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Frobenius difference equations
and algebraic independence of zeta values

in positive equal characteristic
Chieh-Yu Chang, Matthew A. Papanikolas and Jing Yu

By analogy with the Riemann zeta function at positive integers, for each fi-
nite field Fpr with fixed characteristic p, we consider Carlitz zeta values ζr (n)
at positive integers n. Our theorem asserts that among the zeta values in the
set

⋃
∞

r=1 {ζr (1), ζr (2), ζr (3), . . . }, all the algebraic relations are those relations
within each individual family {ζr (1), ζr (2), ζr (3), . . . }. These are the algebraic
relations coming from the Euler–Carlitz and Frobenius relations. To prove this,
a motivic method for extracting algebraic independence results from systems of
Frobenius difference equations is developed.

1. Introduction

1.1. Motivic transcendence theory. Classically, Grothendieck’s period conjecture
for abelian varieties predicts that the dimension of the Mumford–Tate group of an
abelian variety over Q should be equal to the transcendence degree of the field
generated by its period matrix over Q. Conjecturally, the Mumford–Tate group
is the motivic Galois group from Tannakian duality, and therefore Grothendieck’s
conjecture provides an interpretation of the algebraic relations among periods in
question by way of motivic Galois groups.

We are concerned with the algebraic independence of special zeta values over
function fields with varying finite constant fields in positive equal characteristic.
In the positive characteristic world, there is the concept of t-motives introduced by
Anderson [1986], dual to the concept of t-modules. The third author showed that
the structure of t-modules is key for proving many interesting linear independence
results about special values in this setting [Yu 1997]. The breakthrough in passing
from linear independence to algebraic independence by way of t-motives began
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with Anderson, Brownawell and the second author, and in particular with the linear
independence criterion of [Anderson et al. 2004] (the ABP criterion).

By introducing a Tannakian formalism for rigid analytically trivial pre-t-motives
and relating it to the Galois theory of Frobenius difference equations, the second
author [Papanikolas 2008] has shown that the Galois group of a rigid analytically
trivial pre-t-motive is isomorphic to its difference Galois group. Furthermore, the
second author has successfully used the ABP criterion to show that the transcen-
dence degree of the field generated by the period matrix of an ABP motive (that
is, the pre-t-motive comes from a uniformizable abelian t-module) is equal to the
dimension of its Galois group. More generally, we say that a rigid analytically
trivial pre-t-motive has the GP (Grothendieck period) property if the transcendence
degree of the field generated by its period matrix is equal to the dimension of its
Galois group (for more details of terminology, see Section 2).

Using a refined version of the ABP criterion proved by the first author [Chang
2009], we observe that there are many pre-t-motives that are not ABP motives
but that have the GP property. This motivates us to introduce a method of uni-
formizing the Frobenius twisting operators with respect to different constant fields
for those pre-t-motives that have the GP property. The pre-t-motive we obtain in
this way is defined over a larger constant field, but still has the GP property (see
Corollary 2.2.4). This technique is very useful when dealing with the problem of
determining all the algebraic relations among various special values of arithmetic
interest in a fixed positive characteristic. It is used in this paper to study special zeta
values. For another application to special arithmetic gamma values, see [Chang
et al. 2010].

1.2. Carlitz zeta values. Let p be a prime, and let Fpr [θ ] be the polynomial ring in
θ over the finite field Fpr of pr elements. Our aim is to determine all the algebraic
relations among the zeta values

ζr (n) :=
∑

a∈Fpr [θ ]

a monic

1
an ∈ Fpr ((1/θ))⊆ Fp((1/θ)),

where r and n vary over all positive integers. Each ζr (n) lies in Fp((1/θ)), since it is
fixed by the automorphism

(∑
ai (1/θ)i 7→

∑
a p

i (1/θ)
i
)
: Fp((1/θ))→ Fp((1/θ)).

The study of these zeta values was begun by Carlitz [1935]. For a fixed positive
integer r , he discovered that there is a constant π̃r , algebraic over Fpr ((1/θ)), such
that ζr (n)/π̃n

r lies in Fp(θ) if n is divisible by pr
− 1. The quantity π̃r arises as a

fundamental period of the Carlitz Fpr [t]-module Cr , and Wade [1941] showed that
π̃r is transcendental over Fp(θ).

We say that a positive integer n is (p, r)-even if it is a multiple of pr
−1. Thus

the situation of Carlitz zeta values at (p, r)-even positive integers is completely
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analogous to that of the Riemann zeta function at even positive integers. For these
(p, r)-even n, we call the Fp(θ)-linear relations between ζr (n) and π̃n

r the Euler–
Carlitz relations. Because the characteristic is positive, there are also Frobenius
p-th power relations among these zeta values: for positive integers m, n,

ζr (pmn)= ζr (n)pm
.

Anderson and Thakur [1990] and Yu [1991; 1997] made several breakthroughs in
understanding Carlitz zeta values. Using the t-module method, the transcendence
of ζr (n) for all positive integers n, and in particular for odd n (that is, n not divisible
by pr

− 1), was proved, and it was also proved that the Euler–Carlitz relations are
the only Fp(θ)-linear relations among {ζr (n), π̃m

r ; m, n ∈ N}. In [Chang and Yu
2007], the first and third authors used ABP motives instead of t-modules to show
that for fixed r , the Euler–Carlitz relations and the Frobenius p-th power relations
account for all the algebraic relations over Fp(θ) among the Carlitz zeta values

π̃r , ζr (1), ζr (2), ζr (3), . . . .

