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We show how to transport descent obstructions from the category of covers to the
category of varieties. We deduce examples of curves having Q as field of moduli,
that admit models over every completion of Q, but have no model over Q.

1. Introduction

If k is a field, a k-variety is by definition a separated scheme of finite type over
Spec(k). A k-curve is a variety of dimension 1 over k. A k-surface is a variety of
dimension 2 over k.

1a. Statement of the main results. This work constructs descent obstructions in
the category of varieties. For example, we prove the following:

Theorem 1.1. There exists a projective, integral and smooth curve over Q, hav-
ing Q as field of moduli, which has models over all the completions of Q but not
over Q itself.

The main idea is to start from a descent obstruction in the category of finite
morphisms (also called covers) of curves, and to transport it into various other cat-
egories: the category of quasiprojective surfaces, the category of proper surfaces,
and finally the category of smooth curves.

Theorem 1.2. Let k be a field of characteristic zero, and ka be an algebraic closure
of k. Let Xk be a smooth, projective, geometrically integral curve over k and let X
denote the base change to ka of Xk . Let Y be a smooth, projective, integral curve
over ka and let ϕ : Y → X be a (possibly ramified) cover over ka , having k as
field of moduli. There exists a smooth, projective, integral curve over ka having
k as field of moduli and having exactly the same fields of definition as the initial
cover ϕ.

This work is supported by the French Agence Nationale pour la Recherche through project ALGOL
(ANR-07-BLAN-0248).
MSC2000: primary 11R34; secondary 12G05, 11G35, 14D22.
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Descent obstructions have been constructed in the categories of G-covers and
covers [Coombes and Harbater 1985; Dèbes and Fried 1994; Couveignes and
Granboulan 1994] and in the category of dynamical systems [Silverman 1995]. As
far as we know, no example of purely global descent obstruction was known for
varieties. Mestre [1991] gave some examples of local obstructions for hyperelliptic
curves. Dèbes and Emsalem [1999] give a criterion in order to have a model over
its field of moduli for a curve. This criterion involves a particular model for the
quotient of the curve by its automorphism group. Dèbes and Emsalem also prove
that the local-global principle applies to the descent problem for a curve together
with its automorphisms. However they leave open the question of the local-global
principle for a curve (or a variety in general). Purely global descent obstructions
for covers have been constructed by Ros and Couveignes:

Theorem 1.3 [Couveignes and Ros 2004, Corollaire 2]. There exists a connected
ramified Q-cover of P1

Q having Q as field of moduli, having models over all the
completions of Q, but having no model over Q.

Applying Theorem 1.2 to these obstructions, one proves Theorem 1.1.

1b. Overview of the paper. Let k be a field with characteristic zero. Let Xk be a
smooth, projective and geometrically integral curve over k and set X = Xk×k ka to
be the pullback of Xk along the inclusion k ↪→ ka . Our starting point is a smooth
projective and integral curve Y over ka and a nonconstant morphism ϕ :Y→ X . We
look for a variety having the same field of moduli and the same fields of definition
as ϕ. A natural candidate is the complement X×Y −G(ϕ) of the graph G(ϕ) of ϕ
in the product X ×Y . We call it the mark of ϕ. We expect this surface to have the
same field of moduli and the same fields of definition as ϕ. In order to prove it,
we construct a morphism from the stack of models of ϕ onto the stack of models
of the mark of ϕ. Then, we try to prove that this morphism is an equivalence of
categories.

In Section 2, we recall the definition of the stack of “models” of an algebraic
variety over ka (or of a cover of curves over ka). Then, we explain how a mor-
phism between the two gerbes associated with two objects relates the definition
and moduli properties of either objects. It turns out that the key point is to control
the group of automorphisms of the two objects. We first prove, in Section 3, that
the base curve X of our starting cover ϕ can be assumed to have no nontrivial
ka-automorphism. In other words, we construct another k-curve X ′k without any
nontrivial ka-automorphism and a ka-cover Y ′→ X ′k×k ka having the same field of
moduli and the same fields of definition as ϕ. In Section 4, we take it for granted
that X has no nontrivial automorphism and we prove that the mark of ϕ has the
same field of moduli and the same fields of definition as ϕ. In Section 5, we assume



Global descent obstructions for varieties 433

that the field of moduli of the cover ϕ is k and we construct a proper normal ka-
surface having k as field of moduli and the same fields of definition as ϕ. This
proper surface is a cover of X×Y , strongly ramified along the graph of ϕ. Finally,
in Section 6, we construct a projective ka-curve, having k as field of moduli, and
having the same fields of definition as the initial cover ϕ. This curve lies on the
previous surface, and is obtained by deformation of a stable curve having the same
automorphism group as the surface.

Notation. If k is a field, we denote by ka its algebraic closure. Let l be a k-
extension and let Xl be an l-variety. We denote by Autl(Xl) or simply Aut(Xl) the
group of automorphisms of the l-variety Xl (that is, automorphisms over Spec(l)).
We denote by Autk(Xl) the group of automorphisms of the k-scheme Xl (that is,
automorphisms over Spec(k)). For f ∈ l(Xl) we write ( f )0 for the divisor of zeros
of f , and ( f )∞ for the divisor of poles.

2. Stack of “models”

In this section k is a field of characteristic zero and ka is an algebraic closure of k.

2a. The conjugate of a variety. Let X be a ka-variety. We denote by π : X →
Spec(ka) the structural morphism. Let σ : ka

→ ka be a k-isomorphism. We
denote by σX the ka-variety defined to be X itself with the structural morphism
σπ = Spec(σ )(−1)

◦ π . The square below is cartesian and σπ is the pullback of π
along Spec(σ ).

σX π //

Id
��

Spec(ka)
Spec(σ )(−1)

// Spec(ka)

Spec(σ )
��

X
π // Spec(ka)

With this (slightly abusive) notation one has τ(σ(π))= τσπ and τ(σ(X))= τσX . If X
is an affine variety, then σX is obtained from X by letting σ act on the coefficients
in the defining equations of X .

2b. The field of moduli. It is natural to ask whether X and σX are isomorphic.
They are certainly isomorphic as schemes (and even equal by definition), but as
varieties over ka , they are isomorphic if and only if there exists an isomorphism
φσ that makes the following diagram commute:

X
φσ //

π

��

X

π

��
Spec(ka)

Spec(σ ) // Spec(ka)

(1)
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The existence of such a square means that the isomorphism Spec(σ ) of Spec(ka)

lifts to an isomorphism φσ of X . The set of such σ is a subgroup of Gal(ka/k).
The fixed field of this subgroup is a finite extension of k called the field of moduli
of X .

2c. Fields of definition. Another natural question: given l ⊂ ka an algebraic ex-
tension of k, do an l-variety πl : Xl→ Spec(l) and a cartesian square

Xl oo

πl

��

X

π

��
Spec(l) oo

Spec(⊂)
Spec(ka)

(2)

(where the line below is the spectrum of the inclusion) exist or not? If such a square
exists we say that l is a field of definition of X . We say that πl : Xl → Spec(l) is
a model of π : X → Spec(ka) over l. One may wonder whether it is important to
impose the arrow below in the definition above. The answer is yes, it is, in general.
The existence of such a cartesian square may depend on the chosen arrow below.
However, if k is the field of moduli of X , then we may compose the cartesian
squares in (1) and (2) as

Xl oo

πl

��

X

π

��

X
φσoo

π

��
Spec(l) oo

Spec(⊂)
Spec(ka) Spec(ka)

Spec(σ )oo

and choose any of the arrows below.
Another simple observation: if X has a model πk : Xk→ Spec(k) over k, then k

is the field of moduli of X . Indeed, we write X as a fiber product X = Xk ×k ka

and we take for φσ the fiber product IdXk ×Spec(k) Spec(σ ) where IdXk : Xk→ Xk

is the identity on Xk . One may wonder whether the converse is true or not.

2d. Descent obstructions. Let’s assume that k is the field of moduli of the ka-
variety X . Does there exist a model over k? If the answer is no, we say that there
is a descent obstruction. In case k is a number field, we say that the obstruction
is purely global if k is the field of moduli and if there is no model over k, but for
every place v of k there exists a model of X over some extension l ⊂ ka such that
l can be embedded in the completion kv of k at v.

2e. The fibered category of “models” of a variety. We denote by Et /Spec(k) the
category of finite étale morphisms over Spec(k). An object U in this category is a
structural morphism Spec(l)→ Spec(k), where k ↪→ l is a finite étale k-algebra.
We define a covering of U to be a surjective family (Ui → U )i of morphisms in
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Et /Spec(k). This turns Et /Spec(k) into a site called the étale site on Spec(k).
It satisfies the three axioms of a site: the pullback of a covering exists and is a
covering, a covering of a covering is a covering, and the identity is a covering.1

Given a ka-variety X , we define the fibered category over Et /Spec(k) of its
“models”. For any k-algebra l, we must say what we mean by a “model” of X over
Spec(l). If l is a field, we say that an l-variety πl : Xl → Spec(l) is a “model” of
X over Spec(l) if and only if there exist an embedding e : l ↪→ ka over k and a
cartesian square

Xl oo

πl

��

X

π

��
Spec(l) oo

Spec(e)
Spec(ka).

This time, we insist on the fact that we do not fix an embedding of l into ka . In
particular, if l is a subfield of ka containing k, we accept models of X but also
models of all its conjugates. So the word model here is less restrictive than in
Section 2c. That is why we write the word model between quotation marks in that
case. As we have already noticed, the two notions coincide when k is the field of
moduli of X . If l is any finite étale algebra over k, then it is a direct product of
finitely many finite field extensions of k. We define a “model” of X over Spec(l) to
be a disjoint union of “models” of X over every connected component of Spec(l).

Definition 2.1 (the category MX of “models” of X ). Let X be a ka-variety. The
category of “models” of X , denoted MX , is the category whose objects are all
“models” of X over all finite étale k-algebras, and whose morphisms are the carte-
sian squares

Xl //

πl

��

Xm

πm

��
Spec(l) //

!!

Spec(m)

||
Spec(k).

