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Mutation classes of Ãn-quivers and derived
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algebras of type Ãn
Janine Bastian

We give an explicit description of the mutation classes of quivers of type Ãn .
Furthermore, we provide a complete classification of cluster tilted algebras of
type Ãn up to derived equivalence. We show that the bounded derived category
of such an algebra depends on four combinatorial parameters of the correspond-
ing quiver.

1. Introduction

A few years ago, Fomin and Zelevinsky [2002] introduced the concept of cluster
algebras, which rapidly became a successful research area. Cluster algebras nowa-
days link various areas of mathematics, like combinatorics, Lie theory, algebraic
geometry, representation theory, integrable systems, Teichmüller theory, Poisson
geometry and also string theory in physics (via recent work on quivers with super-
potentials; see [Derksen et al. 2008; Labardini-Fragoso 2009]).

In an attempt to categorify cluster algebras, which a priori are combinatorially
defined, cluster categories have been introduced by Buan, Marsh, Reineke, Reiten
and Todorov [Buan et al. 2006]. For a quiver Q without loops and oriented 2-
cycles and the corresponding path algebra K Q (over an algebraically closed field
K ), the cluster category CQ is the orbit category of the bounded derived category
Db(K Q) by the functor τ−1

[1], where τ denotes the Auslander–Reiten translation
and [1] is the shift functor on the triangulated category Db(K Q).

Important objects in cluster categories are the cluster-tilting objects. The endo-
morphism algebras of such objects in the cluster category CQ are called cluster
tilted algebras of type Q [Buan et al. 2007]. Cluster tilted algebras have several
interesting properties; for example, their representation theory can be completely
understood in terms of the representation theory of the corresponding path algebra
of a quiver (ibid.). These algebras have been studied by various authors; see for
instance [Assem et al. 2008a, 2008b; Buan et al. 2008; Caldero et al. 2006].
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In recent years, a focal point in the representation theory of algebras has been
the investigation of derived equivalences of algebras. Since a lot of properties
and invariants of rings and algebras are preserved by derived equivalences, it is
important for many purposes to classify classes of algebras up to derived equiv-
alence, instead of Morita equivalence. For self-injective algebras, the representa-
tion type is preserved under derived equivalences [Krause 1997; Rickard 1989a].
It has also been proved in [Rickard 1991] that the class of symmetric algebras
is closed under derived equivalences. Additionally, derived equivalent algebras
have the same number of pairwise nonisomorphic simple modules and isomorphic
centers.

In this work, we are concerned with the problem of derived equivalence clas-
sification of cluster tilted algebras of type Ãn . Such a classification was done for
cluster tilted algebras of type An by Buan and Vatne [2008]; see also [Murphy
2010] on the more general case of m-cluster tilted algebras of type An .

Since the quivers of cluster tilted algebras of type Ãn are exactly the quivers
in the mutation classes of Ãn , our first aim in this paper is to give a description
of the mutation classes of Ãn-quivers; these mutation classes are known to be
finite (for example, see [Fomin et al. 2008]). The second purpose of this note is
to describe, when two cluster tilted algebras of type Q have equivalent derived
categories, where Q is a quiver whose underlying graph is Ãn .

In Definition 3.3 we present a class Qn of quivers with n+1 vertices that includes
all nonoriented cycles of length n+ 1. To show that this class contains all quivers
mutation-equivalent to some quiver of type Ãn we first prove that this class is closed
under quiver mutation. Furthermore, we define parameters r1, r2, s1 and s2 for any
quiver Q ∈ Qn in Definition 3.7 and prove that every quiver in Qn with parameters
r1, r2, s1 and s2 can be mutated to a normal form, see Figure 1, without changing
the parameters.

With the help of the result above we can show that every quiver Q ∈ Qn with
parameters r1, r2, s1 and s2 is mutation-equivalent to some nonoriented cycle with
r := r1+2r2 arrows in one direction and s := s1+2s2 arrows in the other. Hence,
if two quivers Q1 and Q2 of Qn have the parameters r1, r2, s1, s2, respectively
r̃1, r̃2, s̃1, s̃2 and r1+2r2 = r̃1+2r̃2, s1+2s2 = s̃1+2s̃2 (or vice versa), then Q1

is mutation-equivalent to Q2.
The converse of this result — an explicit description of the mutation classes of

quivers of type Ãn — can be shown with the help of [Fomin et al. 2008, Lemma 6.8].
The main result of the derived equivalence classification of cluster tilted algebras

of type Ãn is the following theorem:

Theorem 1.1. Two cluster tilted algebras of type Ãn are derived equivalent if and
only if their quivers have the same parameters r1, r2, s1 and s2 (up to changing
the roles of ri and si , i ∈ {1, 2}).
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r1

s1

r2

s2

Figure 1. Normal form for quivers in Qn .

We prove that every cluster tilted algebra of type Ãn with parameters r1, r2, s1

and s2 is derived equivalent to a cluster tilted algebra corresponding to a quiver
in normal form. Furthermore, we compute the parameters r1, r2, s1 and s2 as
combinatorial derived invariants for a quiver Q ∈ Qn with the help of an algorithm
defined by Avella-Alaminos and Geiß [2008].

The paper is organized as follows. In Section 2 we collect some basic notions
about quiver mutations. In Section 3 we present the set Qn of quivers that can be
obtained by iterated mutation from quivers whose underlying graph is of type Ãn .
Moreover, we describe, when two quivers of Qn are in the same mutation class.
In the fourth section we describe the cluster tilted algebras of type Ãn and their
relations (as shown in [Assem et al. 2010]). In Section 5 we first briefly review
the fundamental results on derived equivalences. Afterwards, we prove our main
result, that is, we show, when two cluster tilted algebras of type Ãn are derived
equivalent.