To complete the story of Carlitz zeta values, the next natural question is what
happens if r varies. Denis [1998] proved the algebraic independence of all fun-
damental periods {π̃1, π̃2, π̃3, . . . } as the constant field varies. Thus, in view of
[Chang and Yu 2007], one expects that for the bigger set of zeta values,

∞⋃
r=1
{ζr (1), ζr (2), ζr (3), . . . },

the Euler–Carlitz relations and the Frobenius p-th power relations still account for
all the algebraic relations. This is indeed the case, as we find from the following
theorem (stated subsequently as Corollary 4.5.2).

Theorem 1.2.1. Given any positive integers s and d, the transcendence degree of
the field

Fp(θ)
( d⋃

r=1
{π̃r , ζr (1), . . . , ζr (s)}

)
over Fp(θ) is

d∑
r=1

(
s−

⌊
s
p

⌋
−

⌊
s

pr−1

⌋
+

⌊
s

p(pr−1)

⌋
+ 1

)
.

1.3. Outline. Our strategy is to construct a pre-t-motive that has the GP property
and whose period matrix accounts for the Carlitz zeta values in question. In [Chang
and Yu 2007], an ABP motive has already been constructed for Carlitz zeta values
with respect to a fixed constant field. The problem here is one concerning varying
the constant fields in a fixed characteristic, and one has to uniformize Frobenius
powers in order to apply the method developed in [Papanikolas 2008].



114 Chieh-Yu Chang, Matthew A. Papanikolas and Jing Yu

This paper is organized as follows. In Section 2, we review Papanikolas’ theory
and investigate the pre-t-motives that have the GP property. Here we introduce the
mechanism of uniformizing Frobenius twisting operators while taking direct sums.
Section 3 includes discussions about rigid analytically trivial pre-t-motives of type
SV, that is, whose Galois groups are extensions of split tori by vector groups.
The heart of this section is Theorem 3.2.2, where we determine the dimensions
of Galois groups of direct sums of pre-t-motives of type SV. The pre-t-motive
for Theorem 1.2.1 is constructed in Section 4, and we prove that it satisfies the
conditions of Theorem 3.2.2. Finally, we calculate its dimension explicitly in
Theorem 4.5.1, which then has Theorem 1.2.1 as direct consequence.

2. t-motivic Galois groups

2.1. Notation.

2.1.1. Table of symbols.
Fp := the finite field of p elements, p a prime number.
k := Fp(θ) := the rational function field in the variable θ over Fp.
k∞ := Fp((1/θ)), completion of k with respect to the infinite place.
k∞ := a fixed algebraic closure of k∞.
k := the algebraic closure of k in k∞.
C∞ := completion of k∞ with respect to the canonical extension of the infinite
place.
| · |∞ := a fixed absolute value for the completed field C∞ with |θ |∞ = p.
C∞[[t]] := the ring of power series in the variable t over C∞.
C∞((t)) := the field of Laurent series in the variable t over C∞.
T := { f ∈ C∞[[t]] | f converges on |t |∞ ≤ 1}. This is known as the Tate algebra.
L := the fraction field of T.
σ := σp :=

(∑
i ai t i

7→
∑

i a1/p
i t i

)
: C∞((t))→ C∞((t)).

Ga := the additive group.
GLr /F := for a field F , the F-group scheme of invertible r × r square matrices.
Gm := GL1, the multiplicative group.

2.1.2. Block diagonal matrices. Let Ai ∈ Matmi (L) for i = 1, . . . , n, and m :=
m1+ · · ·+mn . We define

⊕n
i=1 Ai ∈Matm(L) to be the canonical block diagonal

matrix, that is, the matrix with A1, . . . , An down the diagonal and zeros elsewhere.

2.1.3. n-fold twisting. For n ∈ Z and a formal Laurent series f =
∑

i ai t i
∈

C∞((t)), we define the n-fold twisting f (n) := σ−n( f ) :=
∑

i a pn

i t i . The n-fold
twisting operation is an automorphism of the Laurent series field C∞((t)) that
stabilizes several subrings, for example, k[[t]], k[t], and T. More generally, for any
matrix B with entries in C∞((t)), we define B(n) by the rule B(n)i j = Bi j

(n).
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2.1.4. Entire power series. A power series f =
∑
∞

i=0 ai t i
∈ C∞[[t]] that satisfies

lim
i→∞

i
√
|ai |∞ = 0

and
[k∞(a0, a1, a2, . . . ) : k∞]<∞

is called an entire power series. As a function of t , such a power series f converges
on all C∞ and, when restricted to k∞, f takes values in k∞. The ring of the entire
power series is denoted by E.

2.2. Pre-t-motives and the GP property. For r a positive integer, let k̄(t)[σ r , σ−r
]

be the noncommutative ring of Laurent polynomials in σ r with coefficients in k̄(t),
subject to the relation

σ r f := f (−r)σ r for all f ∈ k̄(t).

A pre-t-motive M of level r is a left k̄(t)[σ r , σ−r
]-module that is finite-dimensional

over k̄(t). Letting m ∈Matn×1(M) comprise a k̄(t)-basis of M , multiplication by
σ r on M is represented by

σ r (m)=8m

for some matrix 8 ∈GLn(k̄(t)). Furthermore, M is called rigid analytically trivial
if there exists 9 ∈ GLn(L) such that

σ r (9) :=9(−r)
=89.