The functor that associates Spec(l) to every “model” over Spec(l) turns MX into a
fibered category over Et /Spec(k); we denote by MX (l) or MX (Spec(l)) the fiber
over Spec(l).

1Note that in this paper, we use the word covering in the context of sites. We keep the word cover
for a finite morphism between two varieties, for example, two smooth projective and geometrically
integral curves.
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In particular, we can pull back a “model” Xl → Spec(l) along any morphism
Spec(m)→Spec(l) over Spec(k). Let’s note that pulling back is not quite innocent
since it can turn a model into its conjugates, so to say.

2f. Descent data. We recall that under mild conditions, the fibered category MX

is a stack. We need a few definitions and elementary results about descent data
(see Giraud [1964] or Vistoli’s notes [2005]). Let S be a site and let X be a fibered
category over S. Let U be an object in S and let U = (Ui → U )i be a covering
of U . A descent datum from U to U is a collection of objects X i →Ui . For every
i and every j , we also want an isomorphism φi j : π

∗

2 (X j )→ π∗1 (X i ), where π1

and π2 are the two “projections” in the cartesian diagram

Ui ×U U j

π2 ''π1ww
Ui

''

U j .

vv
U

We also require the compatibility relation

π∗12(φi j ) ◦π
∗

23(φ jk)= π
∗

13(φik) for any i , j , and k. (3)

Here the π12, π23, π31 are the partial “projections” in the cube

Ui jk
π12

yy

π23 // U jk

zz

��

Ui j //

��

U j

��

Uik

��
π13

yy

// Uk

yy
Ui // U

and Ui j =Ui ×U U j and Ui jk =Ui ×U U j ×U Uk .
A morphism of descent data is a collection of local morphisms that are com-

patible with the glueing morphisms on either sides. Thus we obtain a category
DescX(U,U ) for every covering U of U . We denote by X(U ) the fiber of X above
U . There is a functor X(U )→ DescX(U,U ) that associates to any object over
U the collection of its restrictions over the Ui . These constructions are functorial.
For example, if Y is another fibered category and F : X→ Y a cartesian functor,
then F induces a functor from X(U ) to Y(U ) and a functor from DescX(U,U )
to DescY(U,U ). Also, the composite functors X(U )→ Y(U )→ DescY(U,U )
and X(U )→ DescX(U,U )→ DescY(U,U ) are isomorphic. A fibered category
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X over a site S is a stack if and only if all the functors X(U )→ DescX(U,U ) are
equivalences of categories.

2g. When MX is a stack, respectively a gerbe. If X is a ka-variety, then MX is a
fibered category over Et /Spec(k) and it makes sense to ask if it is a stack or not.
We first notice that if l ⊂ m are two finite field extensions of k, then Spec(m)→
Spec(l) is a covering of Spec(l). If further m/ l is Galois, then a descent datum
from Spec(m) to Spec(l) is a model πm : Xm→ Spec(m) of X over Spec(m) and,
for every σ in Gal(m/ l), an automorphism φσ : Xm→ Xm of l-scheme, such that
the diagram

Xm
φσ //

πm

��

Xm

πm

��
Spec(m)

Spec(σ ) // Spec(m)

commutes. We stress that the φσ need not be automorphisms of the m-variety Xm

but only automorphisms of the l-scheme Xm . Let Autl(Xm) denote the set of
automorphisms of the l-scheme Xm . The meaning of condition (3) is that the map
Spec(σ ) 7→ φσ must be a group homomorphism from AutSpec(l)(Spec(m)) into
Autl(Xm).

Proposition 2.2. Let X be a variety over ka . If X is affine or projective or if
every finite subset of X (ka) is contained in an affine subvariety, then the fibered
category MX is a stack over Et /Spec(k).

Proof. This is a consequence of Weil’s descent theory. See the initial article of
Weil [1956] or Serre’s book [1959, Chapter V, Section 4]. �

Let us recall that a locally nonempty and locally connected stack is called a
gerbe. More precisely, a stack X over a site S is a gerbe if and only if

(1) for every object U in S, there exists a covering (Ui→U )i of U such that the
fibers over the Ui are nonempty,

(2) given two objects X 7→ U and Y 7→ U above U , there exists a covering
(Ui → U )i such that for every i the pullbacks X ×U Ui and Y ×U Ui are
isomorphic over Ui , and

(3) for every object U in S, the fiber X(U ) is a groupoid.

The stack MX of “models” of a variety X always satisfies conditions one and
three, whereas the second holds true if and only if k is the field of moduli of X .

2h. The stack, next the gerbe of “models” of a cover of curves. Since the starting
point of our construction is a cover of curves, we now define the stack of “models”
of a cover of curves. Let Xk be a smooth, projective, geometrically integral curve
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over k. We set X = Xk×k ka . Let Y be a smooth projective and integral curve over
ka and let ϕ : Y → X be a nonconstant morphism. We say that ϕ is a cover of X .
An isomorphism between two covers ϕ :Y→ X and ψ : Z→ X is an isomorphism
of ka-varieties i : Y → Z such that ψ ◦ i = ϕ.

The conjugate of a cover. If σ is a k-automorphism of ka , the conjugate variety
σX is obtained from X by composing the structural morphism on the left with
Spec(σ )(−1). The same is true for Y . So any ka-morphism ϕ from Y to X can
be seen as a ka-morphism σϕ from σY to σ X . Since X is the fiber product of Xk

and Spec(ka) over Spec(k), we have a canonical isomorphism φσ = IdXk ×Spec(k)

Spec(σ ) between X and σX . The composite map φ(−1)
σ ◦

σϕ is a morphism of ka-
varieties from σY to X . We call it the conjugate of ϕ by σ . We may denote it σϕ
also by abuse of notation.

The field of moduli. This is the fixed field by the subgroup of Gal(ka/k) consisting
of all σ such that σϕ is isomorphic to ϕ.

Fields of definition, models. If l ⊂ ka is an algebraic extension of k, we set Xl =

Xk ×k l. Let Yl be a smooth projective and geometrically connected l-curve. Let
ϕl : Yl → Xl be a cover. If we lift ϕl along the spectrum of the inclusion l ⊂ ka ,
we obtain a morphism from Yl×l ka onto X = Xl×l ka . If this cover is isomorphic
to ϕ : Y → X , we say that ϕl is a model of ϕ over l. So it makes sense to ask
whether (purely global) obstructions to descent for covers of curves exist or not. It
is proved in [Couveignes and Ros 2004] that such obstructions do exist.

The fibered category of “models” of a cover. Given a finite étale k-algebra l, we
explain the meaning of a “model” of ϕ over l. If l is a finite field extension of k, we
set Xl = Xk ×k l. Let Yl be a smooth projective and geometrically integral curve
over Spec(l), and let ϕl : Yl → Xl be a cover defined over Spec(l). We pick now
any embedding e : l → ka over k. The pullback of Xl along Spec(e) is X (up to
unique isomorphism) and we have the following diagram:

Yl
ϕl

{{

��

Yl ×l ka

��

xx

oo

Xk

��

Xloo

��

Xoo

��
Spec(k) Spec(l)oo Spec(ka)

Spec(e)oo

We say that ϕl is a “model” of ϕ if the cover ϕl ×Spec(l) Spec(ka) : Yl ×l ka
→ X

is isomorphic to ϕ. Again the choice of the embedding e does not matter. We just
ask such an embedding to exist. If l is any finite étale algebra over k, we define
a “model” of ϕ over Spec(l) to be a disjoint union of “models” of ϕ over every
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connected component of Spec(l). We write Mϕ for the category of all models
of ϕ. This is a fibered category over Et /Spec(k). The following proposition is a
consequence of Weil’s descent theorem.

Proposition 2.3. Let Xk be a smooth, projective, geometrically integral curve
over k and set X = Xk ×k ka . Let Y be a smooth projective and integral curve
over ka and let ϕ : Y → X be a nonconstant morphism of ka curves. Then the
fibered category Mϕ is a stack over Et /Spec(k).

As in the case of varieties, the stack M f is a gerbe if and only if k is the field
of moduli of f .

2i. Transporting obstructions. The next result summarizes the previous sections.

Proposition 2.4. Let X be a ka-variety (or a cover of curves). Then k is the field of
moduli of X if and only if the stack MX is a gerbe. The field l is a field of definition
of X if and only if the fiber MX (l) is not empty.

Let X and Y be two ka-varieties. A cartesian morphism of stacks F :MX→MY

is a functor of fibered categories (it transforms cartesian squares into cartesian
squares). Such an F associates an l-model F(Xl) of Y to every l-model Xl of X ,
and commutes with base change. One can use it to relate descent obstruction for X
and for Y .

Proposition 2.5. Let X and Y be either ka-varieties or covers of curves. Suppose
that there exists a morphism F :MX →MY of stacks.

(1) If k is the field of moduli of X , then k is the field of moduli of Y .

(2) If l is a field of definition of X , then l is also a field of definition of Y .

(3) Assume further that k is the field of moduli of X and that F is fully faithful.
Then l is a field of definition of X if and only if l is a field of definition of Y .

Proof. Assertions 1 and 2 result from Proposition 2.4 and Section 2g. Assertion 3
is a consequence of the following lemma. �

Lemma 2.6. Let X and Y be two gerbes over a site S and let F : X → Y be a
cartesian morphism. If F is fully faithful, then F is essentially surjective.

Proof. Let U be an object in S and let Y → U be an object in the fiber Y(U ).
Locally X(U ) is not empty: there exist a covering (Ui→U )i of U and objects X i ∈

X(Ui ) for every i . Set Yi = Y ×U Ui . Locally, Yi and F(X i ) are isomorphic: there
exists a covering (Ui j→Ui ) j such that Yi×Ui Ui j and F(X i×Ui Ui j ) are isomorphic.
Set X i j = X i ×Ui Ui j and Yi j = Yi ×Ui Ui j .

