defined an
arithmetic (nonlogarithmic) filtration and a logarithmic variant on Gk by counting
geometric connected components of certain rigid spaces asa

l/k and asa
l/k,log over k,

which we refer to as Abbes–Saito spaces. The filtrations give the arithmetic Artin
conductors and Swan conductors naturally.

Abbes and Saito [2009] showed that their definition of Swan conductors coin-
cides with Kato’s when k is of equal characteristic p > 0. Moreover, they proved
that the subquotients of both filtrations are abelian groups [Abbes and Saito 2003].
(See also Saito’s proof [2009] that the subquotients of the logarithmic filtration
on wild inertia are elementary abelian p-groups.) However, they were not able to
establish an integrality result analogous to the classical Hasse–Arf theorem.

Through a completely different path, when k is of equal characteristic p > 0
and has perfect residue field, Christol, Cook, Matsuda, Mebkhout, and Tsuzuki
(see [Matsuda 2002]) gave a completely new interpretation of the classical Swan
conductors using the theory of p-adic differential modules. Given a p-adic Galois
representation of finite local monodromy, they associated a p-adic differential mod-
ule over the Robba ring and proved that the Swan conductor of the representation
can be retrieved from the irregularity of the differential module, or equivalently,
the spectral norms of the differential operator.

Partly inspired by [Matsuda 2004], Kedlaya generalized this framework to the
case when the residue field κk is not perfect. In [Kedlaya 2007], he adopted the
same construction and counted in the effects of other differential operators corre-
sponding to elements in a p-basis of κk . He defined the differential Swan conductor
to be, vaguely speaking, the maximum of the numbers computed by each of the
differential operators, under certain normalization; he was aware of a definition for
differential Artin conductors using a slightly different normalization. Most impor-
tantly, he was able to prove a Hasse–Arf theorem for differential Swan conductors
[Kedlaya 2007, Theorem 3.5.8]; his argument can easily be adapted to prove a
Hasse–Arf theorem for differential Artin conductors. For a precise statement, see
Theorem 2.4.1.

Kedlaya [2007] asked, as Matsuda suggested, whether the differential conduc-
tors are the same as the arithmetic ones, in which case the Hasse–Arf theorem for
the arithmetic filtrations in the equal characteristic case would follow from that
for the differential conductors. Chiarellotto and Pulita [2009] gave an affirmative
answer to this question when the representations are one-dimensional, using the
setting of Kato’s conductors [Kato 1989].
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There is a third story of defining conductors. Borger [2004] introduced the
notation of generic perfection of a complete discretely valued field and defined the
Artin conductors to be the ones obtained by base change to the generic residual
perfection of k, which is a complete discretely valued field with perfect residue field
satisfying certain universal properties. The Hasse–Arf theorem of these conductors
will follow immediately from that of the classical ones. Kedlaya [2007, p. 297]
asked if this also coincides with the two definitions above.

This paper answers these questions in the affirmative for all representations of
finite local monodromy. Our precise result is the following.

Theorem. Let k be a complete discretely valued field of equal characteristic p> 0
and let Gk be its absolute Galois group.

(1) (Hasse–Arf Theorem) Let ρ : Gk → GL(Vρ) be a p-adic representation of
finite local monodromy. Then the arithmetic Artin conductor Artar(ρ), the
differential Artin conductor Artdif(ρ), and the Borger’s conductor ArtB(ρ)

are the same. Similarly, the arithmetic Swan conductor Swanar(ρ) is the same
as the differential Swan conductor Swandif(ρ). As a consequence, they are all
nonnegative integers.

(2) The subquotients Fila Gk/Fila+ Gk of the arithmetic ramification filtrations
are trivial if a /∈ Q and are elementary p-abelian groups if a ∈ Q>1; the
subquotients Filalog Gk/Fila+log Gk of the arithmetic logarithmic ramification fil-
trations are trivial if a /∈Q and are elementary p-abelian groups if a ∈Q>0.

This theorem consists of Theorems 4.4.1 and 5.4.3 and Corollary 4.4.3.

We now explain the main idea of the proof, which shows that arithmetic con-
ductors and differential conductors coincide in a natural way. (We will use the
comparison of Artin conductors as an example; that of Swan conductors is proved
similarly.)

Let k be a complete discretely valued field of equal characteristic p, with residue
field κk . Let l be a finite Galois extension of k with residue field κl . One imme-
diately reduces the comparison to proving that the arithmetic highest ramification
break of l/k is the same as the differential one. There are three main ingredients.

(a) A useful way of visualizing spectral norms is to consider the convergence
loci or radii at a generic point; see for example [Kedlaya 2005, §5]. However,
the convergence loci cannot be defined on the rigid annulus because one cannot
separate m+1 differential operators on a one-dimensional space. Matsuda [2004]
made a pioneering attempt to obtain an (m + 1)-dimensional space on which we
may discuss convergence loci. Our approach, which is independently developed
and looks very similar to Matsuda’s work, uses a thickening technique. (Alas, we
do not know how to relate the two methods.) If the field k can be realized as
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the field of rational functions on a smooth variety over certain perfect field, the
thickening space is just a subspace of the generic fiber of the tube corresponding
to the diagonal embedding in a formal lifting (see Section 3.1). This thickening
space, after a certain base change, “looks the same” as the Abbes–Saito space
asa

l/k , whose geometric connected components give the ramification information.
However, we have the following technical issue.

(b) The thickening space is a rigid space over K , the fraction field of a Cohen
ring of κk , which in particular is a field of characteristic zero. In contrast, the
Abbes–Saito space asa

l/k is a rigid space over k, which is of characteristic p. In
order to relate the two spaces, we need a lifting technique (see Section 1) to lift
the Abbes–Saito space to characteristic zero and compare the geometric connected
components before and after the lifting process. A similar idea is also alluded to
as a conjecture in [Matsuda 2004]. (Again, we do not know whether our result
answers Matsuda’s conjecture.)

(c) The lifted Abbes–Saito space is isomorphic to the thickening space after a cer-
tain base change (Theorem 4.3.6), but not in the naı̈ve way. Very vaguely speaking,
if the extension l/k is generated by a series of equations, then the Abbes–Saito
space consists of the points which are close to the solutions to those equations;
in contrast, the (base change of the) thickening space consists of points which are
solutions to some equations whose coefficients are close to the original equations.
These two types of points coincide when l/k is totally and wildly ramified.

Combining these three ingredients, we can prove the comparison between the
arithmetic conductors and the differential ones. The following diagram may be
helpful to illustrate the process:

Y = A1
L [η

1/e
0 , 1)

��

TSa
×π̃ ,Z Y

��

(c)
/o/o/o/o/o/o/o/o/ooo ASa

l/k asa
l/k

(b)oo o/ o/

Z = A1
K [η0, 1) TSa

= “
⋃
η∈[η0,1) A1

K [η, 1)× Am+1
K [0, ηa).”

(a)

π̃oo

Here K and L are the fraction fields of Cohen rings of κk and κl , respectively;
A1

K [η0, 1) is the half-open annulus over K (centered at the origin) with inner radius
η0 and outer radius 1, for some η0 ∈ (0, 1); Am+1

K [0, ηa) is the open polydisc
(centered at the origin) of dimension m + 1 and radius ηa for some a ∈ Q>1 (for
the quotation marks on

⋃
η∈[η0,1) A1

K [η, 1)× Am+1
K [0, ηa), see Caution 3.2.4); TSa

denotes the space obtained by the thickening process (a); asa
l/k is the rigid analytic

space over k defined by Abbes and Saito with respect to a set of distinguished
generators; and ASa

l/k is the lifting space given by lifting process (b); the argument
in (c) links the two spaces as shown in the diagram.
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Part (a) is carried out throughout Section 3 (see Theorem 3.4.12). Part (b) is
developed in Section 1 (see Corollary 1.2.12 and Example 1.3.4). Part (c) occupies
Section 4 (see Theorem 4.3.6). We finally wrap up the proof in Theorem 4.4.1.

We also obtain a comparison theorem between Borger’s Artin conductors and
the differential Artin conductors, or equivalently the arithmetic Artin conductors.
The key is to show that the differential Artin conductors are invariant under the
operation of adding generic p∞-th roots (see Definition 5.2.2). This fact follows
easily from the study of differential operators.

Plan of the paper. In Section 1, we make a construction to lift a rigid space over k
to a rigid space over an annulus over K . We prove that the connected components
of the original rigid space are in one-to-one correspondence with the connected
components of the lifting space, when the annulus is “thin” enough. This part is
written in a relatively independent and self-contained manner, since we feel that it
is interesting on its own.

In Section 2, we discuss how to associate a differential module Eρ on the Robba
ring over K with a representation ρ of Gk of finite local monodromy. Then we
review the definition of differential Swan conductors following [Kedlaya 2007].
We also introduce differential Artin conductors and discuss their properties.

Section 3 introduces a thickening construction. In Section 3.1, as an intuitive ex-
ample, we construct the thickening space when k can be realized geometrically. In
Section 3.2, we define thickening spaces for general k and discuss spectral proper-
ties of the differential module obtained by pulling back Eρ to the thickening spaces.
In Sections 3.3 and 3.4, we link the (highest) differential breaks and spectral norms
with the connected components of a certain base change of the thickening spaces.

In Section 4, we first quickly review the definition of arithmetic ramification
filtrations, following [Abbes and Saito 2002]. Then, in Section 4.2, we define the
standard Abbes–Saito spaces asa

l/k and their lifts ASa
l/k . Next, we prove in Section

4.3 that the lifted Abbes–Saito spaces and (the base change of) the thickening
spaces are isomorphic (Theorem 4.3.6). From this, in Section 4.4, we deduce
our main result, Theorem 4.4.1: differential conductors coincide with arithmetic
conductors.

Section 5 gives two applications. In Section 5.1 we deduce a Hasse–Arf theorem
for finite flat group schemes; in Sections 5.2–5.4 we compare the arithmetic and
differential Artin conductors with Borger’s Artin conductors [Borger 2004].

1. Lifting rigid spaces

In this section, which is largely self-contained, we introduce a construction to lift
a rigid space over a field of characteristic p > 0 to a rigid space over an annulus
over a field of characteristic zero. The notation will not be carried over to later
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sections unless explicitly noted.1

Remark 1.0.1. For most of this paper, we implicitly use rigid analytic spaces in the
sense of Berkovich spaces [1990] by allowing discs or annuli with irrational radii.
This is mostly for notational convenience. Only in two places (see Remarks 1.2.13
and 4.2.5) will we have to shift back to the classical rigid analytic setting to talk
about connected components by assuming some rationality on the radii of discs or
annuli.

1.1. A Gröbner basis argument. In this subsection, we introduce a division al-
gorithm using a Gröbner basis, which enables us to find a representative in the
quotient ring achieving the quotient norm.

Notation 1.1.1. Let K be a complete discretely valued field of mixed characteristic
(0, p), with ring of integers OK and residue field κ . Fix a uniformizer πK and
normalize the valuation vK ( · ) on K so that vK (πK) = 1. We also normalize the
norm on K so that |p| = p−1.

Notation 1.1.2. For a nonarchimedean ring R, we use R〈u1, . . . , un〉 to denote the
Tate algebra, consisting of formal power series

∑
i1,...,in∈Z≥0

fi1,...,in ui1
1 · · · u

in
n with

fi1,...,in ∈ R and | fi1,...,in | → 0 as i1+· · ·+ in→+∞. For η1, . . . , ηn ∈ (0, 1], the
ring admits a (η1, . . . , ηn)-Gauss norm given by∣∣∣ ∑

i1,...,in∈Z≥0

fi1,...,in ui1
1 · · · u

in
n

∣∣∣
η1,...,ηn

= max
i1,...,in

{| fi1,...,in |η
i1
1 . . . η

in
n }.

Notation 1.1.3. Fix a positive integer n, and put

Rint
= OK 〈u1, . . . , un〉((S)), R = Rint

⊗OK K ,

Rκ = Rint
⊗OK κ

∼= κ[u1, . . . , un]((S))= κ((S))〈u1, . . . , un〉.

For η ∈ (0, 1], let | · |η (for short) denote the (1, . . . , 1, η)-Gauss norm on R.

Notation 1.1.4. The lexicographic order on Zn is: for (i1, . . . , in) and (i ′1, . . . , i ′n)
both in Zn , we have (i1, . . . , in) � (i ′1, . . . , i ′n) if there exists some j ∈ {1, . . . , n}
such that i1 = i ′1, . . . , i j−1 = i ′j−1 and i j > i ′j .

Definition 1.1.5. We equip Rκ with the lexicographic term ordering induced by
the correspondence ui1

1 · · · u
in
n S j
7→ (− j, i1, . . . , in), i.e., we write ᾱui1

1 · · · u
in
n S j
�

β̄ui ′1
1 · · · u

i ′nn S j ′ if (− j, i1, . . . , in)� (− j ′, i ′1, . . . , i ′n) under the lexicographic order,
where ᾱ, β̄ ∈ κ×.

Using this ordering, we define the leading term lead( f̄ ) of a nonzero element
f̄ ∈ Rκ to be its largest term under the ordering. In particular, for f̄ , ḡ ∈ Rκ\{0},
lead( f̄ ḡ)= lead( f̄ ) lead(ḡ).

1Most of the proofs in this section should be credited to Kedlaya, to whom I am thankful for
allowing their inclusion.
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For an ideal Iκ of Rκ , a Gröbner basis of Iκ is a finite subset {r̄1, . . . , r̄m} ⊂ Iκ
such that no leading term of an r̄i has exponents in S and such that the ideal consist-
ing of the leading terms of all elements of Iκ is generated by lead(r̄1), . . . , lead(r̄m).
Such a basis exists because Rκ is Noetherian. By [Eisenbud 1995, Lemma 15.5],
r̄1, . . . , r̄m also generate Iκ .

Proposition 1.1.6. For any f̄ ∈ Rκ , there exists ḡ1, . . . , ḡm, f̄ ′ ∈ Rκ such that

f̄ = ḡ1r̄1+ · · ·+ ḡm r̄m + f̄ ′, (1.1.7)

where any term of f̄ ′ is not divisible by any lead(r̄h), and lead( f̄ )� lead(ḡh r̄h) for
all h.

Proof. Let j be the exponent of S in lead( f̄ ) and let S j f̄( j) be the sum of terms
in f̄ for which the exponents of S are j . Applying [Eisenbud 1995, Proposition-
Definition 15.6] to f̄( j), we can write

f̄( j) ≡ ḡ1,( j)r̄1+ · · ·+ ḡm,( j)r̄m + f̄ ′( j) (mod S · κ[u1, . . . , um][[S]]),

where ḡh,( j) ∈ κ[u1, . . . , um] and lead(ḡh,( j)r̄h)� lead( f̄( j)) for h = 1, . . . ,m and
any term in f̄ ′( j) ∈ κ[u1, . . . , um] is not divisible by any lead(r̄h).

If we repeat the above argument for f̄( j)− S j (ḡ1,( j)r̄1+· · ·+ ḡm,( j)r̄m+ f̄ ′( j)) ∈

S j+1
· κ[u1, . . . , um][[S]] in place of f̄ , we will obtain f̄ ′( j ′) and ḡh,( j ′) for h =

1, . . . ,m and for some j ′ ≥ j + 1. We can then iterate this process.
For h = 1, . . . ,m, put ḡh = S j ḡh,( j) + S j+1ḡh,( j+1) + · · · and f̄ ′ = S j f̄ ′( j) +

S j+1 f̄ ′( j+1)+ · · · ; the power series converge to the elements in Rκ we seek. �

Definition 1.1.8. For f ∈ R, write

f =
∑

i1,...,in, j

fi1,...,in, j u
i1
1 · · · u

in
n S j . (1.1.9)

Of the monomials for which | fi1,...,in, j | = | f |1, there must be one which is lex-
icographically largest; we call the corresponding term fi1,...,in, j u

i1
1 · · · u

in
n S j the

1-leading term of f , denoted by Lead( f ).

Hypothesis 1.1.10. Let I int be an ideal of Rint such that Rint/I int is flat over oK .

Notation 1.1.11. Define I = I int
⊗OK K and Iκ = I int

⊗OK κ; the latter is an ideal
in Rκ by the flatness hypothesis above. Choose r1, . . . , rm ∈ I int which project to
elements of a Gröbner basis r̄1, . . . , r̄m of Iκ .

For f ∈ R, let j f denote the minimal exponents of S in the expression (1.1.9)
of f . Set jI =min{ jrh ; h = 1, . . . ,m}; it is a nonpositive integer.

Notation 1.1.12. In this subsection, fix η0 ∈ (|πK|
−1/ jI ,1). We have |πK|η

jI
0 < 1.
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Notation 1.1.13. Let Rη0 be the Fréchet completion of R for | · |η for η ∈ [η0, 1).
Let Rint

η0
denote { f ∈Rη0 | | f |1 ≤ 1} and put Rη0 = Rint

η0
⊗OK K and Iη0 = I ⊗R Rη0 .

Notation 1.1.14. For an element f ∈Rη0 written as in (1.1.9) and l ∈Z, let π l
K f(l)

be the sum of all terms fi1,...,in, j ui1
1 · · · u

in
n S j for which vK ( fi1,...,in, j ) = l. Thus,

f(l) ∈ Rint
η0

; we use f̄(l) denote its reduction in Rκ .

Lemma 1.1.15. For h = 1, . . . ,m and η ∈ [η0, 1],

|rh|η = 1, |rh,(l)|η ≤ η
jI for l ∈ Z≥0.

Proof. The equality follows from the choice of η0 in Notation 1.1.12. The rest
follows from the definition of jI in Notation 1.1.11. �

Construction 1.1.16. For f ∈ Rη0 with | f |1 = |πK|
l0 , the division algorithm is the

following procedure. Put fl0 = f . Given fl for l ≥ l0, we apply Proposition 1.1.6
to write

f̄l,(l) = ḡl,1r̄1+ · · ·+ ḡl,m r̄m + f̄ ′l,(l),

where ḡl,h ∈ Rκ and lead(ḡl,h r̄h) � lead( f̄l,(l)) for h = 1, . . . ,m and any term of
f̄ ′l,(l) ∈ Rκ is not divisible by any lead(r̄h). For each h, pick lifts gl,h of ḡl,h in Rint

so that gl,h = gl,h,(0), that is, we only lift nonzero terms. Put

fl+1 = fl −π
l
K(gl,1r1+ · · ·+ gl,mrm).

Remark 1.1.17. The division algorithm depends on many choices, but we prove
in Proposition 1.1.21 that the outcome liml→+∞ fl is uniquely determined by f .

Lemma 1.1.18. At each step of the division algorithm, for η∈[η0, 1], h=1, . . . ,m,
we have

|gl,h|η ≤ | fl,(l)|η, | fl+1,(l ′)− fl,(l ′)|η


≤ η jI | fl,(l)|η if l ′ > l,

≤ | fl,(l)|η if l ′ = l,

= 0 if l ′ < l.

(1.1.19)

Proof. The inequality on the left holds because lead(ḡl,h r̄h)� lead( f̄l,(l)). The rest
follows using Lemma 1.1.15. �

Corollary 1.1.20. For h = 1, . . . ,m, the series gh = π
l0
K gl0,h +π

l0+1
K gl0+1,h + · · ·

converges under | · |η for η ∈ [η0, 1). Consequently, gh ∈ Rη0 for h = 1, . . . ,m.

Proof. By Lemma 1.1.18,

|π l
K gl,h|η ≤ |π

l
K fl,(l)|η ≤ |πK|

l max{η jI | fl−1,(l−1)|η, | fl−1,(l)|η}

≤ |πK|
l max{η2 jI | fl−2,(l−2)|η, η

jI | fl−2,(l−1)|η, η
jI | fl−2,(l−2)|η, | fl−2,(l)|η}

≤ . . .

≤ |πK|
l max

l ′<l
{η(l−l ′) jI | f(l ′)|η} ≤max

l ′<l
{(|πK|η

jI
0 )

l−l ′
|π l ′

K f(l ′)|η}.

This goes to zero as l→+∞. �
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Proposition 1.1.21. Keep the notation as above. The quantity f−g1r1−· · ·−gmrm

is the unique element of f + Iη0 for which none of its terms is divisible by any
Lead(rh).

Proof. It follows from the definition of g1, . . . , gm that no term of f −
∑m

i=1 giri

is divisible by any Lead(rh).
Assume that f ∈ Rη0 does not contain any term divisible by any of Lead(rh),

then we need to show that for any nonzero g ∈ Iη0 , there is a term in f +g divisible
by some of Lead(rh). Assume the contrary. Let n= log|πK|

|g|1. Then ḡ(n) ∈ Iκ does
not contain any term which divides any of lead(r̄h). This forces ḡ(n) = 0 because
the leading term of any nonzero element in Iκ is divisible by some lead(r̄h). This
is a contradiction. The lemma follows. �

Lemma 1.1.22. For η ∈ [η0, 1],
∣∣ f −

∑m
i=1 giri

∣∣
η

equals the minimum η-norm of
any element of f + Iη0 . Moreover, this continues to hold if we pass from Rη0 to its
completion R∧,ηη0 under | · |η.