Such a matrix 9 is called a rigid analytic trivialization of the matrix 8. We also
say that 9 is a rigid analytic trivialization of M (with respect to m). Note that if
9 ′ ∈GLn(L) is also a rigid analytic trivialization of 8, then by [Papanikolas 2008,
§4.1.6] we have

9 ′
−1
9 ∈ GLn(Fpr (t)). (1)

Moreover, if we put m′ := Bm for any fixed B ∈GLn(k̄(t)), then8′ := B(−1)8B−1

represents multiplication by σ r on M with respect to the k̄(t)-basis m′ of M , and
9 ′ := B9 is a rigid analytic trivialization of 8′.

Definition 2.2.1. Suppose we are given a rigid analytically trivial pre-t-motive
M of level r that is of dimension n over k̄(t). If there exists a k̄(t)-basis m ∈
Matn×1(M) such that there exists 9 ∈ GLn(L) ∩Matn(E) that is a rigid analytic
trivialization of M with respect to m and satisfies

tr. degk̄(t) k̄(t)(9)= tr. degk̄ k̄(9(θ)),

then we say that M has the GP property, where k̄(t)(9) (resp. k̄(9(θ))) is the field
generated by all entries of 9 (resp. 9(θ)) over k̄(t) (resp. k̄). The GP property is
independent of the choices of 9 for a fixed m because of (1).
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Given a rigid analytically trivial pre-t-motive M of level r with (m, 8, 9) as
above, for any s ∈ N we define its s-th derived pre-t-motive M (s), which is a pre-
t-motive of level rs: the underlying space of M (s) is the same as M , but it is now
regarded as a left k̄(t)[σ rs, σ−rs

]-module. Letting

8′ :=8(−(s−1)r) . . . 8(−r)8,

we have σ rsm = 8′m and σ rs9 := 9(−rs)
= 8′9, and hence 9 is also a rigid

analytic trivialization of M (s).

Proposition 2.2.2. Let M be a rigid analytically trivial pre-t-motive of level r that
has the GP property. For any positive integer s, the s-th derived pre-t-motive M (s)

of M is also rigid analytically trivial and has the GP property.

Theorem 2.2.3 [Chang 2009, Theorem 1.2; Papanikolas 2008, Theorem 5.2.2].
Suppose8 ∈Matn(k̄[t]) defines a rigid analytically trivial pre-t-motive M of level
r with a rigid analytic trivialization 9 ∈Matn(T)∩GLn(L). If det8(0) 6= 0 and
det8(θ1/pri

) 6= 0 for all i = 1, 2, 3, . . . , then M has the GP property.

By [Anderson et al. 2004, Proposition 3.1.3], the condition det8(0) 6= 0 implies
9 ∈Matn(E). Combining Theorem 2.2.3 and Proposition 2.2.2, we have:

Corollary 2.2.4. Given an integer d ≥ 2, we let ` := lcm(1, . . . , d). For each
1 ≤ r ≤ d , let `r := `/r and let 8r ∈ Matnr (k̄[t]) ∩ GLnr (k̄(t)) define a pre-t-
motive Mr of level r with a rigid analytic trivialization 9r ∈Matnr (T)∩GLnr (L).
Suppose that each 8r satisfies the hypotheses of Theorem 2.2.3 for r = 1, . . . , d.
Then the direct sum

M :=
d⊕

r=1

Mr
(`r )

is a rigid analytically trivial pre-t-motive of level ` that has the GP property.

Proof. For each 1≤ r ≤ d , we define

8′r :=8
(−(`r−1)r)
r · · ·8(−r)

r 8r .

Moreover, if we define

8′ := ⊕d
r=18

′

r , 9 ′ := ⊕d
r=19r ,

then we have
9 ′(−`) =8′9 ′.

Note that the matrix representing multiplication by σ ` on M with respect to the
evident k̄(t)-basis is given by 8′.

Our task is to show that 8′ satisfies the hypotheses of Theorem 2.2.3 (with
respect to the operator σ `), whence the result. It is obvious that det8′(0) 6= 0



Difference equations and algebraic independence of zeta values 117

since det8r (0) 6= 0 for each 1 ≤ r ≤ d . Suppose that det8′(θ1/p`j
)= 0 for some

j ∈ N. This implies that there exists 1≤ r ≤ d and 0≤ m ≤ `r − 1 such that

det8(−rm)
r (θ (−`j))= 0.

However, this is equivalent to

det8r (θ
(−(`j−rm)))= 0. (2)

Since 0≤m ≤ `r − 1 and r |`, we have that (`j − rm) > 0 and r |(`j − rm). Thus,
(2) contradicts the hypothesis that det8r (θ

(−rh)) 6= 0 for all h = 1, 2, 3, . . . . �

2.3. Difference Galois groups and transcendence. In this section, we review the
related theory developed in [Papanikolas 2008]. Let r be a fixed positive integer.
The category of pre-t-motives of level r forms a rigid abelian Fpr (t)-linear tensor
category. Also, the category R of rigid analytically trivial pre-t-motives of level r
forms a neutral Tannakian category over Fpr (t). Given an object M in R, we let
RM be the strictly full Tannakian subcategory of R generated by M . That is, RM

consists of all objects of R isomorphic to subquotients of finite direct sums of

M⊗u
⊗ (M∨)⊗v for various u, v,

where M∨ is the dual of M . By Tannakian duality, RM is representable by an
affine algebraic group scheme 0M over Fpr (t). The group 0M is called the Galois
group of M and it is described explicitly as follows.