2. Quiver mutations

A quiver is a finite directed graph Q, consisting of a finite set of vertices Q0 and
a finite set of arrows Q1 between them.

Let Q be a quiver and K be an algebraically closed field. We can form the path
algebra K Q, where the basis of K Q is given by all paths in Q, including trivial
paths ei of length zero at each vertex i of Q. Multiplication in K Q is defined by
concatenation of paths. Our convention is to read paths from right to left. For any
path α in Q let s(α) denote its start vertex and t (α) its end vertex. Then the product
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of two paths α and β is defined to be the concatenated path αβ if s(α)= t ( β). The
unit element of K Q is the sum of all trivial paths: 1K Q =

∑
i∈Q0

ei .
We now recall the definition of quiver mutations.

Definition 2.1 [Fomin and Zelevinsky 2002]. Let Q be a quiver without loops and
oriented 2-cycles. The mutation of Q at a vertex k to a new quiver Q∗ can be
described as follows:

(1) Add a new vertex k∗.

(2) If there are r > 0 arrows i→ k, s > 0 arrows k→ j and t ∈Z arrows j→ i in
Q, there are t − rs arrows j → i in Q∗. (Here, a negative number of arrows
means arrows in the opposite direction.)

(3) For any vertex i replace all arrows from i to k with arrows from k∗ to i , and
replace all arrows from k to i with arrows from i to k∗.

(4) Remove the vertex k.

Note that mutation at sinks or sources only means changing the direction of
all incoming or outgoing arrows. Two quivers are called mutation-equivalent (or
sink/source equivalent) if one can be obtained from the other by a finite sequence
of mutations (at sinks or sources). The mutation class of a quiver Q is the class of
all quivers mutation-equivalent to Q.

3. Mutation classes of Ãn-quivers

Remark 3.1. Quivers of type Ãn are just cycles with n+1 vertices. If the cycle is
oriented, we get the mutation class of Dn+1 (see [Derksen and Owen 2008; Fomin
et al. 2008, 2003] or Type IV in type D in [Vatne 2010]). If the cycle is nonoriented,
we get what we call the mutation classes of Ãn .

First, we have to fix one drawing (plane embedding) of this nonoriented cycle.
Thus, we can speak of clockwise and anticlockwise oriented arrows. But we have
to consider that this notation is only unique up to reflection of the cycle, i.e., up to
changing the roles of clockwise and anticlockwise oriented arrows.

Lemma 3.2 [Fomin et al. 2008, Lemma 6.8]. Let C1 and C2 be two nonoriented
cycles, so that in C1 there are s arrows oriented clockwise and r arrows oriented
anticlockwise. Similarly, in C2 there are s̃ arrows oriented clockwise and r̃ arrows
oriented anticlockwise. Then C1 and C2 are mutation-equivalent if and only if the
unordered pairs {r, s} and {r̃ , s̃} coincide.

Thus, two nonoriented cycles of length n+1 are mutation-equivalent if and only
if they have the same parameters r and s (up to changing the roles of r and s).
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Next we provide an explicit description of the mutation classes of Ãn-quivers.
For this we need a description of the mutation class of quivers of type Ak . We use
one given in [Buan and Vatne 2008]:

• Each quiver has k vertices.

• All nontrivial cycles are oriented and of length 3.

• A vertex has at most four incident arrows.

• If a vertex has four incident arrows, then two of them belong to one oriented
3-cycle, and the other two belong to another oriented 3-cycle.

• If a vertex has three incident arrows, then two of them belong to an oriented
3-cycle, and the third arrow does not belong to any oriented 3-cycle.

(By a cycle in the second condition we mean a cycle in the underlying graph not
passing through the same edge twice. In particular, this condition excludes multiple
arrows.)

For another description of mutation classes of type A quivers, see [Seven 2007].
Now we can formulate the description of the mutation classes of Ãn-quivers,

similar to the description for Type IV in type D in [Vatne 2010].

Definition 3.3. Let Qn be the class of connected quivers with n + 1 vertices that
satisfy the following conditions (see Figure 2 for an illustration):

(i) There exists precisely one full subquiver that is a nonoriented cycle of length
≥ 2. Thus, if the length is two, it is a double arrow.

(ii) For each arrow x
α
−→ y in this nonoriented cycle, there may (or may not) be

a vertex z α not on the nonoriented cycle and such that there is an oriented
3-cycle of the form

x y

zα

α

Apart from the arrows of these oriented 3-cycles there are no other arrows
incident to vertices on the nonoriented cycle.

(iii) If we remove all vertices in the nonoriented cycle and their incident arrows,
the result is a disjoint union of quivers Q1, Q2, . . . , one for each z α (which
we call Qα). These are quivers of type Ak α for k α ≥ 1, and the vertices z α
have at most two incident arrows in these quivers. Furthermore, if a vertex
z α has two incident arrows in such a quiver, then z α is a vertex in an oriented
3-cycle in Qα.

Our convention is to choose only one of the double arrows
to be part of the oriented 3-cycle in the case shown here:
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Q1

Q3

Q4

Q2

Figure 2. Quiver in Qn .

Notation 3.4. Whenever we draw an edge
j k

the direction of the arrow
between j and k is not important for this situation; and whenever we draw a cycle

it is an oriented 3-cycle.

Lemma 3.5. Qn is closed under quiver mutation.