Proof. For η∈[η0, 1], by Lemma 1.1.18, | fl+1|η≤| fl |η, so
∣∣ f−

∑m
i=1 giri

∣∣
η
≤| f |η.

By Proposition 1.1.21, starting with any element in f + Iη0 , the division algorithm
will eventually lead to a unique element f −

∑m
i=1 giri ; hence the first statement

follows.
The second statement follows from the fact that any element in f + Iη0 R∧,ηη0 is

a limit of elements in f + Iη0 . �

Proposition 1.1.23. Let f be a rigid analytic function on the space

Xη0 =
{
(u1, . . . , un, S) ∈ An+1

K

∣∣ η0 ≤ |S|< 1; |u1|, . . . , |un| ≤ 1; r1, . . . , rm = 0
}
.

Then the following are equivalent:

(a) f is induced by an element of Rint
η0

.

(b) There exists a function r : [η0, 1)→ R with limη→1− r(η) ≤ 1, such that for
each η ∈ [η0, 1), f lifts to an element of the | · |η-completion of Rη0 having
η-norm less than or equal to r(η).

Proof. It is clear that (a) implies (b), so assume (b). We can write f as a Fréchet
limit of the projections of some sequence of elements f1, f2, . . . of R, under the
quotient norms associated with | · |η for η ∈ [η0, 1). Use the division algorithm to
write fl = gl,1r1 + · · · + gl,mrm + hl with gl,1, . . . , gl,m, hl ∈ Rη0 . Moreover, as
fl − fl+1 tends to zero under the Fréchet topology, so does hl − hl+1 since it can
be obtained from the division algorithm of fl − fl+1 and Lemma 1.1.18 ensures
that | fl− fl+1|η ≥ |hl−hl+1|η. Hence, the hl form a Fréchet convergent sequence;
denote the limit by h, which is a lift of f . Note that for a fixed η, |hl |η equals the
η-quotient norm of fl , which in turn equals the η-quotient norm of f when l is
large enough. Thus, |h|η ≤ r(η) for all η ∈ [η0, 1). Hence it lies in Rint

η0
. �
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Notation 1.1.24. Define

Aint
= Rint/I int, A = R/I, Aη0 = Rη0/Iη0, Aκ = Aint

⊗oK κ
∼= Rκ/Iκ .

We may view Aκ as an affinoid algebra over κ((S)), whose corresponding rigid
analytic space is denoted by X .

1.2. Quotient norms versus spectral norms. In this subsection, we compare spec-
tral norms with the quotient norms discussed in previous section. As an application,
we deduce that the connected components of Xη0 when η0→ 1− as a rigid space
over K are the same as the connected components of X as a rigid space over κ((S)).

Hypothesis 1.2.1. In this subsection, we assume that Aκ is reduced.

Notation 1.2.2. Let | · |κ,quot denote the quotient norm on Aκ induced by the Gauss
norm on Rκ . Let | · |κ,sp = limn→+∞| ·

n
|
1/n
κ,quot be the spectral norm; it is a norm

because Aκ is reduced. By [Bosch et al. 1984, Theorem 6.2.4/1], there exists c> 0
such that | · |κ,sp ≤ | · |κ,quot ≤ |S|−c

κ | · |κ,sp, where |S|κ is the norm of S in κ((S)).

Notation 1.2.3. In this subsection, we fix η0 in the interval (|πK|
1/(− jI+pc), 1). In

particular, |πK|η
jI

0 < η
pc
0 and η0 > p−1/pc.

Notation 1.2.4. For η ∈ [η0, 1], let | · |η,quot denote the quotient norm on Aη0 or
A induced by the η-Gauss norm on Rη0 or R. Similarly, we have the η-spectral
seminorm | · |η,sp = limn→+∞| ·

n
|
1/n
η,quot; we will see in Lemma 1.2.6 that it is a

norm.

Proposition 1.2.5. The quotient norm | · |1,quot on A is the same as the spectral
(semi)norm | · |1,sp. As a consequence, the map Aint

→ Aκ induces an isomorphism
A◦/A◦◦ ∼= Aκ , where A◦ = { f ∈ A | | f |1,sp ≤ 1} and A◦◦ = { f ∈ A | | f |1,sp < 1}.

Proof. Since Aint/mK Aint
= Aκ is reduced, by [Bosch et al. 1984, 6.2.1/4(iii)], the

quotient norm on A is equal to the spectral seminorm, A◦= Aint, and A◦◦=mK Aint.
This proves the claim. �

Lemma 1.2.6. For η ∈ [η0, 1), we have | · |η,sp ≤ | · |η,quot ≤ η
−pc/(p−1)

| · |η,sp on
Aη0 . The same is true when extending both norms to the completion of Aη0 with
respect to | · |η,quot (which is the same as the completion with respect to the spectral
norm). In particular, this shows that | · |η,sp is a norm on Aη0 .

Proof. It suffices to show that for any f ∈ Aη0 , | f p
|η,quot ≥ η

pc
| f |pη,quot; then it

would follow that | f pn
|η,quot ≥ η

(pn
−1)pc/(p−1)

| f |p
n

η,quot for all n ∈ N by iteration,
and hence the statement follows by taking the limit.

Pick a representative f̃ of f in Rη0 containing no terms divisible by any Lead(rh)

(hence by Proposition 1.1.21, | f̃ |η = | f |η,quot). Fixing η ∈ [η0, 1), we will show
that

| f̃ p
|η,quot =

∣∣∣∑
l

(π l
K f̃(l))p

∣∣∣
η,quot

≥ ηpc
| f̃ |pη = η

pc
| f |pη,quot. (1.2.7)
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First, we remark that, given the middle inequality, the former equality follows; this
is because f̃ p

−
∑

l(π
l
K f̃(l))p consists of products of π l

K f̃(l) with an extra factor p
from the multinomial coefficients. Then∣∣∣ f̃ p

−

∑
l

(π l
K f̃(l))p

∣∣∣
η,quot

≤

∣∣∣ f̃ p
−

∑
l

(π l
K f̃(l))p

∣∣∣
η
≤ p−1

| f̃ |pη < η
pc
| f̃ |pη ,

for η ∈ [η0, 1). So it suffices to prove the middle inequality in (1.2.7). For any l,
we have

|( f̃ (l))p
|κ,quot ≥ |( f̃ (l))p

|κ,sp = | f̃ (l)|pκ,sp ≥ |S|
pc
κ · | f̃ (l)|

p
κ,quot.

Let ( f̃(l))p
= gl,1r1+· · ·+gl,mrm+hl be the result of the first step of applying the

division algorithm to ( f̃(l))p. Then logη|hl,(0)|η = log|S|κ |( f̃ (l))p
|κ,quot and hence

|hl,(0)|η ≥ η
pc
| f̃(l)|

p
η . Moreover, by Lemma 1.1.18, |hl−hl,(0)|η ≤ η

jI |πK|| f̃(l)|
p
η <

ηpc
|πK|

−pl
| f̃ |pη ; this implies that |hl,(0)|η,quot = |hl,(0)|η.

Now, we can write∑
l

(π l
K f̃(l))p

=

∑
l

π
pl

K hl,(0)+
∑

l

π
pl

K (hl − hl,(0)) (1.2.8)

in the quotient ring. The first term on the right-hand side of (1.2.8) has (quotient)
norm at least ηpc

| f̃ |pη because none of the summands is divisible by any Lead(rh).
In contrast, the latter term on the right-hand side of (1.2.8) has norm strictly less
than ηpc

| f̃ |pη . Thus, the inequality in (1.2.7) holds. �

Remark 1.2.9. It is attractive to think that | · |η,sp ≤ | · |η,quot ≤ η
−c
| · |η,sp when

η→ 1−. However, the best we know is that for any c′> c, we have an ε depending
on c′, for which | · |η,sp ≤ | · |η,quot ≤ η

−c′
| · |η,sp for all η ∈ [ε, 1).

Corollary 1.2.10. For a rigid analytic function f on Xη0 , the following are equiv-
alent.

(a) f is an element in Aint
η0

.

(b) There exists a function r : [η0, 1)→ R with limη→1 r(η) ≤ 1, such that for
each η ∈ [η0, 1), | f |η,sp ≤ r(η).

Proof. It follows from combining Lemma 1.2.6 with Proposition 1.1.23. �

Theorem 1.2.11. There are one-to-one correspondences among the following sets:
(a) the idempotent elements of Aκ ; (b) the idempotent elements of Aint

η0
; (c) the

idempotent elements of Aη0 ; and (d) the idempotent elements on Xη0 .
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Proof. By Corollary 1.2.10, the sets (b), (c), and (d) are the same because idempo-
tent elements have spectral norms 1. It suffices to match up (a) and (b). We have a
map from the set of idempotent elements of Aint

η0
to the set of idempotent elements

of Aκ by reducing modulo πK . We first show the injectivity. Let f, g ∈ Rint
η0

be
idempotents whose reductions modulo πK are the same, i.e., f̄ = ḡ ∈ Aκ . This
implies that f̄ p−1

+ f̄ p−2ḡ + · · · + ḡ p−1
= 0 in Aκ . Since f − g = f p

− g p
=

( f − g)( f p−1
+ f p−2g+ · · ·+ g p−1), we have

| f −g|1,quot = |( f −g)( f p−1
+ f p−2g+· · ·+g p−1)|1,quot

≤ | f −g|1,quot | f p−1
+ f p−2g+· · ·+g p−1

|1,quot ≤ | f −g|1,quot |πK|.

This forces | f − g|1,quot = 0 and hence f = g.
To prove surjectivity, we start with an idempotent f̄ ∈ Aκ , viewed as an element

in Rκ with none of its terms divisible by any of Lead(r̄h); pick a lift f̃0 ∈ Rint of f̄
which only contains terms present in f̄ , and let f0 ∈ Aint denote its image in Aint. If
we set h̃0 to the result of applying the division algorithm to f̃ 2

0− f̃0 and h0= f 2
0− f0,

then |h0|1,quot = |h̃0|1,quot ≤ |πK| and |h0|η,quot = |h̃0|η,quot ≤ p−1η−2c < 1 for
all η ∈ [η0, 1), where the latter inequality holds because all terms in f̃0 come
from terms in f̄ having norms at most | f̄ |κ,quot ≤ |S|−c

κ | f̄ |κ,sp = |S|−c
κ . As in the

proof of Hensel’s lemma, we iteratively modify f0 as follows. For α ≥ 0, we set
fα+1 = fα + hα − 2hα fα and

hα+1 := f 2
α+1− fα+1 = ( fα + hα − 2hα fα)2− ( fα + hα − 2hα fα)= h2

α(4hα − 3).

Hence, |hα+1|η,quot≤ |hα|2η,quot for all η∈ [η0, 1]. Thus |hα|η,quot→ 0 as α→+∞;
hence fα converges to an element f ∈ Aint

η0
which is idempotent. It is clear from

the construction that the reduction of f modulo πK is the same as f̄ . This proves
the surjectivity. �

Corollary 1.2.12. When η0 ∈ pQ, there is a one-to-one correspondence between
the connected components of X and those of Xη0 .

Remark 1.2.13. This is the first place where we need the rationality of logp η0

to ensure that we are in the classical rigid analytic space setting to talk about
connected components [Bosch et al. 1984, 9.1.4/8].

1.3. Lifting construction. In order to apply the results from the previous two sub-
sections later in the paper, we, reversing the picture, start with a rigid analytic space
X and try to construct Xη0 from it.

Let κ and K be as before.

Definition 1.3.1. Let X be a reduced affinoid rigid space over κ((S)) with ring
of analytic functions Aκ = Rκ/Iκ where Rκ = κ((S))〈u1, . . . , un〉 and Iκ is some
ideal. The lifting construction refers to the following.
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(1) Find an ideal I int in Rint
= K 〈u1, . . . , un〉((S)) so that Rint/I int is flat over OK

and I int
⊗OK κ = Iκ .

(2) Choose a Gröbner basis of Iκ , lift its elements to r1, . . . , rm ∈ I int as in Nota-
tion 1.1.11, and define η0 as in Notation 1.2.3.

(3) We call the rigid analytic space

Xη0 =
{
(u1, . . . , un, S) ∈ An+1

K

∣∣ η0 ≤ |S|< 1; |u1|, . . . , |un| ≤ 1; r1, . . . , rm = 0
}

the lifting space of X ; it depends only on the choice of I int and η0.

Remark 1.3.2. We do not know if such a lifting space exists in general. The only
obstruction is finding an ideal I int lifting Iκ such that Rint/I int is flat over OK .

Question 1.3.3. It would be interesting to know if this lifting construction can be
globalized for arbitrary rigid spaces over κ((S)). In particular, given a morphism
between two rigid spaces over κ((S)), can we lift the morphism (noncanonically)
to a morphism between (some strict neighborhood of) their lifting spaces? Can
we “glue” the lifting spaces up to homotopy? This situation is very similar to
Berthelot’s construction [1996] of rigid cohomology.

For an affinoid subdomain of a polydisc, we explicate this lifting process.

Example 1.3.4. Let p1, . . . , pm∈κ[[S]][u1, . . . , un] be polynomials and take a1,

. . . , am ∈ N. Consider the following affinoid subdomain of the unit polydisc:

X =
{
(u1, . . . , un) ∈ An

κ((S))

∣∣ |u1|, . . . , |un| ≤ 1; |p1| ≤ |S|a1, . . . , |pm | ≤ |S|am
}
.

The ring of analytic functions on X is

κ((S))〈u1, . . . , un, v1, . . . , vm〉
/
(v1Sa1 − p1, . . . , vm Sam − pm).

For each i , let Pi be a lift of pi in OK [[S]][u1, . . . , un] (here we allow Pi to have
new terms other than the terms of pi ). We claim that the ring

OK 〈u1, . . . , un, v1, . . . , vm〉((S))
/
(v1Sa1 − P1, . . . , vm Sam − Pm) (1.3.5)

is flat over OK . This is because the ring

OK ((S))[u1, . . . , un, v1, . . . , vm]
/
(v1Sa1 − P1, . . . , vm Sam − Pm),

being isomorphic to OK ((S))[u1, . . . , un], is flat and hence torsion-free over OK ,
and (1.3.5) is its completion with respect to the topology induced by the various
(p, S)r OK [[S]][u1, . . . , un, v1, . . . , vm], for r ∈ N. Therefore, by Definition 1.3.1,

Xη0 =
{
(u1, . . . , un, S) ∈ An+1

K

∣∣ η0 ≤ |S|< 1, |u1|, . . . , |un| ≤ 1,

|P1| ≤ |S|a1, . . . , |Pm | ≤ |S|am
}

is a lifting space for X , for some η0 ∈ (0, 1).
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2. Differential conductors

In this section, we recall the definition of differential Swan conductors following
[Kedlaya 2007]. Along the way, we define the differential Artin conductors using
a slightly different normalization.

2.1. Setup. Recall that we do not use any notation from the previous section.

Convention 2.1.1. Let J be an index set. We write eJ for a tuple (e j ) j∈J . For
an element x , we use xeJ to denote (xe j ) j∈J . For another tuple bJ , we set beJ

J =∏
j∈J be j

j if only a finite number of e j are nonzero. We also use
∑n

eJ=0 to mean the
sum over e j ∈ {0, 1, . . . , n} for each j ∈ J , only allowing finitely many summands
to be nonzero.

Definition 2.1.2. For a finite field extension l/k of characteristic p > 0, a p-basis
of l over k is a set (c j ) j∈J ⊂ l such that ceJ

J , where e j ∈ {0, 1, . . . , p− 1} for all
j ∈ J and e j = 0 for all but a finite number of j , form a basis of the vector space l
over kl p. By a p-basis of l we mean a p-basis of l over l p; it is an empty set if and
only if l is perfect. (For more details, see [Eisenbud 1995, p. 565] or [Grothendieck
1964, Ch. 0, §21].)

Remark 2.1.3. For a p-basis cJ ⊂ l, the dcJ form a basis for the differentials �1
l

as an l-vector space.

Convention 2.1.4. Throughout this paper, all differentials are p-adically contin-
uous. In other words, for a continuous homomorphism A→ B of p-adic rings,
�1

B/A is the relative p-adically continuous differentials. Sometimes, we may use in
the notation the corresponding geometric objects, such as the rigid space Max(B),
instead of A or B. When A = Zp, we may suppress it from the notation, writing
simply �1

B .
For a homomorphism A→ B between rings, a∇-module or a differential module

over B relative to A is a finite projective B-module M equipped with an integrable
connection ∇ : M → M ⊗ �1

B/A. Sometimes, we may use the corresponding
geometric objects instead of A or B in the notation. When A = Zp, we may omit
the reference to the base ring.

Notation 2.1.5. Let k be a complete discretely valued field of equal characteristic
p> 0. Denote its ring of integers, maximal ideal, and residue field by Ok , mk , and
κk , respectively. Fix a uniformizer s and a noncanonical isomorphism

κk((s))' k. (2.1.6)

Let vk( · ) denote the valuation, normalized so that vk(s) = 1. Let (b̄ j ) j∈J be a
p-basis of κk , where J is an index set. Let b j be the image of b̄ j in k under the
isomorphism (2.1.6). Hence, (db j ) j∈J and ds form a basis of �1

Ok/Fp
. We set

κ0 =
⋂

n>0 k pn ∼=
⋂

n>0 κ
pn

k ; it is a perfect field.



On ramification filtrations and p-adic differential modules, I 983

Notation 2.1.7. Let OK denote the Cohen ring of κk with respect to (b̄ j ) j∈J and let
(B j ) j∈J ⊂ OK be the canonical lifts of the p-basis. (For more about Cohen rings,
see [Kedlaya 2007, §3.1] or [Whitney 2002].) Let K = Frac OK . We use OK0 to
denote the ring of Witt vectors W (κ0) of κ0, as a subring of OK . Let K0=Frac OK0 .

We insert here a proposition discussing the functoriality of Cohen rings. For a
more detailed study of functoriality of Cohen rings, see [Whitney 2002].

Proposition 2.1.8. Keep the notation as above and let R be a complete Noetherian
local ring with the maximal ideal m containing p. Assume that we have a homo-
morphism ψ : κk ↪→ R/m. Then, for any B ′J ⊆ R lifting ψ(b̄J ), there exists a
unique continuous homomorphism ψ : OK → R lifting ψ and sending B j to B ′j for
all j ∈ J .

Proof. For any n ∈N, a level-n expression of an element g ∈OK is a (noncanonical)
way of writing g as

g =
∑

i,i ′≥0

pn
−1∑

eJ=0

pi Apn

i,i ′,eJ
BeJ

J (2.1.9)

for some Ai,i ′,eJ ∈ OK and for a fixed i , Ai,i ′,eJ = 0 when i ′ � 0 for all eJ . Then
we set

ψn(g)=
∑

i,i ′≥0

pn
−1∑

eJ=0

pi Ãpn

i,i ′,eJ
B ′eJ

J

where Ãi,i ′,eJ is some lift of ψ(ai,i ′,eJ ) in R with ai,i ′,eJ being the reduction of
Ai,i ′,eJ in κk . Different choices of lifts Ãi,i ′,eJ may change the definition of ψn(g)
by an element in mn; a different level-n expression as in (2.1.9) may also vary
ψn(g) by some element in mn . If n ≥ 1, we can rewrite a level-n expression of g
as in (2.1.9) in the form

g =
∑

i,i ′≥0

p−1∑
e′J=0

pn−1
−1∑

eJ=0

pi (Ap
i,i ′,eJ+pn−1e′J

B
e′J
J )

pn−1
BeJ

J ,

lowering the level by 1. From this we conclude that ψn(g)≡ ψn−1(g) mod mn−1.
Taking n →∞, we get our map ψ(g) = limn→∞ ψn(g). It is not hard to check
that ψ is actually a homomorphism; this is because for g, h ∈ OK , the formal sum
and product of level-n expressions of g and h are level-n expressions of g+h and
gh, respectively.

