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Let E→ C be an elliptic surface defined over a number field k, let P : C → E

be a section, and let ` be a rational prime. We bound the number of points of
low algebraic degree in the `-division hull of P at the fibre Et . Specifically, for
t ∈ C(k̄) with [k(t) : k] ≤ B1 such that Et is nonsingular, we obtain a bound on
the number of Q ∈ Et (k̄) such that [k(Q) : k] ≤ B2, and such that `n Q = Pt for
some n ≥ 1. This bound depends on E, P , `, B1, and B2, but is independent of t .

1. Introduction

One of the central problems in the study of elliptic surfaces is to determine the
extent to which the geometry of the surface determines the arithmetic of its fibres.
Let E→ C be an elliptic surface defined over a number field k. Then if the fibre
Et above t ∈ C(k) is nonsingular, there is a homomorphism

σt : E(C)→ Et(k),

where E(C) is the group of sections P : C → E (we include the existence of a
section in our definition of an elliptic surface). By a theorem of Silverman [1994,
Chapter III, Theorem 11.4], this map is injective for all but finitely many t ∈C(k).
The map σt is not, in general, surjective, since the rank of Et(k)may exceed that of
E(C) (see [Salgado 2009]), but another result of Silverman shows that for elliptic
surfaces over P1

Q
, there are infinitely many fibres for which the image of σt is, at

least, not divisible in Et(Q).

Theorem [Silverman 1985]. Let E→ P1 be an elliptic surface defined over Q,
with nonconstant j-invariant. Then there exist infinitely many t ∈ P1(Q) such that
the quotient Et(Q)/σt(E(P

1)) is torsion-free.

We cannot replace ‘there exist infinitely many’ with ‘for all but finitely many’ in
Silverman’s result, since the elliptic surface defined over P1

Q
by E : y2

= x3
−t x+t
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has no section of order two, but (η, 0) ∈ Et(Q) is a point of order two whenever
t = η3/(η− 1).

Saying that Et(Q)/σt(E(P
1)) is torsion-free amounts to saying that for any

prime ` and any section P : P1
→ E, the specialization Pt = σt(P) is divisible

by ` in the Mordell–Weil group Et(Q) only if P is already divisible by ` in the
group E(P1) of sections. Since Silverman’s result only treats infinitely many of the
fibres, however, it is still conceivable that one could construct a section P :P1

→E

that is not divisible by a prime `, but whose specializations Pt ∈Et(Q) are divisible
by arbitrarily large powers of ` (as t varies).

Our main result is that this sort of construction is not possible, and we prove
this for elliptic surfaces E→ C over arbitrary base curves, defined over a number
field k. In fact, even if we are allowed to consider fibres and points of bounded
algebraic degree over k, the extent to which the specializations of a given section
P : E→ C might be `-divisible is limited.

Theorem 1. Let k/Q be a number field, let E→ C be an elliptic surface, with
nonconstant j-invariant, over the smooth projective curve C , and let P :C→E be
a section (all defined over k). Then for any B1, B2 ≥ 1, there is a value M(B1, B2)

such that

#
{

Q ∈ Et(k̄) : [k(Q) : k] ≤ B1 and `n Q = Pt for some n ≥ 1
}
≤ M,

as t ∈ C(k̄) varies over the places of good reduction for E with [k(t) : k] ≤ B2.

Theorem 1 is a weak form of a natural conjecture. For a given subgroup H ⊆
E(C) and a given extension k ′/k, define the k ′-rational division hull of H on the
fibre above t ∈ C(k ′) by

H div
t (k ′)=

{
Q ∈ Et(k ′) : N Q ∈ Ht for some N ≥ 1

}
,

where Ht ⊆Et(k ′) denotes the specialization of H at t . It is plausible to conjecture
that if E→ C is a nonisotrivial elliptic surface and H ⊆ E(C) is any subgroup,
then the index (H div

t (k ′) : Ht) is bounded for t ∈C(k ′), and that the bound depends
only on D = [k ′ : k], E, and H . In the case where H has rank zero, this conjecture
follows immediately from Merel’s theorem [1996], since H div

t (k ′) will simply be
the k ′-rational torsion on Et . Indeed, Merel’s theorem plays a role in the results
in this paper, since we have not assumed that P is a section of infinite order. The
main result of this paper is equivalent to the boundedness of the `-power part
of (H div

t (k ′) : Ht), in terms of D = [k ′ : k], in the rank one case. In the case
D = 1, Silverman [1985] has shown that the conjecture follows from a conjecture
of Lang, which posits a certain lower bound for the Néron–Tate height on an elliptic
curve. Lang’s conjecture, in turn, has been shown by Hindry and Silverman [1988]
to follow from Szpiro’s conjecture, and hence the abc conjecture of Masser and
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Oesterlé. If one supposes that the constants in Lang’s conjecture depend only on
the degree of the number field involved, then the full version of the conjecture
above follows by Silverman’s argument.

In general, the finiteness of Theorem 1 is the best we can do in this setting, since
one is free to choose P = `N P0 for some section P0 : C → E, and N arbitrarily
large. This ensures that the sets in the statement of Theorem 1 have size at least N .
If, however, we cast out finitely many primes and finitely many fibres, and consider
only k-rational points, we obtain something much more explicit. We call the prime
` a special prime for the elliptic surface E if it is one of the finitely many primes
such that either `= 2 or the j-invariant jE : C→ P1 has a pole of order divisible
by `.

Theorem 2. Let E and P be as above, suppose that ` is not a special prime for E,
and suppose further that P is not of the form `P0 for any section P0 :C→E. Then

#
{

Q ∈ Et(k) : `n Q = Pt for some n ≥ 1
}
≤ `2

for all but finitely many t ∈C(k). The upper bound can be replaced with 0 if C has
genus at least 1 or if the j-invariant jE has at least 5 distinct poles in C(k̄); 4 poles
suffice if `= 5, and 3 suffice if `≥ 7.

Of course, this theorem is trivially true if C has genus 2 or greater.

Remark. The proof of Theorem 2 is a modification of the proof of Theorem 1,
and with slightly more work, one can obtain a version for points of bounded degree
over k. Specifically, in proving the first claim of Theorem 2, we actually prove
(under the conditions of the theorem) that `n Q= Pt implies n≤ 1, except on fibres
corresponding to finitely many t ∈C(k). If the argument is extended, one can show
that for all but finitely many t ∈ C(k), if Q ∈ Et(k̄) with [k(Q) : k] ≤ D, then we
have `n Q = Pt only if n < log2 D + 5. Note that, if we are allowed to consider
points with [k(Q) : k] ≤ D, then we can find examples with `n Q = Pt for any
n ≤ log D/(2 log `).

There is one important case in which Theorem 2 does not apply: if we’d like
to discuss torsion on specializations of an elliptic surface, then we should like to
apply Theorem 2 with P = O, the identity section. However, it is always true that
O = `O. As it happens, this is not a fundamental obstacle. For any finite set S of
rational primes, and any elliptic curve E , let ETors,S denote the S-primary torsion
on E , that is, the union of E[N ] as N ∈ N ranges over S-units.

Theorem 3. Let E be as above, and suppose that jE has at least 5 distinct poles
in C(k̄). Then for all but finitely many t ∈ C(k), the torsion subgroup of Et(k) is
exactly ETors,S

t (k), where S is the set of special primes for E.
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As mentioned above, it follows from Merel’s theorem (which plays a role in the
proof of Theorems 1 and 3) that size of the torsion subgroup of Et(k) is bounded
independent of t ∈ C(k). The significance of Theorem 3, then, is that it more
precisely describes the structure of Et(k)Tors on all but finitely many fibres.

If E/k is an elliptic curve over a number field, then one might consider E as an
arithmetic surface E→Spec(R), where R is the ring of integers of k, and ask if the
result analogous to Theorem 1 holds. Indeed, results of this general type, that is,
local-to-global results about divisibility in the Mordell–Weil group, have already
been considered over number fields, for example, the work of Banaszak, Gajda, and
Krasoń [Banaszak et al. 2005]. However, for elliptic curves over number fields, it
is quite easy to show that something rather different from Theorem 1 is true.

Theorem 4. Let k be a number field and let E/k be an elliptic curve. If P ∈ E(k)
is a point of infinite order and ` is any rational prime, then for any M ≥ 1, we may
choose an infinite set of primes SM such that

#
{

Q ∈ Ep(kp) : `
n Q = Pp for some n ≥ 1

}
≥ M

for all p ∈ SM . Moreover, we can choose this set of primes to have density
M−2/5+o(1), where o(1)→ 0 as M→∞.

