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We study modular abelian varieties with odd congruence number by examining
the cuspidal subgroup of J0(N ). We show that the conductor of such abelian
varieties must be of a special type. For example, if N is the conductor of an
absolutely simple modular abelian variety with odd congruence number, then N
has at most two prime divisors, and if N is odd, then N = pα or N = pq for
some primes p and q . In the second half of the paper, we focus on modular
elliptic curves with odd modular degree. Our results, combined with the work
of Agashe, Ribet, and Stein for elliptic curves to have odd modular degree. In
the process we prove Watkins’ conjecture for elliptic curves with odd modular
degree and a nontrivial rational torsion point.

Let E/Q be an elliptic curve over the rational numbers. From [Wiles 1995;
Taylor and Wiles 1995], we know that E is modular (see [Breuil et al. 2001]),
which implies that there is a surjective map π : X0(N ) → E defined over the
rationals. As such, we have a new invariant attached to the elliptic curve, namely
the minimal degree of π , which we call the modular degree of E . This invariant
is related to many other invariants of the elliptic curve. For instance, this number
is closely related to the congruences between E and other modular forms (see
Section 1A and [Agashe et al. 2008]). Also, we know that finding a good bound
on the degree of π in terms of N is equivalent to the ABC conjecture (see [Murty
1999; Frey 1997]).

After calculating the modular degree of various elliptic curves, Watkins con-
jectured that 2r divides the modular degree of the elliptic curve E , where r is
the rank of E(Q) (see [Watkins 2002]). In the particular case when the modular
degree of E is odd, Watkins’ conjecture implies E(Q) is finite. Searching through
Cremona, Stein, and Watkins’ databases [Stein and Watkins 2002; Cremona] for
elliptic curves of odd modular degree, Calegari and Emerton [2009] observed that
all such elliptic curves have bad reduction at no more than two primes. By studying
the Atkin–Lehner involution on elliptic curves E having odd modular degree, they
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demonstrated that such curves have an even analytic rank and that there are at most
two odd primes dividing their conductor (see Section 2A). Dummigan [2006] has
provided a heuristic explanation for Watkins’ conjecture. His method uses the
Selmer group of the symmetric square of E and its relationship to congruences
between modular forms.

The goal of this paper is to extend the results of Calegari and Emerton to modular
abelian varieties having odd modular exponents and odd congruence number (see
Section 1A for definition). We find the necessary conditions for a modular abelian
variety to have odd congruence number. Specifically in Theorem 2.15 we show that
if a modular abelian variety with conductor N has odd congruence number, then
N =2p, 4pa, 8pa, pq where p and q are odd primes, or N is a power of a prime. In
Section 3 we study elliptic curves having odd congruence number. Recall the result
of Agashe, Ribet, and Stein [Agashe et al. 2008] that elliptic curves with semistable
reduction at 2 have odd congruence number if and only if they have odd modular
degree (see Theorem 1.1).1 We find more stringent conditions that elliptic curves
with odd congruence number need to satisfy. Specifically in Theorem 3.8 we show
that if an elliptic curve E with conductor N has odd congruence number, then if
it has a trivial torsion structure then N is prime and E has an even analytic rank,
otherwise N has at most two prime divisors and has rank 0. Furthermore, we find
families of elliptic curves that any elliptic curve with odd congruence number and a
nontrivial torsion point must belong to one of these families (see Theorem 3.8). We
expect that the elliptic curves in these families have odd modular degrees, although
to prove this we need a better understanding of the rational torsion points of J0(N ).

We now give a quick overview. In Section 1, we review some definitions and
results needed in the rest of the paper. Specifically, in Section 1B we recall how
to calculate the rational cuspidal subgroup of J0(N ), and in Section 1C we study
the action of the Hecke algebra and Atkin–Lehner involutions on this subgroup. In
Section 2, we study modular abelian varieties with odd congruence number, and
show that all such abelian varieties have at most two primes of bad reduction. A
key component of this argument is that if A is a modular abelian variety having
odd congruence number and non-prime-power conductor, A must have a rational
2-torsion point (Theorem 2.1). We also show that if A has odd congruence number
and a rational 2-torsion point, then all the new rational 2-torsion points of J0(N )
map injectively to A (see Section 2C). We use this fact and our analysis of the
cuspidal subgroup to show that if A has odd congruence number and is semistable
away from 2, then it has at most two primes of bad reduction (Theorem 2.12) and
the primes dividing the conductor must satisfy certain congruences (Theorem 2.15).
The other useful result is that if p2

|N for some odd prime N , then A must have a

1In fact, by searching through Cremona’s table of elliptic curves, it seems that an elliptic curve
has odd congruence number if and only if it has odd modular degree.
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complex multiplication or an inner twist (Proposition 2.10). In Section 3 we apply
our results to elliptic curves. Theorem 2.15 gives us conditions that the conductor
of an elliptic curve with odd congruence number must satisfy. In each subsection
of Section 3 we study one of these cases, get more stringent conditions on the
conductor, and show that in almost all cases the rank of such elliptic curves is zero
(Theorem 3.8).

1. Preliminaries

Let N be a positive integer and X0(N ) be the moduli space of generalized elliptic
curves with a cyclic subgroup of order N . Let CN ⊂ X0(N ) be the set of cusps of
X0(N ), that is, CN=π

−1(∞), where π : X0(N )→ X0(1) is the natural degeneracy
map, and ∞ is the unique cusp on X0(1). All such cusps can be represented
as rational numbers a/b ∈ H, with a and b positive coprime integers and b|N .
Furthermore, there is a unique representative for any cusp with a≤ (b, N/b). Under
this representation, ∞= 1/N . For any divisor r of N with gcd(r, N/r) = 1, we
can define the Atkin–Lehner involution wr : X0(N )→ X0(N ) by sending (E, D)
to (E/D[r ], (E[r ] + D)/D[r ])2. We usually abuse notation by letting wr = wr

whenever r =
∏

l|r l (for example, w4 = w2 on X0(4N )).
Let S(N ) be the space of weight two cuspforms on 00(N ). Let T denote the

Z-algebra of the Hecke operators acting on S(N ). As usual, we denote J0(N ) =
Jac(X0(N )). Then T acts faithfully on J0(N ) by Picard functoriality. We also have
the standard Albanese embedding i : X0(N )→ J0(N ) via i(z)= (z)− (∞). Note
that for any map w : X0(N )→ X0(N ) we have the induced map

w∗ : J0(N ) → J0(N ),∑
(z) 7→

∑
(w(z)).

1A. Congruence numbers. Recall that attached to any newform f ∈ S(N ) we
have a modular abelian variety A f . Specifically, let I f be the kernel of T→ C

induced by f . Then we have A f = J0(N )/I f , which we refer to as the optimal
quotient attached to f . Conversely, if A is a simple quotient of J0(N ) that is
stable under the action of T and the Atkin–Lehner involutions, then we can find a
modular eigenform f ∈ S(N ) such that A is isogenous to A f . In this case, we say
that f is attached to A. Furthermore all modular forms attached to A are Galois
conjugate to f . Let φ : J0(N ) → A be a surjective morphism. Then the dual
morphism is φ∨ : A∨→ J0(N )∨. Since J0(N ) is self-dual, we can compose these
two morphisms to get

ψ : A∨→ A.

2As usual, G[r ] is the set of r -torsion points of the group G.
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Following [Agashe et al. 2008], we define the modular number to be the order of
ker(ψ), and the modular exponent to be its exponent, denoted by ñ A. If A is an
elliptic curve, then ñ A equals the modular degree of A. In fact, in the case of elliptic
curves we get that ker(ψ)= A[deg(π)], where π : X0(N )→ A (see Lemma 2.2).

