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Local positivity, multiplier ideals,
and syzygies of abelian varieties
Robert Lazarsfeld, Giuseppe Pareschi and Mihnea Popa

We use the language of multiplier ideals in order to relate the syzygies of an
abelian variety in a suitable embedding with the local positivity of the line bundle
inducing that embedding. This extends to higher syzygies a result of Hwang and
To on projective normality.

Introduction

Hwang and To [2010] observed that there is a relation between local positivity on
an abelian variety A and the projective normality of suitable embeddings of A. The
purpose of this note is to extend their result to higher syzygies, and to show that
the language of multiplier ideals renders the computations extremely quick and
transparent.

Turning to details, let A be an abelian variety of dimension g, and let L be an
ample line bundle on A. Recall that the Seshadri constant ε(A, L) is a positive
real number that measures the local positivity of L at any given point x ∈ A: for
example, it can be defined by counting asymptotically the number of jets that the
linear series |kL | separates at x as k→∞. We refer to [Lazarsfeld 2004, Chapter
5] for a general survey of the theory, and in particular to Section 5.3 of that book
for a discussion of local positivity on abelian varieties.

Our main result is this:

Theorem A. Assume that

ε(A, L) > (p+ 2)g.

Then L satisfies property (Np).

The reader may consult for instance [Lazarsfeld 2004, Chapter 1.8.D], [Green
and Lazarsfeld 1987] or [Eisenbud 2005] for the definition of property (Np) and
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further references. Suffice it to say here that (N0) holds when L defines a pro-
jectively normal embedding of A, while (N1) means that the homogeneous ideal
of A in this embedding is generated by quadrics. For p > 1 the condition is that
the first p modules of syzygies among these quadrics are generated in minimal
possible degree. The result of Hwang and To [2010] is essentially the case p = 0
of Theorem A.

In general it is difficult to control Seshadri constants. However, it was shown in
[Lazarsfeld 1996] that on an abelian variety they are related to a metric invariant
introduced in [Buser and Sarnak 1994]. Specifically, write A = V/3, where V is
a complex vector space of dimension g and 3⊆ V is a lattice. Then L determines
a hermitian form h = hL on V , and the Buser–Sarnak invariant is (the square of)
the minimal length with respect to h of a nonzero period of 3:

m(A, L) := min
0 6=`∈3

hL(`, `).

The main result of [Lazarsfeld 1996] is that

ε(A, L)≥ π
4
·m(A, L).

On the other hand, one can estimate m(A, L) for very general (A, L). In fact,
suppose that the polarization L has elementary divisors

d1 | d2 | · · · | dg,

and put d = d(L)= d1 · · · · · dg. By adapting an argument of Buser–Sarnak in the
case of principal polarizations, Bauer [1998] showed that if (A, L) is very general,
then

m(A, L)≥ 21/g

π
g
√

d · g!.

Therefore we obtain:

Corollary B. Assume that

d(L) > 4g(p+2)ggg

2g!
.

Then (Np) holds for very general (A, L) of the given type.

The essential interest in statements of this sort occurs when L is primitive (that
is, d1 = 1), or at least when d1 is small: as far as we know, our result is the first to
give statements for higher syzygies of primitive line bundles in large dimension.
By contrast, if L is a suitable multiple of some ample line bundle, then much
stronger statements are known. Most notably, the second author proved in [Pareschi
2000] that (Np) always holds as soon as d1 ≥ p+ 3. This was strengthened and
systematized in [Pareschi and Popa 2003; 2004], while (for p=0) other statements
appear in [Iyer 2003] and [Fuentes García 2005].
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We conclude this introduction by sketching a proof of the theorem of [Hwang
and To 2010] via the approach of the present paper. Following a time-honored
device, one considers the diagonal 1⊆ A× A, with ideal sheaf I1. Writing

L � L = pr∗1 L ⊗ pr∗2 L

for the exterior product of L with itself, the essential point is to prove

H 1(A× A, L � L ⊗I1
)
= 0. (*)

Hwang and To [2010] achieve this by establishing a somewhat delicate upper bound
on the volume of a one-dimensional analytic subvariety of a tubular neighborhood
of 1 (or, more generally, of a tubular neighborhood of any subtorus of an abelian
variety). This allows them to control the positivity required to apply vanishing
theorems on the blow-up of A×A along1. While their calculation is of substantial
independent interest, for the task at hand it is considerably quicker to deduce (*)
directly from Nadel vanishing.