The results of Banaszak, Gajda, and Krasoń are largely Galois-theoretic, while
those of Silverman [1985] are obtained by studying the variation of the Néron–
Tate height across fibres of E. By contrast, Theorems 1 and 2 require a mixture of
Galois theory and some deep results in diophantine geometry. Since it may be of
independent interest, we mention here the main diophantine lemma used, which is
a slight adjustment of [Faber et al. 2009, Lemma 4.5], which in turn derives from
work of Vojta [1992] and Song and Tucker [2001].

Lemma 5. Let
C0

φ1
←− C1

φ2
←− C2

φ3
←− · · ·

be a tower of (smooth, projective) curves connected by nonconstant morphisms,
defined over the number field k. Let Rφn denote the ramification divisor of φn , and
suppose that there are constants c1 > 0 and c2 such that

deg Rφn

2 degφn
≥ c12n

− c2 for all n.

Then for each B ≥ 1, there exists an N (B) such that CN (B)(k̄) contains at most
finitely many points Q with [k(Q) : k] ≤ B. (In fact, we see in Section 5 below that
we may take N (B) to be at most log2 B+ O(1) as B→∞.)

Before proceeding with the outline of the main argument, we remark on the re-
quirement that E have nonconstant j-invariant. While Silverman’s result above has
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been considered in the case of elliptic surfaces E→ P1 with constant j-invariant,
by Gupta and Ramsay [1997], it is clear that our main result cannot hold for all split
elliptic surfaces. If E/k is an elliptic curve with rank at least 1, let E→ E be an
elliptic surface birational to E×E , with projection onto the second coordinate. Let
Q ∈ E(k) be a point of infinite order, and let P be the diagonal section P : E→ E

defined by t 7→ (t, t). Then for any N , if we set t = `N Q, we clearly have

#
{

Q′ ∈ Et(k)= E(k) : `n Q′ = Pt = `
N Q

}
≥ N .

2. Notation and outline of the argument

Although much of the proof of Theorem 1 will take place in function fields, it
is useful to keep in mind the geometric picture. The strategy of the proof is as
follows: let E→ C be our elliptic surface, and let 00 ⊆ E be the image of our
section P : C → E. For each n, let 0n+1 be the pullback of 0n by the rational
function [`] : E→ E. For any extension F/k, points in 0n(F) parametrize fibres
Et of E with t ∈ C(F), with a marked point Q ∈ Et(F) such that `n Q = Pt . In
general, these curves might be singular and/or reducible, but we will imagine for
the moment that their normalizations 0̃n are (geometrically) irreducible. In other
words, we have a tower

0̃0← 0̃1← 0̃2← 0̃3← · · ·

of smooth projective curves, connected by dominant morphisms (namely, those
induced by multiplication-by-`), all defined over the number field k. Lemma 5
gives us control over points of low algebraic degree on the curves 0̃n , provided
that the morphisms above ramify enough (equivalently, the genera of the curves
increase quickly enough). Obtaining the appropriate lower bound on ramification
provides for some tricky geometry, since the only possibility for ramification is
where the curves 0n intersect singular fibres of E, and these are precisely the points
at which one might need to blow up in order the resolve the singularities of 0n .
We avoid this by moving the entire problem into the function field setting, and
applying Tate’s nonarchimedean uniformization of elliptic curves. It is here that
we use the hypothesis that jE be nonconstant, since poles of jE correspond to fibres
at which E, after suitable base extension, has semistable reduction. The resulting
estimates on ramification, combined with Lemma 5, suffice to prove the results in
this special case.

Generally, we can’t hope for the curves 0̃n to actually be irreducible (in partic-
ular, if P is a multiple by ` of another section, then 0̃1 has a component birational
to C), but each is the disjoint union of finitely many components, and the rational
map [`] : E→ E induces a map from each component of 0̃n+1 to some component
of 0̃n . Denoting the components of the normalized curves by 0̃( j)

i , we have a tree
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of curves with dominant morphisms which looks something like this:

0̃
(1)
1

yy

0̃
(1)
2

oo

0̃0 0̃
(2)
2 · · ·

uu
0̃
(2)
1

hh

0̃
(3)
2 · · ·

oo

0̃
(4)
2 · · ·

ii

The key is to show that this tree is eventually nonbranching. In other words, we
want to show that the tree depicted above contains only finitely many infinite paths,
so that we may apply Lemma 5 to each of these paths. Looking at the surface as an
elliptic curve E over K = k(C), this amounts to showing there is some N such that
the sets [`]−n P ⊆ E(K ) contain at most N Galois orbits for any n≥ 1. For elliptic
curves over number fields, this follows from Kummer theory, but it seems that these
results have not previously been extended to elliptic curves over complex function
fields. In Section 3, we prove the appropriate Galois-theoretic results to show that
the number of components of the curves 0̃n eventually stabilizes. In Section 4, we
will employ Tate’s uniformization of elliptic curves over local fields to study the
ramification of the maps 0̃n+1→ 0̃n induced by [`]. In both of these sections, we
consider E over the extension K ⊗k C of K , in order to obtain geometric results.
In Section 5, we assemble the proof of Theorem 1, and in Sections 6 and 7, the
proofs of Theorems 2 and 4.

Throughout the paper, E is a smooth elliptic surface (with some chosen ‘identity
section’) defined over the number field k. We denote by E/K the generic fibre of E,
an elliptic curve over the function field K = k(C). To obtain geometric results,
in Sections 3 and 4, we will frequently work over the extension KC = K ⊗k C,
determined by some fixed embedding of k into C. The curves 0n are as defined
above, and 0̃n are their normalizations. Since 0̃0 ∼= C , we often identify these
curves tacitly. Also, in a slight abuse of notation, P will stand both for the section
P : C→ E, as well as the corresponding point in E(K ).

3. Galois orbits

For any prime `, the action of the absolute Galois group Gal(K C/KC) on E(KC)

partitions

[`]−n P = {Q ∈ E(K C) : `
n Q = P}

into a certain number of orbits for each n, and we wish to show that this number
is bounded as n →∞. In other words, we wish to show that Galois acts nearly
as freely on [`]−n P as the group structure allows. If ` is not a special prime and
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P 6∈ `E(K ), we will show that [`]−n P is in fact Galois-irreducible for all n (in the
sense that all of its elements are conjugate under the action of Galois).

For each n we set Kn = KC(E[`n
]), the `n-division field of E/KC, and we set

K∞ to be the union of the Kn/KC. Let

T`(E)= lim
←−

E[`n
]

be the `-adic Tate module of E . Fixing a basis for T`(E) allows us to define a
representation

ρ` : Gal(K∞/KC)→ GL2(Z`).

In the number field case, a deep theorem of Serre [1972] states that such repre-
sentation is surjective for all but finitely many primes ` (unless the elliptic curve
has complex multiplication). For elliptic curves over KC, we cannot expect this to
be true. It is easy to show, using the Weil pairing on T`(E), that the image of the
representation ρ` must be contained in SL2(Z`), but the following lemma tells us
that the representation (almost) surjects onto this subgroup.

Lemma 6. Let
ρ` : Gal(K∞/KC)→ SL2(Z`)

be the `-adic Galois representation associated to E/KC. Then the image of ρ`
has finite index in SL2(Z`). Moreover, if ` is not a special prime for E, then ρ` is
surjective.

Proof. The first claim is a theorem of Igusa [1959]. More precisely, Cox and Parry
[1984] show that the image of Galois in

SL2(Ẑ)=
∏
`

SL2(Z`)

contains the congruence subgroup

0(N )=
{

M ∈ SL2(Z`) : M ≡
(

1 0
0 1

)
(mod N )

}
,

for N twice the least common multiple of the orders of the poles of the j-invariant
jE : C → P1. In other words, if ` is not a special prime for E (that is, if ` is
odd and prime to the orders of the poles of jE), then the image of Galois is all of
SL2(Z`). �

We will need some facts about the Galois cohomology of elliptic curves over
complex function fields. In the number field case, the theory is reasonably well
understood due to work of Bashmakov [1972]; see also Ribet [1979]. The tech-
niques rely, however, on the fact that in the number field setting, Galois acts on
the `-primary torsion as an open subgroup of GL2(Z`). In particular, Bashmakov
exploits elements of the centre of GL2, while the centre of SL2 is decidedly less
interesting. Nonetheless, the result we need is still true in this setting.
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Lemma 7. The first cohomology group H 1(Gal(K∞/KC), T`(E)) has finite expo-
nent. Furthermore, if ` is an odd prime and if the representation ρ` is surjective,
then the group is trivial.