The set of objects (Yi j→Ui j )i j defines a descent datum from (Ui j→U )i j to U ;
indeed for every i, j, i ′, j ′, pulling back identity gives rise to isomorphisms

8i j i ′ j ′ : Yi ′ j ′ ×Ui ′ j ′
Ui j i ′ j ′→ Yi j ×Ui j Ui j i ′ j ′
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which clearly satisfy the compatibility conditions (3) of Section 2f. Since F is fully
faithful, there exist isomorphisms

9i j i ′ j ′ : X i ′ j ′ ×Ui ′ j ′
Ui j i ′ j ′→ X i j ×Ui j Ui j i ′ j ′

which, in turn, satisfy the compatibility conditions (3) of Section 2f. We deduce
that there exists X→U in X(U ) such that F(X)= Y . �

We now give an example of morphism between two stacks of “models” of a
variety.

Proposition 2.7. Let X be a integral variety over ka having k as field of moduli
and let G be a finite subgroup of Autka (X) which is normal in the group Autk(X).
Assume that every orbit of G is contained in an affine open subset of X. Then there
is a morphism from MX to MX/G , where X/G denotes the quotient variety of X
by G.

Let Y ⊂ X/G be the complement of the branch locus of X → X/G. This is an
open subvariety of X/G and there is a morphism of stacks from MX to MY .

Proof. We first need to define the image of an object. Let l be an extension
of k and let Xl be a “model” of X in MX (l). The elements of G may not be
all defined over l, but there exists a finite Galois extension m of l over which
they are. Set Xm = Xl ×l m. Let pm : Xm → Xm/G be the canonical projection
onto the quotient of Xm by the group G. According to Section 2g, there exists a
group homomorphism σ 7→ φσ from Gal(m/ l) to Autl(Xm). Since G is a normal
subgroup of Autk(X), it is normal in Autl(Xm) also. Thus for every g ∈ G and
every σ ∈Gal(m/ l), one has φσ ◦g◦φ−1

σ ∈G. We deduce that pm ◦φσ ◦g= pm ◦φσ

for every g ∈ G. This implies that φσ factorizes into ψσ : Xm/G → Xm/G. By
uniqueness of this factorization, the correspondence σ 7→ ψσ is a group homo-
morphism from Gal(m/ l) to Autl(Xm/G); therefore the quotient Xm/G descends
to l.

Next, we define the image of a morphism. Let X i → Spec(li ) for i = 1, 2 be
two “models” of X . One can complete a cartesian square involving the X i as

X1

��

X2

��

oo Xm

��

oo

Spec(l1) Spec(l2)oo Spec(m),oo

where m is a finite Galois extension of k such that all the elements of G are defined
over m. We know that there exist isomorphisms 81 and 82 making the following
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diagrams commute:

Y1

��

Xm/G

��

81oo

Spec(l1) Spec(m)oo

Y2

��

Xm/G

��

82oo

Spec(l2) Spec(m)oo

The image of the starting cartesian square is nothing but

Y1

��

Y2

��

81◦8
−1
2oo

Spec(l1) Spec(l2).oo

This completes the proof of the first statement. The second is true since taking the
branch locus commutes with base changes. �

3. Cancellation of the automorphism group of the base curve

In this section, k is a field of characteristic zero, ka is an algebraic closure of it, and
l⊂ ka is an algebraic extension of k. Let Xk be a projective, smooth, geometrically
integral curve over k and set X = Xk×k ka . We assume that we are given a smooth
projective and integral curve Y over ka and a cover ϕ : Y → X having k as field
of moduli. We want to construct covers having the same field of moduli and the
same fields of definition as ϕ but satisfying additional properties. For example, we
would like the base curve X to have no nontrivial ka-automorphism. We first prove
that the degree of the cover can be multiplied by any prime integer not dividing
the initial degree.

Proposition 3.1. Let Xk be a smooth, projective, geometrically integral curve
over k and set X = Xk ×k ka . Let Y be a smooth projective and integral curve
over ka and let ϕ : Y → X be a degree d cover. For every prime p not dividing d,
there exist a smooth projective curve Y ′ over ka and a degree pd cover ψ : Y ′→ X
having the same field of moduli and the same fields of definition as ϕ.

Proof. Let f ∈ k(Xk) be a nonconstant function whose divisor is simple and does
not meet the ramification locus of ϕ. The equation h p

= f defines a degree p
extension of k(Xk). We denote by X ′k the smooth, projective, geometrically in-
tegral curve corresponding to this function field and we set X ′ = X ′k ×k ka . The
morphism ν : X ′→ X is a degree p cyclic cover. We fix an algebraic closure �
of ka(X) and embeddings of ka(X ′) and ka(Y ) in �. Let Y ′ be the smooth projec-
tive ka-curve corresponding to the compositum of ka(Y ) and ka(X ′). Since the field
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extensions ka(Y ) and ka(X ′) are linearly disjoint over ka(X), the cover ψ :Y ′→ X
has degree pd:

Y ′
ϕ′

~~

ν′

��
ψ

��

X ′

ν   

Y

ϕ��
X

We prove this construction yields a morphism of stacks F :Mϕ→Mψ . Let l⊂ ka be
a finite extension of k. Set Xl = Xk×k l and X ′l = X ′k×k l and consider ϕl : Yl→ Xl

an l-model of ϕ. In the construction above, one can replace X , X ′, Y by Xl , X ′l , Yl .
The l-curve Y ′l corresponding to the compositum of the two function fields l(X ′l)
and l(Yl) is smooth, projective, geometrically integral (because l is algebraically
closed in the compositum) curve, and the l-cover ψl : Y ′l → Xl is an l-model of ψ .
We define the morphism F by setting F(ϕl) = ψl . Since the function f has been
chosen in k(X), the functor F maps cartesian squares to cartesian squares. Thus F

is a morphism of stacks. According to Proposition 2.5, if l is a field of definition
of ϕ then l is a field of definition of ψ and if ϕ has k as field of moduli then ψ has
k as field of moduli.

To prove the converse, we construct a morphism the other way around using
Proposition 2.7. Let ν ′ denote the Galois cover Y ′→ Y . We need to show that the
group Aut(ν ′) is normal in Autk(ψ). Let8′ ∈Autk(ψ). It induces maps8 :Y→Y
and 9 : X→ X such that the following diagram commutes:

Y ′
8′ //

ν′ ��
ψ

&&

Y ′

ν′��
ψ

xx

Y
ϕ
��

8 // Y
ϕ
��

X
9 //

!!

X

}}
Spec(k)

(4)

(horizontal arrows are morphisms of k-schemes). The existence of 9 results form
X being defined over k. The morphism 8 exists because Y

ϕ
→ X is the maximal

subcover of Y ′
ψ
→ X unramified at the support of f . And f is k-rational. Now if

3 ∈ Autka (ν ′), that is, ν ′ ◦3= ν ′, then

ν ′ ◦8′ ◦3=8 ◦ ν ′ ◦3=8 ◦ ν ′ = ν ′ ◦8′,
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so 8′ ◦3◦8′−1
∈Autka (ν ′), which was to be proved. So we have a morphism G :

Mψ →Mϕ of stacks and the lemma follows. �

Remark. The functor F : Mϕ → Mψ is not fully faithful because ψ has more
automorphisms than ϕ. This is why we cannot apply point (3) of Proposition 2.5
here. We construct another functor G :Mψ→Mϕ instead and we apply points (1)
and (2) of Proposition 2.5 to either functors F and G successively. We notice that G

is a left inverse of F.

Next, we show that the base curve can be assumed to have genus greater than 2.

Proposition 3.2. Let Xk be a smooth, projective, geometrically integral curve
over k and set X = Xk ×k ka . Let Y be a smooth projective and integral curve
over ka and let ϕ : Y → X be a degree d cover. There exist a smooth, pro-
jective, geometrically integral curve X ′k over k of genus greater than 2 and a
cover ϕ′ : Y ′ → X ′k ×k ka having the same field of moduli and the same fields
of definition as ϕ.

Proof. We use the construction and notation of diagram (4) above. We further
assume that the chosen function f has degree at least 3. By the Hurwitz genus
formula, the curve X ′ has a genus greater than or equal to 2. This construction
yields a morphism of stacks F :Mϕ→Mϕ′ . The cover ϕ : Y → X is the maximal
subcover of ψ : Y ′→ X unramified at the support of f . Therefore, there exists a
morphism from Autka (ϕ′)→Autka (ϕ). This morphism is bijective because ka(X ′)
and ka(Y ) are linearly disjoint over ka(X). So the morphism F is fully faithful. We
conclude by invoking Proposition 2.5. �

We now prove that one can assume that the base curve has no nontrivial ka-
automorphism.

Proposition 3.3. Let Xk be a smooth, projective, geometrically integral curve
over k and set X = Xk×k ka . Let Y be a smooth projective and integral curve over
ka and let ϕ : Y → X be a cover. There exists a smooth, projective, geometrically
integral curve X ′k over k, of genus greater that 2, such that X ′ = X ′k ×k ka has no
nontrivial automorphism and there exists a cover ϕ′ : Y ′ → X ′ having the same
field of moduli and the same fields of definition as ϕ.

Proof. Thanks to Proposition 3.2, one can assume that the genus g(X) of X is
greater than 2. So the group Aut(X) of ka-automorphisms is finite. Let p ≥ 3 be
a prime integer.

We first show that there exists a nonconstant function f ∈ k(X) that is non-
singular above 2, −2 and∞, of degree greater than 2+4p(g(X)−1)+2p2, such
that the set f −1({−2, 2}) is not invariant by any nontrivial automorphism of X , and
such that the set of singular values of ϕ does not meet the set f −1({2,−2,∞}).
Indeed, let D be a simple effective divisor on X with degree greater than 2 +
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4p(g(X)− 1)+ 2p2. We also assume that D is disjoint from the set of singular
values of ϕ and the linear space L(D) associated with D generates ka(X) over ka .
In particular, for every θ ∈Aut(X), this linear space is not contained in the Kernel
of θ − Id. It is not contained in the kernel of θ + Id either because it contains ka .
If D has been chosen of large enough degree, the functions in L(D) having degree
less than the degree of D are contained in a finite union of strict vector subspaces.
Therefore there exists a nonconstant function f ∈ L(D) such that deg( f )=deg(D)
and θ( f ) 6= ± f for all θ ∈ Aut(X) \ {Id}. By construction, this function is not
singular above ∞ and f −1(∞) does not meet the singular values of ϕ. We can
also assume that f ∈ k(Xk).

