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On the Hom-form of Grothendieck’s
birational anabelian conjecture

in positive characteristic
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We prove that a certain class of open homomorphisms between Galois groups of
function fields of curves over finite fields arises from embeddings between the
function fields.
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Introduction

Let K be an infinite field that is finitely generated over its prime field. Let K be
an algebraic closure of K . We denote by K sep the separable closure, and by K perf

the perfection, of K in K . Let GK
def
= Gal(K sep/K ) be the absolute Galois group

of K . (Observe that GK = GK perf .) The ultimate aim of Grothendieck’s birational
anabelian conjectures is to reconstruct the field structure of K from the topological
group structure of GK . More precisely, these conjectures can be formulated as
follows.

Saïdi was holding an EPSRC advanced research fellowship GR/R75861/02 during the preparation of
this paper, and would very much like to thank EPSRC for its support.
MSC2010: primary 14G15; secondary 14H25, 14H30, 11G20.
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132 Mohamed Saïdi and Akio Tamagawa

Birational anabelian conjectures. There exists a group-theoretic recipe for re-
covering finitely generated infinite fields (or their perfections) from their absolute
Galois groups GK . In particular, if for such fields K and L one has GK

∼
→ GL , then

Lperf ∼
→ K perf. Moreover, given two such fields K and L , one has the following.

Isom-form. Every isomorphism σ : GK
∼
→ GL is defined by a field isomorphism

γ : L ∼
→ K . This isomorphism is unique if the characteristic is 0, and unique

up to Frobenius twists if the characteristic is positive. In particular, γ induces an
isomorphism Lperf ∼

→ K perf.

Hom-form. Every open homomorphism σ : GK → GL is defined by a field em-
bedding γ : L ↪→ K . This embedding is unique if the characteristic is 0, and unique
up to Frobenius twists if the characteristic is positive. In particular, γ induces a
field embedding Lperf ↪→ K perf.

Thus, the Hom-form is stronger than the Isom-form. The first results concerning
these conjectures were obtained by Neukirch and Uchida in the case of global
fields.

Theorem (Neukirch, Uchida). Let K and L be global fields. Then the natural map

Isom(L , K )→ Isom(GK ,GL)/ Inn(GL)

is a bijection.

More precisely, this is due to Neukirch [1969a; 1969b] and Uchida [1976] for
number fields, and due to Uchida [1977] for function fields of curves over finite
fields. Later, Pop generalized their results to the case of finitely generated fields
of higher transcendence degree ([Pop 1994; 2002]; see also [Szamuely 2004] for
a survey on Pop’s results).

In characteristic 0, Mochizuki proved the following relative version of the Hom-
form of the birational conjectures.

Theorem [Mochizuki 1999]. Let K and L be two finitely generated, regular ex-
tensions of a field k. Assume that k is a sub-p-adic field (that is, k can be embedded
in a finitely generated extension of Qp) for some prime number p. Then the natural
map

Homk(L , K )→ Homopen
Gk

(GK ,GL)/ Inn(Ker(GL → Gk))

is a bijection. Here, Homk denotes the set of k-embeddings, and Homopen
Gk

denotes
the set of open Gk-homomorphisms.

However, almost nothing is known about the absolute version (that is, not rel-
ative with respect to a fixed base field k) of the Hom-form, except for Uchida’s
result [1981] for K =Q and [L :Q]<∞.

A major obstacle in proving the Hom-form of the birational anabelian conjec-
tures is that one of the main common ingredients in the proofs of Neukirch, Uchida,
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and Pop, which is the so-called local theory (or Galois characterization of the
decomposition subgroups), and which is used in order to establish a one-to-one
correspondence between divisorial valuations, is not available in the case of open
homomorphisms between Galois groups. More precisely, the main result of local
theory available so far, Proposition 1.5, gives very little information on the image of
the decomposition subgroups in this case, though one can still prove some partial
results (Proposition 2.2, Lemmas 2.6 and 2.9). It seems quite difficult, for the
moment, to establish a satisfactory local theory that is suitable to the Hom-form of
the above conjecture. Also, the methods used in the proof of Mochizuki’s theorem
above are quite different, and do not rely on local theory. Instead, Mochizuki
proves his result as an application of his fundamental anabelian result that relative
open homomorphisms between arithmetic fundamental groups of curves over sub-
p-adic fields arise from morphisms between corresponding curves, the proof of
which relies on p-adic Hodge theory. It is not clear how to adapt Mochizuki’s
method to the case of positive characteristics.

In this paper we investigate the Hom-form of the birational anabelian conjectures
for function fields of curves over finite fields. For i = 1, 2, let ki be a finite field.
Let X i be a proper, smooth, geometrically connected algebraic curve over ki . Let
Ki be the function field of X i and fix an algebraic closure K i of Ki . Let K sep

i and
K perf

i be the separable closure and the perfection of Ki in K i , and ki the algebraic
closure of ki in K i . Write Gi

def
= G Ki

def
= Gal(K sep

i /Ki ) for the absolute Galois
group of Ki , and Gki

def
= Gal(ki/ki ) for the absolute Galois group of ki . We have

the natural exact sequence of profinite groups

1→ Gi → Gi
pri
→ Gki → 1,

where Gi is the absolute Galois group Gal(K sep
i /Ki ki ) of Ki ki , and pri is the

canonical projection.
Further, let pi be the characteristic of ki , and let G

p′i
i be the maximal prime-to-

pi quotient of Gi . The push-forward of this sequence with respect to the natural
surjection Gi → G

p′i
i gives rise to the natural exact sequence

1→ G
p′i
i → G

(p′i )
i

pri
→ Gki → 1.

Set Gi
def
= Gi , i = 1, 2 (which we call the profinite case) or Gi

def
= G

(p′i )
i , i = 1, 2

(the prime-to-characteristic case). We investigate two classes of continuous, open
homomorphisms — rigid and proper homomorphisms — between G1 and G2.

First, we investigate a class of continuous, open homomorphisms σ :G1→G2,
which we call rigid. More precisely, we say that σ is strictly rigid if the image of
each decomposition subgroup of G1 coincides with a decomposition subgroup of
G2, and we say that σ is rigid if there exist open subgroups H1⊂G1, H2⊂G2, such
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that σ(H1) ⊂ H2 and that H1
σ
→ H2 is strictly rigid. Thus, isomorphisms between

G1 and G2 are (strictly) rigid by the main result of local theory for the Isom-form.
Let Hom(G1,G2)

rig be the set of rigid homomorphisms between G1 and G2.
We say that a homomorphism γ : K2→ K1 of fields (which defines an extension

K1/K2 of fields) is admissible if the extension K1/K2 appears in the extensions
of K2 corresponding to the open subgroups of G2. An equivalent condition in the
profinite case is that the extension K1/K2 is finite separable; and in the prime-
to-characteristic case, that the extension K1/K2 is finite separable and the Galois
closure of the extension K1k1/K2k2 is of degree prime to p def

= p1= p2. We define
Hom(K2, K1)

adm
⊂ Hom(K2, K1) to be the set of admissible homomorphisms

K2→ K1.
Now, our first main result is the following (see Theorem 3.4).

Theorem A. The natural map Hom(K2, K1)→ Hom(G1,G2)/ Inn(G2) induces
a bijection

Hom(K2, K1)
adm ∼
→ Hom(G1,G2)

rig/ Inn(G2).

Our method of proving Theorem A is as follows. First, we prove, using a cer-
tain weight argument based on the Weil conjecture for curves, that a strictly rigid
homomorphism σ : G1→ G2 induces a bijection 6X1

∼
→6X2 between the set of

closed points of X1 and X2 (see Lemma 3.8). With this we can reduce the Hom-
form in this case to the Isom-form, which has been established in [Uchida 1977]
(profinite case) and [Saïdi and Tamagawa 2009] (prime-to-characteristic case).

Next we consider a class of continuous, open homomorphisms σ : G1 → G2,
which we call proper. These are homomorphisms with the property that the im-
age of each decomposition subgroup of G1 coincides with an open subgroup of
a decomposition subgroup of G2, such that each decomposition subgroup of G2

contains images of only finitely many conjugacy classes of decomposition sub-
groups of G1. We also consider a certain rigidity condition, which we call inertia-
rigidity, on the various identifications between the modules of the roots of unity
(Definition 4.5). Unfortunately, we are not able to prove that this condition auto-
matically holds for proper homomorphisms. Let Hom(G1,G2)

pr,inrig be the set of
proper and inertia-rigid homomorphisms between G1 and G2. Our second main
result is the following (see Theorem 4.8).

Theorem B. The natural map Hom(K2, K1)→ Hom(G1,G2)/ Inn(G2) induces
a bijection

Hom(K2, K1)
sep ∼
→ Hom(G1,G2)

pr,inrig/ Inn(G2).

Here, we define Hom(K2, K1)
sep
⊂Hom(K2, K1) to be the set of separable homo-

morphisms K2→ K1.

To prove Theorem B, we first show, using a weight argument, that a homomor-
phism σ :G1→G2 as above induces a surjective map6X1→6X2 between the sets
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of closed points of X1 and X2, which has finite fibers (Lemma 2.9). Second, using
Kummer theory, we reconstruct functorially an embedding K×2 ↪→ (K perf

1 )× be-
tween multiplicative groups (Lemma 4.13). Finally, we show that this embedding
K×2 ↪→ (K perf

1 )× is additive.

Recovering the additive structure is one of the main steps in the proof. This
problem was treated by Uchida in the case of a bijective identification K×2

∼
→ K×1

between multiplicative groups, which is order-preserving and value-preserving. In
fact, one needs only to restore the additivity between constants. For this one has to
show identities of the form γ ( f2+ 1) = γ ( f2)+ 1 for some specific nonconstant
function f2 ∈ K2. Uchida succeeded in his case by choosing f2 to be a function
with a minimal pole divisor (he called such a function a minimal element.) His
argument fails in the case of an embedding between multiplicative groups that is
not surjective, because the image of a minimal element is not necessarily minimal in
this case. Roughly speaking, we extend his arguments by using, instead, a function
that has a unique pole. This one-pole argument turns out to be very efficient, and
leads to the recovery of the additive structure under quite general assumptions
(Proposition 5.3).

Although rigid homomorphisms are a special case of proper homomorphisms,
we choose to treat them separately for several reasons. First, the important condi-
tion of inertia-rigidity is automatically satisfied in the case of rigid homomorphisms
(Remark 4.9(i)). Second, in the case of (strictly) rigid homomorphisms we can
reduce directly to the Isom-form, the proof of which can be based on class field
theory. This is not possible for proper homomorphisms, in general. In fact, in the
case of proper homomorphisms, class field theory reconstructs only the norm map
between the multiplicative groups of function fields.

This paper is organized as follows. In Section 1, we review well-known facts
concerning Galois theory of function fields of curves over finite fields, including
the main results of local theory. In Section 2, we investigate some basic properties
of homomorphisms between absolute Galois groups of function fields of curves
over finite fields, as well as homomorphisms between decomposition subgroups.
In Section 3, we investigate rigid homomorphisms between (geometrically prime-
to-characteristic quotients of) absolute Galois groups, and prove Theorem A. In
Section 4, we investigate proper homomorphisms between (geometrically prime-
to-characteristic quotients of) absolute Galois groups, and prove Theorem B. In
Section 5, we investigate the problem of recovering the additive structure of func-
tion fields. Using the above one-pole argument, we prove Proposition 5.3, which
is used in the proof of Theorem B in Section 4.

We hope very much that this paper is a first step towards proving the Hom-form
of Grothendieck’s anabelian conjecture concerning arithmetic fundamental groups
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of hyperbolic curves over finite fields, whose Isom-form was proven by Tamagawa
[1997] for affine curves and Mochizuki [2007] for proper curves.

1. Generalities on Galois groups of function fields of curves

1A. Notations on profinite groups and fields. Let C be a full class of finite groups
(C is closed under taking subgroups, quotients, finite products, and extensions).
For a profinite group H , denote by H C the maximal pro-C quotient of H , and set
H (C) def
= H/Ker(H � H C), where H is a closed normal subgroup of H . Note that

H (C) coincides with H C if and only if the quotient A def
= H/H is a pro-C group.

By definition, we have the commutative diagram

1 � H � H � A � 1

1 � H C
g
� H (C)
g

� A

id
g

� 1,

where the rows are exact and the columns are surjective.
If l is a prime number, we write H l and H (l) instead of H C and H (C) when C is

the class of finite l-groups, and we write H l ′ and H (l ′) when C is the class of finite
l ′-groups (finite groups of order prime to l).

For a profinite group H , we write H ab for the maximal abelian quotient of H ;
Sub(H) for the set of closed subgroups of H ; Aut(H) for the group of (continuous)
automorphisms of H ; and Inn(H) for the group of inner automorphisms of H .

For a profinite group H and a prime number l, denote by cd(H) and cd l(H)
the cohomological and l-cohomological dimensions of H . It is well-known that if
cd(H) <∞, then H is torsion-free.

Let κ be a field and κsep a separable closure of κ . Denote the absolute Galois
group Gal(κsep/κ) by Gκ . We write

Mκsep
def
= Hom(Q/Z, (κsep)×).

Thus, Mκsep is a free Ẑ†-module of rank one, where Ẑ† is defined as Ẑ if char κ = 0
and as Ẑp′ if char κ = p > 0. Further, Mκsep has a natural structure of Gκ -module,
which is isomorphic to the Tate twist Ẑ†(1); that is, Gκ acts on Mκsep via the
cyclotomic character χκ : Gκ→ (Ẑ†)×.

1B. Galois groups of local fields of positive characteristic. Let p be a prime num-
ber. Let L be a local field of characteristic p, that is, a complete discrete valuation
field of equal characteristic p, with finite residue field `. We denote the ring of
integers of L by OL . Also, fix a separable closure Lsep of L . We shall denote the
residue field of Lsep by ¯̀, since it is an algebraic closure of `. Note that ` and
¯̀ can also be regarded naturally as subfields of L and Lsep, respectively. Write
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D def
= Gal(Lsep/L) for the corresponding absolute Galois group of L , and define

the inertia group of L by

I def
= {γ ∈ D | γ acts trivially on ¯̀}.

We have a canonical exact sequence

1→ I → D→ G`
def
= Gal( ¯̀/`)→ 1,

and, for a full class C of finite groups, we get a canonical exact sequence

1→ I C
→ D(C)

→ G`→ 1.

The inertia subgroup I possesses a unique p-Sylow subgroup I w. The quotient
I t def
= I/I w is isomorphic to Ẑp′ , and is naturally identified with the Galois group

Gal(L t/Lur), where L t and Lur are the maximal tamely ramified and maximal un-
ramified extensions of L contained in Lsep. We have a natural exact sequence

1→ I t
→ Dt

→ G`→ 1,

where Dt def
= Gal(L t/L). (Observe that I t

= I p′ and Dt
= D(p′).) In particular, I t

has a natural structure of G`-module. Further, there exists a natural identification
I t ∼
→ M ¯̀ of G`-modules. These follow from well-known facts in ramification

theory. See [Serre 1968, chapitre IV] for more details.
Let l be a prime number. Denote by Dl an l-Sylow subgroup of D. Then the

intersection Il
def
= I ∩Dl is an l-Sylow subgroup of I . Thus, Ip = I w and, for l 6= p,

Il is isomorphic to Zl . The image G`,l of Dl in G` is the unique l-Sylow subgroup
of G` ' Ẑ, and hence G`,l ' Zl . We have a canonical exact sequence

1→ Il→ Dl→ G`,l→ 1.

In particular, Il has a natural structure of G`,l-module, and, if l 6= p, there exists a
natural identification Il

∼
→ M ¯̀,l of G`,l-modules, where M ¯̀,l stands for the l-Sylow

subgroup of the profinite abelian group M ¯̀.
It is well-known that cd l(D)= cd(Dl)= 2 for any prime number l 6= p, and that

cd p(D)= cd(Dp)= 1. Thus, cd(D)= 2<∞. In particular, D is torsion-free.

Proposition 1.1. Let D be a quotient of D, let I be the image of I in D, and let
G`

def
= D/I. For each prime number l, let Dl , Il and G`,l be the images of Dl , Il

and G`,l in D, I and G`, respectively, which are each l-Sylow subgroups of D, I

and G`, respectively. Let l be a prime number 6= p.

(i) One of the following cases occurs.

Case 0: cd l(D)= 0, Dl = {1}, Il = {1}, and G`,l = {1}.
Case 1: cd l(D)= 1, Dl ' G`, Il = {1}, and G`,l ' G`.
Case 2: cd l(D)= 2, Dl ' Dl , Il ' Il , and G`,l ' G`.



138 Mohamed Saïdi and Akio Tamagawa

Case∞: cd l(D)=∞, and Il is a finite group.

(ii) Assume that Case 2 occurs. Let D′ be an open subgroup of D, L ′ the (finite,
separable) extension of L corresponding to D′⊂D, and D′ the inverse image
of D′ in D. (Thus, D′ = GL ′ .) Then, for each finite l-primary D′-module M
and each k ≥ 0, one has H k(D′,M) ∼→ H k(D′,M).

Proof. (i) Since Il is a quotient of Il 'Zl , one of the following occurs: (a) Il ={1},
(b) Il ' Z/ lmZ for an integer m > 0, and (c) Il ' Zl . If (a), Dl is a quotient of
Dl/Il =G`'Zl . Thus, it is easy to see that one of Cases 0, 1, or∞ occurs. If (b),
Case∞ occurs. If (c), we have G`,l ' G`,l . This follows from the fact that Il is
isomorphic to M ¯̀,l on which G`,l acts via the l-adic cyclotomic character, and that
the l-adic cyclotomic charter χl : G`,l → Z×l is injective. Thus, it is easy to see
that Case 2 occurs.

(ii) Replacing L by L ′, we may assume that L ′= L . (Observe that Case 2 occurs
also for the quotient GL ′ = D′�D′.)

Denote by N the kernel of the surjection D�D. By the assumption that Case 2
occurs, Dl is injectively mapped into D, and hence Dl ∩ N , which is an l-Sylow
subgroup of N , is trivial. Since N is of order prime to l, we have H k(D,M) =
H k(D, H 0(N ,M))= H k(D,M), as desired. �

1C. Galois groups of function fields of curves. Let k be a finite field of charac-
teristic p > 0. Let X be a proper, smooth, geometrically connected curve over
k. Let K = K X be the function field of X and fix an algebraic closure K of
K . Write K sep and k = ksep for the separable closures of K and k in K . Write
G =GK

def
= Gal(K sep/K ) and Gk

def
= Gal(k/k) for the absolute Galois groups of K

and k, respectively. We have the exact sequence of profinite groups

1→ G→ G
pr
→ Gk→ 1, (1.1)

where G is the absolute Galois group G K k = Gal(K sep/K k) of K k, and pr is the
canonical projection. Here, it is well-known that the right term Gk is a profinite
free group of rank 1 that is (topologically) generated by the Frobenius element,
while the left term G is a profinite free group of countably infinite rank [Pop
1995; Harbater 1995]. However, the structure of the extension (1.1) itself is not
understood well. From (1.1) above, we also obtain the exact sequence

1→ GC
→ G(C) pr

→ Gk→ 1

for each full class C of finite groups.
In the rest of this section, let N be a closed normal subgroup of G and set

G
def
= G/N . Let K̃ denote the Galois extension of K corresponding to N, that is,

K̃ def
= (K sep)N. Let G be the image of G in G, and set Gk

def
= G/G, which is a

quotient of Gk .
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For a scheme T , denote by 6T the set of closed points of T . Write ˜̃X for
the integral closure of X in K sep. The absolute Galois group G acts naturally on
the set 6 ˜̃X , and the quotient 6 ˜̃X/G is naturally identified with 6X . For a point
˜̃x ∈6 ˜̃X , with residue field k( ˜̃x) (which is naturally identified with k), we define its
decomposition group D ˜̃x and inertia group I ˜̃x by

D ˜̃x
def
= {γ ∈ G | γ ( ˜̃x)= ˜̃x}

and
I ˜̃x

def
= {γ ∈ D ˜̃x | γ acts trivially on k( ˜̃x)},

respectively. We have a canonical exact sequence

1→ I ˜̃x → D ˜̃x → Gk(x)→ 1,

where x stands for the image of ˜̃x in 6X .
More generally, write X̃ for the integral closure of X in K̃ . The Galois group

G acts naturally on the set 6X̃ , and the quotient 6X̃/G is naturally identified with
6X . For a point x̃ ∈6X̃ , with residue field k(x̃) (which is naturally identified with
a subfield of k), we define its decomposition group Dx̃ and inertia group Ix̃ by

Dx̃
def
= {γ ∈G | γ (x̃)= x̃}

and
Ix̃

def
= {γ ∈Dx̃ | γ acts trivially on k(x̃)},

respectively. (For any g ∈ G, one has Dgx̃ = gDx̃ g−1 and Igx̃ = gIx̃ g−1.) Set
Gk(x)

def
= Dx̃/Ix̃ . Thus, if we take a point ˜̃x ∈ 6 ˜̃X above x̃ ∈ 6X̃ , then Dx̃ , Ix̃ ,

and Gk(x) are quotients of D ˜̃x , I ˜̃x and Gk(x), respectively, where x stands for the
image of ˜̃x in 6X . We have a canonical exact sequence

1→ Ix̃ →Dx̃ →Gk(x)→ 1.

For each closed subgroup H⊂G, denote by x̃H the image of x̃ in XH. Define

K̃ x̃
def
=

⋃
H⊂G

(KH)x̃H,

where H runs over all open subgroups of G, and (KH)x̃H means the x̃H-adic com-
pletion of KH

def
= (K̃ )H. Then the Galois group Gal(K̃ x̃/Kx) is naturally identified

with Dx̃ , where x def
= x̃G ∈6X .

In the rest of this subsection, we fix a prime number l 6= p, and make two
assumptions: (1) N l

= N , or, equivalently, K̃ admits no l-cyclic extension; and (2)
K̃ contains a primitive l-th root of unity.

Remark 1.2. Let C be a full class of finite groups.

(i) If Fl ∈ C, then the quotient G(C) of G satisfies these two assumptions.
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(ii) If Fl ∈ C and Gal(K (ζl)/K ) ∈ C, then the quotient GC of G satisfies these
two assumptions.

Lemma 1.3. Let x̃ ∈ 6X̃ and take ˜̃x ∈ 6 ˜̃X above x̃ . Let D ˜̃x,l be an l-Sylow sub-
group of D ˜̃x and Dx̃,l the image of D ˜̃x,l under the natural surjection D ˜̃x � Dx̃ ,
which is an l-Sylow subgroup of Dx̃ . Then the natural surjection D ˜̃x,l �Dx̃,l is
an isomorphism.

Proof. Take t ∈ K such that t is a uniformizer at x def
= x̃G ∈ 6X . Then by the

two assumptions (and by Kummer theory), any ln-th root t1/ ln
of t is contained in

K̃ . From this, it follows that I ˜̃x,l
def
= D ˜̃x,l ∩ I ˜̃x is injectively mapped into Dx̃ . Now,

applying Proposition 1.1(i) to the quotient G Kx = D ˜̃x�Dx̃ , we conclude that only
Case 2 from that proposition can occur, as desired. �

Lemma 1.4. Let G′ be an open subgroup of G, K ′ the (finite, separable) extension
of K corresponding to G′ ⊂ G, and G ′ the inverse image of G′ in G. (Thus,
G ′ = G K ′ .) Then, for each finite l-primary G′-module M and each k ≥ 0, one has
H k(G′,M) ∼→ H k(G ′,M).

Proof. Replacing K by K ′, we may assume that K ′ = K . (Observe that the two
assumptions also hold for the quotient G ′ def

= G K ′ �G′ = G ′/N .) By Lemma 1.3,
one has cd l(N )≤ 1. (See [Serre 1994, chapitre II, proposition 9], which only treats
the number field case but whose proof works as it is in our function field case.)
Next, by the assumption that N l

= N , one has H 1(N ,M) = Hom(N ,M) = 0.
Thus, we have H k(G,M)= H k(G, H 0(N ,M))= H k(G,M), as desired. �

Proposition 1.5 (Galois characterization of decomposition subgroups).
(i) Let x̃ 6= x̃ ′ be two elements of 6X̃ . Then Dx̃ ∩Dx̃ ′ is of order prime to l, and

hence, in particular, is open neither in Dx̃ nor in Dx̃ ′ .
(ii) Let Decl(G)⊂ Sub(G) be the set of closed subgroups D of G satisfying the

following property: There exists an open subgroup D0 of D such that for any open
subgroup D′ ⊂ D0, dimFl H 2(D′, Fl) = 1. Define Decmax

l (G) ⊂ Decl(G) to be
the set of maximal elements of Decl(G). Then the map 6X̃ → Sub(G), x̃ 7→ Dx̃

induces a bijection 6X̃
∼
→ Decmax

l (G), and, in particular, is injective.

Proof. (i) As in [Uchida 1977], this follows from the approximation theorem
[Neukirch 1969b, Lemma 8]. More precisely, let Dl be an l-Sylow subgroup of
Dx̃ ∩Dx̃ ′ , and suppose that Dl 6= 1. Since Dl ⊂ Dx̃,l is torsion-free, Dl is an
infinite group. Thus, one may replace G by any open subgroup, and assume that
ζl ∈ K , that the images x and x ′ in 6X of x̃ and x̃ ′ are distinct, and that the image
of Dl in Gab/(Gab)l is nontrivial. In particular, this implies that the natural map

Dab
x̃ /(D

ab
x̃ )

l
×Dab

x̃ ′ /(D
ab
x̃ ′ )

l
→Gab/(Gab)l
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is not injective. By Kummer theory, this last condition is equivalent to saying that
the natural map

K×/(K×)l→ K×x /(K
×

x )
l
× K×x ′ /(K

×

x ′ )
l

is not surjective. This contradicts the approximation theorem. (Note that (K×x )
l

and (K×x ′ )
l are open in K×x and K×x ′ , respectively.)

(ii) By Proposition 1.1(i) and Lemmas 1.3 and 1.4, the proof of Uchida [1977]
(which is essentially due to Neukirch, [1969a; 1969b]) works as it is. See [Uchida
1977, Lemmas 1–3] for more details. �

Remark 1.6. For other characterizations of decomposition groups — applicable
to much more general situations — see, for example, Theorem 1.16 of [Pop 1994],
Theorem 2 of [Koenigsmann 2003], or the results in [Engler and Koenigsmann
1998; Engler and Nogueira 1994].

1D. Fundamental groups of curves. Write

I def
= 〈I ˜̃x 〉 ˜̃x∈6 ˜̃X

for the closed subgroup of G generated by the inertia subgroups I ˜̃x for all ˜̃x ∈
6 ˜̃X

, and call it the inertia subgroup of G. Then I is normal in G. The quotient
G/I is canonically identified with the fundamental group π1(X) of X with base
point Spec(K )→ X [Grothendieck and Raynaud 1971]. We have a natural exact
sequence

1→ π1(X)→ π1(X)
pr
→ Gk→ 1,

where π1(X) is the fundamental group of X def
= X×kk with base point Spec(K )→ X

and pr is the canonical projection. We have the exact sequence

1→ π1(X)ab,tor
→ π1(X)ab pr

→ Gk→ 1,

where π1(X)ab,tor is the torsion subgroup of π1(X)ab, and pr is the canonical projec-
tion. Moreover, π1(X)ab,tor is a finite abelian group that is canonically isomorphic
to the group JX (k) of k-rational points of the Jacobian variety JX of X .

More generally, write I
def
= 〈Ix̃ 〉x̃∈6X̃

for the closed subgroup of G generated by
the inertia subgroups Ix̃ for all x̃ ∈6X̃ , and call it the inertia subgroup of G. Then
I is normal in G. Set 5X

def
= G/I, which is a quotient of π1(X). Define 5X to be

the image of π1(X) in 5X . Then we have a natural exact sequence

1→5X →5X
pr
→Gk→ 1.

When G= G(C) for a full class C of finite groups, we have 5X = π1(X)(C). In
this case, we have the exact sequence:

1→5
ab,tor
X →5ab

X
pr
→ Gk→ 1,
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where 5ab,tor
X is the torsion subgroup of 5ab

X . Moreover, 5ab,tor
X is a finite abelian

group that is canonically isomorphic to the maximal (pro-)C-quotient JX (k)C of
the finite group JX (k).

2. Basic properties of homomorphisms between Galois groups

In this section we investigate some basic properties of homomorphisms between
Galois groups of function fields of curves over finite fields. First, we shall inves-
tigate a class of homomorphisms between decomposition subgroups, which arise
naturally from the class of homomorphisms between (quotients of) Galois groups
that we consider in Sections 3 and 4.

2A. Homomorphisms between Galois groups of local fields of positive charac-
teristics. For i ∈{1, 2}, let pi >0 be a prime number. Let L i be a complete discrete
valuation field of equal characteristic pi , with finite residue field `i . Let OL i be the
ring of integers of L i . Also, fix a separable closure Lsep

i of L i . We shall denote the
residue field of Lsep

i by ¯̀i , since it is an algebraic closure of `i . Note that `i and
¯̀i can also be regarded naturally as subfields of L i and Lsep

i , respectively. Write
Di

def
= Gal(Lsep

i /L i ) for the corresponding absolute Galois group of L i , and call
Ii ⊂ Di the inertia subgroup. For each prime number l, let Di,l be an l-Sylow
subgroup of Di .

By local class field theory [Serre 1967], we have a natural isomorphism

(L×i )
∧ ∼
→ Dab

i ,

where (L×i )
∧ def
= lim
←−

n
L×i /(L

×

i )
n . In particular, Dab

i fits into an exact sequence

0→ O×L i
→ Dab

i → Ẑ→ 0

(arising from a similar exact sequence for (L×i )
∧), where O×L i

is the group of mul-
tiplicative units in OL i . Moreover, we obtain natural inclusions

`×i ×U 1
i = O×L i

⊂ L×i ↪→ Dab
i ,

where U 1
i is the group of principal units in O×L i

, and

L×i /O
×

L i

∼
→ Z ↪→ Dab

i / Im(O×L i
)

(where ∼→ is the isomorphism induced by the valuation), by considering the Frobe-
nius element.

Let Di be a quotient of Di , Ii the image of Ii in Di , and G`i

def
= Di/Ii . For each

prime number l, let Di,l be the image of Di,l in Di , which is an l-Sylow subgroup
of Di . Write

Im(`×i ), Im(U 1
i )⊂ Im(O×L i

)⊂ Im(L×i )⊂Dab
i
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for the images of `×i , U 1
i , O×L i

and L×i in Dab
i , respectively. In the rest of this

subsection, we assume that either Di = Di , i = 1, 2 or Di = Dt
i = D

(p′i )
i , i =

1, 2, and refer to the former and the latter cases as the profinite and the tame
cases, respectively. Thus, we have Dab

i = (L
×

i )
∧, Im(L×i ) = L×i , Im(O×L i

) = O×L i
,

Im(`×i ) = `
×

i and Im(U 1
i ) = U 1

i in the profinite case, and Dab
i = (L

×

i )
∧/U 1

i ,
Im(L×i )= L×i /U 1

i , Im(O×L i
)= O×L i

/U 1
i = Im(`×i )= `

×

i and Im(U 1
i )= {1} in the

tame case.
Let

τ :D1�D2

be a surjective homomorphism between profinite groups. Write τ ab
: Dab

1 � Dab
2

for the induced surjective homomorphism between the maximal abelian quotients.
For each prime number l, τ(D1,l) is an l-Sylow subgroup of D2, and we shall
assume that τ(D1,l)=D2,l .

Proposition 2.1 (invariants of arbitrary surjective homomorphisms between de-
composition groups). (i) The equality p1 = p2 holds. Set p

def
= p1 = p2.

(ii) Let l 6= p be a prime number. We have D1,l ∩Ker τ = {1}. In particular, Ker τ
is pro-p. In the tame case, τ is an isomorphism.

(iii) The homomorphism τ induces a natural bijection `×1
∼
→ `×2 between the mul-

tiplicative groups of residue fields. In particular, `1 and `2 have the same
cardinality.

(iv) τ induces naturally an isomorphism M ¯̀1
∼
→ M ¯̀2 , which is Galois-equivariant

with respect to τ . In particular, τ commutes with the cyclotomic characters
χi :Di → (Ẑp′)× of Di , that is, the following diagram is commutative:

(Ẑp′)× == (Ẑp′)×

D1

χ1

f

τ
� D2.

χ2

f

(v) We have τ(I1)= I2.

(vi) The homomorphism τ ab
: Dab

1 → Dab
2 preserves Im(L×i ), Im(O×L i

), Im(`×i )

and Im(U 1
i ). Further, the isomorphism Dab

1 /Im(O×L1
)→ Dab

2 /Im(O×L2
) in-

duced by τ preserves the respective Frobenius elements.

Proof. Property (i) follows by considering the q-Sylow subgroups of Di for var-
ious prime numbers q. Indeed, for i ∈ {1, 2}, Di,pi is not (topologically) finitely
generated (resp. is cyclic) in the profinite (resp. tame) case, while Di,l for a prime
number l 6= pi is (topologically) finitely generated and noncyclic. Accordingly,
the surjection D1,p2 � D2,p2 (resp. D1,p1 � D2,p1) cannot exist in the profinite
(resp. tame) case, unless p1 = p2. Thus, we must have p1 = p2.
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The first assertion of (ii) follows from Proposition 1.1(i), applied to the quotient
D1�D1

τ
�D2. The second assertion follows from the first. The third assertion

follows from the second, together with the fact (which can be checked easily) that
Dt

1 admits no nontrivial normal pro-p subgroup.
Next, we prove (iii). By local class field theory, the torsion subgroup Dab,tor

i
of Dab

i is naturally identified with `i
× (both in the profinite and the tame cases),

and hence, in particular, is finite of order prime to p. By (ii), the kernel of the
surjective homomorphism τ ab

:Dab
1 →Dab

2 is pro-p. Thus, τ ab induces a natural
isomorphism Dab,tor

1
∼
→ Dab,tor

2 , which is naturally identified with `×1
∼
→ `×2 , as

desired.
By applying the above argument to open subgroups of Di (which correspond to

each other via τ ), with i = 1, 2, and passing to the projective limit with respect to
the norm maps, we obtain a natural isomorphism M ¯̀1

∼
→ M ¯̀2 between the modules

of roots of unity. Here, we use the fact that if L ′i is a finite extension of L i cor-
responding to an open subgroup D′i of Di , then the following diagram commutes:

(L ′i
×
)∧ � D′i

ab

(L i
×)∧

Norm
g

� Dab
i ,

g

where the horizontal maps are the natural surjective homomorphisms from local
class field theory, and the map D′i

ab
→ Dab

i is induced by the natural inclusion
D′i ⊂ Di . Further, this identification is (by construction) Galois-compatible with
respect to the homomorphism τ . This completes the proof of (iv).

Property (v) follows from property (iv), since Ii coincides with the kernel of χi

for i = 1, 2.
Next, we prove (vi). First, τ ab preserves the image Im(O×L i

) by (v), since this
image coincides with the image of the inertia subgroup Ii . Since Im(`×i ) (resp.
Im(U 1

i )) is the maximal prime-to-p (resp. pro-p) subgroup of Im(O×L i
), property

(vi) for Im(`×i ) (resp. Im(U 1
i )) follows. Further, by (iii) and (iv), the homo-

morphism Dab
1 /Im(O×L1

)→ Dab
2 /Im(O×L2

) induced by τ preserves the respective
Frobenius elements, since such an element is characterized as the unique element
whose image under χi is ](`i ). Finally, since Im(L×i ) is the inverse image in Dab

i
of the subgroup generated by the Frobenius element in Dab

i /Im(O×L i
) for i = 1, 2,

they are preserved by τ ab. �

2B. Homomorphisms between Galois groups of function fields of curves over
finite fields. Next, we shall investigate some basic properties of homomorphisms
between Galois groups of function fields of curves over finite fields. We follow the
notations in Section 1, especially subsections 1A and 1B. Moreover:
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Notation. (i) For i ∈ {1, 2}, let ki be a finite field of characteristic pi > 0. Let X i

be a smooth, proper, geometrically connected curve of genus gi ≥ 0 over ki . Let
Ki = K X i be the function field of X i and fix an algebraic closure K i of Ki . Let
K sep

i be the separable closure of Ki in K i , and ki the algebraic closure of ki in K i .
Following the notations in Section 1, we will write Gi

def
= G Ki = Gal(K sep

i /Ki )

for the absolute Galois group of Ki , and Gi
def
= G Ki ki

= Gal(K sep
i /Ki ki ) for the

absolute Galois group of Ki ki .

(ii) Let Ni be a normal closed subgroup of Gi and set Gi
def
= Gi/Ni . Let K̃i

denote the Galois extension of Ki corresponding to Ni , that is, K̃i
def
= (K sep

i )Ni .
Let Gi be the image of Gi in Gi, and set Gki

def
= Gi/Gi , which is a quotient of

Gki =Gal(ki/ki ). For i = 1, 2, let us denote by ϕki the image in Gki of the ](ki )-th
power Frobenius element of Gki .

(iii) Write X̃ i for the integral closure of X i in K̃i . The Galois group Gi acts
naturally on the set 6X̃ i

, and the quotient 6X̃ i
/Gi is naturally identified with 6X i .

Denote the natural quotient map 6X̃ i
→6X i by qi . For a point x̃i ∈6X̃ i

, with
residue field ki (x̃i ) (which is naturally identified with a subfield of ki ), we define
its decomposition group Dx̃i and inertia group Ix̃i by

Dx̃i

def
= {γ ∈Gi | γ (x̃i )= x̃i }

and
Ix̃i

def
= {γ ∈Dx̃i | γ acts trivially on ki (x̃i )},

respectively. Set Gki (xi )
def
= Dx̃i /Ix̃i , where xi stands for the image of x̃i in 6X i .

Write Ii
def
= 〈Ix̃i 〉x̃i∈6X̃i

for the closed subgroup of Gi generated by the inertia
subgroups Ix̃i for all x̃i ∈ 6X̃ i

, and call it the inertia subgroup of Gi . Then Ii is
normal in Gi .

(iv) Let σ :G1→G2 be a continuous homomorphism between profinite groups.

Proposition 2.2 (image of a decomposition subgroup). Let l 6= p1, p2 be a prime
number, and assume that (1) N l

2 = N2, or, equivalently, K̃2 admits no l-cyclic
extension; and (2) K̃2 contains a primitive l-th root of unity. For each x̃1 ∈6X̃1

, fix
an l-Sylow subgroup Dx̃1,l of Dx̃1 and set Ix̃1,l

def
= Ix̃1 ∩Dx̃1,l , which is an l-Sylow

subgroup of Ix̃1 . Let 6X̃1,σ,l be the set of x̃1 ∈ 6X̃1
such that cd l(σ (Dx̃1)) = 2.

Then:

(i) There exists a unique map φ̃= φ̃σ,l :6X̃1,σ,l→6X̃2
such that σ(Dx̃1)⊂Dφ̃(x̃1)

for each x̃1 ∈6X̃1,σ,l .

(ii) For each x̃1 ∈6X̃1,σ,l , there exists an l-Sylow subgroup Dφ̃(x̃1),l of Dφ̃(x̃1)
such

that σ(Dx̃1,l)⊂Dφ̃(x̃1),l . Moreover, we have σ(Ix̃1,l)⊂ Iφ̃(x̃1),l , where we set

Iφ̃(x̃1),l
def
= Iφ̃(x̃1)

∩Dφ̃(x̃1),l,
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which is an l-Sylow subgroup of Iφ̃(x̃1)
.

(iii) The subset 6X̃1,σ,l ⊂6X̃1
is G1-stable, or, equivalently,

6X̃1,σ,l = q−1
1 (6X1,σ,l),

where 6X1,σ,l
def
= q1(6X̃1,σ,l). The map φ̃ is Galois-compatible with respect to

σ : we have
φ̃(g1 x̃1)= σ(g1)φ̃(x̃1)

for any x̃1 ∈ 6X̃1,σ,l and any g1 ∈ G1. In particular, φ̃ induces naturally a
map φ = φσ,l :6X1,σ,l→6X2 .

(iv) For any x̃1 ∈6X̃1
r6X̃1,σ,l , we have σ(Ix̃1,l)= {1}.

(v) For two primes l = l1, l2 satisfying the assumptions, φ̃σ,l1 and φ̃σ,l2 coincide
with each other on the intersection 6X̃1,σ,l1

∩6X̃1,σ,l2
.

Proof.

(i) Take x̃1 ∈ 6X̃1,σ,l . Applying Proposition 1.1(i)(ii) to D = σ(Dx̃1), we have
σ(Dx̃1) ∈Decl(G2) in the notation of the result in part (ii) of Proposition 1.5.
Thus, by this same result, there exists x̃2 ∈ 6X̃2

such that σ(Dx̃1) ⊂Dx̃2 . By
Proposition 1.5(i), such x̃2 is unique. So, set

φ̃(x̃1)= x̃2,

which has the desired properties.

(ii) The existence of Dφ̃(x̃1),l follows from the fact that σ(Dx̃1,l)⊂σ(Dx̃1)⊂Dφ̃(x̃1)

and that σ(Dx̃1,l) is pro-l. Finally, consider the composite map of

Dx̃1

σ
→Dφ̃(x̃1)

�Dφ̃(x̃1)
/Iφ̃(x̃1)

=Gk2(q2(φ̃(x̃1)))
.

Then, since cd l(Gk2(q2(φ̃(x̃1)))
)= 1, the image of Ix̃1,l in Gk2(q2(φ̃(x̃1)))

must be
trivial by Proposition 1.1(i), as desired.

(iii) Immediate from the definitions.

(iv) We have cd l(σ (Dx̃1))≤cd l(G2)≤2<∞, where the second inequality follows
from Lemma 1.4. Now, the assertion follows from Proposition 1.1(i).

(v) This follows from the fact that the defining property σ(Dx̃1)⊂Dφ̃(x̃1)
of φ̃ is

independent of l. �

We shall consider the following conditions:

Condition 1. Either Gi = Gi , i = 1, 2 or Gi = G
(p′i )
i , i = 1, 2. We refer to the

former and the latter cases as the profinite and the prime-to-characteristic cases,
respectively. (Observe that conditions (1) and (2) in Proposition 2.2 are then sat-
isfied for any prime number l 6= p1, p2.) In particular, we have Gki = Gki in both
cases.
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Condition 2. The map σ :G1→G2 commutes with the projections pr1, pr2, that
is, it inserts into the commutative diagram

1 � G1 � G1
pr1
� Gk1 � 1

1 � G2

σ̄g
� G2

σ
g pr2

� Gk2

σ0
g

� 1,

where the rows are exact.

Condition 3. The map σ :G1→G2 is an open homomorphism.

In the rest of this section, we assume that Condition 1 holds.

Lemma 2.3. In the prime-to-characteristic case, Condition 2 automatically holds.
In the profinite case, if σ(I1)⊆ I2, then Condition 2 holds.

Proof. In the prime-to-characteristic case, the quotient pri : Gi � Gki coincides
with Gab

i modulo the closure of the torsion subgroup. Thus, σ commutes with the
projections pr1, pr2.

In the profinite case, assume that σ(I1) ⊆ I2. Then σ induces naturally, by
passing to the quotients Gi/Ii , a homomorphism π1(X1)→ π1(X2) between fun-
damental groups. The quotient pri : Gi � π1(X i )� Gki coincides with π1(X i )

ab

modulo the torsion subgroup. Thus, σ commutes with the projections pr1, pr2. �

In the rest of this section, we assume, moreover, that Condition 3 holds. Then
note that, if Condition 2 also holds and if σ0 : Gk1 → Gk2 and σ̄ : G1 → G2 are
homomorphisms induced by σ , then automatically σ0 is open and injective and σ̄
is open.

Lemma 2.4 (invariance of the characteristics). The equality p1 = p2 holds.

Proof. By replacing G2 by the open subgroup σ(G1) ⊂ G2, we may and shall
assume that σ is surjective.

In the profinite case, the assertion follows by considering the (pro-)q-parts of
Gab

i for various prime numbers q. More precisely, for i ∈ {1, 2}, consider the
filtration Gab

i = F0
i ⊃ F1

i ⊃ F2
i , where F1

i is the image of Gi = Ker(Gi → Gki )

and F2
i is the image of Ker(Gi → π1(X i )). Then, by global class field theory,

F0
i /F1

i = Gki (' Ẑ), F1
i /F2

i = JX i (ki ) (finite), and

F2
i =

( ∏
xi∈6Xi

Ô×X i ,xi

)/
k×i ,

where Ô×X i ,xi
is the multiplicative group of the completed local ring of X i at xi .

Further, we have a natural decomposition Ô×X i ,xi
= k(xi )

×
×U 1

xi
, where k(xi )

× is
the multiplicative group of the residue field of X i at xi (and hence finite) and U 1

xi
is
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the group of principal units in Ô×X i ,xi
(and hence isomorphic to a direct product of

countably infinite copies of Zpi ). Therefore, the pi -part of Gab
i modulo the closure

of the torsion subgroup is not finitely generated, while the l-part of Gab
i modulo

the closure of the torsion subgroup, for a prime number l 6= pi , is finitely generated
(and even cyclic). (Note, however, that the l-torsion subgroup of Gab

i is infinite.)
Thus, G2 being a quotient of G1 (via σ ) we must have p1 = p2.