Proof. In the case where ρ` is surjective, the traditional proof works: the group
G =Gal(K∞/KC)∼= SL2(Z`) contains an element that acts as−1 on T`(E). Since
this element is in the centre of G, we know (by a lemma of Sah) that multiplication
by −2 annihilates the first cohomology group. Since the group H 1(G, T`(E))
is `-power torsion (multiplication by `m kills E[`m

], and H 1(G, T`(E)) is the
projective limit of H 1(Gal(Kn/KC), E[`n

])), it has exponent gcd(2, `).
We now treat the more general case, modifying an argument of Tate presented

by Coates [1970]. For simplicity, choose a basis for T`(E) and identify G with its
image in SL2(Z`). By Lemma 6, the image of the map

Gal(K∞/KC)→ SL2(Z`)

contains the congruence subgroup 0(`N ), the kernel of reduction modulo `N , for
some N ≥ 0. Now, let H ⊆ 0(`N ) ⊆ G be the subgroup generated by the set of
matrices {(

1 0
β 1

)
,

(
1 β

0 1

)
: β ∈ `N Z`

}
.

We will show that H 1(H, T`(E)) has finite exponent. As noted at the beginning
of the proof of [Bandini et al. 2009, Lemma 3.10], H contains 0(`2N ), and so

(G : H)≤ (G : 0(`2N ))≤ (SL2(Z`) : 0(`
2N ))= `1+6N (`2

− 1).

Since the composition of the restriction and corestriction maps

H 1(G, T`(E))
Res
−−→ H 1(H, T`(E))

Cor
−−→ H 1(G, T`(E))

is simply multiplication by (G : H), proving that H 1(H, T`(E)) has finite exponent
would be enough to prove the same of H 1(G, T`(E)).

Let f : H → T`(E) be a continuous 1-cocyle. For ease of reference, we will
write

f
(

1 β

0 1

)
=

(
f1(β)

f2(β)

)
.

Note that, by the cocycle relation,(
f1(β1+β2)

f2(β1+β2)

)
=

(
f1(β1)

f2(β1)

)
+

(
1 β1

0 1

)(
f1(β2)

f2(β2)

)
=

(
f1(β1)+ f2(β2)+β1 f2(β2)

f2(β1)+ f2(β2)

)
, (1)
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and so, in particular,

f2(β1+β2)= f2(β1)+ f2(β2) for all β1, β2 ∈ `
N Z`.

Since cocycles send the identity to the identity, f2 is actually a homomorphism
from `N Z` to Z`.

Now, for any α ∈ 1+ `2N Z`, we have diag(α, α−1) ∈ H . This follows from the
aforementioned comment in [Bandini et al. 2009], or more directly from observing
that for any γ ∈ Z`,(

1 0
−`N/(1+ `Nγ ) 1

)(
1 `Nγ

0 1

)(
1 0
`N 1

)(
1 −`Nγ /(1+ `Nγ )

0 1

)
=

(
1+ `2Nγ 0

0 (1+ `2Nγ )−1

)
.

At this point, to simplify notation, we will write

σα,β =

(
α β

0 α−1

)
.

Now, on the one hand, we have the relation

σα,0σ1,βσ
−1
α,0 = σ1,α2β,

by simply multiplying the matrices. On the other hand, since f is a cocyle we have
f (σ−1)=−σ−1 f (σ ) for all σ . Thus, if α ∈Z∩(1+`2N Z`), (suppressing the first
coordinate for convenience)(

∗

α2 f2(β)

)
=

(
∗

f2(α
2β)

)
= f (σ1,α2β)= f (σα,0σ1,βσ

−1
α,0)

= f (σα,0)+ σα,0 f (σ1,β)+ σα,0σ1,β f (σ−1
α,0)

= f (σα,0)+ σα,0 f (σ1,β)− σα,0σ1,βσ
−1
α,0 f (σα,0)

=

(
0 −α2β

0 0

)
f (σα,0)+ σα,0 f (σ1,β)=

(
∗

α−1 f2(β)

)
.

Thus, for a given β, we have α2 f2(β)=α
−1 f2(β) for any integer α≡1 (mod `2N ).

Clearly then, f2(β)= 0 for all β.
We now have f2 vanishing identically, and from (1) above, f1 must be a ho-

momorphism. Again, we have f1(αβ) = α f1(β) for all α ∈ Z∩ (1+ `2N Z`) and
β ∈ `N Z`. Write

f
(
α 0
0 α−1

)
=

(
g1(α)

g2(α)

)
for all α ∈ 1+ `2N Z`.
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We compute again(
α2 f1(β)

0

)
= f (σ1,α2β)= f (σα,0σ1,βσ

−1
α,0)

...

=

(
0 −α2β

0 0

)
f (σα,0)+ σα,0 f (σ1,β)

=

(
−α2βg2(α)

0

)
+

(
α f1(β)

0

)
.

Thus, taking α = 1+ `2N , we obtain(
α2
−α

)
f1(β)=−α

2βg2(α),

and therefore

`2N f
(

1 β

0 1

)
=

(
−αg2(α)β

0

)
for all β.

Using essentially the same argument, we can also show that

`2N f
(

1 0
β 1

)
=

(
0

g1(α)β

)
.

Thus, for

σ ∈

{(
1 β

0 1

)
,

(
1 0
β 1

)
: β ∈ `N Z`

}
,

we obtain

`2N f (σ )= σ(ξ)− ξ for ξ =
(

g1(α)

−αg2(α)

)
.

The same relation must hold on all of H , since matrices of this form generate H ,
and so `2N f is a 1-coboundary. Since f was arbitrary, `2N H 1(H, T`(E)) is trivial,
proving the result. �

Lemma 8. For sufficiently large m, if Q∈ E(K C) and `m Q= P , then Q 6∈ E(K∞).
If ` is not a special prime and P 6∈ `E(KC), then `Q = P implies Q 6∈ E(K∞).

Proof. Suppose that Q ∈ Kn , and consider the map

f : Gn = Gal(Kn/KC)→ E[`m
]

defined by f (σ )= σ(Q)− Q, which is a 1-cocyle. By Lemma 7, there is some s,
not depending on n and m, such that `s H 1(Gn, E[`m

]) is trivial. It follows that
`s f is a 1-coboundary, so that `s f (σ ) = σ(ξ)− ξ for some fixed ξ ∈ E[`m

] and
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all σ ∈ Gn . One checks that this implies σ(`s Q − ξ) = `s Q − ξ for all σ ∈ Gn ,
and so `s Q− ξ ∈ E(KC). This implies

`s P = `m(`s Q− ξ) ∈ `m E(KC),

which cannot be true if m is large enough, since s is independent of m, and E(KC)

is finitely generated.
If ` is not a special prime, let `Q = P for some Q ∈ E(Kn). The triviality of

H 1(Gn, E[`]), by the argument above with s = 0, leads to Q + ξ ∈ E(KC) for
some ξ ∈ E[`]. This implies P ∈ `E(KC), which we have assumed is not true. �

Now choose a consistent family of preimages of P , that is, a sequence Qs in
E(K C) such that Q0 = P and `Qs+1 = Qs . We consider the maps

fs : Gal(K∞(Qs)/K∞)→ E[`s
], σ 7→ σ(Qs)− Qs .

Then fs is a homomorphism, since it is a 1-cocyle and the domain acts trivially
on the image. It is also clear that fs is injective, since any σ ∈Gal(K∞(Qs)/K∞)
fixing Qs must fix everything. What’s more, the diagram

Gal(K∞(Qs+1)/K∞)
restriction //

fs+1
��

Gal(K∞(Qs)/K∞)

fs

��
im( fs+1)

[`]
// im( fs)

commutes (since [`] is defined over the ground field), and so we may take (com-
patible) projective limits of the top and bottom. If we let K ′ denote the union of
all fields K∞(Qs), we thereby obtain a map f∞ from Gal(K ′/K∞) to the Tate
module T`(E). The group

H∞ = lim
←−

im( fs)⊆ lim
←−

E[`s
] = T`(E)

is a submodule of T`(E) (both in terms of the Galois module structure, and the
Z` module structure). To sum up, projective limits give us the following diagram,
with exact rows:

0 // Gal(K ′/K∞)

f∞
��

// Gal(K ′/KC)

��

// Gal(K∞/KC) //

ρ`

����

0

0 // T`(E) // T`(E)o SL2(Z`) // SL2(Z`) // 0.

The next lemma shows that im( f )∞ has finite index in T`(E). Note that in light
of Lemma 6 and the exactness of the sequences above, this is the same as showing
that the image of Gal(K ′/KC) has finite index in T`(E)o SL2(Z`),
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Lemma 9. The group H∞ has finite index in T`(E). If ` is not a special prime,
then in fact H∞ = T`(E).