Now let φ : J0(N )→ A be any optimal modular abelian quotient. Let B=ker(φ),
which is an abelian variety since A is an optimal quotient. Let TA be the Z-algebra
of the Hecke operators acting on A. Similarly, let TB be the Z-algebra of the
Hecke operators acting on B. There is an injective map T→TA⊕TB with a finite
index, given by the restriction map. The order of the cokernel of T→ TA ⊕ TB

is the congruence number of A. The exponent of this cokernel is the congruence
exponent of A, which is denoted by r̃A (see [Agashe et al. 2008, Lemma 4.3]).
Let m ⊂ T be a maximal ideal of T. Then A[m] 6= 0 (resp. B[m] 6= 0) if and
only if the image of m in TA (resp. TB) is a proper maximal ideal. If A[m] and
B[m] are both nontrivial, then by tensoring T→ TA⊕TB by T/m, we see that the
cokernel is a nontrivial vector space over T/m, which means that the characteristic
of T/m divides the congruence exponent of A. On the other hand, if A[m] 6= 0,
then A∨[m] 6= 0, and if A∨[m] ∩ B[m] 6= 0, the characteristic of T/m divides the
modular exponent.

In [Agashe et al. 2008], the relationship between the modular exponent and the
congruence exponent was studied, and the following was proved.

Theorem 1.1. If f ∈ S(N ) is a newform, then ñ A f | r̃A f . If , moreover, p2 - N , then
ordp( ñ A f )= ordp( r̃A f ).

In particular, if f is a newform of level N and 4 - N , then the modular exponent
of A f is odd if and only if its congruence exponent is odd.

1B. Cuspidal subgroup. The cuspidal subgroup of J0(N ) is the subgroup gener-
ated by the cusps of X0(N ). The goal of this section is to understand the rational
points of the cuspidal subgroup of J0(N ), denoted by CN . This problem was
studied for N a power of a prime in [Ling 1997] and for N the product of the two
primes in [Chua and Ling 1997]. Set

Pd =
1

gcd(d, N/d)

gcd(d,N/d)∑
i=1

(id/N )3.

Proposition 1.2 [Ling 1997]. The rational cuspidal subgroup CN ⊂ J0(N ) is gen-
erated by the elements φ(gcd(d, N/d))(Pd − P1).

Here and in Proposition 1.4, φ denotes the Euler totient function. However,

3Our notation is slightly different from [Ling 1997; Chua and Ling 1997]. Specifically their Pd
is gcd(d, N/d) times our Pd .
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outside this section, φ is reserved for the map φ : J0(N ) → A, and whenever
results from this section are used, we will have φ(gcd(d, N/d))= 1.

We will calculate the order of certain elements in CN . Recall the Dedekind eta
function, defined as

η(τ)= q1/24
∞∏

n=1

(1− qn), with q = e2π iτ .

Let η(Mτ)= ηM(τ ). We use ηM to construct functions with divisors supported on
the cusps. In particular, for M |N , ηM has a zero of order

1
24

Nd ′2

dt M
, (1)

at the cusp of X0(N ) corresponding to x/d ∈ H, where d ′ = gcd(d,M) and t =
gcd(d, N/d); see, for example, [Ogg 1974].

Proposition 1.3 [Ligozat 1975]. Let r = (rδ) be a collection of rational numbers
rδ ∈Q indexed by all the positive divisors of δ|N. Then the function gr =

∏
δ|N η

rδ
δ

is a modular function on X0(N ) if and only if the following conditions are satisfied:

(1) All the rational numbers rδ are rational integers.

(2)
∑

δ|N rδδ ≡ 0 (mod 24).

(3)
∑

δ|N rδN/δ ≡ 0 (mod 24).

(4)
∑

δ|N rδ = 0.

(5)
∏
δ|N δ

rδ is a square of a rational number.

We also know that the lattice of divisors linearly equivalent to zero supported
on the cusps is generated by the divisors of gr that are modular functions. Let
N =

∏k
i=1 psi

i be the prime factorization of N , and let V be the rational vector space
spanned by Pd for d|N . We can represent this vector space as the tensor product
of the vector spaces Vpi , where Vpi is the (si +1)-dimensional space generated by
P1, Ppi , . . . , Pp

si
i

. (The isomorphism between V and the tensor product
⊗

i Vpi is
the natural one sending P∏ p

αi
i

to Pp
α1
1
⊗· · ·⊗Pp

αk
k

.) Similarly, let W be the rational
vector space of functions gr (as defined in Proposition 1.3) under multiplication.
Then we have W '

⊗
Wpi where Wpi is the (si + 1)-dimensional vector space

generated by η1, ηpi , . . . , ηp
si
i

. We have an isomorphism3 :V→W where3−1(g)
is the divisor attached to g. We can verify that this isomorphism can be written
very explicitly as

243p1 ⊗ · · ·⊗3pk ,
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where 3pi : Vpi →Wpi is expressed in the basis above as the tridiagonal matrix

3pi =
1

(p2
i −1)φ(psi

i )



pi (pi−1) −pi

−(pi−1) p2
i +1 −pi

−pi p2
i +1 −pi
. . .

. . .
. . .

−pi p2
i +1 −(pi−1)
−pi pi (pi−1)


.

When f ∈ W is a modular function, 3−1( f ) is linearly equivalent to zero.
Therefore, by combining Proposition 1.3 and the isomorphism above we get:

Proposition 1.4. An element v ∈
⊗

Vpi = V is linearly equivalent to zero if the
following conditions are satisfied:

(1) All the coefficients in 3v are integral.

(2) v has degree 0.

(3) v is integral and the coefficient of Pd divides φ(d, N/d).

(4) For each i , the number (e1 ⊗ · · · ⊗ fi ⊗ · · · ⊗ ek)3v is even, where ei =

(1, 1, 1, . . . , 1) ∈W∨pi
and fi = (0, 1, 0, 1, . . .) ∈W∨pi

.

We use Proposition 1.4 to calculate the order of the elements in CN . Specifically,
for an integral element v ∈ V of degree zero, the order of v in CN is the smallest
positive integer n such that nv satisfies all the conditions in Proposition 1.4. Notice
that if N = 2s2 M where M is a square-free odd integer and s2 < 4 (the case we
deal with in this paper), then condition (3) is reduced to the coefficients of v being
integral. Therefore, the denominator of 3(v) gives the order of v or half of it.

We can use Proposition 1.4 to calculate the order of elements of CN considered
in Table 1. For example, consider an element v = vp1 ⊗ · · · ⊗ vpk , where vpi =

P1+bi Ppi , representing an element in CN when N is square-free and not a prime.
This is a generalization of [Ogg 1974] in the case where N = pq . Note that

3v =
24∏

i (p
2
i − 1)(pi − 1)

(3p1vp1 ⊗ · · ·⊗3pkvpk )

=
24∏

i (p
2
i − 1)

((
p1− b1

(p1− b1)b1

)
⊗ · · ·⊗

(
pk − bk

(pk − bk)bk

))

=
24∏

i (pi + bi )

((
1
b1

)
⊗ · · ·⊗

(
1
bk

))
.

Considering the coefficient of the first coordinate, the order is divisible by n, the
numerator of the (reduced) fraction

∏
i (pi + bi )/24. On the other hand, 3(nv)
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N Cuspidal element Order

p P1− Pp Num
( p−1

12

)
t∏

i=1
pi (P1+ b1 Pp1)⊗ · · ·⊗ (P1+ bk Ppk ) Num

(∏
i (pi + bi )

24

)
Conditions: t > 1; bi =±1 for i = 1, 2, . . . , t ; b j =−1 for at least one j .

4p P2− P2p
p−1

2
Conditions: p is odd.

4
t∏

i=1
pi P2⊗ (P1+ b1 Pp1)⊗ · · ·⊗ (P1+ bk Ppk )

(∏
i (pi + bi )

4

)
Conditions: t > 1; all the pi are odd; bi =±1 for i = 1, . . . , t ; b j =−1 for some j .