In the prime-to-characteristic case, the assertion follows by considering the q-
Sylow subgroups Gi,q of Gi for various prime numbers q . As σ is assumed to be
surjective, we may and shall take G2,q = σ(G1,q). Indeed, for i ∈ {1, 2}, Gi,pi

is cyclic, while Gi,l for a prime number l 6= pi is noncyclic. Accordingly, the
surjection G1,p1 �G2,p1 cannot exist, unless p1 = p2. Thus p1 = p2. �

So, from now on, set p def
= p1 = p2.

Remark 2.5. The same argument used in the proof of (the prime-to-characteristic
case of) Lemma 2.3 shows that an open homomorphism σ :G1→G2 between profi-
nite groups automatically commutes with the natural projections pr′i :Gi → G p′

ki
,

induced by pri , for i = 1, 2. Thus, we have the commutative diagram

G1
pr′1
� G p′

k1

G2

σ
g pr′2
� G p′

k2
,

σ ′0g

where the right column is automatically open and injective. The authors do not
know, at least at the time of writing, whether or not Condition 2 follows from
Conditions 1 and 3 in general (that is, even in the profinite case).

In the rest of this subsection we assume that Condition 2 holds.

Lemma 2.6. The map σ induces a natural open homomorphism σ ′ :G(p′)
1 →G(p′)

2 ,
which commutes with the canonical projections

G(p′)
i → Gki ; i = 1, 2.

For i = 1, 2, let I′i be the image of Ii ⊂ Gi in G(p′)
i . Then σ ′(I′1) ⊂ I′2. Thus, σ

induces a natural open homomorphism τ ′ : π1(X1)
(p′)
→ π1(X2)

(p′), which com-
mutes with the canonical projections π1(X i )

(p′)
→ Gki ; i = 1, 2. In particular, we

have g1 ≥ g2.

Proof. The first assertion is clear. The second follows from Proposition 2.2(ii)(iv).
The third assertion follows from the second. Now, τ ′ : π1(X1)

(p′)
→ π1(X2)

(p′)

induces an open homomorphism π1(X1)
p′
→ π1(X2)

p′ , and hence an open homo-
morphism π1(X1)

p′,ab
→ π1(X2)

p′,ab. Since π1(X i )
p′,ab is a free Ẑp′-module of

rank 2gi for i = 1, 2, this implies the last assertion. �
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Lemma 2.7. For a prime number l 6= p, the map φ=φσ,l :6X1,σ,l→6X2 is almost
surjective, that is, 6X2 r φ(6X1,σ,l) is finite. In particular, 6X1,σ,l is infinite (and
hence, a fortiori, nonempty).

Proof. Assume that the set S def
= 6X2 rφ(6X1,σ,l) is infinite. Set U2

def
= X2 r S.

As in (the third assertion of) Lemma 2.6, then σ induces an open homomor-
phism τ

(l)
1 : π1(X1)

(l)
→ π1(U2)

(l), which is a lifting of the homomorphism τ (l) :

π1(X1)
(l)
→ π1(X2)

(l) induced by τ ′ : π1(X1)
(p′)
→ π1(X2)

(p′). We have a com-
mutative diagram

1 � π1(X1)
l
� π1(X1)

(l) pr1
� Gk1 � 1

1 � π1(U 2)
l

τ̄ l
1g

� π1(U2)
(l)

τ
(l)
1 g

pr2
� Gk2

σ0
g

� 1,

where U 2
def
=U2×k2 k2. Since τ (l)1 :π1(X1)

(l)
→π1(U2)

(l) is open and σ0 :Gk1→Gk2

is (open and) injective, we see that τ̄ l
1 : π1(X1)

l
→ π1(U 2)

l is open. This is a
contradiction, since π1(X1)

l is (topologically) finitely generated, while π1(U 2)
l

(and hence τ̄ l
1(π1(X1)

l) also) is not (topologically) finitely generated, since S is
infinite. �

Lemma 2.8. Let σ0 : Gk1 → Gk2 be the (open, injective) homomorphism induced
by σ . Set d0

def
= [Gk2 : σ0(Gk1)].

(i) The following diagram is commutative:

(Ẑp′)× == (Ẑp′)×

Gk1

χk1

f

σ0
� Gk2

χk2

f

G1

pr1

f

σ
� G2,

pr2

f

where χki is the cyclotomic character of Gki for i = 1, 2.

(ii) We have ](k1)= ](k2)
d0 and σ0(ϕk1)= ϕ

d0
k2

.

Proof. (i) Since the bottom square is commutative by the definition of σ0, we
only have to prove that the top square is commutative. As Gk2 is (topologically)
generated by ϕk2 , we may write σ0(ϕk1) = ϕ

α
k2

, where α ∈ Ẑ. Now, the desired
commutativity χk2 ◦ σ0 = χk1 is equivalent to saying that χk2(σ0(ϕk1)) = χk1(ϕk1)

(as Gk1 is (topologically) generated by ϕk1). Since χk1(ϕk1)= ](k1)= p[k1:Fp] and

χk2(σ0(ϕk1))= χk2(ϕ
α
k2
)= χk2(ϕk2)

α
= ](k2)

α
= pα[k2:Fp],
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the desired commutativity is thus equivalent to the equality α[k2 : Fp] = [k1 : Fp]

in Ẑ. (The homomorphism Ẑ→ (Ẑp′)×, β 7→ pβ is injective by [Chevalley 1951,
théorème 1].) In particular, it suffices to prove the desired commutativity on an
open subgroup H ⊂ Gk1 . Indeed, set m def

= [Gk1 : H ]. Then, since ϕm
k1

is the
Frobenius element for H , the commutativity on H is equivalent to the equality
mα[k2 :Fp]=m[k1 :Fp] in Ẑ, which implies α[k2 :Fp]= [k1 :Fp], as desired. Thus,
by replacing G1 and G2 by suitable open subgroups, we may and shall assume that
g2 > 0.

Next, for each prime number l 6= p and i ∈ {1, 2}, let χki ,l :Gki →Z×l denote the
l-adic cyclotomic character. Thus, corresponding to the decomposition (Ẑp′)× =∏

l 6=p Z×l , we have χki = (χki ,l)l 6=p. We have to prove that χk2 ◦σ0 = χk1 , which is
equivalent to saying that χk2,l ◦ σ0 = χk1,l for all l 6= p.

We shall first prove that the last equality holds up to torsion. More precisely,
denote by χ̄ki ,l the composite of

Gki

χki ,l
→ Z×l � Z×l /(Z

×

l )
tor.

By Lemma 2.7, we can take x̃1 ∈ 6X̃1,σ,l 6= ∅. Set x̃2
def
= φ̃(x̃1). Let xi denote the

image of x̃i in 6X i for i = 1, 2. By Proposition 2.2(ii), we have σ :Dx̃1,l→Dx̃2,l

and σ : Ix̃1,l → Ix̃2,l , which are injective by Proposition 1.1(i). This implies that
χk2,l ◦σ0 = χk1,l holds on the image of Dx̃1,l in Gk1 , which is an open subgroup of
the l-Sylow subgroup Gk1,l of Gk1 . As Z×l /(Z

×

l )
tor
' Zl is torsion-free and pro-l,

this implies that χ̄k2,l ◦ σ0 = χ̄k1,l .
In particular, we have χ̄k2,l(σ0(ϕk1)) = χ̄k1,l(ϕk1). This implies the equality

](k2)
α
= ](k1) in Z×l /(Z

×

l )
tor
' Zl . Since p ∈ Z×l is not torsion, this last equality

shows that αl[k2 : Fp] = [k1 : Fp] in Zl . Here, corresponding to the decomposition
Ẑ=

∏
l: prime Zl , we write α = (αl)l: prime. Or, equivalently, we have

α[k2 : Fp] = [k1 : Fp] + ιp(ε)

in Ẑ, where ιp :Zp ↪→ Ẑ is the natural injection and ε def
= αp[k2 :Fp]−[k1 :Fp] ∈Zp.

On the other hand, by Lemma 2.6, we get an open homomorphism π1(X1)
p′
→

π1(X2)
p′ , and hence a surjection π1(X1)

p′,ab
⊗Z Q� π1(X2)

p′,ab
⊗Z Q, which is

Galois-compatible with respect to

σ0 : Gk1 → Gk2 .

For each i = 1, 2, let Pi (T ) be the characteristic polynomial of ϕ[ki ′ :Fp]

ki
on the free

Ẑp′-module π1(X i )
p′,ab (of rank 2gi ), where i ′ is defined by {i, i ′} = {1, 2}. Then

it is known that Pi (T ) ∈ Z[T ].
Write ρi for the natural representation Gki → Aut

Ẑp′ (π1(X i )
p′,ab). Let RQ be

the (commutative) Q-subalgebra of End
Ẑp′⊗ZQ

(π1(X2)
p′,ab
⊗Z Q) generated by
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ρ2(Gk2). We have
P2(ρ2(ϕ

[k1:Fp]

k2
))= 0

in RQ. By the Galois-compatibility, we also have

P1(ρ2(σ0(ϕ
[k2:Fp]

k1
)))= 0

in RQ. These identities imply that both of ρ2(ϕ
[k1:Fp]

k2
), ρ2(σ0(ϕ

[k2:Fp]

k2
)) ∈ RQ are

algebraic over Q, and hence so is the ratio

ρ2(σ0(ϕ
[k2:Fp]

k1
)(ϕ
[k1:Fp]

k2
)−1)= ρ2(ϕ

α[k2:Fp]−[k1:Fp]

k2
)= ρ2(ϕ

ιp(ε)

k2
)

def
= η

in RQ. So, take a monic polynomial Q(T ) ∈Q[T ] satisfying Q(η)= 0 in RQ. Set
b def
= deg(Q).
Let l 6= p be a prime number, and let Rl,Q be the image of RQ in

EndQl (π1(X2)
l,ab
⊗Z Q).

Then observe that the image ηl of η in Rl,Q ⊂ EndQl (π1(X2)
l,ab
⊗Z Q) is a pro-p

element of EndZl (π1(X2)
l,ab)×, and hence a torsion element of p-power order. So,

let pal be the order of ηl . As Q(ηl) = 0 in the commutative Q-algebra Rl,Q, we
conclude: ((p−1)/p)pal ≤ ϕ(pal )≤ b, where ϕ stands for Euler’s function. (Use
Q ↪→ Rl,Q, which follows from g2 > 0.) Thus, al is bounded: there exists a ≥ 0
such that al ≤ a for all l 6= p. Namely, (ηl)

pa
= 1 for all l 6= p.

Set ζl
def
= det(ηl), where the determinant is taken as an element of

EndQl (π1(X2)
l,ab
⊗Z Q).

Since det is a multiplicative homomorphism, we have (ζl)
pa
= 1 for all l 6= p. Set

ζ
def
= (ζl)l 6=p in (Ẑp′)× =

∏
l 6=p Z×l . Now, by construction, we have

ζ = χ
g2
k2
(ϕ
ιp(ε)

k2
)= ](k2)

g2ιp(ε),

and hence ](k2)
pa g2ιp(ε) = 1 in (Ẑp′)×. Since the homomorphism Ẑ → (Ẑp′)×,

β 7→ pβ is injective, this last equality forces [k2 : Fp]pag2ιp(ε) = 0 in Ẑ. As
[k2 : Fp]pag2 > 0, this implies ιp(ε) = 0. Namely, we have α[k2 : Fp] = [k1 : Fp]

in Ẑ, as desired.

(ii) As in the proof of (i), set σ0(ϕk1)=ϕ
α
k2

. Since Gk2 ' Ẑ and [Gk2 :σ0(Gk1)]=

d0, we must have α=d0u, where u ∈ Ẑ×. Now, since α[k2 :Fp]=[k1 :Fp] by (i), we
get d0u[k2 : Fp] = [k1 : Fp], and thus u = [k1 : Fp]/(d0[k2 : Fp])∈Q>0 (⊂ Ẑ⊗Z Q).
Since Ẑ× ∩ Q>0 = {1}, we conclude u = 1. Thus, d0[k2 : Fp] = [k1 : Fp] and
σ0(ϕk1)= ϕ

d0
k2

, as desired. �

Lemma 2.9. For each prime number l 6= p, the map φ̃σ,l : 6X̃1,σ,l → 6X̃2
is

surjective. In particular, the map φσ,l :6X1,σ,l→6X2 is surjective.
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Proof. As in the proof of Lemma 2.7, set

S def
= 6X2 rφ(6X1,σ,l) and U2

def
= X2 r S.

By Lemma 2.7, S is a finite set. Let r <∞ be the cardinality of S(k2). Then σ
induces an open homomorphism τ

(l)
1 : π1(X1)

(l)
→ π1(U2)

(l), which is a lifting
of the homomorphism τ (l) : π1(X1)

(l)
→ π1(X2)

(l) induced by τ ′ : π1(X1)
(p′)
→

π1(X2)
(p′) in Lemma 2.6. We have a commutative diagram

1 � π1(X1)
l
� π1(X1)

(l) pr1
� Gk1 � 1

1 � π1(U 2)
l

τ̄ l
1g

� π1(U2)
(l)

τ
(l)
1 g

pr2
� Gk2

σ0
g

� 1,

where U 2
def
=U2×k2 k2. Since τ (l)1 :π1(X1)

(l)
→π1(U2)

(l) is open and σ0 :Gk1→Gk2

is (open and) injective, we see that τ̄ l
1 : π1(X1)

l
→ π1(U 2)

l is open. The open
homomorphism τ̄ l

1 : π1(X1)
l
→ π1(U 2)

l induces an open homomorphism τ̄
l,ab
1 :

π1(X1)
l,ab
→ π1(U 2)

l,ab. This last homomorphism is, by construction, Galois-
compatible with respect to σ0 :Gk1→Gk2 . In other words, if we regard π1(U 2)

l,ab

as a Gk1-module via σ0, then τ̄ l,ab
1 is a homomorphism as Gk1-modules.

The absolute values of eigenvalues of ϕk1 ∈ Gk1 in π1(X1)
l,ab are all ](k1)

1/2,
with multiplicity 2g1. On the other hand, by Lemma 2.8(ii), the absolute values of
eigenvalues of ϕk1 in π1(U 2)

l,ab are the same as those of ϕd0
k2

, which are ](k2)
d0/2

with multiplicity 2g2 and ](k2)
d0 with multiplicity max(r−1, 0). By Lemma 2.8(i),

they coincide with ](k1)
1/2 and ](k1), respectively. Thus, we conclude r ≤ 1.

However, if r 6= 0, by replacing G1,G2 with suitable open subgroups, we may
assume that r > 1, a contradiction. So, we have established r = 0.

To prove the surjectivity of φ̃σ,l , we may freely replace G1,G2 by open sub-
groups H1,H2, respectively, such that σ(H1)⊂ H2. (Indeed, the map

φ̃σ,l :6X̃1,σ,l→6X̃2

remains unchanged.) In particular, we may assume that σ :G1→G2 is surjective.
Then the surjectivity of φ̃σ,l : 6X̃1,σ,l → 6X̃2

is equivalent to the surjectivity of
φσ,l :6X1,σ,l→6X2 , which is then equivalent to r = 0. �

3. Rigid homomorphisms between Galois groups

In this section we investigate a class of homomorphisms between (geometrically
prime-to-characteristic quotients of) absolute Galois groups of function fields of
curves over finite fields, which we call rigid. We follow the notations in Sections
1 and 2. In particular, we follow the Notation at the beginning of subsection 2B.
We assume that Condition 3 holds.
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Definition 3.1 (rigid homomorphisms). (i) We say that σ : G1→ G2 is strictly
rigid if there exists a map

φ̃ :6X̃1
→6X̃2

,

such that
σ(Dx̃1)=Dφ̃(x̃1)

for each x̃1 ∈6X̃1
.

(ii) We say that σ : G1 → G2 is rigid if there exist open subgroups H1 ⊂ G1,
H2 ⊂ G2, such that σ(H1) ⊂ H2 and that H1

σ
→ H2 is strictly rigid. (Here,

Hi is considered as a quotient of the absolute Galois group that is the inverse
image in Gi of Hi ⊂Gi .)

(iii) Define Hom(G1,G2)
rig
⊂ Hom(G1,G2) to be the set of rigid (and hence

continuous and open) homomorphisms G1→G2.

Remark 3.2. (i) Consider a commutative diagram of maps between profinite
groups

G1
σ
� G2

G′1

g
σ ′

� G′2,
g

where the vertical arrows are surjective. Then if σ :G1→G2 is strictly rigid
(resp. rigid), σ ′ :G′1→G′2 is strictly rigid (resp. rigid).

(ii) Let H2 be an open subgroup of G2 and H1
def
= σ−1(H2). Then if σ :G1→G2

is strictly rigid (resp. rigid), the natural homomorphism H1→H2 induced by
σ is strictly rigid (resp. rigid).

(iii) Assume that σ : G1 → G2 is strictly rigid with respect to φ̃ :6X̃1
→6X̃2

.
Then if φ̃ is surjective, σ is surjective. Indeed, this follows immediately from
the fact, by Chebotarev’s density theorem, that G2 is (topologically) generated
by its decomposition subgroups.

(iv) As in Proposition 2.2, let l 6= p1, p2 be a prime number, and assume that
(1) N l

2 = N2, or, equivalently, K̃2 admits no l-cyclic extension; and (2) K̃2

contains a primitive l-th roots of unity.
If σ is strictly rigid with respect to φ̃ :6X̃1

→6X̃2
, then we must have

6X̃1,σ,l = 6X̃1
and φ̃ = φ̃σ,l . In particular, then φ̃ is unique and Galois-

equivariant with respect to σ , and hence naturally induces a map φ (= φσ,l) :
6X1 →6X2 .

If σ is rigid, then we must have 6X̃1,σ,l = 6X̃1
, and, if we set φ̃ def

= φ̃σ,l ,
then

σ(Dx̃1) ⊂open
Dφ̃(x̃1)
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for each x̃1 ∈6X̃1
. The map φ̃ is uniquely characterized by this property, and

Galois-equivariant with respect to σ , and hence naturally induces a map

φ (= φσ,l) :6X1 →6X2 .

In the rest of this section, we assume that Condition 1 holds.

Definition 3.3. (i) Let γ : K2 → K1 be a homomorphism of fields defining an
extension K1/K2 of fields. Set p def

= p1 = p2. Then we say that γ is admissible
if the extension K1/K2 appears in the extensions of K2 corresponding to the open
subgroups of G2. More precisely, in the profinite case, we say that γ is admissible
if the extension K1/K2 is finite separable; in the prime-to-characteristic case, we
say that γ is admissible if the extension K1/K2 is finite separable and the Galois
closure of the extension K1k1/K2k2 is of degree prime to p.

Equivalently, γ : K2→ K1 is admissible if and only if it extends to an isomor-
phism γ̃ : K̃2

∼
→ K̃1.

(ii) Define Hom(K2, K1)
adm
⊂Hom(K2, K1) to be the set of admissible homo-

morphisms K2→ K1.

Our aim in this section is to prove the following.

Theorem 3.4. The natural map Hom(K2, K1)→Hom(G1,G2)/ Inn(G2) induces
a bijection

Hom(K2, K1)
adm ∼
→ Hom(G1,G2)

rig/ Inn(G2).

More precisely,

(i) If γ : K2 → K1 is an admissible homomorphism between fields, then the
homomorphism G1→G2 induced by γ (up to inner automorphisms) is rigid.

(ii) If σ :G1→G2 is a rigid homomorphism between profinite groups, then there
exists a unique isomorphism γ̃ : K̃2→ K̃1 of fields, such that γ̃ ◦σ(g1)= g1◦γ̃

for all g1 ∈G1, which induces an admissible homomorphism K2→ K1.

Remark 3.5. (i) By local theory for the Isom-form, any isomorphism G1
∼
→ G2

is strictly rigid. In particular, we have Isom(G1,G2) ⊂ Hom(G1,G2)
rig. Thus,

Theorem 3.4 can be viewed as a generalization of the Isom-form:

Isom(K2, K1)
∼
→ Isom(G1,G2)/ Inn(G2),

which is the main theorem of [Uchida 1977] in the profinite case, and the main
theorem of [Saïdi and Tamagawa 2009] in the prime-to-characteristic case.

(ii) Let
γ : K perf

2 → K perf
1

be a homomorphism of fields defining an extension K perf
1 /K perf

2 of fields. Set
p def
= p1 = p2. We say that γ is admissible if the extension K perf

1 /K perf
2 appears
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in the extensions of K perf
2 corresponding to the open subgroups of G2, which is

regarded as a quotient of the absolute Galois group G K perf
2
= G K2 . More precisely,

in the profinite case γ is always admissible, and in the prime-to-characteristic case
γ is admissible if and only if the extension the Galois closure of the extension
K perf

1 k1/K perf
2 k2 is of degree prime to p. Define

Hom
(
K perf

2 , K perf
1

)adm
⊂ Hom

(
K perf

2 , K perf
1

)
to be the set of admissible homomorphisms K perf

2 → K perf
1 . Then the natural map

Hom
(
K perf

2 , K perf
1

)
→ Hom

(
G1,G2)/ Inn(G2

)
induces a bijection

Hom
(
K perf

2 , K perf
1

)adm/FrobZ ∼
→ Hom

(
G1,G2)

rig/ Inn(G2).

Indeed, this follows from Theorem 3.4, since the natural map Hom(K2, K1)→

Hom
(
K perf

2 , K perf
1

)
induces

Hom(K2, K1)
adm ∼
→ Hom

(
K perf

2 , K perf
1

)adm/FrobZ .

The rest of this section is devoted to the proof of Theorem 3.4.
First, to prove 3.4(i), let γ : K2→ K1 be an admissible homomorphism. Then,

by the definition of admissibility, the extension K1/K2 is isomorphic to some ex-
tension L/K2 that corresponds to an open subgroup H2 of G2. Set H1

def
= G1. Now

let σ : G1→ G2 be the homomorphism induced by γ (up to conjugacy). Then it
is easy to see that σ restricts to an isomorphism H1

∼
→ H2 (corresponding to the

isomorphism L ∼→ K1), which is strictly rigid. Thus, σ is rigid, as desired.
Next, to prove 3.4(ii), let σ : G1 → G2 be a rigid homomorphism. By def-

inition, there exist open subgroups H1 ⊂ G1, H2 ⊂ G2, such that σ(H1) ⊂ H2

and that H1
σ
→ H2 is strictly rigid with respect to, say, φ̃ :6X̃1

→6X̃2
. Then, by

Remark 3.2(iv), φ̃ is Galois-equivariant with respect to σ : G1→ G2 (that is, not
only with respect to σ :H1→H2), and, for each x̃1∈6X̃1

, we have σ(Dx̃1) ⊂open
Dφ̃(x̃1)

and σ(Dx̃1 ∩H1)=Dφ̃(x̃1)
∩H2.

Lemma 3.6. Condition 2 holds for σ :G1→G2.

Proof. By Proposition 2.1(v), we have σ(Ix̃1) ⊂ Iφ̃(x̃1)
for each x̃1 ∈ 6X̃1

. In
particular, we have σ(I1)⊂ I2. Now, the assertion follows from Lemma 2.3. �

Thus, we may apply Lemmas 2.6–2.9 to σ .

Lemma 3.7. We have σ(H1)= H2 and H1 = σ
−1(H2).

Proof. By Lemma 2.9, φ̃ is surjective, and hence, by Remark 3.2(iii), σ :H1→H2

is surjective, that is, σ(H1)= H2.
Next, let X1,H1 → X1,σ−1(H2) → X1 and X2,H2 → X2 be (finite, generically

étale) covers corresponding to open subgroups H1 ⊂ σ
−1(H2)⊂G1 and H2 ⊂G2,
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respectively. Suppose that H1 ( σ−1(H2). Then, by Chebotarev’s density theorem,
there exists x̃1 ∈6X̃1

such that

k(x1,H1)) k(x1,σ−1(H2)),

where x1,H1 and x1,σ−1(H2) denote the images of x̃1 in 61,H1 and 61,σ−1(H2), respec-
tively. Set x̃2

def
= φ̃(x̃1) ∈6X̃2

. We have σ(Dx̃1)⊂Dx̃2 , and hence

σ(Dx̃1 ∩H1)⊂ σ(Dx̃1 ∩ σ
−1(H2))⊂Dx̃2 ∩H2.

Now, since H1
σ
→ H2 is strictly rigid, we must have

σ(Dx̃1 ∩H1)= σ(Dx̃1 ∩ σ
−1(H2))=Dx̃2 ∩H2.

By Proposition 2.1(iii), this implies that ](k(x1,H1))=](k(x2,H2))=](k(x1,σ−1(H2)),
where x2,H2 denotes the image of x̃2 in 6X2,H2

. This contradicts

k(x1,H1)) k(x1,σ−1(H2)). �

We treat the special case where σ : G1 → G2 is strictly rigid (and hence, in
particular, surjective).

Lemma 3.8. Assume that σ :G1→G2 is strictly rigid.

(i) We have g1 = g2.

(ii) The map φ :6X1 →6X2 is bijective.

Proof. By Lemma 2.6, the homomorphism σ naturally induces a commutative
diagram

1 � π1(X1)
p′,ab

� 51 � Gk1 � 1

1 � π1(X2)
p′,ab

g
� 52

g
� Gk2

g
� 1,

where 5i is the quotient π1(X i )
(p′)/Ker(π1(X i )

p′ � π1(X i )
p′,ab), and the maps

5i → Gki are the natural projections; i = 1, 2. The vertical maps are surjec-
tive. In particular, the representation Gk1 → Gk2 → Aut(π1(X2)

p′,ab), where
Gk2 → Aut(π1(X2)

p′,ab) is the natural representation and Gk1 → Gk2 is the right
vertical map in the above diagram, is a quotient representation of the natural repre-
sentation Gk1 → Aut(π1(X1)

p′,ab). For i ∈ {1, 2}, let Ei be the set of eigenvalues,
counted with multiplicities, of the Frobenius element ϕki acting on π1(X i )

p′,ab.
Then E2 ⊂ E1, since the map Gk1→Gk2 maps ϕk1 to ϕk2 (see Lemma 2.8(ii)). We
will show that E1 = E2.

For an integer n ≥ 1, let ki,n be the unique extension of ki of degree n; i = 1, 2.
Then, by the Lefschetz trace formula, ]X i (ki,n) = 1 −

∑
αi∈Ei

αn
i + qn , where

q def
= ](ki ) (see Lemma 2.8(ii) for the equality ](k1) = ](k2)). Recall that the
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map φ : 6X1 → 6X2 is surjective (see Lemma 2.9), and if x2 = φ(x1), then the
residue fields k(x1) and k(x2) have the same cardinality (see Proposition 2.1(iii)).
In particular, ](X1(k1,n))≥ ](X2(k2,n)) for all n. Thus,

∑r
j=1 β

n
j ≤ 0 for any n≥1,

where
E def
= E1 r E2

def
= {β1, . . . , βr }

(r = 2g1−2g2 ≥ 0). Write β j = ρ j eiθ j (ρ j ∈R>0, θ j ∈ [0, 2π)), for j ∈ {1, . . . , r}
(note that ρ j = q1/2 by the Riemann hypothesis for curves). Let T be the set
consisting of the 4 quadrants of C=R2. More precisely, T= {Tk | k ∈ {1, 2, 3, 4}},
where

Tk
def
=

{
ρeiθ

∣∣ ρ ∈ R>0, θ ∈
[
(k−1)π

2
,

kπ
2

)}
.

Thus, each α ∈ C× belongs to a unique element of T, which we shall denote by
T (α). Consider the map µ : N→ Tr that maps an integer n to {T (βn

j )}
r
j=1. Then

there must exist integers m1 < m2 such that µ(m1) = µ(m2), since ](Tr ) = 4r is
finite. This implies that eim1θ j and eim2θ j belong to the same quadrant of C=R2 for
all j ∈ {1, . . . , r}. In particular, Re(βn

j )= ρ
n
j cos nθ j > 0, where n def

= m2−m1 ≥ 1.
Suppose that r > 0; then this implies that

Re
( r∑

j=1
βn

j

)
=

r∑
j=1

Reβn
j > 0,

which contradicts the above fact that
∑r

j=1 β
n
j ≤ 0, for all n. Thus, r = 0, that is,

E = E1 r E2 must be empty, and E1 = E2.
In particular, the Ẑp′-ranks of π1(X i )

p′,ab, which equal 2gi , are equal; i = 1, 2.
This completes the proof of Lemma 3.8(i).

Finally, we can conclude that φ is injective. For otherwise, there would exist
an integer n ≥ 1 such that ](X1(kn)) > ](X2(kn)), and hence, E 6= ∅, which is a
contradiction. This completes the proof of Lemma 3.8(ii). �

Lemma 3.9. Assume that σ :G1→G2 is strictly rigid. Then σ (p
′)
:G

(p′)
1 →G

(p′)
2

is an isomorphism. (In particular, in the prime-to-characteristic case, σ is an
isomorphism.)

Proof. By Lemma 3.8(ii), the map φ :6X1→6X2 induced by σ is bijective. For a
finite subset S2 of 6X2 , let S1

def
= φ−1(S2). Then σ naturally induces a continuous,

surjective homomorphism τ ′S1,S2
: π1(U1)

(p′)� π1(U2)
(p′), where π1(Ui )

(p′) is the
maximal geometrically prime-to-p quotient of the fundamental group π1(Ui ) of
Ui

def
= X i − Si ; i = 1, 2. Further, we have the commutative diagram

1 � π1(U 1)
p′
� π1(U1)

(p′)
� Gk1 � 1

1 � π1(U 2)
p′

g
� π1(U2)

(p′)

τ ′S1,S2g
� Gk2

g
� 1.
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The surjective homomorphism π1(U 1)
p′ � π1(U 2)

p′ must be an isomorphism by
[Fried and Jarden 1986, Proposition 15.4], since X i−Si have the same topological
type (gi , ](Si )), where Si denotes the inverse image of Si in 6X i

; i = 1, 2, by
Lemma 3.8. (For the bijectivity S̄1

∼
→ S̄2, apply Lemma 3.8(ii) to various open

subgroups of G1,G2 corresponding to constant field extensions.) Thus, the map
τ ′S1,S2

is an isomorphism (note that the surjective map Gk1 → Gk2 is an isomor-
phism). Also,

G
(p′)
i = lim

←−
Si

π1(X i − Si )
(p′),

where the projective limit is taken over all finite subsets Si of6X i ; i=1, 2. Further,

σ (p
′)
= lim
←−
{S1,S2}

τ ′S1,S2
,

where the projective limit is taken over all finite subsets S1 and S2 corresponding
to each other via φ. Thus, σ (p

′) must be an isomorphism. �

Now, return to the general case. As above, let H1 ⊂ G1, H2 ⊂ G2 be open
subgroups such that σ(H1) ⊂ H2 and the map σH1,H2 : H1 → H2 obtained by
restricting σ : G1 → G2 is strictly rigid with respect to φ̃ : 6X̃1

→ 6X̃2
. By

Remark 3.2(iv), φ̃ is Galois-equivariant with respect to σ : G1→ G2 (that is, not
only with respect to σH1,H2 : H1→ H2), and, for each x̃1 ∈6X̃1

, we have

σ(Dx̃1) ⊂open
Dφ̃(x̃1)

, σ (Dx̃1 ∩H1)=Dφ̃(x̃1)
∩H2.

Moreover, by Lemma 3.9, the map (σH1,H2)
(p′)
: H

(p′)
1 → H

(p′)
2 induced by σH1,H2

is an isomorphism.
Now, let us denote the finite separable extension of Ki corresponding to Hi ⊂Gi

by Ki,Hi , and the (infinite) Galois extension of Ki,Hi corresponding to Hi � H
(p′)
i

by K̃ (p′)
i,Hi

. By applying the Isom-form proved in [Saïdi and Tamagawa 2009], we
see that

(σH1,H2)
(p′)
: H

(p′)
1

∼
→ H

(p′)
2

arises from a unique field isomorphism γ
H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
that induces an

isomorphism K2,H2
∼
→ K1,H1 .

Lemma 3.10. Let H′i ⊂Hi , i = 1, 2 be open subgroups, such that σ(H′1)⊂H′2 and
that σH′1,H

′

2
: H′1→ H′2 is strictly rigid. Then the field isomorphism

γ(H′1)
(p′),(H′2)

(p′) : K̃
(p′)
2,H′2

∼
→ K̃ (p′)

1,H′1

restricts to γ
H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
.
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Proof. This follows formally from the statement of the Isom-form proved in [Saïdi
and Tamagawa 2009], as follows, without recalling any construction in that paper.

Take an open subgroup H′′2 of H′2 that is normal in H2. Then, by Lemma 3.7,

H′′1
def
= σ−1(H′′2)⊂ σ

−1(H′2)= H′1,

and hence, by Remark 3.2(ii), H′′1
σ
→ H′′2 is strictly rigid. Assume that

γ(H′′1)
(p′),(H′′2)

(p′) : K̃
(p′)
2,H′′2

∼
→ K̃ (p′)

1,H′′1

restricts to γ(H′1)(p
′),(H′2)

(p′) : K̃
(p′)
2,H′2

∼
→ K̃ (p′)

1,H′1
and to γ

H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
. Then

γ(H′1)
(p′),(H′2)

(p′) : K̃
(p′)
2,H′2

∼
→ K̃ (p′)

1,H′1

restricts to
γ

H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
,

as desired. So, it suffices to prove the desired property in the case where H′i ⊂ Hi

is normal for i = 1, 2, and σ naturally induces an isomorphism H1/H
′

1
∼
→ H2/H

′

2
between finite groups.

For i =1, 2, let J′i be the image of H′i in H
(p′)
i , which is an open normal subgroup

of H
(p′)
i . Let Ji ⊂ Hi be the inverse image of J′i in Hi . Thus, we have the natural

identification J
(p′)
i = J′i and the commutative diagram

H′i ⊂ Ji ⊂ Hi ⊂ Gi

(H′i )
(p′)
g

�� J
(p′)
i

g
⊂ � H

(p′)
i

g

� G
(p′)
i ,

g

in which the vertical arrows are natural surjective maps.
Since the isomorphism (σH′1,H

′

2
)(p
′)
: (H′1)

(p′) ∼
→ (H′2)

(p′) is compatible with the
natural (conjugate) actions of H1 and H2 with respect to H1

σ
�H2, the correspond-

ing field isomorphism

γ(H′1)
(p′),(H′2)

(p′) : K̃
(p′)
2,H′2

∼
→ K̃ (p′)

1,H′1

is also compatible with the natural actions of H1 and H2 with respect to H1
σ
� H2.

In particular, γ(H′1)(p
′),(H′2)

(p′) restricts to K2,H2
∼
→ K1,H1 , and hence induces an iso-

morphism
α : K (p′)

2,H2

∼
→ K (p′)

1,H1

that is compatible with σ :H1�H2, and hence with σ
H
(p′)
1 ,H

(p′)
2
: H

(p′)
1

∼
→ H

(p′)
2 . On

the other hand, the isomorphism

γ
H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
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is also compatible with

σ
H
(p′)
1 ,H

(p′)
2
: H

(p′)
1

∼
→ H

(p′)
2 .

Thus, we conclude that, as desired,

α = σ
H
(p′)
1 ,H

(p′)
2
,

by the uniqueness of such a Galois-compatible isomorphism. (This is included in
the statement of the Isom-form proved in [Saïdi and Tamagawa 2009].) �

Now, consider the set S (⊂ Sub(G1)×Sub(G2)) of all pairs of open subgroups
H1⊂G1, H2⊂G2 such that σ(H1)⊂H2, that H1

σ
→ H2 is strictly rigid, and that H2

is normal in G2. Then, as in the proof of Lemma 3.10, it follows from Lemma 3.7
and Remark 3.2(ii) that (H1,H2)∈S implies that σ(H1)=H2, that H1= σ

−1(H2),
and that the image of S in Sub(G2) is cofinal in the set of open subgroups of G2.

For each pair (H1,H2) ∈ S, we get an isomorphism

σ
H
(p′)
1 ,H

(p′)
2
: H

(p′)
1

∼
→ H

(p′)
2

by Lemma 3.9, which is Galois-compatible with respect to σ : G1→ G2. By the
Isom-form proved in [Saïdi and Tamagawa 2009], σ

H
(p′)
1 ,H

(p′)
2

induces an isomor-
phism

γ
H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
,

which is Galois-compatible with respect to σ : G1 → G2. By Lemma 3.10,
γ

H
(p′)
1 ,H

(p′)
2

can be patched together and define an isomorphism

γ̃ : K̃2
∼
→ (K̃1)

N,

where
N

def
= Ker(σ :G1→G2),

which is Galois-compatible with respect to σ :G1→G2.
In the profinite (resp. prime-to-characteristic) case, K̃2 admits no nontrivial fi-

nite separable (resp. geometrically prime-to-p) extension, and hence neither does
(K̃1)

N (' K̃2). This implies that (K̃1)
N
= K̃1, that is, N = {1}. Thus, we obtain

γ̃ : K̃2
∼
→ K̃1, which is Galois-compatible with respect to σ :G1→G2, as desired.

Finally, the uniqueness of such γ̃ follows formally from the uniqueness in the
statement of the Isom-form, proved in [Uchida 1977; Saïdi and Tamagawa 2009].
This finishes the proof of Theorem 3.4. �

Remark 3.11. We have proved Theorem 3.4 by reducing it to the statement of the
Isom-form, by means of Lemma 3.9. Instead, we could mimic the proof of the
Isom-form.
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4. Proper homomorphisms between Galois groups

In this section we investigate a class of homomorphisms between (geometrically
prime-to-characteristic quotients of) absolute Galois groups of function fields of
curves over finite fields, which we call proper. We follow the notations in Sections
1–3, and in particular, the Notation at the beginning of subsection 2B. We assume
that Condition 3 holds.

Definition 4.1 (well-behaved homomorphisms). We say that σ :G1→G2 is well-
behaved if there exists a map

φ̃ :6X̃1
→6X̃2

such that σ(Dx̃1) ⊂open
Dφ̃(x̃1)

for each x̃1 ∈6X̃1
.

Remark 4.2. (i) Given a commutative diagram of maps between profinite groups

G1 � G2

G′1

g
� G′2,
g

where the vertical arrows are surjective and the map G1 → G2 is well-behaved,
then the map G′1→G′2 is well-behaved.

(ii) Let H1 ⊂ G1, H2 ⊂ G2 be open subgroups such that σ(H1) ⊂ H2. Then if
σ :G1→G2 is well-behaved, the natural homomorphism H1→H2 induced by σ
is well-behaved. (Here, Hi is considered as a quotient of the absolute Galois group
that is the inverse image in Gi of Hi ⊂Gi .)

(iii) If σ :G1→G2 is strictly rigid (Definition 3.1), then it is well-behaved.

(iv) As in Proposition 2.2, let l 6= p1, p2 be a prime number, and assume that (1)
N l

2 = N2, or, equivalently, K̃2 admits no l-cyclic extension; and (2) K̃2 contains a
primitive l-th roots of unity. Then, first, if σ : G1 → G2 is rigid, then it is well-
behaved by Remark 3.2(iv). Second, if σ :G1→G2 is well-behaved with respect
to φ̃ :6X̃1

→6X̃2
, then we must have

6X̃1,σ,l =6X̃1
and φ̃ = φ̃σ,l .

In particular, then φ̃ is unique and Galois-equivariant with respect to σ , and hence
naturally induces a map φ (= φσ,l) :6X1 →6X2 .

Definition 4.3 (proper homomorphisms). We say that σ :G1→G2 is proper if σ
is well-behaved with respect to φ̃ : 6X̃1

→ 6X̃2
, such that φ̃ is Galois-equivariant

with respect to σ , and the map φ :6X1 →6X2 induced by φ̃ has finite fibers, that
is, for each x2 ∈6X2 , the fiber φ−1(x2) is a (possibly empty) finite set.
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Remark 4.4. (i) Given a commutative diagram of maps between profinite groups

G1 � G2

G′1

g
� G′2,
g

where the vertical arrows are surjective and the map G1→ G2 is proper, the
map G′1→G′2 is proper.

(ii) Let H1 ⊂ G1, H2 ⊂ G2 be open subgroups such that σ(H1) ⊂ H2. Then if
σ : G1→ G2 is proper, the natural homomorphism H1→ H2 induced by σ
is proper. (Here, Hi is considered as a quotient of the absolute Galois group
that is the inverse image in Gi of Hi ⊂Gi .)

In the rest of this section, we assume that Condition 1 holds. Assume also that
the continuous open homomorphism σ : G1 → G2 is well-behaved with respect
to φ̃ : 6X̃1

→ 6X̃2
. By Lemma 2.4, we have p def

= p1 = p2. Let x̃1 ∈ 6X̃1
and

set x̃2
def
= φ̃(x̃1). Denote by x1 and x2 the image of x̃1 and x̃2 in 6X1 and 6X2 ,

respectively. Then
Dx̃1

σ
� σ(Dx̃1) ⊂open

Dx̃2 .

By this and Proposition 2.1(v), we have

Ix̃1

σ
� σ(Ix̃1) ⊂open

Ix̃2 .

In particular, σ induces an open injective homomorphism τ t
x̃1
:It

x̃1
↪→It

x̃2
, where

It
x̃1

(resp. It
x̃2

) denotes the inertia subgroup of Dt
x̃1

(resp. of Dt
x̃2

). We have natural
identifications

M1
∼
→ Mk(x1)sep

∼
→ It

x̃1
, M2

∼
→ Mk(x2)sep

∼
→ It

x̃2
,

where Mi
def
= MK sep

i
is the (global) module of roots of unity for i = 1, 2.

We introduce the following important concept of rigidity of inertia.

Definition 4.5 (inertia-rigid homomorphisms). We say that the well-behaved ho-
momorphism σ :G1→G2 is inertia-rigid if there exists an isomorphism

τ : M1
∼
→ M2

of Ẑp′-modules such that for each x̃1 ∈6X̃1
, there exists a positive integer ex̃1 such

that the following diagram commutes:

M1
∼
� Mk(x1)sep

∼
� It

x̃1

M2

ex̃1 ·τg
∼
� Mk(x2)sep

∼
� It

x̃2
,

τ t
x̃1g

(4.1)
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where x̃2
def
= φ̃(x̃1); x1 and x2 are the images of x̃1 and x̃2 in 6X1 and 6X2 , respec-

tively; and the isomorphisms are the canonical identifications.

Remark 4.6. (i) Given a commutative diagram of maps between profinite groups

G1 � G2

G(p′)
1

g

� G(p′)
2 ,

g

where the vertical arrows are natural surjective maps and the map G1→ G2

is inertia-rigid, the map G(p′)
1 → G(p′)

2 is inertia-rigid.

(ii) Let H1 ⊂ G1, H2 ⊂ G2 be open subgroups such that σ(H1) ⊂ H2. Then if
σ :G1→G2 is inertia-rigid, the natural homomorphism H1→H2 induced by
σ is inertia-rigid. (Here, Hi is considered as a quotient of the absolute Galois
group that is the inverse image in Gi of Hi ⊂Gi .)

Remark 4.7. (i) Set

ex̃1

def
= [Ix̃2 : σ(Ix̃1)], et

x̃1

def
= [It

x̃2
: τ t

x̃1
(It

x̃1
)].

Note that p - et
x̃1

and there exists an integer bx̃1 ≥ 0 such that ex̃1 = pbx̃1 et
x̃1

.
(In the prime-to-characteristic case, we have ex̃1 = et

x̃1
and bx̃1 = 0.) Now, in

Definition 4.5, there must exist an integer ax̃1 ≥ 0 such that ex̃1 = pax̃1 et
x̃1

, or,
equivalently, ex̃1 = pcx̃1 ex̃1 , where cx̃1

def
= ax̃1 − bx̃1 ∈ Z. Moreover, set

a def
= min{ax̃1 | x̃1 ∈6X̃1

}.

Replacing τ by paτ and ex̃1 by p−aex̃1 = pax̃1−aet
x̃1

, we may assume that a = 0.
Assume, moreover, that σ is proper and that we are in the profinite case. Then, in

fact, we have cx̃1 = 0 for every x̃1 ∈ X̃1 eventually, if we choose τ with a= 0. (This
follows from Theorem 4.8 below and its proof.) Thus, in the profinite case, we may
assume ex̃1=ex̃1 in Definition 4.5 from the beginning. In the prime-to-characteristic
case, however, it seems difficult to specify the value of ex̃1 a priori. (If we assumed
ex̃1 = ex̃1 in the prime-to-characteristic case, then inertia-rigid homomorphisms
would cover only tame homomorphisms K2→ K1.)

(ii) In the situation of Definition 4.5, we have

Dx̃1

σ
� Ex̃1

def
= σ(Dx̃1)⊂Dx̃2 .