Proof. This simply follows from the fact that H∞ is a submodule of T`(E) and
that the image of the action of Galois on T`(E) is an open subgroup of SL2(Z`).
First suppose that f1 is surjective, so that im( f1)= E[`]. Then H∞ is a submodule
of T`(E), with the property that T`(E)=H∞+`T`(E). It follows from Nakayama’s
lemma [Lang 2002, Lemma 4.2, page 425] that H∞ = T`(E).

We now treat the general case. First of all, it is clear that H∞ is not cyclic. If it
were, then, as H∞ is a Galois submodule of T`(E), the image of the representation

ρ` : Gal(K∞/KC)−→ SL2(Z`)

would be contained in a Borel subgroup, which clearly violates Lemma 6. So we
may choose two linearly independent elements in H∞. Let(

u1`
a1

u2`
a2

)
and

(
v1`

b1

v2`
b2

)
be these two elements, with the ui and vi units in Z`. By standard linear algebra,
we may rewrite this basis and multiply by a power of `, to obtain `se1, `se2 ∈ H∞,
where e1 and e2 are the standard basis vectors. But then `s T`(E)⊆ H∞, and so

(T`(E) : H∞)≤ (T`(E) : `s T`(E))= `2s . �

We now state the main claim of this section, namely that Galois acts nearly as
freely on [`]−n P as the group structure allows.

Lemma 10. The number of distinct Galois orbits in [`]−s P over K∞ is bounded
by

(E[`s
] : im( fs))≤ (T`(E) : H∞).

Proof. Recall the point Qs such that fs(σ ) = σ(Qs) − Qs . By definition, the
Galois orbit of Qs is simply Qs + im( fs). Any other Galois orbit is of the form
Q′ + im( fs) for some `s Q′ = P . For each such Q′, there is a ξ ′ ∈ E[`s

] such
that Q′ = Qs + ξ

′, and so the Galois orbit of Q′ is Qs + ξ
′
+ im( fs). This gives

an explicit bijection between the Galois orbits of `−s P , and the cosets of im( fs)

by E[`s
]. That this number is bounded by the index (T`(E) : H∞) follows from

the fact that T`(E)/H∞ is the projective limit of the groups E[`s
]/ im( fs). �

4. Tate uniformization and ramification

The aim of this section is to show that the tower of preimage curves described in
Section 2 is sufficiently ramified. One can see geometrically why this must be true:
if v is a place of C over which E/KC has split multiplicative reduction, then the
fibre of the Néron model over v is the union of v( jE) lines (with intersection points
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removed). The restriction of [`] to any of the components of this Néron polygon is
an `-to-one map to some other component. In particular, if the group of sections on
E contains all of the `n-th preimages of P , then `n

|v( jE). This argument applies
to extensions E×C C ′ (given a Néron model over the extension) as well, and so if
w is a prolongation of v to a field over which [`]−n P is rational for large n, we
have w( jE) > v( jE), so v is ramified in this extension.

Although the geometric argument above can be turned into a proof, it is not
entirely straightforward, because the relationship between the Néron model of E

and the Néron model of the base extension of E×C C ′ for some curve C ′ → C
is somewhat subtle when the covering is ramified. We obtain a simpler proof by
considering the function field version of the problem. The main tool is Tate’s v-
adic uniformization of elliptic curves, which is described over number fields in
[Silverman 1994, V.3–V.6]. The results over function fields are identical, and may
be found in [Roquette 1970].

Throughout this section, we fix a prime v at which E/KC has split multiplicative
reduction (we assume that one exists), and we suppose that P does not reduce to
the singular point modulo this prime. In the proof of Theorem 1, we will reduce
the problem to the case where these assumptions hold.

Theorem (Tate). Let F be a field complete with respect to the nonarchimedean
valuation v, and suppose that E/F is an elliptic curve with split multiplicative
reduction at v. Then there is a unique q ∈ F∗ with |q|v < 1, and maps such that

0→ qZ
→ F∗→ E(F)→ 0

is an exact sequence. Also, if F ′/F is a Galois extension, then the corresponding
sequence is an exact sequence of Galois modules.

In essence, completing with respect to a prime of split multiplicative reduction,
then allows us to glean a lot of information about the elliptic curve E by considering
the multiplicative group of the completion of the field.

Lemma 11. Let F be field complete with respect to the normalized discrete valu-
ation v, with ring of integers R, and an algebraically closed residue field R/v of
characteristic not dividing n. Then for any α ∈ F∗, we have α ∈ (F∗)n if and only
if n |v(α).

Proof. In one direction, note that if α ∈ (F∗)n , then v(α)= nv(β) for some β ∈ F∗.
It follows at once that n |v(α).

Let rv : R→ R/v be the reduction-modulo-v map. First suppose that α ∈ R∗.
Then rv(α) 6= 0, and since the residue field is algebraically closed, xn

− rv(α) has
a simple root in R/v. By Hensel’s Lemma [Serre 1979, p. 34], there is a root of
xn
− α in R. If u is such a root, then nv(u) = v(α) = 0, and so u ∈ R∗, whence

α = un
∈ (R∗)n .
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Now suppose that α ∈ F∗ \ R∗. By taking reciprocals if necessary, suppose that
α ∈ R. If v(α)= m, write α = γπm , where π is a uniformizer for v, and γ ∈ R∗.
By the previous argument, γ = um for some u ∈ R∗, and so α= (uπ)m ∈ (F∗)m . �

To state our next result, we will define the ramification tree of the point Q0= Pv
on 00 ⊆ E. The nodes of the tree are the points on the curves 0̃n which map down
to Q0, with a point Qn+1 on 0̃n+1 linked to a point Qn on 0̃n if Qn+1 maps to Qn

by the map induced by [`]. We will weight these edges with the ramification index
of this map at Qn+1, so that the weights of the edges above any given point sum
to `2. For convenience, we will refer to the points on 0̃n as nodes at level n in our
tree. When we speak of nodes above Q, we mean nodes at the level immediately
above that of Q, which are connected to Q by an edge.

We may give an equivalent definition of the ramification tree in terms of function
fields. By identifying points of C(C) with the corresponding valuations on KC,
points above Q0, on the components of the curves 0̃n , correspond to valuations on
the function fields of the corresponding components which extend v, and so we
may take the valuations to be the nodes of our tree. The valuation vn+1 of C(0̃

(i)
n+1)

is linked to the valuation vn of C(0̃
( j)
n ) just if the former field extends the latter

(that is, 0̃(i)n+1 maps onto 0̃( j)
n ), and vn+1 |vn . Again, the weights on the edges are

simply the ramification indices e(vn+1/vn). Note that the Galois orbits in [`]−n P
correspond to the components of C(0̃n), with

C(0̃n)∼= KC(Qn) for Qn ∈ [`]
−n P

any representative of the appropriate Galois orbit.
It turns out that there are only three possible types of branching above a node

in our tree: there might be

(1) `2 edges above a given node, each necessarily of weight 1;

(2) ` edges of weight 1 and `− 1 of weight `; or

(3) ` edges, each of weight `.

The remainder of the section is devoted to proving this, and establishing the exact
structure of the tree.

Let K̂C be the completion of KC with respect to v. We recall some basic
facts about extensions of local fields; see [Serre 1979, Section II.3]. If L =
KC(Q, E[`n

]) for some Q ∈ E(K C) with [`]n Q = P , then L is a Galois extension
of KC. If we fix a prolongation w of v to L , then the decomposition group

Dw = {σ ∈ Gal(L/KC) : w ◦ σ = w} .

of w/v is precisely the Galois group of L̂/K̂C. If Q1, . . . , Qg are a complete set
of representatives of the Gal(L/KC)-orbits in [`]−n P , then the prolongations of
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v to the (distinct) fields L(Qi ) are simply the valuations of the form w ◦ σ for
σ ∈ Gal(L/KC). Two automorphisms generate the same valuation if and only if
they are in the same coset of Dw in Gal(L/KC). Thus, the prolongations are exactly
determined by the Dw-orbits (that is, the Gal(L̂/K̂C)-orbits) in [`]−n P . Addition-
ally, since all residual degrees are 1 (the residue field is always C), the ramification
index e(w/v) of the prolongation associated to the decomposition orbit containing
Q is exactly [K̂C(Q) : K̂C] (this is true because, as we will see below, K̂C(Q)/K̂C

is a Galois extension even though KC(Q)/KC may not be). Thus, the nodes at
level n in our tree correspond to distinct orbits in [`]−n P under the decomposition
group of some fixed valuation of L extending v. We will suppose throughout that
we have extended v in some way to K C, and the decomposition group of a field
L will always refer to the decomposition group of the restriction of this valuation
to L .

