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On the (non)rigidity of the Frobenius
endomorphism over Gorenstein rings

Hailong Dao, Jinjia Li and Claudia Miller

It is well-known that for a large class of local rings of positive characteristic,
including complete intersection rings, the Frobenius endomorphism can be used
as a test for finite projective dimension. In this paper, we exploit this property to
study the structure of such rings. One of our results states that the Picard group
of the punctured spectrum of such a ring R cannot have p-torsion. When R is a
local complete intersection, this recovers (with a purely local algebra proof) an
analogous statement for complete intersections in projective spaces first given by
Deligne in SGA and also a special case of a conjecture by Gabber. Our method
also leads to many simply constructed examples where rigidity for the Frobenius
endomorphism does not hold, even when the rings are Gorenstein with isolated
singularity. This is in stark contrast to the situation for complete intersection
rings. A related length criterion for modules of finite length and finite projective
dimension is discussed towards the end.

1. Introduction

The Frobenius endomorphism for rings of positive characteristic has been one of
the central objects of study in homological commutative algebra over the past
decades. Not only is it a useful tool in proofs of homological conjectures, but also
its intrinsic homological properties have been shown to have strong connections
with the structure of the ring or of modules over it. In this article we provide
several surprising connections, for example, the relationship between the ability of
the Frobenius to detect the finite projective dimension of modules and the torsion
part of the divisor class group.

We review some history and notation. In [Kunz 1969, Theorem 2.1] regular local
rings are characterized as those for which the Frobenius endomorphism f : R→ R
(or equivalently some iteration of it) is flat. Since then, a list of papers has yielded
further similar homological results for f , each analogous to a classical homological
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result concerning the residue field k (viewed as an R-module via π : R → k);
for further details see the survey [Miller 2003], as well as [Avramov et al. 2006;
Iyengar and Sather-Wagstaff 2004]. We will use the notation f n

R for R viewed as
an R-module via the n-th iteration f n of f .

For their celebrated proof of the Intersection Theorem, Peskine and Szpiro
[1969, Corollary 2; 1972, Theorem 1.7] generalized one direction of Kunz’s result,
and shortly thereafter Herzog [1974, Theorem 3.1] proved the converse, yielding
the following equivalence:

M has finite projective dimension⇔TorR
i (M,

f n
R)= 0 for all i > 0 and all n> 0.

This leads one to ask to what extent the module f n
R could function as a test module

for finite projective dimension: is the vanishing of TorR
i (M,

f n
R) for just one value

each of i>0 and n>0 sufficient? In particular, this would imply that the R-module
f n

R is rigid, that is, that

TorR
i (M,

f n
R)= 0 H⇒ TorR

i+1(M,
f n

R)= 0.

Several steps toward these goals have been made in recent years. In the general
setting, [Koh and Lee 1998, Proposition 2.6] proved a finiteness result: there is a
constant c(R), depending only on the ring R, such that vanishing of TorR

i (M,
f n

R)
for any depth R + 1 consecutive values of i > 0 and any one value of n ≥ c(R)
implies that M has finite projective dimension. In fact, it showed that depth R
consecutive values of i suffice if R is Cohen–Macaulay of positive dimension.
The best possible result however, occurs in the setting of complete intersection
rings:

Theorem 1.1 [Avramov and Miller 2001; Dutta 2003]. Let R be a local com-
plete intersection and M a finitely generated R-module. Then the vanishing of
TorR

i (M,
f n

R) for one value each of i > 0 and n > 0 implies that M has finite
projective dimension.

Phenomena like this can occur over noncomplete intersection rings as well. In
such a case, we call the corresponding f n

R strongly rigid (which is equivalent to
being rigid when n ≥ c(R) by Koh and Lee’s result above). See Definition 2.1 and
Example 2.2 for known examples.