The subgroup Ex̃1⊂Dx̃2 corresponds to a finite extension L x1/(K2)x2 of the x2-adic
completion (K2)x2 of K2. Thus, the residue field `x1 of L x1 is a finite extension of



164 Mohamed Saïdi and Akio Tamagawa

the residue field k(x2) at x2. We have the commutative diagram

Dx̃1 � Ex̃1

Dt
x̃1

g
� Et

x̃1
,

g

where the vertical maps are the canonical surjections onto the maximal tame quo-
tients, and the horizontal maps are naturally induced by σ . Further, the lower
horizontal map, which is surjective, naturally induces an isomorphism It

x̃1

∼
→ Jt

x̃1

by Proposition 2.1(v). Here, It
x̃1

and Jt
x̃1

denote the inertia subgroups of Dt
x̃1

and
Et

x̃1
, respectively. We have a natural identification Jt

x̃1

∼
→ It

x̃2
, where It

x̃2
is the

inertia subgroup of Dt
x̃2

, obtained via the natural identifications

M(K2)
sep
x2

∼
→ It

x̃2
, MLsep

x1

∼
→ Jt

x̃1
, (K2)

sep
x2
= Lsep

x1
,

which, composed with the natural map Jt
x̃1
→ It

x̃2
induced by the inclusion

Ex̃1 →Dx̃2,

is the ex̃1-th power map [ex̃1] : I
t
x̃2
→ It

x̃2
, as is easily verified. We define

τ t
x̃1,x̃2
: It

x̃1

∼
→ It

x̃2

to be the natural isomorphism obtained by composing the natural isomorphism

It
x1

∼
→ Jt

x̃1

induced by σ (see Proposition 2.1(v)) with the natural identification Jt
x̃1

∼
→ It

x̃2
.

The inertia-rigidity is equivalent to requiring the commutativity of the diagram

M1
∼
� M(K1)

sep
x1

∼
� It

x̃1

M2

p
cx̃1 ·τ
g

∼
� M(K2)

sep
x2

∼
� It

x̃2
,

τ t
x̃1,x̃2g

in which both vertical arrows are isomorphisms.

Define Hom(K2, K1)
sep
⊂ Hom(K2, K1) to be the set of separable homomor-

phisms K2 → K1. Define Hom(G1,G2)
pr,inrig

⊂ Hom(G1,G2) to be the set of
proper (and hence continuous and open) inertia-rigid homomorphisms G1→ G2.
Our aim in this section is to prove the following.

Theorem 4.8. The natural map Hom(K2, K1)→Hom(G1,G2)/ Inn(G2) induces
a bijection

Hom(K2, K1)
sep ∼
→ Hom(G1,G2)

pr,inrig/ Inn(G2).
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More precisely:

(i) If γ : K2→ K1 is a separable homomorphism between fields, then the homo-
morphism G1→G2 induced by γ (up to inner automorphisms) is proper and
inertia-rigid.

(ii) If σ : G1 → G2 is a proper, inertia-rigid homomorphism between profinite
groups, then there exists a unique homomorphism γ̃ : K̃2 → K̃1 of fields,
such that γ̃ ◦ σ(g1) = g1 ◦ γ̃ , for all g1 ∈ G1, which induces a separable
homomorphism K2→ K1.

Remark 4.9. (i) Assume that σ : G1 → G2 is a rigid homomorphism. Then
it follows from Lemma 3.8(ii) that σ is proper. Further, σ is inertia-rigid.
This can be reduced to the case where σ is strictly rigid, and then deduced
from class field theory as in the arguments preceding Lemma 4.12. (Note that
then φ is bijective by Lemma 3.8(ii).) Thus, Theorem 4.8 can be viewed as a
generalization of Theorem 3.4.

(ii) The natural map Hom(K perf
2 , K perf

1 )→ Hom(G1,G2)/ Inn(G2) induces a bi-
jection

Hom(K perf
2 , K perf

1 )/FrobZ ∼
→ Hom(G1,G2)

pr,inrig/ Inn(G2).

Indeed, this follows from Theorem 4.8, since the natural map Hom(K2, K1)→

Hom(K perf
2 , K perf

1 ) induces

Hom(K2, K1)
sep ∼
→ Hom(K perf

2 , K perf
1 )/FrobZ .

The rest of this section is devoted to the proof of Theorem 4.8.
First, to prove (i), let γ : K2 → K1 be a separable homomorphism. Then γ

induces naturally an open injective homomorphism G1 ↪→ G2 (up to Inn(G2))
and then an open homomorphism σ : G1 → G2 (up to Inn(G2)). The map σ is
well-behaved with respect to the map φ : 6X1 → 6X2 that arises from a finite
morphism X1→ X2 of schemes corresponding to γ : K2→ K1. Thus, each fiber
of φ is finite, and hence σ is proper. Next, if we define τ : M1

∼
→ M2 to be the

identification MK sep
1

∼
→ MK sep

2
(with respect to a suitable extension K sep

2
∼
→ K sep

1 of
γ : K2→ K1), then diagram (4.1) commutes with ex̃1 defined to be the ramification
index of K1/K2 at x̃1. Thus, σ is inertia-rigid.

Next, to prove (ii), let σ :G1→G2 be a proper, inertia-rigid homomorphism.

Lemma 4.10. Condition 2 holds for σ :G1→G2.

Proof. Same as that of Lemma 3.6. �

Thus, we may apply Lemmas 2.6–2.9 to σ .



166 Mohamed Saïdi and Akio Tamagawa

Next, let τ :M1
∼
→M2 be the isomorphism appearing in the definition of inertia-

rigid homomorphism, so that diagram (4.1) commutes for each x̃1 ∈ 6X̃1
and for

some ex̃1 ∈ Z>0.

Lemma 4.11. (i) The isomorphism τ : M1
∼
→ M2 is Galois-equivariant with

respect to σ .

(ii) The positive integers ex̃1 , ex̃1 and et
x̃1

depend only on the image x1 ∈6X1 of x̃1.

Proof. (i) For each x̃1 ∈ 6X̃1
, the commutativity of diagram (4.1), together with

Proposition 2.1(iv), implies that τ is Galois-equivariant with respect to

Dx̃1

σ
→Dφ̃(x̃1)

.

Our assertion then follows, since G1 is generated by the decomposition subgroups
Dx̃1 for all x̃1 ∈6X̃1

, as follows from Chebotarev’s density theorem.

(ii) Take another x̃ ′1 ∈6X̃1
above x1 ∈6X1 and set x̃ ′2

def
= φ̃(x̃ ′1). Fix γ ∈G1 such

that x̃ ′1= γ x̃1. By the Galois-equivariance property of φ̃ (Remark 4.2(iv)), we have
then x̃ ′2 = σ(γ )x̃2. Denote by [γ ] and [σ(γ )] the inner automorphisms of G1 and
G2 induced by γ and σ(γ ), respectively. We have the commutative diagram

Ix̃1

[γ ]
� Ix̃ ′1

Ix̃2

σ
g
[σ(γ )]
� Ix̃ ′2,

σ
g

in which both rows are isomorphisms. It follows that ex̃ ′1 = ex̃1 . This commutative
diagram induces the commutative diagram

It
x̃1

[γ ]
� It

x̃ ′1

It
x̃2

τ t
x̃1g

[σ(γ )]
� It

x̃ ′2
,

τ t
x̃ ′1g

in which both rows are isomorphisms. It follows that et
x̃ ′1
= et

x̃1
. With (i), this last

commutative diagram also implies that ex̃ ′1 = ex̃1 . �

From now on, we shall write ex1 , ex1 and et
x1

for ex̃1 , ex̃1 and et
x̃1

, respectively.
Further, according to this, we shall write ax1 , bx1 and cx1 for the invariants ax̃1 , bx̃1

and cx̃1 in Remark 4.7(i), respectively. We may and shall also assume that

a (=min{ax1 | x1 ∈6X1})= 0;

see Remark 4.7(i).
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We have the commutative diagram of exact sequences

1 � k×1 �

∏
x2∈6X2

( ∏
x1∈φ−1(x2)

k(x1)
×

)
� G1

(p′),ab

1 � k×2

g
�

∏
x2∈6X2

k(x2)
×

g

� G2
(p′),ab
g

from global class field theory. Here, the map G1
(p′),ab � G2

(p′),ab is naturally
induced by σ . The right horizontal maps are induced by Artin’s reciprocity map,
and the map ∏

x2∈6X2

( ∏
x1∈φ−1(x2)

k(x1)
×

)
→

∏
x2∈6X2

k(x2)
×

maps each component k(x1)
× to k(x2)

× as follows. First, k(x1)
× maps isomorphi-

cally onto `×x1
via the natural identification induced by σ ; see Remark 4.7(ii) and

Proposition 2.1(iii). Then `×x1
maps to k(x2)

× by the ex1-th power of the norm map.
The above diagram induces, for each x2 ∈6X2 , the commutative diagram

k×1 �

∏
x1∈φ−1(x2)

k(x1)
× ∼
→

∏
x1∈φ−1(x2)

`×x1

k×2

g
� k(x2)

×,

g

where the map k×2 → k(x2)
× is the natural embedding, the map

k×1 →
∏

x1∈φ−1(x2)

k(x1)
×

is the natural diagonal embedding, and the isomorphism∏
x1∈φ−1(x2)

k(x1)
× ∼
→

∏
x1∈φ−1(x2)

`×x1

and the map ∏
x1∈φ−1(x2)

`×x1
→ k(x2)

×

are as above. By passing to various open subgroups corresponding to extensions
of the constant fields, and to the projective limit via the norm maps, we obtain the
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commutative diagram

Mksep
1
�
⊕

x̄1∈φ̄−1(x̄2)
Mk(x1)sep

⊕
x̄1∈φ̄

−1(x̄2)
ρx1

∼
−→

⊕
x̄1∈φ̄−1(x̄2)

M`
sep
x1

Mksep
2

g
� Mk(x2)sep,

g

where
ρx1 : Mk(x1)sep

∼
→ M`

sep
x1

is the natural isomorphism induced by σ ; see Remark 4.7(ii) and Proposition 2.1(v).
Here, x̄2∈6X2

is any point above x2 and φ̄ :6X1
→6X2

is obtained as the inductive
limit of φ’s for various open subgroups corresponding to extensions of the constant
fields. Observe that φ̄ :6X1

→6X2
has finite fibers, since φ :6X1 →6X2 has

finite fibers, the projection6X1
→6X1 has finite fibers, and φ̄ is compatible with φ.

This can be rewritten as

M1 �
⊕

x̄1∈φ̄−1(x̄2)
M1

⊕
x̄1∈φ̄

−1(x̄2)
ρx1

∼
−→

⊕
x̄1∈φ̄−1(x̄2)

M2

M2

g
=================== M2

g
(4.2)

via the natural identifications Mk(x1)sep
∼
→ M1 and M`

sep
x1

∼
→ M2 for x1 ∈ φ

−1(x2);
Mk(x2)sep

∼
→ M2; and Mksep

i

∼
→ Mi , i = 1, 2. Thus, in diagram (4.2) the map M1→

⊕x̄1∈φ̄−1(x̄2)
M1 is the natural diagonal embedding, and the map ⊕x̄1∈φ̄−1(x̄2)

M2→

M2 is the map ⊕x̄1∈φ̄−1(x̄2)
[ex1]. We shall denote by τ ′ : M1→ M2 the homomor-

phism that is the left vertical arrow in diagram (4.2) (note that τ ′ is independent of
the choice of x2 ∈6X2).

Lemma 4.12 (product formula). The sum
∑

x̄1∈φ̄−1(x̄2)
ex1 is independent of the

choice of x2 ∈6X2 . Set n
def
=
∑

x̄1∈φ̄−1(x̄2)
ex1 > 0. Then we have τ ′ = [n] ◦ τ, where

[n] : M2→ M2 denotes the map of elevation to the power n in M2.

Proof. This follows from the commutativity of diagram (4.2), by observing that the
homomorphism σ being inertia-rigid means that the isomorphism ρx1 in diagram
(4.2) equals pcx1 τ for all x̄1 ∈ φ̄

−1(x̄2). �

For the rest of this section, all cohomology groups will be continuous Galois
cohomology groups unless otherwise specified.

The Galois-equivariant identification τ−1
: M2

∼
→ M1 induces naturally an in-

jective homomorphism H 1(G2,M2)→ H 1(G1,M1) between Galois cohomology
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groups. Indeed, this homomorphism fits into the commutative diagram

0 � H 1(Gk2,M2) � H 1(G2,M2) � H 1(G2,M2)

0 � H 1(Gk1,M1)

g
� H 1(G1,M1)

g
� H 1(G1,M1),

g

where both rows are exact and vertical maps are natural maps induced by (σ, τ−1).
Here, the left vertical arrow is injective by H 0(Hk1,M2)= 0, where Hk1 stands for
the (isomorphic) image of Gk1 in Gk2 , and the right vertical arrow is injective since
M2 is torsion-free and [G2 : σ(G1)]<∞. Therefore, the middle vertical arrow is
also injective.

Further, for each x2 ∈6X2 , the following diagram is commutative:

H 1(G1,M1) �
⊕

x̄1∈φ̄−1(x̄2)
H 1(Ix̃1,M1)

∼
→
⊕

x̄1∈φ̄−1(x̄2)
H 1(Jx̃1,M2)

H 1(G2,M2)

f

� H 1(Ix̃2,M2),

f

where the horizontal maps are the natural restriction maps, the left vertical map is
the above map, the map

H 1(Ix̃2,M2)→
⊕

x̄1∈φ̄−1(x̄2)

H 1(Jx̃1,M2)

is the natural map induced by the inclusion Jx̃1 ⊂ Ix̃2 for x̄1 ∈ φ̄
−1(x̄2), and the

isomorphism H 1(Ix̃1,M1)
∼
→ H 1(Jx̃1,M2) is naturally induced by the natural sur-

jective map Ix̃1 � Jx̃1 , which is induced by (σ, τ−1).
We have natural identifications

H 1(Ix̃1,M1)
∼
→ Hom(Ix̃1,M1)

∼
→ Hom(It

x̃1
,M1)

∼
→ Hom(M1,M1)

∼
→ Ẑp′,

H 1(Jx̃1,M2)
∼
→ Hom(Jx̃1,M2)

∼
→ Hom(Jt

x̃1
,M2)

∼
→ Hom(M2,M2)

∼
→ Ẑp′,

H 1(Ix̃2,M2)
∼
→ Hom(Ix̃2,M2)

∼
→ Hom(It

x̃2
,M2)

∼
→ Hom(M2,M2)

∼
→ Ẑp′ .

In light of these identifications, the above diagram can be rewritten as

H 1(G1,M1) �
⊕

x̄1∈φ̄−1(x̄2)
Ẑp′

H 1(G2,M2)

f

� Ẑp′,

⊕x̄1∈φ̄
−1(x̄2)

[ex1 ]
f

where the vertical map Ẑp′
→
⊕

x̄1∈φ̄−1(x̄2)
Ẑp′ is the map

⊕
x̄1∈φ−1(x̄2)

[ex1], and
[ex1] denotes the map of multiplication by ex1 in Ẑp′ . By considering all x2 ∈6X2 ,
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we obtain the following commutative diagram:

H 1(G1,M1) � D̂ivX1

def
=

∏ ′

x̄1∈6X1

Ẑp′ ∼
→

∏ ′

x̄2∈6X2

(⊕
x̄1∈φ−1(x̄2)

Ẑp′
)

H 1(G2,M2)

f

� D̂ivX2

def
=

∏ ′

x̄2∈6X2

Ẑp′ .

f

Here, given an index set 3, we define
∏
′

λ∈3 Ẑp′ def
= lim
←−
p-n

(⊕
λ∈3 Z/nZ

)
. (Accord-

ingly, one has ⊕
λ∈3

Ẑp′
⊂

∏ ′

λ∈3

Ẑp′
⊂

∏
λ∈3

Ẑp′,

and the equalities hold if and only if ](3) <∞.) Thus, the map D̂ivX2
→ D̂ivX1

maps x̄2 to
∑

x̄1∈φ−1(x̄2)
ex1 x̄1. In particular, the subgroup D̂ivX2 of D̂ivX2

maps into
the subgroup D̂ivX1 of D̂ivX1

. Here, for i = 1, 2,

D̂ivX i

def
=

∏ ′

x1∈6Xi

Ẑp′

is naturally embedded into D̂ivX i
and is regarded as a subgroup of D̂ivX i

. It follows
from various constructions that, for i = 1, 2, the image of the map H 1(Gi ,Mi )→

D̂ivX i
is contained in D̂ivX i . Thus, we obtain the commutative diagram

H 1(G1,M1) � D̂ivX1

H 1(G2,M2)

f

� D̂ivX2 .

f
(4.3)

For i = 1, 2, set DivX i

def
=
⊕

xi∈6Xi
Z, which is the group of divisors on X i . Then

the subgroup DivX2 of D̂ivX2 maps into the subgroup

DivX1 =

⊕
x2∈6X2

( ⊕
x1∈φ−1(x2)

Z
)

of D̂ivX1 . Thus, we have a natural map

DivX2 → DivX1 .

We denote by PriX i the subgroup of DivX i which consists of principal divisors.
Note that we have a natural map K×i → DivX i , which maps a function fi to its
divisor div( fi ) of zeros and poles. Further, Let JX i be the Jacobian variety of X i .
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Let Div0
X i
⊂DivX i be the group of degree-zero divisors on X i . Then there exists a

natural isomorphism
Div0

X i
/PriX i = JX i (ki ).

Write DX i for the kernel of the natural homomorphism Div0
X i
→ JX i (ki )

p′ , with
JX i (ki )

p′ standing for the maximal prime-to-p quotient JX i (ki )/(JX i (ki ){p}) of
JX i (ki ), where, for an abelian group M , M{p} stands for the subgroup of torsion
elements a of M of p-power order. Then DX i sits naturally in the exact sequence

0→ PriX i → DX i → JX i (ki ){p} → 0.

For i ∈ {1, 2}, and a positive integer n prime to p, the Kummer exact sequence

1→ µn→ Gm
[n]
−→ Gm→ 1

induces a natural isomorphism

K×i /(K
×

i )
n ∼
→ H 1(Gi , µn(K

sep
i ));

see Lemma 1.4. By passing to the projective limit over all integers n prime to p,
we obtain a natural isomorphism

(K×i )
∧p′ ∼
→ H 1(Gi ,Mi ),

where
(K×i )

∧p′ def
= lim
←−
p-n

K×i /(K
×

i )
n.

Since we have a natural embedding K×i ↪→ (K×i )
∧p′ , we get a natural embedding

K×i ↪→ H 1(Gi ,Mi ).

In what follows we will identify K×i with its image in H 1(Gi ,Mi ); i = 1, 2. The
natural maps K×i → DivX i and H 1(Gi ,Mi )→ D̂ivX i are compatible with each
other, and hence the image of K×i in D̂ivX i , via the map H 1(Gi ,Mi )→ D̂ivX i in
diagram (4.3), coincides with the subgroup PriX i of principal divisors.

Lemma 4.13 (recovering the multiplicative group). (i) The homomorphism

D̂ivX2 → D̂ivX1

in diagram (4.3) maps DX2 into DX1 .

(ii) The above map H 1(G2,M2)→ H 1(G1,M1) induces a natural injective
(multiplicative) homomorphism

γ : K×2 ↪→ (K×1 )
p−n
= (K p−n

1 )×,

where pn is the exponent of the p-primary finite abelian group JX1(k1){p}. We
have [γ (K×2 ) : γ (K

×

2 )∩ K×1 ]<∞ and [γ (K×2 ) : γ (K
×

2 )∩ (K
×

1 )
p
]> 1.
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Moreover, this injective homomorphism is functorial in the following sense: Let
H1 ⊂G1, H2 ⊂G2 be open subgroups such that σ(H1)⊂ H2, and, for i = 1, 2, let
L i/Ki be the finite separable extension corresponding to Hi ⊂ Gi , Yi the integral
closure of X i in L i , and `i the constant field of L i (that is, the algebraic closure of
ki in L i ). Then we have a commutative diagram

L×2 � (L×1 )
p−m

K×2

f

� (K×1 )
p−n
,

f

where pm
≥ pn is the exponent of the p-primary finite abelian group JY1(`1){p},

and the vertical arrows are the natural embeddings.

Proof. (i) We have the diagram of maps

DivX1 � H 2(π1(X1)
(p′),M1)

DivX2

f

� H 2(π1(X2)
(p′),M2),

f

where the map DivX2 → DivX1 is the one induced by the map D̂ivX2 → D̂ivX1

in diagram (4.3). For i ∈ {1, 2}, the group H 2(π1(X i )
(p′),Mi ) denotes the sec-

ond cohomology group of the profinite group π1(X i )
(p′) with coefficients in the

(continuous) π1(X i )
(p′)-module Mi .

First, we shall treat the special case that (g1≥)g2>0. In this case, we have a nat-
ural isomorphism H 2(π1(X i )

(p′),Mi )
∼
→ H 2

et(X i ,Mi ) ([Mochizuki 2007, Propo-
sition 1.1]), where H 2

et(X i ,Mi ) denotes the second étale cohomology group of
X i with coefficients in Mi . We will identify the groups H 2(π1(X i )

(p′),Mi ) and
H 2

et(X i ,Mi ) via the above identifications. Further, the map H 2(π1(X2)
(p′),M2)→

H 2(π1(X1)
(p′),M1) is the map induced by the natural map π1(X1)

(p′)
→π1(X2)

(p′)

between fundamental groups, which is induced by σ (see Lemma 2.6), and the
Galois-equivariant identification τ−1

: M2
∼
→ M1. The map

DivX i → H 2(π1(X i )
(p′),Mi )

maps a divisor D to its first arithmetic (étale) Chern class c1(D), and is naturally
induced by the Kummer exact sequence

1→ µn→ Gm
[n]
−→ Gm→ 1

in étale topology (see [Mochizuki 2003, 4.1]). In particular, the map DivX i →

H 2(π1(X i )
(p′),Mi ) factors as

DivX i → Pic(X i )/(JX i (ki ){p}) ↪→ H 2(π1(X i )
(p′),Mi ),
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where Pic(X i )
def
= H 1

et(X i ,Gm) is the Picard group of X i . Note that the kernel of
the above map DivX i → H 2(π1(X i )

(p′),Mi ) coincides with DX i . We claim that
the above diagram is commutative. Thus, it induces a natural map DX2→ DX1 , as
desired (in the case that g2 > 0).

To prove this claim, let x2 ∈ 6X2 . We shall investigate the images of x2 ∈

DivX2 in H 2(π1(X1)
(p′),M1) under the two (composite) maps in the above di-

agram. First, consider the special case where x2 ∈ 6X2 is k2-rational and each
point of φ−1(x2) ⊂ 6X1 is k1-rational. Then the image c1(x2) of the divisor
x2 ∈ DivX2 in H 2(π1(X2)

(p′),M2) coincides with the class of the extension 1→
M2→π1(L

×
x2
)(p
′)
→π1(X2)

(p′)
→ 1, where π1(L

×
x2
)(p
′) is the geometrically prime-

to-p fundamental group of the line bundle Lx2 corresponding to the invertible sheaf
OX2(x2) with the zero section removed [Mochizuki 2005, Lemma 4.2; Mochizuki
2003, 4.1]. Further, π1(L

×
x2
)(p
′) is naturally identified with the maximal cuspidally

central quotient π1(X2 r {x2})
(p′),c-cn of π1(X2 r {x2})

(p′). Here, for a nonempty
open subscheme Ui ⊂ X i , we define the maximal (geometrically prime-to-p) cus-
pidally central quotient π1(Ui )

(p′),c-cn to be the maximal quotient of π1(Ui )
(p′)

in which the image of Ker(π1(U i )→ π1(X i )) lies in the center of the image of
π1(U i ) [Mochizuki 2005, Lemma 4.2(iii)]. Similarly, the maximal cuspidally cen-
tral quotient π1(X1 rφ−1(x2))

(p′),c-cn of π1(X1 rφ−1(x2))
(p′) gives the extension

of π1(X1)
(p′) by

⊕
x1∈φ−1(x2)

M1 that corresponds to

(c1(x1))x1∈φ−1(x2) ∈

⊕
x1∈φ−1(x2)

H 2(π1(X1)
(p′),M1)= H 2

(
π1(X1)

(p′),
⊕

x1∈φ−1(x2)

M1

)
.

Being well-behaved (with respect to φ̃), σ induces naturally a homomorphism
π1(X1 r φ−1(x2))

(p′)
→ π1(X2 r {x2})

(p′), which is a lifting of π1(X1)
(p′)
→

π1(X2)
(p′) and which further induces a homomorphism π1(X1rφ−1(x2))

(p′),c-cn
→

π1(X2 r {x2})
(p′),c-cn. These homomorphisms fit into the commutative diagram

1 �
⊕

x1∈φ−1(x2)
M1 � π1(X1 rφ−1(x2))

(p′),c-cn
� π1(X1)

(p′)
� 1

1 � M2

g
� π1(X2 r {x2})

(p′),c-cn
g

� π1(X2)
(p′)

g
� 1,

in which both rows are exact and the left vertical arrow is
⊕

x1∈φ−1(x2)
ex1τ , by

the inertia-rigidity of σ . The commutativity of this last diagram implies that
the image of the extension class of the top row (that is, (c1(x1))x1∈φ−1(x2)) un-
der the map H 2(π1(X1)

(p′),
⊕

x1∈φ−1(x2)
M1)→ H 2(π1(X1)

(p′),M1) induced by⊕
x1∈φ−1(x2)

[ex1] coincides with the image of the extension class of the bottom
row (that is, c1(x2)) under the map H 2(π1(X2)

(p′),M2)→ H 2(π1(X1)
(p′),M1)

induced by σ and τ−1. In other words, the image of c1(x2) in H 2(π1(X1)
(p′),M1)
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coincides with
∑

x1∈φ−1(x2)
ex1c1(x1). From this follows the claim (in the special

case), since the divisor x2 maps to
∑

x1∈φ−1(x2)
ex1 x1 via the above map DivX1 →

DivX2 . Finally, consider the general case where x2 may not be k2-rational and
each point of φ−1(x2) may not be k1-rational. But this is reduced to the spe-
cial case by considering suitable open subgroups of Gi , i = 1, 2, corresponding
to constant field extensions k ′i of ki . (Here, use the fact that the natural map
H 2(π1(X i )

(p′),Mi )→ H 2(π1(X i ×ki k ′i )
(p′),Mi ) is injective, which follows from

the injectivity of the natural map JX i (ki )→ JX i (k
′

i )= JX i×ki k′i (k
′

i ).) Thus, the claim
follows.

Next, to treat the general case that we may possibly have g2 = 0, consider any
open subgroup H2 of G2 and set H1

def
= σ−1(H2), which is an open subgroup of G1.

For each i = 1, 2, let Yi be the cover of X i corresponding to the open subgroup
Hi ⊂ Gi , and `i the constant field of Yi (that is, the algebraic closure of ki in the
function field of Yi ). Now, assume that the genus of Y2 is positive. Then it follows
from the preceding argument that the homomorphism DivY1 → DivY2 maps DY1

into DY2 . In particular, by functoriality, the image of DX1 in DivX2 is mapped into
DY2 ⊂DivY2 under the natural map DivX2→DivY2 . Or, equivalently, the image of
DX1 in DivX2 /DX2 lies in the kernel of DivX2 /DX2→ DivY2 /DY2 . This last map
is identified with the natural map

PicX2 /(JX2(k2){p})→ PicY2 /(JY2(`2){p})

induced by the pull-back of line bundles. Thus, by considering the norm map,
we see that the kernel in question is killed by the degree [G2 : H2] of the cover
Y2→ X2, and hence so is the image of DX1 in DivX2 /DX2 .

Observe that the greatest common divisor of [G2 : H2], where H2 runs over all
open subgroups of G2 such that the corresponding cover has positive genus, is 1.
(Indeed, if g2 > 0, this is trivial, and, if g2 = 0, this follows, for example, from
Kummer theory.) Thus, the image of DX1 in DivX2 /DX2 must be trivial, as desired.

(ii) For i = 1, 2, let D̃X i denote the inverse image of DX i ⊂DivX i (⊂ D̂ivX i ) in
H 1(Gi ,Mi ). It follows from (i) and the commutativity of diagram (4.3) that the
natural injective homomorphism H 1(G2,M2) ↪→ H 1(G1,M1) induces a natural
injective homomorphism D̃X2 ↪→ D̃X1 . Since K×i is the inverse image of PriX i ⊂

DivX i in H 1(Gi ,Mi ) [Mochizuki 2007, Proposition 2.1(ii)], we have

D̃X i /K×i
∼
→ DX i /PriX i

∼
→ JX i (ki ){p}.

Thus, the injective homomorphism D̃X2 ↪→ D̃X1 induces (K×2 )
pn
↪→ K×1 , or, equiv-

alently, K×2 ↪→ (K×1 )
p−n

.
Since γ (K×2 )/(γ (K

×

2 )∩K×1 ) is injectively mapped into D̃X1/K×1
∼
→ JX1(k1){p},

which is finite, γ (K×2 ) ∩ K×1 is of finite index in γ (K×2 ). Next, suppose that
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γ (K×2 )= γ (K
×

2 )∩ (K
×

1 )
p, or, equivalently, γ (K×2 )⊂ (K

×

1 )
p. By the assumption

that a = 0, there exists an x1 ∈ 6X1 such that ex1 = et
x1

. In particular, ex1 is prime
to p. Set x2

def
= φ(x1) ∈ 6X2 and take any g ∈ K×2 such that ordx2(g) = 1. Then,

by the commutativity of diagram (4.3), we have ordx1(γ (g))= ex1 ordx2(g)= ex1 ,
which is prime to p. On the other hand, since γ (g) ∈ (K×1 )

p, ordx1(γ (g)) must be
divisible by p, which is absurd.

Finally, the desired commutativity of diagram follows easily from the functori-
ality of Kummer theory. �

Next, let x1 ∈6X1 and set x2
def
= φ(x1)∈6X2 . Then (by choosing x̃1 ∈6X̃1

above
x1 and x̃2 ∈6X̃2

above x2 such that φ̃(x̃1)= x̃2) we have the natural commutative
diagram

H 1(G1,M1) � H 1(Dx̃1,M1) � H 1(Ix̃1,M1)

H 1(G2,M2)

f

� H 1(Dx̃2,M2)

f

� H 1(Ix̃2,M2),

f

where the horizontal arrows are natural restriction maps and the vertical arrows are
induced by (σ, τ−1). By Kummer theory, this diagram can be identified with the
natural commutative diagram

(K×1 )
∧p′

� ((K1)
∧

x1
)∧p′ ordx1

� Ẑp′

(K×2 )
∧p′

f

� ((K2)
×

x2
)∧p′

f

ordx2
� Ẑp′,

f
(4.4)

where the left horizontal arrows in the two rows arise from natural field homo-
morphisms K1→ (K1)x1 and K2→ (K2)x2 and the vertical arrows are induced by
(σ, τ−1). Further, the kernels of

((K1)
×

x1
)∧p′ ordx1
−→ Ẑp′ and ((K2)

×

x2
)∧p′ ordx2
−→ Ẑp′

are naturally identified with

H 1(Gk(x1),M1)= (k(x1)
×)∧p′
=k(x1)

× and H 1(Gk(x2),M2)= (k(x2)
×)∧p′
=k(x2)

×,

respectively. Thus, in particular, the homomorphism ((K2)
×
x2
)∧p′
→ ((K1)

×
x1
)∧p′

naturally induces a homomorphism ιx1 : k(x2)
×
→ k(x1)

× that is identified with
the homomorphism H 1(Gk(x2),M2)→H 1(Gk(x1),M1) induced by (σ, τ−1). Here,
the last homomorphism is injective by the fact H 0(Hk(x1),M2) = 0, where Hk(x1)

stands for the (isomorphic) image of Gk(x1) in Gk(x2), which is open in Gk(x2).
We have two natural field homomorphisms K1→ K p−n

1 : the first one is a natural
embedding i : K1 ↪→ K p−n

1 of degree pn and the second one is the isomorphism
j : K1

∼
→ K p−n

1 induced by the p−n-th power map. According to these, we obtain
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two scheme morphisms X p−n

1 → X1, where X p−n

1 stands for the integral closure of
X1 in K p−n

1 . First, for closed points, these two morphisms give the same bijection

π :6
X p−n

1

∼
→6X1 .

Let x1 ∈ 6X1 and set x p−n

1
def
= π−1(x1). The two field homomorphisms i and j

induce two isomorphisms k(x1)→ k(x p−n

1 ) of residue fields, which we shall denote
by ī(x1) and j̄(x1), respectively. Then we have ī(x1)= Fn

◦ j̄(x1), where F stands
for the pth power Frobenius map. Now, for valuations of functions, we have

ord
x p−n

1
◦ i = pn ordx1, ord

x p−n
1
◦ j = ordx1 .

Finally, for values of functions, we have

i( f )(x p−n

1 )= ī(x1)( f (x1)), j ( f )(x p−n

1 )= j̄(x1)( f (x1))

for each f ∈K×1 with ordx1( f )≥0. Thus, in particular, i( f )(x p−n

1 )= j ( f )(x p−n

1 )pn
.

Lemma 4.14. Let γ : K×2 ↪→ (K×1 )
p−n

be the injective homomorphism in Lemma
4.13. Let x1 ∈6X1 and set x2

def
= φ(x1) ∈6X2 . Then:

(i) For each g ∈ K×2 , we have

ord
x p−n

1
(γ (g))= pnex1 ordx2(g).

(Namely, γ is order-preserving with respect π−1
◦φ. See Definition 5.1.)

(ii) For each g∈K×2 with ordx2(g)=0, we have (γ (g))(x p−n

1 )= i(x1)(ιx1(g(x2))).
(Namely, γ is value-preserving with respect π−1

◦φ and

{i(x1) ◦ ιx1}x p−n
1 ∈6

X p−n
1

.

See Definition 5.2.)

Proof. (i) and (ii) follow immediately from the commutativity of diagrams (4.3)
and (4.4). �

Fix a prime number l 6= p. For each i = 1, 2, let kl
i be the (unique) Zl-

extension of ki , set K l
i

def
= Ki kl

i , and write X l
i for the normalization of X i in

K l
i . (Thus, X l

i = X i ×ki kl
i .) Then the p-primary abelian subgroup JX i (k

l
i ){p}

of JX i (k
l
i ) is finite for i = 1, 2. (See, for example, [Rosen 2002, Theorem 11.6]

or [Saïdi and Tamagawa 2009, proof of Theorem 3.7].) So, write pn0 for the
exponent of JX1(k

l
1){p}. By passing to the limit over the finite extensions of ki

contained in kl
i for i = 1, 2 (see Lemma 4.13(ii)), we get a natural embedding

(K l
2)
× ↪→ ((K l

1)
×)p−n0 . Now we apply a result from Section 5. (Observe that there

are no vicious circles since the discussion of Section 5 does not depend on the con-
tents of earlier sections.) More specifically, by Lemma 4.14 and Proposition 5.3,
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the embedding (K l
2)
× ↪→ ((K l

1)
×)p−n0 above arises from a (uniquely determined)

embedding K l
2 ↪→ (K l

1)
p−n0 of fields. This embedding of fields restricts to the

original embedding of multiplicative groups K×2 ↪→ (K×1 )
p−n

. Thus, we conclude
that this original embedding also arises from a (uniquely determined) embedding
K2 ↪→ K p−n

1 of fields.
Define the subfields K2 ⊃ K ′2 ⊃ K ′′2 to be the inverse images of the subfields

K p−n

1 ⊃ K1 ⊃ K p
1 in K2. By Lemma 4.13(ii), there exists a finite subset S ⊂ K2

such that K2 =
⋃
α∈S K ′2α. Since K2 is an infinite field, this implies that K ′2 is

also an infinite field and that K2 must be of dimension 1 as a K ′2-vector space.
Namely, K2 = K ′2, or, equivalently, the above field homomorphism K2 ↪→ K p−n

1
induces a field homomorphism γ : K2 ↪→ K1. Next, again by Lemma 4.13(ii), we
have [K×2 : (K

′′

2 )
×
] > 1, that is, K2 ) K ′′2 . Equivalently, the field homomorphism

K2 ↪→ K1 is separable.
Passing to the open subgroups H1⊂G1, H2⊂G2 with σ(H1)⊂H2 and applying

the above arguments to H1
σ
→ H2, we obtain naturally a (separable) field homomor-

phism γ̃ : K̃2→ K̃1 which restricts to the above (separable) field homomorphism
K2→ K1.

Lemma 4.15 (compatibility with the Galois action). Let g1 ∈ G1, and let g2
def
=

σ(g1) ∈G2. Then the following diagram is commutative:

K̃2
γ̃
� K̃1

K̃2

g2

f

γ̃
� K̃1.

g1

f

Proof. Let H2 ⊂G2 be an open normal subgroup and set

H1
def
= σ−1(H2),

which is an open normal subgroup of G1. For i = 1, 2, let Fi/Ki be the finite
Galois subextension of K̃i/Ki corresponding to Hi ⊂ Gi , and denote by Yi the
integral closure of X i in Fi . We have commutative diagrams

H 1(H2,M2) � H 1(H1,M1)

H 1(H2,M2)

g2

f

� H 1(H1,M1),

g1

f

where gi : H 1(Hi ,Mi )→ H 1(Hi ,Mi ) denotes the automorphism induced by the
action of gi on Hi , and the horizontal maps are naturally induced by (σ, τ−1) (see
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Lemma 4.11(i)), and
D̂ivY2 � D̂ivY1

D̂ivY2

g2
f

� D̂ivY1,

g1
f

where the map gi : D̂ivYi → D̂ivYi is the automorphism naturally induced by the
action of gi on Yi (see Remark 4.2(iv)). Further, the above diagrams commute with
each other, via the maps H 1(Hi ,Mi )→ D̂ivYi in diagram (4.3) for i = 1, 2. Note
that in the above diagrams the map gi : H 1(Hi ,Mi )→ H 1(Hi ,Mi ) restricted to
F×i coincides with the automorphism gi : F×i → F×i . Therefore, we deduce this
commutative diagram, from which the assertion follows:

F×2
γ̃
� F×1

F×2

g2
f

γ̃
� F×1 .

g1
f

�

Finally, we shall prove the uniqueness of the field homomorphism γ̃ : K̃2→ K̃1

that is Galois-compatible with respect to σ and restricts to a separable homomor-
phism K2→ K1. In the profinite case, this uniqueness follows formally from the
uniqueness in the assertion of the Isom-form proved in [Uchida 1977], as in the
case of rigid homomorphisms in Section 3. (Observe that γ̃ : K̃2 → K̃1 is then
an isomorphism.) In general, however, we need some arguments which are not
entirely formal, as follows.

So, let γ̃ ′ : K̃2→ K̃1 be another such field homomorphism. The field homomor-
phisms γ̃ and γ̃ ′ induce field isomorphisms k2

∼
→ k1, say, γ̄ and γ̄ ′, respectively,

which are Galois-compatible with respect to σ . We may write γ ′ = ϕα1 ◦ γ for
some α ∈ Ẑ, where ϕ1 ∈ Gal(k1/Fp) stands for the pth power Frobenius element.
Further, the isomorphisms γ̄ and γ̄ ′ induce Ẑp′-module isomorphisms M2

∼
→ M1,

say, τ−1 and (τ ′)−1, respectively, which are Galois-compatible with respect to σ .
Thus, we have (τ ′)−1

= [pα] ◦ τ−1. By Kummer theory, we have the commutative
diagrams

K×1 ⊂ � H 1(G1,M1)

K×2

γ
f

⊂ � H 1(G2,M2),

(σ,τ−1)
f

and

K×1 ⊂ � H 1(G1,M1)

K×2

γ ′
f

⊂ � H 1(G2,M2).

(σ,(τ ′)−1)
f

Thus, for each g ∈ K×2 , we have γ ′(g)= γ (g)pα in (K×1 )
∧p′ . Since both γ and γ ′

are field homomorphisms, we deduce that pα ∈ Q>0, by taking a nonconstant
function g and considering valuations at suitable points. Thus, α∈Z, by [Chevalley
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1951, théorème 1]. Exchanging γ and γ ′ if necessary, we may assume that α ≥ 0.
Thus, γ ′ = Fα ◦ γ , where F stands for the pth power Frobenius map. Since γ ′ is
separable, we conclude α = 0, and hence γ ′ = γ . Passing to the open subgroups
H1 ⊂G1, H2 ⊂G2 with σ(H1)⊂ H2, we conclude that γ̃ : K̃2→ K̃1 is unique.

Thus, the proof of Theorem 4.8 is completed. �

5. Recovering the additive structure

This section is devoted to the proof of Proposition 5.3, which was used in the proof
of Theorem 4.8. We shall first axiomatize the set-up. We will use the following
notations. For i ∈ {1, 2}, let X i be a proper, smooth, geometrically connected curve
over a field ki of characteristic pi ≥ 0. Let Ki = K X i be the function field of X i ,
and 6X i the set of closed points of X i . Let

ι : K×2 ↪→ K×1

be an embedding between multiplicative groups, which we extend to an embedding
ι : K2 ↪→ K1 between multiplicative monoids by setting ι(0)= 0. We assume that
we are given a map

φ :6X1 →6X2

that has finite fibers, that is, for any x2 ∈ X2, the inverse image φ−1(x2) ⊂ 6X1 is
a finite set.

Definition 5.1 (order-preserving maps). The map ι : K2 → K1 is called order-
preserving with respect to the map φ if, for any x2 ∈ 6X2 and any x1 ∈ φ

−1(x2),
there exists a positive integer ex1x2 > 0 such that the following diagram commutes:

K1
ordx1
� Z∪ {∞}

K2

ι
f

ordx2
� Z∪ {∞}.

[ex1x2 ]
f

Here, [ex1x2] denotes the map of multiplication by ex1x2 in Z, which we extend
naturally to Z∪ {∞} by mapping∞ to∞.

Next, we assume that the map ι : K2→ K1 is order-preserving with respect to
the map φ :6X1 →6X2 . Further, we assume that we are given an embedding

ιx1x2 : k(x2)
× ↪→ k(x1)

×

between multiplicative groups for any x2 ∈6X2 and any x1 ∈ φ
−1(x2).

Definition 5.2 (value-preserving maps). The map ι : K2 ↪→ K1 is called value-
preserving with respect to the map φ and the embeddings {ιx1x2}(x1,x2), where
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(x1, x2) runs over all pairs of points x2 ∈6X2 and x1 ∈ φ
−1(x2) if, for any f2 ∈ K×2

and any point x2 ∈6X2 such that x2 ∩Supp div( f2)=∅, we have

ιx1,x2( f2(x2))= ι( f2)(x1),

where f2(x2) denotes the value of f2 at x2 and ι( f2)(x1) the value of ι( f2) at x1.

If ι : K2 ↪→ K1 is value-preserving, it particularly fits into the commutative
diagram

k(x2)
×

ιx1x2
� k(x1)

×

k×2

f

ι
� k×1 ,

f

where the vertical maps are the natural embeddings. (Observe that ι maps k2 into
k1, by the order-preserving assumption.)

Proposition 5.3 (recovering the additive structure). Assume that the embedding
ι : K2 ↪→ K1 is order-preserving with respect to the map φ, and value-preserving
with respect to the map φ and the embeddings {ιx1x2}(x1,x2), where the pair (x1, x2)

runs over all points x2 ∈ 6X2 and x1 ∈ φ
−1(x2). Assume further that X2(k2) is an

infinite set. Then the map ι is additive (and hence, a homomorphism of fields).

Proof. First, we shall prove that ι−1(k1)= k2. (Namely, f ∈ K2 is constant if and
only if ι( f ) ∈ K1 is constant.) Indeed, set F2

def
= ι−1(k1). Note that k×i coincides

with the set of functions in K×i with neither zeroes nor poles (or, equivalently, with
no poles) anywhere in 6X i . Now, by the order-preserving property of ι, F2 r {0}
coincides with the set of functions in K×2 with neither zeroes nor poles (or, equiva-
lently, with no poles) in φ(6X1)⊂6X2 . It follows easily from this characterization
that F2 is a subfield of K2 containing k2. Since K2 is a function field of one variable
over k2 and since k2 is algebraically closed in K2, we have either F2 = k2 or that
F2 is also a function field of one variable over k2. Suppose the latter, and let W2 be
the (proper, smooth, geometrically connected) curve over k2 with function field F2.
Take any point x1 ∈6X1 and let w ∈6W2 be the image of x1 under the composite
map

6X1

φ
→6X2 →6W2,

where the second map arises from the cover X2→W2 corresponding to the exten-
sion L2/F2. Now, by the Riemann–Roch theorem, there exists a function f ∈ F2

having a pole at w. By the order-preserving property of ι, the function ι( f ) ∈ K1

must have a pole at x1. This contradicts the definition of F2. Therefore, we must
have F2 = k2, as desired.