Proof. Let Q be a quiver in Qn and let i be some vertex of Q. The subquivers Q1

and Q2 highlighted in the pictures are quivers of type A.
If i is a vertex in one of the quivers Qα of type A, but not one of the vertices z α

connecting this quiver of type A to the rest of the quiver Q, then the mutation at i
leads to a quiver Q∗ ∈ Qn since type A is closed under quiver mutation.

It therefore suffices to check what happens when we mutate at the other vertices,
and we will consider four cases:

(1) Let i be one of the vertices z α, hence not on the nonoriented cycle. For the
situation where the quiver Qα of type A attached to z α consists only of one vertex,
we can look at the first mutated quiver in case (2) below since quiver mutation is
an involution. Thus, we have three cases:
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j k

i

α

ml

Q1 Q2

or

j k

i

α

l

Q1

or

j k

i

α

l

Q1

Then the mutation at i leads to the following three quivers, which have a nonori-
ented cycle one arrow longer than for Q, and this is indeed a nonoriented cycle
since the arrows j→ i→ k have the same orientation as α had before.

i

j k

l m

Q1 Q2

or

i

j k

l

Q1

or

i

j k

l

Q1

The vertices l and m have at most two incident arrows in the quivers Q1 and Q2

since they had at most four resp. three incident arrows in Q (see the description of
quivers of type A). Furthermore, if l or m has two incident arrows in the quiver Q1

or Q2, then these two arrows form an oriented 3-cycle as in Q. Thus, the mutated
quiver Q∗ is also in Qn .
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(2) Let i be a vertex on the nonoriented cycle, and not part of any oriented 3-cycle.
Three cases can occur:

j k

i

or
j k

i

or
j k

i

and mutation at i leads to

j k
α

i

or
j k

i

or
j k

i

If i is a sink or a source in Q, the nonoriented cycle in Q∗ is of the same length
as before and Q∗ is in Qn . If there is a path j → i → k in Q, mutation at i leads
to a quiver Q∗, which has a nonoriented cycle one arrow shorter than in Q.

Note that in this case the nonoriented cycle in Q consists of at least three arrows
and thus, the nonoriented cycle in Q∗ has at least two arrows. Thus, the mutated
quiver Q∗ is also in Qn .

(3) Let i be a vertex on the nonoriented cycle that is part of exactly one oriented
3-cycle. Then four cases can occur, but two of them have been dealt with by the
second and third mutated quiver in case (1) since quiver mutation is an involution.
Thus, we only have to consider the two situations shown in Figure 3 and their
special cases where the nonoriented cycle is a double arrow. (The two-headed
arrows indicate mutation at i .)

After mutating at vertex i , the nonoriented cycle has the same length as before.
Moreover, l has the same number of incident arrows as before. Thus, Q∗ is in Qn .

(4) Let i be a vertex on the nonoriented cycle that is part of two oriented 3-cycles.
Then three cases can occur, but one of them has been dealt with by the first mutated
quiver in case (1). Thus, we have to consider only the situations in Figure 4 and
their special cases where the nonoriented cycle is a double arrow.
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i

j k

l

Q1

←→

i

j k

l

Q1

ij

l

Q1

↑
↓

Q1

l

j i

Figure 3. Possibilities in case (3).

i

j k

l m

Q1 Q2

←→

i

j k

m l

Q2 Q1

ij

l

Q1

m

Q2

←→

Q1

l

j i

Q2

m

Figure 4. Possibilities in case (4).

The nonoriented cycle has the same length as before. Moreover, l and m have
the same number of incident arrows as before. Thus, again, the mutated quiver Q∗

belongs to Qn . �
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Remark 3.6. It is easy to see that all orientations of a circular quiver of type Ãn

are in Qn (except the oriented case; but this leads to the mutation class of Dn+1).
Since Qn is closed under quiver mutation every quiver mutation-equivalent to some
quiver of type Ãn is in Qn , too.

Now we fix one drawing of a quiver Q ∈ Qn , without arrow crossing. Thus, we
can again speak of clockwise and anticlockwise oriented arrows of the nonoriented
cycle. But we have to consider that this notation is only unique up to reflection
of the nonoriented cycle, that is, up to changing the roles of clockwise and anti-
clockwise oriented arrows. We define four parameters r1, r2, s1 and s2 for a quiver
Q ∈ Qn as follows:

Definition 3.7. • Let r1 be the number of arrows that are not part of any oriented
3-cycle and that fulfill one of two conditions:

(1) The arrow is part of the nonoriented cycle and is oriented anticlockwise:

(2) The arrow is not part of the nonoriented cycle,
but is attached to an oriented 3-cycle C sharing with
the nonoriented cycle one arrow α that is oriented
anticlockwise (see figure on the right).

In this sense, “attached” means that the arrow
is part of the quiver Qα of type A that shares the
vertex z α with the cycle C (see Definition 3.3).

α
C

zα

Qα

• Let r2 be the number of oriented 3-cycles that fulfill one of two conditions:

(1) The cycle shares with the nonoriented cycle one arrow α that is oriented anti-
clockwise:

α
C
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(2) The cycle is attached to an oriented 3-cycle C sharing one arrow α with the
nonoriented cycle and α is oriented anticlockwise:

α
C

zα

Qα

Here, “attached” is in the same sense as above.

• Similarly we define the parameters s1 and s2 with “clockwise” instead of
“anticlockwise”.

Example 3.8. We denote the arrows that count for the parameter r1 by
and the arrows that count for s1 by . Furthermore, the oriented 3-cycles

of r2 are denoted by and the oriented 3-cycles of s2 are denoted by .

Let Q ∈ Q16 be a quiver of the form

Then r1 = 3, r2 = 3, s1 = 4 and s2 = 2.