In Section 2, we study the properties of Gorenstein local rings whose corre-
sponding f n

R is strongly rigid. We show that if R is Gorenstein such that f n
R is

locally strongly rigid (i.e., strongly rigid at the localization at every prime ideal),
then the minimal infinite projective dimension locus of a module M (see Definition
2.3) must be contained in the set of associated primes of Fn(M) (see Theorem 2.5).
One consequence of this result is the following characterization for modules of
finite projective dimension:
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Corollary 2.6. Let R be a Gorenstein local ring such that f n
R is locally strongly

rigid for some n > 0 and M an R-module. Then M has finite projective dimension
if and only if Ass Fn(M) is contained in the finite projective dimension locus of M.

Note that the class of rings such that f n
R is locally strongly rigid for all n > 0

includes, but is strictly bigger than, the class of all local complete intersections;
see Example 2.2.

We also apply Theorem 2.5 to prove that the divisor class groups of certain
Gorenstein domains have no p-torsion.

Theorem 2.9. Let R be a Gorenstein local ring such that f n
R is locally strongly

rigid for some n > 0. Let I be a reflexive ideal such that I is locally free in
codimension 2. Furthermore, assume that HomR(I, I ) ∼= R. Let q = pn . Then if
I (q) satisfies Serre’s condition (S3), I must be principal. In particular, the Picard
group of the punctured spectrum of R has no p-torsion. If , furthermore, R satisfies
condition (R2), Cl(R) has no p-torsion.

This theorem shows that the Picard groups of the punctured spectrum of com-
plete intersection rings cannot have p-torsion. For complete intersections in pro-
jective spaces, such a result was first proved in [Deligne 1973, Theorem 1.8] using
sophisticated geometric machinery. We also note that this particular case confirms
the positive characteristic case of the following conjecture:

Conjecture 1.2 [Gabber 2004]. Let (R,m) be a local complete intersection ring
of dimension 3. Let UR = Spec(R)− {m} be the punctured spectrum of R. Then
Pic(UR) is torsion-free.

It was implied in [Gabber 2004] that the positive characteristic case is known,
but we cannot find a precise reference. In any case, it is worth noting that our proof
is purely homological and quite simple.

In Section 3, we push the ideas in the previous section further to construct many
examples of Gorenstein local rings R such that f n

R is not strongly rigid. In other
words, the vanishing of TorR

i (M,
f n

R) for just one value each of i > 0 and n > 0
is not sufficient to conclude that M has finite projective dimension. Two differ-
ent approaches are used in these constructions. The first approach boils down to
finding an isolated Gorenstein singularity with torsion class group and applying
Theorem 2.9; see Example 3.2. The second approach takes a different route, via
Lemma 3.3. Obtaining an actual example requires some explicit computations on
the determinantal ring of 2 × 2 minors in 9 variables and hence is less general
than the first approach; see Example 3.5. The bonus is, however, that these have a
torsion-free class group.

In Section 4, we study the connection between (strong) rigidity and numerical
rigidity (see Definitions 4.1 and 4.2) of the Frobenius endomorphism. The main
result we prove there is this:
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Theorem 4.6. Let R be a Cohen–Macaulay local ring with isolated singularity
and of positive dimension. Fix n > 0. If f n

(R/y R) is numerically rigid for every
nonzerodivisor y ∈ R, then f n

R is strongly rigid against modules of dimension up
to one.

The rest of the introduction contains a review of the notation and definitions used
throughout the paper. We assume throughout that R is a commutative Noetherian
local ring of prime characteristic p>0 and that all R-modules M and N are finitely
generated. The Frobenius endomorphism f : R→ R is defined by f (r) = r p for
r ∈ R; its self-compositions are given by f n(r)= r pn

. Restriction of scalars along
each iteration f n endows R with a new R-module structure, denoted by f n

R.
The Frobenius functor, introduced in [Peskine and Szpiro 1972], is given by

base change along the Frobenius endomorphism:

FR(M)= M ⊗R
fR

for any R-module M . Its compositions are given by Fn
R(M)= M ⊗R

f n
R, namely

base change along the compositions f n of f . We omit the subscript R if there is
no ambiguity about R. Note particularly that the module structure on Fn(M) is via
usual multiplication in R on the right hand factor of the tensor product. The values
of the derived functors TorR

i (M,
f n

R) are similarly viewed as R-modules via the
target of the base change map f n .