Suppose that 8 ∈ GLn(k̄(t)) provides multiplication by σ r on M with respect
to a fixed basis m ∈ Matn×1(M) over k̄(t). Let 9 ∈ GLn(L) be a rigid analytic
trivialization for8. Let X := (X i j ) be an n×n matrix whose entries are independent
variables X i j , and define a k(t)-algebra homomorphism ν : k(t)[X, 1/ det X ] → L

such that ν(X i j )=9i j for all 1≤ i, j ≤ n. We let

69 := im ν = k(t)[9, 1/ det9] ⊆ L,

Z9 := Spec 69 .

Then Z9 is a closed k(t)-subscheme of GLn/k(t). Let 91, 92 ∈GLn(L⊗k(t) L) be
the matrices satisfying (91)i j =9i j⊗1 and (92)i j =1⊗9i j for all 1≤ i, j ≤n. Let
9̃ :=9−1

1 92. We have an Fpr (t)-algebra homomorphismµ :Fpr (t)[X, 1/ det X ]→
L⊗k(t) L such that µ(X i j )= 9̃i j for all 1≤ i, j ≤ n. Furthermore, we define

1 := im µ,

09 := Spec 1.
(3)
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Theorem 2.3.1 [Papanikolas 2008, Theorems 4.2.11, 4.3.1, 4.5.10]. The scheme
09 is a closed Fpr (t)-subgroup scheme of GLn/Fpr (t), which is isomorphic to the
Galois group 0M over Fpr (t). Moreover, 09 has the following properties:

(a) 09 is smooth over Fp(t) and is geometrically connected.

(b) dim09 = tr.degk(t) k(t)(9).

(c) Z9 is a 09-torsor over k(t).

In particular, if M has the GP property, then

(d) dim09 = tr.degk̄ k̄(9(θ)).

We call 09 the Galois group associated to the difference equation 9(−r)
=89.

This 09 is independent of the analytic trivialization 9, up to isomorphism over
Fpr (t). Throughout this paper we always identify 0M with 09 , and regard it as a
linear algebraic group over Fpr (t) because of Theorem 2.3.1(a).

Remark 2.3.2. Let n1, n2 be positive integers and 0 := 0n1×n2 be the zero matrix
of size n1× n2. Suppose that the matrix

8 :=

[
81 0
83 82

]
∈ GLn1+n2(k̄(t))

defines a rigid analytically trivial pre-t-motive M of level r . Then one can always
find its rigid analytic trivialization of the form

9 :=

[
91 0
93 92

]
∈ GLn1+n2(L).

By (3), we have that

09 ⊆

{[
∗ 0
∗ ∗

]}
⊆ GLn1+n2/Fpr (t).

Let N be the sub-pre-t-motive (of level r ) of M defined by 81 ∈ GLn1(k̄(t)) with
rigid analytic trivialization 91; then by the Tannakian theory we have a natural
surjective morphism

π : 09(Fp(t))� 091(Fp(t)),

γ 7→ π(γ ).
(4)

In fact, π(γ ) comes from the restriction of the action of γ to the fiber functor of
RN (which is a full subcategory of RM ). Precisely, π(γ ) is the matrix cut out from
the upper left square of γ with size n1 (for detailed arguments, see [Papanikolas
2008, §6.2.2]).
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3. A dimension criterion

3.1. Pre-t-motives of type SV. Let r be a fixed positive integer and let {n1, . . . , nh}

be h nonnegative integers. We say that a pre-t-motive M of level r is of type
SV (its Galois group being an extension of a split torus by a vector group) if the
multiplication by σ r on M is represented by the matrix

8 :=

h⊕
i=1

Ai , Ai :=


ai 0 · · · 0
ai1 1 · · · 0
...

...
. . .

...

aini 0 · · · 1

 ∈ GL1+ni (k̄(t)),

which has rigid analytic trivialization

9 :=

h⊕
i=1

Fi , Fi :=


fi 0 · · · 0
fi1 1 · · · 0
...

...
. . .

...

fini 0 · · · 1

 ∈ GL1+ni (L).

Let T be the Galois group associated to the difference equation

 f1 · · · 0
...
. . .

...

0 · · · fh


(−r)

=

 a1 · · · 0
...
. . .

...

0 · · · ah


 f1 · · · 0
...
. . .

...

0 · · · fh

 ,
and note that by (3), T is a subtorus of the h-dimensional split torus in GLh /Fpr (t).
By the same reason as (4), we have the natural projection of Galois groups

09 � T, (5)

given in terms of coordinates by

h⊕
i=1


xi 0 · · · 0
xi1 1 · · · 0
...

...
. . .

...

xini 0 · · · 1

 7→ [x1]⊕ · · ·⊕ [xh].

One has also the exact sequence of linear algebraic groups

1→ V → 09 � T → 1, (6)
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where V is a vector group contained in the
(∑h

i=1 ni
)
-dimensional “coordinate”

vector group G, which is defined as the set of matrices

h⊕
i=1


1 0 · · · 0

xi1 1 · · · 0
...

