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A ring extension A ⊆ B is said to have depth one if B is isomorphic to a direct
summand of An as an (A, A)-bimodule, for some positive integer n. We prove
group-theoretic characterizations of this property in the case k H ⊆ kG, where H
is a subgroup of a finite group G and k is a field. We determine when the source
algebra of a block of kG with defect group P is a depth-one extension of k P .

Introduction

A ring extension is a unitary ring homomorphism f : A→ B between two rings
A and B. In this situation, the ring B can be viewed as an (A, A)-bimodule using
the map f . A ring extension f : A→ B is said to be of depth one (or centrally
projective [Kadison 1999]) if B is isomorphic, as an (A, A)-bimodule, to a direct
summand of An for some positive integer n. We write B | An for this condition.
Whenever A is a unitary subring of B and f : A→ B is the inclusion map, we
denote the corresponding ring extension by A ⊆ B.

To the best of our knowledge, centrally projective ring extensions were first con-
sidered by Hirata [1969]. The identification of centrally projective ring extensions
with ring extensions of depth one appeared in [Kadison and Szlachányi 2003].
Ring extensions of higher depth were studied in [Kadison 2008], for example.

In this paper we try to answer the question of when a ring extension k H ⊆ kG
of group rings has depth one. Here and throughout this paper we denote by k
a commutative ring, by G a group and by H a subgroup of finite index in G.
In [Boltje and Külshammer 2010] we considered the question of when the ring
extension k H ⊆ kG has depth two (that is, when kG⊗k H kG | (kG)n as (kG, k H)-
bimodules, or equivalently as (k H, kG)-bimodules, for some positive integer n). It
turns out that this is equivalent to H being normal in G, independently of k. If the
ring extension k H ⊆ kG has depth one it also has depth two, since one can apply
the functor kG⊗k H− to the relation kG | (k H)n . In particular, H has to be normal
in G. The converse is not true in general, as our main results, Theorems 1.7 and 1.9,
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show. In these theorems we have to assume that k is a field (or a complete discrete
valuation ring of characteristic 0 and positive residual characteristic p). In both
cases the depth-one condition is equivalent to a purely group theoretic condition
on the inclusion H 6 G, namely that G = HCG(X), for every cyclic subgroup
X of H in the characteristic 0 case, and for every p-hypoelementary subgroup X
of H in the modular case (see Remark 1.8 for a definition of p-hypoelementary
groups). Therefore, the group theoretic depth-one condition does depend on the
base ring k. We do not have a group theoretic reformulation in the case k = Z.

At the end we study the depth-one condition for the ring extension FP → A,
where P is the defect group of a block of a group algebra over a field F of positive
characteristic p, and A is a source algebra of the block.

1. Depth one for group algebra extensions

1.1. Assume that g belongs to NG(H), the normalizer of H in G. Then

cg−1 : k H → k H, a 7→ g−1ag

is a k-algebra automorphism of k H . Restriction along this automorphism defines
a functor

Cg : k H Mod→ k H Mod, M 7→ gM

on the category of left k H -modules. More explicitly, for M ∈ k H Mod, the left
k H -module gM is defined to be equal to M as an abelian group, and it is endowed
with the module structure a ∗m := (g−1ag) ·m, where “ · ” denotes the original
k H -module structure of M . The functor Cg maps a homomorphism f : M1→ M2

in k H Mod to g f := f : gM1→
gM2.

If Cg is naturally equivalent to the identity functor on k H Mod, we say that g
acts trivially on k H Mod. For this paper, we say that G acts trivially on k H Mod if
H is normal in G and g acts trivially on k H Mod for every g ∈ G. Note that H acts
trivially on k H Mod. This is also an immediate consequence of the next proposition.

The subset kgH = gk H = k Hg of kG is a (k H, k H)-subbimodule of kG. It is
isomorphic to (g,1)k H if we view (k H,k H)-bimodules M as left k[H×H ]-modules
via

(h1, h2) ·m := h1mh−1
2 for h1, h2 ∈ H and m ∈ M .