Lemma 3.9. If Q1 and Q2 are quivers in Qn , and Q1 and Q2 have the same
parameters r1, r2, s1 and s2 (up to interchanging r1 with s1 and r2 with s2), then Q2

can be obtained from Q1 by iterated mutation, where all the intermediate quivers
have the same parameters as well.

Proof. It is enough to show that all quivers in Qn with parameters r1, r2, s1 s2

can be mutated to a quiver in normal form (see Figure 1) without changing the
parameters r1, r2, s1 s2. In such a quiver, r1 is the number of anticlockwise arrows
in the nonoriented cycle that do not share any arrow with an oriented 3-cycle and
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s1 is the number of clockwise arrows in the nonoriented cycle that do not share any
arrow with an oriented 3-cycle. Furthermore, r2 is the number of oriented 3-cycles
sharing one arrow α with the nonoriented cycle and α is oriented anticlockwise
and s2 is the number of oriented 3-cycles sharing one arrow β with the nonoriented
cycle and β is oriented clockwise (see Definition 3.7).

We divide this process into five steps.

Step 1: Let Q be a quiver in Qn . We move all oriented 3-cycles of Q sharing no
arrow with the nonoriented cycle towards the oriented 3-cycle that is attached to
them and that shares one arrow with the nonoriented cycle.

Method: Let C and C ′ be a pair of neighboring oriented 3-cycles in Q (i.e., no
arrow in the path between them is part of an oriented 3-cycle) such that the length
of the path between them is at least one. We want to move C and C ′ closer together
by mutation.

Qa Qb

Qc Qg

c d e f g

a b

C C ′

In the picture the Qi are subquivers of Q. Mutating at d will produce a quiver Q∗

looking like this:

Qb

Qc Qg

c e f g

b

C ′

a

Qa

C∗

d

Thus, the length of the path between C∗ and C ′ decreases by 1 and there is a
path of length one between C∗ and Qc. The arguments for a quiver with arrow
d→ e are analogous and these mutations can also be used if the arrows between
d and f are part of the nonoriented cycle (see Step 4).

In this procedure, the parameters r1, r2, s1 and s2 are left unchanged since we
are not changing the number of arrows and the number of oriented 3-cycles which
are attached to an oriented 3-cycle sharing one arrow with the nonoriented cycle.

Step 2: We move all oriented 3-cycles onto the nonoriented cycle.

Method: Let C be an oriented 3-cycle that shares one vertex z α with an oriented
3-cycle Cα sharing an arrow α with the nonoriented cycle. Then we mutate at the
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vertex z α:

C

1 2

α

Cα

zα

43

mutation
 

at z α

1 2

zα

3 4

Hence, both of the oriented 3-cycles share one arrow with the nonoriented cycle
and these arrows are oriented as α was before. Thus, the parameters r1, r2, s1 and
s2 are left unchanged. Furthermore, the length of the nonoriented cycle increases
by 1. By iterated mutation of that kind, we produce a quiver Q∗, where all the
oriented 3-cycles share an arrow with the nonoriented cycle.

Step 3: We move all arrows onto the nonoriented cycle.

Method: This is a similar process as in Step 2: Let Cα be an oriented 3-cycle
that shares an arrow α with the nonoriented cycle. All arrows attached to Cα can
be moved into the nonoriented cycle by iteratively mutating at vertex z α. After
mutating, all these arrows have the same orientation as α in the nonoriented cycle.
Thus, the parameters r1, r2, s1 and s2 are left unchanged.

Step 4: Move oriented 3-cycles along the nonoriented cycle.

Method: First, we number all oriented 3-cycles by C1, . . . ,Cr2+s2 in such a way
that Ci+1 follows Ci anticlockwise. As in Step 1, we can move an oriented 3-cycle
Ci towards Ci+1 without changing the orientation of the arrows, that is, without
changing the parameters r1, r2, s1 and s2.

If the nonoriented cycle includes the vertex a in the pictures of Step 1, the arrows
between the two cycles move to the top of Ci+1, that is, they are no longer part of
the nonoriented cycle. However, we can reverse their directions by mutating at the
new sinks or sources and insert these arrows into the nonoriented cycle between
Ci+1 and Ci+2 by mutations like in Step 3 (if Ci+2 exists).

Doing this iteratively, we produce a quiver Q∗ as in Figure 5, with r1+s1 arrows
that are not part of any oriented 3-cycle and r2+ s2 oriented 3-cycles sharing one
arrow with the nonoriented cycle.

Step 5: Change orientation on the nonoriented cycle to the orientation of Figure 1.

Method: The part of the nonoriented cycle without oriented 3-cycles can be moved
to the desired orientation of Figure 1 via sink/source mutations, without mutating
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C1

C2

C3

Cr2+s2

r1 + s1r2 + s2

Figure 5. Normal form of Step 4.

at the end vertices that are attached to oriented 3-cycles. Thus, the parameters r1

and s1 are left unchanged.
Each oriented 3-cycle shares one arrow with the nonoriented cycle. If all of

these arrows are oriented in the same direction, the quiver is in the required form.
Thus, we can assume that there are at least two arrows of two oriented 3-cycles Ci

and Ci+1 having opposite orientations. If we mutate at the connecting vertex of Ci

and Ci+1, the directions of these arrows are changed:

xi1 3

2 4

Ci+1 Ci mutation
 
at xi xi1 3

4 2

C∗
i+1 C∗

i

xi1 3

2 4

Ci+1 Ci mutation
 
at xi xi1 3

C∗
i+1 C∗

i

4 2

Hence, these mutations act like sink/source mutations at the nonoriented cycle
and the parameters r2 and s2 are left unchanged. Thus, we can mutate at such
connecting vertices as in the part without oriented 3-cycles to reach the desired
orientation of Figure 1. �

Theorem 3.10. Let Q ∈Qn with parameters r1, r2, s1 and s2. Then Q is mutation-
equivalent to a nonoriented cycle of length n+1 with parameters r = r1+2r2 and
s = s1+ 2s2.
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Proof. We can assume that Q is in normal form (see Lemma 3.9) and we label the
vertices z α as follows:

r1

s1

r2

s2

x1x2

y1y2

xr2

ys2

Mutation at the vertex xi of an oriented 3-cycle
Ci

xi

leads to
two arrows of the form

xi

.

