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We prove basic facts about reflexivity in derived categories over noetherian
schemes, and about related notions such as semidualizing complexes, invertible
complexes, and Gorenstein-perfect maps. Also, we study a notion of rigidity
with respect to semidualizing complexes, in particular, relative dualizing com-
plexes for Gorenstein-perfect maps. Our results include theorems of Yekutieli
and Zhang concerning rigid dualizing complexes on schemes. This work is a
continuation of part I (Algebra and Number Theory 4:1 (2010), 47–86), which
dealt with commutative rings.
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Introduction

This paper is concerned with properties of complexes over noetherian schemes,
that play important roles in duality theory. Some such properties, like (derived)
reflexivity, have been an integral part of the theory since its inception; others,
like rigidity, appeared only recently. Our main results reveal new aspects of such
concepts and establish novel links between them.

Similar questions over commutative rings were examined in [Avramov et al.
2010a]. Additional topics treated there are semidualizing complexes, complexes of
finite Gorenstein dimension, perfect complexes, invertible complexes, and rigidity
with respect to semidualizing complexes, as well as versions of these notions rel-
ative to essentially-finite-type ring-homomorphisms that have finite flat dimension
or, more generally, finite Gorenstein dimension. In this sequel we globalize such
considerations, that is, extend them to the context of schemes.

This work is a substantial application of Grothendieck duality theory, seen as
the study of a twisted inverse image pseudofunctor (−)! defined on appropriate
categories of schemes. Duality theory provides interpretations of the local facts,
a technology to globalize them, and suggestions for further directions of develop-
ment.

To place our work in context, we review two methods for proving existence
of (−)! for noetherian schemes and separated scheme-maps of finite type. The
original approach of Grothendieck involves the construction of a “coherent family”
of dualizing complexes; details are presented in [Hartshorne 1966] and revised in
[Conrad 2000]. An alternative method, based on Nagata compactifications and
sketched in [Deligne 1966] and [Verdier 1969], is developed in [Lipman 2009].
Recent extensions of these approaches to maps essentially of finite type provide
a principal object of this study — the concept of rigidity — and one of our main
tools.

Indeed, rigid dualizing complexes over rings, introduced by van den Bergh
[1997] in the context of noncommutative algebraic geometry, are used by Yekutieli
and Zhang [2008; 2009] in an ongoing project aiming to simplify Grothendieck’s
construction of (−)!, and extend it to schemes essentially of finite type over a
regular ring of finite Krull dimension. On the other hand, Nayak [2009] proved an
analog of Nagata’s compactification theorem and extended the pseudofunctor (−)!

to the category of all noetherian schemes and their separated maps essentially of
finite type. We work in this category.

Next we describe in some detail the notions and results of the paper. Comparison
with earlier work is postponed until the end of this Introduction.
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All schemes are assumed to be noetherian; all scheme-maps are assumed to
be essentially of finite type and separated. Let X be a scheme, D(X) the derived
category of the category of OX -modules, and Db

c(X) ⊂ D(X) the full subcategory
whose objects are the complexes with coherent homology that vanishes in all but
finitely many degrees.

For F and A in D(X), we say that F is derived A-reflexive if both F and
RHomX (F, A) are in Db

c(X), and if the canonical D(X)-map is an isomorphism

F −→∼ RHomX
(
RHomX (F, A), A

)
.

When OX itself is derived A-reflexive the complex A is said to be semidualizing.
(The classical notion of dualizing complex includes the additional requirement that
A be isomorphic, in D(X), to a bounded complex of injective sheaves.)

In Chapter 1 we prove basic results about semidualizing complexes in D(X), and
examine their interplay with perfect complexes, that is, complexes F ∈Db

c(X) such
that for every x ∈ X the stalk Fx is isomorphic in D(OX,x ) to a bounded complex of
flat OX,x -modules (or equivalently, such that F is isomorphic in D(X) to a bounded
complex of flat OX -modules).

In Chapter 2 we explore conditions on a scheme-map f : X→ Y that allow for
the transfer of properties, like reflexivity, along standard functors D(Y )→ D(X).
These basic global notions turn out to be local, not only in the Zariski topology
but also in the flat topology; that is, we find that they behave rather well under
faithfully flat maps. (This opens the way to examination of more general sites, not
undertaken here.)

One such condition involves the notion of perfection relative to f , defined for
F in Db

c(X) by replacing OX,x with OY, f (x) in the definition of perfection. If this
condition holds with F =OX , then f is said to be perfect (aka finite flat dimension,
or finite tor-dimension). Flat maps are classical examples.

As a sample of results concerning ascent and descent along perfect maps, we
quote from Theorem 2.2.5 and Corollary 2.2.6:

Theorem 1. Let f : X→ Y be a perfect map and B a complex in D+c (Y ).
If M ∈ D(Y ) is derived B-reflexive, then the complex L f ∗M in D(X) is both

derived L f ∗B-reflexive and derived f !B-reflexive. For M = OY this says that if
B is semidualizing then so are L f ∗B and f !B.

For each of these four statements, the converse holds if M and B are in Db
c(Y ),

and f is faithfully flat, or f is perfect, proper and surjective.

The perfection of f can be recognized by its relative dualizing complex, f !OY .
Indeed, f is perfect if and only if f !OY is relatively perfect. Furthermore, if f is
perfect, then every perfect complex in D(X) is derived f !OY -reflexive.
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In particular, when f is perfect the complex f !OY is semidualizing. We take this
condition as the definition of G-perfect maps. (Here G stands for Gorenstein.) In
the affine case, these are just maps of finite G-dimension (see Example 2.3.6). They
form a class significantly larger than that of perfect maps. For instance, when the
scheme Y is Gorenstein every scheme map X→ Y is G-perfect. In Section 2.3, we
prove some basic properties of such maps, and, more generally, of OX -complexes
that are derived f !OY -reflexive. For such complexes, called G-perfect relative
to f , there exist nice dualities with respect to the relative dualizing complex (see
Corollary 2.3.12).

Quasi-Gorenstein maps are defined by the condition that f !OY is perfect. A very
special case has been extensively studied: a flat map is quasi-Gorenstein if and only
if all its fibers are Gorenstein schemes. On the other hand, every map of Gorenstein
schemes is quasi-Gorenstein. Every quasi-Gorenstein map is G-perfect.

The conditions of relative perfection and G-perfection interact in many pleasing
ways with composition and base change of scheme-maps, as explicated mainly
in Section 2.5. Included there are a number of additional results about ascent and
descent along perfect maps. Application to the case of structure sheaves produces
facts, such as the following — all taken from Section 2.5, about the behavior of
perfect, of G-perfect and of quasi-Gorenstein maps.

Theorem 2. Let Z
g
−→X

f
−→Y be scheme-maps, with g perfect.

(i) If f is perfect (resp. G-perfect) then so is f g. The converse holds if g is
faithfully flat.

(ii) Suppose that f g is quasi-Gorenstein. Then so is g; and if g is faithfully flat,
then also f is quasi-Gorenstein.

Theorem 3. Let Z
g
−→X

f
−→Y be scheme-maps, with f quasi-Gorenstein.

The composition f g is G-perfect if and only if so is g.
Also, if g is quasi-Gorenstein then so is f g.

Theorem 4. Let there be given a fiber square, with u flat:

•
v

//

h

��

•

f

��

• u
// •

(i) If f is G-perfect then so is h. The converse holds if u is faithfully flat.
(ii) If f is quasi-Gorenstein then so is h . The converse holds if u is faithfully flat.

In Chapter 3 we define rigidity with respect to an arbitrary semidualizing com-
plex A ∈ D(X). An A-rigid structure on F in Db

c(X) is a D(X)-isomorphism

ρ : F −→∼ RHomX (RHomX (F, A), F).
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We say that (F, ρ) is an A-rigid pair; F ∈Db
c(X) is an A-rigid complex if such an

isomorphism ρ exists. Morphisms of rigid pairs are defined in the obvious way.
In Theorem 3.1.7 we establish the basic fact about rigid pairs:

Theorem 5. Let A be a semidualizing complex in D(X).
For each quasicoherent OX -ideal I such that I 2

= I , there exists a canonical
A-rigid structure on I A; and every A-rigid pair is uniquely isomorphic in D(X)
to such an I A along with its canonical structure.

The theorem validates the term “rigid”, as it implies that the only automorphism
of a rigid pair is the identity. It also shows that isomorphism classes of A-rigid
complexes correspond bijectively to the open-and-closed subsets of X . A more
precise description — in terms of those subsets — of the skeleton of the category
of rigid pairs appears in Theorem 3.2.6.

In the derived category, gluing over open coverings is usually not possible; but it
is for idempotent ideals (Proposition C.8). Consequently the uniqueness expressed
by Theorem 5 leads to gluing for rigid pairs, in the following strong sense:

Theorem 6. For any open cover (Uα) of X and family (Fα, ρα) of A|Uα
-rigid pairs

such that for all α, α′ the restrictions of (Fα, ρα) and (Fα′, ρα′) to Uα ∩Uα′ are
isomorphic, there is a unique (up to unique isomorphism) A-rigid pair (F, ρ), such
that for each α, (F, ρ)|Uα

' (Fα, ρα).

This gluing property holds even under the flat topology, see Theorem 3.2.9.
In Section 3.3 we study complexes that are relatively rigid, that is, rigid with

respect to the relative dualizing complex f !OY of a G-perfect map f : X → Y (a
complex that is, by the definition of such maps, semidualizing). As a consequence
of gluing for rigid complexes under the flat topology, gluing for relatively rigid
complexes holds under the étale topology, see Proposition 3.3.1.

Relative rigidity behaves naturally with respect to (G-)perfect maps, in the sense
that certain canonical isomorphisms from duality theory, involving relative dualiz-
ing complexes, respect the additional rigid structure. In Corollary 3.3.5 we show
that, when g is perfect, the twisted inverse image functor g! preserves relative rigid-
ity; and also, for a composition Z

g
−→ X

f
−→Y where f is G-perfect, we demonstrate

the interaction of rigidity with the canonical isomorphism

g!OX ⊗
L
Z Lg∗ f !OY −→

∼ ( f g)!OY .

In Corollary 3.3.7 we do the same with respect to flat base change. Such results are
obtained as applications of simple necessary and sufficient condition for additive
functors of rigid complexes to be liftable to rigid pairs, detailed in Theorem 3.3.2.

The results above can be applied to complete some work started in [Avramov
et al. 2010b]. In that paper, we associated a relative dualizing complex to each
essentially-finite-type homomorphism of commutative rings, but did not touch
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upon the functoriality properties of that complex. This aspect of the construction
can now be supplied by using the fact that the sheafification of the complex in
[Avramov et al. 2010b] is a relative dualizing complex for the corresponding map
of spectra; see Example 2.3.2. One can then use the results in Section 3.3, dis-
cussed above, to enrich the reduction isomorphism [Avramov et al. 2010b, 4.1] to
a functorial one. For such applications, it is crucial to work with scheme-maps that
are essentially of finite type; this is one of our reasons for choosing this category
in the setup for this paper.

Notions and notation related to scheme-maps, as well as pertinent material from
Grothendieck duality theory, as used in this paper, are surveyed in the Appendices.

We finish the introduction by reviewing connections to earlier work.

The results in Chapter 1 are, for the most part, extensions to the global situation
of results proved over commutative rings in [Avramov et al. 2010a]; the transfer is
fairly straightforward.

Homomorphisms of commutative noetherian rings that track Gorenstein-type
properties were introduced and studied in [Avramov and Foxby 1992; Avramov and
Foxby 1997; Iyengar and Sather-Wagstaff 2004], without finiteness hypotheses.
Those papers are based on Auslander and Bridger’s [1969] theory of Gorenstein
dimension, which is defined in terms of resolutions by finite modules or projective
modules, and so does not globalize. The scheme-maps defined and studied in
Chapter 2 are based on a different description of finite Gorenstein dimension for
ring-homomorphisms essentially of finite type, obtained in [Avramov et al. 2010a,
2.2].

The developments in Chapter 3 are largely motivated and inspired by work of
Yekutieli and Zhang [2004; 2008; 2009] (see also [Yekutieli 2010]). One of their
goals was to construct a new foundation for Grothendieck duality theory. Making
extensive use of differential graded algebras (DGAs), Yekutieli and Zhang [2008;
2009] extended van den Bergh’s construction [1997] of rigid dualizing complexes
to schemes essentially of finite type over a regular ring of finite Krull dimension,
and analyzed the behavior of such complexes under some types of perfect maps.
Theirs is a novel approach, especially with regard to the introduction of DGAs
into the subject. However, it remains to be seen whether, once all the details are
fully exposed, it will prove to be simpler than the much more generally applicable
theory presented, for example, in [Lipman 2009].

We come to rigidity from the opposite direction, presupposing duality theory and
making no use of DGAs. The concept obtained in this way applies to semidualizing
complexes over arbitrary schemes, and behaves well under all perfect scheme-
maps. In the setup of [Yekutieli and Zhang 2009], the regularity of the base
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ring implies that relative dualizing complexes are actually dualizing. To compare
results, one also needs to know that, when both apply, our concept of rigidity
coincides with Yekutieli and Zhang’s. This follows from the Reduction Theorem
[Avramov et al. 2010b, 4.1]; see [Avramov et al. 2010a, 8.5.5].

1. Derived reflexivity over schemes

Rings are assumed to be commutative, and both rings and schemes are assumed to
be noetherian.

1.1. Standard homomorphisms. Let (X,OX) be a scheme and D(X) the derived
category of the category of sheaves of OX -modules.

Let D+(X), resp. D−(X), be the full subcategory of D(X) having as objects
those complexes whose cohomology vanishes in all but finitely many negative,
resp. positive, degrees; set Db(X) := D+(X) ∩ D−(X). For • = +, − or b, let
D•c(X), resp. D•qc(X), be the full subcategory of D(X)with objects those complexes
all of whose cohomology sheaves are coherent, resp. quasicoherent.

To lie in D•
∗
(X) (∗= c or qc, and •= +, − or b) is a local condition: if (Uα) is an

open cover of X, then F ∈D(X) lies in D•
∗
(X) if and only if for all α the restriction

F |Uα
lies inD•

∗
(Uα).

A number of canonical homomorphisms play a fundamental role in this paper.

Remark 1.1.1. There is a standard trifunctorial isomorphism, relating the derived
tensor and sheaf-homomorphism functors (see e.g., [Lipman 2009, §2.6]):

RHomX
(
E ⊗L

X F,G
)
−→
∼ RHomX

(
E,RHomX (F,G )

)
(E, F,G ∈D(X))

(1.1.1.1)
from which one gets, by application of the composite functor H0R0(X,−),

HomD(X)
(
E ⊗L

X F,G
)
−→
∼ HomD(X)

(
E,RHomX (F,G )

)
. (1.1.1.2)

The map corresponding via (1.1.1.2) to the identity map of RHomX (F,G )

ε = εF
G : RHomX (F,G )⊗L

X F→ G (F,G ∈ D(X)) (1.1.1.3)

is called evaluation. When F is a flat complex in D−(X) (or more generally, any
q-flat complex in D(X), see [Lipman 2009, §2.5]), and G is an injective complex
in D+(X) (or more generally, any q-injective complex in D(X), see [Lipman 2009,
§2.3]), one verifies that ε is induced by the family of maps of complexes

ε(U ) : HomOX (U )(F(U ),G(U ))⊗OX (U ) F(U )→ G(U ) (U ⊆ X open)

where, for homogeneous α ∈ HomOX (U )(F(U ),G(U )) and b ∈ F(U ),

ε(U )(α⊗ b)= α(b).
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Basic properties of supports of complexes are recalled for further reference.

Remark 1.1.2. For any F ∈ D(X), the support of F is the set

SuppX F := { x ∈ X | H n(Fx) 6= 0 for some n }. (1.1.2.1)

If F ∈Db
c(X), then SuppX F is a closed subset of X . Also, for all F and G in D−c (X),

it follows from, e.g., [Avramov et al. 2010a, A.6] that

SuppX (F ⊗
L
X G)= SuppX F ∩SuppX G. (1.1.2.2)

Note that SuppX F =∅ if and only if F = 0 in D(X).