To prove the uniqueness, take another continuous homomorphism ψ ′ : OK → R
satisfying all the conditions. Then, for a level-n expression of g as in (2.1.9),

ψ ′
(∑

i,i ′≥0

pn
−1∑

eJ=0

pi Apn

i,i ′,eJ
BeJ

J

)
=

∑
i,i ′≥0

pn
−1∑

eJ=0

piψ ′(Ai,i ′,eJ )
pn

B ′eJ
J
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is exactly one possible definition for ψn . As we proved above, ψ ′(g) ≡ ψn(g) ≡
ψ(g) mod mn . Let n→∞ and we have ψ = ψ ′. �

Corollary 2.1.10. Suppose J = {1, . . . ,m}. There exists a unique continuous
homomorphism ψ : OK → OK [[δ1, . . . , δm]] such that for all j∈J , ψ(B j )=B j+δ j

and for any g∈OK , ψ(g)− g lies in the ideal generated by δ1, . . . , δm . Moreover,
ψ is an OK0-homomorphism.

Proof. The first statement follows from previous proposition. By the functoriality
of Witt vectors, ψ has to be identity when restricted to OK0 because κ0 is perfect.
Hence, ψ is an OK0-homomorphism. �

Corollary 2.1.11. Assume that κk has a finite p-basis bJ . Fix j ∈ J and let b′j ∈Ok

be an element such that b′j ≡ b j (mod mk). Then there exists an automorphism
g∗ : k→ k such that g∗(s)= s, g∗(b j )= b′j , and g∗(bJ\ j )= bJ\ j .

Proof. Applying Proposition 2.1.8 to R = κk[[s]] and m= (s) gives us a homomor-
phism g∗ : OK /(p)= κk→ k[[s]] such that g∗(b j )= b′j , and g∗(bJ\ j )= bJ\ j . One
can extend this to an automorphism g∗ : k→ k by setting g∗(s)= s. �

2.2. Construction of differential modules. In this subsection we review Tsuzuki’s
construction [2002] of differential modules over the Robba ring associated with
p-adic Galois representations. For a systematic treatment, one may consult, for
example, [Kedlaya 2007, §3].

Notation 2.2.1. Keep the notation as in the previous subsection. Fix a separable
closure ksep of k and let Gk = Gal(ksep/k) be the absolute Galois group of k.

For a (not necessarily algebraic) separable extension l/k of complete discretely
valued fields, the naı̈ve ramification degree e is the index of the valuation group of
k in that of l; note that this might not be the same as the usual ramification degree
because the inseparable part of the residue field extension κl/κk is not counted in.
We say l/k is tamely ramified if p - e and the residue field extension is algebraic
and separable. Moreover, if e = 1, we say that l/k is unramified.

Notation 2.2.2. By a representation of Gk , we mean a continuous homomorphism
ρ : Gk → GL(Vρ), where Vρ is a vector space over a (topological) field F of
characteristic zero. We say that ρ is a p-adic representation if F is a finite extension
of Qp.

Let F be a finite extension of Qp. Let O and Fq denote its ring of integers and
residue field, respectively, where q is a power of p. Write Zq for the Witt vectors
W (Fq) and Qq for its fraction field. By an O-representation of Gk , we mean a
continuous homomorphism ρ : Gk→ GL(Vρ) with Vρ a finite free O-module.

We always assume that Fq ⊆ κ0 (see Remark 2.4.2). Let K ′= K F . Since F/Qq

is totally ramified, we have the ring of integers OK ′ ∼= OK ⊗Zq O. Let vK ′ denote
the valuation on K ′ normalized so that vK ′(p)= 1.
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Notation 2.2.3. Let Ck be the Cohen ring of k relative to the p-basis {(b j ) j∈J , s}.
By the functoriality of Cohen rings (Proposition 2.1.8), Ck has a natural structure
as an OK -algebra, via the isomorphism (2.1.6). In particular, the (canonical) lifts
of (b j ) j∈J in Ck are (B j ) j∈J . We denote the canonical lift of s in Ck by S.

Put 0 = Ck ⊗Zq O; it is a complete discrete valuation ring since O is totally
ramified over Zq . It carries a Frobenius structure φ lifting the q-th power Frobenius
on k which acts trivially on O.

Definition 2.2.4. Let σ : R→ R be an endomorphism. A (σ,∇)-module over R
is a ∇-module over R (relative to Zp) equipped with an isomorphism σ ∗M→ M
of ∇-modules.

Definition 2.2.5. For every O-representation ρ : Gk → GL(Vρ), define its associ-
ated (φ,∇)-module over 0 by

D(ρ)= (Vρ ⊗O 0̂unr)Gk ,

where 0̂unr is the p-adic completion of the maximal unramified extension of 0. All
∇-modules we encounter in this section are relative to Zp, so we omit the reference
to the base ring Zp in the notation.

Proposition 2.2.6. For any Frobenius lift φ on 0, the functor D from O-represen-
tations of Gk to (φ,∇)-modules over 0 is an equivalence of categories.

Proof. For the convenience of the reader, we briefly describe the functor here; for
more details, one may consult [Kedlaya 2007, Propositions 3.2.7 and 3.2.8]. It is
well-known that D establishes an equivalence between the category of representa-
tions and the category of φ-modules over 0 (finite free 0-modules with semilinear
φ-actions), with V (M)= (M⊗0 0̂unr)φ=1 as the inverse. The nontrivial part is that
every φ-module over 0 admits a unique structure of (φ,∇)-module; this involves
a standard approximation argument. �

Definition 2.2.7. Let Ik =Gal(ksep/kunr) be the inertia subgroup of Gk , where kunr

is the maximal unramified extension of k in ksep. We say that an (O-)representation
ρ has finite local monodromy if the image ρ(Ik) is finite.

For an O-representation ρ of finite monodromy, one can refine the (φ,∇)-
module associated with ρ as follows.

Construction 2.2.8. Since Ck has an OK -algebra structure, any element x ∈0 can
be uniquely written in the form of

∑
i∈Z xi Si for xi ∈ OK ⊗Zq O = OK ′ such that

the indices i for which vK ′(xi )≤ n are bounded below.
For r > 0, put 0r

= {x ∈ 0 | limn→−∞ vK ′(xn)+ rn =∞} and 0†
=
⋃

r>0 0
r ;

the latter is commonly known as the integral Robba ring over K ′. It is not hard to
show that the Frobenius φ preserves 0† and that �1

0†/O =
⊕

j∈J 0
†d B j ⊕ 0

†d S.
Also, 0† is a Henselian discrete valuation ring as cited in Lemma 2.2.10.
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Since OK ′ ↪→ 0†, we can identify Ounr
K ′ ↪→ (0†)unr, where the superscript unr

means taking the maximal unramified extensions of discrete valuation rings. Put

0̃†
= Ôunr

K ⊗Ounr
K
(0†)unr

⊂ 0̂unr,

where we take the p-adic completion. For a p-adic representation ρ with finite
local monodromy, define

D†(ρ)= D(ρ)∩ (Vρ ⊗O 0̃
†)= (Vρ ⊗O 0̃

†)Gk . (2.2.9)

Lemma 2.2.10 [Kedlaya 2005, Proposition 3.20]. The integral Robba ring 0† is a
henselian discrete valuation ring.

Theorem 2.2.11 [Kedlaya 2007, Theorem 3.3.6]. Let φ be a Frobenius lift on 0
acting on 0†. Then D† induces an equivalence between the category of O-repre-
sentations with finite local monodromy and the category of (φ,∇)-modules over0†.

Notation 2.2.12. For I ⊂ [0,+∞) an interval, let A1
K (I ) denote the annulus (cen-

tered at the origin) with radii in I . We do not impose any rationality condition on
the endpoints of I , so this space should be viewed as an analytic space in the sense
of [Berkovich 1990]. If I = [α, β], we write A1

K [α, β] for A1
K ([α, β]).

For 0 ≤ α ≤ β < ∞, let K 〈α/t, t/β〉 denote the ring of analytic functions
on A1

K [α, β]. (If α = 0, we write K 〈t/β〉 instead.) For η ∈ [α, β]\{0}, the ring
K 〈α/t, t/β〉 admits an η-Gauss norm: for f =

∑
i∈Z ai x i

∈ K 〈α/t, t/β〉,

| f |η =max
i∈Z
{|ai |η

i
}.

Notation 2.2.13. For η0∈ (0, 1), we use Z≥η0
k as a shorthand for A1

K [η0, 1). Denote
the ring of analytic functions on it by R

η0
K . We define the Robba ring over K to be

RK =
⋃
η∈[η0,1) R

η

K . Also let R
η0
K ′ = R

η0
K ⊗Qq F and RK ′ = RK ⊗Qq F . We will

only be interested in the behavior when η0 is close to 1.

Remark 2.2.14. We use k in the subscript of Z≥η0
k because the space is functorial

in k but not in K , as we made a noncanonical choice in (2.1.6).

Now, we restrict the (φ,∇)-module D†(ρ) to the Robba ring over K as follows.

Construction 2.2.15. Consider the natural injection 0† ↪→ RK ′ . Note that the
Frobenius φ extends by continuity to RK ′ . Thus, from an O-representation ρ with
finite local monodromy, we obtain a differential module Eρ = D†(ρ) ⊗0† RK ′

over RK ′ .
Moreover, if we start with a p-adic representation ρ : Gk → GL(Vρ) of finite

local monodromy, we can choose an O-lattice V int
ρ of Vρ stable under the action of

Gk . Then we associate a differential module Eρ with the O-representation given
by V int

ρ . It is clear that Eρ does not depend on the choice of the lattice V int
ρ . We

call Eρ the differential module associated to ρ.
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Proposition 2.2.16 [Kedlaya 2007, Proposition 3.5.1]. The (φ,∇)-module Eρ over
RK ′ does not depend on the choice of the p-basis (up to a canonical isomorphism).

Proposition 2.2.17. The differential module Eρ descends to a differential module
over R

η0
K ′ for some η0 ∈ (0, 1).

Proof. Defining a differential module requires only a finite amount of data. So, we
can realize it on a certain annulus. See [Kedlaya 2007, Remark 3.4.1]. �

Remark 2.2.18. We will often make η0 closer to 1− in proving the main theorems.
We will see later that all we care about is the asymptotic behavior of Eρ as η0→1−.

Remark 2.2.19. The current construction of associating a differential module with
a representation (Constructions 2.2.8 and 2.2.15) is not functorial with respect to
the base field F of the representation. If F ′ is a finite extension of F , for a p-adic
representation ρ over F of finite local monodromy, one can naturally obtain ρ⊗F F ′

as a p-adic representation over F ′. Assume that κk contains the residue field Fq ′

of F ′. Then the differential modules associated with ρ and ρ ⊗F F ′ are the same
if F ′/F is unramified and Eρ ⊗F F ′ = Eρ⊗F F ′ if F ′/F is totally ramified.

There are two reasons for keeping this nonfunctoriality flaw. For one, the dif-
ferential conductors we define later will be the same if we change ρ to ρ ⊗F F ′.
For the other, if we define Eρ using the tensor over Zp instead of Zq in Notation
2.2.3, in which case we do have the functoriality, we will get the direct sum of
[Fq : Fp] copies of Eρ as differential modules. When proving the integrality of
Swan conductors, we have to come back to study Eρ because K⊗Zp O' K ′⊕[Fq :Fp]

is not a field if q > p.

2.3. Differential conductors. Given a p-adic representation ρ of finite local mon-
odromy, Kedlaya [2007, §3.5] showed that one can define a differential Swan
conductor for ρ, using the p-adic differential module associated with ρ. In this
subsection, we review this definition and give an analogous definition for the dif-
ferential Artin conductor.

Remark 2.3.1. Starting from this subsection, the Frobenius φ plays almost no
role in our theory; most of the arguments work for solvable differential modules
[Kedlaya 2007, Definition 2.5.1], and since all the decompositions for differen-
tial modules we encounter are canonical, they automatically respect the Frobenius
structure. The only place we need Frobenius is to link back with representations;
see Proposition 2.3.22.

Hypothesis 2.3.2. In this subsection, we make an auxiliary hypothesis that k ad-
mits a finite p-basis {b1, . . . , bm, s}.

Notation 2.3.3. Let J ={1, . . . ,m} for notational convenience. We save the letters
j and m for indexing the p-basis, except in Section 4.1 (see Notation 4.1.2). We
also use J+ to denote J ∪ {0}, where 0 refers to the uniformizer s in the p-basis.
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Definition 2.3.4. Let E be a differential field of order 1 and characteristic zero,
i.e., a field of characteristic zero equipped with a derivation ∂ . Assume that E is
complete for a nonarchimedean norm | · |. Let M be a finite differential module
over E , i.e., a finite dimensional E-vector space equipped with an action of ∂
satisfying the Leibniz rule. The spectral norm of ∂ on M is defined to be

|∂|M,sp = lim
n→∞
|∂n
|
1/n
M

for any norm | · |M on M ; it does not depend on the choice of | · |M . One can prove
that |∂|M,sp ≥ |∂|E,sp [Kedlaya 2010, Lemma 6.2.4].

Remark 2.3.5. For a complete extension E ′ of E , to which the derivation ∂ ex-
tends, M⊗E E ′ can be viewed as a differential module over E ′ with spectral norm
|∂|M⊗E E ′,sp =max{|∂|M,sp, |∂|E ′,sp}.

Notation 2.3.6. Let ∂0= ∂/∂S, ∂1= ∂/∂B1, . . . , ∂m = ∂/∂Bm denote the elements
of a dual basis of �1

OK [[S]]/OK0
with respect to d S, d B1, . . . , d Bm ; they also give a

dual basis of �1
R
η0
K ′/K0

for all η0 ∈ (0, 1). For a (φ,∇)-module E over R
η0
K ′ , these

differential operators act on E, commuting with each other and commuting with
the Frobenius action.

Notation 2.3.7. For η ∈ [α, β] ⊂ (0,+∞), we denote by F ′η the completion of
Frac(K ′〈α/t, t/β〉) with respect to the η-Gauss norm; this does not depend on the
choices of α and β.

Example 2.3.8. For η ∈R>0, the operator norms of ∂J+ and spectral norms on F ′η
are as follows.

|∂ j |F ′η =

{
η−1 for j = 0,
1 for j ∈ J ;

|∂ j |F ′η,sp =

{
p−1/(p−1)η−1 for j = 0,
p−1/(p−1) for j ∈ J.

Definition 2.3.9. Let E be a ∇-module over R
η0
K ′ . For η ∈ [η0, 1), we set Eη =

E⊗R
η0
K ′

F ′η, which inherits differential operators ∂J+ . Define the (nonlogarithmic)
generic radius (of convergence) T (E, η) of Eη to be

min
{

p−1/(p−1)

|∂ j |Eη,sp
; j ∈ J+

}
. (2.3.10)

If Eη,i (i = 1, . . . , n) are the Jordan–Hölder factors of Eη as a ∇-module over F ′η,
we define the (nonlogarithmic) radius multiset S(E, η) to be the set consisting of
the generic radius of Eη,i with multiplicity dimF ′η Eη,i for each i .

We define the logarithmic generic radius (of convergence) Tlog(E, η) to be

min
{

p−1/(p−1)η−1

|∂0|Eη,sp
,

p−1/(p−1)

|∂ j |Eη,sp
; j ∈ J

}
. (2.3.11)

Similarly, we define the logarithmic radius multiset Slog(E, η) of E.
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Remark 2.3.12. We have T (E, η) ≤ η; more generally, every element in S(E, η)
is less than or equal to η.

Remark 2.3.13. The logarithmic generic radius and logarithmic radius multiset are
the same as the notions of the generic radius of convergence and radius multiset
in [Kedlaya 2007].

Definition 2.3.14. For j ∈ J+, we call ∂ j dominant for Eη if the minimum of
T (E, η) in (2.3.10) is achieved by the term involving the spectral norm of ∂ j . The
term log-dominant is defined likewise, with reference to Tlog(E, η) in (2.3.11).

Lemma 2.3.15. For a (φ,∇)-module E over R
η0
K ′ and j ∈ J+, there exists η′0 ∈

(0, 1) such that one of the following two statements is true:

• For all η ∈ [η′0, 1), ∂ j is (log-)dominant for Eη.

• For all η ∈ [η′0, 1), ∂ j is not (log-)dominant for Eη.

Proof. The logarithmic case is proved in [Kedlaya 2007, Lemma 2.7.5]. The proof
for nonlogarithmic case is very similar. �

Definition 2.3.16. Keep the notation as in previous lemma. For j ∈ J+, ∂ j is called
eventually (log-)dominant for E if it is (log-)dominant for Eη for η→ 1−.

Lemma 2.3.17. Keep the notation as in Lemma 2.3.15. Assume that ∂0 is not even-
tually dominant and ∂ j is. Consider the rotation g∗ : B j 7→ B j + S, BJ\ j 7→ BJ\ j ,
and S 7→ S given by Proposition 2.1.8. Then ∂0 = ∂/∂S is eventually dominant
in g∗E.

Proof. Use the fact that the action of ∂0 on g∗E is the pull-back of the action of
∂0+ ∂ j on E. For details, see the proof of [Kedlaya 2007, Lemma 2.7.9]. �

Remark 2.3.18. The rotation g in the lemma corresponds to changing the iso-
morphism (2.1.6) so that b̄ j is sent to b j + s instead; such an isomorphism can
be obtained by Corollary 2.1.11. In particular, if Eρ comes from a p-adic rep-
resentation ρ of finite local monodromy by Constructions 2.2.8 and 2.2.15, g∗Eρ
is the differential module associated with the same ρ using the aforementioned
alternative isomorphism in place of (2.1.6).

Proposition 2.3.19. The functions

f (r)= log T (E, e−r ) and flog(r)= log Tlog(E, e−r )

on (0,− log η0] are piecewise linear, concave functions with slopes in 1
(rank E)!

Z.
They are linear in a neighborhood of 0.

Proof. The logarithmic case is proved in [Kedlaya 2007, §2.5]. For the nonlog-
arithmic case, the only difference is a factor η−1 in the spectral norm of ∂0, which
gives an extra linear term r . �
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Definition 2.3.20. As a consequence of the previous proposition, there exists bdif(E)

∈ Q≥0 and η0 ∈ (0, 1) such that T (E, η) = ηbdif(E) for all η ∈ [η0, 1). This bdif(E)

is called the (nonlogarithmic) differential ramification break of E. We say that E

has uniform slope b if the radius multiset S(E, η) consists only of ηb when η→ 1.
The notions of logarithmic differential ramification break bdif,log(E) and uniform
log-slope b are defined likewise, with reference to Tlog(E, η) and Slog(E, η).

The ramification breaks give rise to the break decomposition.

Theorem 2.3.21. Let E be a (φ,∇)-module over R
η0
K ′ , for some η0 ∈ (0, 1). Then

after making η0 sufficiently close to 1−, there exists a unique decomposition of
(φ,∇)-modules E=

⊕
b∈Q≥1

Eb (resp. E=
⊕

b∈Q≥0
Eb,log) over R

η0
K ′ , where each

of Eb (resp. Eb,log) has uniform slope (resp. log-slope) b.

Proof. Since the differential operators act trivially on O and commute with φ,
It suffices to obtain the decomposition of E as a ∇-module over A1

K ′[η0, 1); the
uniqueness of the decomposition of E follows from the uniqueness of that over F ′η
for η ∈ [η0, 1). The logarithmic part of this theorem is proved in [Kedlaya 2007,
Theorem 2.7.2]. We will give the proof of the nonlogarithmic decomposition by
applying several lemmas from the same paper.

We need to show that if E does not have uniform slope at least 1, then E is
decomposable when η0 is taken sufficiently close to 1. (See Remark 2.3.12 for
the reason for having 1 instead of 0.) If ∂0 is eventually dominant, the decompo-
sition theorem of Christol and Mebkhout [Kedlaya 2007, Lemma 2.7.3] gives the
decomposition. If ∂0 is not eventually dominant, Lemma 2.3.15 implies that ∂ j is
eventually dominant for some j ∈ J . By Lemma 2.3.17, ∂0 is eventually dominant
for g∗E. Applying the decomposition theorem [Kedlaya 2007, Lemma 2.7.3] to
g∗E and pulling back the decomposition along g−1, we obtain a nontrivial decom-
position of E on R

η0
K ′ for some η0 ∈ (0, 1). �

Proposition 2.3.22. In Theorem 2.3.21, if the (φ,∇)-module Eρ is associated with
a p-adic representation ρ of finite local monodromy, then the decomposition of
(φ,∇)-modules induces a direct sum decomposition of the representation ρ so
that each direct summand of Eρ is the differential module associated with a direct
summand of ρ.

Proof. By slope filtration [Kedlaya 2007, Theorem 3.4.6], the Frobenius action on
each direct summand of E is of unit-root; the decomposition of the representation
follows by [Kedlaya 2007, Proposition 3.4.4]. �

Definition 2.3.23. Let ρ : Gk → GL(Vρ) be a p-adic representation with finite
local monodromy. Let E be the differential module corresponding to Vρ/V Ik

ρ by
Constructions 2.2.8 and 2.2.15, where V Ik

ρ is the unramified piece of Vρ consisting
of the elements in Vρ which are fixed by Ik . By Theorem 2.3.21 above, there
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exists a multiset {a1, . . . , ad} such that for all η sufficiently close to 1, S(E, η) =
{ηa1, . . . , ηad }. Define the differential Artin conductor of E (or ρ) by

Artdif(E)= Artdif(ρ)= a1+ · · ·+ ad .