It is easy to verify that Fn(R)∼= R and that for cyclic modules Fn(R/I )∼= R/I [q],
where q = pn and I [q] denotes the ideal generated by the q-th powers of the gen-
erators of I . We frequently use q to denote the power pn , which may vary.

In the sequel, `(M) will denote the length and pd M the projective dimension
of the module M . By the codimension of M we mean dim R−dim M . We use the
notation x for a sequence of elements of R and often write simply R/x for R/(x)
to save space. Likewise, xq denotes the ideal generated by the q-th powers of the
sequence x, not the q-th power of the ideal x.

2. Strong rigidity of Frobenius and torsion elements in divisor class groups

We now investigate the consequences of the phenomenon that over certain rings
the Frobenius map can be used to test for finite projective dimension (e.g., over
complete intersection rings). This work enables us to prove strong results about
torsion elements in the class groups of complete intersection rings and also allows
us to construct counterexamples to such phenomena over noncomplete intersection
rings. We begin with some convenient definitions to facilitate the discussion.

Definition 2.1. An R-module N is called strongly rigid if for any integer i and
any finitely generated R-module M , TorR

i (M, N ) = 0 implies pdR M <∞. The
module N is called locally strongly rigid if Np is strongly rigid for all p ∈ Spec R.
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Example 2.2. If R is a local complete intersection ring, then f n
R is locally strongly

rigid for all n; see Theorem 1.1. For any local Cohen–Macaulay ring R of dimen-
sion at most 1, there is a number c(R) such that for any n ≥ c(R), f n

R is strongly
rigid by virtue of [Koh and Lee 1998, Proposition 2.6], already mentioned on
page 1040. In particular, when (R,m) is Artinian and m[p]=0, then f n

R is (locally)
strongly rigid for all n [Miller 2003, 2.2.8].

Definition 2.3 [Dao 2010]. Let M be an R-module. One defines the infinite pro-
jective dimension locus of M as

IPD(M)= {p ∈ Spec R | pdRp
Mp =∞}.

Similarly, define FPD(M) to be the finite projective dimension locus of M . Finally,
we define the n-strong rigidity locus of R as

SRn(R)= {p ∈ Spec R | f n
Rp is strongly rigid}.

The following standard facts, which we state without proof, will be used often:

Fact 2.4. Let f : R→ S be a ring homomorphism and p a prime ideal of S. Then
for each i ≥ 0 and R-module M there is a natural isomorphism

TorR
i (M, S)p ∼= Tor

R f−1(p)
i (M f −1(p), Sp).

Furthermore, if f is the Frobenius endomorphism of R, then f −1(p) = p and
R f −1(p)→ Sp is the Frobenius endomorphism of Rp.

Theorem 2.5. Let R be a Gorenstein local ring and M an R-module. Then

min IPD(M)∩SRn(R)⊆ Ass Fn(M).

In particular, if f n
R is locally strongly rigid, then

min IPD(M)⊆ Ass Fn(M).

Proof. Since R is Gorenstein, by the Cohen–Macaulay approximation due to [Aus-
lander and Buchweitz 1989, 1.8], there is a short exact sequence

0→ M→ Q→ N → 0,

where pd Q <∞ and N is maximal Cohen–Macaulay. Tensoring with the Frobe-
nius endomorphism, we have an embedding

0→ TorR
1 (N ,

f n
R)→ Fn(M). (2-1)

Take any p ∈ min IPD(M) ∩ SRn(R); then pdRp
Mp = ∞ and f n

Rp is strongly
rigid. It follows that pdRp

Np = ∞ and therefore that TorRp

1 (Np,
f n

Rp) 6= 0. On
the other hand, since p is minimal in the infinite projective dimension locus of M ,
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pdRq
Mq<∞ for any prime q ( p, whence pdRq

Nq<∞ and so TorRq

1 (Nq,
f n

Rq)=

0. Therefore, the length of TorRp

1 (Np,
f n

Rp) must be finite.
Localizing (2-1) at p, we have an exact sequence

0→ TorRp

1 (Np,
f n

Rp)→ Fn(M)p.