Specifically, using the hypothesis that ε(A, L) > 2g, a standard argument (see
Lemma 1.2) shows that for suitable 0 < c � 1, one can construct an effective
Q-divisor

E0 ≡num
1− c

2
L

on A whose multiplier ideal vanishes precisely at the origin: J(A, E0)= I0. Now
consider the difference map

δ : A× A→ A, (x, y) 7→ x − y,

and set E = δ∗E0. Since forming multiplier ideals commutes with pullback under
smooth morphisms, we have on the one hand

J(A× A, E)= δ∗J(A, E0)= I1.

On the other hand, one knows that

L2 � L2
= δ∗(L)⊗ N (∗∗)

for a suitable nef line bundle N on A× A. Thanks to our choice of E0, this implies
that (L � L)(−E) is ample. Therefore Nadel vanishing gives (*), as required.

The proof of the general case of Theorem A proceeds along similar lines. Fol-
lowing an idea going back to Green [1984], one works on the (p+2)-fold product
of A, where one has to check a vanishing involving the ideal sheaf of a union of
pairwise diagonals.1 To realize this as a multiplier ideal, we pull back a suitable

1The possibility of applying vanishing theorems on a blow-up to verify Green’s criterion was
noted already in [Bertram et al. 1991, Remark on p. 600]. Nowadays one can invoke the theory of [Li
2009] to control the blow-ups involved: the pairwise diagonals 10,1, . . . ,10,p+1 form a building
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divisor under a multisubtraction map: this is carried out in Section 1. The positivity
necessary for Nadel vanishing is verified using an analogue of (∗∗) established in
Section 2. Finally, Section 3 contains some complements and variants, including a
criterion for L to define an embedding in which the homogeneous coordinate ring
of A is Koszul.

For applications of Nadel vanishing, one typically has to estimate the positivity
of formal twists of line bundles by Q-divisors. To this end, we allow ourselves
to be a little sloppy in mixing additive and multiplicative notation. Thus, given a
Q-divisor D and a line bundle L , the statement D ≡num bL is intended to mean
that D is numerically equivalent to b · c1(L). Similarly, to say that (bL)(−D) is
ample indicates that b · c1(L)− D is an ample numerical class. We trust that no
confusion will result.

1. Proof of Theorem A

As in the Introduction, let A be an abelian variety of dimension g, and let L be an
ample line bundle on A.

We start by recalling a geometric criterion that guarantees property (Np) in our
setting. Specifically, form the (p+ 2)-fold product X = A×(p+2) of A with itself,
and inside X consider the reduced algebraic set

6=
{
(x0, . . . , x p+1) | x0= xi for some 1≤ i ≤ p+ 1

}
=10,1∪10,2∪ . . .∪10,p+1

arising as the union of the indicated pairwise diagonals. Thus 6 has p + 1 irre-
ducible components, each of codimension g in X .

It was observed by Green [1984, §3] that property (Np) for L is implied by
a vanishing on X involving the ideal sheaf of I6 , generalizing the condition (*)
for projective normality. We refer to [Inamdar 1997] for a statement and care-
ful discussion of the criterion in general.2 In the present situation, it shows that
Theorem A is a consequence of the following:

Proposition 1.1. Assume that ε(A, L) > (p+ 2)g. Then

H i
(

A×(p+2),
p+2
� L ⊗ Q⊗I6

)
= 0

for any nef line bundle Q on X and all i > 0.3

set in the sense of [Li 2009] on the (p + 2)-fold self product of a smooth variety. However, in the
case of abelian varieties treated here, elementary properties of multiplier ideals are used to obviate
the need for any blow-ups.