We prove that φ : 6X1 → 6X2 is surjective. Suppose otherwise and take x2 ∈

6X2 r φ(6X1) 6= ∅. By the Riemann–Roch theorem, there exists a nonconstant
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function f ∈ K2 such that the pole divisor of f is supported on x2 ∈ 6X2 . Then,
by the order-preserving property of ι, the function ι( f ) ∈ K1 admits no poles, and
hence ι( f ) ∈ k1. As ι−1(k1)= k2, we thus have f ∈ k2, which is absurd.

The rest of the proof is similar to the proof of [Saïdi and Tamagawa 2009,
Proposition 4.4], where φ is a bijection. We first prove that ι restricted to k2 is
additive. Again by the Riemann–Roch theorem, there exists a nonconstant function
f ∈ K2 such that the pole divisor div( f )∞ of f is supported on a unique point
x2 ∈ 6X2 : div( f )∞ = nx2, with n > 0. For a nonzero constant α ∈ k2 we analyze
the divisor of the function ι( f +α)− ι( f ). We claim that

Supp div(ι( f +α)− ι( f ))⊂ φ−1(x2).

Indeed, if y1 ∈ 6X1 is such that y2
def
= φ(y1) 6= x2, then ordy1(ι( f + α)) ≥ 0, and

ordy1(ι( f )) ≥ 0. Moreover, ι( f + α)(y1) 6= ι( f )(y1), as follows from the value-
preserving assumption, since ( f +α)(y1) 6= f (y1). Thus,

y1 /∈ Supp div(ι( f +α)− ι( f ))

and our claim follows. Further, if x1 ∈ φ
−1(x2) is a pole of ι( f + α)− ι( f ), we

have |ordx1(ι( f + α)− ι( f ))| ≤ nex1x2 . We deduce easily from this that there are
only finitely many possibilities for the divisor div(ι( f + α)− ι( f )). Since k2 is
infinite (X2(k2) being infinite), there exists an infinite subset A ⊂ k×2 such that
div(ι( f +α)− ι( f )) is constant, for all α ∈ A.

Let α 6= β be elements of A. Then div(ι( f +α)− ι( f ))= div(ι( f +β)− ι( f )),
which implies

ι( f +β)− ι( f )
ι( f +α)− ι( f )

= c ∈ k×1 .

Observe that ι( f + α)− ι( f ) 6= 0, by the injectivity of ι. Further, c = ι(β)/ι(α),
as is easily seen by evaluating the function

ι( f +β)− ι( f )
ι( f +α)− ι( f )

at a zero of the nonconstant function ι( f ). Thus, we have ι(β)(ι( f +α)− ι( f ))=
ι(α)(ι( f +β)− ι( f )), which is equivalent to

ι( f )(ι(α)− ι(β))= ι(α)ι( f +β)− ι(β)ι( f +α).

Let
g def
=
β( f +α)
(α−β) f

=
β(1+α f −1)

(α−β)
.

Note that g is a nonconstant function, since f is nonconstant. We have

g+ 1=
β( f +α)
(α−β) f

+
(α−β) f
(α−β) f

=
βα+α f
α f −β f

=
α(β + f )
(α−β) f

.
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Dividing this equality by ι(α−β)ι( f ) 6= 0, we obtain

ι(α)− ι(β)

ι(α−β)
=
ι(α)ι( f +β)− ι(β)ι(α+ f )

ι(α−β)ι( f )
.

Thus,
ι(α)− ι(β)

ι(α−β)
=
ι(α)ι( f +β)
ι(α−β)ι( f )

−
ι(β)ι(α+ f )
ι(α−β)ι( f )

,

which equals ι(g+ 1)− ι(g). Further,

ι(α)− ι(β)

ι(α−β)
= 1,

as follows by evaluating the function ι(g+ 1)− ι(g) at a zero of the nonconstant
function ι(g). Thus,

ι(g+ 1)= ι(g)+ 1.

Take any ζ ∈ k2. Then, evaluating this equation at a zero of ι(g− ζ ), we obtain
ι(ζ +1)= ι(ζ )+1. Now, for any ξ, η ∈ k2, we have ι(ξ+η)= ι(ξ)+ ι(η). Indeed,
if η = 0, this follows from ι(0)= 0. If η 6= 0, we have

ι(ξ + η)= ι
(
ξ

η
+ 1

)
ι(η)=

(
ι
(
ξ

η

)
+ 1

)
ι(η)= ι(ξ)+ ι(η).

Thus, ι|k2 is additive.
From this it follows easily that ι itself is additive. Indeed, let h and l be any

elements of K2, and let us prove ι(h+l)= ι(h)+ ι(l). Take any x2 ∈ X2(k2) which
is neither a pole of h nor a pole of l. Then, evaluating at any x1 ∈ φ

−1(x2), we
obtain

(ι(h+ l))(x1)= ιx1x2((h+ l)(x2))

= ιx1x2(h(x2)+ l(x2))

= ι(h(x2)+ l(x2))

= ι(h(x2))+ ι(l(x2))

= ιx1x2(h(x2))+ ιx1x2(l(x2))

= (ι(h))(x1)+ (ι(l))(x1)

= (ι(h)+ ι(l))(x1),

where the first and the sixth equalities follow from the value-preserving property,
the second and the last equalities follow from the additivity of the evaluation maps,
the third and the fifth equalities follow from the value-preserving property and the
fact that h(x2), l(x2)∈ k2 (since x2 ∈ X2(k2)), and the fourth equality follows from
the additivity of ι|k2 . Now, since there are infinitely many such x1 by assumption,
the equality ι(h+ l)= ι(h)+ ι(l) must hold. Thus, Proposition 5.3 is proved. �
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Local positivity, multiplier ideals,
and syzygies of abelian varieties
Robert Lazarsfeld, Giuseppe Pareschi and Mihnea Popa

We use the language of multiplier ideals in order to relate the syzygies of an
abelian variety in a suitable embedding with the local positivity of the line bundle
inducing that embedding. This extends to higher syzygies a result of Hwang and
To on projective normality.

Introduction

Hwang and To [2010] observed that there is a relation between local positivity on
an abelian variety A and the projective normality of suitable embeddings of A. The
purpose of this note is to extend their result to higher syzygies, and to show that
the language of multiplier ideals renders the computations extremely quick and
transparent.

Turning to details, let A be an abelian variety of dimension g, and let L be an
ample line bundle on A. Recall that the Seshadri constant ε(A, L) is a positive
real number that measures the local positivity of L at any given point x ∈ A: for
example, it can be defined by counting asymptotically the number of jets that the
linear series |kL | separates at x as k→∞. We refer to [Lazarsfeld 2004, Chapter
5] for a general survey of the theory, and in particular to Section 5.3 of that book
for a discussion of local positivity on abelian varieties.

Our main result is this:

Theorem A. Assume that

ε(A, L) > (p+ 2)g.

Then L satisfies property (Np).

The reader may consult for instance [Lazarsfeld 2004, Chapter 1.8.D], [Green
and Lazarsfeld 1987] or [Eisenbud 2005] for the definition of property (Np) and

The first author’s research was partially supported by NSF grant DMS-0652845. The third author’s
research was partially supported by NSF grant DMS-0758253 and a Sloan Fellowship.
MSC2000: primary 14K05; secondary 14Q20, 14F17.
Keywords: Syzygies, abelian varieties, local positivity, multiplier ideals.
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further references. Suffice it to say here that (N0) holds when L defines a pro-
jectively normal embedding of A, while (N1) means that the homogeneous ideal
of A in this embedding is generated by quadrics. For p > 1 the condition is that
the first p modules of syzygies among these quadrics are generated in minimal
possible degree. The result of Hwang and To [2010] is essentially the case p = 0
of Theorem A.

In general it is difficult to control Seshadri constants. However, it was shown in
[Lazarsfeld 1996] that on an abelian variety they are related to a metric invariant
introduced in [Buser and Sarnak 1994]. Specifically, write A = V/3, where V is
a complex vector space of dimension g and 3⊆ V is a lattice. Then L determines
a hermitian form h = hL on V , and the Buser–Sarnak invariant is (the square of)
the minimal length with respect to h of a nonzero period of 3:

m(A, L) := min
06=`∈3

hL(`, `).

The main result of [Lazarsfeld 1996] is that

ε(A, L)≥ π
4
·m(A, L).

On the other hand, one can estimate m(A, L) for very general (A, L). In fact,
suppose that the polarization L has elementary divisors

d1 | d2 | · · · | dg,

and put d = d(L)= d1 · · · · · dg. By adapting an argument of Buser–Sarnak in the
case of principal polarizations, Bauer [1998] showed that if (A, L) is very general,
then

m(A, L)≥ 21/g

π
g
√

d · g!.

Therefore we obtain:

Corollary B. Assume that

d(L) > 4g(p+2)ggg

2g!
.

Then (Np) holds for very general (A, L) of the given type.

The essential interest in statements of this sort occurs when L is primitive (that
is, d1 = 1), or at least when d1 is small: as far as we know, our result is the first to
give statements for higher syzygies of primitive line bundles in large dimension.
By contrast, if L is a suitable multiple of some ample line bundle, then much
stronger statements are known. Most notably, the second author proved in [Pareschi
2000] that (Np) always holds as soon as d1 ≥ p+ 3. This was strengthened and
systematized in [Pareschi and Popa 2003; 2004], while (for p=0) other statements
appear in [Iyer 2003] and [Fuentes García 2005].
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We conclude this introduction by sketching a proof of the theorem of [Hwang
and To 2010] via the approach of the present paper. Following a time-honored
device, one considers the diagonal 1⊆ A× A, with ideal sheaf I1. Writing

L � L = pr∗1 L ⊗ pr∗2 L

for the exterior product of L with itself, the essential point is to prove

H 1(A× A, L � L ⊗I1
)
= 0. (*)

Hwang and To [2010] achieve this by establishing a somewhat delicate upper bound
on the volume of a one-dimensional analytic subvariety of a tubular neighborhood
of 1 (or, more generally, of a tubular neighborhood of any subtorus of an abelian
variety). This allows them to control the positivity required to apply vanishing
theorems on the blow-up of A×A along1. While their calculation is of substantial
independent interest, for the task at hand it is considerably quicker to deduce (*)
directly from Nadel vanishing.

Specifically, using the hypothesis that ε(A, L) > 2g, a standard argument (see
Lemma 1.2) shows that for suitable 0 < c � 1, one can construct an effective
Q-divisor

E0 ≡num
1− c

2
L

on A whose multiplier ideal vanishes precisely at the origin: J(A, E0)= I0. Now
consider the difference map

δ : A× A→ A, (x, y) 7→ x − y,

and set E = δ∗E0. Since forming multiplier ideals commutes with pullback under
smooth morphisms, we have on the one hand

J(A× A, E)= δ∗J(A, E0)= I1.

On the other hand, one knows that

L2 � L2
= δ∗(L)⊗ N (∗∗)

for a suitable nef line bundle N on A× A. Thanks to our choice of E0, this implies
that (L � L)(−E) is ample. Therefore Nadel vanishing gives (*), as required.

The proof of the general case of Theorem A proceeds along similar lines. Fol-
lowing an idea going back to Green [1984], one works on the (p+2)-fold product
of A, where one has to check a vanishing involving the ideal sheaf of a union of
pairwise diagonals.1 To realize this as a multiplier ideal, we pull back a suitable

1The possibility of applying vanishing theorems on a blow-up to verify Green’s criterion was
noted already in [Bertram et al. 1991, Remark on p. 600]. Nowadays one can invoke the theory of [Li
2009] to control the blow-ups involved: the pairwise diagonals 10,1, . . . ,10,p+1 form a building
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divisor under a multisubtraction map: this is carried out in Section 1. The positivity
necessary for Nadel vanishing is verified using an analogue of (∗∗) established in
Section 2. Finally, Section 3 contains some complements and variants, including a
criterion for L to define an embedding in which the homogeneous coordinate ring
of A is Koszul.

For applications of Nadel vanishing, one typically has to estimate the positivity
of formal twists of line bundles by Q-divisors. To this end, we allow ourselves
to be a little sloppy in mixing additive and multiplicative notation. Thus, given a
Q-divisor D and a line bundle L , the statement D ≡num bL is intended to mean
that D is numerically equivalent to b · c1(L). Similarly, to say that (bL)(−D) is
ample indicates that b · c1(L)− D is an ample numerical class. We trust that no
confusion will result.

1. Proof of Theorem A

As in the Introduction, let A be an abelian variety of dimension g, and let L be an
ample line bundle on A.

We start by recalling a geometric criterion that guarantees property (Np) in our
setting. Specifically, form the (p+ 2)-fold product X = A×(p+2) of A with itself,
and inside X consider the reduced algebraic set

6=
{
(x0, . . . , x p+1) | x0= xi for some 1≤ i ≤ p+ 1

}
=10,1∪10,2∪ . . .∪10,p+1

arising as the union of the indicated pairwise diagonals. Thus 6 has p + 1 irre-
ducible components, each of codimension g in X .

It was observed by Green [1984, §3] that property (Np) for L is implied by
a vanishing on X involving the ideal sheaf of I6 , generalizing the condition (*)
for projective normality. We refer to [Inamdar 1997] for a statement and care-
ful discussion of the criterion in general.2 In the present situation, it shows that
Theorem A is a consequence of the following:

Proposition 1.1. Assume that ε(A, L) > (p+ 2)g. Then

H i
(

A×(p+2),
p+2
� L ⊗ Q⊗I6

)
= 0

for any nef line bundle Q on X and all i > 0.3

set in the sense of [Li 2009] on the (p + 2)-fold self product of a smooth variety. However, in the
case of abelian varieties treated here, elementary properties of multiplier ideals are used to obviate
the need for any blow-ups.

2The argument appearing in [Green 1984] is somewhat oversimplified.
3As explained in [Inamdar 1997] one actually needs the vanishings

H1(A×(p
′
+2), Lq � L � · · ·� L ⊗I6

)
= 0
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The plan is to deduce the proposition from Nadel vanishing. To this end, it
suffices to produce an effective Q-divisor E on X having two properties:

J(X, E)= I6. (1-1)( p+2
� L

)
(−E) is ample. (1-2)

The rest of this section is devoted to the construction of E and the verification of
these requirements.

The first point is quite standard:

Lemma 1.2. Assuming that ε(A, L) > (p+2)g, there exists an effective Q-divisor
F0 on A having the properties that

F0 ≡num
1− c
p+ 2

L

for some 0< c� 1, and

J(A, F0)= I0.

Here naturally I0 ⊆ OA denotes the ideal sheaf of the origin 0 ∈ A.

Proof of Lemma 1.2. We claim that for suitable 0< c� 1 and sufficiently divisible
k� 0, there exists a divisor D ∈ |k(1− c)L | with

mult0(D)= (p+ 2)gk,

where, in addition, D has a smooth tangent cone at the origin 0 ∈ A and is non-
singular away from 0. Granting this, it suffices to put F0 = (1/(p+2)k)D. As for
the existence of D, let

ρ : A′ = Bl0(A)→ A

be the blowing up of A at 0, with exceptional divisor T ⊆ A′. Then, by definition
of ε(A, L), the class (1−c)ρ∗L−(p+2)gT is ample on A′ for 0< c� 1. If D′ is
a general divisor in the linear series corresponding to a large multiple of this class,
Bertini’s theorem on A′ implies that D = ρ∗(D′) has the required properties. �

Now form the (p + 1)-fold product Y = A×(p+1) of A with itself, and write
pri : Y → A for the i-th projection. Consider the reduced algebraic subset

3=

p+1⋃
i=1

pr−1
i (0)=

{
(y1, . . . , yp+1) | yi = 0 for some 1≤ i ≤ p+ 1

}
.

for 0≤ p′ ≤ p and q ≥ 1, but these are all implied by the assertion of Proposition 1.1.
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We wish to realize I3 as a multiplier ideal, to which end we simply consider the
exterior sum of the divisors F0 just constructed. Specifically, put

E0 =

p+1∑
i=1

pr∗i (F0).

Thanks to [Lazarsfeld 2004, 9.5.22], one has

J(Y, E0)=

p+1∏
i=1

pr∗i J(A, F0)=

p+1∏
i=1

pr∗i I0,

that is, J(Y, E0)= I3, as desired.
Next, consider the map

δ = δp+1 : A×(p+2)
→ A×(p+1),

(x0, x1, . . . , x p+1) 7→ (x0− x1, . . . , x0− x p+1),
(1-3)

and note that 6 = δ−13 (scheme-theoretically). Set

E = δ∗(E0).

Forming multiplier ideals commutes with pulling back under smooth morphisms
[Lazarsfeld 2004, 9.5.45]; hence

J(X, E)= δ∗J(Y, E0)= δ
∗I3 = I6,

and thus (1-1) is satisfied.
In order to verify (1-2), we use the following assertion, which will be established

in the next section.

Proposition 1.3. There is a nef line bundle N on X = A×(p+2) such that

δ∗
( p+1

� L
)
⊗ N =

p+2
� L p+2. (1-4)

Granting this, the property (1-2) — and with it, Proposition 1.1 — follows easily.
Indeed,

E ≡num
1− c
p+ 2

·

(
δ∗
( p+1

� L
))
.

Therefore (1-4) implies that( p+2
� L

)
(−E)≡num c ·

( p+2
� L

)
+

1− c
p+ 2

· N ,

which is ample. This completes the proof of Theorem A.
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2. Proof of Proposition 1.3

Let A be an abelian variety and p a nonnegative integer. Define the maps

b : A×(p+2)
→ A, (x0, x1, . . . , x p+1) 7→ x0+ x1+ · · ·+ x p+1,

and for any 0≤ i < j ≤ p+ 1,

di j : A×(p+2)
→ A, (x0, x1, . . . , x p+1) 7→ xi − x j .

Recall the map δ from the previous section:

δ : A×(p+2)
→ A×(p+1), (x0, x1, . . . , x p+1) 7→ (x0− x1, . . . , x0− x p+1).

Proposition 1.3 follows from the following more precise statement.4

Proposition 2.1. For any ample line bundle L on A, we have

δ∗
( p+1

� L
)
⊗ (b∗L)⊗

( ⊗
1≤i< j

d∗i j L
)
=

p+1
�

k=0

(
L p+2−k

⊗ (−1)∗Lk).
Let

a : A× A→ A and d : A× A→ A

be the addition and subtraction maps, P be a normalized Poincaré line bundle on
A× Â, and φL : A→ Â be the isogeny induced by L . We use the notation

P = (1×φL)
∗P and Pi j = pr∗i j P,

where pri j : A×(p+2)
→ A× A is the projection on the (i, j)-factor. We will use

repeatedly the following standard facts.

Lemma 2.2. The following identities hold:

(i) a∗L ∼= (L � L)⊗ P;

(ii) d∗L ∼= (L � (−1)∗L)⊗ P−1;

(iii) pr∗13 P ⊗ pr∗23 P ∼= (a× 1)∗P on the triple product A× A× A.

Proof. Identity (i) is well known (see for example [Mumford 1970, p. 78]) and
follows from the seesaw principle. Identity (ii) can then be deduced similarly using
the seesaw principle, or from (i) by noting that d = a ◦ (1,−1). This gives

d∗L ∼= (1× (−1))∗
(
(L � L)⊗ (1×φL)

∗P
)

∼= (L � (−1)∗L)⊗ (1× ((−1) ◦φL))
∗P

∼= (L � (−1)∗L)⊗ (1×φ(−1)∗L)
∗(1,−1)∗P

∼= (L � (−1)∗L)⊗ (1×φL)
∗P−1,

4Note that L and (−1)∗L differ by a topologically trivial line bundle.
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where the last isomorphism follows from the well-known identity

((−1)× 1)∗P∼= (1× (−1))∗P∼= P−1.

Identity (iii) follows from the formula

pr∗13P⊗ pr∗23P∼= (a, 1)∗P

on A× A× Â, which in turn is easily verified using the seesaw principle (see, for
example, the proof of Mukai’s inversion theorem [1981, Theorem 2.2]). �

Proposition 2.1 follows by putting together the formulas in the next Lemma.

Lemma 2.3. If L is an ample line bundle on A, the following identities hold:

(i) b∗L ∼=
( p+2

� L
)
⊗

(⊗
i< j

Pi j

)
;

(ii) d∗i j L ∼=
(

OA � · · ·� L
i
� · · ·� (−1)∗L

j
� · · ·� OA

)
⊗ P−1

i j for all i < j ;

(iii) δ∗
( p+1

� L
)
∼=
(
L p+1 � (−1)∗L � · · ·� (−1)∗L

)
⊗ P−1

01 ⊗ · · ·⊗ P−1
0,p+1.

Proof. (i) If p= 0 this is Lemma 2.2(i). We can inductively obtain the formula for
some p > 0 from that for p− 1 by noting that b (= bp+2)= (a, id) ◦ bp+1, where
bk denotes the addition map for k factors, a is the addition map on the first two
factors, and id is the identity on the last p factors. Therefore, inductively we have

b∗L ∼= (a, id)∗
(( p+1

� L
)
⊗

(⊗
i< j

Pi j

))
.

The formula follows then by using Lemma 2.2(i) for the addition map a on the first
two factors, and Lemma 2.2(iii) for the combination of the first two factors with
any of the other p factors.

(ii) This follows simply by noting that di j = d ◦ pi j , where pi j is the projection on
the (i, j) factors and d is the difference map. We then apply Lemma 2.2(ii).

(iii) Note that δ = (d01, . . . , d0,p+1). Therefore

δ∗
( p+1

� L
)
∼= d∗01L ⊗ · · ·⊗ d∗0,p+1L .

One then applies the formula in (ii). �

In order to discuss the Koszul property in the next section, we will need a variant
of these results. Specifically, fix k ≥ 2 and consider the mapping

γ : A×k
→ A×(k−1), (x0, x1, . . . , xk) 7→ (x0− x1, x1− x2, . . . , xk−1− xk).



Local positivity, multiplier ideals, and syzygies of abelian varieties 193

Consider also for any 0≤ i < j ≤ k the maps

ai j : A×k
→ A, (x0, x1, . . . , xk) 7→ xi + x j .

Variant 2.4. For any ample line bundle L on A we have

γ ∗
( k−1

� L
)
⊗

( ⊗
0≤i≤k−1

a∗i,i+1L
)

= L2 �
(
L2
⊗ (−1)∗L

)
� . . .�

(
L2
⊗ (−1)∗L

)
�
(
L ⊗ (−1)∗L

)
.

Proof. Noting that ai j = a ◦ pri j , where pri j is the projection on the (i, j) factors
and a is the difference map, and using Lemma 2.2(i), we have

a∗i j L ∼=
(

OA � · · ·� L
i
� · · ·� L

j
� · · ·� OA

)
⊗ Pi j .

On the other hand, γ = (d01, d12, . . . , dk−1,k) and using Lemma 2.3(ii) for each of
the factors, we have

γ ∗
( k−1

� L
)
∼=
(
L � (L ⊗ (−1)∗L)� . . . � (L ⊗ (−1)∗L)� (−1)∗L

)
⊗P−1

01 ⊗ . . . ⊗ P−1
k−1,k . �

Corollary 2.5. There is a nef line bundle N on A×k such that

γ ∗
( k−1

� L
)
⊗ N =

k
� L3.

3. Complements

This section contains a couple of additional results that are established along the
same lines as those above. As before, A is an abelian variety of dimension g, and
L is an ample line bundle on A.

We start with a criterion for L to define an embedding in which A satisfies the
Koszul property (for a definition and discussion of this property see for instance
[Brion and Kumar 2005, §1.5]).

Proposition 3.1. Assume that ε(A, L) > 3g. Then under the embedding defined
by L , the homogeneous coordinate ring of A is a Koszul algebra.

Sketch of Proof. Fix k ≥ 2, and consider the k-fold self product A×k of A. By
analogy to Green’s criterion, it is known that the Koszul property is implied by the
vanishings (for all k ≥ 2)

H 1
(

A×k,
k
� L ⊗ Q⊗I0

)
= 0, (3-1)

where Q is a nef bundle on A×k , and 0 is the reduced algebraic set

0 =11,2 ∪12,3 ∪ · · · ∪1k−1,k
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(see [Inamdar and Mehta 1994, Proposition 1.9]). As above, this is established by
realizing 0 as a multiplier ideal and applying Nadel vanishing. For the first point,
one constructs (as in the case p= 2 of Theorem A) a divisor F0≡num ((1−c)/3)L
on A, takes its exterior sum on A×(k−1), and then pulls back under the map γ :
A×k
→ A×(k−1) appearing at the end of the last section. The required positivity

follows from Corollary 2.5. �

We record an analogue of the result of Hwang and To for Wahl [1992] maps.

Proposition 3.2. Let L be an ample line bundle on A, and assume that ε(A, L) >
2(g+m) for some integer m ≥ 0. Then

h1(A× A, L � L ⊗Im+1
1

)
= 0.

In particular, the m-th Wahl (or Gaussian) map

γ m
L : h

0(A× A, L � L ⊗Im
1

)
→ h0(A× A, L � L ⊗Im

1⊗O1
)
∼= h0(A, L2

⊗ Sm�1
A
)

is surjective.

Sketch of Proof. One proceeds as in the proof outlined in the Introduction, except
that the stronger numerical hypothesis on ε(A, L) allows one to take E0 ≡num

((1− c)/2)L with J(A, E0)= Im+1
0 . For the rest one argues as before. �

Remark 3.3. Proposition 3.2, combined with Bauer’s result mentioned in the In-
troduction and with [Colombo et al. 2011, Theorem B], implies the surjectivity of
the first Wahl map of curves of genus g sitting on very general abelian surfaces for
all g > 145. This provides a “nondegenerational” proof — in the range g > 145 —
of the surjectivity of the map γ 1

KC
for general curves of genus g, which holds for

all g ≥ 12 and g = 10 [Ciliberto et al. 1988].
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Elliptic nets and elliptic curves
Katherine Stange

An elliptic divisibility sequence is an integer recurrence sequence associated to
an elliptic curve over the rationals together with a rational point on that curve. In
this paper we present a higher-dimensional analogue over arbitrary base fields.
Suppose E is an elliptic curve over a field K , and P1, . . . , Pn are points on E
defined over K . To this information we associate an n-dimensional array of
values in K satisfying a nonlinear recurrence relation. Arrays satisfying this
relation are called elliptic nets. We demonstrate an explicit bijection between
the set of elliptic nets and the set of elliptic curves with specified points. We also
obtain Laurentness/integrality results for elliptic nets.
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Introduction

An elliptic divisibility sequence is an integer sequence Wn satisfying

Wn+m Wn−m =Wn+1Wn−1W 2
m −Wm+1Wm−1W 2

n . (1)

This definition was introduced by Morgan Ward [1948]. Let 9n(x, y) be the n-th
division polynomial associated to an elliptic curve (the n-th division polynomial
vanishes at the n torsion points). Ward showed that division polynomials satisfy

This work was supported by NSERC Awards PGS D2 331379 and PDF 373333.
MSC2000: primary 11G05, 11G07, 11B37; secondary 11B39, 14H52.
Keywords: elliptic net, elliptic curve, Laurentness, elliptic divisibility sequence, recurrence

sequence.
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the recurrence (1) and furthermore that all elliptic divisibility sequences have the
form

Wn = λ
n2
−19n(x, y)

for some constant λ, elliptic curve (or singular cubic) and point P = (x, y) on the
curve. This rich structure has led to number-theoretic results [Ayad 1993; Everest
et al. 2006; Ingram 2009; Silverman 2004; 2005; Swart 2003] and to applications
to Hilbert’s Tenth Problem [Cornelissen and Zahidi 2007; Eisenträger and Ever-
est 2009; Poonen 2003], to integrable systems [Hone 2005], and to cryptography
[Chudnovsky and Chudnovsky 1986; Shipsey 2001; Stange 2007]. For a bibliog-
raphy, see [Everest et al. 2003, Chapter 10].

There have been several attempts to generalize this theory. Translated elliptic
divisibility sequences were studied in [Swart 2003; van der Poorten 2005; van der
Poorten and Swart 2006]. Mazur and Tate [1991] generalize division polynomials
to arbitrary endomorphisms in the p-adic setting, and Streng [2008] uses their
definition to generalize to the endomorphism ring of an elliptic curve with complex
multiplication. Elliptic divisibility sequences are closely related to the denomina-
tors of the multiples [n]P of a fixed point P; questions have been asked about the
collection of denominators of the linear combinations [n]P + [m]Q by Everest,
Miller and Stephens [2004]. The hope of defining higher-rank elliptic divisibility
sequences via a recurrence relation was discussed in correspondence by Elkies,
Propp and Somos [Propp 2001].

The primary purpose of this paper is to generalize from integer sequences to
multidimensional arrays with values in any field, which we call elliptic nets. A
substantial part of the difficulty lies in finding the correct recurrence and defining
a generalized division polynomial.

We define an elliptic net to be a function W : A→ R from a finite-rank free
abelian group A to an integral domain R satisfying the properties that W (0) = 0
and that

W(p+ q + s)W(p− q)W(r + s)W(r)

+W(q + r + s)W(q − r)W(p+ s)W(p)

+W(r + p+ s)W(r − p)W(q + s)W(q)= 0

for all p, q, r, s ∈ A. If A = R = Z, this is an equivalent definition of an elliptic
divisibility sequence (this is not immediately obvious, but it is a consequence of
results in this paper). By the rank of an elliptic net we shall mean the rank of A
(this bears no relation to the rank of apparition defined in [Ward 1948] for elliptic
divisibility sequences). Section 1 covers the basic definitions and gives examples.

Our primary interest is the relationship between elliptic curves and elliptic nets.
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Main Theorem (introductory version). For each field K and integer n, there is an
explicit bijection of sets 

scale equivalence classes
of nondegenerate elliptic
nets W : Zn

→ K


��

tuples (C, P1, . . . , Pn) where C is a cubic
curve in Weierstrass form defined over K ,
considered modulo unihomothetic changes
of variables, and such that {Pi } ∈ Cns(K )n

is appropriate

 .

OO

For a description of the relevant terminology, see Section 5 (appropriate), page 221
(scale equivalent, nondegenerate) and page 222 (unihomothetic). See Theorem 7.4
for a more detailed statement. The isomorphism itself is described explicitly in
Definition 5.1 (depending on Theorem 4.6) and Theorem 6.7. For ranks 1 and 2,
explicit formulae can be found in Propositions 3.8, 6.3 and 6.4. For an example,
see (4).

The other main aspect of elliptic nets studied in this paper is Laurentness. These
results are needed for the proof of the main theorem, but are of independent interest.
One property of elliptic divisibility sequences of particular interest is that they are
integer sequences: if the sequence begins 1, a, b, ac, . . . (a, b, c ∈ Z), then it will
consist entirely of integers [Ward 1948]. This result has been studied in the more
general framework of the Laurent phenomenon of [Fomin and Zelevinsky 2002].

Laurentness results are found in Section 2, which is devoted to the inductive
structure of elliptic nets: how some terms are determined by others via the re-
currence relation. We define a universal ring WA for elliptic nets on A, such that
elliptic nets W : A→ R are in bijection with homomorphisms WA→ R. We obtain
results on the structure of this ring, and in turn, these imply integrality results. See
Theorem 2.2 for the case n= 1, Theorem 2.5 for n= 2, and Theorem 2.8 for n≥ 3.
The proofs in this section are elementary but somewhat tedious. The author has
not been successful in replacing them with methods similar to those of [Fomin and
Zelevinsky 2002], although the possibility remains.

The next two sections define the higher-rank generalization of division polyno-
mials called net polynomials: rational functions on the n-fold product En of an
elliptic curve E , which vanish on tuples (P1, . . . , Pn) satisfying a linear relation
[v1]P1 + · · · + [vn]Pn = O for fixed coefficients vi . In Section 3, we work with
the complex uniformization of an elliptic curve defined over C. In Section 4 we
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generalize the definition to arbitrary fields by analysing the arithmetic properties
of net polynomials. The main result here is Theorem 4.4.

The last three sections describe the bijection in the main theorem. Section 5
makes explicit the production of an elliptic net from any cubic Weierstrass curve
using the net polynomials. Section 6 determines exactly those cubic curves which
produce a given elliptic net. Finally, Section 7 puts together the results of the
previous sections to prove the main theorem, stated in its full form as Theorem 7.4.

Computer software. The explicit isomorphism described in this paper has been
implemented for Pari/GP and SAGE in ranks 1 and 2; see [Stange 2010].

1. Elliptic nets

Definition 1.1. Let A be a free finitely-generated abelian group and R an integral
domain. An elliptic net is any map W : A→ R with

W (0)= 0, (2)

and such that, for all p, q, r , s ∈ A,

W(p+ q + s)W(p− q)W(r + s)W(r)

+W(q + r + s)W(q − r)W(p+ s)W(p)

+W(r + p+ s)W(r − p)W(q + s)W(q)= 0. (3)

Functions W : A→ R which satisfy (3) but not (2) can only appear in charac-
teristic 3 (to see this, take p = q = r = s = 0 in (3)). Any constant function in
characteristic 3 is an example. By definition, these are not elliptic nets.

We refer to the rank of A as the rank of the elliptic net. Suppose that B ⊂ A is
a subgroup of A. Then the restriction to B of an elliptic net W : A→ R is also
an elliptic net. We refer to this elliptic net as the subnet associated to B and write
W |B : B→ R.

Example 1.2. Let R be an integral domain. The following are elliptic nets.

• The zero net W : Zn
→ R defined by W (v)= 0 for all v.

• The identity map Wid : Z→ Z given by W (v)= v.

• Let W ′ : Z→ R be an elliptic net. Then for each 1 ≤ i ≤ n, we may define
Wi :Z

n
→ R by Wi (v1, . . . , vn)=W ′(vi ), and this will also be an elliptic net.

• More generally, if W : A→ R is an elliptic net and f : B→ A is a homomor-
phism of finitely generated free abelian groups, then W ◦ f : B→ R is also
an elliptic net.

• If W : A→ R is an elliptic net and g : R→ S is a homomorphism of integral
domains, then g ◦W : A→ S is also an elliptic net.
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• WLeg : Z→ Z given by W (v) =
(
v
3

)
, the Legendre symbol of v over 3. This

can be verified by a finite examination of cases; observe that at least one of p,
q , r , p− q , q − r , and r − p is divisible by 3. See also [Ward 1948, p. 31].

• WFib : Z→ Z given by

W (v)=


F2v if v > 0,
−F2v if v < 0,

0 if v = 0,

where F2v is the 2v-th Fibonacci number. One checks this example using the
closed form for terms of the Fibonacci sequence. See also [Ward 1948, p. 31].

• Here is a portion of an elliptic net of rank 2, displayed as an array:

↑

Q

3269 −2869 4335 5959 12016 −55287 23921 1587077 −7159461
−127 −299 94 479 919 −2591 13751 68428 424345
−44 −27 −31 53 −33 −350 493 6627 48191
−1 −7 −5 8 −19 −41 −151 989 −1466

3 −2 1 3 −1 −13 −36 181 −1535
1 −1 1 1 2 −5 7 89 −149
−1 −1 0 1 1 −3 11 38 249
−2 −1 −1 1 −1 −4 1 47 185

1 −3 −1 2 −3 −5 −17 63 −184
P→

(4)

This example arises from the curve y2
+ y = x3

+ x2
− 2x over Q and the

two points P = (0, 0), Q = (1, 0); see Example 5.3. The origin is at the term
with value 0. Each axis forms an elliptic divisibility sequence, e.g., 0, 1, 1,
−3, 11, 38, 249, . . . .

2. Laurentness and integrality

In this section we ask which terms of an elliptic net determine the others via the
recurrence relation. In the case of n = 1, Ward [1948] showed that the terms
W (1), . . . ,W (4) sufficed to determine the rest of the net (unless too many of these
terms were zero). Our method also demonstrates Laurentness and integrality re-
sults. The main theorems of this section are used in Section 6.

Laurentness. Let I be a group, in additive notation, called the indexing group,
whose elements are called indices. To each i ∈ I , we associate the symbol Ti . In
what follows, the indexing group will be I ∼= Zn for some n.

Consider the ideal M in the ring Z[Ti ]i∈I generated by T0 and all polynomials
encoding property (3), i.e., those of the form

Tp+q+s Tp−q Tr+s Tr + Tq+r+s Tq−r Tp+s Tp + Tr+p+s Tr−pTq+s Tq (5)
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as p, q, r, s range over I . Polynomials of the form (5) will be called recurrence
relations. Consider the ring WI obtained from Z[Ti ]i∈I /M as a quotient by its own
nilradical. For each integral domain R, there is a bijection between elliptic nets
W : I → R and homomorphisms WI → R (defined by taking Ti 7→W (i)).

Taking p = q = i, r = s = 0 shows that T 3
i (Ti + T−i ) ∈ M for each i ∈ I .

In particular, T 3
−i (Ti + T−i ) ∈ M also. Therefore, any prime ideal containing M

contains Ti+T−i ; for if it did not, then it must contain Ti and T−i , a contradiction.
Therefore T−i =−Ti in WI . This implies the following.

Proposition 2.1. Let W : A→ R be an elliptic net. Then W (−z)=−W (z) for all
z ∈ A.

The purpose of this section is to find a finite subset 0 /∈ J ⊂ I such that the local-
isation WI [T−1

i ]i∈J is finitely generated as a Z-algebra, and to give the generators.
(The localisation is not the trivial ring (1= 0) by the existence of a homomorphism
from it to Q given by Example 1.2, where one uses part (3) with W ′ =Wid of part
(2).) From this we show that every Ti can be expressed as a Laurent polynomial in
integer coefficients in a finite number of terms T j . This implies that any elliptic net
which does not take zero values at the T j is entirely determined by those values.

To illustrate, consider the rank-one case, which is essentially a result of Morgan
Ward.

Theorem 2.2 [Ward 1948, Theorem 4.1]. The ring WZ[T−1
1 , T−1

2 ] is generated as
a Z-algebra by the six elements

T1, T−1
1 , T2, T−1

2 , T3, T4.

Furthermore, each Ti is expressible as a Z-coefficient polynomial in

T1, T−1
1 , T2, T3, T4T−1

2 .

In particular, let W : Z→ Q be an elliptic net. If W (1) = 1, W (2) 6= 0, W (i)
is an integer for i = 2, 3, 4, and W (2) divides W (4), then the elliptic net consists
entirely of integers.

Proof. Recall that T−n = −Tn , so it suffices to prove the first two statements for
positive n. Taking (p, q, r, s)= (n+1, n, 1, 0) and (n+1, n−1, 1, 0) respectively,
in WI we have

T2n+1T 3
1 + Tn−1T 3

n+1+ Tn+2T−nT 2
n = 0, (6)

T2nT2T 2
1 + TnTn−2T 2

n+1+ Tn+2T−nT 2
n−1 = 0. (7)

The equations (6) and (7) prove the first statement by induction. The base case
consists of 0≤ n ≤ 4; for n > 4, we have 2n > n+ 2.
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For even i , it can be shown by induction on (7) that Ti is expressible as a Z-
coefficient polynomial in T1, T−1

1 , T2, T−1
2 , T3, and T4 in such a way that the

combined degree of T2 and T4 in each monomial is positive. For i = 2, 4 this
is clear. To complete the induction in general, observe that in (7), each of the
rightmost two terms is divisible by at least two Tk where k is even and k < 2n.

For even i , the second statement of the theorem concerning the expressibility of
all Ti in terms of T1, T−1

1 , T2, T3 and T4T−1
2 follows from the observation of the

previous paragraph. The statement also holds for i = 1, 3. Consequently, it holds
for odd i by induction on (6). �

Proofs by induction. The inductive proofs in this section will be based on the
following definitions. Consider finite sets S, J ⊂ I where 0, i /∈ S ∪ J . We
say that an index i ∈ I is S-integrally implied by J if there exists a Z-coefficient
monomial P(Ts) (in variables indexed by S) and Z-coefficient polynomial Q(T j )

(in variables indexed by J ) such that

Ti P(Ts)= Q(T j ) (8)

in WI . A set K ⊂ I is S-integrally implied by the set J if every index in K is
S-integrally implied by J .

As an example (see Proposition 2.1 and the paragraph which precedes it), −i is
S-integrally implied by any J containing i (for any S). In what follows, this fact
will often be used tacitly.

A set B ⊂ I is an S-integral baseset for WI if all of I is S-integrally implied by
B. If B ⊂ I is an S-integral baseset, then each Ti can be expressed as a polynomial
with integer coefficients in the set of variables {Tb}b∈B∪{T−1

s }s∈S (when considered
in the appropriate localisation).

It is straightforward to verify that if i is S-integrally implied by J and every
j ∈ J is S-integrally implied by J ′, then i is S-integrally implied by J ′. To show
that B is an S-integral baseset for I , the proofs in this section show the following:
for each index i ∈ I , there is a finite sequence J0⊂ J1⊂ · · · ⊂ Jn such that B = J0,
i ∈ Jn and for each 1≤ k ≤ n, Jk is S-integrally implied by Jk−1. At each stage, we
show that each index of Ji is S-integrally implied by Ji−1. Recall that implication
is simply the existence of an relation of the form (8), and in fact we simply give a
relevant element of the form (5).

These elements are cumbersome to write out. For example, taking in the case
n = 3, p= (1, 0, 0), q = (0, 1, 0), r = (0, 0, 1), s = (0, 0, 0), we obtain

T(1,1,0)T(1,−1,0)T(0,0,1)T(0,0,1)
+T(0,1,1)T(0,1,−1)T(1,0,0)T(1,0,0)

+T(1,0,1)T(−1,0,1)T(0,1,0)T(0,1,0).



204 Katherine Stange

For this information, let us instead use the more convenient notation

1 0 0 0
0 1 0 0
0 0 1 0

 1 1 0 0
1 -1 0 0
0 0 1 1

∣∣∣∣∣∣
0 0 1 1
1 1 0 0
1 -1 0 0

∣∣∣∣∣∣
1 -1 0 0
0 0 1 1
1 1 0 0

 . (9)

In this notation, the columns to the left of the brackets correspond to the columns
of p, q , r and s, while the indices of the terms of the recurrence appear as the
columns within the brackets.

To demonstrate that an index i is (S-integrally) implied by a set of indices J ,
it suffices to write down an appropriate such array. Notice that any array of the
form (9) is a recurrence if each row is a recurrence. Therefore we may construct
examples row by row.

The following definition will be useful for ordering inductions.

Definition 2.3. Let
N (v)= max

i=1,...,n
|vi |

be the sup-norm of the vector v.

Basesets for rank 2. For the rank-two case, we require a lemma.

Lemma 2.4. The ring WZ2[T−1
(1,0), T−1

(0,1), T−1
(1,1)] is generated as a Z-algebra by the

elements
{Tv : N (v)≤ 4} ∪ {T−1

(1,0), T−1
(0,1), T−1

(1,1)}.

Proof. Let S = {(1, 0), (0, 1), (1, 1)} and B = {v ∈ Z2
: N (v) ≤ 4}. This proof

proceeds by induction on the sup-norm. Trivially, any v with N (v) ≤ 4 is S-
integrally implied by B. Let N0 > 4 and suppose that all terms with indices
with sup-norm less than N0 are S-integrally implied by B. Call the set of such
indices KN0 . Suppose v is an index of sup-norm N0. We construct a recurrence
demonstrating that v is S-integrally implied by KN0 row by row. For i = 1, 2,
define wi = dvi/2e.

Case I: v has one odd entry and one even entry. For the odd entry, we use the row

wi wi –1 0 0
[
vi 1 0 0

∣∣ wi –1 wi –1 wi wi
∣∣ wi –wi wi –1 wi –1

]
For the even entry, we use the row

wi wi 1 0
[
vi 0 1 1

∣∣ wi +1 wi –1 wi wi
∣∣ wi +1 –wi +1 wi wi

]
Case II: v has two odd entries. Use the rows

w1 w1–1 0 0
w2 w2–1 1 0

[
v1 1 0 0
v2 1 1 1

∣∣∣∣ w1–1 w1–1 w1 w1
w2 w2–2 w2 w2

∣∣∣∣ w1 –w1 w1–1 w1–1
w2+1 –w2+1 w2–1 w2–1

]
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Case III: v has two even entries. Use the rows

w1 w1–1 0 1
w2 w2 1 0

[
v1 1 1 0
v2 0 1 1

∣∣∣∣ w1 w1–1 w1+1 w1
w2+1 w2–1 w2 w2

∣∣∣∣ w1+1 –w1 w1 w1–1
w2+1 –w2+1 w2 w2

]
For even vi , either |vi | ≤ 2 or |vi | > 3. In the former case, |wi | + 1 ≤ 2 < N0.

In the latter case, we have |wi | + 1 ≤ (|vi | + 2)/2 < |vi | ≤ N0. For odd vi , either
|vi | ≤ 3 or |vi | > 4. In the former case |wi | + 2 ≤ 4 < N0. In the latter case, we
have |wi | + 2≤ (|vi | + 5)/2< |vi | ≤ N0.