Assume that R is an arbitrary ring and that α is an automorphism of R. Let
Rα denote the (R, R)-bimodule that equals R as abelian group but has the twisted
action axb := α(a)xb, for a, x, b ∈ R. It is well-known and straightforward to
prove that α is an inner automorphism if and only if Rα is isomorphic to R as an
(R, R)-bimodule. It is also equivalent to α acting trivially on RMod. The following
proposition is a special case, and we leave its proof to the reader.
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Proposition 1.2. For g ∈ NG(H), the following are equivalent:

(i) kgH ∼= k H as (k H, k H)-bimodules.

(ii) There exists a unit u of k H such that gag−1
= uau−1 for all a ∈ k H.

(iii) g acts trivially on k H Mod.

For every subset X of H we denote by CG(X) the centralizer of X in G.

Corollary 1.3. If G = HCG(H), then the ring extension k H ⊆ kG has depth one.
Conversely, if the ring extension k H ⊆ kG has depth one, then H is normal in G.

Proof. Suppose first that G = HCG(H). Then every g ∈ G satisfies condition (ii).
Using condition (i) together with the decomposition kG =

⊕
gH∈G/H kgH into

(k H, k H)-subbimodules, the first assertion follows. The second assertion was al-
ready observed in the introduction. �

1.4. If 3 is a k-order (that is, a k-algebra that is finitely generated and projective
as a k-module) we say that the Krull–Schmidt theorem holds for 3-lattices if the
following two properties hold for every 3-module M that is finitely generated and
projective as a k-module:

• M has a decomposition M = U1 ⊕ · · · ⊕ Ur into indecomposable 3-sub-
modules, and

• if M=U1⊕· · ·⊕Ur =V1⊕· · ·⊕Vs are two decompositions into indecompos-
able 3-submodules, then r = s and there exists a permutation σ of {1, . . . , r}
such that Ui ∼= Vσ(i) for all i ∈ {1, . . . , r}.

If k is a field or a complete discrete valuation ring, then the Krull–Schmidt
theorem holds for every k-order 3 [Curtis and Reiner 1981, Theorem 6.12].

Proposition 1.5. Assume that G is finite and that the Krull–Schmidt theorem holds
for k[H × H ]-lattices. The following are equivalent:

(i) k H ⊆ kG is a ring extension of depth one.

(ii) H is normal in G and kgH ∼= k H as (k H, k H)-bimodules for every g ∈ G.

(iii) H is normal in G and kG ∼= (k H)[G:H ] as (k H, k H)-bimodules.

(iv) kG ∼= (k H)[G:H ] as (k H, k H)-bimodules.

Proof. (i)⇒ (ii): Since the ring extension k H ⊆ kG has depth one, Corollary 1.3
implies that H is normal in G. Therefore, for every g∈G, one has kgH |kG |(k H)n

as (k H, k H)-bimodules for some positive integer n. Since the Krull–Schmidt the-
orem holds for k[H × H ]-lattices, every indecomposable direct summand of the
k[H×H ]-module kgH is isomorphic to an indecomposable direct summand of the
k[H × H ]-module k H . But the indecomposable direct summands of k H are the
blocks of k H , and they are pairwise nonisomorphic. Since kgH is isomorphic to



66 Robert Boltje and Burkhard Külshammer

(g,1)k H and since C(g,1) : k[H×H ]Mod→ k[H×H ]Mod is a category equivalence, the
indecomposable direct summands of kgH are also pairwise nonisomorphic. Thus,
we can decompose kgH and k H multiplicity-free into a direct sum of indecom-
posable k[H × H ]-submodules. The number of these summands coincides, since
kgH ∼= (g,1)k H . Since every summand of kgH occurs as a summand of k H , we
can conclude that kgH ∼= k H as (k H, k H)-bimodules.

(ii) ⇒ (iii): This follows from the decomposition kG =
⊕

gH∈G/H kgH into
(k H, k H)-subbimodules.

(iii)⇒ (iv): This is trivial.
(iv)⇒ (i): This is immediate from the definition of depth one. �

Remark 1.6. In the proof of Proposition 1.5, the Krull–Schmidt property is only
used for permutation k[H × H ]-modules. By [Boltje and Glesser 2007, Theo-
rem 1.6], the four conditions in Proposition 1.5 are still equivalent when k is a local
domain containing a root of unity of order e, where e is defined as the exponent
exp(H) of H in the case that k has characteristic 0, and as the p′-part of exp(H)
in the case that k has positive characteristic p.