2The argument appearing in [Green 1984] is somewhat oversimplified.
3As explained in [Inamdar 1997] one actually needs the vanishings

H1(A×(p
′
+2), Lq � L � · · ·� L ⊗I6

)
= 0
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The plan is to deduce the proposition from Nadel vanishing. To this end, it
suffices to produce an effective Q-divisor E on X having two properties:

J(X, E)= I6. (1-1)( p+2
� L

)
(−E) is ample. (1-2)

The rest of this section is devoted to the construction of E and the verification of
these requirements.

The first point is quite standard:

Lemma 1.2. Assuming that ε(A, L) > (p+2)g, there exists an effective Q-divisor
F0 on A having the properties that

F0 ≡num
1− c
p+ 2

L

for some 0< c� 1, and

J(A, F0)= I0.

Here naturally I0 ⊆ OA denotes the ideal sheaf of the origin 0 ∈ A.

Proof of Lemma 1.2. We claim that for suitable 0< c� 1 and sufficiently divisible
k� 0, there exists a divisor D ∈ |k(1− c)L | with

mult0(D)= (p+ 2)gk,

where, in addition, D has a smooth tangent cone at the origin 0 ∈ A and is non-
singular away from 0. Granting this, it suffices to put F0 = (1/(p+2)k)D. As for
the existence of D, let

ρ : A′ = Bl0(A)→ A

be the blowing up of A at 0, with exceptional divisor T ⊆ A′. Then, by definition
of ε(A, L), the class (1−c)ρ∗L−(p+2)gT is ample on A′ for 0< c� 1. If D′ is
a general divisor in the linear series corresponding to a large multiple of this class,
Bertini’s theorem on A′ implies that D = ρ∗(D′) has the required properties. �

Now form the (p + 1)-fold product Y = A×(p+1) of A with itself, and write
pri : Y → A for the i-th projection. Consider the reduced algebraic subset

3=

p+1⋃
i=1

pr−1
i (0)=

{
(y1, . . . , yp+1) | yi = 0 for some 1≤ i ≤ p+ 1

}
.

for 0≤ p′ ≤ p and q ≥ 1, but these are all implied by the assertion of Proposition 1.1.
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We wish to realize I3 as a multiplier ideal, to which end we simply consider the
exterior sum of the divisors F0 just constructed. Specifically, put

E0 =

p+1∑
i=1

pr∗i (F0).

Thanks to [Lazarsfeld 2004, 9.5.22], one has

J(Y, E0)=

p+1∏
i=1

pr∗i J(A, F0)=

p+1∏
i=1

pr∗i I0,

that is, J(Y, E0)= I3, as desired.
Next, consider the map

δ = δp+1 : A×(p+2)
→ A×(p+1),

(x0, x1, . . . , x p+1) 7→ (x0− x1, . . . , x0− x p+1),
(1-3)

and note that 6 = δ−13 (scheme-theoretically). Set

E = δ∗(E0).

Forming multiplier ideals commutes with pulling back under smooth morphisms
[Lazarsfeld 2004, 9.5.45]; hence

J(X, E)= δ∗J(Y, E0)= δ
∗I3 = I6,

and thus (1-1) is satisfied.
In order to verify (1-2), we use the following assertion, which will be established

in the next section.

Proposition 1.3. There is a nef line bundle N on X = A×(p+2) such that

δ∗
( p+1

� L
)
⊗ N =

p+2
� L p+2. (1-4)

Granting this, the property (1-2) — and with it, Proposition 1.1 — follows easily.
Indeed,

E ≡num
1− c
p+ 2

·

(
δ∗
( p+1

� L
))
.

Therefore (1-4) implies that( p+2
� L

)
(−E)≡num c ·

( p+2
� L

)
+

1− c
p+ 2

· N ,

which is ample. This completes the proof of Theorem A.
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2. Proof of Proposition 1.3

Let A be an abelian variety and p a nonnegative integer. Define the maps

b : A×(p+2)
→ A, (x0, x1, . . . , x p+1) 7→ x0+ x1+ · · ·+ x p+1,

and for any 0≤ i < j ≤ p+ 1,

di j : A×(p+2)
→ A, (x0, x1, . . . , x p+1) 7→ xi − x j .

Recall the map δ from the previous section:

δ : A×(p+2)
→ A×(p+1), (x0, x1, . . . , x p+1) 7→ (x0− x1, . . . , x0− x p+1).