The following example opens the door to applications of the results in [Avramov
et al. 2010a].

Example 1.1.3. Let R be a ring. Let D(R) be the derived category of the category
of R-modules, and define, as above, its full subcategories D•(R) for • = +, − or
b. Let D•f (R) be the full subcategory of D•(R) having as objects those complexes
whose cohomology modules are all finite, i.e., finitely generated, over R.

For the affine scheme X = Spec R, the functor that associates to each complex
M ∈ D(R) its sheafification M∼ is an equivalence of categories D•f (R)

≈
−→D•c(X),

see [Bökstedt and Neeman 1993, 5.5]; when •= + or b, see also [Hartshorne 1966,
p. 133, 7.19].

There is a natural bifunctorial isomorphism

(M ⊗L
R N )∼ −→∼ M∼⊗L

X N∼
(
M, N ∈ D(R)

)
; (1.1.3.1)

to define it one may assume that M and N are suitable flat complexes, so that ⊗L

becomes ordinary ⊗, see [Lipman 2009, §2.5 and (2.6.5)].
There is also a natural bifunctorial map

RHomR(M, N )∼ −→ RHomX
(
M∼, N∼

)
, (1.1.3.2)

defined to be the one that corresponds via (1.1.1.2) to the composite map

RHomR(M, N )∼⊗L
X M∼ −→∼ (RHomR(M, N )⊗L

R M)∼
ε∼

−→ N∼,

where the isomorphism comes from (1.1.3.1), and the evaluation map ε corre-
sponds to the identity map of RHomR(M, N ) via the analog of (1.1.1.2) over D(R).

The map (1.1.3.2) is an isomorphism if M ∈ D−f (R) and N ∈ D+(R). To show
this for variable M and fixed N one can use the “way-out” Lemma [Hartshorne
1966, p. 68, 7.1], with A the opposite of the category of R-modules and P the
family (Rn)n>0 , to reduce to the case M = R, where, one checks, the map is the
obvious isomorphism.
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1.2. Derived multiplication by global functions. Let (X,OX) be a scheme. Here
we discuss some technicalities about the natural action of H0(X,OX) on D(X).

We identify H0(X,OX) with HomD(X)(OX ,OX) via the ring isomorphism that
takes α ∈H0(X,OX) to multiplication by α. For α ∈H0(X,OX) and F ∈ D(X), let
µF (α) (“multiplication by α in F ”) be the natural composite D(X)-map

F ' OX ⊗
L
X F

α⊗L
X 1

−−−→ OX ⊗
L
X F ' F,

or equivalently,

F ' F ⊗L
X OX

1⊗L
Xα

−−−→ F ⊗L
X OX ' F.

Clearly, for any D(X)-map φ : F→ C ,

φα := φ ◦µF (α)= µC(α) ◦φ =: αφ.

Furthermore, using the obvious isomorphism (OX ⊗
L
X F)[1] −→∼ OX ⊗

L
X F[1] one

sees that µF (α) commutes with translation, that is, µF (α)[1] = µF[1](α).
Thus, the family (µF )F∈D(X) maps H0(X,OX) into the ring CX consisting of

endomorphisms of the identity functor of D(X) that commute with translation —
the center of D(X). It is straightforward to verify that this map is an injective
ring homomorphism onto the subring of tensor-compatible members of CX , that
is, those η ∈ CX such that for all F , G ∈ D(X),

η(F ⊗L
X G)= η(F)⊗L

X idG
= idG

⊗
L
X η(G).

The category D(X) is CX -linear: for all F , G ∈ D(X), HomD(X)(F,G) has a
natural structure of CX -module, and composition of maps is CX -bilinear. So D(X)
is also H0(X,OX)-linear, via µ.

Lemma 1.2.1. For any F , G ∈D(X) and D(X)-homomorphism α : OX → OX , and
µ•(α) as above, there are equalities

RHomX (µF (α),G)= µRHomX(F,G)(α)= RHomX (F, µG(α))).

Proof. Consider, for any E ∈ D(X), the natural trifunctorial isomorphism

τ : HomD(X)(E ⊗L
X F,G) −→∼ HomD(X)(E,RHomX (F,G)).

From tensor-compatibility in the image of µ, and H0(X,OX)-linearity of D(X), it
follows that for any α ∈H0(X,OX), the map µE(α) induces multiplication by α in
both the source and target of τ . Functoriality shows then that τ is an isomorphism
of H0(X,OX)-modules.

Again, tensor-compatibility implies that µF (α) induces multiplication by α in
the source of the H0(X,OX)-linear map τ , hence also in the target. Thus, by func-
toriality, RHomX (µF (α),G) induces multiplication by α in the target of τ . For
E =RHomX (F,G), this gives RHomX (µF (α),G)=µRHomX(F,G)(α). One shows
similarly that RHomX (F, µG(α))= µRHomX(F,G)(α). �
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1.3. Derived reflexivity. Let (X,OX) be a scheme.
One has, for all A and F in D(X), a biduality morphism

δA
F : F→ RHomX

(
RHomX (F, A), A

)
,

corresponding via (1.1.1.2) to the natural composition

F ⊗L
X RHomX (F, A) −→∼ RHomX (F, A)⊗L

X F
εF

A
−→A.

The map δA
F “commutes” with restriction to open subsets (use [Lipman 2009,

2.4.5.2]).
When A is a q-injective complex in D(X), δA

F is induced by the family

δ(U ) : F(U )→ HomOX (U )(HomOX (U )(F(U ), A(U )), A(U )) (U ⊆ X open)

of maps of complexes, where, for each n ∈ F(U ) of degree b, the map δ(U )(n) is

α 7→ (−1)abα(n) ,

for α ∈ HomOX (U )(F(U ), A(U )) homogeneous of degree a.

Definition 1.3.1. Given A and F in D(X), we say that F is derived A-reflexive if
both F and RHomR(F, A) are in Db

c(X) and δA
F is an isomorphism.

This is a local condition: for any open cover (Uα) of X, F is derived A-reflexive
if and only if the same is true over every Uα for the restrictions of F and A. Also,
as indicated below, if U is affine, say U := Spec R, and C,M ∈ Db

f (R), then

M∼ is derived C∼-reflexive in D(U )⇐⇒ M is derived C-reflexive in D(R).

Example 1.3.2. When X = Spec R and M,C ∈ D(R), it follows that with δC
M as

in [Avramov et al. 2010a, (2.0.1)], the map δC∼
M∼ factors naturally as

M∼
(δC

M )
∼

−−−→
(
RHomR(RHomR(M,C),C)

)∼ s
−→RHomX

(
RHomX (M∼, C∼), C∼

)
,

where, as in (1.1.3.2), the map s is an isomorphism if M ∈ D−f (R), C ∈ D+(R)
and RHomR(M,C) ∈ Db

f (R). Thus, derived reflexivity globalizes the notion in
[Avramov et al. 2010a, §2].

From [Avramov et al. 2010a, 2.1 and 2.3] one now gets:

Proposition 1.3.3. Let X be a noetherian scheme, and let A, F ∈ Db
c(X). Then

the following conditions are equivalent.
(i) F is derived A-reflexive.
(ii) RHomX (F, A) ∈ D−(X) and there exists an isomorphism in D(X)

F −→∼ RHomX
(
RHomX (F, A), A).

(iii) RHomX (F, A) is derived A-reflexive and SuppX F ⊆ SuppX A. �
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Remark 1.3.4. For A = OX the theorem above shows that F ∈ Db
c(X) is derived

OX -reflexive if and only if so is RHomX (F,OX).
In the affine case, X = Spec R, for any M ∈ Db

f (R), the derived OX -reflexivity
of M∼ is equivalent to finiteness of the Gorenstein dimension of M, as defined by
Auslander and Bridger [1969].

Definition 1.3.5. An OX -complex A is semidualizing if OX is derived A-reflexive.
In other words, A ∈ Db

c(X) and the map χ A
: OX → RHomX (A, A) corresponding

via (1.1.1.2) to the natural map OX ⊗
L
X A→ A is an isomorphism.

As above, this condition is local on X. When X =Spec R, a complex C ∈Db
f (R)

is semidualizing in the commutative-algebra sense (that is, R is derived C-reflexive;
see, e.g., [Avramov et al. 2010a, §3]) if and only if C∼ is semidualizing in the
present sense.

Lemma 1.3.6. If A ∈ D(X) is semidualizing then each D(X)-endomorphism of A
is multiplication by a uniquely determined α ∈ H0(X,OX).

Proof. With χ A
: OX→RHomX (A, A) as in Definition 1.3.5, the map µA is easily

seen to factor as follows:

HomD(X)(OX ,OX)
via χ A

−−−→ HomD(X)
(
OX ,RHomX (A, A)

)
∼= HomD(X)(OX⊗

L
X A, A)

∼= HomD(X)(A, A).

The assertion results. �

Lemma 1.3.7. Let X be a noetherian scheme. If A is a semidualizing OX -complex,
then SuppX A = X. Furthermore, if there is an isomorphism A ' A1 ⊕ A2 then
SuppX A1 ∩SuppX A2 =∅.

Proof. The OX -complex RHomX (A, A), which is isomorphic in D(X) to OX , is
acyclic over the open set X \SuppX A. This implies SuppX A = X .

As to the second assertion, taking stalks at arbitrary x ∈ X reduces the problem
to showing that if R is a local ring, and M1 and M2 in D(R) are such that the natural
map

R→ RHomR(M1⊕M2, M1⊕M2)=
⊕2

i, j=1
RHomR(Mi ,M j )

is an isomorphism, then either M1 = 0 or M2 = 0.
But clearly, R being local, at most one of the direct summands RHomR(Mi ,M j )

can be nonzero, so for i = 1 or i = 2 the identity map of Mi is 0, whence the
conclusion. �
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1.4. Perfect complexes. Again, (X,OX) is a scheme.

Definition 1.4.1. An OX -complex P is perfect if X is a union of open subsets U
such that the restriction P|U is D(U )-isomorphic to a bounded complex of finite-
rank locally free OU -modules.

From [Illusie 1971, p. 115, 3.5 and p. 135, 5.8.1], one gets:

Remark 1.4.2. The complex P is perfect if and only if P ∈ Dc(X) and P is
isomorphic in D(X) to a bounded complex of flat OX -modules.

Perfection is a local condition. If X =Spec R and M ∈ D(R) then M∼ is perfect
if and only if N is isomorphic in D(R) to a bounded complex of finite projective
R-modules; cf. [Avramov et al. 2010a, §4]. The next result is contained in [Chris-
tensen 2000, 2.1.10]; see also [Avramov et al. 2010a, 4.1].

Theorem 1.4.3. P ∈ Db
c(X) is perfect if and only if so is RHomX (P,OX). �

Proposition 1.4.4. Let A and P be in D(X), with P perfect.
If F ∈D(X) is derived A-reflexive then so is P⊗L

X F ; in particular, P is derived
OX -reflexive. If A is semidualizing then P is derived A-reflexive.

Proof. The assertion being local, we may assume that P is a bounded complex of
finite-rank free OX-modules. If two vertices of a triangle are derived A-reflexive
then so is the third, whence an easy induction on the number of degrees in which
P is nonzero shows that if F is A-reflexive then so is P ⊗L

X F . To show that P is
derived OX -reflexive, take A = OX = F .

For the final assertion, take F = OX . �

A partial converse is given by the next result:

Theorem 1.4.5. Let F ∈Dc(X), let A∈D+c (X), and let P be a perfect OX -complex
with SuppX P ⊇SuppX F.If P⊗L

X F is in Db
c(X), or P⊗L

X F is perfect, or P⊗L
X F is

derived A-reflexive, then the corresponding property holds forF.

Proof. The assertions are all local, and the local statements are proved in [Avramov
et al. 2010a, 4.3, 4.4, and 4.5], modulo sheafification; see Example 1.1.3. �

We’ll need the following isomorphisms, for which cf. [Illusie 1971, pp. 152–153,
7.6 and 7.7].

Let E , F and G be complexes in D(X), and consider the map

RHomX (E, F)⊗L
X G→ RHomX (E, F ⊗L

X G ), (1.4.5.1)

corresponding via (1.1.1.2) to the natural composition

(RHomX (E, F)⊗L
X G )⊗L

X E −→∼ (RHomX (E, F)⊗L
X E)⊗L

X G
ε⊗L

X1
−−−→F ⊗L

X G.

where ε is the evaluation map from (1.1.1.3).
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Lemma 1.4.6. Let E , F and G be complexes in D(X).

(1) When either E or G is perfect, the map (1.4.5.1) is an isomorphism

RHomX (E, F)⊗L
X G −→∼ RHomX (E, F ⊗L

X G ).

(2) When G is perfect, there is a natural isomorphism

RHomX (E ⊗L
X G, F) −→∼ RHomX (E, F)⊗L

X RHomX (G,OX).

Proof. (1). Whether the map (1.4.5.1) is an isomorphism is a local question, so if
E is perfect then one may assume that E is a bounded complex of finite-rank free
OX -modules. The affirmative answer is then given by a simple induction on the
number of degrees in which E is nonzero.

A similar argument applies when G is perfect.
(2). Setting Ǧ := RHomX (G,OX), we get from (1), with (E, F,G ) changed to

(G,OX , F), an isomorphism

F ⊗L
X Ǧ ' Ǧ⊗L

X F −→∼ RHomX (G, F).

This induces the second isomorphism below:

RHomX (E ⊗L
X G, F) −→∼ RHomX (E,RHomX (G, F))

−→
∼ RHomX (E, F ⊗L

X Ǧ)

−→
∼ RHomX (E, F)⊗L

X Ǧ;

the first isomorphism comes from (1.1.1.1) and the third from (1), since Ǧ is also
perfect, by Theorem 1.4.3. The desired map is the composite isomorphism. �

1.5. Invertible complexes. Again, (X,OX) is a scheme.

Definition 1.5.1. A complex in D(X) is invertible if it is semidualizing and perfect.

This condition is local. If X =Spec R and M ∈D(R), then M is invertible in the
sense of [Avramov et al. 2010a, §5] if and only if M∼ is invertible in the present
sense.

Recall that 6 denotes the usual translation (suspension) operator on complexes.

Theorem 1.5.2. For L ∈ Db
c(X) the following conditions are equivalent.

(i) L is invertible.

(ii) L−1
:= RHomX (L ,OX) is invertible.

(iii) Each x ∈ X has an open neighborhood Ux such that for some integer rx , there
is a D(Ux)-isomorphism L|Ux '6

rx OUx .

(iii′) For each connected component U of X there is an integer r , a locally free
rank-one OU -module L, and a D(U )-isomorphism L|U '6r L.



392 Luchezar Avramov, Srikanth B. Iyengar and Joseph Lipman

(iv) For some F ∈ Dc(X) there is an isomorphism F ⊗L
X L ' OX .

(v) For all G ∈ D(X) the evaluation map ε from (1.1.1.3) is an isomorphism

RHomX (L ,G)⊗L
X L −→∼ G.

(v′) For all G and G ′ in D(X), the natural composite map (see (1.1.1.1))

RHomX (G ′⊗L
X L,G)⊗L

X L −→∼ RHomX (L ⊗L
X G ′, G)⊗L

X L

−→
∼ RHomX (L ,RHomX (G ′, G))⊗L

X L

−→
ε

RHomX (G ′, G)

is an isomorphism.

Proof. When (i) holds, Lemma 1.4.6(2), with E = OX and G = L = F , yields:

OX −→
∼ RHom X (L , L) −→∼ L ⊗L

X L−1. (1.5.2.1)

(i)⇔ (ii). By Theorem 1.4.3, the OX -complex L is perfect if and only if so is
L−1. If (i) holds, then (1.5.2.1), Proposition 1.4.4 (with A= OX = F , P = L), and
Lemma 1.4.6(1) give isomorphisms

OX −→
∼ L ⊗L

X L−1
−→
∼ RHomX (L−1,OX)⊗

L
X L−1

−→
∼ RHomX (L−1, L−1),

so that by Proposition 1.3.3(ii) (with F = OX and A = L−1), the OX -module L−1

is semidualizing; since it also perfect (ii) holds.
The same argument with L and L−1 interchanged establishes that (ii)⇒ (i).
(i)⇒ (iii). One may assume here that X is affine. Then, since L is invertible,

§5.1 of [Avramov et al. 2010a] gives that the stalk at x of the cohomology of L
vanishes in all but one degree, where it is isomorphic to OX,x . The cohomology
of L is bounded and coherent, therefore there is an open neighborhood Ux of x over
which the cohomology of L vanishes in all but one degree, where it is isomorphic
to OUx , i.e., (iii) holds.