8
t∏

i=1
pi (P1− P8)⊗ (P1+ b1 Pp1)⊗ · · ·⊗ (P1+ bk Ppk )

∏
i pi + bi

2
Conditions: all the pi are odd.

Table 1. Order of elements in CN . “Num” is the numerator of a
reduced fraction.

equals
( 1

b1

)
⊗ · · ·⊗

( 1
bk

)
. Therefore

(e1⊗ · · ·⊗ fi ⊗ · · ·⊗ et)3(nv)

is even, implying that nv is linearly equivalent to zero. Hence v has order n. The
other entries in Table 1 are calculated the same way.

1C. Hecke action. In this section we recall the explicit action of the Hecke opera-
tors Tl on the rational cuspidal divisors of X0(N ). This is fairly standard, although
the representation of these actions as the tensor product of matrices is not that
common. The following is the main result of this section.

Proposition 1.5. (1) Let p - N. Then Tp : V → V acts as multiplication by p+1.

(2) Let p|N and V =
⊗

Vpi . Then Tp acts trivially on Vpi for pi 6= p, and as

1 0 · · · 0 0
p−1 0 · · · 0 0

0 p · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · p p


on Vp with the standard basis, (the diagonal elements are all 0 except for the
first and last, and the subdiagonal elements are all p except for the first).
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(3) For p|N we have wp acting trivially on Vpi for pi 6= p, and as
0 0 · · · 1
...
...
. . .

...

0 1 · · · 0
1 0 · · · 0

 : Vp→ Vp.

We will omit the proof of this proposition.

Remark 1.6. Applying w2 to P2 when N = 4M with M odd, we see that w2 has
a fixed point on X0(4M).

We can use this explicit formula to calculate the action of Tp on various elements
in the cuspidal subgroup.

Proposition 1.7. Let M =
∏

pi be an odd square-free integer and N = 2a M for
some a < 4. Let p|N and assume that an element v ∈ V can be written as vp⊗ v

′,
where V ' Vp⊗ V ′ in an obvious way, vp ∈ Vp, and v′ ∈ V ′. Then

(1) If p‖N and vp = P1− Pp then Tpv = v.

(2) If p‖N and vp = P1+ Pp then Tpv = v+ u where u = 2(p− 1)Pp⊗ v
′.

(3) If p = 2, N = 4M , and v2 = P2 then T2v = u with u = 2P4⊗ v
′.

(4) If p=2, N=8M , and v2= P1−P8 then T2v=u where u= (P1+P2−2P4)⊗v
′.

Furthermore if v represents an element in the cuspidal group of order 2, then u is
linearly equivalent to 0.

Proof. Calculating the action of various Hecke operators on these elements is a
straightforward matrix multiplication. As for proving that u is linearly equivalent to
0, one can check directly that3u satisfies conditions (1) and (4) of Proposition 1.3,
as long as 3(2v) does. �

Corollary 1.8. Let v ∈ V be a cuspidal element considered in Table 1. Assume
that the order of v in CN is even and let λ be such that λv ∈ CN [2]. Then for p‖N
(resp. p = 2 and 4|N ) we have Tp(λv)= λv (resp. T2(λv)= 0).

Proof. This follows immediately from Proposition 1.7. �

Remark 1.9. We can also write the elements in Table 1 using the Atkin–Lehner
involution. For example, the element (P1 − b1 Pp1)⊗ · · · ⊗ (P1 − b1 Ppk ) can be
written as (1− b1wp1) · · · (1− bkwpk )P1.

Recall that if A is a simple new modular form, then for p‖N , Tp|A is acting as
either 1 or −1, and when p2

|N then Tp|A = 0. Hence the corollary tells us that if
one of the elements in Table 1 has an even order, then we have a nontrivial element
in CN [2] that is new. This will be used to create congruences between modular
forms in later sections.
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2. Modular abelian varieties with odd congruence number

In this section we will study simple modular abelian varieties with odd congruence
number. By examining the twists of modular abelian varieties, the action of the
Atkin–Lehner involutions, and the order of the cuspidal subgroup, we demonstrate
that if we have an absolutely simple modular abelian variety with odd congruence
number, then its conductor N has at most two prime divisors. We also show that
the odd part of N is either square-free or a power of a prime, and if 16|N , then N
is a power of 2. Furthermore, we find some congruences that prime divisors of N
must satisfy.

Throughout this section we let A be an optimal modular abelian variety with
conductor N and we fix a surjective map φ : J0(N )→ A defined over Z[1/N ].
Furthermore, let π : X0(N )→ A be the composition of the Albanese embedding
and φ. As usual, let T be the Hecke algebra acting on J0(N ) and S(N ).

2A. Atkin–Lehner involution. The goal of this section is to prove the following:

Theorem 2.1. Let A be a new simple modular abelian variety with odd modular
exponent. If A(Q) has no 2-torsion points, the conductor of A is a power of a
prime. Furthermore if A has good reduction at 2 and A(F2) has no 2-torsion
points, the conductor of A is a power of a prime.

This theorem was proved by Calegari and Emerton [2009, Theorem 2.1] in the
case where A is an elliptic curve. Here, we apply their techniques to higher-
dimensional modular abelian varieties.

Lemma 2.2. Let k be a field and f : X/k → Y/k be a degree m map between
curves. Then the composition

Jac(Y )' Jac(Y )∨
f ∗ // Jac(X)∨ ' Jac(X)

f∗ // Jac(Y )

is multiplication by m.

Proof. It suffices to verify the lemma for the points (z1)− (z2) ∈ Jac(Y ), since
these points generate Jac(Y ). Unraveling the definitions we get

f∗
(

f ∗((z1)− (z2))
)
= f∗

( ∑
f (y1)=z1

(y1)−
∑

f (y2)=z2

(y2)
)

=

( ∑
y1∈ f −1(z1)

(z1)−
∑

y2= f −1(z2)

(z2)
)
= m((z1)− (z2)),

where the summations are understood to account for multiplicities. �
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Lemma 2.3. Let w be an involution on X0(N ). Assume that

X0(N )

w
��

π

++ A

X0(N )
π 33

commutes. Then the modular exponent of A is even.

Proof. The assumptions imply that π factors through

X0(N ) // X0(N )/w // A.

Therefore φ factors through

Jac(X0(N )) // Jac(X0(N )/w) // A.

Dualizing this diagram and using the autoduality of J0(N ), we get

A∨ //

δ ��

Jac(X0(N )/w)∨ //

��

J0(N )∨

��
A Jac(X0(N )/w)oo J0(N ).oo

By Lemma 2.2, the middle arrow is multiplication by 2, since the degree of X0(N )
→ X0(N )/w is 2. Using the commutativity of this diagram, we can see that
A∨[2] ⊂ ker(δ). Recalling that the modular exponent is the exponent of the kernel
of δ, we conclude that the modular exponent of A is even. �

Recall that for an involution map w : X0(N ) → X0(N ), we get the induced
map w∗ : J0(N ) → J0(N ). Let A be an optimal modular abelian variety, and
φ : J0(N )→ A the associated surjective map. Then if w∗ keeps ker(φ) invariant,
then w∗ acts on A as well (this happens when, for example, w is an Atkin–Lehner
involution and A is new). The following lemma deals with the case when w∗ is
trivial on A.

Lemma 2.4. Let k be either Q or Fp with p - N. Let A be an optimal modular
abelian variety with odd modular exponent. As before let π : X0(N )→ A be the
composition of Albanese embedding X0(N )→ J0(N ) and φ. Assume that for some
involution w, w∗ : J0(N )→ J0(N ) descends down to a trivial action on A. Then
π(w(z))−π(z) is a nontrivial k-rational 2-torsion point for all z ∈ X0(N )(k).