...
. . .

...

xini 0 · · · 1


with usual multiplication. This subgroup V is the unipotent radical of the (solvable)
Galois group 09 , and dim09 = dim V + dim T .

Definition 3.1.1. Let M be a rigid analytically trivial pre-t-motive of level r that
is of SV type given as above. We say that its Galois group 09 is full if dim V =∑h

i=1 ni , that is, V = G.

3.2. Criterion for direct sum motives to have full Galois group. We continue with
the notation of Section 3.1. For each i , 1 ≤ i ≤ h, the 1× 1 matrix [ai ] defines a
sub-pre-t-motive (of level r ) of M , which is one-dimensional over k̄(t). Its rigid
analytic trivialization is given by fi satisfying

[ fi ]
(−r)
= [ai ][ fi ].

We call one such sub-pre-t-motive of level r a diagonal of the pre-t-motive M .
By Theorem 2.3.1, the Galois group of a diagonal of M is Gm if and only if the
corresponding trivialization fi is transcendental over k̄(t). In this situation, the
canonical projection T → Gm on the i-th coordinate of T is surjective.

There is a canonical action of T on G given in terms of coordinates by

([x1]⊕ · · ·⊕ [xh]) ∗

⊕h
i=1


1 0 · · · 0

xi1 1 · · · 0
...

...
. . .

...

xini 0 · · · 1


 :=

h⊕
i=1


1 0 · · · 0

xi xi1 1 · · · 0
...

...
. . .

...

xi xini 0 · · · 1

 .
This action induces an action of T on V compatible with the one coming from (6).
Hence, we have that given any element γ ∈ V whose xi j -coordinate is nonzero, the
orbit inside V given by the action of T on γ must be infinite if fi is transcendental
over k̄(t).

Definition 3.2.1. Let Mi be a rigid analytically trivial pre-t-motive of level r that
is of type SV for i = 1, . . . , d . We say that this set of pre-t-motives {Mi }

d
i=1 is

diagonally independent if for any 1≤ i, j ≤ d, i 6= j , the Galois group of Ni ⊕ N j

is a two-dimensional torus over Fpr (t), where Ni is any diagonal of Mi and N j is
any diagonal of M j .
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Theorem 3.2.2. Given any positive integer r , let M1, . . . ,Md be rigid analytically
trivial pre-t-motives of level r that are of type SV and have full Galois groups.
Suppose that the set {Mi }

d
i=1 is diagonally independent. Then the Galois group of

M :=
⊕d

i=1 Mi is also full.

Proof. We first explain that without loss of generality, we may assume d = 2. We
prove the result by induction on d . Consider M =

(⊕d−1
i=1 Mi

)
⊕ Md . Then the

induction hypothesis implies that the Galois group of
(⊕d−1

i=1 Mi
)

is full. Since
the following argument of the case d = 2 can be applied to the computation of the
Galois group of the direct sum of

(⊕d−1
i=1 Mi

)
and Md , we may assume d = 2.

Now we set d = 2 and let the pre-t-motive Mi be defined by a matrix 8i , for
i = 1, 2, with 9 = 91⊕92 a rigid analytic trivialization of M , and let 09 , 091 ,
092 be the Galois groups. The unipotent radicals of these groups are denoted by
V , V1, V2 respectively. Let G, G1, G2 be the coordinate vector groups containing
V , V1, V2, respectively. Suppose the matrix 81 has h diagonal blocks, and let the
coordinates of G1 be denoted by xi j , i = 1, . . . , h, j = 1, . . . , ni . Similarly, let yi j ,
i = 1, . . . , `, j = 1, . . . ,mi denote the coordinates of G2. Any subspace W ⊆ G
obtained by setting some of these coordinates to 0 is called a linear coordinate
subspace. The hypothesis that the Galois group of Mi is full means exactly that
Gi = Vi , for i = 1, 2. We are going to prove that G = V .

Suppose V has codimension s in the coordinate vector group G. We can find a
linear coordinate subspace W ⊆ G of dimension s such that W ∩ V is of dimen-
sion 0. Since W ∩ V is invariant under T , it must be equal to the neutral element
of G, because the hypothesis that M1 and M2 are diagonally independent implies
in particular that the Galois group of any diagonal of M is Gm .

Let W ′ ⊆ G be the linear coordinate space given by those coordinates disjoint
from those of W . Then the natural projection from G to W ′ induces on V an
isomorphism of vector groups. Composing the inverse of this isomorphism with
the surjective morphism π1 in the diagram

1 - V - 09 - T - 1

1 - G1

π1
?

- 091

π1
?

- T1

?
- 1,

we obtain a morphism π1 from W ′ onto G1 that is furthermore a T -morphism.
We contend that under the hypothesis that M1 and M2 are diagonally indepen-

dent, π1 maps G2 ∩W ′ to zero. This contention results from the following basic
lemma by taking any diagonal N1 (resp. N2) of M1 (resp. M2) and considering the
restriction of the above morphism π1 to a single block. Now since G =G1×G2, it
follows that π1(G1∩W ′)= G1. Thus G1 ⊆W ′. Similarly we also have G2 ⊆W ′,
and hence G =W ′ and G = V . �
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Lemma 3.2.3. Let G1 (resp. G2) be the vector group with coordinates
1 0 · · · 0
x1 1 · · · 0
...
...
. . .