Next we will study the case where k is a field of characteristic 0 and H is a finite
group. In this case we will denote by k an algebraic closure of k and by Irr(H)
the set of irreducible characters of k H . Recall that NG(H) acts from the left on
Irr(H) via χ 7→ gχ for g ∈ NG(H), where gχ(h)= χ(g−1hg), for h ∈ H . Recall
also that NG(H) acts on the set of conjugacy classes of H via K 7→ gK, where
gK= {ghg−1

| h ∈ K} for a conjugacy class K of H .

Theorem 1.7. Assume that k is a field of characteristic 0 and that G is finite. The
following are equivalent:

(i) k H ⊆ kG is a ring extension of depth one.

(ii) H is normal in G and G acts trivially on Irr(H).

(iii) H is normal in G and G acts trivially on the set of conjugacy classes of H.

(iv) For every cyclic subgroup X of H one has G = HCG(X).

Proof. (i)⇐⇒ (ii): Using Corollary 1.3, we may assume that H is normal in G.
Using Propositions 1.2 and 1.5, one sees that it suffices to show that, for every
g ∈ G, the (k H, k H)-bimodules kgH and k H are isomorphic if and only if g acts
trivially on Irr(H). By the Deuring–Noether theorem [Nagao and Tsushima 1989,
Theorem II.3.1], kgH ∼= k H as (k H, k H)-bimodules if and only if kgH ∼= k H
as (k H, k H)-bimodules. By Proposition 1.2, the latter is equivalent to g acting
trivially on k H Mod, which implies that g acts trivially on Irr(H). Conversely, if
gχ = χ for every χ ∈ Irr(H) then kgH ∼= k H as k[H × H ]-modules, since the
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character of k H is equal to
∑

χ∈Irr(H) χ ×χ and the character of kgH is equal to

(g,1)( ∑
χ∈Irr(H)

χ ×χ
)
=

∑
χ∈Irr(H)

gχ ×χ =
∑

χ∈Irr(H)

χ ×χ.

(ii)⇐⇒ (iii): This follows immediately from Brauer’s permutation lemma [Na-
gao and Tsushima 1989, Lemma III.2.19].

(iii)⇒ (iv): Let X = 〈x〉 be a cyclic subgroup of H and let g be an element of
G. Since gxg−1 lies in the same conjugacy class as x , there exists h ∈ H such that
gxg−1

= hxh−1. This implies h−1g ∈ CG(x) and g ∈ hCG(x)⊆ HCG(X).
(iv)⇒ (ii): Condition (iv) implies immediately that H is normal in G. Now let

g ∈ G, χ ∈ Irr(H) and x ∈ H . Then there exists h ∈ H and c ∈ CG(x) such that
g = hc. Hence χ(gxg−1)= χ(hcxc−1h−1)= χ(hxh−1)= χ(x). Thus g−1

χ = χ

and χ = gχ . �

Remark 1.8. Next we study the depth-one condition for the ring extension k H ⊆
kG in the case where k is a field of positive characteristic p, or where k is a com-
plete discrete valuation ring of characteristic 0 and positive residual characteristic
p. We will need the theory of species developed by Benson and Parker [1998,
Section 5.5]. For this remark assume that G is finite and that k contains a root of
unity whose order is equal to exp(G) if k has characteristic 0, and to the p′-part of
exp(G) if k has characteristic p. Let S and T be finite left G-sets. We denote the
corresponding permutation kG-modules by kS and kT . The goal of this remark
is to derive a criterion for kS being isomorphic to kT . Denote by Hp(G) the set
of p-hypoelementary subgroups E of G, that is, subgroups E that have a normal
(Sylow) p-subgroup P such that E/P is cyclic. We claim that

kS ∼= kT as kG-modules ⇐⇒ |SE
| = |T E

| for all E ∈Hp(G), (1.8.a)

where |SE
| denotes the cardinality of the set SE of E-fixed points on S. In order

to see this equivalence, it suffices to show that

sE,g(kS)= |SE
| (1.8.b)

for all E ∈Hp(G) and all p′-elements g ∈ E such that g P generates E/P , where
P denotes the Sylow p-subgroup of E . For a definition of sE,g see [Benson 1998,
Section 5.5]. Since sE,g(kS) = sE,g(ResG