(iii)⇒ (iv). If (iii) holds then the evaluation map (1.1.1.3) (with A = L and
G = OX ) is an isomorphism L−1

⊗
L
X L −→∼ OX .

(iv)⇒ (i). This is a local statement that is established (along with some other
unstated equivalences) in [Avramov et al. 2010a, 5.1]; see also [Frankild et al.
2009, 4.7].

(iii)⇒ (iii′). The function x 7→ rx must be locally constant, so of constant value,
say r , on U ; and then in D(U ), L '6r H−r (L).

(iii′)⇒ (iii). This implication is clear.
(i)⇒ (v). The first of the following isomorphisms comes from Lemma 1.4.6(2)

(with (E, F,G)= (L ,G,OX)), and the second from (1.5.2.1):

RHom X (L ,G)⊗L
X L −→∼ L−1

⊗
L
X G⊗L

X L −→∼ G.
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That this composite isomorphism is ε is essentially the definition of the isomor-
phism

L−1
⊗

L
X G = RHomX (L ,OX)⊗

L
X G −→∼ RHomX (L ,G) ;

see the proof of Lemma 1.4.6.
(v)⇒ (iv). Set F := L−1, and apply (v) for G = OX .
(v)⇔ (v′). Replace G in (v) by RHomX (G ′, G); or G ′ in (v′) by OX . �

Corollary 1.5.3. Let L1 and L2 be complexes in Dc(X).

(1) If L1 and L2 are invertible, then so is L1⊗
L
X L2 .

(2) If L1 is in Db
c(X) and L1⊗

L
X L2 is invertible, then L1 is invertible.

(3) For any scheme-map g : Z→ X , if L1 is invertible then so is Lg∗L1.

Proof. For (1), use Theorem 1.5.2(iii′); for (2), Theorem 1.5.2(iv) — noting that
the F there may be taken to be the invertible complex L−1, and that tensoring with
an invertible complex takes Dc(X) into itself; and for (3), the fact that g maps any
connected component of Z into a connected component of X. �

Corollary 1.5.4. Let A, L and F be complexes in Db
c(X), with L invertible.

(1) F is derived A-reflexive if and only if it is derived L ⊗L
X A-reflexive.

(2) F is derived A-reflexive if and only if F ⊗L
X L is derived A-reflexive.

(3) A is semidualizing if and only if L ⊗L
X A is semidualizing.

Proof. From, say, Theorem 1.5.2(iii′) and Lemma 1.4.6(1), one gets

RHomX (F, A) ∈ Db
c(X)⇐⇒ RHomX (F, L ⊗L

X A) ∈ Db
c(X).

Since L−1
⊗

L
X L ' OX , (1) follows now from Lemma 1.4.6; (2) follows from

Theorem 1.5.2(iii); and (3) follows from (1). �

Remark 1.5.5. A complex A ∈ Db
c(X) is pointwise dualizing if every F ∈ Db

c(X)
is derived A-reflexive (see [Avramov et al. 2010a, 6.2.2]). Such an A is semi-
dualizing: take F = OX .

It is proved in [Avramov et al. 2010a, 8.3.1] that OX is pointwise dualizing if
and only if X is a Gorenstein scheme (i.e., the local ring OX,x is Gorenstein for all
x ∈ X ).

It follows from [Avramov et al. 2010a, 5.7] that invertible complexes can be
characterized as those that are semidualizing and derived OX -reflexive. Hence when
X is Gorenstein,

A ∈ Db
c(X) is semidualizing⇐⇒ A is pointwise dualizing⇐⇒ A is invertible.
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2. Gorenstein-type properties of scheme-maps

All schemes are assumed to be noetherian; all scheme-maps are assumed to be
essentially of finite type (see Appendix A) and separated.

2.1. Perfect maps. Let f : X→ Y be a scheme-map.
Let f0 : X → Y denote the underlying map of topological spaces, and f −1

0 the
left adjoint of the direct image functor f0∗ from sheaves of abelian groups on X to
sheaves of abelian groups on Y . There is then a standard way of making f −1

0 OY

into a sheaf of commutative rings on X, whose stalk at any point x ∈ X is OY, f (x) .

Definition 2.1.1. An OX -complex F is perfect relative to f — or, as we will write,
perfect over f — if it is in Db

c(X), and in the derived category of the category of
f −1
0 OY -modules F is isomorphic to a bounded complex of flat f −1

0 OY -modules.
The map f is perfect if OX is perfect over f [Illusie 1971, p. 250, définition 4.1].

Perfection over idX is equivalent to perfection in D(X); see Remark 1.4.2.

Remark 2.1.2. Using [Illusie 1971, p. 242, 3.3], one sees that perfection over f is
local on X, in the sense that F has this property if and only if every x ∈ X has an
open neighborhood U such that F |U is perfect over f |U .

Since f is essentially of finite type, there is always such a U for which f |U
factors as (essentially smooth) ◦ (closed immersion). If X

i
−→W → Y is such a

factorization, then F is perfect over f if and only if i∗F is perfect over idW : the
proof of [Illusie 1971, pp. 252, 4.4] applies here (see Remark A.3).

Remark 2.1.3. Each complex that is perfect over f is derived f !OY -reflexive. In
particular, if the map f is perfect, then OX is derived f !OY -reflexive.

This is given by [Illusie 1971, p. 259, 4.9.2], in whose proof “smooth” can be
replaced by “essentially smooth”; see [Avramov et al. 2010b, 5.1].

Let P( f ) be the full subcategory of D(X) whose objects are all the complexes
that are perfect over f ; and let P(X) := P(idX) be the full subcategory of D(X)
whose objects are all the perfect OX -complexes.

Example 2.1.4. If the map f : X = Spec S → Spec K = Y corresponds to a
homomorphism of noetherian rings σ : K → S, then P( f ) is equivalent to the full
subcategory P(σ ) ⊆ Db

f (S) with objects those complexes M that are isomorphic
in D(K ) to some bounded complex of flat K -modules; this follows from [Illusie
1971, p. 168, 2.2.2.1 and p. 242, 3.3], in view of the standard equivalence, given
by sheafification, between finite S-modules and coherent OX -modules.

Recall that an exact functor F : D(Y )→ D(X) is said to be bounded below if
there is an integer d such that for all M ∈ D(Y ) and n ∈ Z the following holds:

H i (M)= 0 for all i < n H⇒ H j (F(M))= 0 for all j < n− d,
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By substituting > for < in the preceding definition one obtains the notion of
bounded above. If F is bounded below, then clearly FD+(Y ) ⊆ D+(Y ); likewise,
if F is bounded above, then FD−(Y )⊆ D−(Y ).

Remark 2.1.5. For every scheme-map f the functor L f ∗ is bounded above. It is
bounded below if and only if f is perfect. When f is perfect, one has

L f ∗Db
c(Y )⊆ Db

c(X) .

For, L f ∗ is bounded above and below, hence, as above, L f ∗Db(Y )⊆Db(X). Also,
L f ∗Dc(Y ) ⊆ Dc(X); see [Hartshorne 1966, p. 99, 4.4], whose proof uses 7.3 on
page 73 of the same reference as well as compatibility of L f ∗ with open base
change to reduce to the assertion that L f ∗OY = OX .

The following characterization of perfection of f , in terms of the twisted inverse
image functor f !, was proved for finite-type f in [Lipman 2009, 4.9.4] and then
extended to the essentially finite-type case in [Nayak 2009, 5.9].

Remark 2.1.6. For any scheme-map f : X → Y , and for all M, N in D+qc(Y ),
there is defined in [Lipman 2009, §4.9] and [Nayak 2009, 5.7–5.8] a functorial
D(X)-map

f !M ⊗L
X L f ∗N → f !(M ⊗L

Y N ). (2.1.6.1)

The following conditions on f are equivalent:

(i) The map f is perfect.

(ii) The functor f ! : D+qc(Y )→ D+qc(X) is bounded above and below.

(iii) The complex f !OY is perfect over f .

(iv) When M is perfect, f !M is perfect over f ; and when M ⊗L
Y N is in D+qc(Y ),

the natural map (2.1.6.1) is an isomorphism

f !M ⊗L
X L f ∗N −→∼ f !(M ⊗L

Y N ). (2.1.6.2)

From (ii) one gets, as above, f !Dqc
b (Y )⊆Db(X); and the last paragraph in §5.4

of [Nayak 2005] gives
f !D+c (Y )⊆ D+c (X). (2.1.6.3)

Thus, for perfect f , one has

f !Db
c(Y )⊆ Db

c(X). (2.1.6.4)

Next we establish some further properties of perfect maps for later use.

Lemma 2.1.7. Let f : X→ Y be a scheme-map, and M, B complexes in D(Y ).
If f is an open immersion, or if f is perfect, M is in D−c (Y ) and B is in D+qc(Y ),

then there are natural isomorphisms

L f ∗RHomY (M, B) −→∼ RHomX (L f ∗M, L f ∗B) , (2.1.7.1)

f !RHomY (M, B) −→∼ RHomX (L f ∗M, f !B) . (2.1.7.2)
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Proof. As a map in D(X), (2.1.7.1) comes from (B.1.5). To show that it is an
isomorphism we may assume that Y is affine, say Y = Spec R. Then by [Bök-
stedt and Neeman 1993, 5.5] and [Hartshorne 1966, p. 42, 4.6.1 (dualized)], any
M ∈ D−c (Y ) is isomorphic to the sheafification of a complex of finite-rank free
R-modules, vanishing in all large degrees; so [Lipman 2009, p. 181, (4.6.7)] gives
the desired assertion.

For (2.1.7.2), use [Lipman 2009, 4.2.3(e)] when f is proper; and then in the
general case, compactify, see Appendix A. �

Remark 2.1.8. Let f : X→ Y be a perfect and proper scheme map.
One has R f∗(Db

c(X)) ⊆ Db
c(Y ), by [Illusie 1971, p. 237, 2.2.1]. Moreover, if

F ∈Db
c(X) is perfect, then so is R f∗F ; see Remark 1.4.2 and [Illusie 1971, p. 250,

Proposition 3.7.2].

Remark 2.1.9. In D(X) there is a natural map

α(E, F,G) :RHomX (E, F)→RHomX (E⊗L
X G, F⊗L

X G)
(
E, F,G ∈D(X)

)
,

corresponding via (1.1.1.2) to

(RHomX (E, F)⊗L
X E)⊗L

X G
ε⊗L

X 1
−−−→F ⊗L

X G

where ε is evaluation (1.1.1.3).
Assume now that f is perfect. By Remark 2.1.6 there is a natural isomorphism

L f ∗N ⊗L
X f !OY ' f !N (N ∈ D+qc(Y )). (2.1.9.1)

Hence α(L f ∗M, L f ∗N, f !OY ) gives rise to a natural map, for all M, N ∈ D+qc(Y ),

β(M, N, f ) :RHomX (L f ∗M, L f ∗N )→RHomX ( f !M, f !N ). (2.1.9.2)

Lemma 2.1.10. When f : X → Y is perfect, M is in Db
c(Y ), and N is in D+qc(Y ),

the map β(M, N, f ) is an isomorphism.

Proof. One checks, using B.3(i) and Lemma 2.1.7, that the question is local on
both X and Y . Hence, via [Hartshorne 1966, p. 133, 7.19], one may assume that Y
is affine, that M is a bounded-above complex of finite-rank free OY -modules, and
that N is a quasicoherent complex in D+(X).

By Remarks 2.1.5 and 2.1.6, respectively, the functors L f ∗ and f ! are bounded
(both above and below). Therefore, for every fixed N , the source and target of
β(M, N , f ) are bounded-below functors of M . So one can argue as in the proof
of [Hartshorne 1966, p.69, (iv)] to reduce the problem to the case M = OY . This
case can be dealt with as follows (cf. [Lipman 2009, p. 239, (c)].

The question being local on X, one may assume there is a factorization f = pi as
in Remark 2.1.2 (i : X→W a closed immersion, p : W → Y essentially smooth),
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with i∗OX a perfect complex. Since the functor i∗ preserves stalks of sheaves, it
suffices then to show that the composite map

i∗Li∗ p∗N ∼= i∗RHomX (L f ∗OY, L f ∗N )
i∗β
−→i∗RHomX ( f !OY, f !N )

(
β = β(OY , N, f )

)
∼= i∗RHomX (i ! p!OY, i ! p!N )
∼= RHomW (i∗i ! p!OY, p!N ) (see (B.6.1))
∼= RHomW

(
RHomW (i∗OX, p!OY ), p!N )

)
(see (B.6.1))

is an isomorphism in D(W ).
Since both i∗OX and p!OY are perfect complexes (see (B.5.1), therefore the target

of i∗β is a bounded functor of N , that preserves direct sums. (This well-known
fact about perfect complexes P can be shown by an easy induction on the number
of degrees in which P is nonzero.) Also, using (B.1.3), one gets

i∗i∗ p∗N ∼= i∗(OX ⊗
L
X i∗ p∗N )∼= i∗OX ⊗

L
W p∗N ;

and hence the source of i∗β is a bounded functor of N , that preserves direct sums.
Every quasicoherent OY -module being a homomorphic image of a free one, argu-

ing as in [Hartshorne 1966, p.69, (iii) and (iv)(dualized)] reduces the isomorphism
question to the case N = OY . It remains to observe that β(OY ,OY , f ) is isomor-
phic to the natural map OX→RHom X ( f !OY, f !OY ), a map that, by Remark 2.1.3,
is indeed an isomorphism. �

Lemma 2.1.11. Let f : X→ Y be a perfect map.
When M is in D−c (Y ) and B is in D+c (Y ), the complex L f ∗M is derived L f ∗B-

reflexive if and only if it is derived f !B-reflexive.

Proof. We deal first with the boundedness conditions in Definition 1.3.1. The
condition L f ∗M ∈ Db

c(X) holds throughout, by assumption.
Assume that RHomX (L f ∗M, L f ∗B) is in Db

c(X). As RHomY (M, B) ∈ D+c (Y )
(see [Hartshorne 1966, p. 92, 3.3]), one gets from Remark 2.1.6 and (2.1.7.1) an
isomorphism

f !OY ⊗
L
X RHomX (L f ∗M, L f ∗B)' f !RHomY (M, B) . (2.1.11.1)

By Remark 2.1.6(iii), f !OY ∈Db
c(X), so it follows that f !RHomY (M, B)∈D−c (X).

On the other hand, by (2.1.6.3), f !RHomY (M, B) ∈ D+c (X). We conclude that
f !RHomY (M, B)∈Db

c(X), and so by (2.1.7.2), that RHomX (L f ∗M, f !B)∈Db
c(X).

Suppose, conversely, that RHomX (L f ∗M, f !B) ∈ Db
c(X), so that by (2.1.7.2),

there is an integer n such that

H i( f !RHomY (M, B))= 0 for all i > n.
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Using (2.1.7.1) and Remark 2.1.5 one gets

RHomX (L f ∗M, L f ∗B)' L f ∗RHomY (M, B) ∈ Dc(X).

Also, f !OY ∈Db
c(X), by Remark 2.1.6, and it follows from an application of (i)–(iii)

in B.3 to a local factorization of f as (essentially smooth)◦(closed immersion) —
or from Proposition 2.3.9 — that SuppX f !OY = X . So except for the trivial case
where X is empty, there is an integer m such that

H m f !OY 6= 0 and H j f !OY = 0 for all j > m.

Hence, by (2.1.11.1), for each x in X and for all k > n−m, [Avramov et al. 2010a,
A.4.3] gives (H k RHomX (L f ∗M, L f ∗B))x = 0. It follows that

RHomX (L f ∗M, L f ∗B) ∈ Db
c(X).