...

xn 0 · · · 1

 ,
resp.


1 0 · · · 0
y1 1 · · · 0
...
...
. . .

...

ym 0 · · · 1


 .

Let G2
m act on G1 (resp. G2) by

G2
m 3 (x, y) : xi 7→ xxi , 1≤ i ≤ n, (resp. y j 7→ yy j , 1≤ j ≤ m).

If π1 : G2→ G1 is a G2
m-morphism, then π1 ≡ 0.

4. Application to zeta values

Throughout this section, we use ri for two subscripts (for example, Dri depends
on the two parameters r and i), and use ∗, rn for three subscripts (for example,
Lα,rn depends on the three parameters α, r and n).

4.1. Carlitz theory. Throughout Section 4 we fix a positive integer r . Recall the
Carlitz Fpr [t]-module, denoted by Cr , which is given by the Fpr -linear ring homo-
morphism

Cr = (t 7→ (x 7→ θx + x pr
)) : Fpr [t] → EndFpr (Ga).

Note that when we regard Cr as a Drinfeld Fp[t]-module, it is of rank r [Goss
1996; Thakur 2004]. One has the Carlitz exponential associated to Cr :

expCr
(z) :=

∞∑
i=0

z pri

Dri
.

Here we set

Dr0 := 1, Dri :=

i−1∏
j=0

(θ pri
− θ pr j

), i ≥ 1.

Now expCr
(z) is an entire power series in z satisfying the functional equation

expCr
(θ z)= θ expCr

(z)+ expCr
(z)pr

.

Moreover one has the product expansion

expCr
(z)= z

∏
06=a∈Fpr [θ ]

(
1− z

aπ̃r

)
,

where

π̃r = θ(−θ)
1/(pr

−1)
∞∏

i=1

(
1− θ1−pri )−1
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is a fundamental period of Cr . We fix once and for all a choice of (−θ)1/(p
r
−1)

so that π̃r is a well-defined element in Fp((1/θ)). We also choose these roots in a
compatible way so that when r divides r ′, the number (−θ)1/(p

r
−1) is a power of

(−θ)1/(p
r ′
−1).

The formal inverse of Carlitz exponential is the Carlitz logarithm. It is the power
series

logCr
(z)=

∞∑
i=0

z pri

Lri
,

where

Lr0 := 1, Lri :=

i∏
j=1

(θ − θ pr j
).

As a function in z, logCr
(z) converges for all z ∈ C∞ with |z|∞ < |θ |

pr/(pr
−1)

∞ . It
satisfies the functional equation

θ logCr
(z)= logCr

(θ z)+ logCr
(z pr

)

whenever the values in question are defined.
For a positive integer n, the n-th Carlitz polylogarithm associated to Cr is the

series

Plogrn(z) :=
∞∑

i=0

z pri

Ln
ri
, (7)

which converges ∞-adically for all z ∈ C∞ with |z|∞ < |θ |
npr/(pr

−1)
∞ . Its value

at a particular z = α 6= 0 is called the n-th polylogarithm of α associated to Cr .
In transcendence theory we are interested in those polylogarithms of α ∈ k̄×, as
analogous to classical logarithms of algebraic numbers.

4.2. Algebraic independence of special functions. For any positive integer r , let

�r (t) := (−θ)−pr/(pr
−1)

∞∏
i=1

(
1− t

θ pri

)
∈ k∞[[t]] ⊆ C∞((t)).

�r ∈ E, since |θ pri
|∞→∞. Furthermore, �r satisfies the functional equation

�(−r)
r (t)= (t − θ)�r (t), (8)

and its specialization at t = θ gives �r (θ)=−1/π̃r .

By (8), the function �r provides a rigid analytic trivialization of the Carlitz
motive Cr of level r that has the GP property (see Theorem 2.2.3). This is the
pre-t-motive with underlying space k̄(t) itself and σ r acts by σ r f = (t − θ) f (−r)

for f ∈ Cr .
For any d ∈ N, we let ` := lcm(1, . . . , d) and `r := `/r for r = 1, . . . , d.

We let C(`r )
r be the `r -th derived pre-t-motive of Cr that is a rigid analytically
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trivial pre-t-motive of level ` (see Section 2.2). Then we define the direct sum
M = Md :=

⊕d
r=1 C(`r )

r . By Corollary 2.2.4, M also has the GP property. We
note that the canonical rigid analytical trivialization of M is the diagonal matrix
9 ∈Matd(E)∩GLd(L) with diagonal entries �1, . . . , �d .

Lemma 4.2.1. Given any positive integer d ≥ 2, we let ` := lcm(1, . . . , d). Let
M = Md be the rigid analytically trivial pre-t-motive of level ` with rigid ana-
lytic trivialization 9 defined as above. Then we have dim09 = d. In particular,
the functions �1, . . . , �d are algebraically independent over k̄(t) and the values
π̃1, . . . , π̃d are algebraically independent over k̄.