Thus, after mutating at all the xi , the parameter r2 is zero and we have a new
parameter r = r1+ 2r2. Similarly, we get s = s1+ 2s2. Hence, mutating at all the
xi and yi leads to a quiver with underlying graph Ãn as follows:

r1 + 2r2 s1 + 2s2

Since there is a nonoriented cycle in every Q ∈ Qn , both r and s are nonzero.
Thus, the cycle above is also nonoriented. Hence, Q is mutation-equivalent to
some quiver of type Ãn with parameters r = r1+ 2r2 and s = s1+ 2s2. �
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Corollary 3.11. Let Q1, Q2 ∈ Qn with parameters r1, r2, s1 and s2, respectively
r̃1, r̃2, s̃1 and s̃2. If r1+2r2 = r̃1+2r̃2 and s1+2s2 = s̃1+2s̃2, or vice versa, then
Q1 is mutation-equivalent to Q2.

Theorem 3.12. Let Q1, Q2 ∈ Qn with parameters r1, r2, s1 and s2, respectively
r̃1, r̃2, s̃1 and s̃2. Then Q1 is mutation-equivalent to Q2 if and only if

r1+ 2r2 = r̃1+ 2r̃2 and s1+ 2s2 = s̃1+ 2s̃2

or
r1+ 2r2 = s̃1+ 2s̃2 and s1+ 2s2 = r̃1+ 2r̃2.

The “only if” part follows from Theorem 3.10 and Lemma 3.2.

4. Cluster tilted algebras of type Ãn

In general, cluster tilted algebras arise as endomorphism algebras of cluster-tilting
objects in a cluster category [Buan et al. 2007]. Since a cluster tilted algebra A of
type Ãn is finite dimensional over an algebraically closed field K , there exists a
quiver Q which is in the mutation classes of Ãn [Buan et al. 2008] and an admissible
ideal I of the path algebra K Q of Q such that A ∼= K Q/I . A nonzero linear
combination k1α1 + · · · + kmαm, ki ∈ K\{0}, of paths αi of length at least two,
with the same starting point and the same end point, is called a relation in Q. If
m = 1, we call such a relation a zero-relation. Any admissible ideal of K Q is
generated by a finite set of relations in Q.

From [Assem et al. 2010] and [Assem and Redondo 2009], we know that a
cluster tilted algebra A of type Ãn is gentle, a notion whose definition we recall:

Definition 4.1. We call A = K Q/I a special biserial algebra if these properties
hold:

(1) Each vertex of Q is the starting point of at most two arrows and the end point
of at most two arrows.

(2) For each arrow α in Q there is at most one arrow β such that αβ /∈ I , and at
most one arrow γ such that γα /∈ I .

A is gentle if moreover:

(3) The ideal I is generated by paths of length 2.

(4) For each arrow α in Q there is at most one arrow β ′ with t (α) = s( β ′) such
that β ′α ∈ I , and there is at most one arrow γ ′ with t ( γ ′) = s(α) such that
αγ ′ ∈ I .

Also from the same references, all relations in a cluster tilted algebra
A of type Ãn occur in the oriented 3-cycles (cycles of the form on
the right with (zero-)relations αγ , βα and γβ).

γ

α β
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Remark 4.2. According to our convention in Definition 3.3 there are only three
(zero-)relations in the quiver

γ

δ
β α

and here, these are αδ, βα and δβ.

For the next section, we need the notion of Cartan matrices of an algebra A (for
example, see [Holm 2005]). Let K be a field and A= K Q/I . Since

∑
i∈Q0

ei + I
is the unit element in A we get A= A ·1=

⊕
i∈Q0

Aei ; hence the (left) A-modules
Pi := Aei are the indecomposable projective A-modules. The Cartan matrix C =
(ci j ) of A is a |Q0| × |Q0|-matrix defined by setting ci j = dimK HomA(Pj , Pi ).
Any homomorphism ϕ : Ae j → Aei of left A-modules is uniquely determined by
ϕ(e j ) ∈ e j Aei , the K -vector space generated by all paths in Q from vertex i to
vertex j that are nonzero in A. In particular, ci j = dimK e j Aei .

That means that computing entries of the Cartan matrix for A reduces to counting
paths in Q that are nonzero in A.

5. Derived equivalence classification of cluster tilted algebras of type Ãn

We briefly review the fundamental results on derived equivalences. For a K -algebra
A the bounded derived category of A-modules is denoted by Db(A). Recall that
two algebras A, B are called derived equivalent if Db(A) and Db(B) are equivalent
as triangulated categories. By a celebrated theorem of Rickard (Theorem 5.2),
derived equivalences can be found using the concept of tilting complexes.

Definition 5.1. A tilting complex T over A is a bounded complex of finitely gen-
erated projective A-modules satisfying the following conditions:

(i) HomDb(A)(T, T [i]) = 0 for all i 6= 0, where [ · ] denotes the shift functor in
Db(A).