By construction, the function f 2 has no nontrivial automorphism (in short,
Autka( f 2)(ka(X)) = {Id}). Using Lemma 7.3, we deduce that almost all the fibers
of f 2 are nonsingular and not fixed by any nontrivial automorphism of Aut(X). In
particular, there exists λ ∈ k∗ such that the fiber of f 2 above λ2 is nonsingular, not
fixed by any nontrivial automorphism in Aut(X) and does not meet the singular
values of ϕ. The function 2 f/λ satisfies all the required properties. Denote it by f .

Now the equation h p
+ h−p

− f = 0 defines a regular extension of k(Xk).
Let X ′′k be the smooth, projective, geometrically integral curve associated with this
function field. We denote by w the automorphism of X ′′k given by w(h) = h−1

and by X ′k the quotient X ′′k /〈w〉; this is a smooth, projective, geometrically integral
k-curve, covering Xk by a degree p k-cover νk : X ′k → Xk . Extending scalars
to ka , we obtain a Galois cover X ′′→ X of ka-curves, with Galois group Dp, and
whose singular values are exactly f −1({2,−2,∞}). Since the subgroup 〈w〉 is
self-normalized in Dp, the quotient by this subgroup is a subcover ν : X ′→ X of
ka-curves of degree p having no nontrivial automorphism.

Because the ramification loci do not meet, the function fields ka(X ′′) and ka(Y )
are linearly disjoint over ka(X). Let Y ′ and Y ′′ be the smooth, projective, inte-
gral curves corresponding to the compositum of ka(Y ) with ka(X ′) and ka(X ′′),
respectively. We have the diagram

︸ ︷︷ ︸
k-rational towers

P1

��

X ′′
hoo

��

Y ′′oo

��
P1

��

X ′
h+ 1

hoo

ν

��

Y ′
ϕ′
oo

��
P1 X

foo Yϕ
oo

The cover Y ′′ → Y is again a Dp-Galois cover and the cover Y ′′ → Y ′ has
degree 2. Let us show that the cover ϕ′ : Y ′→ X ′ has the expected properties.
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First of all, it is clear that the construction above yields a morphism of stacks
F : Mϕ → Mϕ′ . The Galois equivariance is a direct consequence of the fact that
the middle tower is defined over k. This morphism is in fact fully faithful because
the subcover ϕ : Y → X of ν ◦ ϕ′ : Y ′→ X is the maximal subcover unramified
at f −1({2,−2,∞}).

It remains to prove that the curve X ′ has no nontrivial automorphism. Let θ ′

be an automorphism of X ′. Call Z the image of ν × (ν ◦ θ ′) : X ′ → (X × X).
Let π1 : X × X → X be the projection onto the first factor. The map ν factors as
ν : X ′→ Z

π1
−→ X and it has prime degree p. So Z is either isomorphic to X or

birationaly equivalent to X ′. In the latter case, the geometric genus of Z would
be > 1

4 deg( f )p ≥ 1+ 2p(g(X)− 1)+ p2 by the Hurwitz genus formula. But
the bidegree of Z is ≤ (p, p). So, by Lemma 7.1, its virtual arithmetic genus is
less than 1 + 2p(g(X) − 1) + p2, a contradiction. Thus Z is a correspondence
of bidegree (1, 1) that defines an automorphism θ of X such that θ ◦ ν = ν ◦ θ ′.
Such an automorphism preserves the ramification data of ν, that of its Galois clo-
sure X ′′→ X , and that of the unique subcover of degree 2 of the cover X ′′→ X .
Since this last cover is exactly ramified above f −1({−2, 2}), we deduce that θ = Id
and then that θ ′ is a ka-automorphism of the cover ν. Since ν has no nontrivial
automorphism, θ ′ = Id. �

4. Quasiprojective surfaces

In this section we prove the following theorem:

Theorem 4.1. Let k be a field of characteristic zero. Let Xk be a smooth, projec-
tive, geometrically integral curve over k and set X = Xk×k ka . Let Y be a smooth,
projective, integral curve over ka and let ϕ : Y→ X be a nonconstant morphism of
ka curves. Then there exists a smooth quasiprojective integral ka-surface having
the same field of moduli and the same fields of definition as ϕ.

First of all, by Propositions 3.2 and 3.3, one can assume the base curve X to
have genus greater than 2 and no nontrivial ka-automorphism. Let G(ϕ)⊂ X ×Y
be the graph of ϕ. Let U be the open complementary set of G(ϕ) in X × Y . We
show that the surface U has all the expected properties. We call it the mark of the
cover ϕ : Y → X . We first prove two lemmas.

Lemma 4.2. Let l/k be a finite extension of k inside ka . Let Xk be a smooth,
projective, geometrically integral k-curve. Set X = Xk ×k ka and assume that the
genus of X is greater than 2 and that X has no nontrivial ka-automorphism. Let Ul

and Vl be the marks of two nontrivial geometrically integral l-covers ϕl : Yl → Xl

and ψl : Zl→ Xl , where Xl = Xk ×k l.
Then every morphism of covers between ϕl : Yl → Xl and ψl : Zl → Xl in-

duces a morphism between the corresponding marks Ul and Vl . Conversely, every
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surjective l-morphism from Ul to Vl is equal to Id× γl , where γl : Yl → Zl is an
l-morphism between the covers ϕl : Yl→ Xl and ψl : Zl→ Xl .

Proof. An l-morphism between the covers Yl
ϕl
−→ Xl and Zl

ψl
−→ Xl is a morphism

of l-curves γl :Yl→ Zl such thatψl◦γl =ϕl . The product Id×γl : Xl×Yl→ Xl×Zl

maps the graph of ϕl to the graph of ψl and also the mark Ul to the mark Vl .
Conversely, let υl be a surjective l-morphism form Ul to Vl . We denote by

υ : U → V , ϕ : Y → X , ψ : Z → X the base change to ka of υl , ϕl , ψl ,
respectively. Let y be a closed ka-point of Y . Let π2 : X×Z→ Z be the projection
onto the second factor. The restriction of π2 ◦ υ to (X × {y}) ∩U is a constant
because the genus of X is less than that of Z . We denote by γ (y) this constant;
this defines a morphism γ : Y → Z which cannot be constant since υ is surjective.
Let π1 : X× Z→ X be the projection onto the first factor. The restriction of π1 ◦υ

to (X × {y}) ∩ U is a morphism βy with values in X . Let F ⊂ Y the set of
closed ka-points of Y such that the morphism βy is constant. This is a closed
set, and a finite one because υ is surjective. For a closed ka-point y 6∈ F , the
morphism βy induces an automorphism of X , which is trivial because X has no
nontrivial automorphism. Thus υ(x, y) = (x, γ (y)) for every closed ka-point x
on X and y on Y with y 6∈ F and (x, y) ∈U . Let x be a closed ka-point of X . The
restriction of π1 ◦ υ to ({x} × Y )∩U is constant and equal to x on the nonempty
open set ({x}× (Y − F))∩U . So it is a constant function. So F is empty and υ is
the restriction of Id× γ to U . Thus Id× γ maps U to V and therefore ψ ◦ γ = ϕ.
Moreover γ must be defined over l since υ,U, V are defined over l. �

Lemma 4.3. Suppose Xk is a smooth, projective, geometrically integral k-curve.
Assume that X = Xk ×k ka has genus greater than 2 and no nontrivial ka-auto-
morphism. Let U be the mark of a nonconstant ka-cover ϕ : Y → X , where Y is a
smooth, projective, integral ka-curve. Then

(1) k is the field of moduli of U (in the category of quasiprojective varieties) if
and only if it is the field of moduli of the cover ϕ : Y → X , and

(2) an algebraic extension of k is a field of definition of U if and only if it is a field
of definition of the cover ϕ : Y → X.

Proof. It is clear that the construction of the mark from the cover commutes with
base change. This yields a morphism of stacks F :Mϕ→MU , which is fully faithful
according to Lemma 4.2. The result follows by Proposition 2.5. In particular, F

has an inverse functor G :MU →Mϕ . �

5. Proper normal surfaces

In this section we prove the following theorem:
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Theorem 5.1. Let k be a field of characteristic zero. Let Xk be a smooth, projec-
tive, geometrically integral curve over k and set X = Xk ×k ka . Let Y be a smooth
projective, integral curve over ka and let ϕ : Y → X be a cover. Assume that k is
the field of moduli of ϕ. Then, there exists a proper, normal and integral surface S
over ka , having k as field of moduli, and having the same fields of definition as ϕ.

We construct the surface in question as a cover of the product X × Z , strongly
ramified along the graph of ψ , where ψ : Z → X is a well chosen cover derived
from ϕ.

5a. Construction of the surface S. The construction of the surface is divided into
several steps.

Step 1 (starting point). We keep notation and assumptions of Theorem 5.1. We
denote by g(X) the genus of X and by d the degree of the cover ϕ. According to
Proposition 3.3, we may assume that g(X) is at least 2 and that X has no nontrivial
automorphism over ka .

Step 2 (a system of generators f1, . . . , f I of the function field k(Xk)). We need
many k-rational functions on X .

Lemma 5.2 (the functions fi on X and the primes pi ). There exist I ∈ N∗, some
prime integers p1, . . . , pI > d , and functions f1, . . . , f I ∈ k(Xk) satisfying the
following conditions:

(1) The functions ( fi )1≤i≤I generate the field k(Xk) over k.

(2) For every 1 ≤ i ≤ I and every λ ∈ ka , none of the functions fi − λ is a pi -th
power in ka(X).

(3) Let 5 =
∏I

i=1 pi and let M and m be the maximum and minimum, respec-
tively, among the degrees of the fi . Then

1+ 2(g(X)− 1)5+52 < m ≤ deg( fi )≤ M

for all i such that 1≤ i ≤ I .

Proof. We first choose a finite generating system (h j )1≤ j≤J of k(Xk) over k. We
assume that none of the h j is a power in ka(X). We set I = 2J and let5=

∏I
i=1 pi

be the product of the first I prime integers greater than the degree d of ϕ. We choose
two distinct prime integers a and b, both greater than 1+2(g(X)−1)5+52. For
every 1≤ j ≤ J , we set

f j = ha
j and f j+J = hb

j .