Proof. Recall that P1 is the cusp at infinity and π(z)= φ(z− P1). Then we get

π(w(z))−π(z)= φ(w(z)− P1)−φ(z− P1)

= φ(w(z)−w(P1))−φ(z− P1)+φ(w(P1)− P1)

= w∗(φ(z− P1))−φ(z− P1)+φ(w(P1)− P1)= π(w(P1)).
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Therefore π(w(z)) = π(z)+ π(w(P1)) for all z ∈ X0(N ). Applying this equa-
tion to w(z) we get π(w(w(z))) = π(w(z)) + π(w(P1)) = π(z) + 2π(w(P1)).
Therefore, 2π(w(P1)) = 0. By Lemma 2.3, if A has odd modular exponent, then
π(w(z))−π(z) is nontrivial. Thus, π(w(P1)) is a nontrivial 2-torsion point of A.
It is k-rational because w(P1) is also k-rational. �

Proof of Theorem 2.1. Let W be the group of Atkin–Lehner involutions on X0(N ),
and let k = Q or F2 when N is odd. Since we are assuming that A is new and
simple, for any Atkin–Lehner involution w ∈ W , we have w∗(z) is either z or −z
for all z ∈ A(k). This gives us a group homomorphism W → {±1}. Let W0 be
the kernel of this map. Note that W0 has index at most 2 in W . Assume that N is
not a power of a prime; hence W will have more than 2 elements. Therefore, we
can find a nontrivial element w ∈ W0; then w∗(z) = z for all z ∈ A(k). Applying
Lemma 2.4, we find that 0 6= π(w(P1)) ∈ A[2](k). Therefore, if A[2](k)= 0 then
N must be a power of a prime. �

Lemma 2.4 can also be used to find the signs of the Atkin–Lehner involutions
on A in certain cases.

Lemma 2.5. Let A be a new modular simple abelian variety with conductor N
and odd modular exponent. If the Atkin–Lehner involution wr : X0(N )→ X0(N )
has a fixed point then (wr )∗ acts as −1 on A. Specifically, (wN )∗ acts as −1 on A.
When N = 2M (resp. N = 4M), (w2)∗ acts as 1 (resp. (w2)∗ acts as −1) on A.

Proof. Let P ∈ X0(N )(Q) be the fixed point of wr . Then π(P) = π(wr (P)),
which implies that π(wr (P))− π(P) = 0. However, we know that if (wr )∗ = 1
then π(wr (z))− π(z) = π(wr (P1)) for any z ∈ X0(N )(Q). Specifically, we get
π(wr (z)) = π(z), which by Lemma 2.3 implies that A has an even congruence
number. Therefore (wr )∗ =−1 when wr has a fixed point in X0(N ).

Finally, the point
√
−N is fixed by wN . When N = 2M , we can check that

1/(M − i
√

M) is fixed under (wM)∗. Similarly, when N = 4M , P2 is fixed under
(w2)∗. Therefore, we have the desired result. �

Since (wN )∗ is the sign of the functional equation, we get the following:

Corollary 2.6. If A is a simple modular abelian variety with odd congruence num-
ber, then the analytic rank of A is even.

Remark 2.7. Calegari and Emerton used Theorem 2.1 for modular elliptic curves
E with odd modular degree and conductor N to show that N has at most two odd
prime divisors. Specifically, since E[2](Q) has at most 4 elements, an immediate
corollary of Theorem 2.1 is that if N has more than 3 prime divisors, then E has
even modular degree. Similarly, if E has good reduction at 2, then since E[2](F2)

has at most two elements, they conclude that if N has more than two prime divisors
then E has even modular degree.
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2B. Nonsemistable case. The goal of this section is to prove the following:

Theorem 2.8. Let A be an absolutely simple modular abelian variety A of level
N with odd congruence number. Let δp = 0 for the odd primes p and δ2 = 2.
Assume that p2+δp |N. Then A has good reduction away from p and 2, and has
potentially good reduction everywhere. Specifically, if p is odd and p2

|N , then
N = ps , N = 4ps , or N = 8ps for s ≥ 2, and if 16|N then N = 2s .

We expect this theorem to be true without assuming A to be absolutely simple;
however, at this moment we do not know how to overcome the difficulty with the
inner forms in that case. To prove this theorem, we use the technique of [Calegari
and Emerton 2009] to show that such modular abelian varieties have inner twists or
complex multiplication by a character of conductor p. Using the results of [Ribet
1981] on inner twists, we will prove that A must have potentially good reduction
everywhere if A is absolutely simple, and that A has good reduction away from p,
and possibly 2. We have the following lemma.

Lemma 2.9. If EndQ(A)⊗Q is a matrix algebra, then A is not absolutely simple.

Proof. Assume that R = EndQ(A) ⊗ Q is a matrix algebra. We can find the
projections e1, e2 ∈ R such that e1 + e2 = Id, e1e2 = 0, and e1, e2 6∈ {0, Id}. For
some integer n, nei ∈ EndQ(A). If we assume that A is absolutely simple, the
image of nei A must be A or 0. However, since the product of ne1 and ne2 equals
n2e1e2= 0, one of them must be 0. Assume without loss of generality that ne2= 0
in EndQ(A). This implies that e2=0, which contradicts the assumption e2 6∈ {0, Id}.
Therefore, A is not absolutely simple. �

This lemma is used in conjunction with Ribet’s result on the endomorphism
algebra of modular abelian varieties with inner twists. Specifically, let A be a
d-dimensional simple modular abelian variety. There are d modular eigenforms of
weight 2 and level N associated with A, which are Galois conjugate to each other.
Let f =

∑
anqn be one such eigenform and let E = Q(. . . , an, . . . ) be the field

of definition of f . We know that EndQ(A)⊗Q= E . Let

D = EndQ(A)⊗Q

be the algebra of endomorphisms of A. From [Ribet 1980] we know that E is
its own commutant in D, and therefore D is a central simple algebra over some
subfield F of E . If we assume that A is absolutely simple, then D must be some
division algebra with centre E . Furthermore, D must be either E (which forces
E = F) or a quaternion division algebra over F (which forces E to be a quadratic
extension of F).

Proposition 2.10. Let A be an absolutely simple modular abelian variety A of
level N with odd congruence number. Let δp = 0 for odd primes and δ2 = 2. If
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p2+δp |N , then A has a complex multiplication or an inner twist and A has poten-
tially good reduction everywhere. Specifically, for any other prime number q if
q|N then q2

|N.

Proof. Assume that A is of dimension d , and let

f A =
∑

anqn
∈ C((q))

be a normalized eigenform associated with A. Let E = Q(. . . , ai , . . . ) ⊂ C. Let
χ be the quadratic character with conductor p. Since p2+δp |N , χ ⊗ f A is another
modular eigenform in S2(00(N )) (see [Shimura 1971]). Since χ is a quadratic
character, χ takes values in ±1, and as a result χ ⊗ f A ≡ f A (mod λ) for any λ|2.
If A has odd congruence number, then χ⊗ f A must be in the same conjugacy class
as f A. If χ⊗ f A= f A, then A has complex multiplication by χ , and therefore A has
potentially good reduction everywhere. In this case, A must be an elliptic curve,
because if A has complex multiplication and has a dimension greater than 1, then
the ring of endomorphisms of A is a matrix algebra, which contradicts the absolute
simplicity assumption. In general, A might have an inner twist, and χ⊗ f A=γ ( f A)

for some γ ∈ Hom(E,C). Let 0 ⊂ Hom(E,C) such that for any γ ∈ 0 we can
find a character χγ such that χγ ⊗ f A = γ ( f A). By [Ribet 1981], F = E0 and (as
discussed above) D = EndQ A⊗Q must be a quaternion algebra. However, using
[Ribet 1980, Theorem 3], A has potentially good reduction everywhere, as desired.