(ii) The category add(T ) (i.e., the full subcategory consisting of direct summands
of direct sums of T ) generates the homotopy category K b(PA) of projective
A-modules as a triangulated category.

Theorem 5.2 [Rickard 1989b]. Two algebras A and B are derived equivalent if
and only if there exists a tilting complex T for A such that the endomorphism
algebra EndDb(A)(T )∼= B.

For calculating the endomorphism algebra EndDb(A)(T ) we can use the fol-
lowing alternating sum formula, which gives a general method for computing the
Cartan matrix of an endomorphism algebra of a tilting complex from the Cartan
matrix of the algebra A.
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Proposition 5.3 [Happel 1988]. For an algebra A let Q = (Qr )r∈Z and R =
(Rs)s∈Z be bounded complexes of projective A-modules. Then∑

i

(−1)i dim HomDb(A)(Q, R[i])=
∑
r,s

(−1)r−s dim HomA(Qr , Rs).

In particular, if Q and R are direct summands of the same tilting complex, then

dim HomDb(A)(Q, R)=
∑
r,s

(−1)r−s dim HomA(Qr , Rs).

Lemma 5.4. Let A = K Q/I be a cluster tilted algebra of type Ãn . Let r1, r2, s1

and s2 be the parameters of Q that are defined in Definition 3.7. Then A is derived
equivalent to a cluster tilted algebra corresponding to a quiver in normal form as
in Figure 1.

Proof. First, the number of oriented 3-cycles with full relations is invariant under
derived equivalence for gentle algebras [Holm 2005], so the number r2+ s2 is an
invariant. From [Avella-Alaminos and Geiss 2008, Proposition B], we know that
the number of arrows is also invariant under derived equivalence, so the number
r1 + s1 is an invariant, too. Later, we show in the proof of Theorem 5.5 that the
single parameters r1, r2, s1 and s2 are invariant under derived equivalence.

Our strategy in this proof is to go through the proof of Lemma 3.9 and define
a tilting complex for each mutation in Steps 1 and 2. We can omit the other three
steps since these are just the same situations as in the first two steps. We show that
if we mutate at some vertex of the quiver Q and obtain a quiver Q∗, then the two
corresponding cluster tilted algebras are derived equivalent.

Step 1: Let A be a cluster tilted algebra with corresponding quiver

α3 α4

α1α2

1

2 3 4
Q2

Q1 Qx

Qz

x

y z

We can compute the Cartan matrix to be


1 1 0 0 . . .

0 1 1 0 . . .

1 0 1 0 . . .

1 0 1 1 . . .

.

.

.
.
.
.
.
.
.
.
.
.
. . .

.

Since we are dealing with left modules and read paths from right to left, a
nonzero path from vertex i to j gives a homomorphism Pj → Pi by right mul-
tiplication. Thus, two arrows α : i → j and β : j → k give a path βα from i to k
and a homomorphism αβ : Pk→ Pi .
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In the situation above, we have homomorphisms P3
α3
−→ P2 and P3

α4
−→ P4.

Let T =
⊕n+1

i=1 Ti be the following bounded complex of projective A-modules,
where Ti : 0→ Pi → 0, i ∈ {1, 2, 4, . . . , n + 1}, are complexes concentrated in
degree zero and

T3 : 0→ P3
(α3,α4)
−→ P2⊕ P4→ 0

is a complex concentrated in degrees −1 and 0.
We leave it to the reader to verify that this is indeed a tilting complex.
By Rickard’s Theorem 5.2, E :=EndDb(A)(T ) is derived equivalent to A. Using

the alternating sum formula of the Proposition 5.3 of Happel we can compute the
Cartan matrix of E to be 

1 1 1 0 . . .

0 1 0 0 . . .

0 1 1 1 . . .

1 0 0 1 . . .

.

.

.
.
.
.
.
.
.
.
.
.
. . .

 .

We define homomorphisms in E as follows:
Q1 Qx

32 4 y z(0, id)(id, 0)
Q2

1 x

Qz

α4α1(α2, 0)

Now we have to check the relations, up to homotopy.
Clearly, the homomorphism (α4α1α2, 0) in the oriented 3-cycle containing the

vertices 1, 3 and 4 is zero since α1α2 was zero in A. Furthermore, the compo-
sition of (α2, 0) and (0, id) yields a zero-relation. The last zero-relation in this
oriented 3-cycle is the concatenation of (0, id) and α4α1 since this homomorphism
is homotopic to zero:

0 - P1 - 0

0 - P3
(α3, α4)

-
�

α 1

P2⊕ P4

(0, α4α1)

?
- 0

The relations in all other oriented 3-cycles of this quiver are the same as in the
quiver of A.

Thus, we have defined homomorphisms between the summands of T corre-
sponding to the arrows of the quiver that we obtain after mutating at vertex 3 in
the quiver of A. We have shown that they satisfy the defining relations of this
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algebra and the Cartan matrices agree. Thus, A is derived equivalent to E and Aop

is derived equivalent to Eop, where the quiver of E is the same as the quiver we
obtain after mutating at vertex 3 in the quiver of A. Furthermore, the quivers of
Aop and Eop are the quivers in the other case in Step 1.