More generally, forw a prolongation of v corresponding to the point Q∈[`]−n P ,
the nodes abovew in the ramification tree correspond to the decomposition orbits of
points Q′ ∈ [`]−1 Q. Given a prolongation w′ corresponding to (the decomposition
orbit of) Q′, the ramification index e(w′/w) is simply

[K̂C(Q′) : K̂C(Q)] = [K̂C(Q′) : K̂C]/[K̂C(Q) : K̂C].

By Tate’s v-adic uniformization, there is a unique q ∈ K̂ ∗
C

such that for any
Galois extension F/K̂C, we have an exact sequence

0→ qZ
→ F∗

φ
−→ E(F)→ 0

which respects the action of the Galois group (which acts trivially on q). We point
out that the units R∗ map, by φ, onto the connected component E0(K̂C) containing
the identity; see [Silverman 1994, p. 431]. Also, E[`n

] is generated by φ(q1/`n
)

and φ(ζ`n ), where q1/`n
is some `n-th root of q , and ζ`n is a primitive `n-th root

of unity. Note that, since ζ`n ∈ C ⊆ F , the group E(K̂C) contains at least cyclic
`n-torsion for all n.

We now consider the points in [`]−n P . Recall that we are assuming P ∈ E0(K̂C),
and thus we may fix, once and for all, a value β ∈ R∗ with φ(β)= P . By Lemma 11,
β ∈ (R∗)`

n
for all n, and so we will fix a compatible system of roots β1/`n

∈ R∗

(compatible in the sense that (β1/`n+1
)` = β1/`n

). The elements of [`]−n P are
precisely the images under φ of the points{

β1/`n
qa/`n

ζ b
`n : 0≤ a, b < `n}.

Suppose that

Q = φ(β1/`n
qa/`n

ζ b
`n ).
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Since ζ`n ∈ C⊆ KC for all n and since β1/`n
∈ R∗ ⊆ K̂C for all n, we have

K̂C(Q)= K̂C(β
1/`n

qa/`n
ζ b
`n )= K̂C(qa/`n

).

In particular, if qa has order `m in K̂ ∗
C
/(K̂ ∗

C
)`

n
, then the conjugates of Q by the

decomposition group are simply the elements of the form φ(β1/`n
qa/`n

ζ b
`nζ

c
`m ), for

c∈Z/`mZ. In other words, the extension K̂C(Q)/K̂C is a cyclic Galois extension of
order `s , where 0≤ s≤n−ord`(v(q)) is the greatest value such that a≡0 (mod `s).

In particular, the quantity a ∈ Z/`nZ is an invariant of the decomposition orbit
of Q = φ(β1/`n

qa/`n
ζ b
`n ) (although there may be more than one orbit with the

same value a), and hence an invariant of the corresponding node at level n in
the ramification tree. Furthermore, if a′ ∈ Z/`n+1Z is the corresponding quantity
for a node corresponding to the decomposition orbit of Q′ ∈ [`]−1 Q, then a′ ≡
a (mod `n). To describe the structure of the tree, we will set

m = ord`(v(q))= ord`(v( jE))

and say that a node has

(1) Type A if n < m;

(2) Type Br if n ≥ m and a ≡ 0 (mod `n−m), and 0≤ r ≤ m is the greatest value
with a ≡ 0 (mod `n+r−m); and

(3) Type C if n ≥ m and a 6≡ 0 (mod `n−m).

Lemma 12. The ramification tree observes the following rules:

(1) All nodes at level 0 through m − 1 have Type A (if m = 0, then there are
no such nodes), and each of these nodes have `2 distinct edges above them
(necessarily each of weight 1).

(2) All nodes at level m are Type Br nodes for some 0 ≤ r ≤ m, and at any level
of the tree,

(a) if m = 0, then a Type B0 node has ` Type B0 nodes above it, with weight
1 each, and `− 1 Type C nodes above it, with weight ` each;

(b) if m ≥ 1, then a Type B0 node has ` Type C nodes above it, each with
weight `;

(c) a Type Br node, for 1 ≤ r < m, has `2 Type Br−1 nodes above it, each
with weight 1;

(d) if m ≥ 1, a Type Bm node has ` nodes of Type Bm above it, each of
weight 1, and `− 1 nodes of Type Bm−1 above it, each of weight `.

(3) Each Type C node has ` Type C nodes above it, each with weight `.
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Thus, when ord`( jE)= 0, the ramification tree looks something like this:

B0

{{
B0

uuB0

{{

C0oo

B0
uu

...
B0

...
C0

uuC0

cc

C0oo

C0

]]

... ...

We should point out that the lemma above does not uniquely define the structure of
the tree, but only gives the information that we will need in the proof of Theorem 1.
In the proof below, however, it is pointed out that there are precisely `mϕ(`m−r )

nodes of Type Br at level m for each 0≤r≤m, where ϕ is the Euler totient function.
This fact (combined with Lemma 12) uniquely determines the full structure of the
tree.

Proof. The claim that all nodes at levels 0 through m − 1 have Type A is clear
from the definition, as is the claim that all nodes at level m have Type Br for
some 0 ≤ r ≤ m (since the condition a ≡ 0 (mod `0) is satisfied trivially). We
now conduct a case-by-case examination of the nodes immediately above nodes
of any given type, proving the various claims in the lemma. Throughout, we take
Q = φ(β1/`n

qa/`n
ζ b
`n ) as a representative of the appropriate decomposition orbit,

and consider the decomposition orbits of possible

Q′ = φ(β1/`n+1
qa′/`n+1

ζ b′
`n+1) ∈ [`]

−1 Q.

Case: Type A. First, suppose that n < m. Then qa′/`n+1
is K̂C-rational for all

a′ ∈Z/`n+1Z, since q ∈ (K̂ ∗
C
)`

m
and n+1≤m. In particular, every extension of the

form K̂C(qa′/`n+1
)/K̂C(qa/`n

) is trivial, and so there are `2 distinct decomposition
orbits above Q. This gives `2 distinct nodes above the node corresponding to Q,
and each must be unramified, since their ramification indices sum to `2 (or, simply
because the inertia groups are trivial). As noted above, if n+ 1 < m, these points
are all Type A, while if n+ 1 = m, the points above Q have Type Br for some r .
It is, in fact, quite easy to compute the number of nodes of Type Br at level m for
each 0≤ r ≤m, thereby completely describing the structure of the tree. The nodes
of Type Br are in one-to-one correspondence with pairs (a, b) with b ∈ Z/`mZ,
and a ∈ Z/`mZ of the form `r u for u ∈ Z/`mZ a unit. In other words, there are
precisely `mϕ(`m−r ) nodes of Type Br at level m for each 0≤ r ≤ m.



482 Patrick Ingram

Case: Type Br . Now, suppose that n ≥ m and that a ≡ 0 (mod `n−m), so that Q
has Type Br for some 0 ≤ r ≤ m. Since q ∈ (K̂ ∗

C
)`

m
, say q = q`

m

0 , we see that the
field

K̂C(Q)= K̂C(qa/`n
)= K̂C(q

a/`n−m

0 )

is simply K̂C. Now let Q′= φ(β1/`n+1
qa′/`n+1

ζ b′
`n+1) be an element of `−1 Q, so that

a′ ≡ a (mod `n) and b′ ≡ b (mod `n). Consider the extension

K̂C(Q′)/K̂C(Q)= K̂C(qa′/`n+1
)/K̂C(qa/`n

).

If a′ ≡ 0 (mod `n+1−m), then this extension is trivial, and each Q′ of this form is
fixed by the decomposition group. To each of these points (if there are any), corre-
sponds a prolongation ofw to KC(Q′)which is unramified. If a′ 6≡0 (mod `n+1−m),
then this extension is cyclic of degree `. In this case, the decomposition orbit of
Q′ corresponds to a prolongation of w to KC(Q′) which is ramified of index `.

Now, if Q has Type Br for some r ≥ 1, then m ≥ 1 and a≡ 0 (mod `n+1−m). So
for all points Q′ above Q, we have a′≡ a≡ 0 (mod `n+1−m) since a′≡ a (mod `n)

and n+ 1−m ≤ n. In this case, all points Q′ will be fixed by the decomposition
group, and so correspond to unramified prolongations of w to KC(Q′). If r < m,
we have a′ ≡ a 6≡ 0 (mod `n+r+1−m), and so each Q′ ∈ `−1 Q is a point of
Type Br−1. If, on the other hand, r = m, then have a ≡ 0 (mod `n). There is
one choice a′ ∈ Z/`n+1Z with a′ ≡ a (mod `n) and a′ ≡ 0 (mod `n+1), and `− 1
choices with a′ 6≡ 0 (mod `n+1). By the same argument, the choice a′ = 0 yields `
decomposition-invariant points, and so ` distinct, unramified prolongations of w.
Each of those points will again have Type Bm . The ` − 1 choices with a′ 6= 0
each yield a single decomposition orbit, and so a single prolongation of w with
ramification index `. Since a′≡ 0 (mod `n) but a′ 6≡ 0 (mod `n), these `−1 points
have Type Bm−1.