The differential Swan conductor of E (or ρ), denoted by Swandif(E) or Swandif(ρ),
is defined similarly, by adding the subscript log everywhere.

Remark 2.3.24. In this definition, we split off the unramified part, because it has
both conductors 0. We need to do so because the convergence radius multiset
cannot distinguish between the unramified and the tame parts, which give different
contributions to the Artin conductor. This does not matter for Swan conductors,
and we may define the Swan conductor without first taking out the unramified
piece.

Remark 2.3.25. By [Kedlaya 2007, Proposition 2.6.6], the definition of differ-
ential Swan conductors does not depend on the choice of a uniformizer s and a
p-basis {b1, . . . , bm, s}. We are also free to remove Hypothesis 2.3.2 and define
the differential Swan conductors for arbitrary complete discretely valued fields of
equal characteristic p [Kedlaya 2007, Corollary 3.5.7]. A similar statement holds
for differential Artin conductors; the proof is the same as for Swan conductors.

2.4. Basic properties. We do not impose any hypothesis on k.

Theorem 2.4.1. Differential conductors satisfy the following properties:

(0) When the residue field κk is perfect, the differential Artin and Swan conductors
are the same as the classical ones defined in [Serre 1979].

(1) For any representation ρ of finite local monodromy, Swandif(ρ) ∈ Z≥0 and
Artdif(ρ) ∈ Z≥0.

(2) Let k ′/k be a tamely ramified extension of ramification degree e′. Let ρ be a
representation of Gk of finite local monodromy and let ρ ′ denote the restriction of
ρ to Gk′ . Then Swandif(ρ

′)= e′ ·Swandif(ρ). If e′= 1, i.e., k ′/k is unramified, then
Artdif(ρ

′)= Artdif(ρ).

(3) Let ρ be a faithful p-adic representation of the Galois group of a Galois ex-
tension l/k. If l/k is tamely ramified and not unramified, then bdif(ρ) = 1 and
bdif,log(ρ)= 0. If l/k is unramified, bdif(ρ)= bdif,log(ρ)= 0.

(4) Put G0
k = Gk and Ga

k = Ik for a ∈ (0, 1]. For a > 1, let Ra be the set of finite
image representations ρ with differential ramification breaks less than a. Define
Ga

k =
⋂
ρ∈Ra

(Ik ∩ker ρ) and write Ga+
k for the closure of

⋃
b>a Gb

k . This defines a
differential filtration on Gk such that for all finite image representations ρ, ρ(Ga

k )

is trivial if and only if ρ ∈ Ra .
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Similarly, put G0
k,log = Gk . For a > 0, let Ra,log be the set of finite image

representations ρ with logarithmic differential ramification breaks less than a. De-
fine Ga

k,log =
⋂
ρ∈Ra,log

(Ik ∩ ker ρ) and write Ga+
k,log for the closure of

⋃
b>a Gb

k,log.
This defines a differential logarithmic filtration on Gk such that for all finite image
representations ρ, ρ(Ga

k,log) is trivial if and only if ρ ∈ Ra,log.
For a > 0, the group Ga

k/Ga+
k is abelian and killed by p (and trivial if a /∈Q).

For a > 1, the group Ga
k,log/Ga+

k,log is abelian and killed by p (and trivial if
a /∈Q).

Proof. For (0), see [Kedlaya 2005, Theorem 5.23]. For the rest of the statements,
the proof for Swan conductors can be found in [Kedlaya 2007, §3.5]; we will
only prove the corresponding properties for differential Artin conductors. As in
the proof for differential Swan conductors, we may first reduce to the case where
Hypothesis 2.3.2 holds.

(1) We can follow the proof of [Kedlaya 2007, Theorem 2.8.2], because of the
decomposition Theorem 2.3.21. An alternative proof is to apply Lemma 2.3.17,
and reduce to the case where ∂0 is dominant (see also Remark 2.3.18); then one can
forget about ∂1, . . . , ∂m and hence reduce to the perfect residue field case, which
is statement (0) of the theorem.

(2) Since an unramified extension l/k only changes the field K but not the uni-
formizer s, we can use the same s as the uniformizer of l. The corresponding
differential module Eρ′ of ρ ′ is just a simple extension of scalars. Since the cal-
culation of spectral norms does not depend on the base field (see Remark 2.3.5),
we compute the same result on spectral norms and hence have the same Artin
conductor.

(3) is an immediate consequence of the Swan case. Attention: differential ramifi-
cation breaks cannot distinguish unramified extensions from tamely ramified ones.
(See also Remark 2.3.24.)

(4) The proof for the nonlogarithmic differential filtration is much simpler than
the logarithmic case because of the different normalization in Definition 2.3.9. By
virtue of the proof of [Kedlaya 2007, Theorem 3.5.13], it suffices to show that we
can rotate so that ∂0 becomes dominant; this is the content of Lemma 2.3.17. �

Remark 2.4.2. The invariance of the differential conductors under unramified base
changes enables us to assume that κ0 is algebraically closed. This justifies the
assumption we made in Notation 2.2.2.

3. The thickening technique

In this section, we introduce a thickening technique. Loosely speaking, it consists
in constructing what can be thought of as a tubular neighborhood of the diagonal
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embedding of A1
K [η0, 1) into A1

K [η0, 1)×K0 A1
K [η0, 1), but note that the latter rigid

space is not really well-defined.
We start with a geometric interpretation of this construction and then move on

to the abstract definition of the thickening space.
We keep Hypothesis 2.3.2 throughout this section.

Notation 3.0.1. For α ∈ (0,+∞), denote by Am
K [0, α] and Am

K [0, α) the closed
and open polydiscs with radius α and center at the origin. Let K 〈u1/α, . . . , um/α〉

denote the ring of analytic functions on the disc Am
K [0, α].

Later, we will see many homomorphisms between rings of functions on K-rigid
spaces, which are only K0-linear. It is unfair to say that they induce morphisms
of rigid spaces; however, we prefer to keep some geometric flavor of the whole
construction. On the other hand, these rigid spaces are all quasi-Stein or affinoid;
knowing the ring of analytic functions is equivalent to knowing the rigid spaces.

Notation 3.0.2. For a continuous homomorphism f ∗ : A→ B between affinoid
or Fréchet algebras (not necessarily respecting the ground field K ), we write for-
mally f :Max(B)→Max(A), as the geometric incarnation of the homomorphism.
Pullbacks along maps and Cartesian diagrams are thought of as (completed) tensor
products. (In fact, in all cases we encounter, we do not need to take the completion
for the tensor products.) In short, whenever such a map is given, strictly speaking,
we should view it as a continuous ring homomorphism.

3.1. Geometric thickening. In this subsection, we describe the thickening tech-
nique when the residue field κk can be realized as the field of rational functions on
a smooth κ0-variety. The purpose of this subsection is solely to provide some geo-
metric intuition for the thickening construction in the next subsection; the content
in this subsection will not be used in the rest of this paper.

Hypothesis 3.1.1. Only in this subsection, we assume that the field κk is a finite
separable extension of κ0(b̄1, . . . , b̄m).

Construction 3.1.2. Let X be a smooth variety over κ0 whose field of rational
functions is κk ; such an X exists because we may realize it as an affine scheme
étale over Spec κ0[b̄1, . . . , b̄m]which induces the extension κk/κ0(b̄1, . . . , b̄m). We
may further shrink X so that it is the special fiber of an affine smooth formal
scheme X over OK0 of topological finite type, i.e., X×Spf OK0

Spec κ0= X . We may
further shrink X and X so that we have lifts B1, . . . , Bm of b̄1, . . . , b̄m on X and
d B1, . . . , d Bm form a basis of the sheaf of relative differentials �1

X/OK0
. We use

X to denote the “generic fiber” of X as a rigid space over Sp(K0), in the sense of
Raynaud; it is affinoid.
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Consider the commutative diagram

X
_�

��

// X
_�

��

X
_�

��

oo

P = X ×κ0 A1
κ0

��

// P= X×Spf OK0
Â1

OK0

��

P = X ×K0 A1
K0
[0, 1]

��

oo

Spec κ0 // Spf OK0 Sp(K0).oo

where the vertical arrows from the first row to the second are all embeddings of zero
sections and the coordinates of A1

κ0
and Â1

Ok0
are denoted by s and S, respectively.

The tube of X in P , denoted by ]X [P, is isomorphic to X×A1
K0
[0, 1). Let OX be

the ring of rigid analytic functions on X ; then K is exactly the p-adic completion
of Frac OX . If we base-change the tube ]X [P from X over to K , we get A1

K [0, 1).
We are interested in the annulus A1

K [η0, 1) for some η0 ∈ (0, 1), which can be
obtained by base-changing X × A1

K0
[η0, 1) from X to K .

Now, we consider the thickening space of this annulus A1
K [η0, 1).

Construction 3.1.3. Consider the commutative diagram

X
� � //

&&

P � � 1P //

��

P ×κ0 P � � //

vv

P×OK0
P

��

P ×K0 Poo

��
Spec κ0 // Spf OK0 Sp(K0)oo

where we use pri :P×OK0
P→P to denote the projection to the i-th factor for i =

1, 2. Then P×OK0
P has a set of local parameters given by B1=pr∗1(B1), . . . , Bm=

pr∗1(Bm), S = pr∗1(S), B ′1 = pr∗2(B1), . . . , B ′m = pr∗2(Bm), and S′ = pr∗2(S). By
Berthelot’s fibration theorem [1996, théorème 1.3.2], we have an isomorphism

]X [P×OK0
P ' ]X [P×K0 Am+1

K0
[0, 1),

where the factor ]X [P respects the projection pr1 and the coordinates for the open
polydisc on the right-hand side are given by δ0 = S − S′, δ1 = B1 − B ′1, . . . ,
δm = Bm − B ′m . The geometric thickening space is the subspace of ]X [P×OK0

P

where |δ0| = |S− S′|< |S|, or, more precisely,

X ×K0 {(S, δ0) ∈ A2
K0
[0, 1) | |δ0|< |S|} ×K0 Am

K0
[0, 1).

Thus, the thickening space, denoted by TS≥η0
k , of A1

K [η0, 1) is the space obtained
by base-changing

X ×K0 {(S, δ0) ∈ A2
K0
[0, 1) | |S| ≥ η0, |δ0|< |S|} ×K0 Am

K0
[0, 1).

from X to K .
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The projection pr1 : P ×K0 P→ P gives a K-morphism of rigid spaces

π : TS≥η0
k → A1

K [η0, 1);

the projection pr2 : P ×K0 P→ P gives a K0-morphism of rigid spaces

π̃ : TS≥η0
k → A1

K [η0, 1).

The morphism π̃ does not respect the K-rigid space structure; one should always
think of π̃ as the ring homomorphism between the corresponding ring of analytic
functions. In our earlier notation, this is just the geometric incarnation of the map
on the ring of global sections.

3.2. General thickening construction. We now introduce thickening spaces and
study basic properties of differential modules over them.

We keep Hypothesis 2.3.2 in this subsection. However, Hypothesis 3.1.1 is no
longer in force from now on.

Definition 3.2.1. For η ∈ (0, 1), we write Zηk = A1
K [η, η]. For a ∈ Q>1 and η0 ∈

(0, 1), we define the thickening space of A1
K [η0, 1) and level a to be the rigid space

over K of the form

TSa,≥η0
k =

{
(S, δJ+) ∈ Am+2

K [0, 1)
∣∣ |S| ≥ η0; |δ j | ≤ |S|a for j ∈ J+

}
. (3.2.2)

For η ∈ [η0, 1), we put

TSa,η
k = A1

K [η, η]×K Am+1
K [0, ηa

].

Similarly, for a ∈ Q>0 and η0 ∈ (0, 1), we define the log-thickening space of
A1

K [η0, 1) and level a to be

TSa,≥η0
k,log =

{
(S, δJ+) ∈ Am+2

K [0, 1)
∣∣ |S| ≥ η0; |δ0| ≤ |S|a+1

; |δ j | ≤ |S|a for j ∈ J
}
.

(3.2.3)
For η ∈ [η0, 1), we set

TSa,η
k,log = A1

K [η, η]×K A1
K [0, η

a+1
]×K Am

K [0, η
a
].

We denote by OTS
a,≥η0
k

, OTSa,η
k

, OTS
a,≥η0
k,log

, and OTSa,η
k,log

the rings of analytic func-
tions on these spaces.

Let | · |Zηk denote the η-Gauss norm on Zηk . For a ∈Q>1, let | · |TSa,η
k

denote the
Gauss norm on TSa,η

k ; for a > 0, let | · |TSa,η
k,log

denote the Gauss norm on TSa,η
k,log.

The union of all TSa,≥η0
k is the TS≥η0

k we discussed in Construction 3.1.3.

Caution 3.2.4. One may want to write TSa,≥η0
k =

⋃
η∈[η0,1)A

1
K [η, 1)×K Am+1

K [0, ηa
]

for simplicity, as in the introduction. However, this will not define the same rigid
space as in (3.2.2), because the union does not give an admissible cover of TSa,≥η0

k .
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A similar expression for log-thickening space is not valid either. Nevertheless, it
might be helpful to think the space and picture the geometry this way.

On the other hand, it is true that an element of K [[S, δ0, . . . , δm]] lies in OTS
a,≥η0
k

(resp. OTS
a,≥η0
k,log

) if and only if it has bounded norms for all | · |TSa,η
k

(resp. | · |TSa,η
k,log

)
for all η ∈ [η0, 1).

Remark 3.2.5. We need a ∈ Q in Definition 3.2.1 to make sure that (3.2.2) and
(3.2.3) actually define a (Berkovich) rigid analytic space. For individual spaces
TSa,η

k and TSa,η
k,log, one can allow a ∈ R.

Notation 3.2.6. For a ∈ Q>1 and η0 ∈ (0, 1), denote by 1 : Z≥η0
k ↪→ TSa,≥η0

k the
natural embedding of Z≥η0

k into the locus where δ j = 0 for j ∈ J+. Also, we have
the naı̈ve projection π : TSa,≥η0

k → Z≥η0
k to the first factor.

For a ∈Q>0, we define likewise 1 : Z≥η0
k ↪→ TSa,≥η0

k,log and π : TSa,≥η0
k,log → Z≥η0

k .
All these morphisms remain compatible under changes in a and η0, and under

the replacement of ≥ η0 by η for some η ∈ [η0, 1).
To simplify notation, for a and η0 as above, we identify OZ

≥η0
k

with a subring of
OTS

a,≥η0
k

and of OTS
a,≥η0
k,log

via π∗, and likewise for η instead of ≥ η0. Note that π∗ is
an isometry; hence the identification will not change any calculation on norms.

Corollary 2.1.10 has this immediate consequence:

Proposition 3.2.7. There is a unique continuous OK0-homomorphism

π̃∗ : OK [[S]] → OK [[S, δJ+]]

such that π̃∗(S) = S + δ0 and π̃∗(B j ) = B j + δ j for all j ∈ J . Moreover, for
g ∈ OK , π̃∗(g)− g ∈ (δ1, . . . , δm)(g)OK [[δ1, . . . , δm]].

Theorem 3.2.8. For a ∈Q>1 (resp. a ∈Q>0) and η0 ∈ (0, 1), the homomorphism
π̃∗ induces a K0-homomorphism π̃∗ : OZ

≥η0
k
=R

η0
K → OTS

a,≥η0
k

(resp. π̃∗ : OZ
≥η0
k
→

OTS
a,≥η0
k,log

) such that1∗◦π̃∗= id; the same if replacing≥η0 by η for some η∈[η0, 1).
For any g ∈ OZηk

and for a > 1 (resp. a > 0),

|π̃∗(g)− g|TSa,η
k
≤ ηa−1

· |g|Zηk (resp. |π̃∗(g)− g|TSa,η
k,log
≤ ηa
· |g|Zηk ). (3.2.9)

In particular, |π̃∗(g)|TSa,η
k
= |π̃∗(g)|TSa,η

k,log
= |g|Zηk . Moreover, we have the follow-

ing bound for TSa,η
k : if g ∈ OZηk

∩OK [[S]], then

|π̃∗(g)− g|TSa,η
k
≤ ηa. (3.2.10)

Proof. We need only to establish the bound on the norms. Take

g =
∑
i∈Z

ai Si
∈ K [[S]]
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such that |g|Zηk <+∞. We have

π̃∗(g)− g =
∑
i∈Z

(
π̃∗(ai )(S+ δ0)

i
− ai Si)

=

∑
i∈Z

(
(π̃∗(ai )− ai )(S+ δ0)

i
+ ai ((S+ δ0)

i
− Si )

)
. (3.2.11)

Since π̃∗(ai )− ai ∈ (δ1, . . . , δm)(ai )OK [[δ1, . . . , δm]], we have

|π̃(ai )− ai |TSa,η
k
≤ |ai |η

a, |π̃(ai )− ai |TSa,η
k,log
≤ |ai |η

a. (3.2.12)

We can bound (S+ δ0)
i
− Si by

|(S+ δ0)
i
− Si
|TSa,η

k
≤ ηa+i−1, |(S+ δ0)

i
− Si
|TSa,η

k,log
≤ ηa+i . (3.2.13)

Plugging the estimates (3.2.12) and (3.2.13) into (3.2.11), we obtain (3.2.9).
When g ∈ OK [[S]], (3.2.13) always gives |(S+ δ0)

i
− Si
|TSa,η

k
≤ ηa for i ≥ 0 (when

i = 0, we have zero). Equation (3.2.10) follows.
Finally, the equalities |π̃∗(g)|TSa,η

k
= |π̃∗(g)|TSa,η

k,log
= |g|Zηk ensure that we have

well-defined continuous homomorphisms π̃∗ : OZ
≥η0
k
→ OTS

a,≥η0
k

or OTS
a,≥η0
k,log

. �

Notation 3.2.14. We use π̃ :TSa,≥η0
k → Z≥η0

k and π̃ :TSa,≥η0
k,log → Z≥η0

k to denote the
geometric incarnations of the homomorphisms π̃∗ constructed in Theorem 3.2.8;
the same for η in place of≥η0 when η∈ [η0, 1). To emphasize again, whenever we
refer to π̃ , strictly speaking, we are referring to the corresponding homomorphism
π̃∗ on rings.

Remark 3.2.15. For a > 0, one can factor the map π̃ for a nonlog thickening
space as TSa+1,≥η0

k → T Sa,≥η0
k,log

π̃
→ Z≥η0

k , where the second map is the π̃ for the
log-thickening space. Again, this should be thought of as factorization for ring
homomorphisms.

Notation 3.2.16. For a ∇-module (E,∇E) over Z≥η0
k relative to K0, we call π̃∗E

the thickened differential module of E, denoted by F. We view F as a differential
module over TSa,≥η0

k or TSa,≥η0
k,log relative to Z≥η0

k , with respect to the differential
operators ∂/∂δ0, . . . , ∂/∂δm . In precise terms, the connection is given by

F= E⊗R
η0
K ,π̃

∗ OTS
a,≥η0
k

∇E
−→ E⊗�1

Z
≥η0
k /K0

⊗R
η0
K ,π̃

∗ OTS
a,≥η0
k

−→ E⊗R
η0
K ,π̃

∗ �
1
TS

a,≥η0
k /K0

−→ E⊗R
η0
K ,π̃

∗ �
1
TS

a,≥η0
k /Z

≥η0
k

in the nonlog case. The log case is obtained similarly, with subscript log at the
appropriate places. This construction is compatible for different a’s and η0’s.
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We next link the spectral norms on E and the spectral norms on its thickening F.

Proposition 3.2.17. Let η ∈ [η0, 1). The spectral norms of ∂J+ on Eη over Zηk
and the spectral norms of ∂/∂δJ+ on Fa,η = F ⊗ Frac(OTSa,η

k
)∧ and Fa,η,log =

F⊗Frac(OTSa,η
k,log
)∧ are related as follows:

|∂/∂δ j |Fa,η,sp =max{|∂ j |Eη,sp, p−1/(p−1)η−a
} for j ∈ J+,

|∂/∂δ0|Fa,η,log,sp =max{|∂0|Eη,sp, p−1/(p−1)η−a−1
},

|∂/∂δ j |Fa,η,log,sp =max{|∂ j |Eη,sp, p−1/(p−1)η−a
} for j ∈ J.