The desired assertions now result from the isomorphisms

RHomX(RHomX(L f ∗M,L f ∗B),L f ∗B) −→∼ RHomX(L f ∗RHomX(M,B),L f ∗B)

−→
∼ RHomX( f !RHomX(M,B), f !B)

−→
∼ RHomX(RHomX(L f ∗M, f !B), f !B),

given by formula (2.1.7.1), Lemma 2.1.10, and formula (2.1.7.2), respectively. �

2.2. Ascent and descent. Let f : X→ Y be a scheme-map.

Remark 2.2.1. Recall that f is said to be faithfully flat if it is flat and surjective;
and that for any flat f , the canonical map to f ∗ from its left-derived functor L f ∗

is an isomorphism — in brief, L f ∗ = f ∗.

Lemma 2.2.2. Let f : X→Y be a perfect scheme-map and M a complex in D(Y ).
If M is in Db

c(Y ) then L f ∗M is in Db
c(X). The converse holds when M is in Dc(Y )

and f is faithfully flat, or proper and surjective.

Proof. The forward implication is contained in Remark 2.1.5. For the converse,
when f is faithfully flat there are isomorphisms H n( f ∗M) ∼= f ∗H n(M) (n ∈ Z);
so it suffices that f ∗H n(M) = 0 imply H n(M) = 0. This can be seen stalkwise,
where we need only recall, for a flat local homomorphism R→ S of local rings
and any R-module P, that P ⊗R S = 0 implies P = 0.

When f is proper then by Remark 2.1.8, R f∗(Db
c(X)) ⊆ Db

c(Y ) and R f∗OX is
perfect. Furthermore, surjectivity of f implies that

SuppY R f∗OX ⊇ SuppY H 0R f∗OX = SuppY f∗OX = Y.

In view of the projection isomorphism

R f∗L f ∗M ' R f∗OX ⊗
L
Y M ,

see (B.1.4), the desired converse follows from Theorem 1.4.5. �
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Proposition 2.2.3. Let f : X→ Y be a scheme-map and M ∈ D−c (Y ).
If M is perfect, then L f ∗M is perfect. The converse holds if f is faithfully flat,

or if f is perfect, proper and surjective.

Proof. Suppose M is perfect in D(Y ). One may assume, after passing to a suitable
open cover, that M is a bounded complex of finite-rank free OY -modules. Then
L f ∗M = f ∗M is a bounded complex of finite-rank free OX -modules. Thus if M is
perfect then so is L f ∗M .

For the converse, when f is faithfully flat we use the following characterization
of perfection ([Illusie 1971, p. 135, 5.8.1]): M ∈ D(Y ) is perfect if and only if
M ∈ Db

c(Y ) and there are integers m ≤ n such that for all OY -modules E and all i
outside the interval [m, n], H i (E ⊗L

Y M )= 0.
Writing f ∗ in place of L f ∗ (see Remark 2.2.1) we have, as in the proof of

Lemma 2.2.2, that for any i , the vanishing of

H i ( f ∗E ⊗L
X f ∗M )= H i ( f ∗(E ⊗L

Y M ))∼= f ∗H i (E ⊗L
Y M )

implies that of H i (E ⊗L
Y M ). Hence the converse holds.

When f is perfect, proper and surjective, one can argue as in the last part of the
proof of Lemma 2.2.2 to show that if L f ∗M is perfect then M is perfect. �

Proposition 2.2.4. Let f : X→ Y be a proper scheme-map and B ∈ D+qc(Y ).
If F ∈ D(X) is derived f !B-reflexive then R f∗F is derived B-reflexive.

Proof. Since F and RHom X (F, f !B) are in Db
c(X), it follows from Remark 2.1.8

that R f∗F is in Db
c(Y ), and (via (B.6.1)) that

RHomY (R f∗F, B)' R f∗RHom X (F, f !B) ∈ Db
c(Y ).

Now apply the functor R f∗ to the assumed isomorphism

δ
f !B

F : F −→
∼ RHom X (RHom X (F, f !B), f !B),

and use the duality isomorphism (B.6.1) twice, to get the isomorphisms

R f∗F −→∼ R f∗RHom X (RHom X (F, f !B), f !B)

−→
∼ RHomY (R f∗RHom X (F, f !B), B)

−→
∼ RHomY (RHomY (R f∗F, B), B).

Their composition is actually δB
R f∗F , though that doesn’t seem so easy to show.

Fortunately, owing to Proposition 1.3.3(ii) we needn’t do so to conclude that R f∗F
is derived B-reflexive. �

Theorem 2.2.5. Let f : X→ Y be a perfect scheme-map, M a complex in D−c (Y ),
and B a complex in D+c (Y ).
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If M is derived B-reflexive, then L f ∗M is derived L f ∗B-reflexive and derived
f !B-reflexive. If f is faithfully flat, or proper and surjective, and L f ∗M is derived
L f ∗B-reflexive or derived f !B-reflexive, then M is derived B-reflexive.

Proof. Suppose first that M is derived B-reflexive, so that, by definition, both
M and RHomY (M, B) are in Db

c(Y ). Then (2.1.7.1) and Remark 2.1.5 show that
L f ∗M and RHom X (L f ∗M, L f ∗B) are in Db

c(X). Moreover, application of the
functor L f ∗ to the D(Y )-isomorphism M ' RHomY (RHomY (M, B), B) yields
provides a D(X)-isomorphism

L f ∗M ' RHom X (RHom X (L f ∗M, L f ∗B), L f ∗B).

Proposition 1.3.3(ii) then gives that L f ∗M is derived L f ∗B-reflexive. When B is
in D+c (Y ), Lemma 2.1.11 yields that L f ∗M is derived f !B-reflexive.

Suppose, conversely, that L f ∗M is derived L f ∗B-reflexive, or equivalently, that
L f ∗M is derived f !B-reflexive (see Lemma 2.1.11). Then, first, L f ∗M ∈ Db

c(X)
and, by (2.1.7.1), L f ∗RHomY (M, B)∈Db

c(X). Lemma 2.2.2 then gives M∈Db
c(Y );

similarly, since RHomY (M, B) ∈ Dc(Y ) (see [Hartshorne 1966, p. 92, 3.3]), we
obtain RHomY (M, B) ∈ Db

c(Y ).
Next, when f is faithfully flat (so that L f ∗= f ∗, see Remark 2.2.1), one checks,

with moderate effort, that if

δ := δB
M : M→ RHomY (RHomY (M, B), B)

is the canonical D(Y )-map, then f ∗δ is identified, via (2.1.7.1), with the canon-
ical D(X)-map δ f ∗B

f ∗M . The latter being an isomorphism, therefore so are all the
maps H n( f ∗δ)= f ∗H n(δ). Verifying that a sheaf-map is an isomorphism can be
done stalkwise, and so, f being faithfully flat, local considerations show that the
maps H n(δ) are isomorphisms. Therefore, δ is an isomorphism.

Finally, when f is proper and surjective and L f ∗M is derived f !B-reflexive,
whence, by Proposition 2.2.4, R f∗M is derived B-reflexive, one argues as in the
last part of the proof of Lemma 2.2.2 to deduce that M is derived B-reflexive. �

Taking M = OY one gets:

Corollary 2.2.6. Let f : X→ Y be a perfect scheme-map and B ∈ D+c (Y ).
If B is semidualizing, then so are L f ∗B and f !B. Conversely, if f is faithfully

flat, or proper and surjective, and L f ∗B or f !B is semidualizing, then so is B. �

Corollary 2.2.7. Let f : X → Y be a perfect scheme-map and M a complex
in D−c (Y ). Consider the following properties:

(a) M is semidualizing.

(b) M is derived OY -reflexive.

(c) M is invertible.
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Each of these properties implies the corresponding property for L f ∗M in D(X).
The converse holds when f is faithfully flat, or proper and surjective.

Proof. Note that, given Lemma 2.2.2, we may assume that M is in Db
c(Y ). The

assertions about properties (a) and (b) are the special cases (M, B)= (OY ,M) and
(M, B)= (M,OY ), respectively, of Theorem 2.2.5. The assertion about (c) follows
from the assertion about (a) together with Proposition 2.2.3. �

2.3. Gorenstein-perfect maps. Let f : X→ Y be a scheme-map.

Definition 2.3.1. A relative dualizing complex for f is any OX -complex isomor-
phic in D(X) to f !OY .

Any relative dualizing complex is in D+c (X). Indeed, § B.3(i) and B.4 reduce the
assertion to the case of maps between affine schemes, where the desired assertion
follows from the following example.

Example 2.3.2. For a homomorphism τ : K→ P of commutative rings denote the
P-module of relative differentials by �τ , and set

�n
τ =

∧n
P�τ for each 0≤ n ∈ Z.

Let σ : K → S be a homomorphism of rings that is essentially of finite type;
thus, there exists a factorization

K
σ̇
−→P

σ ′
−→S (2.3.2.1)

where σ̇ is essentially smooth of relative dimension d and σ ′ is finite, see A.1. As
in [Avramov et al. 2010a, (8.0.2)], we set

Dσ
:=6d RHomP(S, �d

σ̇ ) ∈ D(S). (2.3.2.2)

With f : X = Spec S→ Spec K = Y the scheme-map corresponding to σ , the
complex of OX -modules (Dσ )∼ is a relative dualizing complex for f ; in particular,
up to isomorphism, Dσ depends only on σ , and not on the factorization (2.3.2.1).

Indeed, there is a Dqc(X)-isomorphism

f !OY ' (Dσ )∼; (2.3.2.3)

for, if f = ḟ f ′ is the factorization corresponding to (2.3.2.1) then

f !OY ' f ′! ḟ !OY ' f ′!(6d�d
σ̇ )
∼
'6d RHomP(S, �d

σ̇ )
∼
= (Dσ )∼,

the second isomorphism coming from B.5, and the third from (B.6.2).

Definition 2.3.3. A complex F in D(X) is said to be G-perfect (for Gorenstein-
perfect) relative to f if F is derived f !OY -reflexive. The full subcategory of Db

c(X),
whose objects are the complexes that are G-perfect relative to f is denoted G( f ).
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In particular, F is in G(idX ) if and only if F is derived OX -reflexive. We set

G(X):= G(idX ) .

In view of (2.3.2.3), in the affine case G-perfection can be expressed in terms
of finite G-dimension in the sense of [Auslander and Bridger 1969]; see [Avramov
et al. 2010a, §6.3 and 8.2.1].

As is the case for perfection (Remark 2.1.2), G-perfection can be tested locally.

Remark 2.3.4. A complex F in D(X) is in G( f ) if and only if every x ∈ X has an
open neighborhood U such that F |U is in G( f |U ).

If f factors as
X

i
−→W

h
−→Y

with i a closed immersion and h essentially smooth, then F is in G( f ) if and only
if i∗F is in G(W ). It suffices to show this locally; and then this is [Avramov et al.
2010a, 8.2.1], in view of the equivalence of categories in Example 1.1.3.

Definition 2.3.5. The map f : X → Y is said to be G-perfect (for Gorenstein
perfect) if f !OY is semidualizing, that is, if OX is in G( f ).

A local theory of such maps already exists:

Example 2.3.6. If X = Spec S and Y = Spec K , where K and S are noetherian
rings, and σ : K → S is the ring-homomorphism corresponding to f , then f is
G-perfect if and only if σ is of finite G-dimension in the sense of [Avramov and
Foxby 1997]; see [Avramov et al. 2010a, 8.4.1].

Recall from Remark 2.1.6 that f is perfect if and only if f !OY is in P( f ), the
full subcategory of D(X) whose objects are all the complexes that are perfect with
respect to f . There is a similar description of G-perfection:

Remark 2.3.7. The map f is G-perfect if and only if f !OY ∈ G( f ). This follows
from Proposition 1.3.3, since for all x ∈ X, the stalk at x satisfies ( f !OY )x 6' 0;
see (2.3.2.3).

Remark 2.3.8. When Y is Gorenstein, every map f : X → Y is G-perfect, since
[Avramov et al. 2010a, 8.3.1] and (2.3.2.3) together imply that G( f )= Db

c(X).

Via (2.3.2.3), a slight generalization of [Illusie 1971, p. 258, 4.9ff ] globalizes
[Avramov et al. 2010b, 1.2]:

Proposition 2.3.9. Let f : X→ Y be a scheme-map.
The following inclusion holds: P( f )⊆ G( f ).
If M ∈ P(Y ) then the functor RHomX (−, f !M) takes P( f ) (resp. G( f )) into

itself ; and if M ∈ G(Y ) then RHomX (−, f !M) takes P( f ) into G( f ).
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Proof. The first assertion is a restatement of Remark 2.1.3.
The second assertion is local on X , so one may suppose f factors as X

i
−→W

h
−→Y

with i a closed immersion and h essentially smooth. For any F ∈ Db
c(X) and

M ∈ D+qc(Y ) one has, using formula (B.6.1), B.5 and Lemma 1.4.6,

i∗RHomX (F, i !h!M)' RHomW (i∗F, h!M)' RHomW (i∗F, h∗M)⊗L
W h!OY ,

where h!OY is invertible. Consequently, by Remark 2.1.2,

RHomX (F, f !M) ∈ P( f )⇐⇒ i∗RHomX (F, f !M) ∈ P(W )

⇐⇒ RHomW (i∗F, h∗M) ∈ P(W ).

Similarly, by Remark 2.3.4 and Corollary 1.5.4(2),

RHomX (F, f !M) ∈ G( f )⇐⇒ i∗RHomX (F, f !M) ∈ G(h)

⇐⇒ RHomW (i∗F, h∗M) is derived OW -reflexive.

If F ∈ P( f ) then i∗F is a perfect OW -complex, and by Lemma 1.4.6(2),

RHomW (i∗F, h∗M)' h∗M ⊗L
W RHomW (i∗F,OW ), (2.3.9.1)

where RHomW (i∗F,OW ) is perfect (see Theorem 1.4.3).
If M ∈ P(Y ) then by Proposition 2.2.3, h∗M ∈ P(W ), and then (2.3.9.1) shows

that RHomW (i∗F, h∗M) ∈ P(W ). Thus RHomX (F, f !M) ∈ P( f ).
If M ∈G(Y ), then h∗M is derived OW -reflexive, hence so is RHomW (i∗F, h∗M);

see Theorem 2.2.5, (2.3.9.1) and Proposition 1.4.4. So RHomX (F, f !M) ∈ G( f ).
If F ∈ G( f ) and M ∈ P(Y ) then i∗F ∈ G(h) is OW -reflexive and h∗M is perfect;

so by Lemma 1.4.6(1), (2.3.9.1) still holds, so RHomW (i∗F, h∗M) is OW -reflexive,
by Remark 1.3.4 and Proposition 1.4.4. So again, RHomX (F, f !M) ∈ G( f ). �

From Proposition 2.3.9 one gets the following result. It can also be seen as the
special case g = idY of Proposition 2.5.2 below.

Corollary 2.3.10. Any perfect map is G-perfect. �

Applying Proposition 2.3.9 to RHomX (OX , f !F), one gets:

Corollary 2.3.11. If f : X → Y is perfect then f !P(Y ) ⊆ P( f ) and furthermore
f !G(Y )⊆ G( f ). If f is G-perfect then f !P(Y )⊆ G( f ). �

Also, in view of Proposition 1.3.3(iii):

Corollary 2.3.12. For any scheme-map f : X → Y , the relative dualizing functor
RHomX (−, f !OY ) induces a commutative diagram of categories, where horizontal
arrows represent equivalences:
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G( f )op oo
≡

//

⊆

G( f )

⊆

P( f )op oo
≡

// P( f )

These equivalences are dualities, in the sense of [Avramov et al. 2010a, §6]. �

2.4. Quasi-Gorenstein maps. For the following notion of quasi-Gorenstein map,
cf. [Avramov and Iyengar 2008, 2.2] and [Avramov et al. 2010a, §8.6.1]. For the
case when f is flat, see also [Hartshorne 1966, p. 298, Exercise 9.7], which can be
done, e.g., along the lines of the proof of [Lipman 1979, Lemma 1].)