Step 2: Let A be a cluster tilted algebra with corresponding quiver

3

α1

α5
4 5

α6

α3

α4

α2

2 1

We define a tilting complex T as the bounded complex of projective A-modules
T =

⊕n+1
i=1 Ti , where Ti : 0→ Pi → 0, for i ∈ {1, 2, 4, . . . , n+ 1}, are complexes

concentrated in degree zero and T3 : 0 → P3
(α2,α6)
−→ P1 ⊕ P4 → 0 is a complex

concentrated in degrees −1 and 0.
By Rickard’s theorem, E := EndDb(A)(T ) is derived equivalent to A. Using

Happel’s alternating sum formula (Proposition 5.3), we can compute the Cartan
matrix of E to be 

1 0 0 0 1 . . .

1 1 1 0 0 . . .

1 0 1 1 0 . . .

0 1 0 1 0 . . .

0 0 1 1 1 . . .

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
. . .


.

(This deals with the case where not all the arrows between 2 and 1 along the
nonoriented cycle are oriented in the same direction. The case where they are can
be handled similarly.)

We define homomorphisms in E as follows:

3

4 5
α6α3 α2α4(0, id) (0, α5)

(id, 0)(α1, 0)
12

Thus, A is derived equivalent to E and Aop is derived equivalent to Eop, where
the quiver of E is the same as the quiver we obtain after mutating at 3.
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In Steps 3 and 4 of the proof of Lemma 3.9 we mutate at a vertex with three
incident arrows as in Step 1. In Step 5 we mutate at sinks, sources and at vertices
with four incident arrows as in Step 2.

Thus, we obtain a quiver of a derived equivalent cluster tilted algebra by all
mutations in the proof of Lemma 3.9. Hence, every cluster tilted algebra A =
K Q/I of type Ãn is derived equivalent to a cluster tilted algebra with a quiver in
normal form having the same parameters as Q. �

Our next aim is to prove the main result:

Theorem 5.5. Two cluster tilted algebras of type Ãn are derived equivalent if and
only if their quivers have the same parameters r1, r2, s1 and s2, up to changing the
roles of ri and si for i ∈ {1, 2}.

But first, we recall some background from [Avella-Alaminos and Geiss 2008].
Let A = K Q/I be a gentle algebra, where Q = (Q0, Q1) is a connected quiver.
A permitted path of A is a path C = αl . . . α2α1 that contains no zero-relations. A
permitted path C is called a nontrivial permitted thread if for all β ∈ Q1 neither
Cβ nor βC is a permitted path. Similarly a forbidden path of A is a sequence
5 = αl . . . α2α1 formed by pairwise different arrows in Q with αi+1αi ∈ I for all
i ∈ {1, 2, . . . , l − 1}. A forbidden path 5 is called a nontrivial forbidden thread
if for all β ∈ Q1 neither 5β nor β5 is a forbidden path. Let v ∈ Q0 such that
#{α ∈ Q1 : s(α) = v} ≤ 1, #{α ∈ Q1 : t (α) = v} ≤ 1 and if β, γ ∈ Q1 are such
that s( γ ) = v = t ( β), then γβ /∈ I . Then we consider ev a trivial permitted
thread in v and denote it by hv. Let HA be the set of all permitted threads of A,
trivial and nontrivial. Similarly, for v ∈ Q0 such that #{α ∈ Q1 : s(α) = v} ≤ 1,
#{α ∈ Q1 : t (α) = v} ≤ 1 and if β, γ ∈ Q1 are such that s( γ ) = v = t ( β), then
γβ ∈ I , we consider ev a trivial forbidden thread in v and denote it by pv. Note
that certain paths can be permitted and forbidden threads simultaneously.

Now, one can define functions σ, ε : Q1→{1,−1} that satisfy these conditions:

(1) If β1 6= β2 are arrows with s( β1)= s( β2), then σ( β1)=−σ( β2).

(2) If γ1 6= γ2 are arrows with t ( γ1)= t ( γ2), then ε( γ1)=−ε( γ2).

(3) If β and γ are arrows with s( γ )= t ( β) and γβ /∈ I , then σ( γ )=−ε( β).

We can extend these functions to threads of A as follows: for a nontrivial thread
H = αl . . . α2α1 of A define σ(H) := σ(α1) and ε(H) := ε(αl). If there is a trivial
permitted thread hv for some v ∈ Q0, the connectivity of Q assures the existence
of some γ ∈ Q1 with s( γ )= v or some β ∈ Q1 with t ( β)= v. In the first case, we
define σ(hv)=−ε(hv) := −σ( γ ), for the second case σ(hv)=−ε(hv) := ε( β).
If there is a trivial forbidden thread pv for some v ∈ Q0, we know that there exists
γ ∈ Q1 with s( γ ) = v or β ∈ Q1 with t ( β) = v. In the first case, we define
σ( pv)= ε(hv) := −σ( γ ), for the second case σ( pv)= ε(hv) := −ε( β).
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We next use a combinatorial algorithm to produce certain pairs of natural num-
bers, using only the quiver with relations which defines a gentle algebra. In the
algorithm we go forward through permitted threads and backwards through forbid-
den threads in such a way that each arrow and its inverse are used exactly once.

Algorithm 5.6 [Avella-Alaminos and Geiss 2008].

(1) Begin with a permitted thread H0 of A.

• If Hi is defined, consider 5i the forbidden thread that ends in t (Hi ) and
such that ε(Hi )=−ε(5i ).

• Let Hi+1 be the permitted thread that starts in s(5i ) and such that σ(Hi+1)=

−σ(5i ).

The process stops when Hk = H0 for some natural number k. Set

m =
∑

1≤i≤k
l(5i−1),

where l( · ) is the length (number of arrows) of a path. We obtain the pair
(k,m).

(2) Repeat the first step of the algorithm until all permitted threads of A have been
considered.