The final claim of the lemma follows by noting that if q|N but q2 - N , then A
has multiplicative reduction over any field extension. �

Proof of Theorem 2.8. Assume that p2+δp |N and q2+δq |N for distinct primes p
and q . In this case, assuming that A has no complex multiplication, A has more
inner twists, and the subset 0 ⊂ Hom(E,C) will have at least four elements, γ1,
γp, γq , and γpq . But that means that |E : F | ≥ 4, which shows that D must be a
matrix algebra. However, Lemma 2.9 forces A not to be absolutely simple, which
contradicts our assumption. Since we are assuming A is absolutely simple if A has
complex multiplication, then A is an elliptic curve. Therefore it will have complex
multiplication by χp and χq , which is impossible. �

2C. Number of primes of bad reduction. We now show that a modular abelian
variety with odd congruence number has bad reduction at no more than two primes.
Let A be an absolutely simple optimal abelian variety of conductor N . Let B =
ker(φ) where φ is the modular uniformization map φ : J0(N )→ A. Assume that N
is a not a power of a prime. Then Theorem 2.1 says that A[2](Q) has a nontrivial
element. Let z∈ A[2](Q) be a nontrivial rational 2-torsion point of A, and let m⊂T

be the annihilator of z. Since z ∈ A[m] 6= 0, we get that A∨[m] 6= 0. Therefore,
if B[m] 6= 0 as well, then A will have an even congruence number. We will show
that when N has more than two prime divisors, then B[m] 6= 0.
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Lemma 2.11. Let A be a new simple modular abelian variety, 0 6= z = A[2](Q),
and let m be the annihilator of z in T. Then m is generated by 2, Tl − (l + 1) for
l - N , Tp − 1 for p|N but p2 - N , and Tp for p2

|N.

Proof. Clearly z is killed by 2, and since A is a new modular abelian variety, if
p‖N , we have Tp(z) = ±z = z, and if p2

|N then Tp(z) = 0. Let ρ be the Galois
representation

ρ : GQ→ GL2(T/m).

Since A has a rational 2 torsion point,

ρ '

(
χ ∗

0 1

)
,

where χ is the cyclotomic character. Therefore trace(ρ(Frob(l)))=1+χ(l)= l+1
for l -2N , and hence by the Eichler–Shimura relationship we get that Tl−(l+1)∈m

for l - 2N . When l = 2 and N is odd, by Theorem 2.1 we get that A has ordinary
reduction at 2, and hence T2 6∈m, or equivalently T2− (2+ 1) ∈m. �

Recall that CN ⊂ J0(N ) is the rational cuspidal subgroup of J0(N ). Let m⊂ T

be the annihilator of z ∈ A[2]. We can use the elements considered in Table 1 to
show that B[m] 6= 0 when N has more than two prime divisors. Specifically, if
v ∈ CN of even order is such that φ(v) = 0, then v ∈ B ∩CN . If v is also a cusp
of the type considered in Table 1 and of even order, then by Corollary 1.8 we get
that for some integer λ we have that λv ∈ CN [m]. Therefore, to show that A has
an even congruence number, we only need to check that such v’s have even order
and that φ(v)= 0.

Theorem 2.12. Let A be a new absolutely simple optimal modular abelian variety
with odd congruence number. Then N has at most two prime factors.

Proof. If A has an inner twist or complex multiplication, then the result follows by
Theorem 2.8. Assume that A has odd congruence number with no inner twist or
complex multiplication. Assume to the contrary that N has more than two prime
factors. Then N = 2αM with M a square-free odd integer, and α< 4. Furthermore,
by Theorem 2.1, we can find a nontrivial z ∈ A[2](Q). Let m be the annihilator of
z. We will consider three main cases, based on the valuation of N at 2.

Assume that 4 - N . Since wN =
∏

l|N wl , and (wN )∗ = −1, there is an odd
number of primes such that (wl)∗ act as −1 on A. Therefore, we can select three
distinct prime divisors of N — call them p, q, and r — such that (wp)∗ acts as −1,
while (wr )∗= (wq)∗. If 2‖N , by Lemma 2.5 (w2)∗ acts as +1. Therefore, without
loss of generality assume that 2 - pq .

Let sp, sq =±1 and let

v = (1−wqr )(1+ spwp)(1+ sqwq)P1 = (1+ spwp)(1+ sqwq)(1− sqwr )P1.
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Consulting Table 1 we get that v has order Num
(
(1+ sp p)(1+ sqq)(1− sqr)/24

)
.

If we select sp ≡−p (mod 4) and sq ≡−q (mod 4), then this order is even. Next
we show that φ(v)= 0. Note that π(wqr (τ ))=π(τ)+a for any τ ∈ X0(N ), where
a is some 2-torsion point. Let P = (1+spwp)(1+sqwq)P1= P1± Pp± Pq± Ppq .
Then

φ(v)= φ(wqr (P)− P)=
∑
m|pq

π(wqr (Pm))−π(Pm)= 4a = 0,

which shows that A has an even congruence number.
Assume that 4‖N . By Lemma 2.5 we know that (w2)∗ acts as −1. Let p, q|N

and let v= (1−wp)(1+sqwq)P2 with sq =±1. From Table 1 we get that the order
of v is Num

(
(1− p)(1+ sqq)/4

)
. If we select sq ≡−q (mod 4), then v will have

an even order. Since (w2)∗ is acting as−1, either (wp)∗ or (w2p)∗ is acting trivially
on A. Let w be the corresponding Atkin–Lehner involution. Note that because
w2(P2)= P2, v= (1−w)(1+ sqwq)P2. Furthermore, π(w(τ))−π(τ)= a ∈ A[2]
for any τ ∈ X0(N ). As a result,

φ(v)= π(P2)−π(w(P2))+ sq(π(P2q)−π(w(P2q))= a+ sqa = 0.

Therefore φ(v) = 0, which proves that in this case A has an even congruence
number.

Finally assume that 8‖N , and let p, q|N be two distinct odd divisors of N . Let
(wp)∗ and (wq)∗ act as sp and sq on A. Let

v = (1−w2)(1+ spwp)(1+ sqwq)P1 = (1−w2)(1+ spsqwpq)(1+ spwp)P1.

Then, again from Table 1, v has order Num
(
(1+ sp p)(1+ sqq)/2

)
that is even.

Note that, similar to the case when N is odd, we can write v = (1−w)P for some
Atkin–Lehner involution w such that w∗ = 1 and some P = (1−w2)(1±w′)P1.
That shows φ(v) = 0. Therefore A in this case will have an even congruence
number again. �

Combining this result with Theorem 2.8, we get:

Corollary 2.13. Let A be an absolutely simple modular abelian variety with odd
congruence number and conductor N. Then N has at most two prime divisors.
Furthermore, if N is not square-free, then N = 2a , pb, 4pb, or 8pb, where p is an
odd prime.

2D. Congruence classes of primes. Let A be a simple modular abelian variety of
conductor N with odd congruence number, and without complex multiplication or
an inner twist. As usual let π : X0(N )→ A to be the composition of the Albanese
embedding with the modular uniformization φ. Assume that N is not a power of a
prime, which by Theorem 2.1 implies that A[2](Q) is nontrivial. From the previous
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sections we know that N has at most two prime factors, say p and q . In this section
we find congruences that p and q must satisfy. As in the proof of Theorem 2.12,
we use different techniques depending on the valuation of N at 2.

If N is odd, then N = pq with both p and q being odd. By Lemma 2.5, we know
that (wpq)∗ is acting as−1 on A. Therefore, assume without loss of generality that
(wq)∗ is acting trivially on A and (wp)∗ is acting as−1. Let v= (1±wp)(1−wq)P1.
Again, π(τ)−π(wq(τ ))= a ∈ A[2] for all τ ∈ X0(N ). As a result,

φ(v)= π(P1)−π(wq(P1))± (π(Pp)−π(wq(Pp)))= a± a = 0.

Note that the order of v is Num
(
(p± 1)(q − 1)/24

)
. Since we are assuming that

A has odd congruence number, we get that p ≡±3 (mod 8) and q ≡ 3 (mod 4).