Proof. Note that π̃∗(d B j ) = d B j + dδ j for j ∈ J and π̃∗(d S) = d S + dδ0. The
actions of ∂/∂δ j , j ∈ J (resp. j = 0), on Fa,η and Fa,η,log are the same as the
action of ∂/∂B j (resp. ∂/∂S) on Eη. More precisely, we have π̃∗(∂/∂S(x)) =
∂/∂δ0(π̃

∗(x)) and π̃∗(∂/∂B j (x)) = ∂/∂δ j (π̃
∗(x)) for any j ∈ J and x ∈ R

η

K
or Eη.

The statement follows, because that δJ are transcendental over OZηk
and the

homomorphism π̃∗ is isometric (by Theorem 3.2.8). �

3.3. Good generators of the extension. We now show that when l/k is totally and
wildly ramified, we can choose nice generators of Ol as an Ok-algebra, so that the
corresponding extension on the Robba rings takes a simple form. Then we give
a more explicit construction of the differential module associated with a p-adic
representation.

We keep Hypothesis 2.3.2 for this subsection.

Hypothesis 3.3.1. For the rest of this section, we assume that l/k is a finite totally
and wildly ramified Galois extension.

Remark 3.3.2. This is a mild hypothesis, since both arithmetic and differential
conductors behave well under unramified extensions and the tamely ramified case
is well-known: see Theorem 2.4.1(3) and Proposition 4.1.7(6).

Notation 3.3.3. Let l be as above, and let Gl/k denote the Galois group of l/k.
Denote the ring of integers and the residue field of l by Ol and κl , respectively.
Given a uniformizer t of l, we fix a noncanonical isomorphism κl((t)) ' l. For a
p-basis c̄J of κl , we use cJ to denote the image of c̄J under this isomorphism; we
may use the same index set J because κl/κk is a finite extension.

Let OL be the Cohen ring of κl with respect to c̄J and let CJ be the canonical
lifts of c̄J . Set L = Frac OL .

Caution 3.3.4. The residue field extension κl/κk is typically not separable and
hence cannot be embedded into the extension l = κl((t)) over k = κk((s)).

The reader may skip the next construction and remark on first reading. Their
gist is to provide “good” generators and relations of Ol as an Ok-algebra.
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Construction 3.3.5. We temporarily drop the finiteness Hypothesis 2.3.2 on the
p-basis for this construction. Let k0 = κk with p-basis (b̄ j ) j∈J . By possibly rear-
ranging the indexing in b̄J , we will inductively construct a “good” p-basis (c̄ j ) j∈J

of κl and k j = κk(c̄1, . . . , c̄ j ) with p-basis {c̄1, . . . , c̄ j , b̄J\{1,..., j}} so that km = κl

for m sufficiently large.
Assume that we have constructed k j−1. Let r j be the unique integer such that

κl ⊆ kp−r j

j−1 but κl * kp−r j+1

j−1 . If r j = 0, we must have k j−1 = κl ; in this case,
we set c̄α = b̄α and rα = 0 for all α ∈ J\{1, . . . , j − 1} and stop the induction.
Otherwise we assume that r j > 0. Take c̄ j to be any element in κl\kp−r j+1

j−1 and
let k j = k j−1(c̄ j ). Then c̄prj

j ∈ k j−1 and [k j : k j−1] = pr j . There must exist one
element in b̄J\{1,..., j−1} such that the rest together with c̄1, . . . , c̄ j form a p-basis
of k j . We assume that this element is b̄ j by reindexing b̄J\{1,..., j−1}. This finishes
the induction.

From the induction, one can see that the r j form a decreasing sequence of non-
negative integers; but we do not need this fact.

Since κl/κk is finite, the construction ensures that c̄ j ∈ κ
×

k for j ∈ J\J0 with
J0 = {1, . . . ,m} a finite subset. By the functoriality of p-bases (Corollary 2.1.11),
we may change the isomorphism κl((t)) ' l so that c̄J\J0 are sent to elements in
O×k . Let cJ denote the images of c̄J under the above isomorphism.

As a consequence, c1, . . . , cm and t generate Ol over Ok . More precisely,{
ceJ

J t i
∣∣ i ∈ {0, . . . , e− 1}; e j ∈ {0, . . . , pr j − 1} for j = 1, . . . ,m

}
is a basis of Ol as a finite free Ok-module. It is also a basis of l as a k-vector space.

Remark 3.3.6. It is attractive to hope that we can find a p-basis (b̄ j ) j∈J of κk such
that κl=κk(b̄p−r j

j ) for some r j ∈Z≥0. But this is false in general, as pointed out to us
by Shun Ohkubo; a counterexample is provided by [Sweedler 1968, Example 1.1].
Sweedler called the case where such a basis can be found modular.

Let κ0 be a perfect field of characteristic p and let X, Y, Z be indeterminates.
Set κk = κ0(X p, Y p, Z p2

) and κl = κk(Z , XY + Z). Then [κl : κl ∩κ
p−1

k ] = p2 and
[κl ∩ κ

p−1

k : κk] = p. Hence, κl/κk cannot be modular.

Now we go back to assuming Hypothesis 2.3.2.

Notation 3.3.7. For a nonarchimedean ring R, we use R〈u0, . . . , um〉 to denote the
completion of R[u0, . . . , um] with respect to the natural topology induced from R.
When R = F is a complete nonarchimedean field, F〈u0, . . . , um〉 is the ring of
analytic functions on the unit polydisc Am+1

F [0, 1].

Notation 3.3.8. Let Ok〈u0, . . . , um〉/I
∼
→ Ol be the homomorphism that sends u0

to t and u j to c j , for each j ∈ J . We choose a set of generators p0, . . . , pm of I as
follows: each cpr j

j or te can be written in terms of the basis of Ol over Ok listed in
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Construction 3.3.5. This gives us an element p j in I (the index j = 0 being used
for te). Obviously, the pi generate I. Moreover,

p0 ∈ ue
0− ds+ (u0s, s2) ·Ok[u0, . . . , um],

p j ∈ u prj

j − b j + (u0, s) ·Ok[u0, . . . , um] for j = 1, . . . ,m,

where b j is a polynomial in u1, . . . , u j−1 with coefficients in Ok and with degree
on u j ′ strictly smaller than prj ′ for j ′ = 1, . . . , j − 1, and d ∈ Ok[uJ ] such that
d(c1, . . . , cm) ∈ O×L . Let b̄ j be the reduction of b j in κk[u1, . . . , u j−1].

Remark 3.3.9. The need for introducing d was pointed out to us by Shun Ohkubo:
in general, one may not be able to find uniformizers s and t of k and l, respectively,
such that te

≡ s mod te+1Ol . This is shown by the next example, provided by
Ohkubo. (We do not know if there is a counterexample for which L/K is Galois.)

Example 3.3.10. Let k be a complete discretely valued field with nonperfect residue
field κk . Let b ∈ Ok be such that b̄ ∈ κk\κ

p
k . Choose α, β ∈ K as follows: let

α be a root of polynomial X p
+ s X + b ∈ k[X ] and β a root of polynomial

Y p
+ sY + sα ∈ k(α)[Y ]. Let l = k(α, β). Then l/k is a separable extension

of degree p2 with naı̈ve ramification degree p. The rings of integers of k(α) and
k(α, β) are Ok[α] and Ok[α, β], respectively. We claim that we cannot choose
uniformizers t and s so that t p/s ≡ 1 mod ml .

It is clear that β is a uniformizer of l. For any uniformizer t of l,

t p

s
=
β p

s

( t
β

)p
∈ (−α−β)(O×l )

p (mod ml ) // (−α)κ
p
l ⊂ κl .

In particular, t p/s is not congruent to 1 modulo ml .

Remark 3.3.11. Generally, the kernel of Ok[u0, . . . , um]→ Ol is not generated by
p0, . . . , pm . This will not matter since we take a> 0 and a> 1 in Definition 3.2.1.

Construction 3.3.12. For each j ∈ J , fix an element in OL [[T ]] lifting b j ∈ Ok ⊂

κl[[t]]; also fix an element in T e
+T e+1OL [[T ]] lifting s∈Ok⊂κl[[t]]. By Proposition

2.1.8, there exists a continuous homomorphism f ∗ : Ck ↪→ Cl sending BJ and S
to the elements chosen above; it naturally restricts to f ∗ : OK [[S]] ↪→ OL [[T ]].

The proof of the following lemma is not enlightening. The reader may skip it on
a first reading. The upshot is that we can turn the good generators and relations of
Ol as an Ok-algebra into good generators and relations of Rη

1/e
0L as an R

η0
K -algebra.

Lemma 3.3.13. Keep the notation as above.

(1) The homomorphism f ∗ is finite, and C1, . . . ,Cm and T generate OL [[T ]] over
OK [[S]]. Hence, f ∗ induces a surjective map OK [[S]]〈U0, . . . ,Um〉 � OL [[T ]]
sending U0 to T and U j to C j for j ∈ J . Moreover, one can choose generators
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P0, . . . , Pm of the kernel so that, modulo p, they are exactly pJ+ in Notation 3.3.8.
In particular,

P0 ∈U e
0 −DS+ (p,U0S, S2) ·OK [[S]]〈U0, . . . ,Um〉,

Pj ∈U pr j

j −B j + (p,U0, S) ·OK [[S]]〈U0, . . . ,Um〉,

where B j is a polynomial in U1, . . . ,U j−1 with coefficients in OK and with de-
gree on Uj ′ strictly smaller than prj ′ for j ′ = 1, . . . , j − 1, and D ∈ OK [UJ ]

lifts d. Moreover, {U eJ+

J+ | 0 ≤ e0 < e; 0 ≤ e j < pr j , j ∈ J } form a basis of
OK [[S]]〈U0, . . . ,Um〉/(PJ+) over OK [[S]].

(2) The map f ∗ extends to a map f ∗η : K 〈η/S, S/η〉 → L〈η1/e/T, T/η1/e
〉 for

η ∈ [0, 1). Thus f ∗ extends by continuity to a homomorphism f ∗ : Rη0
K → Rη

1/e
0L ,

or in geometric notation, f : A1
K [η0, 1)→ A1

L [η
1/e
0 , 1) for η0 ∈ (0, 1).

(3) Let 0†
K and 0†

L be the integral Robba rings over K and L , respectively, simi-
larly constructed as in Construction 2.2.8 but without tensoring with F. Let RL

be the Robba ring over L as in Notation 2.2.13. Then 0†
L is a finite étale extension

of 0†
K with Galois group Gl/k . Moreover, RL ' 0

†
L ⊗0†

K
RK .

(4) For some η0 ∈ (0, 1), A1
L [η

1/e
0 , 1) is Galois étale over η ∈ [η0, 1) via f ∗ with

Galois group Gl/k . Hence, Rη1/e
0

L becomes a regular Gl/k-representation over R
η0
K

via f ∗.

Proof. (1) is equivalent to its mod p version, which is exactly Construction 3.3.5.

(2) It suffices to prove that f ∗ is continuous with respect to the norms | · |Zηk on
Ck and | · |Zη1/e

l
on Cl , for all η ∈ [η0, 1). Since f ∗(OK ) ∈ OL [[T ]] and f ∗(S) ∈

T e
+ T e+1OL [[T ]], we have |g|Zηk = | f

∗(g)|Zη1/e
l

for any g ∈ Ck . Hence the map
f ∗ extends continuously to f ∗η : K 〈η/S, S/η〉 → L〈η1/e/T, T/η1/e

〉.

(3) The first statement follows from Lemma 2.2.10. The second statement is true
because 0†

L ⊗0† RK is complete and dense in RL .

(4) follows from (2) and (3) since RK and RL are limits of R
η0
K and R

η
1/e
0

L , respec-
tively. �

Remark 3.3.14. The homomorphism f ∗ does not respect the naı̈ve K-algebra
structure on Rη

1/e
0L ; this is precisely because of Caution 3.3.4. But it respects the

K-algebra structure on Rη1/e
0

L induced by OK ↪→ OK [[S]]
f ∗
→ OL [[T ]]. So, it might be

better not to view Z≥η
1/e
0l → Z≥η0

k as a morphism between rigid spaces, but rather
as the geometric incarnation of f ∗.

Construction 3.3.15. Keep the notation as in Construction 2.2.15. Let ρ :Gl/k→

GL(Vρ) be a p-adic representation, where Vρ is a finite dimensional vector space
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over F . We have

Eρ = D†(ρ)⊗
0

†
K

RK = (Vρ ⊗O 0̃
†)Gk ⊗

0
†
K

RK

= (Vρ ⊗Zq 0
†
L)

Gl/k ⊗
0

†
K

RK = (Vρ ⊗Zq RL)
Gl/k .

Hence, for some η0 ∈ (0, 1), the differential module Eρ descends to

Eρ =
(
Vρ ⊗Zq f∗OZ

≥η
1/e
0

l

)Gl/k
;

this is a differential module over R
η0
K ⊗Qq F=R

η0
K ′ relative to K0. This construction

respects tensor products, i.e., given another p-adic representation ρ ′ of Gl/k over
F , we have

Eρ⊗ρ′ = Eρ ⊗R
η0
K ′

Eρ′ .

Hypothesis 3.3.16. From now on, we always assume that η0 ∈ (0, 1) is close
enough to 1− that all statements in Lemma 3.3.13 hold and Eρ descends to R

η0
K ′ .

3.4. Spectral norms and connected components of thickening spaces. We now
relate the spectral norms of differential operators on E to the connected compo-
nents of certain rigid spaces. We keep Hypotheses 2.3.2, 3.3.1, and 3.3.16 in this
subsection.

Definition 3.4.1. Let a ∈Q>1. We define

OTS
a,≥η0
l/k
=R

η
1/e
0

L ⊗ f ∗,R
η0
K ,π

∗ OTS
a,≥η0
k

,

OTS
a,≥η0
k\l
= OTS

a,≥η0
k
⊗π̃∗,R

η0
K , f ∗ R

η1/e
0

L ,

OTS
a,≥η0
l/k\l
=R

η1/e
0

L ⊗ f ∗,R
η0
K ,π

∗ OTS
a,≥η0
k
⊗π̃∗,R

η0
K , f ∗ R

η
1/e
0

L .

Here we do not have to complete the tensor products because f ∗ is finite. (We in-
tentionally put the tensor products on different sides so that it is easy to distinguish
the two base changes by f ∗ through π∗ and π̃∗ respectively.) Let TSa,≥η0

l/k , TSa,≥η0
k\l ,

and TSa,≥η0
l/k\l , respectively, denote the geometric incarnations of these rings. We

have formally the following Cartesian diagram:

Z
≥η

1/e
0

l

f
��

TSa,≥η0
l/k

f×1
��

1×πoo TSa,≥η0
l/k\l

f̃oo

��

Z≥η0
k TSa,≥η0

k
πoo

π̃
��

TSa,≥η0
k\l

1× foo

��

Z≥η0
k Z

≥η
1/e
0

l .
foo

(3.4.2)

We make similar constructions for the logarithmic version of all spaces if a ∈Q>0.
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Remark 3.4.3. The morphisms π and 1× f are genuine morphisms between rigid
spaces over Z≥η0

k , and f̃ and 1× π are genuine morphisms between rigid spaces
over Z≥η

1/e
0l . This is because the rigid space structures on thickening spaces are

given by the projections π and 1 × π , respectively. In contrast, all the vertical
arrows in (3.4.2) should all be thought of as just geometric incarnations of the
corresponding ring homomorphisms.

Remark 3.4.4. The naı̈ve base change f ×1 helps to realize geometric connected
components as connected components (see Theorem 3.4.12). The base change
f̃ (and also 1× f ) encodes the ramification information, which is what we are
interested in.

Remark 3.4.5. One may want to relate TSa,≥η0
l/k\l to the thickening space of Z≥η

1/e
0l .

However, it is not clear how to compare the levels or radii of the two spaces. We
will not need this result.

Corollary 3.4.6. The space TSa,≥η0
l/k\l admits an action of Gl/k by morphisms be-

tween K-rigid spaces, obtained by pulling back the action on Z≥η
1/e
0l over Z≥η0

k via
π̃ ◦ ( f × 1). Under this action, f̃∗OTS

a,≥η0
l/k\l

is a regular representation of Gl/k over
OTS

a,≥η0
l/k

. For a p-adic representation ρ of Gl/k over F , define

F̃ρ = (Vρ ⊗Qq f̃∗OTS
a,≥η0
l/k\l

)Gl/k ;

this is a differential module over TSa,≥η0
l/k ×Qq F relative to Z≥η

1/e
0l ×Qq F. Moreover,

F̃ρ ' ( f × 1)∗π̃∗Eρ .
The same statement also holds for log-space.

Proof. The differential module structure on f̃∗OTS
a,≥η0
l/k\l

is given by the composition
of natural homomorphisms

f̃∗OTS
a,≥η0
l/k\l
−→ f̃∗

(
�1

TS
a,≥η0
l/k\l

/
Z≥η

1/e
0l

)
' f̃∗

(
f̃ ∗
(
�1

TS
a,≥η0
l/k

/
Z≥η

1/e
0l

))
' f̃∗OTS

a,≥η0
l/k\l
⊗�1

TS
a,≥η0
l/k

/
Z≥η

1/e
0l
.

(In fact this construction works for any finite étale morphisms.) The statement
of the corollary is an easy consequence of flat base change for the two Cartesian
squares on the right in (3.4.2). �

Notation 3.4.7. We may view 1×π : TSa,η0
l/k → Z

η1/e
0

l as bundles, whose fibers are
polydiscs (of different radii) with parameters δ0, . . . , δm ; again this morphism is
a genuine morphism between rigid spaces. By the zero section Z, we mean the
natural closed subspace of this bundle defined by δ0 = 0, . . . , δm = 0.

Notation 3.4.8. Let M be a differential module over a differential ring R with
derivatives ∂1, . . . , ∂n . For x ∈ M and r1, . . . , rn ∈ R, we define the Taylor series
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T(x; ∂1, . . . , ∂n; r1, . . . , rn)=
∑

α1,...,αn∈Z≥0

rα1
1 . . . rαn

n ∂
α1
1 . . . ∂

αn
n

n!
(x),

if it converges. If x ∈ R, we have T(ax; ∂1, . . . , ∂n; r1, . . . , rn)= T(a; ∂1, . . . , ∂n;

r1, . . . , rn) ·T(x; ∂1, . . . , ∂n; r1, . . . , rn) if all terms converge.

Notation 3.4.9. Let M be a differential module over a differential ring R with
derivatives ∂1, . . . , ∂n . Let H 0

∇
(R,M) = {x ∈ M | ∂i (x) = 0, i = 1, . . . , n} be the

set of horizontal sections of M over R. In particular, if r1, . . . , rn ∈ R are elements
such that ∂i (r j )= 1 if i = j and 0 otherwise, then an elementary calculation shows
that the Taylor series T(x; ∂i , . . . , ∂n; r1, . . . , rn) is an element in H 0

∇
(R,M) for

any x ∈ M such that the Taylor series converges.
We usually use the geometric counterparts in places of R and M in the notation.

For example, we write H 0
∇
(Max(R),M) if R is an affinoid algebra.

The following lemma will be frequently used in proving the theorem below. It
works in greater generality, but we content ourselves with this special case.

Lemma 3.4.10 (Dwork’s transfer theorem). Let a > 1. Let F̃ be a differential
module over TSa,≥η0

l/k relative to Z≥η
1/e
0l . Assume |∂/∂δi |F̃a,η

≤ p−1/(p−1)η−a for
all j ∈ J and η ∈ [η0, 1). Then, for any rational number c > a, the natural
homomorphism of finite Rη1/e

0L -modules

2 : H 0
∇
(TSc,≥η0

l/k , F̃)
∼
→ 0(Z, F̃|Z) (3.4.11)

is an isomorphism. In particular, F̃ is a trivial ∇-module relative to Z
≥η1/e

0
l . The

same statement is also true if we base-change everything to F over Qq . When
F̃= f∗OTS

a,≥η0
l/k\l

, 2 induces a ring homomorphism for any rational number c > a:

0
(
Z, f∗OTS

c,≥η0
l/k\l

∣∣
Z

) 2
∼
←− H 0

∇

(
TSc,≥η0

l/k , f∗OTS
c,≥η0
l/k\l

)
↪→ 0

(
TSc,≥η0

l/k\l ,OTS
c,≥η0
l/k\l

)
.

The same statements hold for the log version with a > 0, inserting the subscript
log appropriately.

Proof. We prove the lemma for the nonlog case over Qq . The proof for the log
case differs only by inserting subscript log appropriately, using the δ0 coordinate,
and increasing the exponents on η by 1. The proof for the tensor F version is also
the same, except we need to tensor F everywhere.