Therefore all the vectors in the recurrence have sup-norm less than N0 with the
exception of v. In the monomial of v in the recurrence, the other indices are (1, 0),
(0, 1) or (1, 1). This demonstrates that v is S-integrally implied by KN0 and hence
by B. �

Theorem 2.5. The ring WZ2[T−1
(1,1), T−1

(1,0), T−1
(0,1)] is generated as a Z-algebra by

the eleven elements

T(1,1), T(1,0), T(0,1), T−1
(1,1), T−1

(1,0), T−1
(0,1), T(2,1), T(1,2), T(2,0), T(0,2), T(2,2),

and the following identities hold:

T(1,−1)T 3
(1,1) = T 3

(1,0)T(1,2)− T 3
(0,1)T(2,1),

T(2,2)T(1,−1)T(1,0)T(0,1) = T(1,1)
(
T(0,2)T(2,1)T(1,0)− T(0,1)T(2,0)T(1,2)

)
.

In particular, if W : Z2
→Q is an elliptic net for which

(a) W (1, 0)=W (0, 1)=W (1, 1)= 1,

(b) W (2, 0), W (0, 2), W (1, 2) 6=W (2, 1) are integers, and

(c) W (1, 2)−W (2, 1) divides W (0, 2)W (2, 1)−W (2, 0)W (1, 2),

then all terms of the elliptic net are determined by these seven values and are
integers.

Proof. The first and second stated identities are the recurrences

1 0 1 0
0 1 1 0

[
1 1 1 1
1 -1 1 1

∣∣∣∣ 1 -1 1 1
2 0 0 0

∣∣∣∣ 2 0 0 0
1 1 1 1

]
,

1 1 -1 0
1 2 1 -1

[
2 0 -1 -1
2 -1 0 1

∣∣∣∣ 0 2 1 1
2 1 0 1

∣∣∣∣ 0 -2 1 1
1 0 1 2

]
.

(10)

Let S = {(1, 0), (0, 1), (1, 1)}, and B = {v ∈ Z2
: N (v)≤ 4}. By Lemma 2.4, it

suffices to show that B is S-integrally implied by the set

{(1, 0), (0, 1), (1, 1), (2, 0), (0, 2), (2, 1), (1, 2), (2, 2)}.

We list the relevant recurrences in order. As each index is implied, it may be used
to imply later indices. It is assumed that as (a, b) is implied, so is (−a,−b). To
begin, the index (1,−1) is implied by (10). We then write
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(2,−1) : -1 0 1 1
1 1 0 0

[
0 -1 2 1
2 0 0 0

∣∣∣∣ 2 -1 0 -1
1 1 1 1

∣∣∣∣ 1 2 1 0
1 -1 1 1

]
,

(−1, 2) : 0 -1 -1 0
1 1 0 0

[
-1 1 -1 -1
2 0 0 0

∣∣∣∣ -2 0 0 0
1 1 1 1

∣∣∣∣ -1 -1 -1 -1
1 -1 1 1

]
,

(2,−2) : 1 1 -1 0
-1 -2 -1 1

[
2 0 -1 -1

-2 1 0 -1

∣∣∣∣ 0 2 1 1
-2 -1 0 -1

∣∣∣∣ 0 -2 1 1
-1 0 -1 -2

]
.

At this point we have implied all indices of sup-norm at most 2. Next we have

(3, 0) : 2 1 0 0
0 0 1 0

[
3 1 0 0
0 0 1 1

∣∣∣∣ 1 1 2 2
1 -1 0 0

∣∣∣∣ 2 -2 1 1
1 1 0 0

]
,

(3, 1) : 2 1 0 0
1 0 1 0

[
3 1 0 0
1 1 1 1

∣∣∣∣ 1 1 2 2
1 -1 1 1

∣∣∣∣ 2 -2 1 1
2 0 0 0

]
,

(3, 2) : 2 1 0 0
1 1 1 0

[
3 1 0 0
2 0 1 1

∣∣∣∣ 1 1 2 2
2 0 1 1

∣∣∣∣ 2 -2 1 1
2 0 1 1

]
,

(3, 3) : 2 1 1 0
2 1 0 0

[
3 1 1 1
3 1 0 0

∣∣∣∣ 2 0 2 2
1 1 2 2

∣∣∣∣ 3 -1 1 1
2 -2 1 1

]
.

(11)

Simply by switching top rows with bottom rows, we similarly imply (0, 3), (1, 3),
and (2, 3). And by putting negatives on the second row of (11), we imply the index
(3,−2) (and (−2, 3) by switching top and bottom). Next,

(3,−1) : 2 1 0 0
-1 -1 -2 2

[
3 1 0 0

-1 1 1 -1

∣∣∣∣ 1 1 2 2
-1 -1 1 -1

∣∣∣∣ 2 -2 1 1
0 0 0 -2

]
,

(3,−3) : 1 2 1 0
-2 -1 0 0

[
3 -1 1 1

-3 -1 0 0

∣∣∣∣ 3 1 1 1
-1 -1 -2 -2

∣∣∣∣ 2 0 2 2
-2 2 -1 -1

]
.

Again by switching top and bottom we get (−1, 3). We have now implied all
indices with sup-norm at most 3. We continue with

(4, 0) : 2 1 0 1
0 0 1 0

[
4 1 1 0
0 0 1 1

∣∣∣∣ 2 1 3 2
1 -1 0 0

∣∣∣∣ 3 -2 2 1
1 1 0 0

]
,

(4, 1) : 3 2 1 -1
0 0 0 1

[
4 1 0 1
1 0 1 0

∣∣∣∣ 2 1 2 3
1 0 1 0

∣∣∣∣ 3 -2 1 1
1 0 1 0

]
,

(4, 2) : 3 2 1 -1
1 1 1 0

[
4 1 0 1
2 0 1 1

∣∣∣∣ 2 1 2 3
2 0 1 1

∣∣∣∣ 3 -2 1 2
2 0 1 1

]
,

(4, 3) : 2 2 1 0
2 1 0 0

[
4 0 1 1
3 1 0 0

∣∣∣∣ 3 1 2 2
1 1 2 2

∣∣∣∣ 3 -1 2 2
2 -2 1 1

]
,

(4, 4) : 3 2 1 -1
2 2 1 0

[
4 1 0 1
4 0 1 1

∣∣∣∣ 2 1 2 3
3 1 2 2

∣∣∣∣ 3 -2 1 2
3 -1 2 2

]
.

Again by switching top rows with bottom rows, we similarly imply (0, 4), (1, 4),
(2, 4) and (3, 4). And by putting negatives on the second rows, we imply the
indices (4,−1), (−1, 4), (4,−3) and (−3, 4). There remains to consider the
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indices

(4,−2) : 2 1 -1 1
-1 -1 -1 0

[
4 1 0 -1

-2 0 -1 -1

∣∣∣∣ 1 2 3 2
-2 0 -1 -1

∣∣∣∣ 2 -3 2 1
-2 0 -1 -1

]
,

(4,−4) : 2 1 -1 1
-2 -2 -1 0

[
4 1 0 -1

-4 0 -1 -1

∣∣∣∣ 1 2 3 2
-3 -1 -2 -2

∣∣∣∣ 2 -3 2 1
-3 1 -2 -2

]
.

By switching rows, we imply (−2, 4). We have now demonstrated the calculation
of all terms of index with sup-norm at most 4. The second part of the statement
follows immediately from the first. �

Basesets for ranks n ≥ 3. Let ei denote the standard basis vectors.

Lemma 2.6. Define subsets of Z3 by

L2 = {ei }i ∪ {ei ± e j }i 6= j ∪ {2ei }i ,

L ′2 = {ai ei + a j e j : ai ∈ Z, 1≤ i ≤ j ≤ 3}.

Then all indices v ∈ Z3 with N (v)≤ 2 are L2-integrally implied by L ′2.

Proof. We make use of the recurrences

1 1 0 -1
0 0 -1 1
1 0 1 0

 1 0 -1 0
1 0 0 -1
1 1 1 1

∣∣∣∣∣∣
0 1 0 1
0 1 1 0
1 -1 1 1

∣∣∣∣∣∣
0 -1 0 1
0 -1 1 0
2 0 0 0

 , (12)

0 0 1 -1
1 1 0 -1
0 1 1 0

 -1 0 0 1
1 0 -1 0
1 -1 1 1

∣∣∣∣∣∣
0 -1 -1 0
0 1 0 1
2 0 0 0

∣∣∣∣∣∣
0 1 -1 0
0 -1 0 1
1 1 1 1

 , (13)

1 0 1 0
0 0 0 1
1 1 0 -1

 1 1 1 1
1 0 1 0
1 0 -1 0

∣∣∣∣∣∣
1 -1 1 1
1 0 1 0
0 1 0 1

∣∣∣∣∣∣
2 0 0 0
1 0 1 0
0 -1 0 1

 . (14)

Permute the rows of (12) by the cyclic permutations (123) and (132), calling the
results (12)′ and (12)′′ respectively; for example, the rightmost column of (12)′ is
(0, 1, 0). Do the same for (13) and (14).

Consider the equation obtained by the combination

(12)× T(1,1,1)T 2
(1,0,0)T(1,−1,0)T 2

(0,1,0)+ (12)′× T(1,1,1)T(1,0,0)T(0,1,−1)T 2
(0,1,0)T(0,0,1)

+(14)× T(1,−1,0)T 2
(0,1,0)T(0,1,1)T(0,0,1)T

2
(1,0,1)+ (14)′× T(0,1,−1)T 2

(1,0,0)T(0,0,1)T(1,0,1)T(1,1,0)

+(13)× T(1,1,1)T 2
(1,0,0)T

2
(0,1,0)T(1,1,0)+ (13)′× T(1,1,1)T 2

(0,1,0)T(1,0,0)T(0,1,1)T(0,0,1)

+(13)′′× T(1,1,1)T 2
(1,0,0)T(1,0,1)T(0,1,0)T(0,0,1).

The result has the form aT(1,1,1) + b = 0, where a and b are polynomials in Tv

where every v has at least one zero coordinate. In particular,

a = T 3
(1,0,0)T(0,1,0)T

2
(0,0,1)T(1,0,1)T(0,2,0)T(1,0,−1).
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Thus T(1,1,1) is L2-integrally implied by L ′2. To imply the terms T(−1,1,1), T(1,−1,1),
and T(1,1,−1), use (12), (12)′, and (12)′′. This covers all terms of sup-norm at
most 1.

We have the following recurrence:

0 0 0 1
0 0 -1 1
2 1 1 -1
0 1 0 1
1 1 0 0


1 0 1 0
1 0 0 -1
2 1 0 1
2 -1 1 0
2 0 0 0

∣∣∣∣∣∣∣∣∣∣

1 0 1 0
0 1 1 0
1 0 1 2
2 1 1 0
1 1 1 1

∣∣∣∣∣∣∣∣∣∣

1 0 1 0
0 -1 1 0
2 -1 0 1
1 0 2 1
1 -1 1 1

 .
If v has exactly one coordinate of value ±2 (the rest ±1), then we imply v by
taking the first three rows in the recurrence above (possibly taking negatives and
permutations of rows as necessary). If v has exactly two ±2’s, use the middle
three rows in the same way. If v has exactly three ±2’s, use the last three rows
(this relies on the previous cases). �

Remark 2.7. The four equations (12), (12)′, (12)′′ and (13) in the four unknowns
T(1,1,1), T(−1,1,1), T(1,−1,1) and T(1,1,−1), are linear with coefficients consisting of
monomials in Tv where v has at least one zero coordinate. The determinant of the
system is

2T(1,0,0)T(0,1,0)T 2
(0,0,1)T(1,1,0)T

2
(1,0,1)T

2
(0,1,1)T(1,−1,0)T(1,0,−1)T(0,1,−1).

This observation is useful for calculations where 2 is invertible.

Theorem 2.8. Let n ≥ 2. For each ` in the set

L = {0, 1}n \ {(0, 0, . . . , 0), (1, 1, . . . , 1)},

choose a vector x` having N (x`) = 1 and having nonzero entries exactly where `
does. Let Gn = {x`}`∈L . Let

Hn = Gn ∪ {ei } ∪ {ei ± e j , i 6= j} ∪ {2ei },

H ′n = Hn ∪ {2ei + e j , i 6= j}.

Then Zn is Hn-integrally implied by H ′n .

Proof. The proof is by induction on n. The base case is n = 2, which is a conse-
quence of Theorem 2.5.

Fixing any 1≤ i ≤ n, we can identify Hn−1 with a subset of Hn (and H ′n−1 with
a subset of H ′n) by adding a zero between the (i − 1)-th and i-th positions of each
vector of Hn−1 (or H ′n−1). By this identification and by the inductive hypothesis
(for n− 1), any v ∈ Zn with a zero in the i-th position is Hn-integrally implied by
H ′n . Therefore it suffices to imply those v ∈ Zn having no zero coordinate.

The inductive step is itself an induction on the sup-norm of v. The base cases
are N (v)= 1 and N (v)= 2. Both of these for n = 3 are provided by Lemma 2.6,
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so for the base cases, we may assume n≥ 4. To imply v, we construct a recurrence
row by row, so that the first column is exactly v. For the first three rows, use the
following, multiplied by −1 as necessary.

1 0 0 0
0 1 0 0
0 0 0 1

 1 1 0 0
1 -1 0 0
1 0 1 0

∣∣∣∣∣∣
0 0 1 1
1 1 0 0
1 0 1 0

∣∣∣∣∣∣
1 -1 0 0
0 0 1 1
1 0 1 0

 .
For all subsequent rows, use one of the following two recurrences (shown together
in an array), multiplied by −1 as appropriate:

1 1 1 -1
0 0 -1 1

[
1 0 0 1
1 0 0 -1

∣∣∣∣ 1 0 0 1
0 1 1 0

∣∣∣∣ 1 0 0 1
0 -1 1 0

]
.

For each row, the choice between the two possibilities can be made in such a way
that the fourth column of the recurrence lies in Gn . Columns 2 and 4 have at
most two nonzero entries (which are ±1) and so are in Hn . The other columns,
numbered 5 though 12, have at least one zero entry, and so are already implied by
the inductive step. This completes the case N (v)= 1.

For the remainder of the proof, we will repeatedly use the following recurrences.
Let wi =dvi/2e. If vi is even, we call the recurrences shown in the following array
(E1) through (E4):

wi –1 wi 0 1
wi wi –1 0 1
wi wi 0 0
wi wi 1 0


vi –1 1 0
vi 1 1 0
vi 0 0 0
vi 0 1 1

∣∣∣∣∣∣∣∣
wi +1 wi wi wi –1
wi wi –1 wi +1 wi
wi wi wi wi

wi +1 wi –1 wi wi

∣∣∣∣∣∣∣∣
wi –wi +1 wi +1 wi

wi +1 –wi wi wi –1
wi –wi wi wi

wi +1 –wi +1 wi wi


If vi is odd, we call the following recurrences (O1) through (O5).

wi wi –1 0 0
wi –1 wi 0 0
wi –1 wi 1 0
wi wi 0 –1
wi wi 1 –1


vi 1 0 0
vi –1 0 0
vi –1 1 1
vi 0 –1 0
vi 0 0 1

∣∣∣∣∣∣∣∣∣∣

wi –1 wi –1 wi wi
wi wi wi –1 wi –1

wi +1 wi –1 wi –1 wi –1
wi –1 wi wi –1 wi
wi wi –1 wi –1 wi

∣∣∣∣∣∣∣∣∣∣

wi –wi wi –1 wi –1
wi –1 1–wi wi wi
wi –wi wi wi

wi –1 –wi wi –1 wi
wi 1–wi wi –1 wi


The second base case is N (v)=2 (n≥4 still). Since we may assume vi 6=0 (this

is covered by previous cases in the induction on n), the other vi have |vi | = ±1.
There are three cases:

Case I: v has at least three odd vi . Use for the first three odd vi the recurrences
(O1), (O4) and (O5) respectively. Use (E3) for all the even vi . In this case, all the
columns besides the first contain only digits 0 and ±1 and so were implied in the
case N (v) = 1. Columns 2, 3, and 4 contain only one nonzero term each, and so
are in Hn .
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Case II: v has one or two odd vi . Use (O3) for one odd coordinate and (O1) for the
other (if it exists). Use (E3) for all even coordinates. Then, columns 2–4 contain
one or two nonzero entries, and columns 5–12 may contain at most one ±2; but
such a column was implied in the Case I.

Case III: v has no odd vi . Use (E1) and (E4) for the first two rows, and (E3) for
all others. Columns 2–4 contain one or two nonzero entries and 5–12 at most two
±2’s; but such a column was implied in Case I or II.

This completes the N (v)= 2 base case.
Now suppose N (v) = N0 ≥ 3 and n ≥ 3. This is the inductive step; we will

assume we have implied all indices of sup-norm less than N0. As before, vi 6= 0.
For |vi | = 3, (O1), (O2), (O4), and (O5) have entries less than N0 in columns 5–12.
For 1 ≤ |vi | ≤ 2, and 3 < |vi | ≤ N0, all applicable recurrences have entries less
than N0 in those columns. We have two cases:

Case I: v has at least one even entry. Use (E4) for the first even coordinate, and
choose from (E1) and (E2) for the second even coordinate (if it exists). We use
(E3) for all other even coordinates. We will use (O1) or (O2) for all odd entries
(and make the choice between (E1) and (E2) above) in such a way that the second
column is in Gn .

Case II: v has no even entry. Use (O4) and (O5) for the first two odd coordinates,
and (O1) or (O2) for all others, according so that the second column is an element
of Gn . �

3. Net polynomials over C

Fix an elliptic curve E defined over C. Our purpose is to define rational functions
�v : En

→ C for all v ∈ Zn such that for each P ∈ En , the map

WE,P : Z
n
→ C, v 7→�v(P)

is an elliptic net. In this section we associate a lattice 3 ⊂ C to the elliptic curve
E and consider the complex uniformization C/3.

Elliptic functions over C. For a complex lattice3, let η :3→C be the quasiperiod
homomorphism, and define a quadratic form λ :3→ {±1} by

λ(ω)=

{
1 if ω ∈ 23,
−1 if ω /∈ 23.

Recall that the Weierstrass sigma function σ : C/3→ C satisfies the following
transformation formula for all z ∈ C and ω ∈3:

σ(z+ω;3)= λ(ω)eη(ω)(z+
1
2ω)σ(z;3). (15)
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Definition 3.1. Fix a lattice 3 ∈ C corresponding to an elliptic curve E . For
v = (v1, . . . , vn) ∈ Zn , define a function �v on Cn in variables z = (z1, . . . , zn) as
follows:

�v(z;3)=
σ(v1z1+ · · ·+ vnzn;3)

n∏
i=1

σ(zi ;3)
2v2

i −
∑n

j=1 viv j
∏

1≤i< j≤n

σ(zi + z j ;3)
viv j

.

(If v = 0, we set �v ≡ 0.) In particular, we have for each n ∈ Z, a function �n on
C in the variable z, namely

�n(z;3)=
σ(nz;3)
σ(z;3)n2 ,

and for each pair (m, n) ∈ Z×Z, a function �m,n on C×C in variables z and w:

�m,n(z, w;3)=
σ(mz+ nw;3)

σ(z;3)m2−mnσ(z+w;3)mnσ(w;3)n
2−mn

.

Remark 3.2. Compare the proof of Lemma 4.5 to this definition.

Proposition 3.3. Fix a lattice 3 ∈ C corresponding to an elliptic curve E. The
functions �v are elliptic functions in each variable.

Proof. Let ω ∈ 3. We show the function is elliptic in the first variable. Let
v = (v1, . . . , vn) ∈ Zn and z = (z1, . . . , zn),w = (ω, 0, . . . , 0) ∈ Cn . Using (15),
we calculate

�v(z+w;3)

�v(z;3)
=
λ(v1ω)

λ(ω)v
2
1
= 1

where the last equality holds because λ is a quadratic form. Thus �v is invariant
under adding a period to the variable z1. Similarly �v is elliptic in each variable
on (C/3)n . �

Proposition 3.4. Fix a lattice 3 ∈ C. Let v ∈ Zm and z ∈ Cn . Let T be an n×m
matrix with entries in Z and transpose T tr . Then

�v(T tr (z);3)=
�T (v)(z;3)

n∏
i=1

�T (ei )(z;3)
2v2

i −
∑n

j=1 viv j
∏

1≤i< j≤n

�T (ei+e j )(z;3)
viv j

.

Proof. A straightforward calculation using Definition 3.1. �

Let ℘ and ζ denote the usual Weierstrass functions.
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Lemma 3.5.

(a) ℘(u)−℘(v)=−
σ(u+ v)σ (u− v)
σ (u)2σ(v)2

.

(b) ℘(v · z)−℘(w · z)=−
�v+w(z)�v−w(z)
�v(z)2�w(z)2

.

Proof. Part (a) is well-known; see [Chandrasekharan 1985], for example. Part (b)
follows by direct calculation using Definition 3.1. �

Lemma 3.6.

(a) ζ(x + a)− ζ(a)− ζ(x + b)+ ζ(b)=
σ(x + a+ b)σ (x)σ (a− b)
σ (x + a)σ (x + b)σ (a)σ (b)

.

(b) ζ(x+a+b)−ζ(x+a)−ζ(x+b)+ζ(x)=
σ(2x + a+ b)σ (a)σ (b)

σ (x + a+ b)σ (x + a)σ (x + b)σ (x)
.

Proof. (a) Denote by f and g the two sides of the equation to be proved. Considered
as functions of any one of x , a or b, these are elliptic functions. Suppose that
a, b /∈ 3. Consider f and g as functions of x . The set of poles of f or g is
{−a,−b}. The zeroes of g (the right-hand side) are at −a − b and 0. These are
also zeroes of f , since ζ is an odd function. Hence f =cg for some c not depending
on x . Now define instead

F = (ζ(x + a)− ζ(a)− ζ(x + b)+ ζ(b)) σ (x + a)σ (x + b),

G = σ(x + a+ b)σ (x).

We have F = c′G for some constant c′ independent of x . Taking derivatives and
evaluating at x = 0, we have

(℘ (b)−℘(a)) σ (a)σ (b)= c′σ(a+ b)σ ′(0)

We have σ ′(0)= 1. By Lemma 3.5, we then have

c′ =−
σ(a− b)
σ (a)σ (b)

which concludes the proof of (a). Part (b) is obtained by a change of variables
x← a, a← x + b, b← x . �

Forming the elliptic net.

Theorem 3.7. Fix a lattice 3 ∈ C corresponding to an elliptic curve E. Fix
z1, . . . , zn ∈ C. Then the function W : Zn

→ C defined by

W (v)=�v(z1, . . . , zn;3)

is an elliptic net.
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Proof. For notational simplicity, we drop the arguments zi ,3 on �v and also
write σ(v), ℘(v) and ζ(v) for σ(v1z1 + · · · + vnzn), ℘(v1z1 + · · · + vnzn) and
ζ(v1z1+ · · ·+ vnzn). We observe that v = 0 if and only if �v ≡ 0.

We intend to show that (3) holds for W in p, q, r and s. If any one of p,
q or r are zero, then (3) holds trivially (note that σ is an odd function, so that
�−v = −�v). Hence we may assume that none of � p, �q , or �r is identically
zero. For any quadratic form f defined on Zn , we have the following relation for
all p, q, s ∈ Zn:

f ( p+q+ s)+ f ( p−q)+ f (s)− f ( p+ s)− f ( p)− f (q+ s)− f (q)= 0. (16)

First we address the case that s = 0. By (16) and Lemma 3.5,

� p+q� p−q

�2
p�

2
q
=
σ( p+ q)σ ( p− q)
σ ( p)2σ(q)2

= ℘(q)−℘( p).

Therefore, we have

� p+q� p−q

�2
p�

2
q
+
�q+r�q−r

�2
q�

2
r
+
�r+ p�r− p

�2
r�

2
p
= 0,

which gives the relation (3) for s = 0, that is,

� p+q� p−q�
2
r +�q+r�q−r�

2
p+�r+ p�r− p�

2
q = 0.

Now suppose that s 6= 0 and so �s 6≡ 0. By (16) and Lemma 3.6,

� p+q+s� p−q�s

� p+s� p�q+s�q
=
σ( p+ q+ s)σ ( p− q)σ (s)
σ ( p+ s)σ ( p)σ (q+ s)σ (q)

= ζ( p+ s)− ζ( p)− ζ(q+ s)+ ζ(q).

Therefore, we have

� p+q+s� p−q�s

� p+s� p�q+s�q
+
�q+r+s�q−r�s

�q+s�q�r+s�r
+
�r+ p+s�r− p�s

�r+s�r� p+s� p
= 0,

or, more simply,

� p+q+s� p−q�r+s�r +�q+r+s�q−r� p+s� p+�r+ p+s�r− p�q+s�q = 0,

which is what was required to prove. �

The identity (3) for�v is similar to several identities known in complex function
theory [Gasper and Rahman 2004; Wenchang et al. 1996].
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Explicit rational functions. Elliptic functions for a lattice 3 of C give rational
functions on the associated elliptic curve (via complex uniformization). If we give
a Weierstrass model for the same elliptic curve, we can give explicit expressions for
the rational functions as elements of the usual field of rational functions associated
to the model. In the following proposition, we do this for�v for some small v∈Zn ,
for n = 1, 2, 3.

Proposition 3.8. Consider an elliptic curve E , and a Weierstrass model for E
given by

y2
+ a1xy+ a3 y− x3

− a2x2
− a4x − a6 = 0.

As usual, let

b2 = a2
1 + 4a2, b4 = 2a4+ a1a3, b6 = a2

3 + 4a6,

b8 = a2
1a6+ 4a2a6− a1a3a4+ a2a2

3 − a2
4 .

To E we can also associate a complex uniformization and elliptic functions �v as
above. As rational functions on E , we have the following equalities.

For n = 1:

�1 = 1, �2 = 2y+ a1x + a3,

�3 = 3x4
+ b2x3

+ 3b4x2
+ 3b6x + b8, cr�4= (2y+ a1x + a3)(

2x6
+ b2x5

+ 5b4x4
+ 10b6x3

+ 10b8x2
+ (b2b8− b4b6)x + b4b8− b2

6
)
.

For n = 2:

�(1,0) =�(0,1) =�(1,1) = 1,

�(1,−1) = x2− x1, �(−1,1) = x1− x2,

�(2,1) = 2x1+ x2−

( y2−y1
x2−x1

)2
− a1

( y2−y1
x2−x1

)
+ a2,

�(1,2) = x1+ 2x2−

( y2−y1
x2−x1

)2
− a1

( y2−y1
x2−x1

)
+ a2.

For n = 3:

�(1,0,0) =�(0,1,0) =�(0,0,1) =�(1,1,0) =�(0,1,1) =�(1,0,1) = 1,

�(1,−1,0) = x2− x1, �(0,1,−1) = x3− x2, �(−1,0,1) = x1− x3,

�(−1,1,0) = x1− x2, �(0,−1,1) = x2− x3, �(1,0,−1) = x3− x1,

�(1,1,1) =
y1(x2− x3)+ y2(x3− x1)+ y3(x1− x2)

(x1− x2)(x1− x3)(x2− x3)
,
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�(−1,1,1) =
y1(x2− x3)− y2(x3− x1)− y3(x1− x2)

(x2− x3)
+ a1x1+ a3,

�(1,−1,1) =
−y1(x2− x3)+ y2(x3− x1)− y3(x1− x2)

(x3− x1)
+ a1x2+ a3,

�(1,1,−1) =
−y1(x2− x3)− y2(x3− x1)+ y3(x1− x2)

(x1− x2)
+ a1x3+ a3.

Proof. The division polynomial formulae (the n = 1 case) are well-known; see
[Chandrasekharan 1985], [Frey and Lange 2006, p. 80], or [Silverman 2009, Ex-
ercise 3.7]. The formulae for n = 2 and the related first three lines of formulae for
n = 3 are immediate consequences of Lemma 3.5 and the addition law for elliptic
curves [Silverman 2009, Algorithm 2.3]. Only the cases where n = 3, vi 6= 0
for all i = 1, 2, 3 are not immediate: these formulae are a result of the proof of
Lemma 2.6. Note that using Remark 2.7 results in the same formulae. �

4. Net polynomials over arbitrary fields

In the last section, we defined elliptic functions �v in the case of C/3. In this
section we wish to define the same rational functions for any elliptic curve over
any field, calling them 9v, the net polynomials. We will start from the results of
the last section.

Defining net polynomials. Let R = Q[α1, α2, α3, α4, α6] be a polynomial ring
over Q in the variables αi . Define f (x, y) ∈ R[x, y] by

f (x, y)= y2
+α1xy+α3 y− x3

−α2x2
−α4x −α6.

Consider the affine scheme E : f (x, y) = 0 over R. Let a = (ai ) ∈ C5. The
association (αi ) 7→ (ai ) gives a map φa : R→ C. Consider the affine variety over
C given by

Ca : y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6.

Then φa gives rise to a Cartesian diagram

En

��

Cn
a

oo

��
Spec(R) Spec(C)oo

where En
=E×Spec R · · ·×Spec R E is the n-fold fibre product of E with itself over R.

The rational functions �v ∈ K(Cn
a ) have rational expressions in x , y and the

ai (in terms of the Weierstrass model, as in for example Proposition 3.8). These
expressions have rational coefficients by construction and the general theory of
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sigma functions (the divisors are Galois invariant). So these same expressions
(with ai replaced with αi ) give rational functions 9v ∈ K(En).

Theorem 4.1. Let n ≥ 1. Denote by K(En) the field of rational functions on En .
There exists a unique system of functions 9v ∈ K(En) depending on v ∈ Zn such
that

(a) the map

W : Zn
→ K(En), v 7→9v

is an elliptic net, and

(b) whenever Ca is elliptic, the restriction of 9v to a fibre Cn
a is the rational

function �v.on Cn
a .

Proof. The union of the Cn
a for which Ca is an elliptic curve is Zariski dense, and

so the 9v are determined uniquely by their restrictions to these fibres. �

We call these 9v the net polynomials; we will discuss shortly the “polynomial”
ring Rn in which they live.

We transfer some useful properties of the �v to properties of the 9v on En .
Again, there are unique rational functions X and Y for E whose restriction to
elliptic Ca correspond to the Weierstrass functions ℘ and 1

2℘
′. Each v ∈ Zn gives

rise to a map v : En
→ E which is the linear combination associated to the vector

v (e.g., (1, 1) is the usual group law). Define rational functions Xv = X ◦ v and
Yv = Y ◦ v on En .

The next lemma follows immediately from Lemma 3.5.

Lemma 4.2. 92
v9

2
w(Xv − Xw)=−9v+w9v−w.

More generally, there is a map T : Em
→ En associated to any T ∈ Mn×m(Z).

The next proposition follows from Proposition 3.4.

Proposition 4.3. Let v ∈ Zn . Let T be any n × m matrix with entries in Z and
transpose T tr . Then

(9v ◦ T )
n∏

i=1

9
2v2

i −
∑n

j=1 viv j

T tr (ei )

∏
1≤i< j≤n

9
viv j
T tr (ei+e j )

=9T tr (v). (17)

Net polynomials at primes. In this section we determine a little more about the
exact nature of the elliptic net 9v. In particular, we wish to restrict the possible
divisor of 9v, and show that it has zero valuation for certain primes.

Consider the ring S=Z[α1, α2, α3, α4, α6]. Since f (x, y) is defined over S, we
may define ES : f (x, y) = 0 as a scheme over Spec S whose fibre over Spec R is
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E. Then En
S = ES ×Spec S · · · ×Spec S ES is a scheme over Spec S whose fibre over

Spec R is En . Define

Rn = S[xi , yi ]1≤i≤n
[
(xi − x j )

−1]
1≤i< j≤n

/
〈 f (xi , yi )〉1≤i≤n .

The ring Rn is the affine coordinate ring of the affine piece of En
S obtained by

removing all the diagonals and antidiagonals, in the sense of the elliptic curve
group law (in other words, on an elliptic curve fibre, xi = x j if and only if the
corresponding points satisfy Pi = ±Pj ). There is a natural identification of Rn

with a subset of K(En).

Theorem 4.4. The functions 9v are elements of Rn . Let p be any prime of Rn

which is a lift of a prime of S. Then 9v /∈ p.

The lifted ideal p = qRn is prime whenever q is a prime of S. The proof of
the theorem will involve showing for all valuations v associated to such primes p

that v(9v) (slightly modified) is a quadratic form with certain vanishing. Then the
following lemma will establish that this function is identically zero.

Let B and C be abelian groups written additively. The function f : B→ C is a
quadratic form if for all x, y, z ∈ B,

f (x + y+ z)− f (x + y)− f (y+ z)− f (x + z)+ f (x)+ f (y)+ f (z)= 0.

If f is a quadratic form, then for all x, y ∈ B,

f (x + y)+ f (x − y)− 2 f (x)− 2 f (y)= 0.

The converse holds if C is 2-torsion free.

Lemma 4.5. Let M : Zn
→ Z be a quadratic form. Suppose that M(v)= 0 for all

v = ei and v = ei + e j (i.e., for standard basis vectors and their two-term sums).
Then M(v)= 0 for all v.

Proof. It is well-known that any value of a quadratic form can be given in terms of
its value at a certain “base” of vectors. In particular,

f
( n∑

i=1

ai ei

)
=

n∑
i=1

(
2a2

i −

n∑
j=1

ai a j

)
f (ei )+

∑
1≤i< j≤n

ai a j f (ei + e j ). �

Proof of Theorem 4.4. Each9v ∈K(En) has a corresponding Weil divisor. Suppose
a codimension-one subscheme X appears as a summand in this divisor, and let
X̃ = X ∩ Cn

a . If Ca is elliptic, X̃ 6= ∅, and X̃ 6= Cn
a , then X̃ is of codimension

one in Cn
a and appears in the divisor of �v to the same order as X appears in the

divisor of 9v. Definition 3.1 determines the divisors of �v and this restricts the
possible divisors for 9v. In particular, it shows that s9v ∈Rn , where s ∈ S.
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Therefore, taking v to be a valuation of Rn lifted from a valuation of S associated
to a prime q of S, it will suffice to show that v(9v)= 0 for all v ∈ Zn .

Lemma 4.2 implies

Xv − Xw =−
9v+w9v−w

92
v9

2
w

.

We claim that v(Xv − Xw)= 0 whenever v 6= ±w, v 6= 0, and w 6= 0.
First suppose v(Xv− Xw) < 0; we show that v = 0 or w = 0. Indeed, we know

that v(Xv) < 0 or v(Xw) < 0. Suppose v(Xv) < 0. This implies that v(P) = O

for all P on the nonsingular part of the fibre over q of ES . Since P ranges over all
possible values (e.g., P = (P,O, . . . ,O)), we find that this implies that [vi ] = [0]
for all i . In turn, this shows that v = 0. Similarly, if v(Xw) < 0, then w = 0.

Next suppose v(Xv− Xw) > 0; we show that v =±w. Suppose the valuation is
positive. Then v(P) = ±w(P) for all P on the nonsingular part of the fibre over
q of ES . Since P ranges over all possible values (e.g., P = (P,O, . . . ,O) or P =
(P, P,O, . . . ,O)), we find that this implies, in particular, that for all 0≤ i ≤ j ≤ n,
we have [vi ±wi ] = [0] and [vi + v j ± (wi +w j )] = [0] on ES . In turn, this gives
vi = ±wi and vi + v j = ±(wi +w j ). Together these imply that v = ±w. This
demonstrates the claim.

Define a function M : Zn
→ Z by

M(v)=
{
v(9v) if v 6= 0,
0 if v = 0.

Note that M(−v)= M(v), from which one can deduce that

M(v+w)+M(v−w)− 2M(v)− 2M(w)= 0 (18)

whenever v = 0 or w = 0. Our work up until now has shown that (18) holds in all
other cases except v+w = 0 or v−w = 0. These remaining two cases reduce to
the statement that for all u, M(2u) = 4M(u). To obtain this, take the sum of the
four instances of (18) with (v,w) respectively taking the values (4u, u), (3u, u),
(3u, u) and (2u, u), and then subtract the instance of (18) with (v,w)= (3u, 2u).

We have shown that (18) holds for all v and w, and that therefore M :Zn
→Z is

a quadratic form (since Z is 2-torsion free). The other assumptions of Lemma 4.5
are verified by Proposition 3.8. Therefore, M is identically zero, which is what
was required to prove. �

Summary. Let n≥ 1. For any elliptic curve or scheme C , let O denote the identity,
[m] : C→ C denote multiplication by m, pi : Cn

→ C denote projection onto the
i-th component, and s :Cn

→C denote sum of all components. For v ∈Zn , define
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the expression

DC,v = ([v1]× · · · × [vn])
∗s∗(O)−

∑
1≤k< j≤n

vkv j (p∗k × p∗j )s
∗(O)

−

n∑
k=1

(
2v2

k −

n∑
j=1

vkv j

)
p∗k (O),

which is a divisor on the n-fold product Cn . Over the complex numbers, the
functions �v have these divisors and satisfy the elliptic net recurrence (3) (see
Section 3).

We now collect the results of the previous sections in one statement.

Theorem 4.6. Let n ≥ 1. There exists a unique collection of rational functions
9v ∈ K(En

S) for each v ∈ Zn satisfying these conditions:

(a) The map v 7→9v gives an elliptic net W : Zn
→Rn .

(b) 9v=1 whenever v= ei for some 1≤ i≤n or v= ei+e j for some 1≤ i< j≤n.

(c) Div(9v)= DES,v.

Proof. Part (a) follows from Theorems 4.1 and 4.4. Part (b) follows from Proposi-
tion 3.8 and Theorem 4.1. Part (c) follows from Theorem 4.4. �

5. Elliptic nets from elliptic curves

In light of Theorem 4.6, it is now natural to define an elliptic net associated to any
cubic Weierstrass curve over any field.

Definition 5.1. Let K be any field. Let a1, a2, a3, a4, a6 ∈ K . To this we associate
a map

S = Z[α1, α2, α3, α4, α6] → K , αi 7→ ai .

Let
f (x, y)= y2

+ a1xy+ a3 y− x3
− a2x2

− a4x − a6

and let C be a curve defined by f (x, y)= 0. Then we have a Cartesian diagram

En
S

��

Cnoo

��
Spec(S) Spec(K )oo

under which we may pullback 9v to obtain φv ∈ K(Cn) (this is possible since
the fibre on the right is not contained in the support of the divisor of 9v, by
Theorem 4.6).
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The nonsingular points of C defined over K , denoted Cns(K ), form a group.
We call a set of points {P1, . . . , Pn} on the nonsingular part Cns of a cubic curve
appropriate if

(a) Pi 6= 0 for all i , (b) [2]Pi 6= 0 for all i ,

(c) Pi 6= ±Pj for any i 6= j , and (d) [3]P1 6= 0 whenever n = 1.

If we have an appropriate n-tuple of points P ∈ Cns(K )n , we may define a map

WC,P : Z
n
→ K

by setting WC,P(v) = φv(P). By Theorem 4.6, this will be an elliptic net. This
will be called the elliptic net associated to C and P .

We have the following additional corollary to Theorem 4.6.

Corollary 5.2. For an elliptic net WC,P : Zn
→ K associated to a curve C and

nonsingular points P , we have W (v)= 0 if and only if v(P)= O on Cns.

Proof. This follows from the statement that �v(v · z) = 0 if and only if v · z ∈ 3
(see Section 3). �

Example 5.3. In (4) (page 201) we displayed an example elliptic net WE,(P,Q)

associated to the elliptic curve and points

E : y2
+ y = x3

+ x2
− 2x, P = (0, 0), Q = (1, 0)

Some of the smaller terms of this net can be calculated using Proposition 3.8; for
example,

W (0, 0)= 0, W (1, 0)=W (0, 1)=W (1, 1)= 1,

W (2, 0)= 2y1+ a1x1+ a3 = 1, W (0, 2)= 2y2+ a1x2+ a3 = 1,

W (1,−1)= x2− x1 = 1,

W (2, 1)= 2x1+ x2−

( y2−y1
x2−x1

)2
− a1

( y2−y1
x2−x1

)
+ a2 = 2,

W (2,−1)= (y1+ y2)
2
− (2x1+ x2)(x1− x2)

2
=−1.

More terms can be calculated using the recurrence relation (3). Since P and Q
are independent nontorsion points, there are no zeroes in the array except the zero
located at the origin (W (0, 0) = 0). The row through the term 0 is the elliptic
divisibility sequence associated to E and P , which begins

1, 1, −3, 11, 38, 249, −2357, 8767, 496035, −3769372, −299154043,

−12064147359, 632926474117, −65604679199921, . . .

The column through 0 is the elliptic divisibility sequence associated to Q.
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6. Elliptic curves from elliptic nets

We are now in a position to use the results of Section 2 to determine exactly which
elliptic curves (or more generally cubic Weierstrass curves) give rise to any given
elliptic net.

Scale equivalence and normalization.

Proposition 6.1. Let W : A→ K be an elliptic net. Let f : A→ K ∗ be a quadratic
form. Define W f

: A→ K by

W f (v)= f (v)W (v).

Then W f is an elliptic net.

Proof. Let p, q, r, s ∈ A. We use multiplicative notation in K ∗, so that f satisfies

f (p+ q + s) f (p) f (q) f (s) f (p+ q)−1 f (q + s)−1 f (p+ s)−1
= 1. (19)

The parallelogram law for quadratic forms (written multiplicatively) states that

f (p− q) f (p+ q)= f (p)2 f (q)2. (20)

Multiplying f (r) f (r + s) and equations (19) and (20) together, we obtain

f (p+q+s) f (p−q) f (r+s) f (r)= f (q+s) f (p+s) f (r+s) f (p) f (q) f (r) f (s)−1,

which is symmetric in p, q , and r , so

f (p+ q + s) f (p− q) f (r + s) f (r)= f (q + r + s) f (q − r) f (p+ s) f (p)

= f (r + p+ s) f (r − p) f (q + s) f (q),

which shows that the recurrence (3) holds for W f if it does for W . �

If two elliptic nets are related in the manner of W and W f for some quadratic
form f , then we call them scale equivalent. This is clearly an equivalence relation.

Let W : Zn
→ K be an elliptic net. We say that W is normalized if W (ei ) = 1

for all 1 ≤ i ≤ n and W (ei + e j )= 1 for all 1 ≤ i < j ≤ n. An elliptic net arising
from a curve and points is normalized. It should be stressed that the concept of
normalized is only defined for elliptic nets with a preferred basis.

If any term of the form W (ei ), W (2ei ), W (ei+e j ), or W (ei−e j ) is zero (where
i 6= j), or if n = 1 and any term of the form W (3e1) is zero, then we say that W is
degenerate. Compare the definition of degenerate to the definition of appropriate
in Section 5.

Proposition 6.2. If W : Zn
→ K is a nondegenerate elliptic net, there is exactly

one scaling W f which is normalized.



222 Katherine Stange

Proof. Define

Ai i =W (ei )
−1, for 1≤ i ≤ n,

Ai j =
W (ei )W (e j )

W (ei + e j )
, for 1≤ i < j ≤ n,

f (v)=
∏

1≤i≤ j≤n

Aviv j
i j .

Then W f is normalized. Uniqueness follows from the elementary properties of
quadratic forms (as in the proof of Lemma 4.5). �

The proof demonstrates that scale equivalence has
(n+1

2

)
degrees of freedom. If

W :Zn
→ K is an elliptic net, then its normalization W̃ is defined to be the unique

normalized elliptic net which is a scaling of W . A coordinate sublattice of Zn is a
sublattice of the form

{v ∈ Zn
: vi = 0 for i /∈ I }

for some proper nonempty subset I ⊂ {1, 2, . . . , n}. The rank of the sublattice is
the cardinality of I .

Curves from nets of ranks 1 and 2. Define a change of variables of a cubic curve
in Weierstrass form to be unihomothetic if it is of the form

x ′ = x + r, y′ = y+ sx + t, (21)

for some r , s and t .
The rank-one result in the following form is due to Christine Swart.

Proposition 6.3 [Swart 2003, Theorem 4.5.3]. Let W : Z→ K be a normalized
nondegenerate elliptic net. Then the family of curve-point pairs (C, P) such that
W =WC,P is three dimensional. These are the curve and nonsingular point

C : y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6, P = (0, 0),

where

a1 =
W (4)+W (2)5− 2W (2)W (3)

W (2)2W (3)
,

a2 =
W (2)W (3)2+ (W (4)+W (2)5)−W (2)W (3)

W (2)3W (3)
,

a3 =W (2), a4 = 1, a6 = 0,

or any image of these under a unihomothetic change of coordinates.
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Proof. A normalized rank 1 nondegenerate elliptic net has W (2) 6=0 and W (3) 6=0.
Any singular point P = (x, y) on a cubic Weierstrass curve has vanishing partial
derivatives, which implies that 92(P)= 2y+ a1x + a3 = 0 (see Proposition 3.8).
Therefore, if any curve and singular point gives rise to W , then W (2) = 0, in
contradiction to nondegeneracy. The division polynomials 91, 92, 93 and 94 are
invariant under a change of coordinates of the form (21). Then, it is a simple calcu-
lation to check that WC,P agrees with W at the first four terms; hence WC,P =W by
Theorem 2.2. Conversely, suppose W = WC ′,P ′ . After applying a transformation
of the form (21) taking P ′ to (0, 0) and taking a4 to 1, substitution of the division
polynomials into the equations above verifies that a′i = ai for all i . �

Proposition 6.4. Let W :Z2
→K be a normalized nondegenerate elliptic net. Then

the family of 3-tuples (C, P1, P2) such that W = WC,P1,P2 is three dimensional.
These are the curve and nonsingular points

C : y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6,

P1 = (0, 0), P2 = (W (1, 2)−W (2, 1), 0),

with

a1 =
W (2, 0)−W (0, 2)
W (2, 1)−W (1, 2)

, a2 = 2W (2, 1)−W (1, 2), a3 =W (2, 0),

a4 = (W (2, 1)−W (1, 2))W (2, 1), a6 = 0,

or any image of these under a unihomothetic change of coordinates.