Corollary 2.14. Let A be a modular abelian variety with odd congruence number
and conductor pq, where p and q are odd. Then A[2](Q) is at least 2-dimensional
over F2.

Proof. We prove this by finding two distinct points in CN [m]. First note that
P1− Pp has order (p− 1)(q2

− 1)/24 and P1− Pq has order (p2
− 1)(q − 1)/24.

Therefore, both

u =
(p− 1)(q2

− 1)
48

(P1− Pp) and u′ =
(p2
− 1)(q − 1)

48
(P1− Pq)

are of order 2. We can easily check that Tpu = u and Tqu′ = u′. On the other hand

u+ Tqu =
(p− 1)(q2

− 1)
48

(P1− Pp + Pq − Ppq),

which is zero. Similarly, we get u′+Tpu′ = 0. Therefore, u, u′ ∈CN [m]. Further-
more, we know that 3(u+ u′) has integral coefficients, but

(1, 0)⊗ (1, 1)3(u+ u′)= (q − 1)/2,

which is not even since q ≡ 3 (mod 4). Therefore, u+ u′ 6= 0, which implies that
CN [m] is at least 2-dimensional over F2. Since we are assuming that A has odd
congruence number, CN [m] injects in A, which is the desired result. �

If N = 2p, we know by Lemma 2.5 that (w2)∗ acts trivially and (wp)∗ acts as
−1 on A. Therefore, π(P2) = π(w2(P1)) ∈ A[2], and P2 − P1 (which has order
(p2
− 1)/8) must have an even order. Let v = ((p2

− 1)/16)(P2 − P1) ∈ CN [2].
By Corollary 1.8 we get v ∈ CN [m]. Note that

φ(v)= π
( p2
−1

16
(P2− P1)

)
=

p2
−1

16
π(P2),

so if (p2
− 1)/16 is even, then π(v) = 0. This implies that v ∈ CN [m] ∩ B,

and, in turn, that the congruence number is even. Since we are assuming that
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the congruence number of A is odd, we get that (p2
− 1)/16 is odd; that is,

p2
−1≡16 (mod 32). That implies that p≡±7 (mod 16). However, we also know

thatw2 cannot have any fixed points. This implies that−2 is not a quadratic residue
mod p, which means that p≡ 5, 7, 13, or 15 (mod 16). Therefore p≡ 7 (mod 16).

If N = 4p, then we know that (w2)∗ acts as −1 on A, while (wp)∗ acts trivially.
Therefore, π(P2)−π(P2p)= π(P2)−π(wp(P2)) ∈ A[2]. The order of P2− P2p

is (p− 1)/2. Therefore, if A has odd congruence number, (p−1)/4 must be odd,
hence p ≡ 5 (mod 8).

If N = 8p, we can check that (1−w2)(1−wp)P1 vanishes in A, and that it has
order (p− 1)/2. Therefore, 4 - p− 1, otherwise A will have an even congruence
number. Therefore p ≡ 3 (mod 4). (We can probably say more, if we figure out
the sign of (wp)∗.)

We combine the above results in the following theorem.

Theorem 2.15. Let A be a new modular abelian variety with odd congruence
number and conductor N. Assume that A has no inner twists or complex multi-
plications. Then one of the following must be true.

(1) N is a prime number p.

(2) N = pq and p ≡±3 (mod 8) and q ≡ 3 (mod 4).

(3) N = 2p and p ≡ 7 (mod 16).

(4) N = 4p and p ≡ 5 (mod 8).

(5) N = 8p and p ≡ 3 (mod 4).

3. Elliptic curves with odd congruence number

In this section, we apply the results of the previous section to the case of elliptic
curves. We show that the conductors of all such elliptic curves are of the form
p, pq , 2p, 4p, or one of the finitely many exceptions. We study each class to
demonstrate that all such elliptic curves have finite Mordell–Weil group, except
possibly when the conductor is prime. Furthermore, we know from the result of
[Agashe et al. 2008] that when 4 - N , then having odd congruence number is the
same as having odd modular degree. As a result, we can state many of our results
in terms of modular degrees. We conjecture that in fact having odd congruence
number is equivalent to having odd modular degree in all cases.

Complex multiplication. Let E be an elliptic curve of conductor N . If p2
|N for

an odd prime p, then by Section 2B we know that E has complex multiplication.
We also showed that if 16|N then E must have complex multiplication. There are
only finitely many elliptic curves over rationals with complex multiplication and
the conductor 2m pn for some prime number p. The following is the list of all such
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elliptic curves that have odd modular degree: E = 27A, 32A, 36A, 49A, 243B.
We also verify that all such elliptic curves have rank 0, as predicted by Watkins’
conjecture.

We will now focus our attention on elliptic curves without complex multiplica-
tion, that is, elliptic curves with conductor N = p, 2p, 4p, 8p, or pq for some odd
primes p and q. Each of the remaining sections deals with one of these remaining
cases.

Prime level. Let E be an elliptic curve with odd congruence number and a prime
conductor N . Mestre and Oesterlé [1989] have studied the elliptic curves of prime
conductors, and they have demonstrated that aside from elliptic curves 11A, 17A,
19A, and 37B, all such elliptic curves have either a trivial torsion subgroup or a
Z/2Z torsion subgroup. The above cases have the torsion structures Z/5Z, Z/4Z,
Z/3Z, and Z/3Z, respectively. Mestre and Oesterlè also showed that if Etors is
Z/2Z, then E is a Neumann–Setzer curve and N = u2

+ 64. Stein and Watkins
[2004] have studied the parity of congruence numbers of Neumann–Setzer curves
and they show that E has odd congruence number if and only if u ≡ 3 (mod 8).
Furthermore one can show that Neumann–Setzer curves have rank 0 using descent.
We will give another proof of this fact using L-functions.

Proposition 3.1. Let E be an elliptic curve over Q with a prime conductor N.
Assume that Etors is nontrivial. Then L(E, 1) 6= 0, hence E(Q) has rank 0.

Proof. Recall that

L(E, 1)= 2π i
∫ i∞

0
fE(z)dz ≡ π(PN ) (mod3E),

where C/3E ' E(C). Therefore, if L(E, 1)= 0, then π(PN )= 0, or alternatively
φ(P1− PN )= 0. By [Mazur 1977; Mestre and Oesterlé 1989] (see also [Emerton
2003]) we know that J0(N )tors is generated by the cusp P1−PN , and for any elliptic
curve quotient of J0(N )→ E , Etors is generated by the image of π(P1)−π(PN ).
Since we are assuming that E has a nontrivial torsion structure, π(P1)−π(PN ) 6=0,
which implies that L(E, 1) 6= 0. Therefore the rank of E(Q) is zero by [Kolyvagin
1988; Gross and Zagier 1986]. �

The case when E has trivial torsion structure and odd congruence number was
studied in [2009], where it is shown that E has an even analytic rank (since (wN )∗=

−1), supersingular reductions at 2 and E(R) is connected. From a search in Cre-
mona’s database, it appears that if an elliptic curve E has supersingular reduction
at 2, Mordell–Weil rank 0, and a connected real component, then E will have odd
congruence number.
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Level N = pq. We consider elliptic curves of odd modular degree and conductor
N = pq , where p and q are both odd primes. Let E be such an elliptic curve.
Assume throughout this section that (wp)∗ = −1 on E . By Theorem 2.15, we
know that p ≡ ±3 (mod 8) and q ≡ 3 (mod 4). We will show that with a few
exceptions, p, q ≡ 3 (mod 8), and that all such elliptic curves have finite Mordell–
Weil group over Q.

Recall that by Corollary 2.14 we know that E[2](Q)= (Z/2Z)2. First, we show
that if Etors is Z/2×Z/4, then E has conductor 15 or 21. We can prove a general
result about semistable elliptic curves with Etors = Z/2×Z/4 and good reduction
at 2:

Lemma 3.2. Let E be a semistable elliptic curve with good reduction at 2. Etors=

Z/2×Z/4, and let Q ∈ E(Z[1/N ]) be a point of order 4. Let Q be the reduction
of Q mod 2. Then Q has order 4 in E(F2).