E (kS)), we may assume that G = E .
Moreover, since sE,g is additive, we may assume that S is a transitive E-set, that
is, S= E/D for some subgroup D of E . Then kS∼= IndE

D(k). If P is not contained
in D, then no indecomposable direct summand of kS has vertex P , and both sides
of Equation (1.8.b) are equal to 0. If P 6 D < E , the Brauer species of IndE

D(k)
at g equals 0, since g /∈ D, and again both sides in Equation (1.8.b) are equal to 0.
Finally, if D = E , it is immediate that both sides of the equation are equal to 1.
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In the next theorem we will apply the criterion in (1.8.a) to the H ×H -sets gH
and H for g ∈ NG(H).

For a subgroup X of H , we set 1X := {(x, x) | x ∈ X}6 H × H .

Theorem 1.9. Assume that G is finite and that k is a field of characteristic p>0 or
a complete discrete valuation ring of characteristic 0 with residual characteristic
p > 0. The following are equivalent:

(i) The ring extension k H ⊆ kG has depth one.

(ii) H is normal in G, and |(gH)E
| = |H E

| for all g ∈ G and E ∈Hp(H × H).

(iii) H is normal in G, and |(gH)1X
| = |H1X

| for all g ∈ G and X ∈Hp(H).

(iv) For all X ∈Hp(H) one has G = CG(X)H.

Proof. (i)⇐⇒ (ii): By Corollary 1.3, we may assume that H is normal in G.
Now the equivalence of (i) and (ii) follows immediately from Proposition 1.5 and
Remark 1.8 applied to the k[H × H ]-modules kgH and k H , for g ∈ G. In fact,
by [Benson 1998, Corollary 3.11.4(i)] and the Deuring–Noether theorem [Nagao
and Tsushima 1989, Theorem II.3.1], we have kgH ∼= k H as k[H × H ]-modules
if and only if k ′gH ∼= k ′H as k ′[H × H ]-modules, where k ′ is obtained from k by
adjoining a root of unity whose order is equal to exp(H) if k has characteristic 0,
and to the p′-part of exp(H) if k has characteristic p.

(ii)⇒ (iii): This is trivial.
(iii)⇒ (iv): Let g ∈ G and let X ∈Hp(H). Since 1 ∈ H1X , the set (gH)1X is

nonempty. Let h ∈ H such that gh ∈ (gH)1X . Then gh ∈CG(X) and g∈CG(X)H .
(iv)⇒ (ii): From (iv) we have immediately that H is normal in G. Now let g∈G

and let E ∈ Hp(H). The H × H -sets H and gH are transitive. The stabilizer of
1∈ H is1H and the stabilizer of g∈ gH is (g,1)1H . One has |H E

|=0=|(gH)E
|

unless E is H × H -conjugate to a subgroup of 1H or (g,1)1H . Since the number
of fixed points does not change if we replace E by an H × H -conjugate of E , we
may assume that E 61H or E 6 (g,1)1H . We first assume that E 61H . Then
E = 1X for some X ∈ Hp(H). Since g ∈ CG(X)H , we can write g = ch with
c ∈ CG(X) and h ∈ H . Then gH = cH , and for h′ ∈ H we have

h′ ∈ H1X
⇐⇒ h′ ∈ CG(X)⇐⇒ ch′ ∈ CG(X)⇐⇒ ch′ ∈ (cH)1X .

It follows that |H1X
| = |(cH)1X

| = |(gH)1X
|. Finally, if E 6 (g,1)1H , then

(g−1,1)E =1X for some X ∈Hp(H). Again we can write g = ch with c ∈ CG(X)
and h ∈ H . Then g= h′c with h′= ghg−1

∈ H and E = (g,1)(1X)= (h′c,1)(1X)=
(h′,1)(1X) is H × H -conjugate to 1X . By the first case, this implies

|(gH)E
| = |(gH)1X

| = |H1X
| = |H E

|. �
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Remark 1.10. In the case k = Z, we do not know if there is a similar equivalence
(i)⇐⇒ (iv) as in Theorem 1.9 with Hp(H) replaced by some other set S(H) of
subgroups of H . Even if there existed such a set S(H), we don’t have a good guess
what it should be.