Definition 2.4.1. A map f : X → Y is quasi-Gorenstein if f !OY is invertible. If,
in addition, f is perfect, then f is said to be a Gorenstein map.

If f : X → Y is quasi-Gorenstein then, clearly, OX ∈ G( f ), i.e., f is G-perfect.
More generally, Corollary 1.5.4 shows that G( f )= G(X).

Example 2.4.2. Let f : X → Y be a scheme map. If X is Gorenstein and f is
G-perfect, then f is quasi-Gorenstein; see Remark 1.5.5. Remark 2.3.8 shows then
that when X and Y are both Gorenstein f is quasi-Gorenstein.

One has the following globalization of the flat case of [Avramov et al. 2010a,
8.6.2], see also [Avramov and Iyengar 2008, 2.4]:

Proposition 2.4.3. If f : X → Y is a flat Gorenstein map, with diagonal map
δ : X→ X ×Y X , then there are natural isomorphisms

W f :=HomX (δ
!(OX×Y X ), OX) −→

∼

ν
RHomX (δ

!(OX×Y X ), OX) −→
∼ f !OY .

If furthermore g : Z→ X is finite, then (B.6.1) gives a natural isomorphism

g∗( f g)!OY ∼= Rg∗g! f !OY −→
∼ RHomX (g∗OZ ,W f ) .

Proof. For any flat scheme-map f : X→ Y there is a natural isomorphism

δ!(OX×Y X ) −→
∼ RHomX ( f !OY,OX)

(see Corollary 6.5 in [Avramov et al. 2010b], with M = OX = N ).
It follows, when f !OY is invertible, that the complex δ!(OX×Y X) is invertible,

and that there is a natural D(X)-isomorphism

f !OY −→
∼ RHomX (δ

!(OX×Y X ), OX).

That the natural map ν is an isomorphism holds true with any perfect complex
in place of δ!(OX×Y X ): the assertion is local, hence reduces to the corresponding
(obvious) assertion for rings.
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For the final assertion, note that the natural map is an isomorphism

g∗( f g)!OY −→
∼ Rg∗( f g)!OY

because the equivalence of categories given in [Hartshorne 1966, p. 133, 7.19]
allows us to work exclusively with quasicoherent sheaves, on which the functor g∗
is exact. �

2.5. Composition, decomposition, and base change. We turn now to the behavior
of relative perfection and G-perfection, especially vis-à-vis the derived direct- and
inverse-image functors and the twisted inverse image functor, when several maps
are involved.

Generalizing Proposition 2.2.3 (which is the special case f = idX ), one has:

Proposition 2.5.1 (cf. [Illusie 1971, pp. 253–254, 4.5.1]). Let Z
g
−→X and X

f
−→Y

be scheme-maps, with g perfect.
Then Lg∗P( f )⊆ P( f g). In particular, if f is perfect then so is f g.
Conversely, if g is faithfully flat, or if g is proper and surjective and F ∈Dc(X),

then Lg∗F ∈ P( f g) H⇒ F ∈ P( f ). In particular, if f g is perfect then so is f .

Proof. Let F ∈ P( f ). By Lemma 2.2.2, Lg∗F ∈ Db
c(Z). Hence by [Illusie 1971,

p. 242, 3.3, p. 251, 4.3 and p. 115, 3.5(b)] (whose proofs are easily made to apply
to essentially finite-type maps of noetherian schemes), for Lg∗F to be in P( f g)
it suffices that there be integers m ≤ n such that for any OY -module M and any
integer j /∈ [m, n],

0= H j (Lg∗F ⊗L
Z L( f g)∗M)∼= H j (Lg∗(F ⊗L

X L f ∗M)).

But by loc. cit. this holds because F is in P(g) and Lg∗ is bounded.
Taking M = OY one gets that if f is perfect then f g is perfect.
For the converse, if g is faithfully flat (so that Lg∗ = g∗) then for any OX -

module F and any j ∈ Z, one sees stalkwise that

H j (g∗F )∼= g∗H j (F )= 0⇐⇒ H j (F )= 0.

Hence if F ∈ Dc(X) and g∗F ∈ P( f g)⊆ Db
c(Z)— whence F ∈ Db

c(X)— then by
an argument like that above, F ∈ P( f ).

In the remaining case one argues as in the proof of Proposition 2.2.3. (It should
be noted that the relevant part of Theorem 1.4.5 is proved via the above criterion
for relative perfection, so it applies not only to perfection but more generally to
relative perfection.) �

Analogously, for A:= f !OY one has ( f g)!OY ' g!A, so Theorem 2.2.5 gives

Proposition 2.5.2 (cf. [Avramov and Foxby 1997, 4.7]). Let Z
g
−→X

f
−→Y be scheme-

maps, with g perfect.
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Then Lg∗G( f )⊆ G( f g). In particular, if f is G-perfect then so is f g.
Conversely, if g is faithfully flat and F ∈D−c (X), or if g is proper and surjective

and F ∈ Dc(X), then Lg∗F in G( f g) implies F ∈ G( f ). �

The next proposition generalizes parts of Proposition 2.3.9. The proof is quite
similar, and so is omitted.

Proposition 2.5.3. Let Z
g
−→X

f
−→Y be scheme-maps, P ∈ P(g), F, A ∈ D(X).

If F ∈ P( f ) then RHom Z (P, g!F) ∈ P( f g). (Cf. [Illusie 1971, p. 258, 4.9].) In
other words, the functor RHom Z (−, g!F) takes P(g) to P( f g).

If F is A-reflexive then RHom Z (P, g!F) is g!A-reflexive. For A = f !OY this
gives that RHom X (−, g!F) takes P(g) to G( f g). �

Proposition 2.5.4. Let Z
g
−→X

f
−→Y be scheme-maps, with g perfect.

Then g!P( f )⊆ P( f g) and g!G( f )⊆ G( f g).
Conversely, if g is proper and surjective, F is in D+c (X), and g!F is in P( f g)

(resp. G( f g)) then F is in P( f ) (resp. G( f )).

Proof. The direct assertions are obtained from Proposition 2.5.3 by taking P = OZ .
If g is perfect then g!OX ∈ P(g) and

Rg∗g!F ' Rg∗(g!OX ⊗
L
Z Lg∗F)' Rg∗g!OX ⊗

L
X F ;

see Remark 2.1.6. If g is also proper then Rg∗g!OX is perfect [Illusie 1971, p. 257,
4.8(a)]. One can then argue as at the end of the proof of Proposition 2.5.1. �

Proposition 2.5.5. Let Z
g
−→X

f
−→Y be scheme-maps, with g proper.

Then Rg∗P( f g)⊆ P( f ) and Rg∗G( f g)⊆ G( f ).

Proof. For P one can proceed as in [Illusie 1971, p. 257, 4.8]. (This ultimately uses
the projection isomorphism (B.1.3).)

For G apply Proposition 2.2.4 with B = f !OY . �

Proposition 2.5.6 (cf. [Iyengar and Sather-Wagstaff 2004, 5.2]). Let Z
g
−→X

f
−→Y

be scheme-maps, with f quasi-Gorenstein.
Then G( f g)= G(g). In particular, f g is G-perfect if and only if so is g.
Also, if g is quasi-Gorenstein then so is f g.

Proof. For any invertible F ∈ D(X) the natural map (see (2.1.6.1))

g!OX ⊗
L
Z Lg∗F→ g!F

is an isomorphism: the question being local (see B.4), one reduces via 1.5.2(iii′)
to the simple case F = OX .

When F is the invertible complex f !OY , there results an isomorphism

g!OX ⊗
L
Z Lg∗ f !OY → g! f !OY ' ( f g)!OY .
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The first assertion follows from Corollary 1.5.4(1) (with A= g!OX , L = Lg∗ f !OY );
and the last holds because if g!OX is invertible then by Corollary 1.5.3, ( f g)!OY is
invertible as well. �

The last assertion of Proposition 2.5.6 expresses a composition property of
quasi-Gorenstein homomorphisms. Here is a decomposition property:

Proposition 2.5.7 (cf. [Avramov and Foxby 1992, 4.6], [Iyengar and Sather-Wag-
staff 2004, 5.5]). Let Z

g
−→X

f
−→Y be scheme-maps, with g perfect.

If f g is quasi-Gorenstein then g is Gorenstein.
Suppose g is faithfully flat, or proper and surjective. If f g is quasi-Gorenstein

(resp. Gorenstein) then so is f .

Proof. By Remark 2.1.6, one has g!OX ∈ Db
c(Z) and an isomorphism

g!OX ⊗
L
Z Lg∗ f !OY → g! f !OY ' ( f g)!OY .

Also, the paragraph immediately before §5.5 in [Nayak 2009] yields f !OY ∈Dc(X),
whence Lg∗ f !OY ∈ Dc(Z). Now Corollary 1.5.3(2) gives the first assertion. It also
shows that Lg∗ f !OY is invertible, whence so is f !OY if g is faithfully flat, or proper
and surjective (see Corollary 2.2.7), giving the quasi-Gorenstein part of the second
assertion. The last assertion in Proposition 2.5.2 now gives the Gorenstein part. �

From Propositions 2.5.2, 2.5.4 and 2.5.6 one gets:

Corollary 2.5.8. Let there be given a commutative diagram

X ′
v

//

h

��

X

f

��

Y ′ u
// Y

with u quasi-Gorenstein and v perfect.
Then Lv∗G( f ) ⊆ G(h) and v!G( f ) ⊆ G(h). Thus, when f is G-perfect so is h.

�

It is shown in [Illusie 1971, p. 245, 3.5.2] that relative perfection is preserved
under tor-independent base change. Here is an analog (and more) for relative G-
perfection.

Proposition 2.5.9. Let there be given a tor-independent fiber square (see §B.2)

X ′
v

//

h

��

X

f

��

Y ′ u
// Y
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If the map u is Gorenstein, or flat, or if u is perfect and f is proper, then
Lv∗G( f )⊆ G(h). In particular, if f is G-perfect then so is h.

Conversely, suppose that u is faithfully flat, or that u is perfect, proper, and
surjective and f is proper. If F ∈ Db

c(X) and Lv∗F ∈ G(h), then F ∈ G( f ).

Proof. In all cases, u is perfect, whence so is v [Illusie 1971, p. 245, 3.5.2].
If u is Gorenstein, the assertion is contained in Corollary 2.5.8.
By Lemma 2.2.2, if F is f !OY -reflexive then Lv∗F is Lv∗ f !OY -reflexive.
If u (hence v) is flat then by B.4, one has

Lv∗ f !OY ∼= h!Lu∗OY = h!OY ′ . (2.5.9.1)

Thus v∗F is h!OY ′-reflexive, i.e., v∗F ∈ G(h).
The case when u is perfect and f is proper is treated similarly through the tor-

independent base-change theorem [Lipman 2009, 4.4.3].
For the converse, the assumption is, in view of the isomorphism (2.5.9.1), that

Lv∗F is derived Lv∗ f !OY -reflexive. Formula (2.1.6.3) gives that f !OY ∈D+c (X). So
since v satisfies all the same hypotheses as u does, Theorem 2.2.5 yields that F is
f !OY -reflexive, as asserted. �

Proposition 2.5.10. Let there be given a tor-independent fiber square (see B.2)

X ′
v

//

h

��

X

f

��

Y ′ u
// Y

with either u flat, or u perfect and f proper.
If the map f is quasi-Gorenstein (resp. Gorenstein) then so is h .
The converse holds if u (hence v) is faithfully flat, or if u (hence v) is perfect,

proper and surjective and f is proper.

Proof. As in the proof of Proposition 2.5.9, one has the isomorphism (2.5.9.1).
Hence if f !OY is invertible then so is h!OY ′ (see Corollary 1.5.3(3)), whence the
first quasi-Gorenstein assertion, whose converse follows from Corollary 2.2.7(c).
Also, by [Illusie 1971, p. 245, 3.5.2], if f is perfect then so is h, whence the first
Gorenstein assertion, whose converse follows from the preceding converse and
Proposition 2.5.1 (since u perfect and h perfect implies hu = f v perfect). �

3. Rigidity over schemes

As in previous sections, schemes are assumed to be noetherian, and scheme-maps
to be essentially of finite type, and separated.
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3.1. Rigid complexes. Fix a scheme X and a semidualizing OX -complex A, and
for any F ∈ D(X) set

F†
:= RHom X (F, A).

Definition 3.1.1. An A-rigid pair (F, ρ) is one where F ∈Db
c(X) and ρ is a D(X)-

isomorphism
ρ : F −→∼ RHom X (F†, F).

An OX -complex F is A-rigid if there exists a ρ such that (F, ρ) is an A-rigid pair.
Such a ρ is called an A-rigidifying isomorphism for F.

A morphism of A-rigid pairs (F, ρ) → (G, σ ) is a D(X)-map φ : F → G
such that the following diagram, with φ̃ : RHom X (F†, F)→ RHom X (G†,G) the
map induced by φ, commutes:

F
ρ
� RHom X (F†, F)

G

φ
g

σ
� RHom X (G†,G)

φ̃
g

The terminology “rigid” is motivated by the fact, contained in Theorem 3.2.1,
that the only automorphism of an A-rigid pair is the identity.

Example 3.1.2. If R is a ring, X = Spec R, and M,C ∈ Db
f (R) are such that

RHomR(M,C) ∈ Db
f (R), then by Example 1.1.3, M is C-rigid in the sense of

[Avramov et al. 2010a, §7] if and only if M∼ is C∼-rigid in the present sense.

Since RHom commutes with restriction to open subsets, an A-rigid pair restricts
over any open U ⊆ X to an A|U -rigid pair. However, rigidity is not a local condi-
tion: any invertible sheaf F is F-rigid, but OX is not F-rigid unless F ∼= OX .

On the other hand, rigid pairs glue, in the sense explained in Theorem 6 of the
Introduction, and generalized in Theorem 3.2.9 below.

The central result of this section, Theorem 3.1.7, a globalization of [Avramov
et al. 2010a, 7.2], is that any A-rigid F is isomorphic in D(X) to i∗i∗A, with i the
inclusion into X of some open-and-closed subscheme — necessarily the support
of F, see (1.1.2.1); or equivalently, F ' I A for some idempotent OX -ideal I ,
uniquely determined by F (see Appendix C); or equivalently, F is, in D(X), a
direct summand of A.

Example 3.1.3. The pair (A, ρA) with ρA the natural composite isomorphism

ρA
: A −→∼ RHomX (OX , A) −→∼ RHom X (RHomX (A, A), A),

is A-rigid.

Extending this example a little leads to:
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Example 3.1.4. Let U ⊆ X be an open-and-closed subset, and i : U ↪→ X the
inclusion. Recall that the OU -module i∗A is semidualizing; see Corollary 2.2.6. If
F ∈ D(U ) is i∗A-rigid then i∗F is A-rigid.

Indeed, if ρ is an i∗A-rigidifying isomorphism for F, then one has isomorphisms

i∗F −→∼i∗ρ
i∗RHomU

(
RHomU (F, i∗A), F

)
−→
∼ i∗RHomU

(
i∗RHomX (i∗F, A), F

)
−→
∼ RHomX

(
RHomX (i∗F, A), i∗F

)
,

where the second comes from (B.1.5) (since i∗i∗F = F), and the third is a special
case of [Lipman 2009, p. 98, (3.2.3.2)] (or see [Lipman 2009, §3.5.4], or just reason
directly, using that i∗F vanishes outside U ).

The composition of these isomorphisms is A-rigidifying for i∗F .

Definition 3.1.5. The U-canonical A-rigid pair (i∗i∗A, ρ i∗i∗A) is the one con-
structed in Example 3.1.4 out of the i∗A-rigid pair (i∗A, ρ i∗A) in Example 3.1.3.

It is well known that any monomorphism (resp. epimorphism) in D(X) is split,
i.e., has a left (resp. right) inverse (see e.g., [Lipman 2009, 1.4.2.1]). Thus, when
we speak of mono- or epimorphisms, the adjective “split” will usually be omitted.