Proof. We can check that an elliptic curve E with good reduction at 2 and a rational
2-torsion point has a minimal model

E : y2
+ xy = x3

+ a2x2
+ a4x .

Since E[2]=Z/2×Z/2, (4a2+1)2−64a4 is a perfect square. The x coordinates of
the 2-torsion points are 0, 4α, and β/4, where α and β are both (odd) integers since
we are assuming that E is in minimal model. Since E is assumed to be semistable,
α and β are coprime. Note that the point (β/4,−β/8) ∈ E(Q)maps to the identity
under the reduction mod 2 map. Using the notation of [Silverman 1992], we have

b2 = 16α+β, b4 = 2αβ, b6 = 0, b8 =−α
2β2, 1= α2β2(16α−β)2.

Let Q ∈ E(Q) be a point of order 4, and let x(Q) = x0. Recall that we want to
show Q ∈ E(F2) is a point of order 4. We have that x([2]Q) = 0, 4α, or β/4. If
Q has order less than 4, then 2Q must be the identity element, that implies that
x([2]Q)= β/4. In that case

β

4
=

x4
0 − b4x2

0 − b8

4x3
0 + b2x2

0 + 2b4x0
=

x4
0 − 2αβx2

0 +α
2β2

4x3
0 + (16α+β)x2

0 + 4αβx0
,

so

0= x4
0−βx3

0−

(
6αβ+β

2

4

)
x2

0−αβ
2x0+α

2β2
=

(
x2

0−
β

2
x0+αβ

)2
−

(
4αβ+β

2

2

)
x2

0 .

Therefore, 16αβ + 2β2
= 2β(8α + β) must be a perfect square; however that is

not possible because α and β are odd. As a result, x([2]Q)= 0 or 4α. Therefore,
[2]Q has order 2 in E(F2). This shows that Q has order 4, which is the desired
result. �
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Proposition 3.3. Let E be an elliptic curve with conductor pq and torsion group
Z/2×Z/4. Then pq = 15 or 21.

Proof. Using the same notation as in Lemma 3.2, let 0, 4α, and β/4 be the
x-coordinates of the 2-torsion points of E . Let Q be a point in Etors of order
4. By Lemma 3.2, x([2]Q) = 0 or 4α. Without loss of generality, assume that
x([2]Q) = 0, since if x([2]Q) = 4α, then we can change the coordinates to find
another model with x([2]Q′) = 0. Let x0 = x(Q). Then x4

0 − 2αβx2
0 + α

2β2
= 0,

which implies that x2
0 = αβ. Since α and β are coprime, they are both perfect

squares, or negatives of perfect squares (both of the same sign). Since E is of
conductor pq , 1 = α2β2(16α − β)2 is a product of the powers of p and q . Let
a2
= ±α and b2

= ±β. Then, a4b4(4a − b)(4a + b) is a product of the powers
of p and q . Note that (4a − b, 4a + b) = 1, which implies that all factors are
pairwise coprime. Note that if |4a+ b| = |4a− b| = 1, then either a = 0 or b = 0
contrary to our assumptions. Therefore we will assume without loss of generality
that 4a+ b > 1.

If 4a− b 6= ±1, then a2
= b2
= 1, which means E is the elliptic curve 15A. If

4a−b=±1 then |b|> 1; therefore |a| = 1. Since we are assuming that 4a+b> 1
we get that a = 1, and 4a − b = 1 leads to elliptic curve 21A and 4a − b = −1
leads to elliptic curve 15A. This completes our proof. �

Remark 3.4. Note that the previous proposition seems a bit tedious. It is straight-
forward to show that 3 must divide the conductor by the Hasse–Weil bound. Un-
fortunately, it is not clear how this observation can simplify the argument.

An immediate corollary of the above is that for an elliptic curve E of conductor
pq and ordinary reduction at 2, we have Etors = (Z/2Z)2, since the only other
option is Etors=Z/2Z×Z/6Z. However the Hasse–Weil bounds for elliptic curves
rule this case out.

Theorem 3.5. Assume that E is an elliptic curve with odd modular degree. Fur-
thermore, assume that the conductor of E is pq with pq 6= 21 or 15. Then
p, q ≡ 3 (mod 8).

Proof. By Corollary 2.14 we know that E[2](F2) is nontrivial, hence E has good or-
dinary reduction at 2. Therefore, for pq 6= 21 and 15 we have E(Q)tors= (Z/2Z)2.
Recall that we are assuming (wp)∗ =−1 and (wq)∗ = 1 on E . Note that

π(τ)−π(wp(τ ))= φ(τ − P1)−φ(wp(P1)− P1)−φ(wp(τ )−wp(P1))

= π(τ)− (wp)∗(π(τ))−π(wp(P1))= 2π(τ)−π(Pp),

for any τ ∈ X0(N ). When τ is a cusp of X0(N ), π(τ) is a torsion point, and since
Etors = E[2] we get 2π(τ)= 0. Therefore

π(τ)−π(wp(τ ))= π(Pp).
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Let v = (1+wq)(1−wp)P1. Then

φ(v)=
(
π(P1)−π(wp(P1))

)
+
(
π(Pq)−π(wq(Pq))

)
= 2π(Pp)= 0.

As a result, v ∈ B ∩ CN . Therefore, by Corollary 1.8, if v has even order then
E will have an even congruence number. Since we are assuming that E has odd
congruence number, v must have odd order. The order of this point is Num((q +
1)(p−1)/24). Since q≡3 (mod 4), 4|q+1. If p≡−3 (mod 8), then v will have an
even order, and E will have an even congruence number. Therefore p≡3 (mod 8),
and 2‖p + 1. If q ≡ −1 (mod 8), again v will have an even order. Therefore,
q ≡ 3 (mod 8), which is the desired result. �

We also get the following corollary.

Corollary 3.6. Assume that E is an elliptic curve with odd congruence number
and conductor pq with pq 6= 15 or 21. Then there exist odd integers r and s such
that |pr

− qs
| = 16.

Proof. Following the notation of Lemma 3.2, we have 1 = α2β2(16α − β)2 for
some odd integers α and β, coprime to each other. Assume that α2

6= 1; then
|α| = pr , qs , or pr qs . In the last case, β2

= (16α−β)2 = 1, which is not possible.
Therefore assume without loss of generality that α=±pr . If β=±qs , 16α−β=±1,
which leads to the Diophantine equation ±16pr

−±qs
= ±1. We get the same

Diophantine equation if β = ±1. Therefore, we need to solve the Diophantine
equation

qs
− 16pr

=±1.

Since qs
≡ 3 (mod 8) for all odd s and qs

≡ 1 (mod 16) for all even s, we conclude
that s is even and

qs
− 16pr

= 1.

This leads to (qs/2
−1)(qs/2

+1)=16pr , and since (qs/2
−1, qs/2

+1)=2, qs/2
=7

or 9. Therefore qs
= 81, which forces p = 5. This is not congruent to 3 (mod 8),

so we get that α =±1.
If β2
= 1, then |±16−β| is 15 or 17, which again contradicts p, q ≡ 3 (mod 8).