Proof. In a normalized nondegenerate elliptic net,

W (2, 1)−W (1, 2)=W (1,−1) 6= 0, W (2, 0) 6= 0, W (0, 2) 6= 0

(see Theorem 2.5). Thus (as in the previous theorem) if a curve and points give
rise to W , then the points are nonsingular. The formulae for W (2, 0), W (0, 2),
W (2, 1) and W (1, 2) are invariant under a change of coordinates of the form (21).
The net WC,P1,P2 agrees with W at the terms (2, 0), (0, 2), (2, 1) and (1, 2); hence
WC,P1,P2 = W by Theorem 2.5. Conversely, suppose W = WC ′,P ′1,P

′

2
. After ap-

plying a unihomothetic transformation taking P ′1 to (0, 0) and P ′2 to (W (1, 2)−
W (2, 1), 0), substitution of the net polynomials into the equations above verifies
that a′i = ai for all i . �

Example 6.5. Plugging terms from the elliptic net of (4) into the formulae in the
statement of Proposition 6.4 we recover the corresponding E , P , and Q.

Remark 6.6. A more symmetric set of equations in the case of characteristic not
equal to 2 is as follows:

P1 = (v, 0), P2 = (−v, 0), 2v =W (2, 1)−W (1, 2),
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a1 =
W (2, 0)−W (0, 2)
W (2, 1)−W (1, 2)

, 2a2 =W (2, 1)+W (1, 2),

2a3 =W (2, 0)+W (0, 2), 4a4 =−(W (2, 1)−W (1, 2))2,

8a6 =−(W (2, 1)−W (1, 2))2(W (2, 1)+W (1, 2)).

Curves from nets in general rank.

Theorem 6.7. Let n ≥ 1. Let W : Zn
→ K be a normalized nondegenerate el-

liptic net. Then the set of curves C and P ∈ Cn such that W = WC,P forms a
three-dimensional family of tuples (C, P). Further, none of the points P ∈ P are
singular. In particular, the family consists of one such tuple and all its images
under unihomothetic changes of coordinates.

Proof. The proof is by strong induction on n, where the inductive statement has
two parts:

(I) The theorem holds for n.

(II) W (v) 6= 0 for some v ∈ {±1}n .

The base case consists of ranks n = 1, 2. Part (I) is by Propositions 6.3 and 6.4;
part (II) is by nondegeneracy, which implies W (e1) 6= 0 and W (e1+ e2) 6= 0.

Suppose n ≥ 3 and the inductive statement holds for all k < n. Let W1, . . . ,Wn

be the normalized elliptic subnets of W associated to the rank n − 1 coordinate
sublattices L i = {v : vi = 0}. These are defined as nets Wi : L i → K but they can
be identified with nets W ′i : Z

n−1
→ K in the obvious way (by deleting the zero

coordinate). They are normalized and nondegenerate (by definition, nondegeneracy
at rank n implies nondegeneracy on rank n− 1 sublattices for n > 2). By part (I)
the inductive hypothesis, we have W ′i =WCi ,Pi for some curves Ci and nonsingular
points Pi ∈ Cn−1

i .
We observe a consequence of Proposition 4.3. Suppose V1 : Zm

→ K is an
elliptic net of rank m associated to C and P . Also suppose

V2 : {v ∈ Zm
: vm = 0} → K

is the elliptic subnet of V1 associated to the coordinate sublattice of rank m − 1
which consists of vectors with last coordinate zero. Suppose V ′2 : Z

m−1
→ K is

naturally identified with V2 by simply deleting the last coordinate of the domain.
Then V ′2 is associated to C and P ′ where P ′ is simply P with the last coordinate
deleted. This statement, appropriately adjusted, holds for any coordinate hyper-
plane (not just the one with last coordinate zero).

Consider two of the rank n− 1 subnets, say Wi and W j . Let Wi j =Wi ∩W j in
W . Define W ′i j :Z

n−2
→ K by the obvious identification. Then, W ′i j =WCi j ,Pi j for

some curve Ci j and Pi j ∈ Cn−2
i j . By the foregoing, Ci = C j = Ci j , Pi j is just Pj
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with the i-th coordinate deleted, and Pi j is just Pi with the ( j − 1)-th coordinate
deleted.

Considering every such pair, we may define a candidate curve C by C = Ci for
all i and P ∈Cn defined as the unique n-tuple which results in Pi upon deleting the
i-th coordinate. By the foregoing, this is well-defined. Now we see that W agrees
with WC,P on all coordinate sublattices of rank n−1. By part (II) of the inductive
hypothesis and Theorem 2.8, we see that W is determined by its sublattices of rank
n− 1. Therefore W =WC,P .

To show part (II) of the inductive statement, we observe that if W (v)= 0 for all
v ∈ {±1}n , then v(P)= O for all such v (by Corollary 5.2). But this is impossible,
since it would imply [2]Pi = O for 1 ≤ i ≤ n, a contradiction to nondegeneracy
(again Corollary 5.2).

A change of coordinates of the form (21) for C does not change the elliptic net,
as it is determined by its values on its coordinate hyperplanes, where this is true.
Further, if two tuples not related by such a change of coordinates generate the same
net W , then the same would hold for some coordinate hyperplane, a contradiction.
This demonstrates part (I) of the inductive statement. �

7. The curve-net theorem

We set some remaining terminology, and then proceed to the statement and proof
of the main theorem.

Homothety and singular elliptic nets. The only changes of coordinates of a Weier-
strass equation into another are compositions of unihomothetic changes of coor-
dinates and changes of coordinates of the form (x, y) 7→ (λ2x, λ3 y), which we
refer to as homotheties (since they correspond to homotheties of the lattice in the
complex uniformization).

Proposition 7.1. Consider the rank n elliptic net WC,P associated to

C : y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6

defined over K and P ∈ C(K )n . Let λ be a nonzero element of K . Suppose
φλ : C→ Cλ is the isomorphism of curves taking C to

Cλ : y2
+ λa1xy+ λ3a3 y = x3

+ λ2a2x2
+ λ4a4x + λ6a6

under the change of coordinates (x, y) 7→ (λ2x, λ3 y). Then

W̃Cλ,φλ(P) = λW̃C,P

In particular, let δi j be the Kronecker delta, and define

g(v)=−1−
∑

1≤i< j≤n
(−1)δi jviv j .
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Then

WCλ,φλ(P) = λ
g(v)WC,P .

Proof. The first statement is entailed by the second. From the general theory of
Weierstrass sigma functions, σ(λz, λ3)= λσ(z,3). Thus, by Definition 3.1,

�v(λz; λ3)= λg(v)�v(z;3).

As in Section 4, this allows us to conclude that the same holds for 9v, so that

9v(λ
2x, λ3 y, λiαi )= λ

g(v)9v(x, y, αi ),

from which the result follows. �

Definition 7.2. Let W :Zn
→ K be an elliptic net. With the notation of Proposition

7.1, we define

W λ(v) := λg(v)W (v).

This gives an action of K on elliptic nets W :Zn
→ K called the homothety action.

Two elliptic nets are homothetic if they are in the same orbit of the action of K .

The following proposition is immediate.

Proposition 7.3. Let W : Zn
→ K be an elliptic net. Then for any nonzero λ ∈ K ,

W λ is normalized if and only if W is.

Let W :Zn
→ K be an elliptic net. If the curve C associated to its normalization

is a nodal or cuspidal cubic, then W is called singular. If, instead, C is an elliptic
curve, then W is called nonsingular. In either case, the discriminant 1 of W is
defined to be the discriminant of the associated Weierstrass equation. Similarly,
the j-invariant is the j-invariant of the associated Weierstrass equation. The dis-
criminant of an elliptic net changes by a factor of λ12 under homothety, while the
j-invariant remains unaltered.

The curve-net theorem. We may put a partial ordering on tuples (C, P1, . . . , Pn)

where C is a Weierstrass curve and Pi are nonsingular points on the curve. We do
this by defining

(C, P1, . . . , Pn)≤ (D, Q1, . . . , Qm)

if and only if C = D and the groups they generate satisfy a containment

〈P1, . . . , Pn〉 ⊆ 〈Q1, . . . , Qn〉 .

The collection of all elliptic nets is partially ordered by the subnet relation. Col-
lecting our work up to this point, we have now shown:
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Theorem 7.4. For each field K , there is an explicit isomorphism of partially or-
dered sets 

scale equivalence classes of
nondegenerate elliptic nets
W : Zn

→ K , for some n


��

tuples (C, P1, . . . , Pm) for some m, where C is a
cubic curve in Weierstrass form over K , consid-
ered modulo unihomothetic changes of variables
and such that {Pi } ∈ Cns(K )m is appropriate

 .

OO

Nonsingular nets correspond to elliptic curves. The action of K (by homothety) on
the sets preserves the order and respects the isomorphism. The bijection takes an
elliptic net of rank n to a tuple with n points. The elliptic net W associated to a
tuple (C, P1, . . . , Pn) satisfies the property that W (v1, . . . , vn) = 0 if and only if
v1 P1+ · · ·+ vn Pn = 0 on the curve C.

Proof. In the diagram in the statement of the theorem, call the upper set N and the
lower set C. The first claim is that there is an injective map N→C. Proposition 6.2
shows that each scale equivalence classes in N contains a unique normalized elliptic
net, so we can define the map by Theorem 6.7 (which also guarantees injectivity).
Corollary 5.2 shows that the result is an element of C. This shows the first claim.

The second claim is that there exists an inverse map C→ N. The map is given
by Definition 5.1, which is well-defined as a result of Theorem 4.6. It is required
to check that the resulting elliptic net is normalized (Proposition 3.8) and nonde-
generate (Corollary 5.2). Theorem 6.7 says that this map is indeed an inverse to
the map of the first claim. This gives the second claim and the bijection of sets.

It is clear that the bijection associates an elliptic net of rank n to a tuple with
n points, and that it preserves the partial ordering. The action of homothety is
preserved by Proposition 7.1. And the final statement of the theorem is a result of
Corollary 5.2. �

Remark 7.5. The degenerate cases present several difficulties. One is that a de-
generate elliptic net may not be determined by the usual initial set of terms as given
in Section 2. For example, the sequence given by

W (n)=
{

0 if n 6= k,
1 if n = k,

is an elliptic net for any nonzero integer k. However, some degenerate sequences
can be thought of as arising from singular points on a singular cubic. For example,
consider a sequence associated to an elliptic curve E and point P both defined over
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Q such that P reduces to a singular point modulo some prime p. Then the sequence
regarded modulo p as living in Fp (which is necessarily a degenerate elliptic net)
should be associated to a point on the special fibre of the Néron model. It is likely
that Theorem 7.4 can be extended to include these cases (this is future work).
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Introduction

Witt vector functors are certain functors from the category of (commutative) rings
to itself. The most common are the p-typical Witt vector functors W , for each
prime number p. Given a ring A, one traditionally defines W (A) as a set to be AN

and then gives it the unique ring structure which is functorial in A and such that
the set maps

W (A)
w
−→ AN

(x0, x1, . . . ) 7−→ 〈x0, x p
0 + px1, x p2

0 + px p
1 + p2x2, . . . 〉

are ring homomorphisms for all rings A, where the target has the ring structure
with componentwise operations. For example, we have

(x0, x1, . . . )+ (y0, y1, . . . )=
(
x0+ y0, x1+ y1−

p−1∑
i=1

1
p

(p
i

)
x i

0 y p−i
0 , . . .

)
(x0, x1, . . . ) · (y0, y1, . . . )= (x0 y0, x p

0 y1+ x1 y p
0 + px1 y1, . . . ).

Observe that the four polynomials in x0, y0, x1, y1 displayed on the right-hand side
have integer coefficients, as they must if they are to define operations on W (A) for
all rings A. Conversely, to prove that the desired functorial ring structure on W
exists, it is enough to prove that the polynomials sitting in the higher components
have integer coefficients too. This is Witt’s theorem.

On the other hand, the polynomials at the component of index n depend only
on the variables x0, y0, . . . , xn, yn . This is clear by induction. It follows that the
quotient set A[0,n] = {(x0, . . . , xn)} of W (A) = AN is a quotient ring, which we
denote by Wn(A). (It is traditionally denoted Wn+1(A). The shift in indexing is
preferable for reasons discussed in 2.5.)

In some cases, the rings W (A) and Wn(A) are isomorphic to familiar rings. For
example, W (Z/pZ) is isomorphic to the ring Zp of p-adic integers, and Wn(Z/pZ)

is isomorphic to Z/pn+1Z. If p is invertible in A, then w is a bijection and so the
Witt vector rings become product rings: Wn(A)∼= A[0,n] and W (A)∼= AN. But in
most cases, W (A) is not a familiar ring.

While this traditional approach to Witt vectors is adequate for many purposes,
it has two shortcomings. The first is that it is not clear how we should think about
the affine scheme Spec Wn(A) geometrically. Indeed, I am not aware of a truly
geometric description of Spec Wn(A) in any nontrivial case in the literature. If we
want to fully incorporate Witt vectors into arithmetic algebraic geometry (and we
do), it is important to have a thorough understanding of their geometry. The main
point here and in the companion paper [Borger 2010] is to set up a framework for
that. The geometry in this paper is however limited to the basic results in the affine
case needed for the general treatment in [Borger 2010].
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The second shortcoming of the traditional approach is that it does not explain
what the defining purpose of Witt vectors is. The answer, at least for this paper, is
that they control Frobenius lifts—ring endomorphisms which reduce to the Frobe-
nius map modulo p. Here we are following Borger and Wieland [2005, §12.3–4],
who in turn followed Joyal [1985a; 1985b]. Motivated by this perspective, we will
define Witt vector functors relative to primes in any global or local field. This
generality includes not only the p-typical functors above but also the so-called big
Witt vector functor and less common variants of the p-typical ones due to Drin-
feld [1976, Proposition 1.1] and to Hazewinkel [1978, (18.6.13)]. It also includes
many variants unstudied till now. We will work with these generalized functors
throughout the paper. In fact, this will take no more effort once we establish some
basic reduction results.

Let us now discuss the contents in more detail.
Section 1 introduces our generalized Witt vectors. Given a Dedekind domain

R and a set E of maximal ideals of R with finite residue fields, we will define a
functor WR,E from the category RingR of R-algebras to itself:

WR,E : RingR→ RingR.

(In fact, we will work with slightly more general R and E .) We call WR,E the E-
typical Witt vector functor. When R = Z and E consists of a single maximal ideal
pZ, our functor will agree with the p-typical Witt vector functor above; when E
consists of all maximal ideals of Z, our functor will agree with the big Witt vector
functor. The definition of WR,E is in two steps. First we define a functor

W fl
R,E : Ringfl

R→ Ringfl
R,

where Ringfl
R is the full subcategory of RingR consisting of R-algebras which are

m-torsion free for all ideals m ∈ E . We call such algebras E-flat. Then we define
WR,E to be a certain natural extension of W fl

R,E to all of RingR .
Let N(E) denote the commutative monoid

⊕
E N, where N is {0, 1, . . . } under

addition. Given an action of N(E) on an R-algebra B, let ψm denote the endomor-
phism of B given by the m-th element of the standard basis of N(E). Let us say
that such an action is a 3R,E -structure if for each m ∈ E , the map ψm reduces
to the Frobenius endomorphism x 7→ x [R:m] on B/mB. Now, for any R-algebra
A, the monoid N(E) acts on AN(E)

through its translation action on itself in the
exponent. When A is E-flat, we define W fl

R,E(A) to be the largest of the sub-R-
algebras B ⊆ AN(E)

having the properties that B is stable under the action of N(E)

and that the induced action on B is a3R,E -structure. It is elementary to check that
a maximal such subalgebra W fl

R,E(A) exists.
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This definition can be expressed as a universal property. Let Ringfl
3R,E

denote
the following category: the objects are E-flat R-algebras equipped with a 3R,E -
structure, and the morphisms are N(E)-equivariant R-algebra maps. Then W fl

R,E ,
viewed as a functor Ringfl

R→ Ringfl
3R,E

, is the right adjoint of the evident forgetful
functor.

One then defines WR,E to be the left Kan extension of W fl
R,E , now viewed as a

functor Ringfl
R→ RingR . This amounts to the following. It is not hard to show that

the functor W fl
R,E is representable, that is, there exists an E-flat R-algebra 3R,E

and an isomorphism W fl
R,E(−)= Hom(3R,E ,−), as set-valued functors. Because

W fl
R,E takes values in R-algebras, 3R,E carries the structure of a co-R-algebra

object in Ringfl
R . Because such a structure is described using maps between certain

coproducts of 3R,E with itself, and because Ringfl
R is a full subcategory of RingR

closed under coproducts,3R,E continues to be a co-R-algebra object when viewed
as an object of RingR . Therefore it represents an R-algebra-valued functor, and this
functor is what WR,E is defined to be.

Since the definition of WR,E in terms of W fl
R,E is of a purely category-theoretic

nature, one should view the E-flat case as the central one. This is in contrast to the
common point of view that the purpose of Witt vector functors is to lift rings from
positive characteristic to characteristic zero.

As in the E-flat setting, WR,E is the right adjoint of the forgetful functor

Ring3R,E
→ RingR,

but to make sense of this, it is necessary to know the what a 3R,E -structure on a
general R-algebra is. Unfortunately, it is not easy to state the definition, and so
we will leave it to the body of the paper. In the E-flat setting, it is equivalent to a
commuting family of Frobenius lifts indexed by E , as above; but in general, it is
a slightly stronger structure that is better behaved. When R is Z and E consists of
all maximal ideals of Z, a 3R,E -structure is equivalent to a λ-ring structure in the
sense of Grothendieck’s Riemann–Roch theory, but this does not admit a simple
definition either.

In addition to the right adjoint WR,E , the forgetful functor Ring3R,E
→ RingR

has a left adjoint, which we denote by A 7→ 3R,E � A. It has a smaller presence
in this paper, but it is very important—even in the p-typical case, as the work of
Buium [1996; 2005] makes clear.

Section 2 defines functors WR,E,n , which are truncations of WR,E in the same
way that the functors Wn above are truncations of W . For any A ∈ Ringfl

R and
n ∈N(E), let W fl

R,E,n(A) denote the image of the subring W fl
R,E(A)⊆ AN under the

canonical projection

AN(E)
→ A[0,n],
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where
[0, n] = {i ∈ N(E)

| im 6 nm for all m ∈ E}.

Then W fl
R,E,n is a functor Ringfl

R→Ringfl
R . It is representable by an E-flat R-algebra

3R,E,n , and we extend it to a functor

WR,E,n : RingR→ RingR

by taking its left Kan extension, as above. These truncated functors are related to
the original one by the formula

WR,E(A)= lim
n

WR,E,n(A).

Even in the p-typical case, this approach to defining the Witt vectors has the
advantage over the traditional one that universal properties are emphasized and the
particulars of explicit constructions are played down. But this comes at a cost. For
instance, it is not obvious that WR,E,n preserves surjectivity of maps. To prove
this and other basic facts, it appears necessary to bring back the Witt components
(x0, x1, . . . ) above, at least in some form. To define them, the ideals of E must be
principal; the purpose of section 3 is to define them in the minimal case we will
need, which is when E consists of a single principal ideal m. A version of the proof
of Witt’s theorem then shows there is a unique functorial bijection AN

→WR,E(A)
such that when A is E-flat, the composition AN

→WR,E(A)⊆ AN satisfies

(x0, x1, x2, . . . ) 7→ 〈x0, xq
0 +πx1, xq2

0 +πxq
1 +π

2x2, . . . 〉

where q = [R : m] and π is a fixed generator of m. We can similarly identify
WR,E,n(A) with the quotient A[0,n] consisting of vectors (x0, . . . , xn). Let me em-
phasize that the components (x0, x1, . . . ) depend on the choice of generator π ∈m

in a complex, non-multilinear way. But we can use them to define Verschiebung
operators

V j
m : m

j
⊗R WR,E,n(A)→WR,E,n+ j (A)

π j
⊗ (x0, . . . , xn) 7→ (0, . . . , 0, x0, . . . , xn),

which are independent of the choice of the generator π . Making that so is the
purpose the tensor factor m j .

When E consists of a single ideal m (possibly nonprincipal), section 4 describes
WR,E,n in terms of the case where m is principal, which is covered by section 3.
This is done by working Zariski locally on R. Using the same technique, we will
show that the Verschiebung maps as above can be defined when m is not assumed to
be principal. In fact, there is a unique functorial family of such maps agreeing with
the maps defined above. The image of V j

m is the kernel of the canonical projection
WR,E,n+ j (A)→WR,E, j (A).
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Similarly, section 5 gives a description of WR,E,n when E is general in terms
of the case where E consists of a single ideal, which is covered by section 4: if
m1, . . . ,mr are the ideals in the support of n, there is a natural isomorphism

WR,E,n
∼
−→WR,mr ,nmr

◦ · · · ◦WR,m1,nm1
. (0-0-1)

Such a description also holds for WR,E , though some care must be taken when E is
infinite. It is also possible to describe the functor3R,E�−, as well as its truncated
variants 3R,E,n �−, in terms of the case where E consists of a single ideal.

Section 6 gives several ring-theoretic facts about WR,E,n which we will need
later. For example, this is where we prove that WR,E,n preserves surjectivity.
Most of the arguments there appear to require the use of Witt components and
the reduction techniques of sections 4 and 5.

Sections 7–9 prove the main results, which relate Witt vector functors and étale
maps. Suppose E consists of a single ideal m. For any ring A and any integer
n > 1, we have a diagram

WR,E,n(A)
αn

// WR,E,n−1(A)× A
s◦pr1

//

t◦pr2

// A/mn A. (0-0-2)

When m is principal, the maps αn , s, and t can be defined in terms of the Witt
components relative to a fixed generator π ∈m as follows:

αn : (a0, . . . , an) 7→
(
(a0, . . . , an−1), aqn

0 +πaqn−1

1 · · · +πnan
)

s : (a0, . . . , an−1) 7→ (aqn

0 + · · ·+π
n−1aq

n−1) mod mn A

t : a 7→ a mod mn A.

If A is m-torsion free, (0-0-2) is an equalizer diagram. Figure 1 shows the induced
diagram of schemes in the p-typical case when n = 1.

Now let C denote the following category: an object is a pair (B, ϕ), where B is
an étale (WR,E,n−1(A)× A)-algebra and ϕ is an isomorphism of A/mn A-algebras

A/mn A⊗t◦pr2
B

ϕ
−→ A/mn A⊗s◦pr1

B

and where a morphism (B1, ϕ1)→ (B2, ϕ2) is a (WR,E,n−1(A)× A)-algebra map
f : B1→ B2 such that

ϕ2 ◦ (A/mn A⊗t◦pr2
f )= (A/mn A⊗s◦pr1

f ) ◦ϕ1.

In other words, C is the category of algebras equipped with gluing data relative to
the diagram (0-0-2), or equivalently C is the (weak) fiber product of the category
of étale Wn−1(A)-algebras and the category étale A-algebras over the category of
étale A/mn A-algebras via the evident functors.
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Frobenius

identity

Spec W1(A) Spec(A× A) Spec A/p A

Figure 1. As a topological space, Spec W1(A) (traditionally writ-
ten W2(A)) is two copies of Spec A glued along Spec A/p A. This
is also true as schemes if we assume that A is p-torsion free and we
glue transversely and with a Frobenius twist, as indicated. There is
a similar description of Spec Wn(A) as Spec Wn−1(A) glued with
Spec A along Spec A/pn A. See the diagram (0-0-2).

Theorem A. The base-change functor from the category of étale WR,E,n(A)-alge-
bras to C is an equivalence. If A is m-torsion free, then a quasi-inverse is given by
sending (B, ϕ) to the equalizer of the two maps

B
1⊗idB

//

ϕ◦(1⊗idB)

// A/mn A⊗s◦pr1
B.

The first statement can be expressed succinctly in geometric terms; it says that
the map αn satisfies effective descent for étale algebras and that descent data is
equivalent to gluing data with respect to the diagram (0-0-2). Using theorem A and
induction on n, it is in principle possible to reduce questions about étale Wn(A)-
algebras to questions about étale A-algebras. This is still true when E consists of
more than one ideal, but now by (0-0-1) and induction on r .

Section 9 generalizes van der Kallen’s theorem [1986, (2.4)] to any R and E :

Theorem B. Let f : A→ B be an étale morphism of R-algebras. Then the map
WR,E,n( f ) : WR,E,n(A)→WR,E,n(B) of R-algebras is étale.

This result is fundamental in extending Witt constructions beyond affine schemes
and will be used often in [Borger 2010]. Van der Kallen’s argument, which has
an infinitesimal flavor, could be extended to our setting with only minor modifi-
cations.1 Instead we deduce theorem B from theorem A, so our argument has a
globally geometric flavor.

1Until recently, [van der Kallen 1986] had escaped the notice of many workers in de Rham–Witt
theory, to whom theorem B was unknown even for the p-typical Witt vectors.
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1. Generalized Witt vectors and 3-rings

The purpose of this section is to define our generalized Witt vectors and 3-rings.
It is largely an expansion in more concrete terms of the portion of [Borger and
Wieland 2005] dealing with Witt vectors and 3-rings. The approach here will
allow us to avoid much of the abstract language of operations on rings, as first
introduced in [Tall and Wraith 1970].

For the traditional way of defining 3-rings and Witt vectors, see [Bourbaki
1983, XI, §1] and especially the exercises for that section. One can also see Witt’s
original paper [1937] on p-typical Witt vectors and his notes on big Witt vectors
[Witt 1998, pp. 157–163].

1.1. Supramaximal ideals. Let us say that an ideal m of a ring R is supramaximal
if either

(a) R/m is a finite field, Rm is a discrete valuation ring, and m is finitely presented
as an R-module, or

(b) m is the unit ideal.

By far the most important example is a maximal ideal with finite residue field in a
Dedekind domain. (In fact, all phenomena in this paper occur already over R = Z,
and this case covers the classical Witt vectors and λ-rings.) The reason we allow
the unit ideal is only so that a supramaximal ideal remains supramaximal after any
localization.

Note that a supramaximal ideal m is invertible as an R-module. Indeed, locally
at m it is the maximal ideal of a discrete valuation ring, and away from m it is the
unit ideal.

1.2. General notation. Fix a ring R and a family (mα)α∈E of pairwise coprime
supramaximal ideals of R indexed by a set E . Note that because the unit ideal is
coprime to itself, it can be repeated any number of times; otherwise the ideals mα

are distinct. For each α ∈ E , let qα denote the cardinality of R/mα. We will often
abusively speak of mα rather than α as being an element of E , especially when mα

is maximal, in which case it comes from a unique α ∈ E .
Let R[1/E] denote the R-algebra whose spectrum is the complement of E in

Spec R. It is the universal R-algebra in which every mα becomes the unit ideal. It
also has the more concrete description

R[1/E] =
⊗
α∈E

R[1/mα],

where the tensor product is over R and R[1/mα] is defined to be the coequalizer
of the maps

Sym(R) //
// Sym(m−1

α )
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of symmetric algebras, where m−1
α is the dual of mα, one of the maps is Sym

applied to the canonical map R→ m−1
α , and the other is the map induced by the

R-module map R→ Sym(m−1
α ) that sends 1 ∈ R to the element 1 ∈ Sym(m−1

α ) in
degree zero.

Finally, we write N for the monoid {0, 1, 2, . . . } under addition and write RingR
for the category of R-algebras.

1.3. E-flat R-modules. Let us say that an R-module M is E-flat if for all maximal
ideals m in E , the following equivalent conditions are satisfied:

(a) Rm⊗R M is a flat Rm-module,

(b) the map m⊗R M→ M is injective.

The equivalence of these two can be seen as follows. Condition (b) is equivalent
to the statement TorR

1 (R/m,M)= 0, which is equivalent to

TorRm
1 (R/m, Rm⊗R M)= 0.

Since Rm is a discrete valuation ring, this is equivalent to the Rm-module Rm⊗R M
being torsion free and hence flat.

We say an R-algebra is E-flat if its underlying R-module is. Let Ringfl
R denote

the full subcategory of RingR consisting of the E-flat R-algebras.

1.4. Proposition. Any product of E-flat R-modules is E-flat, and any sub-R-
module of an E-flat R-module is E-flat.

Proof. We will use condition (b) above. Let (Mi )i∈I be a family of E-flat R-
modules. We want to show that for each maximal ideal m in E , the composition

m⊗
∏

i Mi //
∏

i m⊗Mi //
∏

i Mi

is injective. Because each Mi is E-flat, the right-hand map is injective, and so it is
enough to show the left-hand map is injective.

Since m is assumed to be finitely presented as an R-module, we can express it as
a cokernel of a map N ′→ N of finite free R-modules. Then we have the following
diagram with exact rows:

N ′⊗R
∏

i Mi //

∼

��

N ⊗R
∏

i Mi //

∼

��

m⊗R
∏

i Mi //

��

0

∏
i N ′⊗R Mi //

∏
i N ⊗R Mi //

∏
i m⊗R Mi // 0.

The left two vertical maps are isomorphisms because N ′ and N are finite free.
Therefore the rightmost vertical map is an injection (and even an isomorphism).
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Now suppose M ′ is a sub-R-module of an E-flat R-module M . Since m is an
invertible R-module, m⊗R M ′ maps injectively to m⊗R M . Since M is E-flat,
m⊗R M ′ further maps injectively to M , and hence to M ′. �

1.5. 9-rings. Let A be an R-algebra. Let us define a 9R,E -action, or a 9R,E -ring
structure, on A to be a commuting family of R-algebra endomorphismsψα indexed
by α ∈ E . This is the same as an action of the monoid N(E)

=
⊕

E N on A. For
any element n ∈ N(E), we will also write ψn for the endomorphism of A induced
by n. A morphism of 9R,E -rings is defined to be an N(E)-equivariant morphism
of rings.

The free 9R,E -ring on one generator e is 9R,E = R[e]⊗RN(E)
, where N(E) acts

on 9R,E through its action on itself in the exponent. In particular, 9R,E is freely
generated as an R-algebra by the elementsψn(e), where n∈N(E). Then it is natural
to write ψn = ψn(e) ∈ 9R,E and ψα = ψbα ∈ 9R,E , where bα ∈ N(E) denotes the
α-th standard basis vector, and e = ψ0 ∈9R,E for the identity operator.

For any 9R,E -ring A, there is a unique set map

9R,E × A
◦
−→ A (1-5-1)

with the property that for all α ∈ E , r ∈ R, f1, f2 ∈9R,E , a ∈ A we have

ψα ◦ a = ψα(a) (1-5-2)

and

r◦a=r, ( f1+ f2)◦a= ( f1◦a)+( f2◦a), ( f1 f2)◦a= ( f1◦a)( f2◦a). (1-5-3)

Taking A = 9R,E , we get a binary operation ◦ on 9R,E called composition or
plethysm. One can check that this makes 9R,E a monoid (noncommutative unless
R = 0) with identity e and that (1-5-1) is a monoid action.

In the language of plethystic algebra [Borger and Wieland 2005], we can inter-
pret 9R,E as the free R-plethory R〈ψα|α ∈ E〉 on the R-algebra endomorphisms
ψα. Then a 9R,E -action in the sense above is the same as a 9R,E -action in the
sense of abstract plethystic algebra. In particular, 9R,E can be viewed as the ring
of natural unary operations on 9R,E -rings, and the composition operation ◦ above
agrees with the usual composition of unary operations. (Compare with 1.18 below.)

1.6. E-flat3-rings. Let A be an R-algebra which is E-flat. Define a 3R,E -action,
or a 3R,E -ring structure, on A to be a 9R,E -action with the following Frobenius
lift property: for all α ∈ E , the endomorphism id⊗ψα of R/mα⊗R A agrees with
the Frobenius map x 7→ xqα . A morphism of E-flat 3R,E -rings is simply defined
to be a morphism of the underlying 9R,E -rings. Let us denote this category by
Ringfl

3R,E
.
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1.7. The ghost ring. Since an action of 9R,E on an R-algebra A is the same as
an action (in the category of R-algebras) of the monoid N(E), the forgetful functor
from the category of 9R,E -rings to that of R-algebras has a right adjoint given by

A 7→
∏
N(E)

A = AN(E)
,

where N(E) acts on AN(E)
through its action on itself in the exponent. (This is a

general fact about monoid actions in any category with products.) For a ∈ AN(E)

and n, n′ ∈ N(E), the n-th component of ψn′(a) is the (n+ n′)-th component of a.
One might call AN(E)

the cofree 9R,E -ring on the R-algebra A. It has tradition-
ally been called the ring of ghost components or ghost vectors. By 1.4, it is E-flat
if A is.

When |E | = 1, there is the possibility of confusing the ghost ring AN, which
has the product ring structure, with the usual ring AN of Witt components (see
3.5), which has an exotic ring structure. To prevent this, we will use angle brackets
〈a0, a1, . . . 〉 for elements of the ghost ring.

1.8. Witt vectors of E-flat rings. Let us now construct the functor W fl
R,E . We will

show in 1.9 that it is the right adjoint of the forgetful functor from the category
of E-flat 3R,E -rings to that of E-flat R-algebras. (Further, the flatness will be
removed in 1.12.)

Let A be a E-flat R-algebra. Let U0(A) denote the cofree 9R,E -ring AN(E)
. For

any i > 0, let

Ui+1(A)= {b ∈Ui (A) | ψα(b)− bqα ∈mαUi (A) for all α ∈ E}.

This is a sub-R-algebra of AN(E)
. Indeed, it is the intersection over α ∈ E of the

equalizers of pairs of R-algebra maps

Ui (A)
//
// R/mα ⊗R Ui (A)

given by x 7→ 1⊗ψα(x) and by x 7→ (1⊗ x)qα .
Now define

W fl
R,E(A)=

⋂
i>0

Ui (A). (1-8-1)

This is the ring of E-typical Witt vectors with entries in A. It is a sub-R-algebra
of AN(E)

. Observe that W fl
R,E(A)= AN(E)

if A is an R[1/E]-algebra.

1.9. Proposition. (a) W fl
R,E(A) is a sub-9R,E -ring of AN(E)

.

(b) This 9R,E -ring structure on W fl
R,E(A) is a 3R,E -ring structure.

(c) The induced functor A 7→ W fl
R,E(A) from E-flat R-algebras to E-flat 3R,E -

rings is the right adjoint of the forgetful functor.
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Proof. (a) Let us first show by induction that each Ui (A) is a sub-9R,E -ring of
AN(E)

. For i = 0, we have U0(A) = AN(E)
, and so it is clear. For i > 1, we use

the description of Ui+1(A) as the intersection of the equalizers of the pairs of ring
maps

Ui (A)
//
// R/mα ⊗R Ui (A)

given in 1.8. Observe that both these ring maps become9R,E -ring maps if we give
R/mα⊗R Ui (A) a 9R,E -action by defining ψβ : a⊗ x 7→ a⊗ψβ(x), for all β ∈ E .
Since limits of 9R,E -rings exist and their underlying rings agree with the limits
taken in the category of rings, Ui+1(A) is a sub-9R,E -ring of AN(E)

. Therefore
W fl

R,E(A), the intersection of the Ui (A), is also a sub-9R,E -ring of AN(E)
.

(b) It is enough to verify

ψα(x)− xqα ∈mαW fl
R,E(A)=mα

⋂
i>0

Ui (A),

for all α ∈ E and x ∈W fl
R,E(A). For any i > 0, we know

ψα(x)− xqα ∈mαUi (A),

because x ∈W fl
R,E(A)⊆Ui+1(A). Therefore we know

ψα(x)− xqα ∈
⋂
i>0

mαUi (A).

So, it is enough to show

mα

⋂
i>0

Ui (A)=
⋂
i>0

mαUi (A). (1-9-1)

Since mα is finitely generated, it is a quotient of a finite free R-module N . Consider
the induced diagram

mα ⊗R limi Ui (A)
h

// limi mα ⊗R Ui (A)

N ⊗R limi Ui (A)
f

//

OO

limi N ⊗R Ui (A)

g

OO

Since N is finite free, f is an isomorphism; since mα is projective, the map N→mα

has a section and hence so does g. Therefore g ◦ f is surjective and hence so is h,
which implies (1-9-1).

(c) Let A be an E-flat R-algebra, let B be an E-flat 3R,E -ring, and let γ̄ : B→ A
be an R-algebra map. By the cofree property of AN(E)

, there is a unique 9R,E -ring
map γ : B → AN(E)

lifting γ̄ . We now only need to show that the image of γ is
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contained in W fl
R,E(A). By induction, it is enough to show that if im(γ )⊆Ui (A),

then im(γ )⊆Ui+1(A).
Let b be an element of B. Then for each α ∈ E , we have

ψα
(
γ (b)

)
− γ (b)qα = γ

(
ψα(b)− bqα

)
∈ γ (mαB)⊆mα im(γ )⊆mαUi (A).

Therefore, by definition of Ui+1(A), the element γ (b) lies in Ui+1(A). �

1.10. Exercises. Let R = Z. If E consists of the single ideal pZ, then W fl(Z)

agrees with the subring of the ghost ring ZN consisting of vectors a = 〈a0, a1, . . . 〉

that satisfy
an ≡ an+1 mod pn+1

for all n > 0. In particular, the elements are p-adic Cauchy sequences and the rule
a 7→ limn→∞ an defines a surjective ring map W fl(Z)→ Zp.

We can go a step further with W fl(Zp). Let I denote the ideal pZp× p2Zp×· · ·

in ZN
p . Then W fl(Zp) is isomorphic to the ring Zp⊕ I with multiplication defined

by the formula (x, y)(x ′, y′)= (xx ′, xy′+ yx ′+ yy′).
Now suppose that E consists of all the maximal ideals of Z, and identify N(E)

with the set of positive integers, by unique factorization. Then W fl(Z) consists of
the ghost vectors 〈a1, a2, . . . 〉 that satisfy

a j ≡ apj mod p1+ordp( j)

for all j > 1 and all primes p.

1.11. Representing W fl. Let us construct a flat R-algebra 3R,E representing the
functor W fl

R,E . First we will construct objects 3i
R,E representing the functors Ui .

For i = 0, it is clear: U0 is represented by 30
R,E = 9R,E . Now assume 3i

R,E has
been constructed and that it is a sub-R-algebra of R[1/E]⊗R 9R,E satisfying

R[1/E]⊗R 3
i
R,E = R[1/E]⊗R 9R,E .

Then let 3i+1
R,E denote the sub-3i

R,E -algebra of R[1/E] ⊗R 9R,E generated by all
elements π∗⊗ (ψα( f )− f qα ), where π∗ ∈m−1

α ⊆ R[1/E], f ∈3i
R,E , and α ∈ E .

Then 3i
R,E is flat over R. Indeed, it is E-flat because it is a sub-R-algebra of

R[1/E]⊗R9R,E , and it is flat away from E because R[1/E]⊗R3R,E agrees with
the free R[1/E]-algebra R[1/E]⊗R 9R,E . It also clearly represents Ui .

Finally, we set

3R,E =
⋃
i>0

3i
R,E ⊆ R[1/E]⊗R 9R,E . (1-11-1)

It is flat over R because it is a colimit of flat R-algebras, and it represents W fl
R,E

because each 3i
R,E represents Ui . As an example, if E = E ′ q E ′′, where E ′′
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consists of only copies of the unit ideal, then3R,E agrees with the monoid algebra
3R,E ′[N

(E ′′)
]. We will often use the shortened forms 3E or, when E = {m}, 3m.

Since 3R,E represents W fl, which takes values in R-algebras, 3R,E carries the
structure of a co-R-algebra object in Ringfl

R . Because Ringfl
R is closed under co-

products (the tensor product of flat modules being flat), a co-ring structure consists
in morphisms

1+,1× : 3R,E −→3R,E ⊗R 3R,E , ε+, ε× : 3R,E −→ R (1-11-2)

corresponding to addition, multiplication, the additive identity, and the multiplica-
tive identity on the functor W fl

R,E . The R-linear structure on W fl
R,E corresponds to

a morphism
β : 3R,E → RR

=

∏
R

R. (1-11-3)

All these structure maps satisfy the opposite of the R-algebra axioms. (In the
language of schemes, one would say this makes Spec3R,E an R-algebra scheme
over R; or in the language of [Borger and Wieland 2005], it makes 3R,E an R-R-
biring.)

1.12. Definition of W in general. We can view3R,E as an object of RingR , instead
of Ringfl

R . Then define WR,E as a set-valued functor on RingR by

WR,E(A)= HomRingR (3R,E , A). (1-12-1)

The structure maps (1-11-2)–(1-11-3) give WR,E the structure of a functor with
values in R-algebras:

WR,E : RingR −→RingR. (1-12-2)

(Note that here we really use the fact that the coproduct in Ringfl
R agrees with that

in RingR . In 1.11, it was used only to justify the symbol ⊗ for the coproduct.)
For any A ∈ RingR , let us call the WR,E(A) the R-algebra of E-typical Witt

vectors with entries in A. Its restriction to Ringfl
R agrees with W fl

R,E because Ringfl
R

is a full subcategory of RingR .
We will often write WE or W for WR,E when there is no risk of confusion. When

E consists of a single ideal m, we will also write WR,m or Wm.

1.13. Remark: Kan extensions. In categorical terms, WR,E is the left Kan exten-
sion of i ◦W fl

R,E along the inclusion functor i :

Ringfl
R

i
// RingR

Ringfl
R

W fl
R,E

OO

i
// RingR.

WR,E

OO�
�
�

(1-13-1)
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(See [Borceux 1994a, 3.7], for example, for the general theory of Kan extensions.)
I mention this only to emphasize that the passage from the E-flat case to the general
case is by a purely category-theoretic process, and hence the heart of the theory lies
in the E-flat case. This is in contrast to the common point of view that the purpose
of Witt vector functors is to lift rings from positive characteristic to characteristic
zero.

1.14. Ghost map w. The ghost map

w : WR,E(A)−→
∏
N(E)

A

is the natural map induced by the universal property of Kan extensions applied to
the inclusion maps W fl

R,E(A)→
∏

N(E) A, which are functorial in A. Equivalently,
it is the morphism of functors induced by the map

9R,E =3
0
R,E −→3R,E

of representing objects. When A is E-flat, it is harmless to identify w with the
inclusion map.

1.15. Example: p-typical and big Witt vectors. Suppose R is Z. If E consists of
the single ideal pZ, then W agrees with the classical p-typical Witt vector functor
[Witt 1937]. Indeed, for p-torsion free rings A, this follows from Cartier’s lemma,
which says that the traditionally defined p-typical Witt vector functor restricted to
the category of p-torsion-free rings has the same universal property as W fl. (See
[Bourbaki 1983, IX.44, exercice 14] or [Lazard 1975, VII§4].) Therefore, they are
isomorphic functors. For A general, one just observes that the traditional functor is
represented by the ring Z[x0, x1, . . . ], which is p-torsion free, and so it is the left
Kan extension of its restriction to the category of p-torsion-free rings. Therefore
it agrees with W as defined here.

Another proof of this is given in 3.5. It makes a direct connection with the
traditional Witt components, rather than going through the universal property.

Suppose instead that E is the family of all maximal ideals of Z. Then W agrees
with the classical big Witt vector functor. As above, this can be shown by reducing
to the torsion-free case and then citing the analogue of Cartier’s lemma. (Which
version of Cartier’s lemma depends on how we define the classical big Witt vector
functor. If we use generalized Witt polynomials, we need [Bourbaki 1983, IX.55,
exercise 41b]. If it is defined as the cofree λ-ring functor, as in [Grothendieck
1958], then we need Wilkerson’s theorem [1982, Proposition 1.2].)

Finally, we will see in 3.5 that when R is a complete discrete valuation ring and
E consists of the maximal ideal of R, then W agrees with Hazewinkel’s ramified
Witt vector functor [Hazewinkel 1978, (18.6.13)].
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1.16. Comonad structure on W . The functor W fl
: Ringfl

R → Ringfl
R is naturally

a comonad, being the composition of a functor (the forgetful one) with its right
adjoint, and this comonad structure prolongs naturally to WR,E . The reason for
this can be expressed in two ways—in terms of Kan extensions or in terms of
representing objects.