Proposition 1.3 follows from the following more precise statement.4

Proposition 2.1. For any ample line bundle L on A, we have

δ∗
( p+1

� L
)
⊗ (b∗L)⊗

( ⊗
1≤i< j

d∗i j L
)
=

p+1
�

k=0

(
L p+2−k

⊗ (−1)∗Lk).
Let

a : A× A→ A and d : A× A→ A

be the addition and subtraction maps, P be a normalized Poincaré line bundle on
A× Â, and φL : A→ Â be the isogeny induced by L . We use the notation

P = (1×φL)
∗P and Pi j = pr∗i j P,

where pri j : A×(p+2)
→ A× A is the projection on the (i, j)-factor. We will use

repeatedly the following standard facts.

Lemma 2.2. The following identities hold:

(i) a∗L ∼= (L � L)⊗ P;

(ii) d∗L ∼= (L � (−1)∗L)⊗ P−1;

(iii) pr∗13 P ⊗ pr∗23 P ∼= (a× 1)∗P on the triple product A× A× A.

Proof. Identity (i) is well known (see for example [Mumford 1970, p. 78]) and
follows from the seesaw principle. Identity (ii) can then be deduced similarly using
the seesaw principle, or from (i) by noting that d = a ◦ (1,−1). This gives

d∗L ∼= (1× (−1))∗
(
(L � L)⊗ (1×φL)

∗P
)

∼= (L � (−1)∗L)⊗ (1× ((−1) ◦φL))
∗P

∼= (L � (−1)∗L)⊗ (1×φ(−1)∗L)
∗(1,−1)∗P

∼= (L � (−1)∗L)⊗ (1×φL)
∗P−1,

4Note that L and (−1)∗L differ by a topologically trivial line bundle.
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where the last isomorphism follows from the well-known identity

((−1)× 1)∗P∼= (1× (−1))∗P∼= P−1.

Identity (iii) follows from the formula

pr∗13P⊗ pr∗23P∼= (a, 1)∗P

on A× A× Â, which in turn is easily verified using the seesaw principle (see, for
example, the proof of Mukai’s inversion theorem [1981, Theorem 2.2]). �

Proposition 2.1 follows by putting together the formulas in the next Lemma.

Lemma 2.3. If L is an ample line bundle on A, the following identities hold:

(i) b∗L ∼=
( p+2

� L
)
⊗

(⊗
i< j

Pi j

)
;

(ii) d∗i j L ∼=
(

OA � · · ·� L
i
� · · ·� (−1)∗L

j
� · · ·� OA

)
⊗ P−1

i j for all i < j ;

(iii) δ∗
( p+1

� L
)
∼=
(
L p+1 � (−1)∗L � · · ·� (−1)∗L

)
⊗ P−1

01 ⊗ · · ·⊗ P−1
0,p+1.

Proof. (i) If p= 0 this is Lemma 2.2(i). We can inductively obtain the formula for
some p > 0 from that for p− 1 by noting that b (= bp+2)= (a, id) ◦ bp+1, where
bk denotes the addition map for k factors, a is the addition map on the first two
factors, and id is the identity on the last p factors. Therefore, inductively we have

b∗L ∼= (a, id)∗
(( p+1

� L
)
⊗

(⊗
i< j

Pi j

))
.

The formula follows then by using Lemma 2.2(i) for the addition map a on the first
two factors, and Lemma 2.2(iii) for the combination of the first two factors with
any of the other p factors.

(ii) This follows simply by noting that di j = d ◦ pi j , where pi j is the projection on
the (i, j) factors and d is the difference map. We then apply Lemma 2.2(ii).

(iii) Note that δ = (d01, . . . , d0,p+1). Therefore

δ∗
( p+1

� L
)
∼= d∗01L ⊗ · · ·⊗ d∗0,p+1L .

One then applies the formula in (ii). �

In order to discuss the Koszul property in the next section, we will need a variant
of these results. Specifically, fix k ≥ 2 and consider the mapping

γ : A×k
→ A×(k−1), (x0, x1, . . . , xk) 7→ (x0− x1, x1− x2, . . . , xk−1− xk).
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Consider also for any 0≤ i < j ≤ k the maps

ai j : A×k
→ A, (x0, x1, . . . , xk) 7→ xi + x j .