If ZH ⊆ZG has depth one, then k H ⊆ kG has depth one for every commutative
ring k (by scalar extension). In particular, this implies that G = HCG(X) for every
p-hypoelementary subgroup X of H for all primes p. We do not know if the
converse holds. On the other hand, if G= HCG(H), then ZH ⊆ZG has depth one
by Corollary 1.3. However, the converse is not true. In fact, by [Hertweck 2001,
Theorem A], there exist a finite group H (metabelian of order 225

·972), a noninner
automorphism g of H , and a unit u of ZH with g(a)=uau−1. We set G :=Ho〈g〉.
By Proposition 1.2, we obtain Zgi H ∼= ZH as (ZH,ZH)-bimodules for every
integer i . This implies that ZG=

⊕
x H∈G/H Zx H ∼= (ZH)[G:H ] and that ZH ⊆ZG

has depth one. But g /∈CG(H)H , since g is not an inner automorphism of H . This
shows that if, for each finite group H , there exists a set of subgroups S(H) of H
that replaces Hp(H) in Theorem 1.9(iv) in the case k = Z, then H /∈ S(H) for
Hertweck’s group H .

2. Depth one for source algebras of blocks

2.1. Let G be a finite group, let p be a prime, and let (K , R, F) be a p-modular
system. Thus, R is a complete discrete valuation ring of characteristic zero, K is
the field of fractions of R, and F , the residue field of R, has characteristic p. We
assume that R contains a root of unity of order exp(G) and that F is algebraically
closed. Then K and F are splitting fields for KG and FG, respectively. For
an R-order A, we denote by A the finite-dimensional F-algebra F ⊗R A. In the
following, let k ∈ {R, F}.

In this section, we will consider the depth-one condition for blocks and source
algebras. For general background, we refer to the books [Thévenaz 1995] and
[Külshammer 1991]. For the convenience of the reader, we recall some of the
basic concepts.

An interior G-algebra over k consists of a k-order A and a group homomor-
phism i : G → A×, where A× denotes the group of units of A. In this case, we
will consider the k-linear extension kG → A of i as a ring extension. Two inte-
rior G-algebras A1 and A2 are called isomorphic if there exists an isomorphism
f : A1→ A2 commuting with the structural maps i1 : G→ A×1 and i2 : G→ A×2 .

If A is an interior G-algebra, then a point of a subgroup H of G on A is an
(AH )×-conjugacy class β of primitive idempotents in the subalgebra

AH
:= {a ∈ A | ha = ah for all h ∈ H}

of A. In this case the pair (H, β)=: Hβ is called a pointed group on A.
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The point β of H on A is called local if β 6⊆TrH
L (A

L) for every proper subgroup
L of H ; here TrH

L : AL
→ AH , a 7→

∑
hL∈H/L hah−1 is the relative trace map. If

β is a local point of H on A then Hβ is called a local pointed group on A. One
can show that in this case H has to be a p-group.

Let Hβ and Lγ be pointed groups on A. We write Lγ ≤ Hβ if L 6 H and
j A j ⊆ i Ai for suitable idempotents i ∈ β, j ∈ γ . This defines a partial order on
the set of pointed groups on A. The group G acts by conjugation on the set of
all pointed groups Hβ on A, and this action is compatible with the partial order
relation. We denote by NG(Hβ) the stabilizer of Hβ in G. Thus, NG(Hβ) is a
subgroup of NG(H).

A block of kG is an indecomposable direct summand B of kG, considered as a
(kG, kG)-bimodule. In this case B is a k-order in its own right. We consider B as
an interior G-algebra via the group homomorphism G → B×, g 7→ g1B = 1B g.
Then α := {1B} is a point of G on B and we consider Gα as a pointed group on B.