Lemma 3.1.6. Let θ : F ↪→ A be a monomorphism in D(X). Let (A, ρA) be
the canonical A-rigid pair in Example 3.1.3. There exists a unique A-rigidifying
isomorphism ρ for F such that θ is a morphism of rigid pairs (F, ρ)→ (A, ρA).

Proof. It suffices to deal with the situation separately over each connected compo-
nent of X ; so we may assume that X is connected. Then, by Lemma 1.3.7, either
F = 0 or θ is an isomorphism. In either case the assertion is obvious. �

Theorem 3.1.7. For any F ∈ D(X), the following conditions are equivalent.

(i) F is A-rigid.

(ii) In D(X), F ' I ⊗L
X A ' I A ' I † for some idempotent OX -ideal I .

(iii) There is an open-and-closed U ⊆ X such that, i :U ↪→ X being the inclusion,
F ' i∗i∗A in D(X), whence U = SuppX F.

(iv) There is, in D(X), a monomorphism F→ A.

When they hold, there is a unique ideal I satisfying condition (ii).

Proof. (iii)⇒ (i). In view of Example 3.1.3, this is contained in Example 3.1.4.
(i)⇒ (iii). For the last assertion in (iii), since i∗i∗A vanishes outside U, and

since for all x ∈U one has, in D(OU,x),

0 6= OU,x ' (RHomU (i∗A, i∗A))x ' RHomOU,x ((i∗i
∗A)x , (i∗i∗A)x)

therefore U = SuppX (i∗i
∗A).
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Now let F be A-rigid. Then U := SuppX F is an open-and-closed subset of X.
For, X is covered by open subsets of the form V = Spec R; and with j : V ↪→ X
the inclusion, the j∗A-rigid complex j∗F (resp. its homology) is the sheafification
of FV := R0(V, F) (resp. its homology), so (SuppX F) ∩ V = SuppR FV . But
FV is R0(V, A)-rigid (since (FV )

∼ ∼= j∗F is j∗A-rigid), so by [Avramov et al.
2010a, 7.2], SuppR FV = U ∩ V is an open-and-closed subset of V . That U is
open-and-closed follows.

Hence, the natural map F→ i∗i∗F is a D(X)-isomorphism; so to prove the theo-
rem we can replace (X, A, F) by (U, i∗A, i∗F), i.e., we may assume SuppX F = X.

In D(X), the complex L:= F† is isomorphic to H 0L , which is an invertible sheaf:
this assertion need only be checked locally, i.e., for affine X, where it is given by
[Avramov et al. 2010a, 4.9]. (The assumptions of that theorem are satisfied because
F and A are both in Db

c(X).) The invertible complex L is derived A-reflexive (take
F =OX in 1.5.4(2)); similarly, so is L⊗L

X L . Since SuppX A= X , by Lemma 1.3.7,
therefore Proposition 1.3.3(iii) yields that F is derived A-reflexive. So L†

' F,
and

L†
' RHomX (L , L†)' (L ⊗L

X L)† (see (1.1.1.1)).

Applying the functor † to these isomorphisms we get L ⊗L
X L ' L . Tensoring

with L−1 shows then that L ' OX . Thus F ' L†
' A.

(iii)⇒ (ii). Associated to any open-and closed U ⊆ X is the unique idempotent
OX -ideal I that is isomorphic to i∗OU (Corollary C.3). For this I we have natural
isomorphisms, the second from (B.1.3) and the last two from Corollary C.4:

i∗i∗A ' i∗(OU ⊗
L
U i∗A)' i∗OU ⊗

L
X A ' I ⊗L

X A ' I A ' I †.

(ii)⇒ (iii). Given I as in (ii), let U = SuppX I , with inclusion i :U ↪→ X , and
use the preceding isomorphisms (see Corollary C.3).

(iii)⇒ (iv). If i is as in (iii), then i∗i∗A is a direct summand of A.
(iv)⇒ (i). See Lemma 3.1.6.
It remains to note that the uniqueness of I in (ii) results from

SuppX I A = SuppX (I ⊗
L
X A)= SuppX I ∩SuppX A = SuppX I ∩ X = SuppX I,

see (1.1.2.2). The proof of Theorem 3.1.7 is now completed. �

Define a direct decomposition of F ∈ D(X) to be a D(X)-isomorphism

F ' F1⊕ F2⊕ · · ·⊕ Fn (3.1.7.1)

such that no Fi vanishes; call F indecomposable if F 6= 0 and in any direct decom-
position of F, one has n = 1. Say that (3.1.7.1) is an orthogonal decomposition
of F if, in addition, Fi ⊗

L
X F j = 0 for all i 6= j .
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Corollary 3.1.8. Let F 6= 0 be an A-rigid complex. Let SuppX F =
⊔n

s=1 Us be a
decomposition into disjoint nonempty connected closed subsets, and is :Us ↪→ X
(1≤ s ≤ n) the canonical inclusions.

The Us are then connected components of X, and there is an orthogonal decom-
position into indecomposable A-rigid complexes:

F '
n⊕

s=1

(is)∗(is)
∗A.

If F' F1⊕· · ·⊕Fr is a direct decomposition with each Ft indecomposable, then
r = n and (after renumbering) there is for each s an isomorphism Fs ' (is)∗(is)

∗A.

Proof. Since by Theorem 3.1.7(iii), SuppX F is open and closed in X, therefore
each Us is a connected component of X. Moreover, if i : SuppX F ↪→ X is the
inclusion, then i∗A is semidualizing (Corollary 2.2.6), and compatibility of RHom
with open immersions (to see which, use [Lipman 2009, 2.4.5.2]) implies that i∗F
is i∗A-rigid. It follows then from Theorem 3.1.7(iii) that we may assume F = A.

The decomposition X =
⊔n

s=1 Us now yields a decomposition of F ∈ D(X):

F '
n⊕

s=1

(is)∗(is)
∗F =

n⊕
s=1

(is)∗(is)
∗A .

As before, (is)
∗A is a semidualizing complex of OUs -modules, so its support is Us ,

and it is indecomposable; see Lemma 1.3.7. Hence (is)∗(is)
∗A is indecomposable,

and has support Us . It then follows from (1.1.2.2) that the decomposition above is
orthogonal. Moreover, the complexes (is)∗(is)

∗A are A-rigid; see Definition 3.1.5.
Let F' F1⊕· · ·⊕Fr be a direct decomposition. It results from Lemma 1.3.7 that

this decomposition is orthogonal. Hence X = SuppX F =
⊔r

t=1 Vt . Furthermore,
F ∈ Db

c(X) H⇒ Ft ∈ Db
c(X) for all t . Hence Vt = SuppX Ft is open and closed;

and since Ft is indecomposable, Vt is connected. Thus the Vt are the connected
components of X . In particular, r = n, and, after renumbering, one may assume
Vt =Ut for each t . It remains to observe that Fs ' (is)∗(is)

∗F ' (is)∗(is)
∗A. �

3.2. Morphisms of rigid complexes. We present elaborations of Theorem 3.1.7,
leading to a simple description of the skeleton of the category of rigid pairs; see
Theorem 3.2.6 and Remark 3.2.7.

The result below involves the H0(X,OX) action on D(X) described in 1.2.

Theorem 3.2.1. If (F, ρ), (F ′, ρ ′) are A-rigid pairs with SuppX F = SuppX F ′

then there exists a unique isomorphism (F, ρ) −→∼ (F ′, ρ ′). In particular, any A-
rigid pair (F, ρ) admits a unique isomorphism into a U-canonical one, for some
open-and-closed U ⊆ X , necessarily the support of F.
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Moreover, if F ′ = F then with UF := SuppX F, there is a unique unit u in the
ring H0(UF ,OUF) such that ρ ′ = ρ ū, where ū ∈ H0(X,OX) is u extended by 0, and
the unique isomorphism (F, ρ) −→∼ (F, ρ ′) is multiplication in F by ū.

For any endomorphism φ of the A-rigid pair (F, ρ) there is a uniquely deter-
mined idempotent u ∈ H0(UF ,OUF) such that φ is multiplication by ū.

Proof. Modulo Theorem 3.1.7, the proof is basically that of [Avramov et al. 2010a,
7.3]. Indeed, Theorem 3.1.7(iii) implies that we may assume F = F ′, and that
furthermore, we may replace X by U, i.e., assume F = A (so that ū = u).

Each endomorphism of F is multiplication by a unique element u in H0(X,OX).
From Lemma 1.2.1 it follows that multiplication by u induces multiplication by u
on F† and multiplication by u2 on RHomX (F†, F). With uF , resp. uH , multipli-
cation by u on F , resp. on RHomX (F†, F), we have then that uHρ= ρuF , see 1.2,
so that u2

Hρ = uHρuF = ρu2
F .

In view of this identity, one gets that uF is an isomorphism from the rigid pair
(F, ρ) to the rigid pair (F, ρ ′)⇐⇒ ρ ′uF = u2

Hρ ⇐⇒ ρ ′uF = ρu2
F ⇐⇒ ρ ′ = ρuF .

Thus the sought-after u is the unique one such that uF is the automorphism ρ−1ρ ′.
In the same vein, when uF induces an endomorphism of the rigid pair (F, ρ)

one gets a relation ρu = ρu2, whence, ρ being an isomorphism, u2
= u. �

Corollary 3.2.2. For any A-rigid complex F, the group of automorphisms of F
acts faithfully and transitively on the set of rigidifying isomorphisms ρ of F.
�

Corollary 3.2.3. If X is connected then every nonzero morphism of A-rigid pairs
is an isomorphism. �

Definition 3.2.4. For any D(X)-map φ : F → F ′ of A-rigid pairs, SuppX φ is the
union of those connected components of X to which the restriction of φ is nonzero.

By Corollary 3.2.3, if X is connected then nonzero maps of A-rigid pairs are
isomorphisms. So for a composable pair (φ, ψ) of maps of A-rigid pairs,

SuppX (φψ)= SuppX φ ∩SuppX ψ. (3.2.4.1)

Corollary 3.2.5. Let (F, ρ) and (F ′, ρ ′) be A-rigid pairs.

(1) Suppose that SuppX F ⊆ SuppX F ′. Then there is a unique monomorphism
(F, ρ) ↪→ (F ′, ρ ′) and a unique epimorphism (F ′, ρ ′)� (F, ρ).

(2) For any morphism φ : (F, ρ)→ (F ′, ρ ′), if (G, σ ) is an A-rigid pair with
SuppX G = SuppX φ then φ factors uniquely as

(F, ρ)
φ′

� (G, σ )
φ′′

↪→ (F ′, ρ ′)

with φ′ an epimorphism and φ′′ a monomorphism.

Thus φ is uniquely determined by its source, target and support.
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Proof. Looking at connected components separately, one reduces to where X is
connected; the assertions then follow from Corollary 3.2.3 and Theorem 3.2.1. �

Here is a structure theorem for the category RpA(X) of A-rigid pairs.

Theorem 3.2.6. Let OC(X) be the category whose objects are the open-and-closed
subsets of X , and whose maps U→ V are the open-and-closed subsets of U ∩ V,
the composition of S ⊆U ∩ V and T ⊆ V ∩W being S ∩ T ⊆U ∩W.

Let 9 : RpA(X)→ OC(X) be the functor taking (F, ρ) ∈ RpA(X) to SuppX F,
and taking a morphism φ ∈ RpA(X) to SuppX φ (see (3.2.4.1)).

This 9 is an equivalence of categories.

Proof. Let (F, ρ) and (F ′, ρ ′) be A-rigid pairs, U := SuppX F, V := SuppX F ′, and
S an open-and-closed subset of U∩V . It follows from Corollary 3.2.5, with (G, σ )
the S-canonical pair, that there is a unique map of A-rigid pairs φ : (F, ρ)→ (F ′, ρ ′)
such that SuppX φ = S, whence the conclusion. �

Remark 3.2.7. A quasi-inverse 8 of 9 can be constructed as follows:
8 :OC(X)→ RpA(X) takes an open-and-closed U ⊆ X to an arbitrarily chosen

rigid pair (F, ρ) with SuppX F = U ; and then, for any OC(X)-map S ⊆ U ∩ V ,
8(S) is the unique epimorphism 8U � 8S followed by the unique monomor-
phism 8S ↪→8V (see Corollary 3.2.5).

That this describes a functor is, modulo (3.2.4.1), straightforward to see.
Taking into account that the map S ⊆ U ∩ V factors as a split epimorphism

(namely S ⊆ U ∩ S) followed by a split monomorphism (namely S ⊆ S ∩ V ),
and that any functor respects left and right inverses, one sees that in fact all quasi-
inverses of 9 have the preceding form.

In particular, there is a canonical8, associating to each U the U -canonical pair.
Thus OC(X) is canonically isomorphic to the category of canonical A-rigid pairs.

The next result is in preparation for establishing a gluing property for rigid pairs.

Lemma 3.2.8. If g : Z→ X is a perfect map and F is an A-rigid complex in D(X),
then Lg∗A ∈ Db

c(Z) is semidualizing and Lg∗F is (Lg∗A)-rigid.

Proof. That Lg∗A is semidualizing is given by Corollary 2.2.6.
If ρ is an A-rigidifying isomorphism for F ∈ D(X), then, abusing notation, we

let Lg∗ρ be the composed isomorphism

Lg∗F −→∼ Lg∗RHomX (F†, F)

−→
∼ RHom Z (Lg∗F†, Lg∗F)

−→
∼ RHom Z (RHom Z (Lg∗F, Lg∗A), Lg∗F),

where the first isomorphism is the result of applying the functor Lg∗ to ρ, and the
other two come from (2.1.7.1). Thus Lg∗ρ is (Lg∗A)-rigidifying for Lg∗F. �
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Theorem 3.2.9. Let g : Z → X be a faithfully flat scheme-map, W := Z ×X Z ,
π1 :W → Z and π2 :W → Z the canonical projections.

Let A ∈ D(X) be semidualizing. If (G, σ ) is a (g∗A)-rigid pair such that there
exists an isomorphism π∗1 G ' π∗2 G, then there is, up to unique isomorphism,
a unique A-rigid pair (F, ρ) such that (G, σ )' (g∗F, g∗ρ).

Proof. (Uniqueness.) If g∗F ' g∗F ′ then, since

g−1 SuppX F = SuppZ g∗F = SuppZ g∗F ′ = g−1 SuppX F ′,

and g is surjective, therefore SuppX F = SuppX F ′; and so by Theorem 3.2.1, there
is a unique isomorphism (F, ρ) −→∼ (F ′, ρ ′).

(Existence.) In view of Theorem 3.1.7, we may assume that G= Jg∗A for some
idempotent OZ -ideal J . Then, for i = 1, 2, Corollaries C.4 and C.7 yield

SuppW π
∗

i G = SuppW (π
∗

i J ⊗L
W π

∗

i g∗A)

= SuppW π
∗

i J ∩ SuppW π
∗

i g∗A

= SuppW π
∗

i J.

So π∗1 J and π∗2 J , being isomorphic to idempotent ideals with the same support,
must be isomorphic. Hence by Proposition C.8, there is a unique idempotent OX -
ideal I such that J = I OZ . If F = I A then G ' g∗F .

Let ρ be a rigidifying isomorphism for F, so that (g∗F, g∗ρ) is a (g∗A)-rigid
pair. By Theorem 3.2.1, there is a unique isomorphism (g∗F, g∗ρ) −→∼ (G, σ ).

�

Remark 3.2.10. In view of 3.2.1 and 3.2.8, the hypothesis π∗1 G ' π∗2 G in 3.2.9
means simply that SuppW π

∗

1 G = SuppW π
∗

2 G.

3.3. Relative rigidity. With reference to a G-perfect map f : X → Y , we take
particular interest in those complexes that are f !OY -rigid — complexes we will
simply call f -rigid.

For g any essentially étale map (so that, by Proposition 2.5.2, f g is G-perfect),
there is a natural isomorphism of functors ( f g)!'g∗ f ! (see B.3). By Lemma 3.2.8,
if P is f -rigid then g∗P is ( f g)-rigid.

The following étale gluing result (where for simplicity we omit mention of
rigidifying isomorphisms) is an immediate consequence of Theorem 3.2.9.