This implies that depth Fn(M)p = 0. Hence p ∈ Ass Fn(M). �

Corollary 2.6. Let R be a Gorenstein local ring such that f n
R is locally strongly

rigid for some n > 0 and M an R-module. Then M has finite projective dimension
if and only if Ass Fn(M)⊆ FPD(M).

As an immediate consequence, we obtain the following special case with simpler
hypotheses. Here, Sing(R) denotes the singular locus of R. Note particularly that
the hypothesis that min Supp M and Sing(R) are disjoint holds, for example, when
dim M > dim Sing(R).

Corollary 2.7. Let R be a Gorenstein local ring such that f n
R is locally strongly

rigid for some n>0 (e.g., if R is a local complete intersection) and M an R-module
such that (min Supp M)∩ Sing(R) = ∅. If Fn(M) has no embedded primes, then
M has finite projective dimension. In particular, if Fn(M) is Cohen–Macaulay,
then M is perfect.

Proof. It suffices to note that

Ass Fn(M)=min Supp Fn(M)=min Supp M ⊆ Spec R\Sing(R)⊆ FPD(M),

where the first equality is by the assumption that Fn(M) has no embedded primes,
the second is well-known (see [Peskine and Szpiro 1972], for example) and the
first containment follows from the hypothesis. �

Remark 2.8. If R is reduced, we do not know if the disjointness of min Supp M
and Sing(R) in Corollary 2.7 can be replaced by the simpler condition dim M > 0.
However, this is impossible when R is not reduced (see [Miller 2003, 2.1.7], for
example).

We now give an application of Theorem 2.5 to divisor class groups. In the sequel,
we use Cl(R) to denote the divisor class group of R. We refer to [Fossum 1973]
for the definition and basic facts about Cl(R) and the Picard groups and to [Bruns
and Herzog 1993] for Serre’s conditions (Rn) and (Sn).

Theorem 2.9. Let R be a Gorenstein local ring such that f n
R is locally strongly

rigid for some n > 0. Let I be a reflexive ideal such that I is locally free in
codimension 2. Furthermore, assume that HomR(I, I ) ∼= R. Let q = pn . Then if
I (q) satisfies Serre’s condition (S3), I must be principal. In particular, the Picard
group of the punctured spectrum of R has no p-torsion. If , furthermore, R satisfies
condition (R2), then Cl(R) has no p-torsion.
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Proof. We may assume dim R ≥ 3. Assume that I is not principal, then it follows
that pd I =∞ (see [Braun 2004, Corollary 11] and [Bourbaki 1965, Chapter VII,
§4, no. 7, Corollary 2]). We claim that one can always write I = (a) : (b) for
a, b ∈ R. Here is a quick proof: choose a such that a generates I at the minimal
primes of I . Pick an irredundant primary decomposition of (a); it can be written
as I ∩ J (if I = (a) we are done). Choosing b in J but not in any minimal prime
of I , one can show that I = (a) : (b). By the short exact sequence

0→ R/(a : b)
b
→ R/(a)→ R/(a, b)→ 0

we obtain IPD(I )= IPD(R/(a, b)). Thus we have p ∈min IPD(R/(a, b)) for any
p ∈min IPD(I ), and so by Theorem 2.5,

p ∈ Ass
(
Fn(R/(a, b))

)
= Ass(R/(aq , bq)).

Localize the short exact sequence

0→ R/(aq
: bq)→ R/(aq)→ R/(aq , bq)→ 0

at p, and observe that (aq
: bq)= I (q). From the fact that depth(R/(aq , bq))p = 0

we get depth I (q)p ≤ 2. On the other hand, since I is locally free in codimension 2,
dim Rp≥3. So, I (q) does not satisfy (S3), and our first assertion is proved. The last
two statements follow immediately (note that if R is (R2) then R is automatically
normal). �

As a corollary we can recover a notable result about torsion elements in the
Picard groups of complete intersections.