Now suppose that Q has Type B0, which we will subdivide into two cases,
depending on whether or not m = 0. If m ≥ 1, then a ≡ 0 (mod `n−m), but
a 6≡ 0 (mod `n+1−m). It follows that any point Q′ ∈ `−1 Q, which must satisfy
a′ ≡ a (mod `n), satisfies a′ 6≡ 0 (mod `n−m). These points, then, are all Type C.
For each of these values of a′ ∈ Z/`n+1/Z, we find that Q′ is in a decomposition
orbit of size `. Thus, there are ` prolongations ofw, each with ramification index `.
On the other hand, if m = 0, then the condition on a is simply that a≡ 0 (mod `n).
Consider the different values a′ ∈ Z/`n+1Z with a′ ≡ a (mod `n). If a′ = 0, then
the decomposition group acts trivially on Q′. This gives ` distinct prolongations
of w, each with ramification index `. Each of the points corresponding to these
prolongations has Type B0. The `−1 choices of a′ 6=0 each yield one prolongation,
with Type C.
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Case: Type C. In this case, we have a 6≡ 0 (mod `n−m), and so if a′ ∈ Z/`n+1Z,
with a′≡ a (mod `n), we have a′ 6≡ 0 (mod `n+1−m). Thus, any point Q′ ∈ `−1 Q is
a Type C point. Now, any of the extensions K̂C(qa′/`n+1

)/K̂C(qa/`n
)must be cyclic

of order `, since qa′ generates a cyclic subgroup of K̂ ∗
C
/(K̂ ∗

C
)`

n+1
of order `n+1−m ,

while qa generates a cyclic subgroup of K̂ ∗
C
/(K̂ ∗

C
)`

n
of order `n . Thus, there are `

primes above w, each with ramification index `, and corresponding to a point of
Type C. �

5. Proof of Theorem 1

We proceed with the proof of the main result, first making several reductions to
simplify the argument. For simplicity, we introduce the following notation

X (k, B1,E, P, t)=
{

Q ∈ Et(k̄) : [k(Q) : k] ≤ B1 and `n Q = Pt for some n ≥ 1
}
.

Our first lemma shows that we are free to replace E→ C by some base extension
defined over an algebraic extension of k. In other words, by thinking in terms
of the generic fibre E/K , it suffices to prove Theorem 1 for E over an algebraic
extension K ′/K .

Lemma 13. Let k ′/k be an algebraic extension, and let φ :C ′→C be a dominant
morphism of curves defined over k ′. If Theorem 1 is true for an elliptic surface
E′→ C ′ birational to E×C C ′, then it is true for E.

Proof. In proving Theorem 1, it is clear that we are proving something stronger if
we pass to an algebraic extension of k. So we will, replacing k by k ′ if necessary,
suppose that φ :C ′→C is defined over k. Now let E′ be birational to E×C C ′, and
let P : C → E be a section. Then P lifts uniquely to a section P ′ : C ′→ E′, and
since E′t

∼= Eφ(t) over k for all but finitely many t ∈ C ′(k̄), we have immediately

X (k, B1,E, P, φ(t))= X (k, B1,E′, P ′, t).

Now, for any s ∈ C(k̄), there is some t ∈ C ′(k̄) with φ(t) = s, and we have
[k(t) : k] ≤ deg(φ)[k(s) : k]. Thus, we may conclude Theorem 1 for E and P , with
B1 = D1 and B2 = D2 by applying Theorem 1 to E′ and P ′, with B1 = D1 and
B2 = deg(φ)D2. �

From this point forward, we will assume that E has been replaced with an ap-
propriate base extension E′, so that there is at least one place v ∈ C(k̄) such that
the fibre Ev is multiplicative.

Lemma 14. Let k, E, and ` be as in Theorem 1, and let N ≥ 1. If Theorem 1 is
true for P = N P ′, then it is true for P = P ′.



484 Patrick Ingram

Proof. Suppose there is some point Q ∈Et(k̄) with `n Q= P ′t . Then `n N Q= N P ′t ,
and clearly k(N Q) ⊆ k(Q) (since multiplication by N is given by rational maps
defined over k). In particular, in the notation above, the image of X (k, B1,E, P ′, t)
by the morphism [N ] :Et→Et is wholly contained in the set X (k, B1,E, N P ′, t).
But this means that the cardinality of the former set is at most N 2 times the cardi-
nality of the latter. �

Lemma 15. Theorem 1 is true for P a point of finite order on E(K ).

Proof. In light of Lemma 14, we may replace P by N P for any N ≥ 1, and so it
suffices to consider the case where P = O is the identity section. But{

Q ∈ Et(k̄) : `n Q = Ot for some n ≥ 1
}

is just Et [`
∞
] \ {Ot }, and so in particular is a subset of Et(k̄)Tors.

A simple modification of a theorem of Merel (for the appropriate variant, see
[Silverman 2007, Corollary 6.64]) implies that for all elliptic curves E/F , where
F/Q is a number field, the set ⋃

[L:F]≤n

E(L)Tors

is bounded in cardinality by some quantity that depends only on n and [F : Q].
Since the (smooth) fibres Et for [k(t) : k] ≤ B2 are all elliptic curves defined
over number fields of degree at most B2[k : Q], invoking the claim above with
n= B1 B2[k :Q] gives us a uniform bound on the sizes of the sets X (k, B1,E,O, t),
for t ∈ C(k̄) with [k(t) : k] ≤ B2. �

We now prove Lemma 5, relying heavily on [Faber et al. 2009, Lemma 4.5].

Proof of Lemma 5. For any morphism of curves φ : X → Y with ramification
divisor Rφ , we set

ρ(φ)=
deg Rφ
2 degφ

and recall that we have assumed that there exist constants c1 > 0 and c2 such that

ρ(φn)≥ c12n
− c2.

Lemma 4.5 of [Faber et al. 2009] states that if

X0
φ1
←− X1

φ2
←− · · ·

φN
←−− X N

is a tower of (smooth projective) curves equipped with nonconstant morphisms all
defined over a number field k, then, with

BN = min
1≤m≤N

2N−mρ(φm) and bN = min
1≤m≤N

ρ(φm), (2)
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the set

{P ∈ X N (k̄) : [k(P) : k]< BN and [k(φ1 ◦ · · · ◦φN (P)) : k] ≥ bN }

is finite. Note that if any of the maps φn is unramified, the result is trivial, since
in this case BN = bN = 0. Thus, we fix n0 such that ρ(φn) >

1
2 c12n for n > n0,

(for example, we could take n0 to be anything larger than log2(2c2/c1), assuming
c2 > 0, or n0 = 0 otherwise). We then apply the lemma to the tower of curves

P1 ψ1
←− P1 ψ2

←− Cn0

ψ3=φn0+1
←−−−−−− Cn0+1

ψ4=φn0+2
←−−−−−− · · · ,

where the two leftmost maps are any morphisms of degree at least 2 (defined
over k). On the one hand, the conditions on φn and the fact that ψ1 and ψ2 are not
unramified ensure that ρ(ψn)≥ ε2n for some ε > 0. Thus,

BN = min
1≤m≤N

2N−mρ(ψm)≥ min
1≤m≤N

2N−mε2m
= ε2N for any N ≥ 1.

On the other hand, ψ1 : P
1
→ P1, and so the Hurwitz formula guarantees that

bN ≤ ρ(ψ1)=
2d − 2

2d
< 1.

By the lemma from [Faber et al. 2009], we know that for any N > n0, the set

{P ∈ CN (k̄) : [k(P) : k]< δ2N and [k(ψ1 ◦ · · · ◦ψN (P)) : k] ≥ 1}

is finite, with δ= ε22−n0 . Since the condition [k(ψ1◦· · ·◦ψN (P)) : k]≥ 1 is trivial,
we have proven the lemma (with the more explicit information that it suffices to
take N larger than log2(B/δ)). �

We now proceed with the body of the proof of the main result. Let k, E, P ,
`, B1, and B2 be as in the statement of Theorem 1. In light of Lemma 15, we
will suppose that P is a section of infinite order. The j-invariant jE : C → P1

was assumed nonconstant, and hence is dominant. In particular, over C, it must
have a pole. If necessary, we may replace E with an elliptic surface E′, birational
to a base extension of E, such that this pole is a place of multiplicative reduction
for E′. After replacement of E with this base extension (employing Lemma 13),
the generic fibre E of E over K = k(C) has split multiplicative reduction at v over
KC = K ⊗k C. Finally, in light of Lemma 14, we will also replace P by v( jE)P
in order to ensure that P ∈ E0(K̂C), where K̂C is the completion of KC at v.