We may define an inverse of the map 2 using Taylor series:

2−1(x)= T(x̃; ∂/∂δ0, . . . , ∂/∂δm; δ0, . . . , δm)

for x ∈ 0(Z, F̃|Z), where x̃ is a lift of x in 0(TSc,≥η0
l/k , F̃). The Taylor series con-

verges over TSc,≥η0
l/k by the condition |∂/∂δi |F̃a,η

≤ p−1/(p−1)η−a < p−1/(p−1)η−c

for all j ∈ J and η ∈ [η0, 1). Moreover, the Taylor series converges to a horizontal
section in H 0

∇
(TSc,≥η0

l/k , F̃).
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When F̃= f∗OTS
a,≥η0
l/k\l

, 2 is a homomorphism, which can also be seen from the
fact that the Taylor series gives a ring homomorphism (see Notation 3.4.8). �

The following theorem is one of the key steps of the proof of the Hasse–Arf
theorem. This is the main ingredient (a) described in the introduction. It allows
us to compare the differential ramification breaks with the geometric connected
components of the thickening spaces; we will later identify the thickening spaces
with the lifts of the Abbes–Saito spaces (Theorem 4.3.6).

Theorem 3.4.12. Let ρ : Gl/k→ GL(Vρ) be a faithful p-adic representation over
F with l/k satisfying Hypotheses 2.3.2 and 3.3.1. Then, for b > 1, the following
conditions are equivalent:

(a) ρ has differential ramification break ≤ b.

(b) For any rational number c> b, when η0→ 1−, F̃= F̃ρ is a trivial ∇-module
over TSc,≥η0

l/k ×Qq F relative to Z≥η
1/e
0l ×Qq F.

(c) For any rational number c > b, when η0 → 1−, TSc,≥η0
l/k\l has exactly [l : k]

connected components.

(d) For any rational number c > b, when η0 → 1−, Z
≥η1/e′

0
l ′ ×Z

≥η
1/e
0

l ,π TSc,≥η0
l/k\l has

exactly [l : k] connected components for some finite extension l ′/ l, where e′ is
the naïve ramification degree of l ′/k.

For b > 0, the corresponding conditions for logarithmic spaces are equivalent.

Proof. We prove the statement for nonlogarithmic spaces; in the logarithmic case
we just need to add the subscript log and change the scales on ∂0 and ∂/∂δ0 from
ηb to ηb+1 and ηc to ηc+1.

Further, Proposition 3.2.17 is unchanged if we replace F by F̃, since the spectral
norms are invariant under scalar extensions.

We first that (a) implies (b). Assume ρ has differential ramification break at
most b. By Definition 2.3.20, for η0 sufficiently close to 1−, the generic radius of
Eρ satisfies T (Eρ, η)≥ηb for η∈[η0, 1), or equivalently |∂ j |Eρ,η,sp≤ p−1/(p−1)η−b

for any j ∈ J+ and η ∈ [η0, 1). Then Proposition 3.2.17 and Remark 2.3.5 imply
that for all η ∈ [η0, 1), |∂/∂δ j |F̃b,η,sp ≤ p−1/(p−1)η−b, and hence F̃ρ is a trivial
differential module over TSc,≥η0

l/k ×Qq F relative to Z≥η
1/e
0l ×Qq F for any rational

number c > b by Dwork’s transfer theorem (Lemma 3.4.10). This proves (b).
Now assume (b), i.e., F̃ρ is trivial over TSc,≥η0

l/k ×Qq F relative to Z≥η
1/e
0l ×Qq F

for any rational number c > b and some η0 ∈ (0, 1). It follows that

|∂/∂δ j |F̃c,η,sp = |∂/∂δ j |Frac(OTSc,η
l/k
)∧,sp = p−1/(p−1)η−c.

By Proposition 3.2.17, |∂ j |sp,Eη ≤ p−1/(p−1)η−c, for any j ∈ J+, η ∈ [η0, 1), and
c ∈Q>b. By Definition 2.3.20, this implies that the differential ramification break
is at most b, since the rationals are dense in the real numbers.
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Obviously, (c) implies (b). To see the converse, note first claim that if c > b is
rational, f∗OTS

c,≥η0
l/k\l

is a trivial differential module over TSc,≥η0
l/k relative to Z≥η

1/e
0l .

Indeed, for a rational number c′ ∈ (b, c), we know that F̃ρ is a trivial differential
module over TSc′,≥η0

l/k ×Qq F relative to Z≥η
1/e
0l ×Qq F , then for any n ∈ N, F̃⊗n

ρ

is also a trivial differential module (relative to Z≥η
1/e
0l ×Qq F), which corresponds

to V⊗n
ρ by functoriality (Construction 3.3.15). By Lemma 3.4.16 below from the

theory of representations of finite groups (or standard Tannakian arguments), the
differential module(

F[Gl/k]⊗Qq f∗OTS
c′,≥η0
l/k\l

)Gl/k '
−→ F ⊗Qq f∗OTS

c′,≥η0
l/k\l

(3.4.13)

corresponding to the regular representation is a direct summand of a direct sum of
some F̃⊗n

ρ ’s and hence is a trivial differential module (relative to Z≥η
1/e
0l ×Qq F). To

make it perfectly rigorous, here the isomorphism (3.4.13) of differential modules
is given by

∑
g∈Gl/k

f g⊗ gv 7→ f · v, where f ∈ F and v ∈ f∗OTS
c,≥η0
l/k\l

; this map
does not respect the F[Gl/k]-module structures.

We have finished the proof of the claim in the case F = Qp. If F 6= Qp, we
know that, for all j ∈ J+, the spectral norms of ∂/∂δ j at radius η on the right-hand
side of (3.4.13) are p−1/(p−1)η−c′ , which equal the spectral norms of ∂/∂δ j on
f∗OTS

c′,≥η0
l/k\l

at radius η. By Dwork’s transfer theorem (Lemma 3.4.10), the claim is
proved.

We now apply the second part of Lemma 3.4.10 and obtain, for any rational
numbers c′ > c, a ring homomorphism

0
(
Z, f∗OTS

c′,≥η0
l/k\l

∣∣
Z

) 2
∼
←− H 0

∇

(
TSc′,≥η0

l/k , f∗OTS
c′,≥η0
l/k\l

)
↪→ 0

(
TSc′,≥η0

l/k\l ,O
TS

c′,≥η0
l/k\l

)
.

(3.4.14)

The key is that the left-hand side of (3.4.14) is isomorphic to the ring functions
on Z≥η

1/e
0l ×Z

≥η0
k

Z≥η
1/e
0l because the restrictions of π̃ and π to Z are both the same

as f . Moreover, since Z≥η
1/e
0l is finite étale Galois over Z≥η0

k (Lemma 3.3.13),
Z≥η

1/e
0l ×Z

≥η0
k

Z≥η
1/e
0l =

∐
g∈Gl/k

Z≥η
1/e
0l . In particular, we have fundamental idempo-

tent elements in 0(Z, f∗OTS
c′,≥η0
l/k\l
|Z) corresponding to each connected component.

Via the composition of the homomorphisms in (3.4.14), we can “lift” the idem-
potent elements on Z≥η

1/e
0l ×Z

≥η0
k

Z≥η
1/e
0l to idempotent elements in OTS

c′,≥η0
l/k\l

. This
shows that TSc′,≥η0

l/k\l has at least [l : k] connected components. But this space is
finite and flat of degree [l : k] over an irreducible rigid space TSc′,≥η0

l/k ; it can have
at most [l : k] connected components. Therefore, (c) holds.

The equivalence between (b) and (d) can be proved similarly, using a version
of Lemma 3.4.10 over Zη

1/e′
0

l ′ . The upshot here is that we need a base change to at
least Z≥η

1/e
0l in (c) so that we can split the fiber over Z; this is why we did not state

the theorem for TSc,≥η0
k\l and F̃ themselves. �
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Remark 3.4.15. The faithfulness condition on ρ in the theorem is harmless: we
will very easily reduce to this case later in the proof of Theorem 4.4.1.

Lemma 3.4.16. Let G be a finite group and F be a field of characteristic 0. Let
ρ : G→GL(Vρ) be a faithful representation over F. Then the regular representa-
tion F[G] is a direct summand of a direct sum of some self-tensor products of Vρ .

This is an easy exercise of finite group representations but we do not know a
good reference. The author thanks Xuhua He for providing the following proof.

Proof. Let χ be the character of Vρ and let d be the dimension of Vρ . Since the
representation is injective, χ(1) = d and χ(g) 6= d for all g ∈ G nontrivial. (This
is because all the eigenvalues of ρ(g) are roots of unity and cannot all be 1.)

Therefore, for each g 6= 1 there exists a polynomial Pg in χ with integer coef-
ficients such that Pg(χ(g))= 0 but Pg(d) 6= 0. Let P =

∏
16=g∈G Pg; then P(d) 6=

0 but P(χ(g)) = 0 for all g 6= 1. Multiplying by a constant, we may assume
that #G divides P(d) and P(d) > 0. If P(X) = an Xn

+ · · · + a0 ∈ Z[X ], then
(V⊗n)⊕an ⊕ · · · ⊕ V⊕a1 ⊕ 1⊕a0

F = F[G]P(d)/#G in the Grothendieck group of the
representations of G, where 1F denotes the trivial representation. Consequently,
if we take the direct sum of the terms on the left-hand side with positive ai , the
regular representation will be a natural direct summand of it. �

4. Arithmetic ramification filtrations

4.1. Review of Abbes and Saito’s definition. We briefly review the definition of
arithmetic ramification filtrations on the Galois group of a complete discretely val-
ued field k. For more details, consult [Abbes and Saito 2002; 2003]. The filtrations
can be defined for a k of mixed characteristic; however, for the purpose of this
paper, we focus on the case where k is of equal characteristic p > 0.

In this subsection, we do not make any of the hypothesis we have been using in
previous sections.

Notation 4.1.1. Keep the notation as in previous sections. Fix uniformizers s and
t for k and l, respectively. Let vl( · ) be the valuation on l normalized so that
vl(t)= 1. Let θ = |s|.

Notation 4.1.2. In this subsection, we temporarily free j and J from the restraint
introduced in Notation 2.3.3. But in later applications, we will specialize to the
case in which j and J actually index p-bases.

Definition 4.1.3. Take Z = (z j ) j∈J ⊂Ol to be a finite set of elements generating Ol

as an Ok-algebra, i.e., Ok[(u j ) j∈J ]/I
∼
→Ol mapping u j to z j for j ∈ J ={1, . . . ,m}

and for some appropriate ideal I. Let ( fi )i=1,...,n be a finite set of generators of I.
For a ∈Q>0, define the (nonlogarithmic) Abbes–Saito space to be

asa
l/k,Z =

{
(u1, . . . , um) ∈ Am

k [0, 1]
∣∣ | fi (uJ )| ≤ θ

a, 1≤ i ≤ n
}
. (4.1.4)
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The geometric connected components (see [Bosch et al. 1984, 9.1.4/8] for the
definition) of asa

l/k,Z are πgeom
0 (asa

l/k,Z ). The arithmetic ramification break bar(l/k)
is defined as the minimal number b such that #πgeom

0 (asa
l/k,Z )=[l : k] for any a>b.

Definition 4.1.5. Keep the notation as above. We single out a subset P ⊂ Z and
assume that P and hence Z contain the uniformizer t . For each j ∈ J , let e j =

vl(z j ). Take a lift g j ∈ Ok[(u j ) j∈J ] of ze
j/s

e j for each z j ∈ P , and take a lift
hi, j ∈ Ok[(u j ) j∈J ] of zei

j /z
e j
i for each pair (zi , z j ) ∈ P × P . For a ∈ Q>0, define

the logarithmic Abbes–Saito space to be

asa
l/k,log,Z ,P =

(uJ ) ∈ Am
k [0, 1]

∣∣∣∣∣∣∣
| fi (uJ )| ≤ θ

a, 1≤ i ≤ n,

|ue
j − se j g j | ≤ θ

a+e j , for all z j ∈ P,

|uei
j − u

e j
i hi, j | ≤ θ

a+ei e j /e, for all (zi , z j ) ∈ P×P.


Similarly, the logarithmic arithmetic ramification break bar,log(l/k) is defined

to be the minimal number b such that for any a > b, #πgeom
0 (asa

l/k,log,Z ,P)= [l : k].

Remark 4.1.6. To ease the readers who are not familiar with Abbes and Saito’s
definition, we give an intuitive way to understand the definition following [Abbes
and Saito 2002].

First, if a→∞, the conditions on f1, . . . , fn in (4.1.4) basically restrict the pos-
sible uJ to be very close to z J or other solutions to the equations f1=0, . . . , fn=0,
which are exactly Galois conjugates of z J . Thus, one may believe that asa

l/k,Z has
exactly [l : k] geometric connected components, each of which looks like a small
polydisc centered at one of the solutions. In contrast, if a → 0+, the conditions
on f1, . . . , fn are almost vacuum and asa

l/k,Z is almost the whole unit polydisc. In
particular, the space is likely to be geometrically connected. From the two extreme
cases, we know that, when we increase a, the Abbes–Saito space shrinks from a
whole unit polydisc to smaller polydiscs and, at some a, a bigger polydisc breaks
apart into several smaller polydiscs. The arithmetic ramification break captures the
last break point.

We reproduce several statements from [Abbes and Saito 2002; 2003].

Proposition 4.1.7. Abbes–Saito spaces have the following properties.

(1) For a > 0, the spaces asa
l/k,Z and asa

l/k,log,Z ,P do not depend on the choice of
generators ( fi )i=1,...,n of I and lifts g j and hi, j for i, j ∈ P [Abbes and Saito 2002,
§3].

(1′ ) If , in the definition of both spaces, we choose polynomials ( fi )i=1,...,n as a set
of generators of Ker(Ok〈(u j ) j∈J 〉 → Ol) instead of Ker(Ok[(u j ) j∈J ] → Ol), the
spaces will not change.
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(2) If we substitute in another pair of generating sets Z and P satisfying the same
properties, then we have a canonical bijection on the sets of the geometric con-
nected components πgeom

0 (asa
l/k,Z ) and πgeom

0 (asa
l/k,log,Z ,P) for different generating

sets, where a > 0. In particular, both highest arithmetic ramification breaks are
well-defined [Abbes and Saito 2002, §3].

(3) The highest arithmetic ramification break (resp. highest logarithmic arithmetic
ramification break) gives rise to a filtration on the Galois group Gk consisting
of normal subgroups Fila Gk (resp. Filalog Gk) for a > 0 such that bar(l/k) =
inf{a | Fila Gk ⊆ Gl} (resp. bar,log(l/k) = inf{a | Filalog Gk ⊆ Gl}) [Abbes and
Saito 2002, Theorems 3.3 and 3.11]. Moreover, for l/k a finite Galois extension,
both arithmetic ramification breaks are rational numbers [Abbes and Saito 2002,
Theorems 3.8 and 3.16].

(4) Let k ′/k be an algebraic extension of complete discretely valued fields or the
completion of such an extension. If k ′/k is unramified, then Fila Gk′ = Fila Gk for
a > 0 [Abbes and Saito 2002, Proposition 3.7]. If k ′/k is tamely ramified with
ramification index e′, then File

′a
log Gk′ = Filalog Gk for a > 0 [Abbes and Saito 2002,

Proposition 3.15] . More generally, for a (not necessarily algebraic) extension k ′/k
of complete discretely valued fields with the same valued group and linearly inde-
pendent from l/k such that Olk′ = Ok′ ⊗Ok Ol , we have bar(lk ′/k ′) = bar(l/k) and
bar,log(lk ′/k ′)= bar,log(l/k) [Abbes and Mokrane 2004, lemme 2.1.5].

(5) For a > 0, define Fila+ Gk =
⋃

b>a Filb Gk and Fila+log Gk =
⋃

b>a Filblog Gk .
Then, the subquotients Fila Gk/Fila+ Gk are abelian p-groups if a ∈Q>1 and are
0 if a /∈Q ([Abbes and Saito 2002, Theorem 3.8] and [Abbes and Saito 2003, The-
orem 1]); the subquotients Filalog Gk/Fila+log Gk are elementary abelian p-groups if
a ∈ Q>0 and are 0 if a /∈ Q ([Abbes and Saito 2002, Theorem 3.16] and [Saito
2009, Theorem 1.3.3]).

(6) The inertia subgroup is Fila Gk if a ∈ (0, 1] and the wild inertia subgroup is
Fil1+ Gk = Fil0+log Gk [Abbes and Saito 2002, Theorems 3.7 and 3.15].

(7) When the residue field κk is perfect, the arithmetic ramification filtrations agree
with the classical upper numbered filtrations in the following way: Fila Gk =

Fila−1
log Gk = Gala−1

k for a ≥ 1 [Abbes and Saito 2002, §6.1], where Galak is the
classical upper numbered filtration on Gk .

Proof. For the convenience of readers, we point out some ingredients of the proof.
For details, one can consult the original papers.

(1) is straightforward by matching up points.

(1′) is not in the literature. However, it can be proved identically to (1).
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(2) One can show that if we add a new (dummy) generator in Z or P , the new
Abbes–Saito space admits a fibration over the original Abbes–Saito space whose
fibers are closed discs of radius θa .

(3) The first statement is just abstract nonsense. The second is true essentially
because Abbes–Saito spaces are defined over k and the geometric connect com-
ponents can be detected over the algebraic closure kalg, which has valued group
|k×|Q. However, realizing this principle requires formal models of rigid spaces.
As we will reprove this result in Theorem 4.4.1, we refer to the original paper for
the formal model proof.

(4) When Olk′'Ol⊗Ok Ok′ , one can match up the nonlogarithmic Abbes–Saito space
for lk ′/k ′ and the extension of the scalar of that for lk ′/k ′ in a natural way. Actually,
the logarithmic ramification break is not considered in [Abbes and Mokrane 2004,
lemme 2.1.5], but the proof carries over similarly. In the tamely ramified and
logarithmic cases, one can also identify two logarithmic Abbes–Saito spaces [2002,
Proposition 9.8]; this is slightly more complicated.

(5) The proof used the formal models of the Abbes–Saito spaces and their stable
reductions, which is in an orthogonal direction from the present paper. One may
consult [Abbes and Saito 2003; Saito 2009] for a complete treatment.

(6) is an easy fact.

(7) follows from an explicit calculation in the monogenic case. �

Remark 4.1.8. In fact, in the proof of the main theorem (Theorem 4.4.1), we do
not need (5) or the second statement of (3) on the rationality of the breaks in the
proposition above. Therefore, we can obtain these properties from the properties
of differential conductors in Theorem 2.4.1 via the comparison in Theorem 4.4.1.

Definition 4.1.9. Let ρ : Gk → GL(Vρ) be a representation of finite local mon-
odromy. Define the arithmetic Artin and Swan conductors as

Artar(ρ)
def
=

∑
a∈Q≥0

a · dim(V Fila+ Gk
ρ /V Fila Gk

ρ ), (4.1.10)

Swanar(ρ)
def
=

∑
a∈Q≥0

a · dim(V
Fila+log Gk
ρ /V

Filalog Gk
ρ ). (4.1.11)

They are actually finite sums.

Conjecture 4.1.12 (Hasse–Arf Theorem). Let k be a complete discretely valued
field of equal characteristic p. For any representation ρ of Gk of finite local mon-
odromy, the arithmetic conductors are nonnegative integers, namely, Artar(ρ) ∈

Z≥0 and Swanar(ρ) ∈ Z≥0.

Proposition 4.1.13. Conjecture 4.1.12 is true if the residue field κk is perfect.
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Proof. By Proposition 4.1.7(7), we are reduced to the classical Hasse–Arf theorem
[Serre 1979, §VI.2, Theorem 1′ and §IV.2, Corollary 3]. Note that in this case,
Swanar(ρ)= Artar(ρ)− dim Vρ/V Ik

ρ . �

We will prove Conjecture 4.1.12 in Corollary 4.4.3.

4.2. Standard Abbes–Saito spaces and their lifts. In practice, we will only study
Abbes–Saito spaces that are given by some particular generators. We explicitly
write down spaces and their lifts in the sense of Section 1.

In this subsection, we retrieve Hypotheses 2.3.2 and 3.3.1, assuming that k has
finite p-basis and the extension l/k is totally and wildly ramified. Also, we retrieve
Notation 2.3.3 on indexing p-basis.

Construction 4.2.1. We take Z = {c1, . . . , cm, t} to be the set of generators of
Ol/Ok given by Construction 3.3.5. (Maybe some of them are already in the field
k, but we still keep those.) We take P = {t}. By Proposition 4.1.7(1′ ), we can take
the relations to be p0, . . . , pm from Notation 3.3.8. For a ∈ Q>0, we define the
standard Abbes–Saito spaces as

asa
l/k =

{
(u0, . . . , um) ∈ Am+1

k [0, 1]
∣∣ |p0(uJ+)| ≤ θ

a, . . . , |pm(uJ+)| ≤ θ
a},

asa
l/k,log =

{
(u0, . . . , um) ∈ Am+1

k [0, 1]
∣∣

|p0(uJ+)| ≤ θ
a+1, |p1(uJ+)| ≤ θ

a, . . . , |pm(uJ+)| ≤ θ
a}.

