Vol. 5, No. 4, 2011

Download this article
Download this article For screen
For printing
Recent Issues

Volume 10
Issue 9, 1845–2052
Issue 8, 1601–1843
Issue 7, 1373–1600
Issue 6, 1147–1371
Issue 5, 939–1146
Issue 4, 695–938
Issue 3, 451–694
Issue 2, 215–450
Issue 1, 1–214

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Cover
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Subscriptions
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Global descent obstructions for varieties

Jean-Marc Couveignes and Emmanuel Hallouin

Vol. 5 (2011), No. 4, 431–463
Abstract

We show how to transport descent obstructions from the category of covers to the category of varieties. We deduce examples of curves having Q as field of moduli, that admit models over every completion of Q, but have no model over Q.

Keywords
algebraic curve, global field, descent, field of definition, field of moduli, stack
Mathematical Subject Classification 2000
Primary: 11R34
Secondary: 12G05, 11G35, 14D22
Milestones
Received: 11 September 2009
Revised: 22 November 2010
Accepted: 19 February 2011
Published: 21 December 2011
Authors
Jean-Marc Couveignes
Institut de Mathématiques de Bordeaux
Université Bordeaux I et CNRS
161, cours de la Libération
F-33405 Talence
France
http://www.math.u-bordeaux1.fr/~couveign/
Emmanuel Hallouin
Département de mathématiques et informatique
Université de Toulouse le Mirail
5, allées Antonio Machado
F-31058 Toulouse
France
http://www.math.univ-toulouse.fr/~hallouin/