Corollary 2.10. Let R be an equicharacteristic local complete intersection ring
of dimension at least 3. Then the Picard group of the punctured spectrum of R is
torsion-free. If , furthermore, R satisfies condition (R2), then the class group of R
is torsion-free.

Let X be a complete intersection variety of dimension at least 2 in the projec-
tive space over a field. The Picard group of X modulo the hyperplane section is
torsion-free.

Proof. Let p be the characteristic exponent of R (so it is 1 if the characteristic of R
is 0). The fact that neither the Picard group nor Cl(R) has an element whose order
is relatively prime to p was well-known [Robbiano 1976]. Theorem 2.9 takes care
of the p-torsion elements. The second half of the corollary follows by applying
the first to the local ring at the origin of the affine cone over X . �

Remark 2.11. The second half of the corollary was first proved in [Deligne 1973].
Another proof was given in [Bădescu 1978, Theorem B]. As far as we know, ours
is the first algebraic proof.
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Example 2.12. The conditions dim R ≥ 3 and (R2) in the corollary cannot be
weakened. Let R = k[[x, y, z]]/(xy− z2), where k is an algebraically closed field
of characteristic other than 2. Then dim R = 2 and R is regular in codimension 1,
but Cl(R)∼= Z/(2) (see, for example, [Fossum 1973, Proposition 11.4]).

3. Examples of nonrigidity

In this section we construct plenty of examples of a Gorenstein ring R in positive
characteristic such that f n

R is not (strongly) rigid. This is in stark contrast to the
situation for complete intersection rings, where the strong rigidity of f n

R is known
to hold. Our constructions take two completely different approaches. The first
approach (see Example 3.2) provides the desired examples with torsion divisor
class groups. This can be viewed as a natural consequence of Theorem 2.9. The
second approach (see Example 3.5), on the contrary, provides the desired examples
with torsion-free divisor class groups.

First we isolate a consequence of Theorem 2.9:

Corollary 3.1. Let R be a local, Gorenstein domain with isolated singularity.
Suppose that dim R ≥ 3 and Cl(R) has a torsion element of order l that satisfies
(S3). Then f n

R is not strongly rigid for any n such that pn
≡ 1 or 0 modulo l. In

particular, if l = 2, then f n
R is not strongly rigid for any n and not rigid for n� 0.

Proof. Let I be a reflexive ideal which represents an l-torsion element in Cl(R)
and q = pn . Then the ideal J = I (q) is isomorphic to I or R, both of which satisfy
(S3), contradicting Theorem 2.9. When l = 2, for any n, q = pn is congruent to 0
or 1 modulo 2. The last statement follows from Example 2.2. �

Example 3.2. It is not hard to find examples of isolated Gorenstein singularities
with torsion class group. Let S = k[x1, . . . , xd ] and l be an integer. Let T be the
l-Veronese subring of S and R be the local ring at the homogeneous maximal ideal
of T . Then one can show that Cl(R) = Cl(T ) = Z/(l) using [Watanabe 1981,
Theorem 1.6]. The ring R obviously has an isolated singularity, as it is the local
ring at the origin of the cone over a smooth projective variety. Also, R will be
Gorenstein as long as l divides d . Finally, let I represent the generator of Cl(T ). It
is easy to see that the cyclic cover of T corresponding to I is S, so I , and therefore
the generator of Cl(R), is Cohen–Macaulay. In particular, it will be (S3). So all of
the conditions of Corollary 3.1 can be satisfied easily.

For the rest of this section we will take another approach to construct exam-
ples of nonrigidity in which the rings have torsion-free divisor class groups. The
following result gives a general technique for finding such examples:

Lemma 3.3. Let (R,m) be a Gorenstein ring with isolated singularity and positive
dimension. The following are equivalent:
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(1) f n
R is strongly rigid.

(2) For any R-module L with infinite projective dimension, depth Fn(L)= 0.

Proof. That (1) implies (2) is a consequence of Corollary 2.6. Now assume (2).
Let L be a module of infinite projective dimension. It is enough to prove that
TorR

1 (L ,
f n

R) 6= 0. Consider the exact sequence

0→ L1→ Q→ L→ 0

where Q is free and L1 is the first syzygy of L . If TorR
1 (L ,

f n
R) = 0, then by

tensoring with f n
R one gets

0→ Fn(L1)→ Q→ Fn(L)→ 0.