The maximal local pointed groups Pγ 6 Gα are called defect pointed groups of
Gα (and of B). They are unique up to conjugation in G. If Pγ is a defect pointed
group on B, then P is also called a defect group of B. For i ∈ γ , the k-order
Bγ = iBi = ikGi is called a source algebra of B. One can show that BiB = B,
so that B and iBi are Morita equivalent k-orders via multiplication with i . The
source algebra iBi will always be considered as an interior P-algebra via the map
P→ (iBi)×, x 7→ i x = xi .

The block B is called nilpotent if NG(Qδ)/CG(Q) is a p-group for every local
pointed group Qδ ≤ Gα on B. (Note that indeed CG(Q) ⊆ NG(Qδ) here.) Puig
[1988] determined the structure of the source algebra of a nilpotent block. It is a
consequence of his results that every nilpotent block has a unique simple module
in characteristic p, up to isomorphism. We will make use of Puig’s results in the
following theorem.

Theorem 2.2. Let B be a block of RG with defect pointed group Pγ , and let Bγ
be a corresponding source algebra. Then the following assertions are equivalent:

(i) The ring extension FP → Bγ defined by the canonical map P → Bγ× has
depth one.

(ii) Bγ and RP are isomorphic as interior P-algebras.

(iii) B is a nilpotent block, and the unique simple B-module M has a trivial source.

Proof. (i)⇒ (ii): Suppose that the ring extension FP→ Bγ has depth one. Then
Bγ | (FP)n as an (FP, FP)-bimodule, for some positive integer n. Thus every
indecomposable direct summand of the (FP, FP)-bimodule Bγ is isomorphic to
FP . Hence [Thévenaz 1995, Theorem 44.3] implies that NG(Pγ )= PCG(P) and
Bγ ∼= FP , as an (FP, FP)-bimodule; in particular, we have rkR(Bγ )= dimF Bγ =
|P|. The same theorem now implies that Bγ ∼= RP as interior P-algebras.
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(ii)⇒ (iii): Suppose that Bγ and RP are isomorphic interior P-algebras. Then a
result by Puig [1988, Theorem 1.6] implies that the block B is nilpotent [Thévenaz
1995, Remark 50.10]. We write Bγ = i FGi , where i is a primitive idempotent
in (FG)P . Since every block has at least one simple module whose vertices are
defect groups of the block, P is a vertex of the unique simple B-module M . By
[Thévenaz 1995, Proposition 38.3], M has an FP-source V such that V | i M , as
an FP-module. Since B and Bγ are Morita equivalent via multiplication with i ,
the Bγ -module i M is simple. Since Bγ ∼= FP , i M is trivial as an FP-module, and
so is V .

(iii)⇒ (i): Suppose that B is nilpotent and that the unique simple B-module M
has a trivial source. Then M has vertex P , as above, and a result by Puig [Thévenaz
1995, Theorem 50.6] implies that Bγ ∼= S⊗F FP as interior P-algebras, where S
is an interior P-algebra that is simple as an F-algebra. (The tensor product of two
interior P-algebras is again an interior P-algebra via the diagonal map.) As above,
we write Bγ = i FGi , where i is a primitive idempotent in (FG)P . Since B and Bγ
are Morita equivalent via multiplication with i , the module i M is the unique simple
Bγ -module, up to isomorphism. Thus, S and EndF (i M) are isomorphic interior
P-algebras; in particular, S P ∼= EndFP(i M) as F-algebras. But S P is a local ring
(since Bγ

P
is), so i M is indecomposable as an FP-module. On the other hand,

[Thévenaz 1995, Proposition 38.3] implies that i M has a direct summand, as an
FP-module, which is a source of M . Thus dimF i M = 1. Hence dimF S = 1, so
S∼= F and Bγ ∼= FP . In particular, the ring extension FP→ Bγ has depth one. �

2.3. It would be interesting to have a similar description of the depth-two con-
dition for source algebras of blocks. The goal of this subsection is to show that
RP → Bγ (and also FP → Bγ ) is a symmetric Frobenius extension, so that the
left and right depth-two conditions are equivalent [Kadison and Szlachányi 2003,
Proposition 6.4].