Let PJ+ be the lifts of pJ+ as in Lemma 3.3.13. For a ∈ Q>0 and η0 ∈ (0, 1),
we define the lifting Abbes–Saito spaces to be

ASa,≥η0
l/k =

{
(UJ+, S) ∈ Am+2

K [0, 1]

∣∣∣∣∣ η0 ≤ |S|< 1,

|P0(UJ+ , S)| ≤ |S|a, . . . , |Pm(UJ+ , S)| ≤ |S|a

}
,

ASa,≥η0
l/k,log =

{
(UJ+, S) ∈ Am+2

K [0, 1]

∣∣∣∣∣ η0 ≤ |S|< 1, |P0(UJ+ , S)| ≤ |S|a+1,

|P1(UJ+ , S)| ≤ |S|a, . . . , |Pm(UJ+ , S)| ≤ |S|a

}
;

they are viewed as rigid spaces over Z≥η0
k .

Lemma 4.2.2. Let k ′/k be a finite Galois extension of naïve ramification degree
e′. If we identify Ck as a subring of Ck′ as in Construction 3.3.12, we may view
PJ+ as polynomials in UJ+ with coefficients in OK ′[[S′]], where K ′ is the fraction
field of the Cohen ring of κk′ and S′ is a lift of the uniformizer s ′ in k ′. Then, for
η0 ∈ (0, 1) and a ∈Q>0, we have

Z
≥η

1/e′
0

k′ ×Z
≥η0
k

ASa,≥η0
l/k
∼=

{
(UJ+, S′)∈Am+2

K ′ [0, 1]

∣∣∣∣∣ η
1/e′

0 ≤ |S′|< 1,

|P0| ≤|S′|e
′a, . . . , |Pm | ≤ |S′|e

′a

}
,

Z
≥η

1/e′
0

k′ ×Z
≥η0
k

ASa,≥η0
l/k,log

∼=

{
(UJ+, S′)∈Am+2

K ′ [0, 1]

∣∣∣∣∣ η1/e′

0 ≤ |S′|< 1, |P0| ≤ |S′|e
′(a+1),

|P1| ≤ |S′|e
′a, . . . , |Pm | ≤ |S′|e

′a

}
;
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Proof. The only thing not obvious is that we replace |Pj | ≤ |S|a(+1) by |Pj | ≤

|S′|e
′a(+e′); this is because |S| = |S′|e

′

as proved in Lemma 3.3.13(2). �

Remark 4.2.3. Note that Z≥η0
k → Z

η1/e′
0

k′ is not a morphism between rigid spaces for
the reason explained in Remark 3.3.14. So, strictly speaking, Z≥η

1/e′
0

k′ ×Z
≥η0
k

ASa,≥η0
l/k

and the log counterpart should be thought of as the geometric incarnations of the
tensor products of the corresponding ring of analytic functions. The new spaces
are, however, well-defined rigid analytic spaces over Z≥η

1/e′
0

k′ .

Theorem 4.2.4. For a ∈ Q>0, there is a one-to-one correspondence between the
geometric connected components of asa

l/k,(log) and the following limit of connected
components:

lim
←−
k′/k

lim
η0→1−

π
geom
0

(
Z
≥η1/e′

0
k′ ×Z

≥η0
k

ASa,≥η0
l/k(,log)

)
,

where e′ is the naïve ramification degree of k ′/k and the second limit only takes
η0 ∈ pQ

∩ (0, 1).

Proof. By Lemma 4.2.2 and Example 1.3.4, when e′a ∈ Z, Z≥η
1/e′
0

k′ ×Z
≥η0
k

ASa,≥η0
l/k(,log)

is a lifting space of asa
l/k(,log). The theorem then follows from Corollary 1.2.12. �

Remark 4.2.5. Here, we need η0 ∈ pQ
∩ (0, 1) since Corollary 1.2.12 requires it.

Remark 4.2.6. Introducing this ramified extension k ′/k to make e′a ∈ Z may not
be essential, but it eases the proof.

4.3. Comparison of rigid spaces. In this subsection, we will prove that the lifting
Abbes–Saito spaces are isomorphic to some thickening spaces we constructed in
Section 3.4. In this subsection, we continue to assume Hypotheses 2.3.2 and 3.3.1.

Before proving the comparison theorem, we need to analyze Construction 3.3.5
closely and give a new view of π̃∗ using differentials. However, the proofs of the
following two lemmas are not so enlightening in this generality; the reader may
skip them when reading the paper for the first time, but see Remark 4.3.5.

Lemma 4.3.1. Modulo p, the homomorphism π̃∗ gives a continuous homomor-
phism π̃∗ : κk → κk[[δJ ]]. For ḡ ∈ κk , we can write dḡ = ḡ1db̄1+ · · · + ḡmdb̄m in
�1
κk/Fp

. Then π̃∗(ḡ)≡ ḡ+ ḡ1δ1+ · · ·+ ḡmδm modulo (δJ )
2
· κK [[δJ ]].

Proof. Use the p-basis to express ḡ (uniquely) as ḡ =
∑p−1

eJ=0 ā p
eJ b̄eJ

J for some
āeJ ∈ κk . Thus, dḡ =

∑p−1
eJ=0 ā p

eJ d(b̄eJ
J ). On the other hand, we have

π̃∗(ḡ)≡
p−1∑
eJ=0

ā p
eJ
(b̄J + δJ )

eJ

modulo (δJ )
p
·κK [[δJ ]]. The statement follows by comparing the two formulas. �
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Remark 4.3.2. The analogous result for π̃∗ is true. Actually, π̃∗ is the Taylor
expansion homomorphism [Kedlaya 2007, Definition 2.2.2].

Lemma 4.3.3. Keep the notation as in Section 3.3. We have

det
(
∂(π̃∗(Pi )− Pi )

∂δ j

)
i, j∈J+

∣∣∣∣
δJ+=0

∈
(
OK [[S]]〈UJ+〉/(PJ+)

)×
= (OL [[T ]])×.

In particular, the corresponding matrix is invertible.

Proof. It is enough to prove that the matrix is of full rank modulo (p, T ). First,
modulo (p, T ), the first row will be all zero except the first element which is
d(c̄1, . . . , c̄m) ∈ κ

×

l . Hence, we need only to look at(
∂(π̃∗(Pi )−Pi )

∂δ j

)
i, j∈J

mod (p, T, δJ+)=

(
∂(π̃∗(b̄i )−b̄i )

∂δ j

)
i, j∈J

mod (t, δJ+). (4.3.4)

Let ᾱi j ∈ κl denote the entries in the matrix on the right-hand side of (4.3.4), where
we identify Ok〈uJ+〉/(pJ+, u0)

∼
→ κl . Under this identification, b̄i will become c̄pri

i
for all i ∈ J . It suffices to show that the i-th row is κl-linearly independent from
the first i − 1 rows for all i . Write

b̄i =

pr0−1∑
e1=0

· · ·

pri−1−1∑
ei−1=0

λ̄e1,...,ei−1ue1
1 · · · u

ei−1
i−1 ,

where λ̄e1,...,ei−1 ∈ κk for which dλ̄e1,...,ei−1 = µ̄e1,...,ei−1,1db̄1+· · ·+µ̄e1,...,ei−1,mdb̄m .
Then, by Lemma 4.3.1, we can write

ᾱi1db̄1+ · · ·+ ᾱimdb̄m

=

pr0−1∑
e1=0

· · ·

pri−1−1∑
ei−1=0

c̄e1
1 . . . c̄

ei−1
i−1 (µ̄e1,...,ei−1,1db̄1+ · · ·+ µ̄e1,...,ei−1,mdb̄m)

≡ d(c̄pri

i ) modulo (dc̄1, . . . , dc̄i−1)

in�1
ki−1/Fp

; it is in fact nontrivial because dc̄1, . . . , dc̄m form a basis of�1
κL/Fp

and
hence there should not be any auxiliary relation among dc̄1, . . . , dc̄i in�1

ki/Fp
. But

we know that the sums ᾱi ′1db̄1+· · ·+ᾱi ′mdbm for i ′< i all lie in the submodule of
�1

ki−1/Fp
generated by dc̄1, . . . , dc̄i−1. Hence the i-th row of the matrix in (4.3.4)

is ki−1-linearly independent from the first i − 1 rows. The lemma follows. �

Remark 4.3.5. When κl/κk is modular in the sense of [Sweedler 1968], we can
choose the p-basis of κk so that c̄pr j

j = b̄ j ; in that case, the above lemma is much
easier to prove because the matrix, modulo (p, T ), is lower triangular with 1 on
the diagonal. However, this may not be the case in general; see also Remark 3.3.6.
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Theorem 4.3.6. There exists η′0 ∈ (0, 1) such that for any a ∈ Q>1 and any η0 ∈

(max{p−1/a, η′0}, 1), there exists an isomorphism of rigid spaces over Z≥η0
k :

TSa,≥η0
k\l ' ASa,≥η0

l/k . (4.3.7)

Similarly, There exists η′0 ∈ (0, 1) such that for any a ∈ Q>0 and any η0 ∈

(max{p−1/a, η′0}, 1), there exists an isomorphism of rigid spaces over Z≥η0
k :

TSa,≥η0
k\l,log ' ASa,≥η0

l/k,log. (4.3.8)

Proof. We give the proof for the case of log-spaces and indicate the changes needed
for the nonlog case. The only significant difference between the two is that when
constructing the morphism χ2, we have slightly different approximations. We will
match up the ring of functions on the two rigid spaces in (4.3.8) in the log case and
(4.3.7) in the nonlog case.

Fix an η0 ∈ (p−1/a, 1) satisfying Hypothesis 3.3.16.
Recall that OTS

a,≥η0
k,log
= R

η0
K 〈S

−a−1δ0, S−aδJ 〉 (resp. OTS
a,≥η0
k
= R

η0
K 〈S

−aδJ+〉).
For each j ∈ J+, π̃∗(Pj ) is the polynomial Pj with coefficients replaced by their
pull-backs to OTS

a,≥η0
k,log

(resp. OTS
a,≥η0
k

) via π̃∗. So the rings of functions on TSa,≥η0
k\l,log

and TSa,≥η0
k\l are, respectively,

R1,log = R
η0
K 〈S

−a−1δ0, S−aδJ 〉〈UJ+〉/π̃
∗(PJ+),

R1 = R
η0
K 〈S

−aδJ+〉〈UJ+〉/π̃
∗(PJ+).

(4.3.9)

By Lemma 3.3.13(1),

π̃∗(Pj ) ∈U pr j

j − π̃
∗(B j )+ (p,U0, S, δ0) ·OK [[δJ+, S]][UJ+],

π̃∗(P0) ∈U e
0 − π̃

∗(D)S− δ0+ (p,U0S, S2,U0δ0, Sδ0, δ
2
0) ·OK [[δJ+, S]][UJ+].

Thus, we can view R1,log and R1 as finite free modules over OTS
a,≥η0
k,log

and
OTS

a,≥η0
k

, respectively, with basis {U eJ+

J+ | 0 ≤ e0 < e; 0 ≤ e j < pr j , j ∈ J }.
For each η ∈ [η0, 1), we norm R1,log and R1 as follows: for g =

∑
λeJ+

U eJ+

J+

with λeJ+
∈ OTS

a,≥η0
k,log

or λeJ+
∈ OTS

a,≥η0
k

, summed over e0 = 0, . . . , e − 1 and
e j = 0, . . . , pr j − 1 for j ∈ J , we define

|g|R1,log,η =max
eJ+
{|λeJ+

|TSa,η
k,log
· ηe0/e} and |g|R1,η =max

eJ+
{|λeJ+

|TSa,η
k
· ηe0/e}.

It is clear that R1,log and R1 are the Fréchet completions for the norms | · |R1,log,η

and | · |R1,η, for all η ∈ [η0, 1).
On the other hand, by the definition of ASa,≥η0

l/k,log and ASa,≥η0
l/k , their respective

rings of functions are

R2,log =R
η0
K 〈S

−a−1V0, S−a VJ 〉〈UJ+〉/(PJ+−VJ+),

R2 =R
η0
K 〈S

−a VJ+〉〈UJ+〉/(PJ+−VJ+),
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which are clearly finite free modules over Wlog =R
η0
K 〈V0/η

a+1, VJ/η
a
〉 and W =

R
η0
K 〈VJ+/η

a
〉, respectively, with basis {U eJ+

J+ | 0≤ e0 < e; 0≤ e j < pr j , j ∈ J }.
Similarly, for η∈[η0, 1), we norm R2,log and R2 as follows: for g=

∑
λeJ+

U eJ+

J+

with λeJ+
∈Wlog or λeJ+

∈W , summed over e0=0, . . . , e−1 and e j=0, . . . , pr j−1
for j ∈ J , we define

|g|R2,log,η =max
eJ+
{|λeJ+

|Wlog · η
e0/e} and |g|R2,η =max

eJ+
{|λeJ+

|W · η
e0/e}.

It is clear that R2,log and R2 are the Fréchet completions for the norms | · |R2,log,η

and | · |R2,η, for all η ∈ [η0, 1).
We will identify the UJ+ in different rings, but VJ+ will not be same as δJ+ . Be

cautioned that the two norms will not be the same under the identification; but they
will give the same topology.

Now, we define a continuous K-homomorphism χ1 : R2,log → R1,log (resp.
χ1 :R2→R1) so that χ1(S)= S, χ1(U j )=U j , χ1(V j )= Pj (UJ+) for all j ∈ J+.
We need only to check that for any η ∈ [η0, 1),

|χ1(V j )|R1,log,η ≤

{
ηa+1 if j = 0,
ηa if j ∈ J,

|χ1(V j )|R1,η ≤ η
a for all j ∈ J+.

(4.3.10)

Here we need separate arguments for the logarithmic and nonlogarithmic cases. In
the former case, inequality (3.2.9) says that

|Pj − π̃
∗(Pj )|R1,log,η ≤ η

a
|Pj |R2,log,η

for j ∈ J+, which gives exactly the bound in (4.3.10) because |P0|R2,log,η ≤ η and
|Pj |R2,log,η ≤ 1 for j ∈ J by Lemma 3.3.13(1).

In the nonlogarithmic case, combining Lemma 3.3.13(1) and inequality (3.2.10),
one has |Pj − π̃

∗(Pj )|R1,η ≤ η
a for j ∈ J+; inequality (4.3.10) follows.

Conversely, we will define a continuous K-homomorphism χ2 :R1,log→R2,log

or χ2 :R1→R2 as the inverse to χ1. Obviously, we need χ2(S)= S, χ2(U j )=U j

for all j ∈ J+. The only thing not clear is χ2(δ j ) for all j ∈ J+.
By Lemma 4.3.3, let

A :=
(
∂(π̃∗(Pi )− Pi )/∂δ j

)
i, j∈J+

∣∣
δJ+=0 ∈ GLm+1(OL [[T ]])

∼= GLm+1
(
OK [[S]]〈UJ+〉/PJ+

)
.

Let B be the (m + 1) × (m + 1) matrix whose entries are in the free OK [[S]]-
module generated by the basis in Lemma 3.3.13(1) and which has image A−1 in
Mm+1(OK [[S]]〈UJ+〉/(PJ+)). Then, if I denotes the (m + 1)× (m + 1) identity
matrix, we have

B A− I ∈Matm+1
(
(δJ+) ·OK [[S]]〈UJ+〉

)
, (4.3.11)
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Now, we writeδ0
...

δm

= (I−B A)

δ0
...

δm

−B


 π̃

∗(P0)−P0
...

π̃∗(Pm)−Pm

−A

δ0
...

δm


−B

 P0
...

Pm

 , (4.3.12)

the last term being just −Bχ1(VJ+). We need to bound the first two terms.
By (4.3.11), I − B A has norm ≤ ηa . Hence, in the nonlogarithmic case, the

first term in (4.3.12) has norm ≤ η2a; in the logarithmic case the first term in
(4.3.12) has norm ≤ η2a , except for the first row, which has norm ≤ η2a+1. By the
definition of A and Theorem 3.2.8, the second term in (4.3.12) has norm ≤ η2a in
the nonlogarithmic case; it has norm ≤ η2a in the logarithmic case, except for the
first row, which has norm ≤ η2a+1.

Since we want χ2 to be the inverse of χ1, we define recursively

χ2

δ0
...

δm

=−B

V0
...

Vm

+χ2

30
...

3m

 , (4.3.13)

where3J+ denotes the sum of the first two terms in (4.3.12). Since3J+ has strictly
smaller norm than δJ+ and is in the ideal (δJ+), one can plug the image of χ2(δJ+)

back into χ2(3J+) and iterate this substitution. This iteration will converge to the
value of χ(δJ+) as an element in R2,log or R2. Moreover, from the construction,
one can see that

|χ2(δ j )|R1,η ≤ η
a for all η ∈ [η0, 1) and j ∈ J+,

|χ2(δ0)|R1,log,η ≤ η
a+1
}

for all η ∈ [η0, 1) and j ∈ J .
|χ2(δ j )|R1,log,η ≤ η

a

Hence, if we define

χ2 :R
η0
K 〈S

−a−1δ0, S−aδJ 〉〈UJ+〉 →R2,log and χ2 :R
η0
K 〈S

−aδJ+〉〈UJ+〉 →R2

by χ2(uJ+) = uJ+ , then χ2(δJ+) is the limit we obtained above; this gives a con-
tinuous homomorphism. We will check that this homomorphism factors through
R1,log or R1. Indeed, by the recursive formula (4.3.13), which is (4.3.12) after
applying χ2, we see that

−Bχ2

 π̃
∗(P0)− P0

...

π̃∗(Pm)− Pm

− B

V0
...

Vm

=
0
...

0

 .
We know that B has an invertible image in GLm+1(OK [[S]]〈UJ+/(PJ+)), and so
is invertible over R1,log or R1. We must have 0 = χ2(π̃

∗(Pj ) − Pj ) + V j =
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χ2(π̃
∗(Pj ))+ V j − Pj = χ2(π̃

∗(Pj )) for all j ∈ J+. This proves that χ2 factors
through R1,log or R1.

Finally, we claim that χ2 and χ1 are inverse to each other. One may check this
from the definition directly. Alternatively, we observe that, by our definition, they
are inverse to one another on a dense subset K [S, uJ+], the polynomial ring inside
the Fréchet algebras; therefore, they have to be inverse to one another and give an
isomorphism between the ring of functions on Abbes–Saito space and the ring of
functions on thickening space. �

Remark 4.3.14. The isomorphisms constructed in Theorem 4.3.6 are canonical
in the sense that they match up UJ+ on both sides. However, slight perturbations
of the isomorphisms will continue to be isomorphic. This point will be important
when studying the mixed characteristic case.

4.4. Comparison of conductors. In this subsection, we will prove the comparison
between the arithmetic conductors and the differential conductors. As a reminder,
we do not impose Hypotheses 2.3.2 and 3.3.1 in this subsection.

Theorem 4.4.1. Let k be a complete discretely valued field of equal characteristic
p > 0 and let Gk be its absolute Galois group. For a p-adic representation ρ :
Gk → GL(Vρ) of finite local monodromy, the arithmetic Artin conductor Artar(ρ)

of ρ coincides with the differential Artin conductor Artdif(ρ); the arithmetic Swan
conductor Swanar(ρ) coincides with the differential Swan conductor Swandif(ρ).

Proof. It suffices to prove this for irreducible representations, as all the conductors
are additive. All the conductors remain the same if we pass to the completion of the
unramified closure of k, by Proposition 4.1.7(4) and Theorem 2.4.1(2). Thus we
may assume that the residue field κk is separably closed; hence ρ factors through
the Galois group of a finite totally ramified extension l/k as ρ :Gk � Gal(l/k) ↪→
GL(Vρ) with the second map injective. Moreover, we may assume that l/k is
wildly ramified because the theorem is known when l/k is tamely ramified, by
Proposition 4.1.7(6) and Theorem 2.4.1(3). To sum up, we may assume Hypothesis
3.3.1. In particular, bar(l/k) > 1 and bar,log(l/k) > 0.