The first way is to invoke the general fact that WR,E , as the Kan extension of
the comonad W fl

R,E , has a natural comonad structure. This uses the commutativity
of (1-13-1) and the fullness and faithfulness of i . The other way is to translate
the structure on W fl of being a comonad into a structure on its representing object
3R,E . One then observes that this is exactly the structure for the underlying R-
algebra i(3R,E) to represent a comonad on RingR . (This is called an R-plethory
structure in [Borger and Wieland 2005].)

1.17. 3-rings. The category Ring3R,E
of 3R,E -rings is by definition the category

of coalgebras for the comonad WR,E , that is, the category of R-algebras equipped
with a coaction of the comonad WR,E . Since WR,E extends W fl

R,E , a 3R,E -ring
structure on an E-flat R-algebra A is the same as a commuting family of Frobenius
lifts ψα.

When R = Z and E is the family of all maximal ideals of Z, then a 3-ring is
the same as a λ-ring in the sense of [Grothendieck 1958] (and originally called a
“special λ-ring”). In the E-flat case, this is Wilkerson’s theorem [1982, Proposition
1.2]. The proof is an exercise in symmetric functions, but the deeper meaning
eludes me. The general case follows from the E-flat case by category theory, as in
1.15.

1.18. Free3-rings and3�−. Since WR,E is a representable comonad on RingR ,
the forgetful functor from the category of3R,E -rings to the category of R-algebras
has a left adjoint denoted 3R,E �−. This follows either from the adjoint functor
theorem in category theory [Borceux 1994a, 3.3.3], or by simply writing down the
adjoint in terms of generators and relations, as in [Borger and Wieland 2005, 1.3].
The second approach involves the R-plethory structure on 3R,E , and is similar to
the description of tensor products, free differential rings, and so on in terms of
generators and relations.

The functor3R,E�−, viewed as an endofunctor on the category of R-algebras,
is naturally a monad, simply because it is the left adjoint of the comonad WR,E .
Further, the category of algebras for this monad is naturally equivalent to Ring3R,E

.
This can be proved using Beck’s theorem [Borceux 1994b, 4.4.4], and is the same
as the fact that the category of K -modules, for any ring K , can be defined as
the category of algebras for the monad K ⊗ − or coalgebras for the comonad
Hom(K ,−).
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We can interpret elements of3R,E as natural operations on3R,E -rings. Indeed,
a 3R,E -ring structure on a ring A is by definition a (type of) map A→WR,E(A).
It therefore induces a set map

3R,E × A−→3R,E ×WR,E(A)=3R,E ×HomR(3R,E , A)−→ A,

which is functorial in A. In particular, if we take A =3R,E , we get a set map

3R,E ×3R,E
◦
−→3R,E . (1-18-1)

It agrees with the restriction of the composition map ◦ on 9R[1/E],E = R[1/E]⊗R

9R,E given in 1.5. In particular, it is associative with identity e.
In fact, all natural operations on 3R,E -rings come from 3R,E in this way. See

[Borger and Wieland 2005] for an abstract account from this point of view.

1.19. Remark: identity-based approaches. It is possible to set up the theory of
3R,E -rings more concretely using universal identities rather than category theory.
(See [Buium 1996; Buium and Simanca 2009; Joyal 1985a; 1985b], for example.)
In this subsection, I will say something about that point of view and its relation to
the category-theoretic one, but it will not be used elsewhere in this paper.

First suppose that for each α ∈ E , the ideal mα is generated by a single element
πα. For any3R,E -ring A and any element a ∈ A, there exists an element δα(a)∈ A
such that

ψα(a)= aqα +παδα(a).

If we now assume that A is E-flat, the element δα(a) is uniquely determined by
this equation, and therefore δα defines an operator on A:

δα(a)=
ψα(a)− aqα

πα
.

Observe that if the integer qα maps to 0 in R, for example when R is a ring of
integers in a function field, then δα is additive; but otherwise it essentially never
is. (Also note that δα is the same as the operator θπα,1 defined in 3.1 below.)

Conversely, if A is an E-flat R-algebra, equipped with operators δα, there is
at most one 3R,E -ring structure on A whose δα-operators are the given ones. To
say when such a 3R,E -ring structure exists, we only need to express in terms
of the operators δα the condition that the operators ψα be commuting R-algebra
homomorphisms. After dividing by any accumulated factors of πα, this gives the
identities of Buium–Simanca [2009, Definition 2.1]:

δα(r)=
r−rqα

πα
, for r ∈ R, (1-19-1)

δα(a+ b)= δα(a)+ δα(b)+Cα(a, b), (1-19-2)

δα(ab)= δα(a)bqα + aqαδα(b)+παδα(a)δα(b), (1-19-3)
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δα ◦ δα′(a)= δα′ ◦ δα(a)+Cα,α′
(
a, δα(a), δα′(a)

)
, (1-19-4)

where

Cα(x, y)=
xqα + yqα − (x + y)qα

πα
=−

qα−1∑
i=1

1
πα

(
qα
i

)
xqα−i yi (1-19-5)

and

Cα,α′(x, y, z)

=
Cα′(xqα , πα y)

πα
−

Cα(xqα′ , πα′z)
πα′

−
δα(πα′)

πα′
zqα +

δα′(πα)

πα
yqα′ . (1-19-6)

One can easily check that the coefficients of these polynomials are elements of R.
For any R-algebra A, let us define a δR,E -structure on A to be a family of op-

erators δα satisfying the axioms above. Thus, if A is an E-flat R-algebra, then
a 3R,E -structure—by definition a commuting family of Frobenius lifts indexed
by E—is equivalent to a δR,E -structure. The point of all this, then, is that if
we no longer require A to be E-flat, a δR,E -structure is generally stronger than
having a commuting family of Frobenius lifts, but it is still equivalent to having
a 3R,E -structure. This offers another point of view on the difference between a
3R,E -structure and a commuting family of Frobenius lifts: A δR,E -structure is
well behaved from the point of view of universal algebra (and hence so is a 3R,E -
structure) because it is given by operators δα whose effect on the ring structure is
described by universal identities, as above; but the structure of a commuting family
of Frobenius lifts does not have this property because of the existential quantifier
hidden in the word lift.

The equivalence between δR,E -structures and 3R,E -structures can be seen as
follows. For E-flat R-algebras A, it was explained above. For general A, the
equivalence can be shown by checking that the cofree δR,E -ring functor is repre-
sented by an E-flat R-algebra (in fact, a free one). It therefore agrees with the left
Kan extension of its restriction to the category of E-flat algebras, and hence agrees
with WR,E .

We could extend the identity-based approach to the case where the ideals mα

are not principal, but then we would need operators

δα,π∗α (x)= π
∗

α(ψα(x)− xqα ) (1-19-7)

for every element π∗α ∈m−1
α , or at least for those in a chosen generating set of m−1

α ,
and we would need additional axioms relating them. A particularly convenient
generating set of m−1

α is one of the form {1, π∗α}, which always exists. Further, for
each α ∈ E , it is enough to use the operators ψα and δα,π∗α instead of δα,1 and δα,π∗α ,
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because δα,1 can be expressed in terms of ψα, by (1-19-7). Therefore if we fix ele-
ments π∗α ∈m−1

α which are R-module generators modulo 1, the relations needed for
the generating set

⋃
α∈E {ψα, δα,π∗α } of operators are those in (1-19-1)–(1-19-6) but

one needs to make the following changes: for each α ∈ E , replace each occurrence
of π−1

α with π∗α , and add axioms that ψα is an R-algebra homomorphism, that ψα
commutes with all ψα′ and all δα′,π∗

α′
, and that (1-19-7) holds.

When R is an Fp-algebra for some prime number p, the polynomials Cα(x, y)
are zero and the axioms above simplify considerably. In particular, the operators
δα are additive, and so it is possible to describe a3R,E -structure using a cocommu-
tative twisted bialgebra, the additive bialgebra of the plethory 3R,E . See [Borger
and Wieland 2005, sections 2 and 10].

1.20. Localization of the ring R of scalars. Let R′ be an E-flat R-algebra such
that the structure map R→ R′ is an epimorphism of rings. (For example, the map
Spec R′→Spec R could be an open immersion.) Then the family (mα)α∈E induces
a family (m′α)α∈E of ideals of R′, where m′α = mαR′. By the assumptions on R′,
each m′α is supramaximal. Let us write E ′ = E and use the notation E ′ for the
index set of the m′α.

Let us construct an isomorphism:

R′⊗R 3R,E
∼
−→3R′,E ′ . (1-20-1)

The category Ringfl
3R′,E ′

(see 1.6) is a subcategory of the category of Ringfl
3R,E

.
Indeed, any object A′ ∈ Ringfl

3R′,E ′
is an R-algebra with endomorphisms ψmα

, for
each α ∈ E . These endomorphisms are again commuting Frobenius lifts, simply
because A′/m′αA′ = A′/mαA′. Since A′ is E ′-flat (and by the assumptions on R′),
A′ is E-flat. Therefore, it can be viewed as a 3R,E -ring.

Further, Ringfl
3R′,E ′

agrees with the subcategory of Ringfl
3R,E

consisting of objects
A whose structure map R→ A factors through R′, necessarily uniquely. Now con-
sider the underlying-set functor on this category. From the definition of Ringfl

3R′,E ′
,

this functor is represented by the right-hand side of (1-20-1), and from the second
description, it is represented by the left-hand side. Let (1-20-1) be the induced
isomorphism on representing objects. It sends an element r ′⊗ f to r ′ f .

The isomorphism of represented functors which is induced by (1-20-1) gives
natural maps

WR′,E ′(A′)
∼
−→WR,E(A′), (1-20-2)

for R′-algebras A′.
Finally, let us show that for any R′-algebra B ′, the canonical map

3R,E � B ′
∼
−→3R′,E ′ � B ′ (1-20-3)
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is an isomorphism. It is enough to show that for any R′-algebra A′, the induced
map

HomR′(3R′,E ′ � B ′, A′)−→HomR′(3R,E � B ′, A′)

is a bijection. Since RingR′ is a full subcategory of RingR , the right-hand side
agrees with HomR(3R,E � B ′, A′), and so the map above is an isomorphism by
(1-20-2).

1.21. Teichmüller lifts. Let A be an R-algebra, let A◦ denote the commutative
monoid of all elements of A under multiplication, and let R[A◦] denote the monoid
algebra on A◦. Then for each α ∈ E , the monoid endomorphism a 7→ aqα of
A◦ induces an R-algebra endomorphism ψα of R[A◦] which reduces to the qα-
th power map modulo mα. Since R[A◦] is free as an R-module, it is flat. And
since the various ψα commute with each other, they provide R[A◦] with a 3R,E -
structure. Combined with the R-algebra map R[A◦]→ A given by the counit of the
evident adjunction, this gives, by the right-adjoint property of WR,E , a 3R,E -ring
map t : R[A◦] →WR,E(A). We write the composite monoid map

A◦
unit
−→ R[A◦]◦

t◦
−→WR,E(A)◦

as simply a 7→ [a]. It is a section of the R-algebra map w0 : WR,E(A)→ A and
is easily seen to be functorial in A. The element [a] is called the Teichmüller lift
of a.

2. Grading and truncations

2.1. Ordering on Z(E). For two elements n′, n ∈ Z(E) =
⊕

E Z, write n′ 6 n if we
have n′α 6 nα for all α ∈ E . Also put

[0, n] = {n′ ∈ N(E)
| n′ 6 n}.

2.2. Truncations. We have the following decomposition of 9R,E :

9R,E =
⊗
α∈E

⊗
i∈N

R[ψ◦iα ] =
⊗

n∈N(E)

R[ψn] = R[ψn|n ∈ N(E)
].

(Thus, 9R,E is an N(E)-indexed coproduct in the category of R-algebras, much
like graded rings are monoid-indexed coproducts in the category of modules. One
might say that 9R,E is an N(E)-graded plethory. This point of view will not be
used below.) For each n ∈ Z(E), put

9R,E,n =
⊗
α∈E

⊗
06i6nα

R[ψ◦iα ] =
⊗

n′∈[0,n]

R[ψn′] = R
[
ψn′ |n′ ∈ [0, n]

]
.

Then 9R,E,n represents the RingR-valued functor that sends A to the product ring
A[0,n], which is naturally a quotient of AN(E)

.
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Define a similar filtration on 3R,E by

3R,E,n =3R,E ∩
(
R[1/E]⊗R 9R,E,n

)
. (2-2-1)

We will often use the shortened forms 3E,n , 9E,n , 3m,n , 9m,n , and so on.

2.3. Proposition. (a) For each n ∈ N(E), the R-scheme Spec3R,E,n admits a
unique structure of an R-algebra object in the category of R-schemes such
that the map Spec3R,E → Spec3R,E,n induced by the inclusion 3R,E,n ⊆

3R,E is a homomorphism of R-algebra schemes over R.

(b) For each m, n ∈ N(E), we have

3R,E,m ◦3R,E,n ⊆3R,E,m+n, (2-3-1)

where ◦ denotes the composition map of (1-18-1).

Proof. (a) Write 3 = 3R,E , 3n = 3R,E,n , and so on. First observe that, for any
integer i > 0, all the maps in the diagram

R[1/E]⊗R 9
⊗R i
n

ai
// R[1/E]⊗R 9

⊗R i

3⊗R i
n

bi
//

OO

3⊗R i

ci

OO

are injective. Indeed, ai clearly is; the vertical maps are because they become
isomorphisms after base change to R[1/E] and because 3n and 3 are E-flat; and
it follows formally that bi is injective. Then the uniqueness of the desired R-algebra
scheme structure on Spec3n , follows from the injectivity of b2.

Now consider existence. Let

1 : R[1/E]⊗R 9 −→ R[1/E]⊗R 9⊗R 9

denote the ring map that induces the addition (resp. multiplication) map on the ring
scheme Spec R[1/E]⊗R9R . To show that the desired addition and multiplication
maps on Spec3n exist, it is enough to show

1(3n)⊆3n ⊗R 3n. (2-3-2)

In fact, once we do this, we will be done: because each ci ◦ bi is injective, the
ring axioms (associativity, distributivity, and so on) will follow from those on
Spec R[1/E]⊗R 9.

The map 1 sends ψα to ψα ⊗ 1+ 1⊗ψα (resp. ψα ⊗ψα). Therefore we have

1(R[1/E]⊗R 9n)⊆ R[1/E]⊗R 9n ⊗R 9n,
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and hence
1(3n)⊆3

⊗R2
∩
(
R[1/E]⊗R 9

⊗R2
n

)
=3⊗R2

n .

This establishes (2-3-2) and hence completes the proof of (a).

(b) Combine the definition (2-2-1) with the inclusion

(R[1/E]⊗R 9m) ◦ (R[1/E]⊗R 9n)⊆ (R[1/E]⊗R 9m+n)

and the inclusion 3m ◦3n ⊆3. �

2.4. Witt vectors of finite length. Let WR,E,n denote the functor RingR → RingR
represented by 3R,E,n:

WR,E,n(A)= HomR(3R,E,n, A). (2-4-1)

We call WR,E,n the E-typical Witt vector functor of length n. As in 1.12, we will
often write WE,n or Wn; when E = {m}, we will also write WR,m,n or Wm,n . We
then have

WR,E(A)= limn WR,E,n(A). (2-4-2)

(Note that it is often better to view WR,E(A) as a pro-ring than to actually take the
limit. If we preferred topological rings to pro-rings, we could take the limit and
endow it with the natural pro-discrete topology.) It follows from 4.4 and (5-4-2)
below that the maps in this projective system are surjective.

The (truncated) ghost map

w6n : WR,E,n(A)−→ A[0,n], (2-4-3)

is the one induced by the inclusion 9R,E,n ⊆ 3R,E,n of representing objects. For
any i ∈ [0, n], the composition w6n with the projection onto the i-th factor gives
another natural map

wi : WR,E,n(A)−→ A. (2-4-4)

Also the containment (2-3-1) induces an R-algebra map

WR,E,m+n(A)−→WR,E,n
(
WR,E,m(A)

)
(2-4-5)

which sends an element a : 3R,E,m+n → A of WR,E,m+n(A) to the map γ 7→
[β 7→ a(β ◦ γ )], for variables γ ∈ 3R,E,n and β ∈ 3R,E,m . We will call (2-4-5)
co-plethysm. It agrees with the map of functors induced by the map

3R,E,m �3R,E,n −→3R,E,m+n, β� γ 7→ β ◦ γ (2-4-6)

on representing objects, where β� γ is defined as in [Borger and Wieland 2005].
Finally, observe that for any element f ∈3R,E,n the natural3R,E -ring operation

f : WR,E(A)→WR,E(A)
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(a map of sets) descends to a map

f : WR,E,m+n(A)→WR,E,m(A).

Indeed, it is the composition

WR,E,m+n(A)
(2-4-5)
−→ WR,E,n

(
WR,E,m(A)

)
= Hom(3R,E,n,WR,E,m(A))

−( f )
−→WR,E,m(A), (2-4-7)

where −( f ) denotes the map that evaluates at f . Particularly important is the
example f = ψn , where the induced map

ψn : WR,E,m+n(A)→WR,E,m(A) (2-4-8)

is a ring homomorphism.

2.5. Remark: traditional versus normalized indexing. Consider the p-typical Witt
vectors, where R is Z and E consists of the single ideal pZ. Let W ′n denote Witt’s
functor, as defined in [Witt 1937]. So, for example,

W ′n(Fp)= Z/pnZ.

In 3.5, we will construct an isomorphism W ′n+1
∼=Wn . Thus, up to a normalization

of indices, our truncated Witt functors agree with Witt’s.
The reason for this normalization is to make the indexing behave well under

plethysm. By (2-3-1) and (2-4-5), the index set has the structure of a commutative
monoid, and so it is preferable to use an index set with a familiar monoid structure.
If we were to insist on agreement with Witt’s indexing, we would have to replace
the sum m + n in (2-3-1) and (2-4-5) with m + n − (1, 1, . . . ), where this would
be computed in the product group ZE . The reason why this has not come up in
earlier work is that the plethysm structure has traditionally been used only through
the Frobenius maps ψα. In other words, only the shift operator on the indexing set
was used. Thus the distinction between N and Z>1 was not so important because
the shift operator n 7→ n + 1 is written the same way on both. But making the
identification of N and Z>1 a monoid isomorphism would involve the unwelcome
addition law m+ n− 1 on Z>1.

It is different with the big Witt vectors, where R is Z and E consists of all
maximal ideals 1.15. They are also traditionally indexed by the positive integers
[Hazewinkel 1978, (17.4.4)], but here the positive integers are used multiplicatively
rather than additively. In particular, the monoid structure that is required is the
obvious one; so the traditional indexing is in agreement with the normalized one:
the big Witt ring Wpn (A) (using traditional multiplicative indexing) is naturally
isomorphic to our p-typical ring Wn(A) and to Witt’s W ′n+1(A).



254 James Borger

2.6. Localization of the ring R of scalars. Let R′ be an E-flat R-algebra such that
the structure map R→ R′ is an epimorphism of rings, as in 1.20.

Then for each n ∈ N(E), we have

R′⊗R 3R,E,n = R′⊗R
(
3R,E ∩ (R[1/E]⊗R 9R,E,n)

)
∼
→
(
R′⊗R 3R,E

)
∩ (R′[1/E]⊗R′ 9R′,E ′,n).

(We only need to check that the displayed map is an isomorphism along E , in which
case it is true because R′ is E-flat over R.) By (1-20-1), this gives an isomorphism
of R′-algebras

R′⊗R 3R,E,n
∼
−→3R′,E ′,n. (2-6-1)

The induced isomorphism of represented functors gives natural maps

WR′,E ′,n(A′)
∼
−→WR,E,n(A′), (2-6-2)

for R′-algebras A′. If A is an R-algebra, the inverse of this map induces a map

R′⊗R WR,E,n(A)−→WR′,E ′,n(R′⊗R A) (2-6-3)

We will see in 6.1 that this is an isomorphism.
As with (1-20-3), the map (2-6-2) induces an isomorphism

3R,E,n � B ′
∼
−→3R′,E ′,n � B ′, (2-6-4)

for any R′-algebra B ′,

2.7. Proposition. Let A be an E-flat R-algebra. Then the ghost map

w6n : WR,E,n(A)−→ A[0,n]

is injective. If A is an R[1/E]-algebra, it is an isomorphism.

Recall that the analogous facts for infinite-length Witt vectors are also true,
either by construction 1.8 or by the universal property 1.9.

Proof. If every ideal in E is the unit ideal, then 3R,E =9R,E , and hence we have
3R,E,n=9R,E,n . The statement about R[1/E]-algebras then follows from (2-6-1).
The statement about E-flat R-algebras follows by considering the injection

A→ R[1/E]⊗R A

and applying the previous case to R[1/E]⊗R A. �
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3. Principal single-prime case

For this section, we will restrict to the case where E consists of one ideal m gen-
erated by an element π . Our purpose is to extend the classical components of
Witt vectors from the p-typical context (where R is Z and E consists of the single
ideal pZ) to this slightly more general one. The reason for this is that the Witt
components are well-suited to calculation. In the following sections, we will see
how to use them, together with 4.1, 5.4, and 6.1, to draw conclusions when E is
general.

In fact, the usual arguments and definitions in the classical theory of Witt vectors
carry over as long as one modifies the usual Witt polynomials by replacing every
p in an exponent with qm, and every p in a coefficient with π . Some things, such
as the Verschiebung operator, depend on the choice of π , and others do not, such
as the Verschiebung filtration.

Let n denote an element of N. Let us abbreviate

3m =3R,E , 3m,n =3R,E,n , Wm =WR,E , q = qm, ψ = ψm,

and so on.

3.1. θ operators. Define elements θπ,0, θπ,1, . . . of

R[1/π ]⊗R 3m = R[1/π ]⊗R 9m

recursively by the generalized Witt polynomials

ψ◦n = θ
qn

π,0+πθ
qn−1

π,1 + · · ·+π
nθπ,n. (3-1-1)

(Note that the exponent on the left side means iterated composition, while the
exponents on the right mean usual exponentiation, iterated multiplication.) As in
1.5, we can view the elements θπ,i as natural operators on9R[1/π ],m-rings. We will
often write θi = θπ,i when π is clear.

3.2. Lemma. We have

ψ ◦ θπ,n = θ
q
π,n +πθπ,n+1+π P(θπ,0, . . . , θπ,n−1), (3-2-1)

for some polynomial P(θπ,0, . . . , θπ,n−1) with coefficients in R.

Proof. It is clear for n = 0. For n > 1, we will use induction. Recall the general
implication

x ≡ y mod m H⇒ xq j
≡ yq j

mod m j+1,
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for j > 1, which itself is easily proved by induction. Together with the formula
(3-2-1) for ψ ◦ θπ,i with i < n, this implies

ψ ◦ψ◦n =

n∑
i=0

π i (ψ ◦ θi )
qn−i

≡ πnψ ◦ θn +

n−1∑
i=0

π i (θ
q
i )

qn−i
mod mn+1 R[θ0, . . . , θn−1]

When this is combined with the defining formula (3-1-1) for ψ◦(n+1), we have

πnψ ◦ θn ≡ π
nθq

n +π
n+1θn+1 mod mn+1 R[θ0, . . . , θn−1].

Dividing by πn completes the proof. �

3.3. Proposition. The elements θπ,0, θπ,1, . . . of R[1/π ] ⊗R 3m lie in 3m, and
they generate 3m freely as an R-algebra. Further, the elements θπ,0, . . . , θπ,n lie
in 3m,n , and they generate 3m,n freely as an R-algebra.

This is essentially [Witt 1937, Theorem 1].

Proof. By induction, the elements θ0, . . . , θn generate the same sub-R[1/π ]-alge-
bra of R[1/π ] ⊗R 3m as ψ◦0, . . . , ψ◦n , and are hence algebraically independent
over R[1/π ]. Since R ⊆ R[1/π ], they are also algebraically independent over R.

Let Bn be the sub-R-algebra of R[1/π ]⊗R3m generated by θ0, . . . , θn , and let
B =

⋃
n Bn . To show 3m ⊇ B, we may assume by induction that 3m ⊇ Bn and

then show 3m ⊇ Bn+1. By 3.2 and because 3m is a 3m-ring, we have

πθn+1 ∈
(
ψ ◦ θn − θ

q
n
)
+m3m,n ⊆m3m.

Dividing by π , we have θn+1 ∈3m, and hence 3m ⊇ Bn[θn+1] = Bn+1.
On the other hand, by 3.2 again, we have

ψ ◦ θn ≡ θ
q
n mod mBn+1

for all n. Hence B, being generated by the θn , is a sub-3m-ring of R[1/π]⊗R3m.
It follows that B ⊇3m ◦ e =3m, and therefore B =3m.

Last, the equality 3m,n = Bn follows immediately from the above:

3m,n =3m ∩
(
R[1/π ]⊗R 9m,n

)
= B ∩

(
R[1/π ]⊗R 9m,n

)
= R[θ0, . . . ] ∩ R[1/π ][θ0, . . . , θn]

= R[θ0, . . . , θn] = Bn. �
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3.4. Example: Presentations of 3m,n � A. Using 3.3, we can turn a presentation
of an R-algebra A into a presentation of 3m,n � A. We have

3m,n � R[x] ∼=3m,n = R[θ0, . . . , θn],

where θk is short for θπ,k , which corresponds to the element θπ,k(x)= θπ,k � x .
Because the functor 3m,n�− preserves coproducts and coequalizers, we have

3m,n �
(
R[x1, . . . , xr ]/( f1, . . . , fs)

)
= R[θi (x j )]/(θi ( fk)), (3-4-1)

where 0 6 i 6 n, 1 6 j 6 r , and 1 6 k 6 s. Here each expression θi (x j ) is a
single free variable, and θi ( fk) is understood to be the polynomial in the variables
θi (x j ) that results from expanding θi ( fk) using the sum and product laws for θi .
Because 3m,n �− preserves filtered colimits, we can give a similar presentation
of 3m,n� A for any R-algebra A. Similarly, we can take the colimit over n to get
a presentation for 3m� A.

In the E-typical case, where E is finite, one can write down a presentation of
3R,E � A by iterating (3-4-1), according to 5.3 below. We can pass from the case
where E is finite to the case where it is arbitrary by taking colimits, as in 5.1.

The method above is not particular to the θ operators—it works for any subset
of 3m,n that generates it freely as an R-algebra. For example, we can use the δ
operators of 1.19. Let δi

∈ 3m denote the i-th iterate of δπ . Then the elements
δ0, . . . , δn lie in3m,n and freely generate it as an R-algebra. (As in 3.3, this follows
by induction, but in this case, there are no subtle congruences to check.) Therefore
we have

3m,n �
(
R[x1, . . . , xr ]/( f1, . . . , fs)

)
= R[δi (x j )]/(δ

i ( fk)), (3-4-2)

where 0 6 i 6 n, 1 6 j 6 r , and 1 6 k 6 s. We interpret the expressions δi (x j )

and δi ( fk) as above. The general E-typical case can be handled as above. (See
[Buium and Simanca 2009, proof of Proposition 2.12].)

3.5. Witt components. It follows from 3.3 that, given π , we have a bijection

Wm(A)
∼
−→ A× A× · · · , (3-5-1)

which sends a map f : 3m→ A to the sequence ( f (θπ,0), f (θπ,1), . . . ). To make
the dependence on π explicit, we will often write (x0, x1, . . . )π for the image of
(x0, x1, . . . ) under the inverse of this map. If R=Z and π = p, then this identifies
Wm(A) with the ring of p-typical Witt vectors as defined traditionally. Similarly,
when R is a complete discrete valuation ring, we get an identification of Wm(A)
with Hazewinkel’s ring of ramified Witt vectors W R

q,∞(A). (See [Hazewinkel 1978,
(18.6.13), (25.3.17), and (25.3.26)(i)].) We call the xi the Witt components (relative
to π ) of the element (x0, . . . )π ∈W (A).
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Similarly, using the free generating set θπ,0, . . . , θπ,n of 3m,n , we have a bijec-
tion

Wm,n(A)
∼
−→ A[0,n]. (3-5-2)

As above, we will write (x0, . . . , xn)π for the image of (x0, . . . , xn) under the
inverse of this map. This identifies Wm,n(A) with the traditionally defined ring of
p-typical Witt vectors of length n+ 1. (For remarks on the +1 shift, see 2.5.)

Note that the Witt components do not depend on the choice of π in a simple,
multilinear way. For example, if u is an invertible element of R and we have

(x0, x1, . . . )π = (y0, y1, . . . )uπ ,

then we have

x0 = y0, x1 = uy1, x2 = u2 y2+π
−1(u− uq)yq

1 , . . . .

As in 3.4, we could use the free generating set δ0, δ1, . . . of 3m instead of
θ0, θ1, . . . . This would give a different bijection between Wm(A) and the set AN,
and hence an R-algebra structure on the set AN which is isomorphic to Witt’s but
not equal to it. The truncated versions agree up to A× A, but differ after that. This
is simply because δ0

= θ0 and δ1
= θ1, but δ2

6= θ2. (See [Joyal 1985b, p. 179].)

3.6. The ghost principle. It follows from the descriptions (3-5-1) and (3-5-2) that
Wm and Wm,n preserve surjectivity. On the other hand, every R-algebra is a quo-
tient of an m-flat R-algebra (even a free one). Therefore to prove any functorial
identity involving rings of Witt vectors when m is principal, it is enough to restrict
to the m-flat case. Further, any m-flat R-algebra A is contained in an R[1/m]-
algebra, such as R[1/m]⊗R A. Since Wm and Wm,n , being representable functors,
preserve injectivity, it is even enough to check functorial identities on R[1/m]-
algebras A, in which case rings of Witt vectors agree with the much more tractable
rings of ghost components. An example with details is given in 3.7.

3.7. Verschiebung. For any R-algebra A define an operator Vπ , called the Ver-
schiebung (relative to π ), on Wm(A) by

Vπ
(
(y0, y1, . . . )π

)
= (0, y0, y1, . . . )π . (3-7-1)

This is clearly functorial in A. Define another, identically denoted operator on the
ghost ring AN by the formula

Vπ
(
〈z0, z1, . . . 〉

)
= 〈0, π z0, π z1, . . . 〉. (3-7-2)

These operators are compatible in that we have w(Vπ (y)) = Vπ (w(y)) for all
y ∈Wm(A), and the operator Vπ on the ghost ring is clearly R-linear. It follows by
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the ghost principle that the operator Vπ on Wm(A) is R-linear. Here is the argument
in some detail.

We need to check the identities r Vπ (y)=Vπ (r y) and Vπ (x+y)=Vπ (x)+Vπ (y),
for r ∈ R, x, y ∈Wm(A). Write x = (x0, x1, . . . )π and y = (y0, y1, . . . )π . If A is a
E-flat, the ghost map w : Wm(A)→ AN is injective. Therefore Vπ is R-linear on
Wm(A), by the R-linearity of Vπ on the ghost ring.

The general case then follows from E-flat case. Fix an E-flat R-algebra Ã with
a surjective R-algebra map Ã→ A. For each i , let ỹi be a pre-image of yi , and set
ỹ = (ỹ0, . . . )π ∈ Wm(A). The induced map f : Wm( Ã)→ Wm(A) then satisfies
f (ỹ)= y. Therefore we have

Vπ (r y)= Vπ (r f (ỹ))= Vπ ( f (r ỹ))= f (Vπ (r ỹ))

= f (r Vπ (ỹ))= r f (Vπ (ỹ))= r Vπ ( f (ỹ))= r Vπ (y).

The additivity axiom follows similarly.

3.8. Example. WR,m,n(R) has a presentation

R[x1, . . . , xn]/(xi x j −π
i x j | 16 i 6 j 6 n),

where the element xi corresponds to V i
π (1).

3.9. Teichmüller lifts. Under the composition

A
a 7→[a]

// W (A)
w

// A× A× · · ·

(see 1.21), the image of a is 〈a, aq , aq2
, . . . 〉. It follows from the ghost principle

that
[a] = (a, 0, 0, . . . )π ∈W (A).

Multiplication by Teichmüller lifts also has a simple description in terms of Witt
components:

[a](. . . , bi , . . . )π = (. . . , aq i
bi , . . . )π . (3-9-1)

Again, this follows from the ghost principle.

4. General single-prime case

Assume E consists of a single ideal m, possibly not principal. Let n be an element
of N. Let us write WR,m,n =WR,E,n and so on.

Let Km denote Rm[1/m]. If m is the unit ideal, we understand Rm, and hence
Km, to be the zero ring. Otherwise, Rm is a discrete valuation ring and Km is its
fraction field. In particular, m becomes principal in R[1/m], Rm, and Km. The
following proposition then allows us to describe WR,m,n(A) in terms of the case
where m is principal, and hence in terms of Witt components.
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4.1. Proposition. For R′= R[1/m], Rm, Km, write WR′,m,n =WR′,mR′,n . Then for
any R-algebra A, the ring WR,m,n(A) is the equalizer of the two maps

WR[1/m],m,n
(
R[1/m]⊗R A

)
×WRm,m,n

(
Rm⊗R A

) //
// WKm,m,n(Km⊗R A)

induced by projection onto the two factors and the bifunctoriality of W−,m,n(−).

Proof. The diagram

R // R[1/m]× Rm

pr1
//

pr2

// Km

is an equalizer diagram. Since Km is m-flat, so is any sub-R-module of Km. It
follows that for any R-algebra A, the induced diagram

A //

(
R[1/m]× Rm

)
⊗R A //

// Km⊗R A

is an equalizer diagram. Since WR,m,n is representable, it preserves equalizers, and
so the induced diagram (writing Wn =WR,m,n)

Wn(A) // Wn
(
R[1/m]⊗R A

)
×Wn

(
Rm⊗R A

) //
// Wn(Km⊗R A)

is also an equalizer diagram. Then (2-6-2) completes the proof. �

4.2. Verschiebung in general. We can define Verschiebung maps

V j
: m j
⊗R WR,m(A)−→WR,m(A). (4-2-1)

To do this, it is enough, by 4.1, to restrict to the case where m is principal, as long
as our construction is functorial in A and R. So, choose a generator π ∈ m and
define

V j (π j
⊗ y)= V j

π (y), (4-2-2)

for all y ∈WR,m(A). On ghost components it satisfies

V j (x ⊗〈z0, z1, . . . 〉)= 〈0, . . . , 0, xz0, xz1, . . . 〉,

where the number of leading zeros is j . In particular, it is independent of the choice
of π , by the ghost principle.

If we write WR,m(A)( j) for WR,m(A), viewed as a WR,m(A)-algebra by way of
the map ψ j : WR,m(A)→WR,m(A), then the map

V j
: m j
⊗R WR,m(A)( j)−→WR,m(A), (4-2-3)

is WR,m(A)-linear, as is easily checked using the ghost principle. Expressed as a
formula, it says

V j (x ⊗ yψ j (z))= V j (x ⊗ y)z. (4-2-4)
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In particular, the image V j WR,m(A) of V j is an ideal of WR,m(A).
Let us also record the identities

ψ j
(
V j (x ⊗ y)

)
= xy (4-2-5)

and
V j (x ⊗ y)V j (x ′⊗ y′)= xV j (x ′⊗ yy′) ∈m j V j WR,m(A). (4-2-6)

Again, one checks these using the ghost principle.
Finally, for any n ∈ N, the map V j descends to a map

V j
: m j
⊗R WR,m,n(A)( j)−→WR,m,n+ j (A), (4-2-7)

and the obvious analogues of the identities above hold here.

4.3. Remark. We can define Verschiebung maps even if we no longer assume there
is only one ideal in E . For any j ∈N(E), let J denote the ideal

∏
α m

jα
α of R. Then

V j would be a map J ⊗R WR,E(A)→ WR,E(A). The identities above, suitably
interpreted, continue to hold. We will not need this multiple-prime version.

4.4. Proposition. The sequence

0−→m j
⊗R WR,m,n(A)( j)

V j

−→WR,m,n+ j (A)−→WR,m, j (A)−→ 0 (4-4-1)

is exact.

Proof. Write WR′,n = WR′,mR′,n when R′ is an R-algebra such that the ideal mR′

is supramaximal.
First consider the case where m is principal. Let π ∈ m be a generator. Using

(3-7-1), it is clear that V j is injective and that its image is the set of Witt vectors
whose Witt components (relative π ) are 0 in positions 0 to j − 1. By 3.5, the pre-
image of 0 under the map WR,n+ j (A)→WR, j (A) is the same subset, and the map
WR,n+ j (A)→WR, j (A) is surjective.

Now consider the general case. Augment the diagram (4-4-1) by expressing
each term of (4-4-1) as an equalizer as in 4.1. Here we use that m is R-flat. It then
follows from the principal case and the snake lemma that (4-4-1) is left exact.

It remains to prove that the map WR,n+ j (A)→ WR, j (A) is surjective. By in-
duction, we can assume n = 1. By 4.1, for any i ∈ N we have

WR,i (A)=WRm,i (Rm⊗R A)×WKm,i (Km⊗R A) WR[1/m],i (R[1/m]⊗R A).

Now let π denote a generator of the maximal ideal of Rm, and suppose two ele-
ments

y = (y0, . . . , y j )π ∈WRm, j (Rm⊗R A),

z = 〈z0, . . . , z j 〉 ∈ (R[1/m]⊗R A) j+1
=WR[1/m], j (R[1/m]⊗R A)
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have the same image in WKm, j (Km ⊗R A). To lift the corresponding element of
W j (A) to W j+1(A), we need to find elements

y j+1 ∈ Rm⊗R A and z j+1 ∈ R[1/m]⊗R A

such that in Km⊗R A, we have

yq j+1

0 + · · ·+π j+1 y j+1 = z j+1. (4-4-2)

So, choose an element z j+1 ∈ A whose image under the surjection

A−→ A/(mA) j+1
= Rm/(mRm)

j+1
⊗R A

agrees with the image of yq j+1

0 + · · ·+π j y j . It follows that the element

yq j+1

0 + · · ·+π j yq
j − 1⊗ z j+1 ∈ Rm⊗R A

lies in π j+1(Rm⊗R A). It thus equals π j+1 y j+1 for some element y j+1 ∈ Rm⊗R A.
And so y j+1 and z j+1 satisfy (4-4-2). �

4.5. Corollary. For any R-algebra A, we have⊕
i∈[0,n]

mi
⊗R A(i)

∼
−→ grV WR,m,n(A), (4-5-1)

where A(i) denotes A viewed as a Wn(A)-module via the ring map wi : Wn(A)→
A.

4.6. Reduced ghost components. We can define infinitely many ghost components
for Witt vectors of finite length n if we are willing to settle for answers modulo
mn+1.

First assume m is generated by some element π . By examining the Witt poly-
nomials (3-1-1), we can see that for any i > 0, the composition

WR,m(A)
wi
−→ A−→ A/mn+1 A

vanishes on V n+1WR,m(A). It therefore factors through WR,m,n(A), giving a map
w̄i from WR,m,n(A) to A/mn+1 A.

When m is not assumed to be principal, we define w̄i by localizing at m:

WR,m,n(A)→WRm,mRm,n(Rm⊗R A)
w̄i
−→ (Rm⊗R A)/mn+1(Rm⊗R A)= A/mn+1 A,

where the middle map is w̄i as constructed above in the principal case. We call the
composition

WR,m,n(A)
w̄i
−→ A/mn+1 A (4-6-1)

the i-th reduced ghost component map.
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5. Multiple-prime case

The purpose of this section is to give some results on reducing the family E (of
1.2) to simpler families. The first reduces from the case where E is arbitrary to the
case where it is finite, and the second reduces from the case where it is finite to the
case where it has a single element. We will often write WE =WR,E , 3E =3R,E ,
and so on, for short.

5.1. Proposition. The canonical maps

colimE ′ 3R,E ′ −→3R,E , (5-1-1)

colimE ′ 3R,E ′,n′ −→3R,E,n (5-1-2)

are isomorphisms. Here E ′ runs over the finite subfamilies of E , and n′ is the
restriction to E ′ of a given element n ∈ N(E).

Proof. Consider (5-1-1) first. Since each map 3E ′→3E is an injection, (5-1-1) is
an injection. Therefore, since 3E is freely generated as a 3E -ring by the element
e=ψ0, it is enough to show the sub-9E -ring colimE ′ 3E ′ of3E is a sub-3E -ring.
Since it is flat, we only need to check the Frobenius lift property. So, suppose
m ∈ E . For any element x of the colimit, there is a finite family E ′′ such that
x ∈ 3E ′′ and m ∈ E ′′. But 3E ′′ is a 3E ′′-ring. So we have ψm(x) ≡ xqm modulo
m3E ′′ , and hence modulo m(colimE ′ 3E ′). Therefore the Frobenius lift property
holds for the colimit ring.

Then (5-1-2) follows:

3E,n = (R[1/E]⊗R 9E,n)∩3E = (colimE ′ R[1/E]⊗R 9E ′,n′)∩ colimE ′ 3E ′

= colimE ′
(
(R[1/E]⊗R 9E ′,n′)∩3E ′

)
= colimE ′ 3E ′,n′ . �

5.2. Corollary. For any R-algebra A, the canonical maps

WR,E(A)−→ lim
E ′

WR,E ′(A), (5-2-1)

WR,E,n(A)−→ lim
E ′

WR,E ′,n′(A) (5-2-2)

are isomorphisms, where E ′, n, and n′ are as in 5.1.

5.3. Proposition. Let E ′ q E ′′ be a partition of E. Then the canonical maps

3R,E ′ �R 3R,E ′′ −→3R,E , (5-3-1)

3R,E ′,n′ �R 3R,E ′′,n′′ −→3R,E,n (5-3-2)

are isomorphisms, where n′ and n′′ denote the restrictions to E ′ and E ′′ of a given
element n ∈ N(E).
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Proof. It is enough to show each map becomes an isomorphism after base change
to R[1/E ′] and R[1/E ′′]. So, by (1-20-1), we can assume every element in either
E ′ or E ′′ is the unit ideal.

In the second case, we have

3E ′ �R 3E ′′ =3E ′ �R R[N(E ′′)
] =3E ′[N

(E ′′)
] =3E

The argument for (5-3-2) is the same, but we replace the generating set N(E ′′) with
[0, n′′].

Now suppose every element in E ′ is the unit ideal. Then a 3E ′-ring is the same
as a 9E ′-ring. So we have

3E ′ �R 3E ′′ =3E ′′[N
(E ′)
] =3E .

For (5-3-2), replace N(E ′) with [0, n′], as above. �

5.4. Corollary. Let E ′ q E ′′ be a partition of E. Then for any R-algebra A, the
canonical maps

WR,E(A)−→WR,E ′′
(
WR,E ′(A)

)
, (5-4-1)

WR,E,n(A)−→WR,E ′′,n′′
(
WR,E ′,n′(A)

)
(5-4-2)

are isomorphisms, where n, n′, n′′ are as in 5.3.

5.5. Remark. By the results above, it is safe to say that expressions such as

3m1 �R · · · �R 3mr and Wmr ◦ · · · ◦Wm1(A) (5-5-1)

are independent of the ordering of the mi , assuming the mi are pairwise coprime.
(Note that it is not generally true that P � P ′ ∼= P ′� P for plethories P and P ′.
See [Borger and Wieland 2005, 2.8].)

If we ask that the expressions in (5-5-1) be independent only up to isomor-
phism, then it is not even necessary that the mα ∈ E be pairwise coprime 1.2. But
invariance up to isomorphism is not a such a useful property, and most of the time
coprimality really is necessary. For example, we could look at rings with more than
one Frobenius lift at a single maximal ideal, but we would not be able to reduce to
the case of a single Frobenius lift. Indeed, if E consists of a single maximal ideal
m, the two endomorphisms ψW W (A) and W (ψW (A)) of W W (A) commute, and the
first is clearly a Frobenius lift, but the second is generally not. Therefore W W (A)
cannot be the cofree ring with two commuting Frobenius lifts at m.

In fact, I believe this is the only place where we use the coprimality assumption
directly. The rest of our results depend on it only through 5.3. Although I know of
no applications, it would be interesting to know whether the abstract setup of this
paper, and then the main results, hold when we allow more than one Frobenius lift
at each maximal ideal.
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6. Basic affine properties

This section provides some basic results about the commutative algebra of Witt
vectors. They are just the ones needed to be able to prove the main theorems in
sections 8 and 9 and to set up the global theory in the companion paper [Borger
2010]. There are other basic results that could have been included here, but which
I have put off to the other paper, where they will be proved for all algebraic spaces.

We continue with the notation of 1.2. Fix an element n ∈ N(E). We will often
write Wn = WE,n = WR,E,n and so on, for short. By 5.2, we may assume that E
agrees with the support of n, and in particular that it is finite.

6.1. Proposition. Let R′ be an E-flat R-algebra such that the structure map R→
R′ is a ring epimorphism (as in 1.20). Then the composition

R′⊗R WR,E,n(A)
(2-6-3)

// WR,E,n(R′⊗R A)
∼

(2-6-2)−1
// WR′,E ′,n(R′⊗R A)

is an isomorphism, where E ′ is as in 1.20.

Proof. We may assume by 5.4 that E consists of a single ideal m. Using 4.1 and
the flatness of R′ over R, we are reduced to showing that the functors WR[1/m],m,n ,
WRm,m,n , and WKm,m,n commute with the functor R′ ⊗R −. Therefore we may
assume that the ideal m is principal.