Proposition 3.3.1. Let Z
g
−→X

f
−→Y be scheme-maps, where f is G-perfect and g

is essentially étale and surjective. Let W := Z ×X Z , with canonical projections
π1 :W→ Z and π2 :W → Z. If P is an ( f g)-rigid complex such that there exists
an isomorphism π∗1 P ' π∗2 P , then there exists, up to isomorphism, a unique f -
rigid complex F with g∗F ' P. �
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Fix a semidualizing complex A on a scheme X . The main result in this sec-
tion, Theorem 3.3.2, is that for any additive functor from A-rigid complexes to the
derived category of some scheme, that takes A to a semidualizing complex C —
and hence, by Theorem 3.1.7(iv), takes A-rigid complexes to C-rigid complexes —
there is a unique lifting to the category of A-rigid pairs that takes the canonical pair
(A, ρA) to (C, ρC ), provided that the functor “respects intersection of supports”.

From Theorem 3.3.2 we will derive the behavior of relatively rigid complexes
with respect to perfect maps (Corollaries 3.3.4 and 3.3.5). These results generalize,
and were inspired by, results in [Yekutieli and Zhang 2004, Sections 3 and 6].

Let RcA(X) ⊆ D(X) be the full subcategory of A-rigid complexes, and let
RpA(X) be the category of A-rigid pairs. Let ϕX : RpA(X)→ D(X) be the functor
taking (F, ρ) to F ∈ RcA(X). The rigid pair (A, ρA) is defined in Example 3.1.3.

Theorem 3.3.2. Let X and Z be schemes, let A ∈ D(X) be semidualizing, and let
F : RcA(X)→ D(Z) be an additive functor such that FA is semidualizing.

There exists at most one functor F : RpA(X)→ RpFA(Z), such that

ϕZF= FϕX and F(A, ρA)= (FA, ρFA) .

For such an F to exist it is necessary that for any idempotent OX-ideals I, J,

SuppZ F(I J A)= SuppZ F(I A)∩ SuppZ F(J A), (3.3.2.1)

and it is sufficient that (3.3.2.1) hold whenever I J = 0.

Remark 3.3.3. Let a, b ∈ H0(X,OX) be the idempotents such that I = aOX and
J = bOX . Since I A admits a monomorphism into A, therefore F(I A) admits a
monomorphism into FA, and it follows from Theorem 3.1.7 that there is a unique
idempotent f (a)∈H0(Z ,OZ ) with F(I A)' f (a)FA. By (1.1.2.2), Corollary C.4,
and the fact that a semidualizing complex on a scheme is supported at every point
of the underlying space, see Lemma 1.3.7, condition (3.3.2.1) amounts then to
f (ab)= f (a) f (b).

Before proving Theorem 3.3.2, we gather together some examples. Part (1) of
the next corollary elaborates Lemma 3.2.8.

Recall that if g : Z → X is perfect then both Lg∗B and g!A are semidualizing;
see Corollary 2.2.6. If L ∈ D(X) is invertible then L ⊗L

X A is semidualizing,
by Corollary 1.5.4(3); and if F ∈ D+qc(X), then there is as in (2.1.6.2) a natural
isomorphism g!L ⊗L

Z Lg∗F −→∼ g!(L ⊗L
X F).

Corollary 3.3.4. Let g : Z→ X be a perfect map, and A ∈ Db
c(X) semidualizing.

(1) There is a unique functor g∗∗ : RpA(X)→ RpLg∗A(Z) such that

ϕZ g∗∗ = Lg∗ and g∗∗(A, ρA)= (Lg∗A, ρLg∗A ).
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(2) There is a unique functor g!! : RpA(X)→ Rpg!A(Z) such that

ϕZ g!! = g! and g!!(A, ρA)= (g!A, ρ g!A ).

(3) For each invertible L ∈ D(X) there is a unique bifunctor

g⊗ : Rpg!L(Z)×RpA(X)→ Rpg!(L⊗L
X A)(Z)

such that

ϕZ g⊗(P, F)= P ⊗L
Z Lg∗F

and

g⊗
(
(g!L , ρ g!L), (A, ρA)

)
= (g!(L ⊗L

X A), ρ g!(L⊗L
X A)) .

Proof. Corollary C.7 implies that for either functor, one has in Remark 3.3.3 that
f (a) is the image of a under the natural map H0(X,OX) → H0(Z ,OZ ). Thus
f (ab)= f (a) f (b) holds, and so (1) and (2) result from Theorem 3.3.2.

For (3) replace X in Theorem 3.3.2 by the disjoint union Z t X . For P ∈ D(Z)
and F ∈ D(X), let (P, F) ∈ D(Z t X) be the complex whose restriction to Z is P
and to X is F . There is an obvious functor F : D(Z t X)→ D(Z) taking (P, F) to
P ⊗L

Z Lg∗F . This takes the semidualizing complex (g!L , A) to the semidualizing
complex g!L⊗L

Z Lg∗A' g!(L⊗L
X A). Using (1.1.2.2) and Remark 3.3.3, one verifies

that (3.3.2.1) holds; and so (3) results. �

Recall that if Z
g
−→X

f
−→Y are maps such that g is perfect and f is G-perfect then

f g is G-perfect (Proposition 2.5.2). Taking A = f !OY and L = OX in (2) and (3)
of Corollary 3.3.4 one gets:

Corollary 3.3.5. Let g : Z→ X be perfect, and f : X→ Y G-perfect.

(1) If F is f -rigid then g!F is f g-rigid.

(2) If P is g-rigid and F is f -rigid then P ⊗L
Z Lg∗F is f g-rigid. �

Corollary 3.3.6. Let g : Z → X be a proper map such that the natural map is an
isomorphism OX −→

∼ Rg∗OZ . Let A ∈ D+qc(X) be such that g!A is semidualizing.
Then A is semidualizing, the canonical map is an isomorphism Rg∗g!A −→∼ A,

and there is a unique functor g∗∗ : Rpg!A(Z)→ RpA(X) such that

ϕX g∗∗ = Rg∗ϕZ and g∗∗(g!A, ρg!A)= (Rg∗g!A, ρRg∗g!A).

Hence, if f : X → Y is such that f g is G-perfect then f is G-perfect, and if P is
f g-rigid then Rg∗P is f -rigid.
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Proof. That A is semidualizing is given by Proposition 2.2.4.
There are, for E ∈ Dqc(X), natural isomorphisms, the second from B.3(ii), and

the third from (B.1.3),

HomD(X)(E,Rg∗g!A)∼= HomD(Z)(Lg∗E, g!A)
∼= HomD(X)(Rg∗(OZ ⊗

L
Z Lg∗E), A)

∼= HomD(X)(Rg∗OZ ⊗
L
X E, A)∼= HomD(X)(E, A).

It follows, via [Lipman 2009, 3.4.7(ii)], that the canonical map is an isomorphism

Rg∗g!A −→∼ A.

By assumption, one has the natural isomorphism H0(X,OX) −→
∼ H0(Z ,OZ ). So

there is a bijection between the idempotents in these two rings; and also, g is
surjective. Hence g−1 gives a bijection from the open-and-closed subsets of X to
the open-and-closed subsets of Z . Furthermore, for any P ∈ Db

c(Z), the support
SuppZ P is closed, whence, g being proper, U := X \ g(SuppZ P) is open; and
the restriction of P to g−1U is acyclic. Thus SuppX Rg∗P ⊆ g(SuppZ P). One
now easily checks (3.3.2.1), with F= Rg∗ and A replaced by g!A, when I J = 0 —
so that SuppZ (Ig!A) and SuppZ (Jg!A) are disjoint open-and-closed subsets of Z .
The existence and uniqueness of g∗∗ follows then from Theorem 3.3.2.

For the last assertion, take A = f !OY . �

Corollary 3.3.7. Let there be given a tor-independent fiber square (see B.2)

X ′
v

//

h

��

X

f

��

Y ′ u
// Y

in which f is G-perfect.
If u is flat, or if u is perfect and f is proper, then h is G-perfect and for any

f -rigid OX-complex F, Lv∗F is h-rigid.

Proof. Proposition 2.5.9 and [Illusie 1971, p. 245, 3.5.2] imply h is G-perfect and
v is perfect. By Corollary 3.3.4(i), Lv∗F is Lv∗ f !OY -rigid, i.e., h!OY ′-rigid; see
(2.5.9.1). �

Proof of Theorem 3.3.2. (Uniqueness.) Let (G, σ ) be an A-rigid pair.
Set (FG, τ ):=F(G, σ ). Let φG be the unique (split) monomorphism from (G, σ )

to the canonical pair (A, ρA), so that F(φG) is a (split) monomorphism, necessarily
the unique one from (FG, τ ) to (FA, σ FA), see Corollary 3.2.5. It follows then from
Lemma 3.1.6 that τ depends only on F and (G, σ ).
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Also, for any morphism φ of A-rigid pairs, ϕZF= F implies Fφ = Fφ.
(Necessity of (3.3.2.1)). Let9Z :RpFA(Z)→OC(Z) be as in Theorem 3.2.6. Let

8 : OC(X)→ RpA(X) be as in Remark 3.2.7, sending an open-and-closed U ⊆ X
to IU A, where IU is the idempotent OX -ideal that is OU over U and (0) elsewhere.
Then9ZF8 :OC(X)→OC(Z) respects composition of maps, i.e., (3.3.2.1) holds.

(Existence.) Since any functor preserves a map’s property of being split —
mono or epi — Theorem 3.1.7(iv) shows that F takes A-rigid complexes to FA-
rigid complexes; and the preceding uniqueness argument shows how F(G, σ )must
be defined. It remains to prove that for any morphism φ : (G, σ )→ (G ′, σ ′) of
A-rigid pairs, Fφ is a morphism of FA-rigid pairs.

Let U1, . . . ,Un be the connected components of X . For each j , let V j be the
support of the FA-rigid complex F(IU j A) (see above). The condition (3.3.2.1),
for I J = 0, guarantees that if j 6= k then the open-and-closed subsets V j and Vk

are disjoint. So we need only show that
(∗) the restriction of Fφ over each V j is a morphism of FA|V j -rigid pairs.

Corollary 3.1.8 shows that φ=
∑n

j=1 φ j where for each j , the source and target
of φ j each have support that, if not empty, is U j . Then, since F is additive, Fφ =∑n

j=1 Fφ j ; and the source and target of Fφ j each have support contained in V j

(see the first assertion in Theorem 3.2.1). Hence the restriction of Fφ over V j

is Fφ j . Proving (∗) is thus reduced to the case where X is connected, so that
by Corollary 3.2.3, φ is either 0 or an isomorphism.

If φ=0, (∗) is obvious. If φ (hence Fφ) is an isomorphism consider the diagram,
where (FG, τ ):=F(G, σ ), (FG ′, τ ′):=F(G ′, σ ′), where φG ′ is as above, and where
the maps on the right are induced by those on the left:

FG τ
� RHomZ (RHomZ (FG, FA), FG)

FG ′
Fφ
g

τ ′

� RHomZ (RHomZ (FG ′, FA), FG ′)

ξ
g

FA

FφG′g

σ FA
� RHomZ (RHomZ (FA, FA), FA)

ξ ′

g

By the above-indicated definition of τ and τ ′, the bottom square commutes, as does
the square obtained by erasing τ ′. Since ξ ′ is a monomorphism, therefore the top
square commutes too. Thus Fφ is a map of FA-rigid pairs. �

Remark 3.3.8. One would naturally like more concrete definitions of the functors
in Corollary 3.3.4.
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One does find in [Yekutieli and Zhang 2004, §3] some explicitly formulated —
in DGA terms — versions of special cases of these functors. (Indeed, that’s what
suggested Corollary 3.3.4.) But getting from here to there does not appear to be a
simple matter. One might well have to go via the Reduction Theorem [Avramov
et al. 2010b, 4.1], the main result of that paper, cf. [Avramov et al. 2010a, 8.5.5]);
and, say for smooth maps, make use of nontrivial formal properties of Verdier’s
isomorphism (B.5).

In Duality Land the well-cultivated concrete and abstract plains are not presently
known to be connected other than by forbidding mountain passes, that can only be
traversed by hard slogging.

Appendices: Background

We review background concepts and basic facts having to do with scheme-maps,
insofar as needed in the main text. Of special import is the twisted inverse-image
pseudofunctor, a fundamental object in Grothendieck duality theory.

Rings and schemes are assumed throughout to be noetherian.

A. Essentially finite-type maps

A.1. A homomorphism σ : K→ S of commutative rings is essentially of finite type
if σ can be factored as a composition of ring-homomorphisms

K ↪→ K [x1, . . . , xd ] → V−1K [x1, . . . , xd ]� S ,

where x1, . . . , xd are indeterminates, V ⊆K [x1, . . . , xd ] is a multiplicatively closed
set, the first two maps are canonical and the third is surjective. The map σ is of
finite type if one can choose V = {1}; the map σ is finite if it turns S into a finite
(that is, finitely generated) R-module.

A homomorphism σ̇ : K → P is (essentially) smooth if it is flat and (essen-
tially) of finite type, and if for each homomorphism of rings K → k, where k is a
field, the ring k⊗K P is regular. By [Grothendieck and Dieudonné 1967, 17.5.1],
this notion of smoothness is equivalent to the one defined in terms of lifting of
homomorphisms.

When σ̇ is essentially smooth the P-module �σ̇ of relative Kähler differentials
is finite projective; we say σ̇ has relative dimension d if for every p ∈ Spec S, the
free Sp-module (�σ̇)p has rank d .

A.2. A scheme-map f : X → Y is essentially of finite type if every y ∈ Y has an
affine open neighborhood V = Spec(A) such that f −1V can be covered by finitely
many affine open sets Ui = Spec(Ci ) so that the corresponding ring homomor-
phisms A→ Ci are essentially of finite type.
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If, moreover, there exists for each i a multiplicatively closed subset Vi ⊆ A such
that A→Ci factors as A→V−1

i A −→∼ Ci where the first map is canonical and the
second is an isomorphism (in other words, A→Ci is a localization of A), then we
say that f is localizing. If the scheme-map f is localizing and also set-theoretically
injective, then we say that f is a localizing immersion.

The map f is essentially smooth (of relative dimension d ) if it is essentially of
finite type and the above data A→Ci can be chosen to be essentially smooth ring
homomorphisms (of relative dimension d ). The map f is essentially étale if it is
essentially smooth of relative dimension 0. Equivalently, f is essentially smooth
(resp. étale) if it is essentially of finite type and formally smooth (resp. étale); see
[Grothendieck and Dieudonné 1967, §17.1]. For example, any localizing map is
essentially étale.

Remark A.3. We will refer a few times to proofs in [Illusie 1971] that make use of
the fact that the diagonal of a smooth map is a quasiregular immersion. To ensure
that those proofs apply here, we note that the same property for essentially smooth
maps is given by [Grothendieck and Dieudonné 1967, 16.10.2 and 16.9.4].

Nayak [2009, 4.1], extending a compactification theorem of Nagata, shows that
every essentially-finite-type separated map f of noetherian schemes factors as
f = f̄ u with f̄ proper and u a localizing immersion.

Example A.4. (Local compactification.) A map f : X = Spec S→ Spec K = Y
coming from an essentially finite-type homomorphism of rings K → S factors as

X
j
−→W

i
↪→ W̄

π
−→Y,

where W is the Spec of a finitely generated K -algebra T of which S is a localiza-
tion, j being the corresponding map, where i is an open immersion, and where π
is a projective map, so that π is proper and i j is a localizing immersion.

B. Review of global duality theory

All scheme-maps are assumed to be essentially of finite type and separated.
We recall some global duality theory, referring to [Lipman 2009] and [Nayak

2009] for details.

