Vol. 5, No. 4, 2011

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 12, 2133–2308
Issue 11, 1945–2131
Issue 10, 1767–1943
Issue 9, 1589–1766
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Specializations of elliptic surfaces, and divisibility in the Mordell–Weil group

Patrick Ingram

Vol. 5 (2011), No. 4, 465–493
Abstract

Let C be an elliptic surface defined over a number field k, let P : C be a section, and let be a rational prime. We bound the number of points of low algebraic degree in the -division hull of P at the fibre t. Specifically, for t C(k̄) with [k(t) : k] B1 such that t is nonsingular, we obtain a bound on the number of Q t(k̄) such that [k(Q) : k] B2, and such that nQ = Pt for some n 1. This bound depends on , P, , B1, and B2, but is independent of t.

Keywords
elliptic surface, specialization theorem
Mathematical Subject Classification 2000
Primary: 11G05
Secondary: 14J27, 14G05
Milestones
Received: 1 October 2009
Revised: 10 March 2010
Accepted: 21 August 2010
Published: 21 December 2011

Proposed: Barry Mazur
Seconded: Andrew Granville
Authors
Patrick Ingram
Department of Pure Mathematics
University of Waterloo
Waterloo, ON N2L 3G1
Canada
Department of Mathematics
Colorado State University
Fort Collins, CO 80523-1874
United States