But since pdR L = pdR L1 =∞, one has depth Fn(L1)= depth Fn(L)= 0. Since
depth Q = dim Q > 0, this is a contradiction. �

We also need the following crucial observation.

Lemma 3.4. Let k be a field of characteristic p> 0. Let A denote the determinan-
tal ring k[X ]/I2 where X = (X i j ) is a 3 × 3 matrix of indeterminates and I2 is the
ideal of k[X ] generated by all the 2 × 2 minors of X. Let xi j denote the images of
X i j in A. Let L = A/(x11, x12). Then depth Fn(L)> 0 for all n> 0 and pd L =∞.

Proof. Let δi j denote the minor of X corresponding to X i j and I be the ideal of
k[X ] generated by Xn

11, Xn
12, and all the δi j . We prove that for any field k (we

do not need to assume that k has prime characteristic!) and any n ≥ 2, x33 is a
nonzerodivisor for A/(xn

11, xn
12)
∼= k[X ]/I . In the following paragraph, we refer

the reader to [Eisenbud 1995, 15.2–4] for notation and terminology (some of it
italicized) regarding Gröbner bases.

We fix a reverse lexicographic order > on the monomials such that

X11 > X12 > X13 > X21 > X22 > X23 > X31 > X32 > X33.

Using Buchberger’s algorithm, one can produce a Gröbner basis for I consisting
of all the δi j , Xn

11, Xn
12, and all the monomials of the form X l

11 Xn−l
12 X s

22 X t
32, where

l runs from 1 through n−1 and s, t run through all positive integers such that
s + t = l. Therefore the initial ideal of I (henceforth in(I )) does not contain any
monomial divisible by X33. Assume for some g ∈ k[X ], X33g ∈ I . Let g0 be
the remainder of g (with respect to the generators of I ) in a standard expression
obtained by performing the division algorithm. If g0 6= 0, then X33g0 6= 0 since
k[X ] is a domain. On the other hand, since X33g0∈ I , at least one of the monomials
of X33g0 is in in(I ). Thus, at least one of the monomials of g0 is in in(I ). This
contradicts the fact that g0 is a nonzero remainder. Thus g0 = 0 and g ∈ I . It
follows that x33 is a nonzerodivisor for k[X ]/I .
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Finally, we show pd L =∞. Assume that pd L <∞, i.e., the ideal (x11, x12) is
of finite projective dimension. By [MacRae 1963, Corollary 4.4], two-generated
ideals of finite projective dimension have the form a(b, c), where a is a nonzero-
divisor and b, c form a regular sequence. But if (x11, x12)= a(b, c) for such a, b,
and c, since the degree of x11 is one, a is forced to be a unit (otherwise, (x11, x12)

would be a principal ideal which is impossible). Therefore (x11, x12)= (b, c). But
since x11x22 − x21x12 = 0, (x11, x12) cannot be an ideal generated by a regular
sequence of two elements. This is a contradiction. �

Combining the two lemmas above, we get the following example. Note that
the divisor class group of the ring in this example is isomorphic to Z [Bruns and
Herzog 1993, 7.3.5], which is torsion-free.

Example 3.5. Let R be the localization of the determinantal ring A as in Lemma
3.4 with respect to the maximal ideal (X). Then f n

R is not strongly rigid for any n.

Remark 3.6. In view of the theorem of Koh and Lee mentioned in Section 1, Ex-
ample 3.5 immediately yields the nonrigidity of f n

R for any n≥ c(R) (see Example
2.2). But in fact, with a little further computation, the reader can check that this
example yields nonrigidity for all n>0: indeed, the module N of infinite projective
dimension constructed in Theorem 2.5 by taking for the module M the module L
of Lemma 3.4 satisfies TorR

1 (N ,
f n

R)= 0 by the argument in the proof. But it can
be shown that in fact TorR

2 (N ,
f n

R) 6= 0.
We point out that we do not know of any example showing that f n

R is not
(strongly) rigid when dim R = 0 or against a module M of finite length. See,
however, the discussion at the end of Section 4.