Let 00 ⊆ E be the image of P and, as in the introduction, let 0n+1 = [`]
−10n .

If t ∈ C(k̄) has [k(t) : k] ≤ B1, and Q ∈ Et(k̄) has [k(Q) : k] ≤ B2, and `n Q = Pt ,
then the pair (Q, t) corresponds to a point on 0n of degree at most B = B1 B2

over k, and hence a point of degree at most B on the normalization 0̃n . We will
use Lemma 5 to bound n.
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First, note that since the tree of components of the curves 0̃n contains only
finitely many paths (by Lemma 10), it suffices to prove the result for any of the
finitely many distinct towers

C0
φ0
←− C1

φ1
←− · · · ,

where Cn⊆ 0̃n is irreducible and φn is the map induced by [`] :E→E. In particular,
we may choose n0 large enough that for all n ≥ n0, Cn+1 is the only component
of 0̃n+1 which maps to Cn by the map 0̃n+1→ 0̃n induced by [`] : E→ E. Now
suppose that w is a place above v corresponding to a point on Cn0 . We claim that
there is a place w′ |w, corresponding to a point of a curve of Cn for some n ≥ n0,
that has Type C (in the sense of Section 4). Of course, if w itself has Type C, then
we’re done. Suppose that the w is a node in the ramification tree of Type Br for
some 0 ≤ r ≤ m. By Lemma 12, then, there is a node of Type C above w if w
has Type B0, and a node of Type Br−1 above w otherwise. By induction, then, we
eventually have a node w′ |w of Type C in the ramification tree. Finally, if w has
Type A, then there is some node of Type B0 above w, and we apply the previous
case.

So, increasing n0 if necessary, and replacing w with the node of Type C above
it, we may simply assume that w has Type C. Now, every Type C node in the
ramification tree splits into ` Type C nodes with ramification index `, at the next
level of the tree. Thus, the curve Cn0+m contains `m distinct points above w, all of
Type C. In other words, the ramification divisor of the morphism

φn0+m : Cn0+m→ Cn0+m+1

has degree at least `m(`− 1). Since each of the maps φn has degree at most `2, it
follows that for n > n0,

ρ(φn)≥
`n−n0(`− 1)

`2 ≥ `n
(
`− 1
`n0+2

)
.

Since there are only finitely many n≤ n0, this shows that there are constants c1> 0
and c2 such that

ρ(φn)≥ c12n
− c2

(in fact, we could replace the 2n with `n , but this provides no gains after the ap-
plication of Lemma 5). We are now in a position to apply Lemma 5. The lemma
tells us that for any B ≥ 1, there is an N (B) such that CN (B)(k̄) contains only
finitely many points z with [k(z) : k] ≤ B. Applying the argument to each of the
finitely many towers of components of the curves 0̃n proves the same thing for
those curves.

Given B ≥ 1, let YB ⊆ C(k̄) be the (finite) set of t corresponding to points in
0N (B)(k̄) of degree at most B. Now suppose that t ∈ C(k̄) and Q ∈ Et(k̄), with
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`n Q = Pt and [k(t, Q) : k] ≤ B. If t 6∈ YB , then n ≤ n0. The number of points Q
is at most

#`−1 Pt + #`−2 Pt + · · ·+ #`−n0 P = `2
+ `4
+ · · ·+ `2n0(B)

=
`2n0(B)+1

− `2

`2− 1
,

which does not depend on t .
Now suppose that t ∈ YB and that Et is nonsingular. If ĥt : Et(k̄)→ R+ is the

Néron–Tate height on the elliptic curve Et , then for any Q ∈ Et(k̄) with `n Q = Pt

for some n ≥ 1, we have

ĥt(Q)= `−2n ĥt(Pt)≤ ĥt(Pt).

Thus, there are a finite number of points in Et(k̄) such that `n Q = Pt for some
n ≥ 1, and [k(Q) : k] ≤ B1. So, since YB is finite, we have an upper bound on the
size of the set{

Q ∈ Et(k̄) : [k(Q) : k] ≤ B1 and `n Q = Pt for some n ≥ 1
}

for t ∈ C(k̄) with [k(t) : k] ≤ B2, whether t ∈ YB or not. This proves Theorem 1.

Remark. It is natural to ask how far one might extend this argument. In particular,
if we fix a finite set of primes and let Z be the set of positive integers divisible only
by these primes, then it is not hard to see that a slight modification of the proof of
Theorem 1 shows that the sets{

Q :∈ Et(k̄) : nQ = Pt for some n ∈ Z and [k(Q) : k] ≤ B1
}

are uniformly bounded in size for t ∈C(k̄) of degree at most B2. Indeed, if�(n) de-
notes the number of prime divisors of n (counted with multiplicity), then it should
be possible to modify proofs above to show that the curves

0(n)= [n]−1C ⊆ E

satisfy ρ(φ)� 2�(n) for φ : 0(`n)→ 0(n) the morphism induced by [`]. In other
words, it should follow by a simple modification of Lemma 5 (which turns out to
depend only very minimally on the particular tower of curves) that 0(n) contains
only finitely many points of degree at most B = max{B1, B2}, so long as �(n) is
large enough. The problem is that since there are infinitely many integers n with
�(n) = M , say, the set YB of points on C above which there is a point on some
0(n) with�(n)=M might still be infinite. Since we cannot reduce the problem to
one on finitely many fibres, the final step of the proof of Theorem 1will not apply.
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6. The proof of Theorems 2 and 3

As mentioned in the introduction, the set of points Q ∈ Et(k̄) of bounded degree
(indeed, of degree 1), such that `N Q= Pt for some N , can be made arbitrarily large
by simply choosing P to be divisible in E(C) be a large power of `. Requiring that
` be nonspecial, we can prove the stronger claim of Theorem 2, namely that if P
is not of the form `P0 for any section P0 : C→ E, then

#
{

Q ∈ Et(k) : `n Q = Pt for some n ≥ 1
}
≤ `2,

for all but finitely many places t ∈C(k), provided that E has at least one multiplica-
tive fibre. Taking a cue from work of Baragar and McKinnon [2010], we note that
we may replace the upper bound with 0 if E has at least 5 distinct multiplicative
fibres (4 multiplicative fibres suffice if ` = 5, or 3 if ` ≥ 7). We should note that
since the group of sections on E is finitely generated, P is an `-th multiple of
another section only for finitely many primes `.

The result follows from the Mordell conjecture (now a theorem of Faltings), once
one shows that the curve 0̃2 (or, with the additional hypotheses, 0̃1) is irreducible,
and has genus at least 2. For if this is the case, then there are only finitely many
fibres on which [`]−2 Pt (respectively, [`]−1 Pt ) contains any k-rational points at
all. The result follows since [`]−1 Pt contains at most `2 points. Thus, Theorem 2
is proven once we establish this:

Lemma 16. Let ` be a nonspecial prime for E, and let P : C → E be a section
which is not an `-th multiple, and suppose that jE is nonconstant. Then 0̃2 is an
irreducible curve of genus at least 4. If we suppose, additionally, that jE :C→P1

has at least 5 distinct poles over C (at least 4 poles if ` = 5, or at least 3 poles if
`≥ 7), then 0̃1 is an irreducible curve of genus at least 2.

Proof. The irreducibility follows from the results in Lemma 10. In particular, since
` is not a special prime, Lemma 6 tells us that Galois group of the covering 0̃n→00

is isomorphic (in the natural way) to a semidirect product (Z/`nZ)2oSL2(Z/`
nZ).

In particular, the action is transitive, and the curve 0̃n is irreducible.
For convenience, we will work in the function field setting, considering the

generic fibre E/KC. We will denote the function fields (over C) of 0̃1 and 0̃2 by
F1 and F2, respectively.