We get the same result if (±16−β)2= 1. Therefore, β=±pr and±16−β=±qs .
This leads to the Diophantine equation |pr

− qs
| = 16. Since p, q ≡ 3 (mod 8),

r ≡ s (mod 2). If they are both even, then the difference of the two squares equals
16, which forces N = 15. Therefore, r and s are odd, which is the desired result.
Finally note that in this case the elliptic curve has the model

E : y2
+ xy = x3

+
15+ pr

4
x2
+ pr x . �

Theorem 3.7. Let E be an elliptic curve with conductor pq and odd congruence
number. Then L(E, 1) 6= 0; hence E has rank 0.
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Proof. For pq = 15 or 21 we can check that E has Mordell–Weil rank 0. Therefore
assume that pq 6= 15 or 21. Recall that in Corollary 2.14 we showed that

u =
(p− 1)(q2

− 1)
48

(P1− Pp) and u′ =
(q − 1)(p2

− 1)
48

(P1− Pq)

have order two, and φ(u) and φ(u′) are linearly independent, hence they generate
E[2]. However, since p, q ≡ 3 (mod 8) we get that u and u′ are odd multiples
of P1 − Pp and P1 − Pq , respectively. So π(Pp) and π(Pq) also generate E[2].
Therefore, φ(Pp− Pq) is nontrivial. Applying the Atkin–Lehner involution wp to
Pp − Pq , we get that φ(P1 − Ppq) is nontrivial. Therefore, π(Ppq) 6= 0, which
implies that L(E, 1) 6= 0. �

Level N = 2 p. Now we take the case when N = 2p, for p an odd prime. Specifi-
cally, we want to show that L(E, 1) 6= 0. In this case it seems more straightforward
to prove this using analytic tools.

Specifically, let fE(q) =
∑

anqn be the modular form attached to the elliptic
curve E , and let �E be the real period of E . Note that L( fE , 1) ∈ R since the
Fourier coefficients of fE are rational integers. Therefore, the order of π(P2p) is
the order of L( fE , 1) ∈ R/�E Z. We know that L( fE , s) has an Euler product
expansion

L( fE , s)=
∏

p

L p( fE , s),

and L2( fE , s)= 1
1−a22−s . Similarly

π(Pp)=2π i
∫ i∞

1
2

fE(z)dz=2π i
∫ i∞

0
fE(z+1/2)dz=2π i

∫ i∞

0

∑
(−1)nanqndz,

which implies that π(Pp) can be written as L(g, 1) where L(g, s) has an Euler
product expansion

L(g, s)=
(
−1+

a2

2s +
a4

4s + . . .

)∏
p>2

L p( fE , s)=−
1− a221−s

1− a22−s

∏
p>2

L p( fE , s).

Therefore L(g, 1)= L( fE , 1)(a2− 1), and more appropriately for us

π(Pp)≡ (a2− 1)π(P2p) (mod�E Z).

We know that if E has odd congruence number, then (w2)∗ is acting trivially,
which implies that a2 =−1. Therefore

π(Pp)≡−2π(P2p) (mod�E Z).
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However, we also know that P2p=w2(Pp), and π(w2(Pp))=π(Pp)+α where α is
a 2-torsion point in E . Since both π(Pp) and π(P2p) are equivalent to real numbers,
α is also equivalent to a real number, which implies that α ≡ �E/2 (mod�E Z).
As a result we obtain successively

π(Pp)≡ π(P2p)+�E/2 (mod�E Z),

−2π(P2p)≡ π(P2p)+�E/2 (mod�E Z),

−3π(P2p)≡�E/2 (mod�E Z),

π(P2p)≡�E
( 1

3 k− 1
6

)
(mod�E Z),

for some integer k. Therefore, π(P2p) 6= 0 and L( fE , 1) 6= 0. We also observe
that π(P2p) will either be a 6-torsion point (for k ≡ 0 or 1 (mod 3)), or a 2-torsion
point (for k ≡ 2 (mod 3)).

In either case, we have an elliptic curve with conductor 2p and a rational 2-torsion
point. Such elliptic curves were studied in [Ivorra 2004], whose results allow us to
put stringent conditions on the values for p. Ivorra’s Theorem 1 says that if p≥ 29,
there is an integer k≥4 such that one of p+2k , p−2k , or 2k

− p is a perfect square.
However, we already know from Theorem 2.15 that p≡ 7 (mod 16). Putting these
two facts together, we get that p = 2k

−m2. In fact, in this case, Ivorra’s result
says that 7≤ k is odd and our elliptic curve is isogenous to

y2
+ xy = x3

+
m−1

4
x2
+ 2k−6x .

Searching through Cremona’s database, we find out that the only elliptic curves
with odd modular degrees and conductors 2p with p ≤ 29 are E = 14A and E =
46A, and both of these are of the form above.

Level N = 4 p. As with the case of N = 2p, we can use Theorem 2 of [Ivorra
2004] to parametrize all elliptic curves with conductor 4p and a rational 2-torsion
point. Specifically, for p > 29, p = a2

+4 for some integer a ≡ 1 (mod 4), and E
is isomorphic to one of the following two isogenous elliptic curves:

E : y2
= x3
+ ax2

− x, E ′ : y2
= x3
− 2ax2

+ px .

We can calculate the rank of such elliptic curves using a standard 2-descent. In fact,
if we let φ : E → E ′ and φ′ be the dual isogeny, using notation from [Silverman
1992] we get

|Sφ(E,Q)| = |Sφ
′

(E,Q)| = 2,

which implies that

|E(Q)/φ′(E ′(Q))| = |E ′(Q)/φ(E(Q))| = 2,
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which, by the exact sequence

0→ E ′(Q)[φ′]/φ(E(Q))[2] → E(Q)/φ′(E ′(Q))

→ E(Q)/2E(Q)→ E ′(Q)/φ(E(Q))→ 0,

gives us |E(Q)/2E(Q)| ≤ 4. This forces the rank of E(Q) to be 0.
For p≤ 29, we can consult Cremona’s table to get the elliptic curves 20A, 52C ,

and 116C . In fact all these elliptic curves are of the model constructed above.

Level N = 8p. In this case, Theorem 3 of [Ivorra 2004] tells us that any elliptic
curve with a rational 2-torsion point and the conductor N = 8p satisfies p ≡
a2 (mod 16) for p > 31. However, by Theorem 2.15, p ≡ 3 (mod 4); therefore
there are no elliptic curves with conductor 8p and odd congruence number for
p > 31. Using Cremona’s table, we know that the elliptic curve 24A is the only
elliptic curve with the conductor 8p and odd congruence number. Furthermore this
curve has rank 0.

We combine all of the results above:

Theorem 3.8. Let E/Q be an elliptic curve with odd congruence number. Then
one of the following is true:

(1) E has conductor p and no 2-torsion point, E has supersingular reduction at 2,
and E(R) is connected.

(2) E has conductor p, a rational 2-torsion point, and p = u2
+ 64 with u ≡ 3

(mod 8) (E is a Neumann–Setzer curve in this case).

(3) E has conductor 2p and p=2k
−m2 for some odd integer 7≤ k and integer m,

and E is isogenous to

y2
+ xy = x3

+
m−1

4
x2
+ 2k−6x .

(4) E has conductor 4p and p = m2
+ 4 for some integer m ≡ 1 (mod 4), and E

is isogenous to
y2
= x3
+mx2

− x .

(5) E has conductor pq with p and q odd primes satisfying p ≡ q ≡ 3 (mod 8)
and pr

− qs
= 16 for odd integers r and s, and E is isogenous to

y2
+ xy = x3

+
pr
+ 15
4

x2
+ pr x .

(6) E is one of the exceptional curves 11A, 15A, 17A, 19A, 21A, 24A, 27A, 32A,
36A, 37B, 49A, 243B.

In all these cases, E has rank 0, except possibly in case (1). In this case, we know
that E has an even analytic rank.
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All the curves in case (6) in the theorem have a nontrivial torsion point. There-
fore we have proved that if E has odd congruence number and has a nontrivial
torsion point, it has rank 0. Also note that for all the cases above, except for (1),
we construct a family of elliptic curves with all the desired torsion structures and
conductors. We expect that all these elliptic curves have odd congruence number.
This can be proved if, for example, we show that J0(N )[m] → E[2] is injective
and J [m] = CN [m]. When E is a Neumann–Setzer curve, the results of [Mazur
1977; Mestre and Oesterlé 1989] prove this result. We expect that similar results
are true for the other cases; however we, do not yet know of a proof.
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