4. Some further observations

Throughout this section, d will always be the dimension of the ring and n always
denotes some positive integer. We know from the previous section that R could fail
to be strongly rigid when R is no longer a complete intersection ring. However,
we still hope that to some extent such a property could hold over noncomplete
intersection rings. In particular, we do not know any example showing that f n

R is
not rigid when dim R = 0 or against a module M of finite length.

We first make two more definitions, the first of which is just a refinement of the
definition of strong rigidity of f n

R.

Definition 4.1. Let h be a nonnegative integer. f n
R is called strongly rigid against

modules of dimension at most h if, for any integer i and any finitely generated
module M of dimension at most h, TorR

i (M,
f n

R)= 0 implies pdR M <∞.

Definition 4.2. f n
R is called numerically rigid if for any R-module M of finite

length, `(Fn(M))= pnd`(M) implies pdR M <∞.
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The latter definition is motivated by the following characterization for modules
of finite projective dimension and finite length over complete intersection rings.

Theorem [Dutta 1983; Miller 2003]. Let R be a complete intersection ring in
characteristic p and M an R-module of finite length. Then the following are
equivalent:

(1) M has finite projective dimension,

(2) `(Fn(M))= pnd`(M) for all n > 0,

(3) `(Fn(M))= pnd`(M) for some n > 0.

The implication (3)⇒ (1) simply says that if R is a complete intersection ring,
then f n

R is numerically rigid for any n. When R is no longer a complete intersection
ring, it is an open question whether f n

R could still be numerically rigid.1 In fact,
such a question is closely related to the rigidity question discussed earlier. The
goal of this section is to explore the connections between them.

The following technical result plays a crucial role here. Recall that if `(M⊗N )
and pd N are finite, then

χ(M, N ) def
=

pd N∑
j=0
(−1) j`(TorR

j (M, N )).

Proposition 4.3. Let R be a Noetherian local Cohen–Macaulay ring of positive
dimension and of characteristic p > 0. Let M be an R-module of codimension c.
Suppose dim M > 0 and Rp is a complete intersection ring for every minimal prime
p of M. Then

`(Fn
R/x(M/xM))≥ qcχ(M, R/x) (∗)

for all n> 0 and for any system of parameters x of Fn(M) which is also R-regular.
Given n > 0, equality holds in (∗) if and only if Fn(M) is Cohen–Macaulay and
pdRp

Mp is finite for every minimal prime p of M.

For the proof the properties of the higher Euler characteristics of Koszul com-
plexes are used in an essential way. We recall some terms and results here.

For a pair of modules M and N such that `(M ⊗ N ) <∞ and pd N <∞, the
i -th higher Euler characteristic is defined by the formula

χi (M, N )=
pd N∑
j=i
(−1) j−i`(TorR

j (M, N )).

By convention, χ(M, N )= χ0(M, N ). Some standard facts about χ and χi can be
found in [Lichtenbaum 1966; Serre 1975]. In this paper, we particularly need the
following two well-known results:

1The implication (1) ⇒ (2) in the theorem fails even over Gorenstein rings [Miller and Singh
2000].
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Lemma 4.4 [Lichtenbaum 1966, Lemma 1]. Let M be an R-module and x =
{x1, x2, . . . , xc} an R-sequence such that `(M/xM) <∞. Then χ(M, R/x) ≥ 0,
with the equality holding if and only if dim M < c.

Theorem 4.5 [Lichtenbaum 1966, Theorem 1]. Let M be an R-module and x an
R-sequence such that `(M/xM) <∞. Then for any i > 0, χi (M, R/x) ≥ 0, with
the equality holding if and only if Tori (M, R/x)=0 (and hence Tor j (M, R/x)=0
for all j ≥ i).