We can choose a and b in so that none of the functions fi − λ is a pi -th power
in ka(X) for λ ∈ ka and 1 ≤ i ≤ I : this is evident for λ = 0. If λ 6= 0 and if
ha

i −λ=
∏

0≤k≤a−1(hi−ζ
k
a λ

1/a) is a power, then hi has at least a distinct singular
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values. This is impossible if we choose an a greater than the number of singular
values of hi .

We also note that the ( fi )1≤i≤I generate k(Xk) over k and that they all have a
degree greater than 1+ 2(g(X)− 1)5+52, as expected. �

Step 3 (a coverψ : Z→ X of large enough degree). Let p be a prime integer greater
than (g(X)+ I M)5. We call Z the curve and ψ : Z → X the degree pd cover
given by Proposition 3.1. The genus of Z is greater than dp> (g(X)+ I M)5 and
the covers ϕ and ψ have the same field of moduli and the same fields of definition.

Step 4 (a system of functions g1, . . . , gI on X × Z ). Using the previous func-
tions fi , we define functions on X × Z .

Lemma 5.3 (the functions gi on X× Z ). For every 1≤ i ≤ I , let gi be the function
on X × Z defined by

gi (P, Q)= fi (ψ(Q))− fi (P).

Then

(1) the negative part (gi )∞ of the divisor of gi is ( fi )∞× Z + X × ( fi ◦ψ)∞,

(2) the positive parts (gi )0 are such that gcdi ((gi )0) = G(ψ), where G(ψ) is the
graph of ψ , and

(3) for every point P ∈ X the function Q 7→ gi (P, Q) on P × Z is not a pi -th
power.

Proof. The first two points are easy. To prove the third one, we notice that each
function fi is such that none of the fi−λ for λ∈ ka is a pi -th power (Lemma 5.2).
Since the degree pd of ψ is prime to pi , none of the function fi ◦ψ−λ is a pi -th
power in ka(Z). Condition 3 follows. �

We stress that if ψ is defined over a field l, then so are the functions gi .

Step 5 (the surface S). Let ka(X×Z) be the field of functions of X×Z . We define
a regular radicial extension of ka(X × Z) by setting

y pi
i = gi for every 1≤ i ≤ I .

We denote by S the normalization of X × Z in the latter radicial extension. It is a
normal surface by construction and there is a ramified cover

χ : S→ X × Z

that is Galois over ka with Galois group
∏I

i=1 Z/pi Z.
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5b. The group of automorphisms of S. We denote by A the group of ka-auto-
morphisms of ψ . An element in A induces a ka-automorphism of X × Z , and this
latter automorphism can be lifted uniquely to an automorphism of ka(S)/ka that
fixes all yi and stabilizes ka(X × Z). In the sequel we shall use the same notation
for an automorphism of ψ , the induced automorphism of X × Z and its lift to S.
In other words, A can be identified with a subgroup of Autka (S), the group of
ka-automorphisms of S.

Another subgroup of Autka (S) is the Galois group B =
∏I

i=1 Z/pi Z of the ex-
tension ka(S)/ka(X×Z). The groups A and B are the sets of α and β, respectively,
such that the following diagrams commute:

S
α //

χ

��

S

χ

��
X × Z

α // X × Z

S
β //

χ ""

S

χ||
X × Z

(5)

It is clear that A× B ⊂ Autka (S). We now prove that this inclusion is an equality.
To this end, we introduce a family of curves on S.

Lemma 5.4 (the curves EQ). For any point Q on Z , we call EQ the inverse image
of X × Q by χ and we denote by χQ : EQ → X × Q the restriction of χ to EQ .
The geometric genus of EQ can be bounded from above:

g(EQ)≤ (g(X)+ I M)5 < g(Z), (6)

and the genus of any nontrivial subcover of χQ can be bounded from below:

1+ 2(g(X)− 1)5+52 < m ≤ g(nontrivial subcover of χQ : EQ→ X). (7)

Proof. If Q is the generic point on Z , then EQ is a geometrically integral curve
and χQ is a degree 5, geometrically connected cover. The degree of the ramifica-
tion divisor of this cover is bounded from above by the product 2I M (where I is
the number of functions in the family ( fi )i and M is the maximum of the degrees
of these functions). The upper bound follows.

As for the lower bound, let us consider a nontrivial subcover of χQ . Such a
cover has degree at least p1 ≥ 3 and its ramification divisor has degree at least m
(where m is the minimum among the degrees of the functions fi ). So its genus is
greater than m and the lower bound follows. �

Lemma 5.5. The group Aut(S) of ka-automorphisms of S is A× B.

Proof. Let θ be a ka-automorphism of S. Let Q be the generic point of Z . We
know from inequality (6) of Lemma 5.4 that g(EQ) < g(Z). We deduce that
θ(EQ)= Eα(Q), where α is a ka-automorphism of Z .
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We now prove that the isomorphism between EQ and Eα(Q) induced by θ makes
the following diagram commute:

EQ
θ //

χQ

��

Eα(Q)

χα(Q)

��
X × Q

Id×α // X ×α(Q)

(8)

Indeed, the cartesian product of the maps χQ and χα(Q) ◦ θ defines a morphism

EQ
χQ×(χα(Q)◦θ)
−−−−−−−−→ X × X,

whose image W is a divisor with bidegree≤ (5,5). Using Lemma 7.1 we deduce
that the arithmetic genus of W is smaller than or equal to 1+2(g(X)−1)5+52.
Let π1 : X× X→ X be the projection on the first factor. The morphism χQ factors
as

χQ : EQ→W
π1
−→ X.

The map W
π1
−→ X is a birational isomorphism, else it would define a nontrivial

subcover of χQ : EQ→ X . But we know from inequality (7) of Lemma 5.4 that such
a subcover has geometric genus greater than or equal to m>1+2(g(X)−1)5+52.
A contradiction. We deduce that W is a correspondence of bidegree (1, 1). Since
X has no nontrivial ka-automorphism we deduce that diagram (8) commutes.

We now prove that α ∈ A. We have just showed that θ induces an isomorphism
between the covers χQ : EQ → X and χα(Q) : Eα(Q)→ X . Therefore these two
covers have the same ramification data: For every 1 ≤ i ≤ I , the points P such
that fi (P) = fi (ψ(Q)) and those such that fi (P) = fi (ψ(α(Q))) are the same.
Thus

fi (ψ(Q))= fi (ψ(α(Q))) for all i;

therefore ψ(Q)= ψ(α(Q)), because the fi generate ka(X) over ka (Lemma 5.2).
So ψ = ψ ◦α, and α ∈ A.

Diagram (8) implies that the map χα(Q)◦θ : EQ→ Eα(Q) is equal to (Id×α)◦χQ .
And this is χα(Q)◦α according to diagram (5). We set β=θ◦α−1 and we check that
χα(Q) ◦β = χα(Q). Since Q is generic and α surjective, we deduce that χ ◦β = χ
so β ∈ B. We conclude that θ = βα ∈ A× B as was to be shown. �

Remark. We have proved something slightly stronger than Lemma 5.5: the group
of birational ka-automorphisms of S is A× B. We won’t need this stronger result.

5c. Field of moduli and fields of definition of S. To prove Theorem 5.1, we have
to show that the cover ϕ and the surface S share the same field of moduli and the
same fields of definition. One can replace the cover ϕ by the cover ψ , since those
two covers have the same field of moduli and fields of definition.
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The construction of Section 5a yields a morphism of stacks F :Mψ →MS . To
see that, let us consider an extension l ⊂ ka of k and let ψl : Zl→ Xl be an l-model
of ψ . We follow the lines of the construction above, replacing ψ by ψl . Since
the functions fi are k-rational, the functions gi lie in l(Xl × Zl). Then the radical
extension defined by the equations y pi

i = gi is a regular extension of l(Xl × Zl).
The normalization of Xl × Zl in this extension is a surface Sl which is defined
over l. This surface Sl is an l-model of S and the morphism F is defined on
objects by F(ψl) = Sl . Because functions fi are k-rational, F is a morphism of
stacks. According to Proposition 2.5, k is the field of moduli of S and every field
of definition of ψ (or ϕ) is a field of definition of S.

Unfortunately, F is not fully faithful. As we did in Proposition 3.1, we use
Proposition 2.7 to construct a morphism the other way around. The group Autka (S)
is a normal subgroup of Autk(S). The action of Autk(S) on Autka (S) stabilizes the
unique subgroup of order5, which is nothing but B=Autka (χ). Let U be the mark
of the cover ψ . This is the complementary set of the branch locus of the quotient
map χ : S→ X × Z . According to Proposition 2.7, taking the complementary set
of the branch locus of a quotient map defines a morphism of stacks G :MS→MU .
Therefore, every field of definition of S is a field of definition of the mark of ψ and
then also a field of definition of ψ by Lemma 4.3. Indeed the proof of this lemma
provides a morphism from MU to Mψ and the proof of Proposition 3.1 provides a
morphism from Mψ to Mϕ .

6. Curves

In this section we prove Theorem 1.2. We shall make use of the surface S con-
structed in Section 5, so we keep the notation there. We know that S has field
of moduli k and the same fields of definition as the initial cover ϕ : Y → X (or
equivalently ψ : Z → X ). The main idea is to draw on S a singular (but stable)
curve inheriting the field of moduli and fields of definition of S, and then to deform
it to obtain a smooth projective curve.

6a. Two stable curves. In Section 5a, we have constructed a cover χ : S→ X× Z
strongly ramified along the graph of ψ : Z→ X . For any point P on X , we call FP

the inverse image of P × Z by χ and χP : FP → P × Z the corestriction of χ to
P × Z . We call 0 the union of the supports of all divisors of the functions gi of
Lemma 5.3. It contains the ramification locus of the cover χ .