Write Wn = WR,m,n . The result is clear for n = 0, because W0 is the identity
functor. So assume n > 1. By 4.4, we have the map of exact sequences

0 // R′⊗R m⊗R Wn−1(A)
idR′⊗V 1

//

��

R′⊗R Wn(A) //

��

R′⊗R A // 0

0 // m⊗R Wn−1(R′⊗R A)
V 1

// Wn(R′⊗R A) // R′⊗R A // 0

where the vertical maps are given by (2-6-3). By induction the leftmost vertical
arrow is an isomorphism. Therefore the inner one is, too. �

6.2. Proposition. For any ideal I in an R-algebra A, let WR,E,n(I ) denote the
kernel of the canonical map WR,E,n(A)→WR,E,n(A/I ). Then we have

WR,E,n(I )WR,E,n(J )⊆WR,E,n(I J )

for any ideals I , J in A.

Proof. We first show that we may assume E consists of a single ideal m. In
doing this, it will be convenient to prove an equivalent form of the statement:
if I J ⊆ K , where K is an ideal in A, then Wn(I )Wn(J ) ⊆ Wn(K ). Suppose
E = E ′ q {m}. Let n′ be the restriction of n to E . Let I ′ = WE ′,n′(I ), J ′ =
WE ′,n′(J ), and K ′ = WE ′,n′(K ). By 5.4, we have WE,n = Wm,nm ◦ WE ′,n′ , and
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hence WE,n(I )=Wm,nm(I
′) and so on. By induction, we have I ′ J ′⊆ K ′, and then

applying the result in the single-ideal case gives

WE,n(I )WE,n(J )=Wm,nm(I
′)Wm,nm(J

′)=Wm,nm(K
′)=WE,n(K ).

So we will assume E = {m} and drop E from the notation.
By 6.1, the statement is Zariski local on R, and so we may assume the ideal m is

generated by some element π . We will work with Witt components relative to π .
We need to show that for any elements x = (x0, . . . , xn)π ∈ Wn(I ) and y =

(y0, . . . , yn)π ∈Wn(J ), the product xy is in Wn(I J ). So it is sufficient to show this
in the universal case, where A is the free polynomial algebra R[x0, y0, . . . , xn, yn],
I is the ideal (x0, . . . , xn), and J is the ideal (y0, . . . , yn).

Consider the commutative diagram

Wn(A)
w6n

//

��

A[0,n]

��

Wn(A/I J )
w6n

// (A/I J )[0,n].

We want to show that the image of xy in Wn(A/I J ) is zero. Since A/I J is flat
(even free) over R, the lower map w6n is injective, and so it is enough to show the
image of xy in (A/I J )[0,n] is zero. But by the naturality of the ghost map, we have
w6n(x) ∈ I [0,n] and w6n(y) ∈ J [0,n]. Therefore w6n(xy) lies in (I J )[0,n], which
maps to zero in (A/I J )[0,n]. �

6.3. Remark. Although the proof of 6.2 given above uses some properties specific
to Witt vector functors, the result is true for any representable ring-valued functor.
See [Borger and Wieland 2005, 5.5].

6.4. Corollary. If I is an ideal in an R-algebra A and I m
=0, then WR,E,n(I )m=0.

6.5. Proposition. Let ϕ : A→ B be a map of R-algebras. If it is surjective, then
so is the map WR,E,n(ϕ) : WR,E,n(A)→WR,E,n(B).

Proof. By 5.4, we may assume E consists of one ideal m. Since surjectivity can be
checked Zariski locally on R, it is enough by 6.1 to assume m is principal. Then
using the Witt components, we can identify the set map underlying WR,E,n(ϕ)with
the map ϕ[0,n] : A[0,n]→ B[0,n], which is clearly surjective. �

6.6. Corollary. If ϕ : A→ B is surjective, then

WR,E,n(A×B A)
Wn(pr1)

//

Wn(pr2)
// WR,E,n(A)

Wn(ϕ)
// WR,E,n(B)

is a coequalizer diagram.
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Proof. The functor Wn is representable, and hence commutes with limits. (See 2.4.)
Therefore Wn(A×B A) agrees with Wn(A)×Wn(B)Wn(A), which is an equivalence
relation on Wn(A), the quotient by which is the image of Wn(ϕ). By 6.5, this is all
of Wn(B). �

6.7. Remark. This result is particularly appealing when A is E-flat and B is not.
Then we can describe Wn(B) in terms of Wn(A) and Wn(A ×B A), which are
directly accessible because A and A×B A are E-flat.

6.8. Proposition. Suppose E consists of one ideal m, and let A be an R-algebra.
For any i > 0, the map Spec(id⊗ w̄i ) of schemes induced by the ring map

id⊗ w̄i : R/m⊗R WR,E,n(A)−→ R/m⊗R A/mn+1

is a universal homeomorphism. For i = 0, it is a closed immersion defined by a
square-zero ideal.

Proof. Write Wn =WR,E,n and so on. Consider the diagram

R/m⊗R Wn(A)
id⊗w̄i

//

id⊗w0

��

R/m⊗R A/mn+1 A

∼r⊗a 7→ra
��

A/mA x 7→xqi
// A/mA.

To show it commutes, it is enough to assume m is principal, generated by π . Then
commutativity follows from the obvious congruence

wi (a)= aq i

0 +πaq i−1

1 + · · ·+π i ai ≡ aq i

0 mod mA,

for any element a = (a0, a1, . . . )π ∈W (A).
Therefore, id⊗ w̄i is the composition of a map whose kernel is a nil ideal and

a power of the Frobenius map. The scheme maps induced by both of these are
universal homeomorphisms.

Now let us show that id⊗w0 (which equals id⊗w̄0) is a surjection with square-
zero kernel. The map id⊗w0 is surjective by 1.21 (or 4.4). So let us show the
square of its kernel is zero. By 4.4, the kernel of the map Wn(A)→ R/m⊗R A is the
ideal V 1Wn(A)+mWn(A). Hence it is enough to show

(
V 1Wn(A)

)2
⊆mWn(A).

This follows from (4-2-6). �

6.9. Proposition. Let (Bi )i∈I be a family of A-algebras such that the induced map∐
i Spec Bi → Spec A is surjective. Then the induced map∐

i

Spec WR,E,n(Bi )→ Spec WR,E,n(A)

is surjective.
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Proof. By 5.4, it is enough to assume E consists of one ideal m. Further, it is
enough to show surjectivity after base change to R[1/m] and to R/m. For R[1/m],
it follows from 6.1 and the equality Wn(C)=C [0,n], when m is the unit ideal. Now
consider base change to R/m. By 6.8, the ring Wn(A)/mWn(A) is a nilpotent
extension of A/mA, and likewise for each Bi , and so we are reduced to showing
that ∐

i
Spec Bi/mBi → Spec A/mA

is surjective. This is true since base change distributes over disjoint unions and
preserves surjectivity. �

6.10. Proposition. The R-algebra 3R,E,n is finitely presented, and the functor
WR,E,n preserves filtered colimits of R-algebras.

Proof. Since WR,E,n is represented by 3R,E,n , the two statements to be proved are
equivalent. By 5.4, we may assume E consists of a single ideal m. By [EGA 6,
2.7.1], the first statement can be verified fpqc locally on R, and in particular after
base change to R[1/m] and to Rm. Therefore by (2-6-1), we can assume m is
generated by a single element π . But by 3.3, the R-algebra 3R,E,n is generated by
the finite set θπ,0, . . . , θπ,n . �

7. Some general descent

The purpose of this section is to record some facts about descent of étale algebras
which we will use to prove our main result, Theorem 9.2. The results mention
nothing about Witt vectors or anything else in this paper. So it would be reasonable
to skip this section and refer back to it only as needed.

More precisely, we do the following. First, we set up some language and no-
tation for descent, essentially repeating parts of Grothendieck’s TDTE I [1966].
(It could not be otherwise.) Second, we prove an abstract result (7.10) relating
gluing data and descent data for certain simple gluing constructions. Third, we
recall Grothendieck’s theorem (7.11) on integral descent of étale maps. Finally, we
prove 7.12, which provides the plan of the proof of 9.2. Aside from the language
of descent, only these three results will be used outside this section.

Language

7.1. Fibered categories. Let C be a category with fibered products. Let E be a
category fibered over C. (See [Grothendieck 1966, A.1.1] or [SGA 1, VI.6.1].) For
any object S of C, let ES denote the fiber of E over S. Let us say that a map
q : T→ S in C is an E-equivalence if q∗ : ES→ ET is an equivalence of categories,
and let us say that q is a universal E-equivalence if for any map S′→ S in C, the
base change q ′ : S′×S T → S′ is an E-equivalence.
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For the applications in the next section, the reader can take

C= the category of affine schemes,

E= the fibered category over C where ES is the category of affine
étale S-schemes and the functors q∗ are given by base change.

(7-1-1)

Then any closed immersion defined by a nil ideal is a universal E-equivalence
[EGA 8, 18.1.2].

7.2. Composition notation. Let S be an object of C, and let CS×S denote the cat-
egory of objects over S × S. That is, an object of CS×S is a pair (T, πT ), where
T is an object of C and πT is a map T → S × S, called its structure map; a
morphism is a morphism in C commuting with the maps to S × S. For such an
object, let πT,1, πT,2 denote the composition of the structure map T → S× S with
the projections pr1, pr2 : S× S→ S. (πT,1 is the “source” and πT,2 is the “target”.)
We will often abusively leave πT implicit and say that T is an object of C.

Let 1S denote the object (S,1) of CS×S , where 1 : S→ S× S is the diagonal
map.

Given two objects T,U ∈ CS×S , define T U ∈ CS×S as follows. As an object of
C, it is the fibered product

T U
pr1

//

pr2

��

T
πT,2

��

U
πT,1

// S.

(7-2-1)

We give T U the structure of an object of CS×S with the map

T U = T ×S U
(πT,1◦pr1,πU,2◦pr2)

// S× S. (7-2-2)

7.3. Category objects and equivalence relations. A category object over S is an
object R ∈ CS×S together with maps

eR : 1S→ R,

cR : R R→ R
(7-3-1)

in CS×S (called identity and composition) satisfying the usual identity and asso-
ciativity axioms in the definition of a category. A morphism f : R→ R′ of such
category objects is defined to be a morphism in CS×S satisfying the functor axioms,
that is, such that

f ◦ eR = eR ◦ f and cR′ ◦ ff= f ◦ cR,

where ff denotes the map R R→ R′R′ induced by f .
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A category-object structure on a subobject R ⊆ S× S is a property of R in that
when it exists, it is unique. One might say that R is a reflexive transitive relation
on S. We say R is an equivalence relation on S if, in addition, the endomorphism
(pr2, pr1) of S× S that switches the two factors restricts to a map

s : R→ R

(which is of course unique when it exists).

7.4. Pre-actions (gluing data). Let T be an object of CS×S . A pre-action of T on
an object X ∈ ES is defined to be an isomorphism

ϕ : π∗T,2(X)
∼
−→π∗T,1(X) (7-4-1)

in ET . A pre-action is also called a gluing datum on X relative to the pair of maps
(πT,1, πT,2). (Actually, Grothendieck [1966, A.1.4] calls ϕ−1 the gluing datum.)
Let

PreAct(T, X)

denote the set of pre-actions of T on X . Any map T → T ′ in CS×S naturally
induces a map

PreAct(T ′, X)→ PreAct(T, X).

If f : X→ X ′ is a morphism in ES between objects X, X ′ with pre-actions ϕ, ϕ′,
then we say f is T -equivariant if the diagram

π∗T,2(X)
π∗T,2( f )

//

ϕ

��

π∗T,2(X
′)

ϕ′

��

π∗T,1(X)
π∗T,1( f )

// π∗T,1(X
′)

commutes.
In this way, the objects of ES equipped with a pre-action of T form a category.

7.5. Actions. Now let R be a category object over S. An action of R on X is
defined to be a pre-action ϕ of R on X such that the diagram

e∗π∗R,2(X)
e∗(ϕ)

// e∗π∗R,1(X)

id∗S(X)
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and the diagram

c∗π∗R,2(X)
c∗(ϕ)

// c∗π∗R,1(X)

pr∗2π
∗

R,2(X)

pr∗2(ϕ)

&&

pr∗1π
∗

R,1(X)

pr∗2π
∗

R,1(X) pr∗1π
∗

R,2(X),

pr∗1(ϕ)
88

commute. Here, pr1 and pr2 denote the projections R R → R onto the first and
second factors, and the morphisms represented by equality signs are the isomor-
phisms induced by the canonical structure maps (g ◦ f )∗ ∼→ f ∗ ◦ g∗ (denoted by
c f,g in [Grothendieck 1966, A.1.1(ii)]) of the fibered category E corresponding to
the equalities

πR,2 ◦ e = idS = πR,1 ◦ e

and
πR,2 ◦ c = πR,2 ◦ pr2,

πR,1 ◦ pr2 = πR,2 ◦ pr1,

πR,1 ◦ c = πR,1 ◦ pr1.

We will often use the following more succinct, if slightly abusive, expressions of
the commutativity of the diagrams above:

e∗(ϕ)= idX , c∗(ϕ)= (pr∗1ϕ) ◦ (pr∗2ϕ). (7-5-1)

Let Act(R, X) denote the set of actions of R on X . A morphism R → R′ of
category objects induces a map

Act(R′, X)−→Act(R, X)

in the obvious way.
Last, note that if R is an equivalence relation, the diagram

s∗π∗R,2(X)
s∗(ϕ)

// s∗π∗R,1(X)

π∗R,1(X)
ϕ−1

// π∗R,2.

commutes. This follows immediately from (7-5-1). The abbreviated version is

s∗(ϕ)= ϕ−1. (7-5-2)



272 James Borger

7.6. Descent data. Let q : S′→ S be a map in C, and put

R(S′/S)= S′×S S′.

View R(S′/S) as an object in CS′×S′ by taking πR(S′/S) to be the evident monomor-
phism

R(S′/S)= S′×S S′−→ S′× S′

Then R(S′/S) is an equivalence relation on S′. An action ϕ of R(S′/S) on an
object X ′ of ES′ is also called a descent datum on X ′ from S′ to S. (Again, it is
actually ϕ−1 that is called the descent datum in [Grothendieck 1966].) We might
call R(S′/S) the descent, or Galois, groupoid of the map q : S′→ S.

Because the two compositions R(S′/S)= S′×S S′⇒ S′→ S are equal, for any
object X ∈ES , the object q∗(X) of ES′ has a canonical pre-action of R(S′/S), and it
is easy to check that this is an action. We say that q is a descent map for the fibered
category E if the functor from ES to the category of objects of ES′ with an R-action
is fully faithful. We say it is an effective descent map if it is an equivalence.

7.7. When gluing data is descent data. Now suppose we have a diagram

S′′ //
// S′ // S (7-7-1)

in C such that the two compositions S′′⇒ S are equal. The universal property of
products gives a map

S′′−→ S′×S S′ = R(S′/S).

For any object X ′ ∈ ES′ , this map induces a function

Act(R(S′/S), X ′)−→ PreAct(S′′, X ′).

Let us say that gluing data on X ′ is descent data relative to the diagram (7-7-1)
when this map is a bijection.

Gluing two objects

Here we spell out in (perhaps excessive) detail some basic facts about equivalence
relations on disjoint unions that are E-trivial, but not necessarily trivial, on each
factor.

From now on, let C denote the category of affine schemes, schemes, or algebraic
spaces. (We only need some weak hypotheses on coproducts in C, but let us not
bother to determine which ones we need.)

7.8. Equivalence relations on a disjoint union. Suppose S is a coproduct Sa + Sb

of two objects Sa, Sb ∈ C. (We use the symbols a, b to index the summands only
to emphasize their distinction from the symbols 1, 2 that index the factors in the
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product S× S.) Let R be an equivalence relation on S, and let Ri j denote R×S×S

(Si × S j ), for any i, j ∈ {a, b}. Let πRi j ,1 denote the evident composition

Ri j = R×S×S (Si × S j )
pr1
−→ Si

and πRi j ,2 the analogous map Ri j → S j . We will sometimes view Ri j as an object
of CS×S using the induced map Ri j → Si × S j → S× S.

Let ei : Si→ Ri i and ci jk : Ri j R jk→ Rik and si j : Ri j→ R j i denote the evident
restrictions of e and c and s.

7.9. Actions over a disjoint union. For any object X over S, write Xa = Sa ×S X
and Xb = Sb×S X .

For any pre-action
ϕ : π∗R,2 X −→π∗R,1 X, (7-9-1)

of R on X , let us write ϕi j for the restriction of ϕ to Ri j . In order for this pre-action
to be an action, it is necessary and sufficient that for all i, j, k ∈ {a, b} we have

e∗i (ϕi i )= idX i , (7-9-2)

c∗i jk(ϕik)= pr∗1(ϕi j ) ◦ pr∗2(ϕ jk). (7-9-3)

This is just a restatement of (7-5-1), summand by summand. In that case, (7-5-2)
becomes

s∗i j (ϕ j i )= ϕ
−1
i j . (7-9-4)

7.10. Proposition. Let R be an equivalence relation on S = Sa + Sb such that for
i = a, b, the map ei : Si → Ri i is a universal E-equivalence. Then for any object
X ∈ ES , the map

Act(R, X)
ϕ 7→ϕba

// PreAct(Rba, X)

is a bijection.

Proof. Let us first show injectivity. Let ϕ and ϕ′ be actions of R on X such that
ϕba=ϕ

′

ba . We need to show that this implies ϕi j =ϕ
′

i j for all i, j ∈{a, b}. Consider
each case separately. For i j = ba, it is true by assumption. When i j = ab, (7-9-4)
and the given equality ϕba = ϕ

′

ba imply

ϕab = s∗ba(ϕab)
−1
= s∗ba(ϕ

′

ab)
−1
= ϕ′ab.

When i = j , since ei is an E-equivalence, it is enough to show e∗i (ϕi i ) = e∗i (ϕ
′

i i ).
But by (7-9-2), we have

e∗i (ϕi i )= idX i = e∗i (ϕ
′

i i ).

Therefore ϕ = ϕ′, which proves injectivity.
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Now consider surjectivity. Let ϕba be a pre-action of Rba on X . Define

ϕab = s∗ab(ϕba)
−1 (7-10-1)

and for i = a, b define ϕi i to be the map such that

e∗i (ϕi i )= idX i , (7-10-2)

which exists and is unique because ei is an E-equivalence. We need to check that
the pre-action ϕ = ϕaa + ϕab + ϕba + ϕbb of R on X is actually an action. To do
this, we will verify the relations (7-9-2) and (7-9-3).

The identity axiom (7-9-2) holds because it is the defining property (7-10-2) of
ϕi i .

Now consider the associativity axiom (7-9-3) for the various possibilities for
i jk. Since i, j, k ∈ {a, b}, two of i, j, k must be equal.

If i = j , the composition f

R jk
pr−1

2

∼
// S j j R jk

e j×id
// R j j R jk

is an E-equivalence, because it is a base change of the universal E-equivalence e j .
Therefore it is enough to show

f ∗c∗j jk(ϕ jk)= f ∗pr∗1(ϕ j j ) ◦ f ∗pr∗2(ϕ jk). (7-10-3)

By the equality pr1 ◦ f = e j ◦πR jk ,1 and (7-10-2), we have

f ∗pr∗1(ϕ j j )= π
∗

R jk ,1e∗j (ϕ j j )= π
∗

R jk ,1(idX j )= id.

On the other hand, by c j jk◦ f = idR jk =pr2◦ f , we have f ∗c∗j jk(ϕ jk)= f ∗pr∗2(ϕ jk).
Equation (7-10-3) then follows.

The case j = k is similar to the case i = j . (Or apply s to the case i = j .)
Last, suppose i = k. The following diagram is easily checked to be cartesian:

Ri j
(idRi j ,si j )

//

πRi j ,1

��

Ri j R j i

ci j i

��

Si
ei

// Ri i .

(7-10-4)

(This is just another expression of the existence and uniqueness of inverses in a
groupoid.) Since ei is a universal E-equivalence, (idRi j , si j ) is an E-equivalence.
So it is enough to show axiom (7-9-3) after applying (idRi j , si j )

∗, that is, to show

(idRi j , si j )
∗c∗i j i (ϕi i )= (idRi j , si j )

∗pr∗1(ϕi j ) ◦ (idRi j , si j )
∗pr∗2(ϕ j i ). (7-10-5)
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By the commutativity of (7-10-4) and (7-10-2), we have

(idRi j , si j )
∗c∗i j i (ϕi i )= π

∗

Ri j ,1e∗i (ϕi i )= π
∗

Ri j ,1(idX i )= id.

Combining this with the equation ϕ j i = s∗j i (ϕi j )
−1, (7-10-5) reduces to

(idRi j , si j )
∗pr∗1(ϕi j )= (idRi j , si j )

∗pr∗2s∗j i (ϕi j ).

But this holds because we have

pr1 ◦ (idRi j , si j )= idRi j = s j i ◦ si j = s j i ◦ pr2 ◦ (idRi j , si j ).

Therefore the equations in (7-9-3) hold for all i, j, k, and so the pre-action is an
action. �

Grothendieck’s theorem

Recall that a map Spec B→ Spec A of affine schemes is said to be integral if the
corresponding ring map A→ B is integral (and not necessarily injective).

7.11. Theorem. Every surjective integral map Y → X of affine schemes is an
effective descent map for the fibered category E over C of (7-1-1).

This theorem is proven in [SGA 1, IX 4.7] up to two details. First, the argument
given there covers only morphisms Y → X which are finite and of finite presen-
tation; and second, the statement there has no affineness in the assumptions or in
the conclusion. The first point can be handled by a standard limiting argument
(or one can apply [Rydh 2010, Theorem 5.17 plus Remark 2.5(1b)]). The second
point can be handled with Chevalley’s theorem; the form most convenient here
would the final one [Rydh 2009, Theorem 8.1], which is free of noetherianness,
separatedness, finiteness, and scheme-theoretic assumptions.

Gluing and descent of étale algebras

7.12. Proposition. Consider a diagram of rings

B
d

// B ′
h1

//

h2

// B ′′

A
f

//

e

OO

A′
g1

//

g2
//

e′

OO

A′′

e′′

OO

(7-12-1)

such that hi ◦ e′ = e′′ ◦ gi , for i = 1, 2. Also assume that

(a) the two parallel right-hand squares are cocartesian,

(b) both rows are equalizer diagrams,

(c) relative to the lower row, gluing data on any étale A′-algebra is descent data,
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(d) f satisfies effective descent for the fibered category of étale algebras, and

(e) e′ is étale.

Then e is étale and the left-hand square is cocartesian.

Note that when we use the language of descent in the category of rings (as in
(c) and (d)), we understand that it refers to the corresponding statements in the
opposite category.

Proof. Property (a) equips the étale A′-algebra B ′ with gluing data ϕ relative to
(g1, g2). Indeed, take ϕ to be the composition

A′′⊗g1,A′ B ′
∼
−→ B ′′

∼
−→ A′′⊗g2,A′ B ′.

By property (c), this gluing data comes from unique descent data relative to f .
Therefore by (d) and (e), the A′-algebra B ′ descends to an étale A-algebra C .

Now apply the functor C ⊗A − to the lower row of diagram (7-12-1). By (a)
and the definition of descent, the result can be identified with the sequence

C // B ′
h1

//

h2

// B ′′.

This sequence is also an equalizer diagram, because the lower row of (7-12-1) is
an equalizer diagram, by (b), and because C is étale over A and hence flat. Again
by (b), the upper row of (7-12-1) is an equalizer diagram, and so we have C = B.
Therefore, B is an étale A-algebra and the left-hand square is cocartesian. �

8. Ghost descent in the single-prime case

We return to the notation of 1.2. Suppose E consists of a single maximal ideal m,
and fix an integer n > 1. Write Wn = WR,m,n , and so on. Let A be an R-algebra,
and let αn denote the map

Wn(A)
αn
−→Wn−1(A)× A (8-0-2)

given by the canonical projection on the factor Wn−1(A) and the n-th ghost com-
ponent wn on the factor A. Let In(A) denote the kernel of αn . For example, if m

is generated by π , then in terms of the Witt components, we have

In(A)= {(0, . . . , 0, a)π ∈ A[0,n] | πna = 0}. (8-0-3)

8.1. Proposition. (a) αn is an integral ring homomorphism.

(b) The kernel In(A) of αn is a square-zero ideal.

(c) If A is m-flat, then αn is injective.
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(d) The diagram

Wn−1(A)
w̄n

// A/mn A

Wn(A)
wn

//

OOOO

A,

OOOO

where the vertical maps are the canonical ones, is cocartesian.

(e) View A as a Wn(A)-algebra by the mapwn : Wn(A)→ A. Then every element
in the kernel of the multiplication map A⊗Wn(A) A−→ A is nilpotent.

(f) In the diagram

Wn(A)
αn

// Wn−1(A)× A
w̄n◦pr1

//

pr2

// A/mn A, (8-1-1)

where pr2 denotes the reduction of pr2 modulo mn , the image of αn agrees with
the equalizer of w̄n ◦ pr1 and pr2.

Proof. (a): It is enough to show that each factor of Wn−1(A)× A is integral over
Wn(A). The first factor is a quotient ring, and hence integral. Now consider an
element a ∈ A. Then aqn

is the image in A of the Teichmüller lift [a] ∈ Wn(A).
(See 1.21.) Therefore the second factor is also integral over Wn(A).

(b) It suffices to show this after base change to R[1/m] × Rm. Therefore, by 6.1,
we may assume m is generated by a single element π . Then an element of the
kernel of αn will be of the form V n

π [a] = (0, . . . , 0, a)π , where πna = 0. On the
other hand, by (4-2-6) we have

(V n
π [a])(V

n
π [b])= π

nV n
π [ab] = (0, . . . , 0, πnab)π = 0.

(c) We have (w6n−1× idA)◦αn =w6n . Since A is m-flat, the map w6n is injective
2.7, and hence so is αn .

(d) As above, it is enough by 6.1 to assume m is generated by a single element π .
Then we have

A⊗Wn(A) Wn−1(A)= A⊗Wn(A) Wn(A)/V nWn(A)= A/wn(V nWn(A))A.

Examining the Witt polynomials (3-1-1) shows wn(V nWn(A))= πn A.

(e) Again, by 6.1 we may assume m is generated by a single element π . To show
every element x ∈ I is nilpotent, it is enough to restrict x to a set of generators.
Therefore it is enough to show (1⊗ a− a⊗ 1)q

n
= 0 for every element a ∈ A.

Now suppose that, for j = 0, . . . , qn , we could show( qn

j

)
a j
∈ im(wn). (8-1-2)
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Then we would have

(1⊗ a− a⊗ 1)q
n
=

∑
j

(−1) j
( qn

j

)
a j
⊗ aqn

− j
=

∑
j

(−1) j
⊗

( qn

j

)
a j aqn

− j

= (1⊗ a− 1⊗ a)q
n
= 0,

which would complete the proof. So let us show (8-1-2).
Let f = ordp(q) and i = ordp( j). Then we have

ordp

( qn

j

)
= ordp(qn j−1)+ ordp

( qn
− 1

j − 1

)
> n f − i.

It follows that
( qn

j

)
a j is an R-linear multiple of πn f−i a j . Since wn is an R-

algebra map, it is therefore enough to show

πn f−i a j
∈ im(wn). (8-1-3)

Now, for b∈ A and s=0, . . . , n, we have πn−sbqs
=wn(V n−s

π [b]), and therefore
πn−sbqs

is in the image of wn . So to show (8-1-3), it is enough to find an integer
s and an element b ∈ A such that πn−sbqs

is an R-linear divisor of πn f−i a j . In
particular, it is sufficient for b and s to satisfy bqs

= a j and n− s 6 n f − i .
Take s to be the greatest integer at most i f −1. Then we have qs

| j ; so if we
set b = a j/qs

∈ A, we have bqs
= a j . It remains to show n − s 6 n f − i . This is

equivalent to n−i f −16n f −i , which is in turn equivalent to (1− f )(n−i f −1)60.
And this holds because 1− f 6 0 and n − i f −1 > 0. (Recall that j 6 qn .) This
completes the proof of (e).

(f) As above, we may assume that m can be generated by a single element π . For
any element a = (a0, . . . , an)π ∈Wn(A), we have

αn(a)=
(
(a0, . . . , an−1), aqn

0 + · · ·+π
n−1aq

n−1+π
nan

)
.

Therefore an element
(
(a0, . . . , an−1), b

)
∈ Wn−1(A)× A lies in the image of αn

if and only if
aqn

0 + · · ·+π
n−1aq

n−1 ≡ b mod mn A,

which is exactly what we needed to show. �

8.2. Corollary. For any R-algebra A, the ghost map

w6n : Wn(A)−→ A[0,n]

is integral, and its kernel J satisfies J 2n
= 0.

Proof. By 8.1 and induction on n. �

8.3. Theorem. (a) The map αn is an effective descent map for the fibered cate-
gory of étale algebras.
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(b) Relative to the diagram

Wn(A)
αn

// Wn−1(A)× A
w̄n◦pr1

//

pr2

// A/mn A, (8-3-1)

gluing data on any étale Wn−1(A)× A-algebra is descent data (7.7).

(c) If A is m-flat, then for any A′-algebra B ′ equipped with gluing data ϕ, the
descended A-algebra is the subring B of B ′ on which the following diagram
commutes:

A/mn A⊗w̄n◦pr1
B ′

B ′

1⊗idB′
77

1⊗idB′ ''

A/mn A⊗pr2
B ′.

ϕ

OO

Proof. (a) This follows from Grothendieck’s Theorem 7.11 and 8.1(a)–(b).

(b) We will use 7.10, where C and E are as in (7-1-1). In the notation of 7.8, put

Sa = Spec Wn(A) and Sb = Spec A.

Let 0 be the equivalence relation S×Spec Wn(A) S on S. By 8.1(d), we have 0ba =

Spec A/mn A. The map ea is an isomorphism because Wn−1(A) is a quotient ring
of Wn(A). The map eb is a nil immersion, by 8.1(e), and hence is an E-equivalence.
Thus we can apply 7.10, which says that a 0-action is the same as a 0ba pre-action.
In other words, gluing data is descent data.

(c) This will follow from 7.12 once we verify the hypotheses. 7.12(a)–(b) are clear;
7.12(c) follows from (b) above; 7.12(d) follows from (a) above; and 7.12(e) follows
from the definition of B, for the top row of (7-12-1), and from 8.1(c) and (f), for
the bottom row. �

8.4. Remark. For any ring C , let EtAlgC denote the category of étale C-algebras.
Then another way of expressing part (b) of this theorem is that the induced functor

EtAlgWn(A)−→EtAlgWn−1(A)×EtAlgA/mn A EtAlgA

is an equivalence. (Of course, the fibered product of categories is taken in the weak
sense.) In particular, we can prove things about étale Wn(A)-algebras by induction
on n. This is the main technique in the proof of 9.2. But it also seems interesting
in its own right and will probably have applications beyond the present paper.
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8.5. Remark. If we let W̄n(A) denote the image of αn , the induced diagram

W̄n(A) // Wn−1(A)× A
w̄n◦pr1

//

pr2

// A/mn A.

satisfies all the conclusions of the theorem above, regardless of whether A is m-flat.
Indeed, it is an equalizer diagram by 8.1(f) and the definition of W̄n(A); it is

an effective descent map by 8.3 and 8.1(b). Last, because W̄n(A) is the image of
αn , gluing (resp. descent) data relative to W̄n(A) agrees with gluing (resp. descent)
data relative to Wn(A). In particular, gluing data relative to W̄n(A) is descent data.

9. W and étale morphisms

We return to the general context of 1.2. In particular, E is no longer required to
consist of one ideal.

9.1. Lemma. Consider a commutative square of affine schemes (or any schemes)

X

f
��

X ′

f ′

��

g
oo

Y Y ′,
h

oo

and let U be an open subscheme of Y . Suppose that

(a) f and f ′ are étale,

(b) the square above becomes cartesian after the base change U ×Y −, and

(c) g and h become surjective and universally injective after the base change
(Y −U )×Y −.

Then the square above is cartesian.

Proof. Let e denote the induced map (g, f ′) : X ′→ X×Y Y ′. It is enough to show
e is étale, surjective, and universally injective [EGA 8, 17.9.1]. The composition
of e with pr2 : X ×Y Y ′→ Y ′ is f ′. Because f is étale, so is its base change pr2.
Combining this with the étaleness of f ′ implies that e is étale [EGA 8, 17.3.4].

The surjectivity and universal injectivity of e can be checked after base change
over Y to U and to Y −U . By assumption e becomes an isomorphism after base
change to U . In particular, it becomes surjective and universally injective.

Let ē, ḡ, h̄ denote the maps e, g, h pulled back from Y to Y −U . Let h̄′ denote
the base change of h̄ from Y to X . Then, as above, we have ḡ = h̄′ ◦ ē. Since h̄
is universally injective, so is h̄′. Combining this with the fact that ḡ is universally
injective, implies that ē is as well [EGA 1, 3.5.6–7]. Finally ē is surjective since h̄′

is injective and ḡ is surjective. �
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9.2. Theorem. For any étale map ϕ : A → B and any element n ∈ N(E), the
induced map WR,E,n(ϕ) : WR,E,n(A)→WR,E,n(B) is étale.

Proof. By 5.4, it is enough to assume E consists of a single maximal ideal m. Also,
it will simplify notation if we assume m is principal, generated by an element π .
We may do this by 6.1 and because it is enough to show étaleness after applying
Rm⊗R − and R[1/m]⊗R −. Let us write Wn =WR,E,n .

We will reason by induction on n, the case n = 0 being clear because W0 is the
identity functor. So from now on, assume n > 1.

Let W̄n(A) denote the image of αn : Wn(A)→ Wn−1(A)× A, and let ᾱn de-
note the induced injection W̄n(A)→ Wn−1(A)× A. Define W̄n(B) and ᾱn for B
similarly.

Step 1: W̄n(B) is étale over W̄n(A). To show this, it suffices to verify conditions
(a)–(e) of 7.12 for the diagram

W̄n(B)
ᾱn

// Wn−1(B)× B
w̄n◦pr1

//

pr2

// B/mn B

W̄n(A)
ᾱn

//

OO

Wn−1(A)× A
w̄n◦pr1

//

pr2

//

OO

A/mn A,

OO

where the vertical maps are induced by ϕ and functoriality. We know 7.12(a) holds
by induction. Conditions 7.12(c)–(d) hold by 8.3 (or 8.5). Condition 7.12(e) was
shown already in 8.1(f). Now consider 7.12(b). It is clear that the square of pr2
maps is cocartesian. So, all that remains is to check that the square of w̄n ◦ pr1
maps is cocartesian. By induction, Wn−1(B) is étale over Wn−1(A), and so this
follows from 9.1, which we can apply by 6.1 and 6.8.

Step 2: Wn(B) is étale over Wn(A). We know from 8.1(b) that the kernel In(A) of
the map αn : Wn(A)→ W̄n(A) has square zero. Therefore by [EGA 8, 18.1.2], there
is an étale Wn(A)-algebra C and an isomorphism f : C ⊗Wn(A) W̄n(A)→ W̄n(B).
Now consider the square

C //

d

%%JJJJJJ W̄n(B)

Wn(A)

OO

// Wn(B),

OOOO

where the upper map is the one induced by f and where d will soon be defined.
By 8.1(b), the kernel In(B) of the right-hand map has square zero. Therefore since
C is étale over Wn(A), there exists a unique map d making the diagram commute.
Let us now show that d is an isomorphism.
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Because C is étale and hence flat over Wn(A), we have a commutative diagram
with exact rows:

0 // In(B) // Wn(B) // W̄n(B) // 0

0 // C ⊗Wn(A) In(A) //

e

OO

C //

d

OO

C ⊗Wn(A) W̄n(A) //

∼f

OO

0.

So to show d is an isomorphism, it is enough to show e is an isomorphism. Because
In(A) is a square-zero ideal, the action of Wn(A) on it factors through W̄n(A).
Therefore, e factors as follows:

C ⊗Wn(A) In(A)= C ⊗Wn(A) W̄n(A)⊗W̄n(A) In(A)
f⊗id
−→ W̄n(B)⊗W̄n(A) In(A)

g
−→ In(B),

Since f is an isomorphism, it is enough to show g is an isomorphism.
Using the description (8-0-3) of In , the map g can be extended to the following

commutative diagram with exact rows:

0 // In(B) // B
·πn

// πn B // 0

0 // W̄n(B)⊗ In(A) //

g

OO

W̄n(B)⊗ A
·πn

//

(pr2◦ᾱn)·ϕ

OO

W̄n(B)⊗πn A,

(pr2◦ᾱn)·ϕ

OO

// 0

where ⊗ denotes ⊗W̄n(A), for short. Therefore it is enough to show the right two
vertical maps are isomorphisms, and to do this, it is enough to show the right-hand
square in the diagram

Wn(B) // // W̄n(B)
pr2◦ᾱn

// B

Wn(A) // //

OO

W̄n(A)

OO

pr2◦ᾱn
// A

OO

is cocartesian. We will do this by applying 9.1, with U = Spec R[1/m]⊗R W̄n(A).
By step 1, condition 9.1(a) holds. Now consider conditions 9.1(b)–(c). By

8.3(b), the horizontal maps in the left-hand square have square-zero kernel. In par-
ticular, the scheme maps they induce are universal homeomorphisms. And by 6.1,
they become isomorphisms after applying R[1/m]⊗R−. Therefore it is enough to
show 9.1(b)–(c) hold for the perimeter of the diagram above. In this case, 9.1(b)
follows from 6.1, and 9.1(c) follows from 6.8. �
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9.3. Remark. Observe that when A is E-flat, the proof terminates after step 1,
which is just an application of 7.12. Thus in the central case, the argument is not
much more than 8.1 and some general descent theory.

9.4. Corollary. Let B an étale A-algebra, and let C be any A-algebra. Then for
any n ∈ N(E), the induced diagram

WR,E,n(B) // WR,E,n(B⊗A C)

WR,E,n(A) //

OO

WR,E,n(C)

OO

is cocartesian.

Proof. By 5.4, we can assume E consists of a single ideal m. The proof will be
completed by 9.1, once we check its hypotheses are satisfied. Condition (a) of 9.1
holds by 9.2, condition (b) holds by 6.1 and 2.7, and condition (c) holds by 6.8. �

9.5. Wn does not generally commute with coproducts. Almost anything is an ex-
ample. For instance, with the p-typical Witt vectors, W1(A⊗Z A) is not isomorphic
to W1(A)⊗W1(Z) W1(A), when A is Fp[x] or Z[x].

9.6. W does not generally preserve étale maps. Let W denote p-typical Witt func-
tor (non-truncated), and let ϕ denote the evident inclusion Q[x]→Q[x±1

], which
is étale. While W (ϕ) is best viewed as a map of pro-rings, it is possible to view
it as a map of ordinary rings, and ask whether it is étale. It is not: W (ϕ) can be
identified with ϕN

: Q[x]N→Q[x±1
]
N, which is not étale because Q[x±1

]
N is not

finitely generated as an Q[x]N-algebra. This is an elementary exercise.

9.7. Other truncation sets for the big Witt vectors. Some writers have considered
more general systems of truncations for the big Witt functor 1.15. See [Hesselholt
and Madsen 1997, §4.1], for example. Given a finite set T of positive integers
closed under extraction of divisors, they define an endofunctor WT of the category
of rings. When T consists of all the divisors of some integer d > 1, then WT agrees
with our WZ,E,n , where E consists of the maximal ideals m⊂Z that contain d and
where nm = ordm(d). Thus the two systems of truncations are cofinal with respect
to each other.

The functors WT also preserve étale maps. Indeed, it is enough to show that the
base change to Z[1/T ] and to Z(p), for each prime p ∈ T , is étale. (See [EGA 8,
17.7.2(ii)].) Applying the identity WT (A)[1/p] = WT (A[1/p]), which can be
established by looking at the graded pieces of the Verschiebung filtration, it is
enough to consider Z[1/T ]-algebras and Z(p)-algebras. In the either case, WT (A)
is simply a product of p-typical Witt rings Wn(A) for various primes p and lengths
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n (see [Hesselholt and Madsen 1997, (4.1.10)]), in which case the result follows
from 9.2, or van der Kallen’s original theorem [1986, (2.4)].
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Correction to a proof in the article
Patching and admissibility over

two-dimensional complete local domains
Danny Neftin and Elad Paran

Volume 4:6 (2010), 743–762

The proof of Lemma 1.8 of the article in the title is incorrect. We supply an
alternate argument for Proposition 1.10, whose proof invoked that lemma.

We are grateful to Yong Hu for pointing out to us a gap in the proof of Lemma
1.8 of our article “Patching and admissibility over two-dimensional complete local
domains”, namely, the isomorphism R/p ∼= S/q implies only that S = R + q and
not S = R+ pS, as required for this argument.

The lemma is applied for the rings

R0 = DJ∪J ′, R1 = DJ , R2 = DJ ′, R = D∅,

where J ∩ J ′ = ∅, to show that S := R1 ∩ R2 = R. Let us show this assertion
directly. In particular, this will trivially imply that for these rings q= pS.

All references are to the article in question.
Recall that I is a finite set and that v is the extension of the order function of

the ideal p := (x, y)CK [x, y] to K (x, y). For i ∈ I , let zi = y/(x−ci y) and for a
subset J ⊂ I , DJ is defined as the completion of K [z j | j ∈ J ][x, y] with respect
to v.

Lemma. Let i, j ∈ I be two distinct indices. Then D{i} ∩ D{ j} = D∅.

Proof. By Proposition 1.5, D{i} = K [zi ][[x − ci y]] and hence an element f ∈ D{i}
can be written as

∑
∞

k=0 fk(zi )(x− ci y)k for some polynomials fk , k ≥ 0. Assume
f ∈ D{i, j} can also be written as

∑
∞

k=0 gk(z j )(x−c j y)k
∈ D{ j}= K [z j ][[x−c j y]],

where gk are polynomials for k ≥ 0.
In particular,

fk(zi )(x − ci y)k
= gk(z j )(x − c j y)k (mod pk+1 D{i, j}) (1)

MSC2010: primary 12F12; secondary 12E30, 12E15, 12F10.
Keywords: patching, crossed product, admissible groups, division algebras, complete local

domains.
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for all k ≥ 0. We claim that equality (1) in fact holds in D{i, j}. Indeed, since
x − ci y =

(
1+ (c j − ci )z j

)
(x − c j y), the difference between the sides of (1) is(

fk(zi )(1+ (c j − ci )z j )
k
− gk(z j )

)
(x − c j y)k

∈ K [zi , z j ](x − c j y)k . (2)

Since p is contained in the center of the valuation v, Proposition 1.5 implies that
the difference (2) is in pk+1 D{i, j} only if it is zero, proving the claim.

By finding a common denominator, one can write an element fk(zi )(x−ci y)k as
pk(x, y)/(x − ci y)m where m ≥ 0 and pk is a homogenous polynomial of degree
k+m that is prime to (x−ci y)m . Writing gk(z j )(x−c j y)k

= qk(x, y)/(x − c j y)l

for l≥0 and qk a homogenous polynomial of degree k+l that is prime to (x−ci y)l ,
the equality

pk(x, y)

(x − ci y)m =
qk(x, y)

(x − c j y)l

implies that m = l = 0 and hence that fk(zi )(x − ci y)k
∈ K [x, y] for all k ≥ 0. It

follows that f =
∑
∞

k=0 fk(zi )(x − ci y)k
∈ K [[x, y]], as required. �

Let us complete the proof of Proposition 1.10:

Proposition. Suppose J, J ′ ⊆ I . Then DJ ∩ DJ ′ = DJ∩J ′ .

Proof. Clearly DJ∩J ′ ⊆ DJ ∩ DJ ′ . For the converse inclusion, we distinguish
between two cases. First suppose that J ∩ J ′ 6= ∅ and fix j ∈ J ∩ J ′. Then
DJ = K [zk | k ∈ J ][[x − c j y]], DJ ′ = K [zk | k ∈ J ′][[x − c j y]] and hence

DJ ∩ DJ ′ = (K [zk | k ∈ J ] ∩ K [zk | k ∈ J ′])[[x − c j y]].

By Lemma 1.9, K [zk | k ∈ J ] ∩ K [zk | k ∈ J ′] = K [zk | k ∈ J ∩ J ′].
Now suppose that J ∩ J ′ = ∅. If |J | = |J ′| = 1, then the claim follows from

the Lemma. Assume without loss of generality |J | ≥ 2. For distinct j1, j2 ∈ J ,
we have by the previous case DJ ∩ DJ ′∪{ ji } = D{ ji }, for i = 1, 2. In particular,
DJ ∩ DJ ′ ⊆ D{ j1} ∩ D{ j2}. By the Lemma, D{ j1} ∩ D{ j2} = D∅ implying that
DJ ∩ DJ ′ = D∅ as required. �
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