Recall from [Kadison 1999, Theorem I.1.2] that a ring extension f : 0 → 1

is called a Frobenius extension if there exist a (0, 0)-bimodule homomorphism
E : 1→ 0 and elements x j , y j ∈1, j = 1, . . . , n, such that

n∑
j=1

x j E(y j a)= a =
n∑

j=1

E(ax j )y j (2.3.a)

for all a ∈1. If in addition
E(ca)= E(ac) (2.3.b)

holds for all a ∈ 1 and c ∈ C1(0), then one calls the extension f : 0 → 1 a
symmetric Frobenius extension.

If 0 ⊆1 is a symmetric Frobenius extension and e is an idempotent in C1(0),
then e0e⊆ e1e is a symmetric Frobenius extension. In fact, if E : 1→0 satisfies
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(2.3.a) and (2.3.b), then it is easy to verify that Ẽ : e1e → e0e, a 7→ eE(a)e
satisfies n∑

j=1

ex j eẼ(ey j ea)= a =
n∑

j=1

Ẽ(aex j e)ey j e

for all a ∈ e1e. Moreover, Equation (2.3.b) implies Ẽ(ca)= Ẽ(ac) for all a ∈ e1e
and c ∈ Ce1e(e0e)= eC1(0)e.

If H is a subgroup of G, then k H ⊆ kG is a symmetric Frobenius extension.
In fact, one can choose for E : kG→ k H the canonical projection, and for x j and
y j , coset representatives of G/H and their inverses. Thus, if e is an idempotent in
(kG)H , then also ek He→ ekGe is a symmetric Frobenius extension. This holds
even over arbitrary commutative rings k.

Now our claim follows by specializing to H = P and e= 1Bγ (or e= 1Bγ ), and
noting that k P→ ek Pe, a 7→ eae = ea = ae is an isomorphism of k-algebras.

By the preceding discussion, we do not need to distinguish between the left and
the right depth-two condition in the following proposition.

Proposition 2.4. Let B be the principal block of RG, and let Pγ be a maximal
local pointed group on B (so that P is a Sylow p-subgroup of G). Set E :=
NG(Pγ )/PCG(P). Let Bγ be a source algebra of B. Then the following assertions
are equivalent:

(i) The ring extension FP → Bγ defined by the structural map P → Bγ× has
depth two.

(ii) Bγ is isomorphic to a twisted group algebra R][P o E] of the semidirect
product P o E , as an interior P-algebra.

Proof. (i)⇒ (ii): Suppose that the ring extension FP → Bγ has depth two, and
write A := Bγ = i FGi , where i is a primitive idempotent in (FG)P . Then there
exists a positive integer n such that

ResA
FP IndA

FPResA
FP(i M) | ResA

FP(i M)n

for every B-module M . Taking for M the trivial FG-module F , we obtain

A⊗FP i F | (i F)n

in FPMod. Thus, P acts trivially on A⊗FP i F . On the other hand, A is a direct
sum of (FP, FP)-bimodules of the form F[Pg P], for suitable g ∈ G. It is easy
to see that F[Pg P]⊗FP i F ∼= IndP

P∩g Pg−1(F) in FPMod. And if P acts trivially
on IndP

P∩g Pg−1(F), then g ∈ NG(P). Thus A is in fact a direct sum of (FP, FP)-
bimodules of the form F[Pg P], for suitable g ∈ NG(P). Hence [Thévenaz 1995,
Theorem 44.3], a result by Puig, implies that rkR Bγ = dimF Bγ = |P| · |E |. Thus
[Thévenaz 1995, Theorem 45.11], another result by Puig, implies (ii).
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(ii)⇒ (i): Suppose that (ii) holds. Since R][P o E] is a strongly E-graded ring
with 1-component R]P ∼= RP , [Boltje and Külshammer 2010, Proposition 1.5]
shows that the ring extension RP→ R][P o E] has depth two. Tensoring with F ,
we obtain (i). �

Remark 2.5. The implication (ii) ⇒ (i) is valid for arbitrary blocks B of RG.
Also, if (ii) holds, one can show that every simple B-module M has trivial source
by noting that P acts trivially on i M .
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