Lemma 6.1. There exist two nonconstant k-rational functions f, g ∈ ka(X) such
that

(1) the divisor (( f )0+ ( f )∞)× Z crosses 0 transversally;
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(2) the divisor X × ((g ◦ ψ)0 + (g ◦ ψ)∞) crosses 0 ∪ [(( f )0 + ( f )∞) × Z ]
transversally;

(3) any ka-automorphism of Z that stabilizes the fiber (g◦ψ)0 is an automorphism
of the cover ψ (note that the preceding condition implies that this fiber is
simple);

(4) for any zero P of f , the cover g◦ψ◦χP : FP→P1 has no automorphism other
than the elements of A× B. So Autka (g ◦ψ ◦χP)=Autka (ψ ◦χP)= A× B.

Proof. Let f ∈ ka(X) be a k-rational nonconstant function. We apply Lemma 7.2
to k, X , Z , 0 and f . We deduce that there exist two distinct scalars x and y in
ka such that ( f )x × Z and ( f )y × Z cross transversally 0. We can even choose x
and y in k and such that for every point P in f −1(x) or f −1(y), the fiber of every
function fi ∈ k(X) above fi (P) does not meet the singular values of ψ , that is,

f −1
i ( fi (P))∩ {singular values of ψ} =∅ for all P ∈ f −1(x)∪ f −1(y). (9)

We replace f by ( f − x)/( f − y) and the first condition is fulfilled.
Now, for every zero P of f , we see that FP is smooth and geometrically integral,

because ( f )0×Z crosses transversally the ramification locus 0 of χ . We now prove
that

Autka (ψ ◦χP)= A× B.

Indeed the function field ka(FP) is the compositum

ka(FP)

ka(Z)

pd

ka(X ′) def.
= ka

(
( fi − fi (P))1/pi , 1≤ i ≤ I

)
∏

i pika(X)

where X ′→ X is an abelian cover with Galois group B=
∏I

i=1 Z/pi Z. The ka(X)-
extensions ka(Z) and ka(X ′) are linearly disjoint (their degrees are coprime and
one of them is Galois) and condition (9) implies that the extension ka(Z)/ka(X)
is not ramified above the zeros of the functions fi − fi (P).

Now, any subcover of X ′→ X is ramified above the zeros of at least one of the
functions fi − fi (P). The same is true for any subcover of FP → Z . We deduce
that Z → X is the maximal subcover of FP → X that is not ramified above the
zeros of the functions fi − fi (P). Therefore any ka(X)-automorphism of ka(FP)

stabilizes ka(Z). Thus

Autka(X)(ka(FP))= Autka(X)(ka(Z))×Autka(X)(ka(X ′)),



Global descent obstructions for varieties 453

as was to be shown.
Next we look for a function g in k(X) such that g ◦ψ has no ka-automorphism

but elements of A and, for every zero P of f , the cover g ◦ ψ ◦ χP has no ka-
automorphism but elements of Autka (ψ ◦χP)= A× B. According to Lemma 7.4,
the functions in k(X) that do not fulfill all these conditions lie in a finite union of
strict sub-k-algebras. Therefore there exists such a function g.

According to Lemma 7.2, the scalars x in k such that (g ◦ψ)x does not cross
0∪[(( f )0+( f )∞)× Z ] transversally are finitely many. According to Lemma 7.3,
the x in k such that (g ◦ ψ)x has a ka-automorphism not in A are finitely many.
Therefore there exist two distinct scalars x and y in k such that (g◦ψ)x and (g◦ψ)y

cross 0 ∪ [(( f )0 + ( f )∞)× Z ] transversally and (g ◦ψ)x has no automorphism
but those in A. We replace g by (g− x)/(g− y) and the last three conditions are
satisfied. �

The curves C0 and D0. Let C0 be the curve on X × Z with equation

f (P)× g ◦ψ(Q)= 0.

Let D0 be the inverse image of C0 by χ . These are singular curves over ka . The two
following lemmas are concerned with the stability and the automorphism groups
of these two curves.

Lemma 6.2. The curve C0 is stable and Autka (C0)' A.

Proof. The curve C0 is geometrically reduced because the zeros of f and g ◦ ψ
are simple. The singular points on C0 are the couples (P, Q) on X × Z such
that f (P) = g ◦ ψ(Q) = 0. These are ordinary double points. Therefore C0

is semistable. It is geometrically connected also. Its irreducible components are
isomorphic to X or Z . So they all have genus ≥ 2. Therefore C0 is a stable curve.

We now prove that the group of ka-automorphisms of C0 is the group A of ka-
automorphisms of ψ . It is clear that A is included in Autka (C0). Conversely, let
θ be a ka-automorphism of C0. Then θ permutes the irreducible components of
C0. Some of these components are isomorphic to X , and the others are isomor-
phic to Z . Since X and Z are not ka-isomorphic, θ stabilizes the two subsets of
components. If we restrict θ to a component isomorphic to X and then compose
with the projection on X , we obtain a nonconstant ka-morphism from X to itself.
This morphism must be the identity because X has no nontrivial ka-automorphism.
Therefore θ stabilizes each component isomorphic to Z . The singular points on
such a component are the zeros of g ◦ψ . The set of these zeros is stabilized by
no ka-automorphism of Z but those of ψ by (3) of Lemma 6.1. So the restriction
of θ to any component isomorphic to Z is in A. Composing θ with a well chosen
element in A, we may assume that θ is trivial on one component isomorphic to Z .
Therefore θ stabilizes every component isomorphic to X . Since these components
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have no nontrivial automorphism, θ acts trivially on them. Now let P × Z be a
component of C0 isomorphic to Z . The restriction of θ to it is an automorphism
that fixes the singular points. These points are the zeros of g◦ψ . So the restriction
of θ to P × Z is in A. Since A acts faithfully on the set of zeros of g ◦ ψ , we
deduce that θ acts trivially on every component isomorphic to Z . �

Examining the full group of ka-automorphisms of D0 seems difficult to us. We
restrict our attention to the subgroup Autadm.

ka (D0) of admissible automorphisms.
We first explain what we mean by an admissible automorphism.

We first note that the components of D0 are of two different kinds. Some of
them are covers of some X × Q where Q is a zero of g ◦ ψ . We denote such a
component by EQ . The other components are covers of some P × Z where P is
a ka-zero of f . Such a component is denoted by FP . We call χP : FP → P × Z
and χQ : EQ → X × Q the restrictions of χ to components of D0. Now let T be
a singular point on D0 such that χ(T ) = (P, Q). So T lies in the intersection of
EQ and FP . The point on EQ corresponding to T is denoted U . The point on FP

corresponding to T is denoted V . So χQ(U )= P and χP(V )= Q. Condition (2) in
Lemma 6.1 implies that f ◦χQ is a uniformizing parameter for EQ at U ; likewise,
condition (1) implies that g◦ψ ◦χP is a uniformizing parameter for EQ at FP at V .
Let θ be an automorphism of D0 and let T ′= (U ′, V ′) be the image of T = (U, V )
by θ . We write χ(T ′) = (P ′, Q′). We observe that f ◦ χQ′ ◦ θ is a uniformizing
parameter for EQ at U and g◦ψ ◦χP ′ ◦θ is a uniformizing parameter for FP at V .

We say that θ is an admissible automorphism of D0 if for every singular point
T of D0, we have

f ◦χQ′ ◦ θ

f ◦χQ
(U )×

g ◦ψ ◦χP ′ ◦ θ

g ◦ψ ◦χP
(V )= 1, (10)

where χ(T )= (P, Q) and χ(θ(T ))= (P ′, Q′). The justification for this definition
is given in Section 6b. Admissible automorphisms form a subgroup of the group
of ka-automorphisms of D0.

Lemma 6.3. The curve D0 is stable and Autadm.
ka (D0)' A× B.

Proof. It is clear that A× B acts faithfully on D0, and the corresponding automor-
phisms are admissible.

We can now prove that the curve D0 ⊂ S is a stable curve. Points (1) and (2) of
Lemma 6.1 imply that the ramification locus 0 of χ does not contain any singular
points of C0. Therefore every singular point on C0 gives rise to deg(χ) singular
points on D0. These are all ordinary double points. To prove that D0 is connected,
we observe that the function gi restricted to any irreducible component of C0 is
not a pi -th power because none of the functions fi − λ, λ ∈ ka is a pi -th power
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(and the fi ◦ψ − λ are not either) as shown in Lemma 5.2. Also the irreducible
components of D0 correspond bijectively to those of C0.

Now let us prove that Autadm.
ka (D0)' A× B. The components FP and EQ have

different genera. Therefore any ka-automorphism θ of D0 stabilizes the set of all
components FP (and also the set of all EQ).

Let Q and Q′ be two ka-zeros of g◦ψ such that θ(EQ)= EQ′ . As in the proof of
Lemma 5.5, we notice that the image of EQ in the product X×X by the morphism
χQ×χQ′ ◦θ has an arithmetic genus no more than 1+2(g(X)−1)5+52. Again,
this implies that this image is ka-isomorphic to X (otherwise, this image would
have geometric genus bigger than 1+2(g(X)−1)5+52 by the Hurwitz formula).
Since X has no ka-automorphism, we deduce that θ induces an isomorphism of
covers between the restrictions χQ : EQ→ X and χQ′ : EQ′→ X of χ . Thus

χQ = χQ′ ◦ θ. (11)

This implies that θ stabilizes every component FP , where P is any ka-zero of f .
Indeed, let T = (U, V ) ∈ EQ ∩ FP be a singular point, where P is a ka-zero
of f and Q is a ka-zero of g ◦ ψ . We have χ(T ) = (P, Q) ∈ X × Z and there
exist P ′ ∈ X (ka) and Q′ ∈ Z(ka) such that θ(T ) ∈ FP ′ ∩ EQ′ . We deduce from
Equation (11) that

P ′ = χQ′ ◦ θ(T )= χQ(T )= P.