Since jE :C→P1 is not constant, it is dominant, and so must have a pole. Let v
be a pole of jE :C→P1, and suppose for the time being that E has multiplicative
reduction at v. If we have P ∈ E0(K̂C), then by Lemma 12 (since v( jE) is prime
to `), the place v is a point of Type B0 in the terminology of Section 4. A quick
examination of the structure of the tree (referring to Lemma 12) shows that there
are ` places of Type B0 of F1 above v, and above each of these there are `− 1
places w of F2 with ew(F2/F1) = `. Similarly, there are `− 1 places of Type C
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for F1 above v, and above each of these, ` places w of F2 with ew(F2/F1) = `.
Thus the map (of degree `2) 0̃2 → 0̃1 has ramification divisor of degree at least
2`(`− 1)2. By the Riemann–Hurwitz formula,

2
(
g(0̃2)− 1

)
≥ `22

(
g(0̃1)− 1

)
+ 2`(`− 1)2,

or, using the trivial bound g(0̃1)≥ 0,

g(0̃2)≥ `
3
− 3`2

+ `+ 1≥ 4

(recall that `≥ 3).
If P 6∈ E0(K̂C), then we cannot apply Lemma 12. However, the general approach

of Section 4 still applies. If

0→ qZ
→ K̂C

φ
−→ E(K̂C)→ 0

is the Tate uniformization of E at v, as in Section 4, then set m = v(q)=−v( jE)
and write q = qm

0 for some q0 ∈ K̂ ∗
C

. Since q0 is a uniformizer for v, we may write
P = φ(uq p

0 ) for some 0 < p < m and some v-unit u (we may take 0 < p < m
because qZ

= ker(φ)). The places of F2 above v correspond to decomposition
orbits (relative to a fixed prolongation of v) of points of the form

Q′ = φ(u1/`2
q(p+am)/`2

0 ζ b
1/`2) for a and b ∈ Z/`2Z.

By hypothesis, m is prime to `, and so the function q 7→ p + am simply per-
mutes Z/`2Z. In other words, the places of F2 above v simply correspond to the
decomposition orbits of points of the form

Q′ = φ(u1/`2
qa/`2

0 ζ b
1/`2) for a and b ∈ Z/`2Z.

Exactly as in Section 4, the `(`− 1) choices of a such that a 6≡ 0 (mod `2) each
yield a place w of F2 for which ew(F2/F1)= `. The `−1 choices of a≡ 0 (mod `)
but a 6≡ 0 (mod `2) give `(`−1) places w of F2 for which ew(F2/F1)= `. Just as
in the previous case, we obtain

g(0̃2)≥ `
3
− 3`2

+ `+ 1≥ 4.

Now we suppose that v is a pole of jE :C→P1 but that v is a place of additive
reduction. Then there is some quadratic extension K ′/KC and an elliptic curve
E ′/K ′ which is K ′-isomorphic to E , such that E ′ has multiplicative reduction at
v; see [Silverman 1994, p. 442]. Moreover, v= (v′)2 ramifies in this extension. Let
Q1, Q2∈ E ′(K ′)with `2 Q2=`Q1= P . We have shown that there are ` placesw of
K ′(Q1) above v′ with ew(K ′(Q1)/K ′)= 1, and `−1 with ew(K ′(Q1)/K ′)= `. In
other words, there are ` places w of K ′(Q1) above v with ew(K ′(Q1)/K )= 2, and
`−1 with ew(K ′(Q1)/K )= 2`. But K ′(Q1)= K ′F1, and so a prime of K ′(Q1) is
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totally ramified in the extension K ′/K only if it is in the extension K ′(Q1)/F1. In
particular, every prime w of K ′(Q1) above v satisfies ew(K ′(Q1)/F1) = 2. Thus
each place w of F1 above v extends uniquely to a place w′ of K ′(Q1), and we
have ew(F1/K ) = 1

2 ew′(K ′(Q1)/K ). It follows that there are ` places w of F1

with ew(F1/K ), and `−1 with ew(F1/K )= `. After conducting the same analysis
for the extension F2/F1, we see that the factorizations of v in these extensions are
identical to the previous case. The Hurwitz formula again gives g(0̃2)≥ 4.

Now we consider the genus of 0̃1 in terms of the number of poles of jE. By
the arguments above, if v is a pole of jE, then there are at least `− 1 places of 0̃1

above v at which the map 0̃1→ 0̃0 is ramified with index `. Thus, the ramification
divisor of the map 0̃1→ 0̃0 has degree at least N (`−1)2, where N is the number
of distinct poles of jE (over C). By The Riemann–Hurwitz formula (since the
morphism 0̃1→ 0̃0 has degree `2), we have

g(0̃1)≥ 1− `2
+

1
2 N (`− 1)2.

This is of no use to us if N ≤ 2, but one can check that if N ≥ 5, then g(`) ≥ 2
for all ` ≥ 3. Furthermore, if N ≥ 4, then g(`) ≥ 8 for ` ≥ 5, and if N ≥ 3, then
g(`)≥ 6 for all `≥ 7.

If 00 ∼= C has genus at least 1, then the estimate on the ramification of the map
0̃1→ 0̃0 and the Hurwitz formula, gives

g(0̃1)≥ 1+ 1
2(`− 1)2 ≥ 3 for `≥ 2,

regardless of the number of poles of jE (provided that jE is nonconstant). �

The remark after the statement of Theorem 2 is proved by a similar argument. In
particular, in this simplified case one knows that all of the curves 0̃n are irreducible,
and an examination of the ramification tree shows that the map

φn+1 : 0̃n+1→ 0̃n

has ramification of degree at least (n + 1)`n(`− 1)2. Lemma 4.5 of [Faber et al.
2009] now implies an upper bound on n such that [`]−n Pt contains points of degree
at most D on infinitely many fibres. The lower bound comes from observing that
the points in [`]−n Pt each have degree at most `2n over k.

Proof of Theorem 3. Let E and S be as in the statement of the theorem, and suppose
that Et(k) contains a point of order N for N not an S-unit. Then Et(k) contains a
point of order ` for some prime ` 6∈ S. Note that, by Merel’s theorem ` is bounded
in terms of [k : Q]. Thus, it suffices to show the finiteness of the set of t ∈ C(k)
such that Et(k) contains a point of order ` for any given ` 6∈ S.

Now, fix ` 6∈ S. Since E[`] \ {O} is Galois-irreducible, the curve [`]−1O has two
components, one of which is birational to C (this is the curve on E corresponding
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to O). Let C ′ be the normalization of the component birational to C , and let 0 be
the normalization of the other component. If ` ≥ 13, then using the obvious map
0→ X1(`), we see that g(0) ≥ 2, and hence 0(k) is finite. Thus we only have
something to prove for `= 3, 5, 7.

If jE has a pole at the place v on C , then (by the same argument as in the proof of
Theorem 2) there are a total of ` places above v, on the union of these two curves,
at which the map induced by [`] is unramified, and `− 1 at which the map has
ramification index `. Since C ′ ∼= C , all of the ramified places must lie on 0, and
so the places above v contribute (`− 1)2 to the degree of the ramification divisor
of the map 0→ C (this map has degree `2

− 1).
If C has genus 1 (or greater), then the existence of a single pole of jE gives the

lower bound
g(0)≥ 1+ 1

2(`− 1)2 ≥ 3 for `≥ 3.

Otherwise, the existence of N distinct poles of jE : C → P1 gives a lower bound
of

g(0)≥ 1− (`2
− 1)+ N

2 (`− 1)2 ≥ 3 for N ≥ 5 and `≥ 3. �

7. The proof of Theorem 4

Let E/k be an elliptic curve defined over a number field, and fix a rational prime
` and a value M ≥ 0. Let n ≥ 1 be the least integer such that M < `2n , and let
F = k(E[`n

], [`]−n P). Then F/k is a Galois extension, and if p is a prime of k
whose Frobenius element in Gal(F/k) is trivial, then Ep(kp) contains Ep[`

n
] and

contains a point Q such that `n Q = Pp. In particular, for each m ≤ n there are at
least `2m values R ∈ Ep(kp) such that `m R = Pp for some m ≥ 1. Thus, there are
at least

`2n
+ `2(n−1)

+ · · ·+ `2
=
`2(n+1)

− 1
`2− 1

− 1

points R ∈ Ep(kp) such that `m R = Pp for some m ≥ 1. On the other hand,
the density of this set of primes (removing the finitely many bad primes) is at
least [F : k]−1 by the Chebotarev density theorem. Since Gal(F/k) embeds in
E[`n
]o GL2(Z/`

nZ), we have

[F : k] ≤ #
(
E[`n
]o GL2(Z/`

nZ)
)
≤ `2n

× `3n−2(`2
− 1)≤ `5n.

Thus, since M ≥ `2n−2, our chosen set of primes has density at least

M−(2/5)(1−1/n)
≥ M−(2/5)(1−2 log `/log M).

It is worth noting that, since an analogue of the Chebotarev density theorem is
true for function fields in positive characteristic [Kumar Murty and Scherk 1994],
the same is true of Theorem 4.
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