B.1. To any scheme-map f : X→ Y one associates the right-derived direct-image
functor R f∗ : Dqc(X)→ Dqc(Y ) and its left adjoint, the left-derived inverse-image
functor L f ∗ :Dqc(Y )→Dqc(X) [Lipman 2009, 3.2.2, 3.9.1, 3.9.2]. These functors
interact with the left-derived tensor product ⊗L via a natural isomorphism

L f ∗(M ⊗L
Y N ) −→∼ L f ∗M ⊗L

X L f ∗N
(
M, N ∈ D(Y )

)
, (B.1.1)
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see [Lipman 2009, 3.2.4]; via the functorial map

R f∗F ⊗L
Y R f∗G→ R f∗(F ⊗L

X G)
(
F,G ∈ D(X)

)
(B.1.2)

adjoint to the natural composite map

L f ∗(R f∗F ⊗L
Y R f∗G) −→∼ L f ∗R f∗F ⊗L

X L f ∗R f∗G −→ F ⊗L
X G;

and via the projection isomorphism

R f∗F ⊗L
Y M −→∼ R f∗(F ⊗L

X L f ∗M)
(
F ∈ Dqc(X), M ∈ Dqc(Y )

)
, (B.1.3)

defined qua map to be the natural composition

R f∗F ⊗L
Y M→ R f∗F ⊗L

Y R f∗L f ∗M→ R f∗(F ⊗L
X L f ∗M).

see [Lipman 2009, 3.9.4)]. The projection isomorphism yields a natural isomor-
phism

R f∗L f ∗M ' R f∗(OX ⊗
L
X L f ∗M)' R f∗OX ⊗

L
Y M. (B.1.4)

Interactions with the derived (sheaf-)homomorphism functor RHom occur via
natural bifunctorial maps:

L f ∗RHomY (M, N )→ RHomX (L f ∗M, L f ∗N )
(
M, N ∈ D(Y )

)
, (B.1.5)

(see [Lipman 2009, 3.5.6(a)]) which is an isomorphism if f is an open immersion
[Lipman 2009, p. 190, end of §4.6]; and

R f∗RHomX (F,G)→ RHomY (R f∗F, R f∗G)
(
F,G ∈ D(X)

)
, (B.1.6)

the latter corresponding via (1.1.1.2) to the natural composition

R f∗RHomX (F,G)⊗L
Y R f∗F→ R f∗

(
RHomX (F,G)⊗L

X F
) R f∗ε
−−→R f∗G,

where the first map comes from (B.1.2), and ε is the evaluation map (1.1.1.3).

B.2. For any commutative square of scheme-maps

X ′
v

//

h

��

X

f

��

4

Y ′ u
// Y

(B.2.1)

one has the map θ4 : Lu∗R f∗→ Rh∗Lv∗ adjoint to the natural composite map

R f∗ −→ R f∗Rv∗Lv∗ −→∼ Ru∗Rh∗Lv∗.

When 4 is a fiber square (which means that the map associated to 4 is an iso-
morphism X ′ −→∼ X ×Y Y ′), and u is flat, then θ4 is an isomorphism. In fact, for
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any fiber square4, θ4 is an isomorphism⇐⇒4 is tor-independent [Lipman 2009,
3.10.3].

B.3. Duality theory focuses on the twisted inverse-image pseudofunctor

f ! : D+qc(Y )→ D+qc(X),

where “pseudofunctoriality” (also known as “2-functoriality”) entails, in addition
to functoriality, a family of functorial isomorphisms cg, f : ( f g)! −→∼ g! f !, one
for each composable pair Z

g
−→X

f
−→Y , satisfying a natural “associativity” property

vis-à-vis any composable triple; see, e.g., [Lipman 2009, 3.6.5].
This pseudofunctor is uniquely determined up to isomorphism by the following

three properties:
(i) If f is essentially étale then f ! is the usual restriction functor f ∗.
(ii) If f is proper then f ! is right-adjoint to R f∗ .
(iii) If in a fiber square 4 as in (B.2.1) the map f (and hence h) is proper and

u is essentially étale, then the functorial base-change map

β4(M) : v∗ f !M→ h!u∗M
(
M ∈ D+qc(Y )

)
, (B.3.1)

defined to be adjoint to the natural composition

Rh∗v∗ f !M −→∼
θ−1
4

u∗R f∗ f !M −→ u∗M,

is identical with the natural composite isomorphism

v∗ f !M = v! f !M −→∼ ( f v)!M = (uh)!M −→∼ h!u!M = h!u∗M.

For the existence of such a pseudofunctor, see [Nayak 2009, section 5.2 ].

B.4. Nayak’s theorem [2009, 5.3] (as elaborated in [Nayak 2005, 7.1.6]) shows
that one can associate, in a unique way, to every fiber square 4 as in (B.2.1) with u
(and hence v) flat, a functorial isomorphism

β4(M) : v∗ f !M −→∼ h!u∗M (M ∈ D+qc(Y )) ,

equal to (B.3.1) when f is proper, and to the natural isomorphism v∗ f ∗ −→∼ h∗u∗

when f is essentially étale.

B.5. Generalizing (i) in B.3, let f : X → Y be essentially smooth, so that by
[Grothendieck and Dieudonné 1967, 16.10.2] the relative differential sheaf � f is
locally free over OX . On any connected component W of X, the rank of � f is a
constant, denoted d(W ).

There is a functorial isomorphism

f !M −→∼ 6d�d
f ⊗OX f ∗M

(
M ∈ Dqc(Y )

)
, (B.5.1)
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with 6d�d
f the complex whose restriction to any W is 6d(W )

∧d(W )

OW

(
� f
∣∣
W

)
.

(6 is the usual translation automorphism of D(X); and
∧

denotes exterior power.)
To prove this, one may assume that X itself is connected, and set d := d(X).

Noting that the diagonal 1 : X → X ×Y X is defined locally by a regular seq-
uence of length d (see Remark A.3), so that 1!OX×Y X ⊗

L L1∗G ∼= 1!G for all
G ∈ Dqc(X ×Y X) [Hartshorne 1966, p. 180, 7.3], one can imitate the proof of
[Verdier 1969, p. 397, Thm. 3], where, in view of (a) above, one can drop the
properness condition and take U = X, and where finiteness of Krull dimension is
superfluous.

B.6. The fact that β4(M) in (B.3.1) is an isomorphism for all M whenever u is an
open immersion and f is proper, is shown in [Lipman 2009, §4.6, part V] to be
equivalent to sheafified duality, which is that for any proper f : X → Y , and any
F ∈ Dqc(X), M ∈ D+qc(Y ), the natural composition, in which the first map comes
from (B.1.6),

R f∗Hom X (F, f !M)→ RHomY (R f∗F, R f∗ f !M)→ RHomY (R f∗F,M),
(B.6.1)

is an isomorphism.
Moreover, if the proper map f has finite flat dimension, then sheafified duality

holds for all M ∈ Dqc(Y ), see [Lipman 2009, 4.7.4].
If f is a finite map, then (B.6.1) with F = OX determines the functor f !. (See

also [Conrad 2007, §2.2].) In particular, if f : Spec B → Spec A corresponds to
a finite ring homomorphism A→ B, and ∼ is the standard sheafification functor,
then for an A-complex N, f !(N∼) is the B-complex

f !(N∼)= RHomA(B, N )∼, (B.6.2)

where RHomA(B,−) denotes the right-derived functor of the functor HomA(B,−)
from A-modules to B-modules.

C. Idempotent ideal sheaves

Definition C.1. Let (X,OX) be a local-ringed space, i.e., X is a topological space
and OX is a sheaf of commutative rings whose stalk at each point is a local ring (not
necessarily noetherian). An OX -ideal is idempotent if it is of finite type (i.e., locally
finitely generated) and satisfies the equivalent conditions in the next proposition.

Proposition C.2. Let (X,OX) be a local-ringed space. Consider the following
conditions on an OX -ideal I .

(i) There is an a ∈ H 0(X,OX) such that a2
= a and I = aOX .

(i′) The identity map of I extends to an OX -homomorphism π : OX → I .
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(ii) There is an open and closed U ⊆ X , with inclusion, say, i : U ↪→ X , and an
OX -isomorphism i∗OU ' I .

(iii) The OX -module OX/I is flat.

(iv) For all OX -modules F, the natural map is an isomorphism I ⊗X F −→∼ I F.

(v) For all OX -ideals J , I J = I ∩ J .

(vi) I 2
= I .

One has the implications

(i)⇐⇒ (i′)⇐⇒ (ii) H⇒ (iii)⇐⇒ (iv)⇐⇒ (v) H⇒ (vi);

and if I is of finite type then (vi) H⇒ (i).

Proof. (i) ⇔ (i′). If (i) holds, let π be the map taking 1 ∈ H0(X,OX) to a.
Conversely, given (i′), let a = π(1).

(ii)⇒ (i). Let a be the global section that is 1 over U and 0 over X \U .
(i)⇒ (vi). Trivial.
(vi)⇒ (ii) when I is of finite type (whence (i)⇒ (ii) always). The support of I ,

U := { x ∈ X | Ix 6= 0 }, is closed when I is of finite type. For any x ∈U, since Ix

is a finitely generated OX,x -ideal such that Ix = I 2
x , therefore Nakayama’s lemma

shows that Ix = OX,x . So X \U = { x ∈ X | OX,x/Ix 6= 0 } is closed, and thus U is
open as well as closed. Clearly, I |U = OU and I |X\U = 0, whence I ' i∗OU .

(i)⇒ (iii). If (i) holds then the germ of a at any x ∈ X is 1 or 0, so (O/I )x is
either (0) or OX,x , both of which are flat over OX,x .

The remaining implications can be tested stalkwise, and so reduce to the cor-
responding well-known implications for ideals I , J in a local ring R, and R-
modules F :

(iii)⇒ (iv). The surjection I⊗R F� I F⊆ R⊗R F has kernel TorR
1 (R/I, F)=0.

(iv)⇒ (v). (I ∩ J )/I J is the kernel of the natural injective (by (iv)) map

R/I J ∼= I ⊗R R/J → R⊗R (R/J )= R/J.

(v)⇒ (iii). Flatness of R/I is implied by injectivity, for all R-ideals J , of the
natural map J/I J ∼= J ⊗R (R/I )→ R⊗R (R/I )= R/I , with kernel (I ∩ J )/I J .

(v)⇒ (vi). Take J = I . �

Corollary C.3. (1) Taking a to aOX gives a bijection from the set of idempotent
elements of H 0(X,OX) to the set of idempotent OX -ideals.

(2) There is a bijection that associates to each idempotent OX -ideal its support —
an open-and-closed subset of X — and to each open-and-closed U ⊆ X, with inclu-
sion map i , the unique idempotent OX-ideal isomorphic to i∗OU , that is, the ideal
whose restriction to U is OU and to X \U is (0). �
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Corollary C.4. A finite-type OX -ideal I is idempotent if and only if for each G ∈
D(X) there exist D(X)-isomorphisms, functorial in G,

RHomX (I,G)' I ⊗L
X G ' I G.

Proof. If I is idempotent then over the open set U := SuppX I one has I = OU , and
over the disjoint open set X \U , I ' 0, so the asserted isomorphisms obviously
exist over X =U t (X \U ).

Conversely, if these isomorphisms hold for all members of the natural triangle

I → OX → OX/I
+
−→

then, since I (OX/I ) = 0, application of the functor RHom(I,−) yields that the
natural map is an isomorphism I ' I 2 in D(X), hence in OX , i.e., I = I 2. �

Corollary C.5. Let X be a locally noetherian scheme. For a complex L ∈ D(X)
the following conditions are equivalent.

(i) L is isomorphic in D(X) to an idempotent OX -ideal.
(ii) L ∈ Db

c(X) and there exists a D(X)-isomorphism L ⊗L
X L −→∼ L.

Proof. If (i) holds then L ∈ Db
c(X) is clear; and taking G = I in C.4, one gets (ii).

When (ii) holds, (i) follows easily from [Avramov et al. 2010a, 4.9]. �

Proposition C.6. Let g : Z → X be a morphism of local ringed spaces (so that
for each z ∈ Z the associated stalk homomorphism OX,gz → OZ ,z is a local ho-
momorphism of local rings). Let I be an OX -ideal. If I is idempotent then so is
I OZ ∼= g∗I ' Lg∗I . The converse holds if g is flat and surjective.

Proof. If I = I 2 then I OZ = (I OZ )
2. Flatness of OX/I implies that I is flat and

that the natural map g∗I → g∗OX = OZ is injective, and thus Lg∗I ' g∗I ∼= I OZ .
If g is flat and surjective then for each x ∈ X there is a z ∈ Z such that g(z)= x ,

and then there is a flat local homomorphism OX,x → OZ ,z . Hence if I OZ = (I OZ )
2

then Ix OZ ,z = I 2
x OZ ,z , i.e., Ix = I 2

x . As this holds for all x , therefore I = I 2. �

Corollary C.7. Let g : Z → X be a morphism of local ringed spaces, and I an
idempotent OX -ideal.

(1) For any E ∈ D(X), there is a unique isomorphism

Lg∗(IE)' I Lg∗E

whose composition with the natural map I Lg∗E→ Lg∗E is the map obtained
by applying Lg∗ to the natural map IE→ E.

(2) If g is a perfect scheme-map then for any E ∈ D+qc(X), there exists a unique
isomorphism g!(IE)' Ig!E whose composition with the natural map Ig!E→
g!E is the map obtained by applying g! to the natural map IE→ E.
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Proof. Uniqueness holds because, I OZ being idempotent, ILg∗E ' I OZ ⊗Z Lg∗E
is a direct summand of OZ ⊗Z Lg∗E ' Lg∗E (Proposition C.2, (iv) and (i′)).

Since both I and OX/I are flat over OX , there are for all F ∈ D(X) natural
isomorphisms Lg∗I ⊗L

Z F ' g∗I ⊗Z F ∼= I F. So for all E ∈ D(X),

Lg∗(IE)' Lg∗(I ⊗L
X E)' Lg∗I ⊗L

Z Lg∗E ' I Lg∗E .

The composition of these isomorphisms has the property asserted in (1).
Similarly, if g is a perfect scheme-map then, using Remark 2.1.6, one gets nat-

ural isomorphisms for all E ∈ D+qc(X),

g!(IE)' g!(I ⊗L
X E)' Lg∗I ⊗L

Z Lg∗E⊗L
Z g!OX ' Lg∗I ⊗L

Z g!E ' I g!E,

that compose to the isomorphism needed for (2). �

The next result is to the effect that idempotence satisfies faithfully flat descent
(without any “cocycle condition”).

Proposition C.8. Let g : Z→ X be a faithfully flat map, and let π1 : Z×X Z→ Z
and π2 : Z×X Z→ Z be the canonical projections. If J is an idempotent OZ -ideal
such that there exists an isomorphism π∗1 J ∼=π∗2 J then there is a unique idempotent
OX -ideal such that J = I OZ .

Proof. (Uniqueness.) If J = I OZ = I ′OZ where I and I ′ are idempotent OX -ideals
with respective supports U and U ′, then g−1U = g−1U ′ (both being the support
of J ), and since g is surjective, therefore U =U ′, so I = I ′.

(Existence.) Let V be the support of J . The support of π∗1 J is π−1
1 V = V ×X Z ,

and similarly that of π∗1 J is Z ×X V . Hence, since π∗1 J ∼= π∗2 J , the following
subsets of Z ×X Z are all the same:

V ×X Z = Z ×X V = (V ×X Z)∩ (Z ×X V )= V ×X V .

If v ∈ V and w ∈ Z are such that g(v) = g(w), then there is a field K and a
map γ : Spec K → V ×X Z = V ×X V such that the set-theoretic images of π1γ

and π2γ are v and w respectively, so w ∈ V . Thus V = g−1g(V ).
We claim that g(V ) is open and closed in X . For this it suffices to show that for

each connected component X ′⊆ X , g(V∩g−1 X ′)= X ′. Without loss of generality,
then, we may assume that X is connected, so X ′ = X .

Since g is flat, if y ∈ g(V ) then the generic point x1 of any irreducible compo-
nent X1 of X containing y is also in g(V ). In fact X1 ⊆ g(V ), else the preceding
argument applied to V̄ := Z \V would show that x1 ∈ g(V̄ )= X \ g(V ). It results
that some open neighborhood of y is in g(V ); and thus g(V ) is open. Similarly,
g(V̄ )= X \ g(V ) is open, so g(V ) is closed.

The conclusion follows, with I the idempotent OX -ideal corresponding to the
open-and-closed set g(V )⊆ X . �
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