Proof. Suppose dim09 < d . Since 9 is a diagonal matrix with diagonal entries
�1, . . . , �d , by (3) we have that 09 ⊆ T, where T is the split torus of dimension
d in GLd /Fp`(t). We let X1, . . . , Xd be the coordinates of T and χ j the character
of T that projects the j-th diagonal position to Gm . Note that {χ j }

d
j=1 generates

the character group of T. Hence 09 is the kernel of some characters of T, that is,
canonical generators of the defining ideal for09 can be of the form Xm1

1 · · · X
md
d −1

for some integers m1, . . . ,md , not all zero. By (3) we have that

(�
−m1
1 . . . �

−md
d )⊗ (�

m1
1 . . . �

md
d )= 1 ∈ L⊗k̄(t) L,

and hence
β :=�

m1
1 . . . �

md
d ∈ k̄(t)×. (9)

We recall that�r has zeros on {θ pr j
}
∞

j=1. Since β ∈ k̄(t)×, it has only finitely many
zeros and poles, and hence ordt=θ ph (β)= 0 for h� 0. Choose a prime number p′

sufficiently large that

• p′ > d , and

• the order of vanishing of β at t = θ p p′

is zero.

These conditions imply that m1= 0 from (9). Iterating this argument, we conclude
that m1 = · · · = md = 0, a contradiction. �

4.3. Algebraic independence of polylogarithms. Given n ∈ N and α ∈ k̄× with
|α|∞ < |θ |

npr/(pr
−1)

∞ , we consider the power series

Lα,rn(t) := α+
∞∑

i=1

α pri

(t−θ pr
)n · · · (t−θ pri

)n
,

which as a function on C∞ converges on |t |∞ < |θ |
pr

∞. We note that Lα,rn(θ) is
exactly the n-th polylogarithm of α associated to Cr , that is,

Lα,rn(θ)= Plogrn(α).
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Given a collection of such numbers α, say α1, . . . , αm , we define

8rn(α1, . . . , αm) :=


(t − θ)n 0 · · · 0

α
(−r)
1 (t − θ)n 1 · · · 0

...
...
. . .

...

α
(−r)
m (t − θ)n 0 · · · 1

 ∈ GLm+1(k̄(t))∩Matm+1(k̄[t])

and

9rn(α1, . . . , αm) :=


�n

r 0 · · · 0
�n

r Lα1,rn 1 · · · 0
...

...
. . .

...

�n
r Lαm ,rn 0 · · · 1

 ∈ GLm+1(L)∩Matm+1(E).

Then one has [Chang and Yu 2007, §3.1.2]

9rn(α1, . . . , αm)
(−r)
=8rn(α1, . . . , αm)9rn(α1, . . . , αm). (10)

Hence, 8rn(α1, . . . , αm) defines a rigid analytically trivial pre-t-motive of level r
that has the GP property.

In [Chang and Yu 2007], we followed Papanikolas’ methods to generalize the
algebraic independence of Carlitz logarithms to algebraic independence of poly-
logarithms. Precisely, by [Chang and Yu 2007, Theorem 3.1] and Theorem 2.2.3
we have:

Theorem 4.3.1. Given any positive integers r and n, let α1, . . . , αm ∈ k̄× satisfy
|αi |∞ < |θ |

npr/(pr
−1)

∞ for i = 1, . . . ,m. Then

dimFpr (θ) Nrn = tr. degk̄ k̄(π̃n
r , Lα1,rn(θ), . . . , Lαm ,rn(θ))

= tr. degk̄(t) k̄(t)(�n
r , Lα1,rn, . . . , Lαm ,rn),

where
Nrn := Fpr (θ)- Span{π̃n

r , Lα1,rn(θ), . . . , Lαm ,rn(θ)}.

4.4. Formulas for zeta values.

4.4.1. Euler–Carlitz relations. Fix a positive integer r for this subsection. Carlitz
[1935] introduced the power sum

ζr (n) :=
∑

a∈Fpr [θ ]

a monic

1
an ∈ Fp((1/θ)) (n a positive integer),

which are the Carlitz zeta values associated to Fpr [θ ].
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Writing down a pr -adic expansion
∑

i nri pri of n, we let

0r(n+1) :=

∞∏
i=0

Dnri
ri .

We call 0r(n+1) the Carlitz factorials associated to Fpr [θ ]. The Bernoulli–Carlitz
numbers Brn in Fp(θ) are given by the following expansions from the Carlitz ex-
ponential series

z
expCr

(z)
=

∞∑
n=0

Brn
0r(n+1)

zn.

We state the Euler–Carlitz relations:

Theorem 4.4.2 [Carlitz 1935]. For all positive integers n divisible by pr
− 1, one

has
ζr (n)=

Brn
0r(n+1)

π̃n
r . (11)

We call a positive integer n (p, r)-even if it is divisible by pr
−1; otherwise we

call it (p, r)-odd. Thus, when p = 2 and r = 1, all positive integers are even.

4.4.3. The Anderson–Thakur formula. Anderson and Thakur [1990] introduced
the n-th tensor power of the Carlitz Fpr [t]-module Cr , and they related ζr (n) to
the last coordinate of the logarithm associated to the n-th tensor power of Cr for
each positive integer n. More precisely, they interpreted ζr (n) as Fpr (θ)-linear
combinations of n-th Carlitz polylogarithms of algebraic numbers:

Theorem 4.4.4 [Anderson and Thakur 1990]. Given any positive integers r and n,
one can find a sequence h0,rn, . . . , hlrn,rn ∈ Fpr (θ), lrn < npr/(pr

− 1), such that

ζr (n)=
lrn∑

i=0

hi,rn Plogrn(θ
i ), (12)

where Plogrn(z) is defined as in (7). In the special case of n ≤ pr
− 1,

ζr (n)= Plogrn(1).