Next, we want to reduce to the case when the p-basis of k is finite. In view of
Construction 3.3.5, one can choose a p-basis of l so that all but a finite number
of elements are actually in k. Let (ci )i∈I be a subset of those elements in the p-
basis which lie in k. Set k̃ = k(c1/pn

i | i ∈ I, n ∈ N)∧ and l̃ = lk̃. We claim that
Ol̃ = Ol ⊗Ok Ok̃ . Indeed, after base change to k̃, the valued groups do not change:
|k̃×| = |k×|. Thus, [|l̃×| : |k̃×|] ≥ [|l×| : |k×|]. On the other hand, the residue field
extension of l̃/k̃ has degree at least the same as κl/κk because c̄J\I are not in the
residue field of k̃. But we know that the degree of the extension does not increase.
Therefore, we have equality on both naı̈ve ramification degrees and degrees of
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residue field extension. It is then clear that Ol̃ = Ol ⊗Ok Ok̃ , as the right-hand side
contains the uniformizer of the left-hand side and both sides are isomorphic modulo
that uniformizer. Therefore, by Proposition 4.1.7(4), bar(l̃/k̃)= bar(l/k).

On the differential conductors side, [Kedlaya 2007, Lemma 3.5.4] shows for
the log case (the nonlog case follows by a similar argument) that we can consider
only a finite number of elements in the p-basis and the differential conductors are
unchanged after taking an inseparable field extension with respect to other elements
in the p-basis.

To sum up, we can make an inseparable extension so that all conductors do not
change, and we are reduced to the case where Hypothesis 2.3.2 holds.

Now, we will prove the comparison theorem for the Swan conductors and the
proof for the Artin conductors follows verbatim, except replacing Swan by Art,
replacing a > 0 by a > 1, and dropping all the logs in the subscripts.

Since ρ is irreducible, Swanar(ρ) = bar,log(l/k) · dim Vρ . Recall from Section
2.3, we can associate with ρ a differential module Eρ over R

η0
K ⊗Qq F for some η0∈

(0, 1). As the representation ρ is irreducible, Eρ has a unique ramification break
bdif,log(Eρ). So the differential Swan conductor of ρ is Swandif(ρ) = bdif,log(Eρ) ·

dim Vρ . Therefore, to conclude, it suffices to show that bar,log(l/k)= bdif,log(Eρ).
We do this by means of a chain of equivalences. By the equivalence (a)⇐⇒ (d)

in Theorem 3.4.12, the inequality a > bdif,log(Eρ) is equivalent to this condition:

For any (or some) extension l ′/ l with naı̈ve ramification degree e′,

π
geom
0

(
Z≥η

1/ee′
0

l ′ ×Z
≥η

1/e
0

l
TSa,≥η0

l/k\l,log

)
= [l : k], when η0→ 1−. (∗)

By Theorem 4.2.4, the condition (∗) is equivalent to πgeom
0 (asa

l/k,log) = [l : k],
where a is a rational number. But this is the same as a > bar,log(l/k). �

Remark 4.4.2. In an early version of this paper, Theorem 4.4.1 is stated for repre-
sentations with finite image. Andrea Pulita pointed out that this could be extended
to the finite local monodromy case by a standard argument as in the proof.

Corollary 4.4.3. (a) (Hasse–Arf Theorem) Let k be a complete discretely valued
field of equal characteristic p> 0, let Gk be its absolute Galois group, and let
ρ :Gk→GL(Vρ) be a p-adic representation of finite local monodromy. Then
the arithmetic Artin conductor Artar(ρ) and the arithmetic Swan conductor
Swanar(ρ) are integers.

(b) Let k be a complete discretely valued field of equal characteristic p> 0. Then
the subquotients Fila Gk/Fila+ Gk (resp. Filalog Gk/Fila+log Gk) of the arith-
metic ramification filtrations are elementary p-abelian groups if a ∈ Q>1

(resp. a ∈Q>0) and are trivial if a /∈Q.

Proof. This follows from Theorems 2.4.1 and 4.4.1. �
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5. Applications

In this section, we give two applications of the comparison Theorem 4.4.1. The first
is to deduce an integrality result concerning the ramification filtration of finite flat
group schemes, introduced in [Abbes and Mokrane 2004]. The other is to compare
the arithmetic and differential Artin conductors to the Artin conductor defined by
Borger [2004].

Remark 5.0.4. All applications in this section can be carried over to the mixed
characteristic case if there is a good theory of differential conductors. For the
application to finite flat group schemes, one needs the Hasse–Arf theorem of arith-
metic Artin conductors; for the comparison with Borger’s Artin conductor, one
needs a mixed characteristic version of Proposition 5.4.1. In the absence of these
statements, we only focus on the equal characteristic p case throughout this section.

5.1. Hasse–Arf theorem for finite flat group schemes. We first recall some defi-
nitions and basic properties from [Abbes and Mokrane 2004; Hattori 2008]. Then,
we use a theorem by Raynaud [Berthelot et al. 1982, théorème 3.1.1] to reduce
the integrality result to the case of finite Galois extension of complete discretely
valued fields.

Keep the notation as in previous sections. We do not assume any hypothesis on
k (and there will be no l in this subsection).

Convention 5.1.1. All finite flat groups schemes are commutative.

The construction of the canonical filtration on a generically étale finite flat group
scheme is similar to that of the arithmetic ramification filtration.

Definition 5.1.2. Let A be a finite flat Ok-algebra. Write A = Ok[x1, . . . , xn]/I

with I an ideal generated by f1, . . . , fr . For a ∈Q>0, define the rigid space

Xa
=
{
(x1, . . . , xn) ∈ An

K [0, 1]
∣∣ | fα(x1, . . . , xn)| ≤ θ

a, α = 1, . . . , r
}
,

where θ = |s| as in Notation 4.1.1. The highest break b(A/Ok) is the smallest
number such that πgeom

0 (Xa)= rankOk A for all a > b(A/Ok). This is the same as
Definition 4.1.3 if A = Ol , except here we use the ring of integers instead of the
fields in the notation.

Notation 5.1.3. A finite flat group scheme G = Spec A is generically étale if
G ×Ok k is étale over k; it is generically trivial if G ×Ok k is a disjoint union
of copies of Spec k.

Definition 5.1.4. For a geometrically étale finite flat group scheme G = Spec A,
we have a natural map of points G(kalg) ↪→ Xa(kalg); further composing with the
map for geometric connected components, we obtain a map

σ a
: G(kalg) ↪→ Xa(kalg)→ π

geom
0 (Xa).
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Define Ga to be the closure of ker σ a . We use b(G/Ok) to denote the highest break
b(A/Ok); then for a > b(G/Ok), Ga

= Spec Ok .

Proposition 5.1.5 [Abbes and Mokrane 2004, lemme 2.3.2]. Let

0→ G ′→ G→ G ′′→ 0

be an exact sequence of finite flat group schemes. For a > 0,

0→ G ′a→ Ga
→ G ′′a→ 0

is exact.

Caution 5.1.6. For a subgroup scheme H ⊂ G and a ≥ 0, we do not know how to
link Ha with H ×G Ga .

The following question was first raised in [Hattori 2008], and the result is essen-
tially due to Hattori. The author thanks him for clarifying this and for permission
to include the proof here.

Theorem 5.1.7. Let Ok be a complete discrete valuation ring of equal character-
istic p. For any generically trivial finite flat groups scheme G over Ok , b(G/Ok) is
a nonnegative integer.

Proof. We may assume that G is connected by taking the connected component
of the identity. By a theorem of Raynaud [Berthelot et al. 1982, théorème 3.1.1],
we may realize G as the kernel of an isogeny f :B→ A of two abelian schemes
over Spec Ok . Let α and β be generic points of the special fibers of A and B,
respectively. Then by [Abbes and Mokrane 2004, lemme 2.1.6], b(O∧B,β/O

∧

A,α) =

b(G/Ok).
Since the generic fiber of G is a disjoint union of copies of Spec k, we know

that O∧B,β/O
∧

A,α is a generically étale finite Galois extension of complete discrete
valuation rings, with Galois group G(k); in particular, all irreducible representa-
tions of this Galois group over an algebraically closed field are one-dimensional.
By Hasse–Arf Theorem 4.4.1, b(O∧B,β/O

∧

A,α)= b(G/Ok) is an integer. �

5.2. Generic p∞-th roots. In this subsection, we introduce the notation of generic
p∞-th roots. This idea was first introduced in [Borger 2004] as a key ingredient of
Borger’s Artin conductor.

Keep the notation as in previous sections. We assume Hypothesis 2.3.2, that k
has a finite p-basis bJ .

Notation 5.2.1. Let x1, . . . , xm be transcendental over k. Define k ′ to be the com-
pletion of k(x1, . . . , xm) with respect to the (1, . . . , 1)-Gauss norm. Set l ′ = k ′l.
Clearly, l ′ is the completion of l(x1, . . . , xm) with respect to the (1, . . . , 1)-Gauss
norm. We call x1, . . . , xm dummy variables.
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Definition 5.2.2. We use adding generic p∞-th roots to refer to the following
procedure. Consider

k ↪→ k̃ = k ′
(
(b j + x j s)1/pn

; j ∈ J, n ∈ N
)∧
,

instead of k; namely, put all p-power roots of b j + x j s for all j ∈ J into k ′ and
then take the completion. We provide k̃ with the p-basis x J , i.e., replacing b j by
x j for all j ∈ J . For a finite field extension l/k, we replace it by the extension of
the composite l̃ = lk̃/k̃. Note that Gal(l̃/k̃)=Gal(l/k) as k̃ is linearly independent
from l.

The proof of the following proposition is essentially the same as [Kedlaya 2007,
Lemma 3.5.4]. It is also implicitly contained in Borger’s construction of Artin
conductors (Section 5.3).

Proposition 5.2.3. Let l/k be a finite Galois extension of complete discretely val-
ued fields of equal characteristic p and with finite p-basis. Then, after a finite
number of operations of adding generic p∞-th roots, the field extension has sepa-
rable residue field extension.

Proof. First, the tamely ramified part is always preserved under these operations.
So, we can assume that l/k is totally wildly ramified and hence the Galois group
Gl/k is a p-group. We can filter the extension l/k as k = k0 ⊂ · · · ⊂ kn = l, where
ki/ki−1 is a (wildly ramified) Z/pZ-Galois extension and ki/k is Galois for each
i = 1, . . . , n. Each of these subextensions

(a) either has inseparable residue field extension (and so has naı̈ve ramification
degree 1), or

(b) has separable residue field extension (and so has naı̈ve ramification degree p).

Let i0 be the maximal number such that ki/ki−1 has separable residual extension
for i = 1, . . . , i0. Obviously adding generic p∞-th roots does not decrease i0

because after adding generic p∞-th roots, the naı̈ve ramification degree of k̃i0/k̃
still equals the degree pi0 . It then suffices to show that after a finite number of
operations of adding generic p∞-th roots, ki0+1/ki0 has separable residue field
extension. Suppose the contrary.

Let g ∈ Gki0+1/ki0
' Z/pZ be a generator. We claim that

γ =minw∈Oki0+1

(
vki0+1(g(w)−w)

)
decreases by at least 1 after adding p∞-th roots. This would conclude the propo-
sition, as γ is always a nonnegative integer, which would lead to a contradiction.

Let z be a generator of Oki0+1 as an Oki0
-algebra. It satisfies an equation

z p
+ a1z p−1

+ · · ·+ ap = 0, (5.2.4)
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where a1, . . . , ap−1 ∈ mki0
and ap ∈ O×ki0

with āp ∈ κ
×

ki0
\(κ×ki0

)p
= κ×k \(κ

×

k )
p. It is

easy to see that γ = vki0
(g(z)− z).

Adding generic p∞-th roots to k gives us the field k̃. Now, the field extension
k̃ki0+1/k̃ki0 is also generated by z as above. But we can write ap = α

p
+ β for

α ∈ Ok̃ki0
and β ∈ mk̃ki0

. Hence if we substitute z′ = z + α into (5.2.4), we get
z′p + a′1z′p−1

+ · · · + a′p = 0, with a′1, . . . , a′p ∈ mk̃ki0
. Hence, vk̃ki0+1(z

′) > 0.
By assumption that the extension k̃ki0+1/k̃ki0 has naı̈ve ramification degree 1, a
uniformizer πki0

of ki0 is also a uniformizer for k̃ki0+1 and hence z′/πki0
lies in

Ok̃ki0+1
. Thus,

γ ′ =minw∈Ok̃ki0+1

(
vk̃ki0+1

(g(w)−w)
)

≤ vk̃ki0+1

(
g(z′/πki0

)− z′/πki0

)
= vki0+1(g(z)−z)− 1= γ − 1.

This proves the claim and hence the proposition. �

5.3. Borger’s Artin conductors. We start with reviewing Borger’s definition of
Artin conductors following [Borger 2004]. Then, we prove the comparison theo-
rem linking this to arithmetic and differential conductors.

Keep the notation as above. Let k be a complete discretely valued field of equal
characteristic p, with no further hypothesis added. In fact, Borger’s construction
works in the mixed characteristic case, but we only focus on the equal characteristic
case (see Remark 5.0.4).

Definition 5.3.1. An Fp-algebra R is called perfect if F : x 7→ x p is an isomor-
phism. For an Fp-algebra R, we use Rpf

=
⋃

n∈N R1/pn
to denote its perfec-

tion. Let CRPOk be the subcategory of the category of Ok-algebras consisting of
flat Ok-algebras A, complete with respect to the mk-adic topology and for which
A/mk A is perfect.

Proposition 5.3.2 [Borger 2004, Theorem 1.4]. This category CRPOk has an initial
object Ou

k , the universal residual perfection of Ok . We have an equivalence of
categories

CRPOk

∼
→ PerfAlgOu

k
, A 7→ A/mk A, (5.3.3)

where PerfAlgOu
k

is the category of perfect Ou
k/mkOu

k -algebras.

Definition 5.3.4. Let O
g
k be the inverse image of Frac(Ou

k/mkOu
k ) under (5.3.3),

called the generic residual perfection of Ok . Let

kg
= Frac(Og

k ).

By Proposition 5.3.2, O
g
k is a complete discrete valuation ring with perfect residue

field.
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We have a homomorphism of Galois groups Gkg → Gk . Given a representation
ρ of Gk with finite image, we define the Borger’s Artin conductor ArtB(ρ) to be
Art(ρGkg ), where the latter term is as in the classical definition [Serre 1979].

Remark 5.3.5. Borger [2004] only defined Artin conductors for representations of
finite image. We expect his definition can be extended to representations of finite
local monodromy. However, this additional freedom is not essential, so we stick
to the finite image case to ease the argument.

Obviously, Borger’s Artin conductors have a Hasse–Arf property naturally in-
herited from that of kg, a complete discretely valued field with perfect residue
field.

Proposition 5.3.6 [Borger 2004, Theorem A]. Borger’s Artin conductor ArtB(ρ)

is a nonnegative integer and it coincides with the classical definition when the
residue field κk is perfect.

[Borger 2004, Proposition 2.3] Furthermore, ArtB(ρ) is unchanged after a finite
unramified extension of k.

Moreover, Borger proved that his definition coincides with a variant of arith-
metic Artin conductor ArtK for characters using the definition of Kato [1989]. (As
we will not use Kato’s definition, we just mention the following proposition as a
fact.)

Proposition 5.3.7 [Borger 2004, Theorem B]. Let χ be a class in H 1(Gk,Q/Z)

and χ ′ its image in H 1(Gkg ,Q/Z). Then ArtK (χ) = ArtK (χ
′). In particular, for

a rank-one representation ρ of Gk with finite image, ArtK (ρ)= ArtB(ρ).

Borger gave the following explicit descriptions of ku and kg.

Proposition 5.3.8. We have ku
= (κk[vi, j | j ∈ J, i ∈ N])pf((πku )). The homo-

morphism k ↪→ ku is determined by s 7→ πku and b j 7→ b j +
∑

i>0 vi, jπ
i
ku . Also,

kg
= Frac(κk[vi, j ; j ∈ J, i ∈ N]pf)((πku )) and the homomorphism k→ kg is given

by composing k ↪→ ku with the natural morphism ku ↪→ kg.

5.4. Comparison with Borger’s conductors. The key to proving the comparison
between Borger’s Artin conductors and the arithmetic Artin conductors is to study
how the arithmetic Artin conductors behave under the operations of adding generic
p∞-th roots.

In this subsection, we do not impose any hypothesis on k.

Proposition 5.4.1. Assume Hypothesis 2.3.2. For representations of finite image,
the differential Artin conductor for a representation of finite image is unchanged
after adding generic p∞-th roots.
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Proof. Since the operation of adding p∞-th roots does not change the Galois group
of the finite Galois extension, we may assume that the representation is irreducible
and totally and wildly ramified. Hence it suffices to consider the differential rami-
fication break of a totally and wildly ramified finite Galois extension l/k.

Recall that we have a differential module E over Z≥η0
k = A1

K [η0, 1) for some
η0 ∈ (0, 1) with differential operators ∂BJ and ∂S , associated with the regular rep-
resentation of Gal(l/k) over Qp. The base change k ↪→ k ′ = k(x J )

∧ is translated
into the base change of E into E′, from Z≥η0

k to Z≥η0
k′ = A1

K (X J )∧
[η0, 1), where

K ′ = K (X J )
∧ is the completion of K (X J ) with respect to the (1, . . . , 1)-Gauss

norm; E′ has differential operators ∂BJ , ∂X J , and ∂S .
Consider the rotation f : Z≥η0

k′ → Z≥η0
k′ by f ∗(BJ )= BJ + X J S, f ∗(X J )= X J ,

and f ∗(S) = S; write ∂ ′BJ
, ∂ ′X J

, and ∂ ′S for the action of differential operators on
f ∗E′. Then

∂ ′BJ
= ∂BJ , ∂ ′X J

= S · ∂BJ + ∂X J , ∂ ′S =
∑
j∈J

X j · ∂B j + ∂S.

Since X J are transcendental over K , we have

max{|∂BJ |Eη,sp, |∂S|Eη,sp, |∂X J |Eη,sp} = |∂
′

S|E′η,sp

=max{|∂ ′X J
|E′η,sp, |∂

′

S|E′η,sp} (5.4.2)

for all η ∈ [η0, 1). Note that adding generic p∞-th roots to k corresponds exactly
to replacing E by f ∗E′ and forgetting the differential operators BJ . By (5.4.2), the
differential nonlogarithmic ramification break of l̃/k̃ is the same as that of l/k. �

Theorem 5.4.3. For a complete discretely valued field k of equal characteristic
p and a representation ρ of its Galois group Gk with finite image, the arithmetic
Artin conductors Artar(ρ) as well as the differential Artin conductors Artdif(ρ) are
the same as Borger’s Artin conductors ArtB(ρ).

Proof. First we may assume that ρ is irreducible and it factors exactly through the
Galois group Gl/k of a totally ramified Galois extension l/k because all conductors
are additive and remain the same under a (finite) unramified extension (Theorem
2.4.1(c) and Propositions 4.1.7(d) and 5.3.6). As kg has a perfect residue field,
ArtB(ρ) = ArtB(ρ|Gkg ) = Artdif(ρ|Gkg ) are the same as in the classical definition.
It suffices to show Artdif(ρ)= Artdif(ρ|Gkg ).

Similarly to the proof of Theorem 4.4.1, one may add the p∞-th roots of all but
a finite number of elements of the p-basis into k without changing the differential
Artin conductors. In other words, there exists k ↪→ k1= k(bp−n

j | j ∈ J\J0, n ∈N)∧

for some finite set J0 ⊂ J , such that Artdif(ρ) = Artdif(ρ|Galk1
). Since the residue

field of kg is perfect, there exists k1 ↪→ kg extending k ↪→ kg. Hence, we may
assume Hypothesis 2.3.2, i.e., k has a finite p-basis.
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By Proposition 5.2.3, we can do a finite number of operations of adding generic
p∞-th roots and make the resulting field extension k2l/k2 not fiercely ramified and
Artdif(ρ|Gk1

)=Artdif(ρ|Gk2
). In order to link k2 with kg, we need to show that we

have a homomorphism k2 ↪→ kg extending k1 ↪→ kg, for which we return to the
proof of Proposition 5.2.3 and construct the homomorphism step by step.

The r -th (1≤ r ≤ r0) step of adding generic p∞-th roots is to construct

k(r)1 =

(
k(r−1)

1 (xr,J )
(
(xr−1, j + xr, jπk)

1/pn
; j ∈ J, n ∈ N

))∧
,

where x0, j = b j for j ∈ J and k(0)1 = k1. One checks that the map given by

xr, j 7→
∑
r ′≥r

vr ′, jπ
r ′−r
kg

for all j ∈ J and r = 1, . . . , r0, gives the desired homomorphism k2 ↪→ kg.
Now, k2l/k2 has naı̈ve ramification degree [k2l : k2], so Okgl = Okg ⊗Ok2

Ok2l .
Hence we have

Artdif(ρ|Gk2
)= Artar(ρ|Gk2

)= Artar(ρ|Gkg )= Artdif(ρ|Gkg )

via Theorem 4.4.1 and Proposition 4.1.7(d). �
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