We conclude that P = P ′ and θ(FP)= FP .
Now, we deduce from formulas (10) and (11) that

g ◦ψ ◦χP ◦ θ

g ◦ψ ◦χP
(V )= 1. (12)

Denote by θP the restriction of θ to FP . This is an automorphism of FP . We
prove θP is the restriction to FP of an element of A× B. To this end, we introduce
the function h P = g ◦ ψ ◦ χP ∈ ka(FP). The degree of h P is deg(g)× pd ×5
and its zeros are all simple. These zeros are the intersection points between FP

and the other components of D0. Since θP permutes these zeros, the functions
h P ◦ θP and h P have the same divisor of zeros. Therefore the only possible poles
of the function h P/(h P ◦ θP)− 1 are the poles of h P , and its degree is ≤ h P . But
according to (12), the zeros of h P are also zeros of h P/(h P ◦ θP)− 1. So if the
function h P/(h P ◦ θP)− 1 is nonzero, it has the same divisor as h P . Therefore
there exists a constant c ∈ ka such that

h P

h P ◦ θP
− 1= ch P or equivalently

1
h P ◦ θP

=
1

h P
+ c.

Since θP has finite order e and ka has characteristic zero, we deduce that ce = 0,
and then c = 0. Then h P ◦ θP = h P and θP is an automorphism of the cover
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h P = g ◦ ψ ◦ χP : FP → P1. According to point (4) of Lemma 6.1, we deduce
that θP is the restriction to FP of an element in A×B. We replace θ by θ composed
with the inverse of this element. So we can now assume that θ acts trivially on FP

for some P . In particular θ fixes every singular point on FP . So θ stabilizes every
component EQ . The restriction θQ of θ to EQ is an automorphism of χQ according
to (11). Further θQ fixes a point (and every point) in the unramified fiber above P
of the Galois cover χQ : EQ → X . Therefore θQ is the identity. We have proved
that θ is trivial on every component EQ .

To conclude, we prove that θ is also trivial on the components FP ′ for every
zero P ′ of f . Let us recall that we have already assumed this to be true for one of
these zeros. We call θP ′ the restriction of θ to FP ′ . We have already proved that θP ′

is the restriction of an element in A× B. Further θP ′ fixes all the singular points
of D0 lying on FP ′ . These points are the zeros of g ◦ψ ◦ χP ′ . Therefore, it only
remains to be proved that the action of A× B on the set of zeros of g ◦ψ ◦ χP ′

is free. This is the case for elements in B because the zeros of g ◦ ψ are, by
hypothesis, unramified in the Galois cover χP ′ : FP ′ → Z . This is also true for
elements in A× B because the action of A on the set of zeros of g ◦ψ is free. �

6b. Deformations. We now deform the two stable curves C0 and D0. If t ∈ ka is a
scalar, we call Ct ⊂W = X× Z the curve with equation f (P)×g(ψ(Q))= t . We
call Dt the inverse image of Ct by χ . In this and the next paragraph, we prove that
for almost all scalars t in k, the curve Dt is smooth, geometrically integral, with
ka-automorphism group equal to A × B, and with the same field of moduli and
the same fields of definition as the original cover ϕ. To this end, we would like to
consider the families (Ct)t and (Dt)t as fibrations above P1. We should be careful
however: the family (Ct)t has base points. So we blow up W = X × Z along

1= (( f )∞× (g ◦ψ)0)∪ (( f )0× (g ◦ψ)∞).

Note that 1 is the union of 2× deg( f )× deg(g ◦ψ) simple geometric points. We
call W∞,∞ ⊂W = X × Z the complementary open set of

(( f )∞× Z)∪ (X × (g ◦ψ)∞) in X × Z .

We similarly define W0,0, W0,∞, W∞,0. These four open sets cover X × Z .
Let P1

= Proj(ka
[T0, T1]) be the projective line over ka . We set F = 1/ f and

G= 1/g. Let C∞,0⊂W∞,0×P1 be the set of (P, Q, [T0 : T1]) such that f (P)T0=

G(ψ(Q))T1. Let C0,∞ ⊂ W0,∞ × P1 be the set of (P, Q, [T0 : T1]) such that
g(ψ(Q))T0 = F(P)T1. Let C∞,∞ ⊂ W∞,∞ × P1 be the set of (P, Q, [T0 : T1])

such that f (P)g(ψ(Q))T0=T1. Let C0,0⊂W0,0×P1 be the set of (P, Q, [T0 :T1])

such that T0 = F(P)G(ψ(Q))T1. We glue together these four algebraic varieties
and obtain a variety C ⊂ W × P1. Let πW : C → W be the projection on the
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first factor and let πC : C→ P1 be the projection on P1. This is a flat, projective,
surjective morphism.

Let D ⊂ S×P1 be the inverse image of C by χ × Id where Id : P1
→ P1 is the

identity. This is the blow up of S along χ−1(1). Note that χ−1(1) is the union of
deg(χ)× deg( f )× deg(g ◦ψ) simple geometrical points because χ is unramified
above 1. Actually, D is the normalization of C in ka(S × P1). We denote by
χ : D→C the corresponding morphism. We call πS : D→ S the projection on the
first factor. We call πD : D→ P1 the projection on the second factor. This is the
composed morphism πD = πC ◦χ . This is a flat, proper and surjective morphism.

Let A1
⊂ P1 be the spectrum of ka

[T ], where T = T1/T0. Using the function
T we identify P1(ka) and ka

∪ {∞}. If t is a point on P1(ka) we denote by Ct the
fiber of πC above t and by Dt the fiber of πD above t . The restriction of πW to Ct

is a closed immersion. So we can see Ct as a curve on W = X × Z . Similarly, the
restriction of πS to Dt is a closed immersion. So we can see Dt as a curve drawn
on S. In particular, the fiber of πC at 0 is isomorphic by πW to the stable curve C0

introduced in Section 6a. Similarly, the fiber of πD at 0 is isomorphic by πS to the
stable curve D0 introduced in Section 6a.

Let us call Cη the generic fiber of πC and Dη the generic fiber of πD .
We prove that the curve Cη over ka(P1) is geometrically connected and that

for almost every t ∈ P1(ka), the curve Ct over ka is connected. According to
Stein’s factorization theorem [Liu 2002, Chapter 5, Exercise 3.11], we can factor
πC : C → P1 as π f ◦ πc, where πc has geometrically connected fibers and π f is
finite and dominant. The fiber of π f above 0 is trivial because C0 is connected
and reduced. Therefore the degree of π f is 1 according to [Liu 2002, Chapter 5,
Exercise 1.25]. Therefore π f is an isomorphism above a nonempty open set of P1.
The generic fiber Cη is geometrically connected over ka(P1) and for almost all
t ∈ P1(ka) the curve Ct over ka is connected.

We now prove that Cη is smooth (and therefore geometrically integral). Indeed,
it is smooth outside the points (P, Q) ∈ Cη ⊂ X × Z , where d f (P) = 0 and
d(g ◦ψ)(Q) = 0. Such points are defined over ka . Therefore f (P)× g(ψ(Q))
cannot take the transcendental value T at these points.

The ramification locus 0 ⊂W of χ cuts the fiber C0 transversally. Therefore it
cuts the generic fiber Cη transversally. So Dη is smooth and geometrically integral.
Thus for almost every t ∈ ka the fibers Ct and Dt are smooth and integral.

We now compute Autk(P1)
s (Dη). Let R = ka

[[T ]] be the completed local ring
at the point T = 0 of P1. The curve D̂ = D×P1 Spec(R) is stable over Spec(R).
According to [Liu 2002, Chapter 10, Proposition 3.38, Remark 3.39] the func-
tor “automorphism group” t 7→ Autt(D̂t) is representable by a finite unramified
scheme over Spec R and the specialization morphism Autka((T ))(D̂η)→Autka (D0)

is injective. According to Lemma 7.6, the image of this morphism is included in the
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subgroup of admissible ka-automorphisms of D0. Since Spec R has no unramified
cover, we can deduce

A× B ⊂ Autka(P1)
s (Dη)⊂ Autka((T ))(D̂η)⊂ Autadm.

ka (D0).

We know that the rightmost group is equal to A× B. So

Autka(P1)
s (Dη)= A× B

as was intended to be proved.

6c. Fields of moduli and fields of definition of fibers. We just have proved that
for almost all t ∈ A1(k), the fiber Dt is smooth and geometrically integral. Using
Lemma 7.7 on the specialization of the automorphism group we deduce that for
almost all t ∈A1(k), the group of ka-automorphisms of the fiber Dt is isomorphic
to the group of k(A1)

s-automorphisms of the generic fiber. Since the latter group
is isomorphic to the automorphism group A× B of the surface S, we deduce that,
for almost all t , the restriction map is an isomorphism:

Autka (S)
'
−→ Autka (Dt). (13)

Now let t ∈ k be such that Dt is smooth and geometrically integral and such
that Autka (Dt) = A × B. We call πt : Dt → S the corresponding embedding.
We construct a functor Ft : MS → Mπt . We first define the image of an object
by Ft . Let l ⊂ ka be a finite extension of k and Sl an l-model of S. Using the func-
tor MS→MU given in Section 5c followed by the functor MU→Mψ in the proof of
Lemma 4.3, we obtain an l model ψl : Zl→ Xl of the cover ψ , where Xl = Xk×k l
and Zl is an l-model of Z . There is also an abelian cover χl : Sl → Xl × Zl

which is well defined up to an automorphism of Sl . We denote by Ct,l the curve
on Xl × Zl with the equation f · g ◦ ψl − t = 0. Let Dt,l be the inverse image
of Ct,l by χl . Let πt,l : Dt,l ↪→ Sl be the inclusion map. The image of the object Sl

by the functor Ft is defined to be πt,l . We still need to define the image of a
morphism by the functor Ft . Let l ′ be another finite extension of k and let σ : l→ l ′

be a k-homomorphism. Let S′l ′ be an l ′-model of S and let α : Sl → S′l ′ be a
morphism above Spec(σ ). We call π ′t,l ′ : D′t,l ′ ↪→ S′l ′ the image by Ft of S′l ′ .
Then α maps Dt,l to D′t,l ′ . We denote by β the restriction of α to Dt,l . The
image of α by Ft is defined to be the morphism (α, β) from πt,l to π ′t,l ′ . If we
compose Ft : MS → Mπt with the forgetful functor Mπt → MDt , we obtain a
cartesian functor Gt :MS→MDt . Further, identity (13) implies that the functor Gt

is fully faithful. So, by Proposition 2.5, both S and Dt have k as field of moduli
and they have the same fields of definition. In view of Section 5c, Dt , ψ and ϕ
also share the same fields of definition. Theorem 1.2 is proved.
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7. Six lemmas about curves and surfaces

In this section we state and prove six lemmas that are needed in the proof of
Theorem 1.2.