Definition 4.4.5. Given any positive integer r , for each n ∈ N, (pr
− 1) - n, with

lrn as given by (12), we fix a finite subset

{α0,rn, . . . , αmrn,rn} ⊆ {1, θ, . . . , θ lrn }

such that

{π̃n
r ,L0,rn(θ), . . . ,Lmrn,rn(θ)} and {π̃n

r , ζr (n),L1,rn(θ), . . . ,Lmrn,rn(θ)}

are Fpr (θ)-bases for Nrn , where L j,rn(t) := Lα j ,rn(t) for j = 0, . . . ,mrn . This can
be done because of (12) (see [Chang and Yu 2007, § 4.1]), and note that mrn + 2
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is the dimension of Nrn over Fpr (θ). In the case of p = 2 and r = 1, the Fp(θ)-
dimension of N11 is 1 and we set m11 := −1.

Definition 4.4.6. Given any positive integers s and d with d≥2, for each 1≤r ≤d,
we define{

Ur (s)= {1} if p = 2 and r = 1;
Ur (s)= {1≤ n ≤ s; p - n, (pr

− 1) - n} otherwise.

For each n ∈Ur (s), we define that if p = 2 and r = 1,

8rn := (t − θ) ∈ GL1(k̄(t)),

9rn :=�1 ∈ GL1(L),

otherwise
8rn :=8rn(α0,rn, . . . , αmrn,rn) ∈ GL(mrn+2)(k̄(t)),

9rn :=9rn(α0,rn, . . . , αmrn,rn) ∈ GL(mrn+2)(L).

By Theorem 4.3.1, we have that

dim09rn = tr. degk̄(t) k̄(t)(9rn)= mrn + 2.

Put8r :=
⊕

n∈Ur (s)8rn; then8r defines a rigid analytically trivial pre-t-motive
Mr of level r with rigid analytic trivialization9r :=

⊕
n∈Ur (s)9rn (see (10)). Also,

Mr is of type SV, and by Theorem 2.2.3, Mr has the GP property. The main
theorem of [Chang and Yu 2007] is the following:

Theorem 4.4.7 [Chang and Yu 2007, Theorem 4.5]. For any positive integers s
and r , the Galois group 0Mr over Fpr (t) is full, that is,

dim0Mr = 1+
∑

n∈Ur (s)

(mrn + 1).

4.5. Proof of Theorem 1.2.1. Given any integer d ≥ 2, we put ` := lcm(1, . . . , d)
and `r := `/r for r = 1, . . . , d . For each 1 ≤ r ≤ d, let Mr := M (`r )

r be the `r -th
derived pre-t-motive of Mr defined as above. Note that Mr is a rigid analytically
trivial pre-t-motive of level ` that is still of type SV. By Proposition 2.2.2, each Mr

has the GP property, and by Theorem 4.4.7, its Galois group 0Mr is full. Further,
for each 1 ≤ r ≤ d any diagonal of Mr has canonical rigid analytic trivialization
given by �n

r for some n ∈ Ur (s), and hence its Galois group is Gm because �r is
transcendental over k̄(t).

Since by Lemma 4.2.1 the functions �1, . . . , �d are algebraically independent
over k̄(t), particularly the Galois group of Ni⊕N j is a two-dimensional torus over
Fp`(t) for any diagonal Ni (resp. N j ) of Mi (resp. M j ) with i 6= j , 1≤ i, j ≤ d . Put
M :=

⊕d
r=1 Mr , and note that M has the GP property by Corollary 2.2.4. Applying

Theorem 3.2.2 to this situation, we obtain the explicit dimension of 0M:
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Theorem 4.5.1. Given any positive integers s and d with d ≥ 2, let M be defined
as above. Then the Galois group 0M is full, that is,

dim0M = d +
d∑

r=1

(mrn + 1).

As a consequence, we completely determine all the algebraic relations among
the families of Carlitz zeta values:

Corollary 4.5.2. Given any positive integers d and s, the transcendence degree of
the field

k̄
( d⋃

r=1
{π̃r , ζr (1), . . . , ζr (s)}

)
over k̄ is

d∑
r=1

(
s−

⌊
s
p

⌋
−

⌊
s

pr − 1

⌋
+

⌊
s

p(pr − 1)

⌋
+ 1

)
.

Proof. We may assume d ≥ 2, since the case d = 1 is already given in [Chang and
Yu 2007, Corollary 4.6]. For 1≤ r ≤ d , let{

V1(s) :=∅ if p = 2;
Vr (s) :=Ur (s) otherwise.

Since M has the GP property, by Theorem 4.5.1 we see that the elements of the set

{�1(θ), . . . , �d(θ)} ∪
( d⋃

r=1

⋃
n∈Vr (s)

{L0,rn(θ), . . . ,Lmrn,rn(θ)}
)

(13)

are algebraically independent over k̄. In particular, by Definition 4.4.5, we have
that

{π̃1, . . . , π̃d} ∪

( d⋃
r=1

⋃
n∈Vr (s)

{ζr (n)}
)

is an algebraically independent set over k̄. Counting the cardinality of Vr (s) for
each 1≤ r ≤ d , we complete the proof. �
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