Proof of Proposition 4.3. We have min Supp Fn(M)=min Supp M , since Supp M
and Supp Fn(M) coincide [Peskine and Szpiro 1972]. Now write

`(Fn
R/x(M/xM))= `(Fn(M)⊗R R/x)

≥ χ(Fn(M), R/x)

=
∑

p∈min Supp M
`(Fn(M)p)χ(R/p, R/x)

=
∑

p∈min Supp M
`(Fn

Rp
(Mp))χ(R/p, R/x)

≥
∑

p∈min Supp M
qc`(Mp)χ(R/p, R/x)

= qcχ(M, R/x),

where the first inequality holds since χ1(Fn(M), R/x) ≥ 0 by Theorem 4.5, the
second and last equalities hold by Lemma 4.4, and the second inequality is a re-
sult over complete intersection rings [Dutta 1983, Theorem 1.9] (note that Rp is
complete intersection by the hypotheses).

Therefore, furthermore, equality holds if and only if χ1(Fn(M), R/x)= 0 and
`(Fn

Rp
(Mp))= qc`(Mp) for every minimal prime p of M . The former is equivalent

to Fn(M) being Cohen–Macaulay by Theorem 4.5 and the latter is equivalent to
Mp having finite projective dimension over Rp by [Miller 2003, Theorem 5.2.2],
since Rp is a complete intersection ring. �

Theorem 4.6. Let R be a Cohen–Macaulay local ring with isolated singularity
and of positive dimension. Fix some n > 0. If for every nonzerodivisor y ∈ R,
f n
(R/y R) is numerically rigid, then f n

R is strongly rigid against modules of di-
mension at most one.

Proof. Let M be an R-module of dimension at most one. Assume f n
(R/y R) is

numerically rigid for every nonzerodivisor y ∈ R. We want to prove that for any i >
0, Tori (M, f n

R)= 0 implies pd M <∞. Let x = {x1, . . . , xd−1} be an R-sequence
contained in Ann M . We may assume that i = 1 by replacing M by its (i − 1)-th
syzygy over the ring R/(x1, . . . , xd−1) and using that Tori (R/(x1, . . . , xd−1),

f n
R)

vanishes for all i > 0, since pdR R/(x1, . . . , xd−1) <∞.
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Letting K be the first syzygy of M as an R/(x1, . . . , xd−1)-module, we get a
short exact sequence:

0→ Fn(K )→ Fn((R/(x1, . . . , xd−1))
t)
→ Fn(M)→ 0.

It follows that Fn(K ) is a Cohen–Macaulay module of dimension one. Hence by
Proposition 4.3 (note that R has an isolated singularity), one has `(Fn

R/y R(K/yK))=
qd−1χ(K , R/y R) for every y ∈ R which is regular on both K and R. Therefore,
`(Fn

R/y R(K/yK )) = qd−1`(K/yK ). Since we assume f n
(R/y R) is numerically

rigid, K/yK has finite projective dimension over R/y R. Thus K has finite pro-
jective dimension over R, whence M does too by the long exact sequence of Tors
against the residue field k. �

Remark 4.7. For the determinantal ring R=k[X ]/I2 used in Section 3, it was
shown there that f n

R is not strongly rigid against modules of dimension at most 5
for any n. In fact, we can also modify the example a little bit to show that it is not
strongly rigid against modules of dimension at most 3. For k of arbitrary character-
istic, though, we do not know if f n

R is strongly rigid against modules of dimension
at most 0, 1, or 2. However, in characteristic 2 we have an example which shows
that f 1

R is not strongly rigid against modules of dimension 1. In fact, if we set
k=Z/2Z and take the module N=R/(x12, x13, x21, x23, x31, x32), then it is easy
to check that dim N=1, depth F(N )=1, and pd N=∞. Taking an R-sequence
x1, x2, x3, x4 contained in the annihilator of N and embedding N into a module of
finite projective dimension over R/(x1, x2, x3, x4) (via the Auslander–Buchweitz
short exact sequence again), the cokernel of this embedding gives such an example.
Therefore, by Theorem 4.6, we also obtain an example of a Gorenstein ring R in
characteristic 2 for which the corresponding R-module f 1

R is not numerically rigid.
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