7a. About curves and products of two curves.

Lemma 7.1. Let k be a algebraically closed field. Let X and Y be two projective,
smooth and integral curves over k. Let β be the genus of X and let γ be the genus
of Y . We fix a geometric point P on X and a geometric point Q on Y . We identify
the curves X and X×Q and the curves Y and P×Y . Let D be a divisor on X×Y
of bidegree (b, c), that is, b = X · D and c = Y · D. The virtual arithmetic genus
π of D is at most 1+ bc + c(β − 1)+ b(γ − 1). When b = c this bound reads
1+ 2b(β − 1)+ b2.

Proof. The algebraic equivalence class of the canonical divisor on X × Y is
K = 2(β − 1)Y + 2(γ − 1)X . The virtual arithmetic genus π of D, as de-
fined in [Hartshorne 1977, Exercise V-1.3], is π = 1

2 D · (D + K ) + 1. Thus
π = D · (D+ 2(β − 1)Y + 2(γ − 1)X)/2+1. We deduce from Castelnuovo’s and
Severi’s inequality (see [Hartshorne 1977, Exercise V-1.9]) that D ·D ≤ 2bc. This
finishes the proof of the lemma. �

Lemma 7.2. Let k be an algebraically closed field. Let X and Y be two projective,
smooth, integral curves over k. Let D be an effective divisor without multiplicity
on the surface X × Y . Let f ∈ k(X) be a nonconstant function. For all but finitely
many scalars x in k, the divisor ( f )x × Y crosses D transversally, where ( f )x is
the positive part of the divisor of f − x.

Proof. We call pX : X × Y → X the projection on the first factor. Let E be
the set of points in X (k) such that at least one of the following condition holds:
p−1

X (P) contains a singular point on D, or p−1
X (P) contains a ramified point of the

morphism pX : D→ X , or the fiber p−1
X (P) is contained in D. The set E is finite.

For all x ∈ k but finitely many, the fiber f −1(x) avoids E and is simple. �

Lemma 7.3. Let k be an algebraically closed field. Let X be a projective, smooth,
integral curve over k with genus at least 2. Let f ∈ k(X) be a nonconstant
function. We denote by G the group of k-automorphisms of f . This is the set
of all k-automorphisms θ of X such that f ◦ θ = f . For any x ∈ P1(k), we write
( f )x = f −1(x) for the fiber above x , and Gx for the group of k-automorphisms of
X that stabilize the set of k-points of ( f )x . For all x in P1(k) but finitely many, we
have Gx = G.

Proof. The group H = Autk(X) of k-automorphisms of X is finite. Let θ be an
automorphism in H \ G and let x ∈ P1(k). Assume that the k-points in ( f )x are
permuted by θ . Let P be one of them. Then f ◦ θ(P) = f (P) = x . So P is a
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zero of the nonzero function f ◦ θ − f . For each θ there are finitely many such
zeros. And the θ are finitely many. So the images by f of such P are finitely many
also. �

Lemma 7.4. Let k be a field. Let Xk be a projective, smooth, geometrically integral
curve over k. Set X = Xk ×k ka and assume that X has genus at least 2. Let Y be
a projective, smooth, integral curve over ka and let ϕ : Y → X be a nonconstant
ka-cover. If f is any nonconstant function in ka(X), then Aut(ϕ)⊂Aut( f ◦ϕ). Let
V ⊂ k(Xk) be the set of functions f ∈ k(Xk) such that Aut(ϕ) 6= Aut( f ◦ ϕ). This
set V is contained in a finite union of strict k-subalgebras of k(Xk).

Proof. The statement concerns the three function fields ka( f ) ⊂ ka(X) ⊂ ka(Y ),
and the groups involved are the following ones:

Aut(ϕ)= Autka(X)(ka(Y )),

Aut( f ◦ϕ)= Autka( f )(ka(Y )),

Aut(Y )= Autka (ka(Y )),

⇒ Aut(ϕ)⊂ Aut( f ◦ϕ)⊂ Aut(Y ).

Now, the set V can be described as

V =
( ⋃
θ∈Aut(Y )\Aut(ϕ)

ka(Y )θ ∩ ka(X)
)
∩ k(Xk)=

⋃
θ∈Aut(Y )\Aut(ϕ)

ka(Y )θ ∩ k(Xk).

This is a union of sets indexed by elements in the finite set Aut(Y )\Aut(ϕ) (recall
that Aut(Y ) is finite because the genus of Y is at least 2). Since θ 6∈ Aut(ϕ),
each ka(Y )θ∩ka(X) is a strict subfield of ka(X) containing ka . Therefore ka(Y )θ∩
k(Xk)( k(Xk). �

7b. Deformation of an automorphism of a nodal curve. In this subsection we
give a necessary condition for an automorphism of a nodal curve to extend to
a given deformation of this curve. Let R be a complete discrete valuation ring.
Let π be a uniformizing parameter and let k be the residue field. Assume that k
is algebraically closed. Let D be a semistable curve over Spec(R). Let Dη be
the generic fiber and D0 the special fiber. Assume Dη is smooth over the fraction
field of R. Let T be a singular point of D0. According to [Liu 2002, Chapter 10,
Corollary 3.22], the completion of the local ring of D at T takes the form

ÔD,T = R[[ f, g]]/〈 f g−π e
〉,

where e is a positive integer. This integer is called the thickness of D at T . We also
say that f and g form a coordinate system for D at T . If we reduce modulo π , we
obtain the completion of the local ring of D0 at T :

ÔD0,T = ÔD,T /〈π〉 = k[[ f , g]]/〈 f g〉,
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where f = f mod π and g= g mod π . Because T is an ordinary double point, D0

has two branches F and G at T . These correspond to the two irreducible com-
ponents of the completion at T . Be careful that these two branches may lie on
the same irreducible component of D0. Anyway, the functions f and g are the
uniformizing parameters of either branches. We call P and Q the points of F
and G above T .

Now let T ′ be another singular point of D0, and let f ′, g′, e′, F ′, and G ′ be the
corresponding data. Let θ be an automorphism of D over R such that θ(T ) = T ′

and θ(F)= F ′, θ(G)=G ′. The functions f ′◦θ and g′◦θ form a coordinate system
for D at T . So e′ = e and both f ′ ◦ θ/ f and g′ ◦ θ/g are units in ÔD,T (indeed,
in either fraction, the numerator and denominator have the same Weil divisor).
Since f × g = π e

= f ′ ◦ θ × g′ ◦ θ , we have f ′◦ θ
f (T )× g′◦ θ

g (T ) = 1. We reduce
this identity modulo π and obtain the following identity, where the first factor is a
function on F evaluated at P and the second is a function on G evaluated at Q:

f ′ ◦ θ

f
(P)×

g′ ◦ θ
g

(Q)= 1. (14)

Definition 7.5. Let R be a complete discrete valuation ring. Assume that the
residue field k is algebraically closed. Let D be a semistable curve over Spec(R).
The generic fiber of D is assumed to be smooth. Assume we are given a coordinate
system at each singular point of the special fiber D0. Let θ be an automorphism
of the special fiber D0. We say that θ is admissible in D/Spec(R) if for every
singular point T of D0, the image θ(T ) has the same thickness as T in D, and if
equality (14) holds true.

We have just proved this:

Lemma 7.6. With the notation of Definition 7.5, the set of automorphisms of D0

that are admissible in D/Spec(R) is a subgroup of Autk(D0). If θ is an auto-
morphism of D over Spec(R), its reduction θ = θ mod π is an automorphism of
D0 and is admissible in D/Spec(R).

One may compare this statement with [Wewers 1999, Theorem 3.1.1], where
the deformation of morphisms between two distinct curves is studied.

Remark. The converse of Lemma 7.6 is not true. For example, consider the
elliptic curve E with modular invariant j = 0 (or 1728). Every automorphism
of E is admissible because there are no singular points on the curve (the condition
in Definition 7.5 is empty). However, the only automorphisms that can be extended
to the generic elliptic curve are the identity and the involution.

7c. Automorphisms of curves in a family. We state and prove a standard lemma
about specialization of automorphism groups.
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Lemma 7.7. Let k be a field and let U be a smooth, geometrically integral curve
over k. Let X be a quasiprojective, smooth, geometrically integral surface over k.
Let π : X→U be a surjective, projective, smooth morphism of relative dimension 1.
Assume that for any point x of U , the fiber Xx at x is geometrically integral. We
call η the generic point of U and call Xη = Xη×Spec(k(U ))Spec(k(U )a) the generic
fiber, seen as a curve over the algebraic closure of the function field of the basis U.
We assume the genus of Xη is at least 2.

There exists a nonempty open subset V of U over k such that for any geometric
point x ∈ V (ka) the group of ka-automorphisms of the fiber at x is equal to the
group Autk(U )a (Xη) of automorphisms of Xη.

The following proof was communicated to us by Qing Liu.

Proof. This is a consequence of a general result by Deligne and Mumford. Let
X → S be a flat projective morphism over a noetherian scheme S. The func-
tor T → AutT (XT ) from the category of S-schemes to the category of groups
is representable by a group scheme AutX/S over S. See [Kollár 1996, Exercise
1.10.2] for example. When X→ S is a stable curve with genus at least 2, Deligne
and Mumford [1969, Theorem 1.11] prove that the scheme AutX/S is finite and
unramified over S. In our lemma, S is a smooth, geometrically integral curve U
over k. Replacing S by a nonempty open subset, we may assume that AutX/S is
finite étale over S. At the expense of a finite surjective base change T → S, we
may assume that the generic fiber of AutX/S → S consists of rational points. So
AutX/S → S is now a disjoint union of étale sections and the fibers have con-
stant degree. In particular, the fibers are constant and the specialization maps
AutS(X)= AutX/S(S)→ Auts(Xs)= AutX/S(k(s)) are isomorphisms. �
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