Variant 2.4. For any ample line bundle L on A we have

γ ∗
( k−1

� L
)
⊗

( ⊗
0≤i≤k−1

a∗i,i+1L
)

= L2 �
(
L2
⊗ (−1)∗L

)
� . . .�

(
L2
⊗ (−1)∗L

)
�
(
L ⊗ (−1)∗L

)
.

Proof. Noting that ai j = a ◦ pri j , where pri j is the projection on the (i, j) factors
and a is the difference map, and using Lemma 2.2(i), we have

a∗i j L ∼=
(

OA � · · ·� L
i
� · · ·� L

j
� · · ·� OA

)
⊗ Pi j .

On the other hand, γ = (d01, d12, . . . , dk−1,k) and using Lemma 2.3(ii) for each of
the factors, we have

γ ∗
( k−1

� L
)
∼=
(
L � (L ⊗ (−1)∗L)� . . . � (L ⊗ (−1)∗L)� (−1)∗L

)
⊗P−1

01 ⊗ . . . ⊗ P−1
k−1,k . �

Corollary 2.5. There is a nef line bundle N on A×k such that

γ ∗
( k−1

� L
)
⊗ N =

k
� L3.

3. Complements

This section contains a couple of additional results that are established along the
same lines as those above. As before, A is an abelian variety of dimension g, and
L is an ample line bundle on A.

We start with a criterion for L to define an embedding in which A satisfies the
Koszul property (for a definition and discussion of this property see for instance
[Brion and Kumar 2005, §1.5]).

Proposition 3.1. Assume that ε(A, L) > 3g. Then under the embedding defined
by L , the homogeneous coordinate ring of A is a Koszul algebra.

Sketch of Proof. Fix k ≥ 2, and consider the k-fold self product A×k of A. By
analogy to Green’s criterion, it is known that the Koszul property is implied by the
vanishings (for all k ≥ 2)

H 1
(

A×k,
k
� L ⊗ Q⊗I0

)
= 0, (3-1)

where Q is a nef bundle on A×k , and 0 is the reduced algebraic set

0 =11,2 ∪12,3 ∪ · · · ∪1k−1,k
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(see [Inamdar and Mehta 1994, Proposition 1.9]). As above, this is established by
realizing 0 as a multiplier ideal and applying Nadel vanishing. For the first point,
one constructs (as in the case p= 2 of Theorem A) a divisor F0≡num ((1−c)/3)L
on A, takes its exterior sum on A×(k−1), and then pulls back under the map γ :
A×k
→ A×(k−1) appearing at the end of the last section. The required positivity

follows from Corollary 2.5. �

We record an analogue of the result of Hwang and To for Wahl [1992] maps.

Proposition 3.2. Let L be an ample line bundle on A, and assume that ε(A, L) >
2(g+m) for some integer m ≥ 0. Then

h1(A× A, L � L ⊗Im+1
1

)
= 0.

In particular, the m-th Wahl (or Gaussian) map

γ m
L : h

0(A× A, L � L ⊗Im
1

)
→ h0(A× A, L � L ⊗Im

1⊗O1
)
∼= h0(A, L2

⊗ Sm�1
A
)

is surjective.

Sketch of Proof. One proceeds as in the proof outlined in the Introduction, except
that the stronger numerical hypothesis on ε(A, L) allows one to take E0 ≡num

((1− c)/2)L with J(A, E0)= Im+1
0 . For the rest one argues as before. �

Remark 3.3. Proposition 3.2, combined with Bauer’s result mentioned in the In-
troduction and with [Colombo et al. 2011, Theorem B], implies the surjectivity of
the first Wahl map of curves of genus g sitting on very general abelian surfaces for
all g > 145. This provides a “nondegenerational” proof — in the range g > 145 —
of the surjectivity of the map γ 1

KC
for general curves of genus g, which holds for

all g ≥ 12 and g = 10 [Ciliberto et al. 1988].
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