(3) If there are oriented cycles in which each pair of consecutive arrows form a
relation, we add a pair (0,m) for each of those cycles, where m is the length
of the cycle.

(4) Define φA : N
2
→ N, where φA(k,m) is the number of times the pair (k,m)

arises in the algorithm.

This function φ is invariant under derived equivalence:

Lemma 5.7 [Avella-Alaminos and Geiss 2008]. Let A and B be gentle algebras.
If A and B are derived equivalent, then φA = φB .

Example 5.8. Figure 6 shows the quiver of a cluster tilted algebra A of type Ã18,
where r1=2, r2=3, s1=3 and s2=4 and thus, r :=r1+r2=5 and s := s1+s2=7.

Define the functions σ and ε for all arrows in Q:

σ(αi ) = 1, ε(αi ) = −1 for all i = 1, . . . , 5,
σ (αi ) = −1, ε(αi ) = 1 for all i = 6, . . . , 12,
σ ( β j,1) = 1, ε( β j,1) = 1 for all j = 1, . . . , 3,
σ ( β j,2) = −1, ε( β j,2) = 1 for all j = 1, . . . , 3,
σ ( γ l,1) = −1, ε( γ l,1) = −1 for all l = 1, . . . , 4,
σ ( γ l,2) = 1, ε( γ l,2) = −1 for all l = 1, . . . , 4.
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v0v1 v6 v7

v2 v8

v3

v4

v9

v10

v5 v11

α1 α6 α7

α12

α3

α4

α9

α10

α5 α11

α2 α8

x1

x2

y1

y2

y3x3

y4

β1,2

β1,1

β2,1

β2,2

γ1,2

γ1,1

γ2,1

γ2,2

β3,1 γ3,1

β3,2
γ3,2

γ4,2 γ4,1

Figure 6. Quiver for Example 5.8.

Then HA is formed by hv1 , hv6 , hv7 , γ4,2α5α4α3α2α1, β3,2α12α11α10α9α8α7α6,
β1,1, β1,2β2,1, β2,2β3,1, γ1,1, γ1,2γ2,1, γ2,2γ3,1 and γ3,2γ4,1. The forbidden threads
of A are px1 , px2 , px3 , py1 , py2 , py3 , py4 , α1, α2, α6, α7, α8 and all the oriented
3-cycles.

Moreover, we can write

σ(hv1)=−ε(hv1)=−σ(α2)= ε(α1)=−1,

σ (hv6)=−ε(hv6)=−σ(α7)= ε(α6)= 1,

σ (hv7)=−ε(hv7)=−σ(α8)= ε(α7)= 1

for the trivial permitted threads and

σ( pxi )= ε( pxi )=−σ( βi,1)=−ε( βi,2)=−1 for all i = 1, 2, 3,

σ ( pyi )= ε( pyi )= −σ( γi,1)= −ε( γi,2)= 1 for all i = 1, 2, 3, 4

for the trivial forbidden threads.
Let H0 = hv1 and 50 = α1 with ε(hv1)=−ε(α1)= 1. Then H1 is the permitted

thread that starts in s(50) = v0 and σ(H1) = σ(α6) = −σ(50) = −1, that is,
β3,2α12α11α10α9α8α7α6. Now 51 = px3 since it is the forbidden thread that ends
in x3 and ε(51)=−ε(H1)=−ε( β3,2)=−1. Then H2= β2,2β3,1 is the permitted
thread starting in x3 and σ(51) = −σ(H2) = −σ( β3,1) = −1. Thus, 52 = px2

with ε(H2)= ε( β2,2)=−ε(52)= 1.
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In the same way we can define the missing threads and we get

H0 = hv1 5−1
0 = α−1

1
H1 = β3,2α12α11α10α9α8α7α6 5−1

1 = px3

H2 = β2,2β3,1 5−1
2 = px2

H3 = β1,2β2,1 5−1
3 = px1

H4 = β1,1 5−1
4 = α−1

2
H5 = H0

→ (5, 2)

where α−1
1 is defined by s(α−1

1 ) := t (α1), t (α−1
1 ) := s(α1) and (α−1

1 )−1
= α1.

If we continue with the algorithm we obtain the second pair (7, 3) = (s, s1) in
the following way:

H0 = hv6 5−1
0 = α−1

6
H1 = γ4,2α5α4α3α2α1 5−1

1 = py4

H2 = γ3,2γ4,1 5−1
2 = py3

H3 = γ2,2γ3,1 5−1
3 = py2

H4 = γ1,2γ2,1 5−1
4 = py1

H5 = γ1,1 5−1
5 = α−1

8
H6 = hv7 5−1

6 = α−1
7

H7 = H0

→ (7, 3)

Finally, we have to add seven pairs (0, 3) for the seven oriented 3-cycles. Thus,
we get φA(5, 2)= 1, φA(7, 3)= 1, and φA(0, 3)= 7.

Now we can extend this example to general quivers of cluster tilted algebras of
type Ãn in normal form.

Proof of Theorem 5.5. We know from Lemma 5.4 that every cluster tilted algebra
A= K Q/I of type Ãn with parameters r1, r2, s1 and s2 is derived equivalent to a
cluster tilted algebra with a quiver in normal form, as shown in Figure 1, where r1

is the number of arrows anticlockwise that do not share any arrow with an oriented
3-cycle and s1 is the number of arrows clockwise that do not share any arrow with
an oriented 3-cycle. Moreover, r2 is the number of oriented 3-cycles that share one
arrow α with the nonoriented cycle and α is oriented anticlockwise and s2 is the
number of oriented 3-cycles that share one arrow β with the nonoriented cycle and
β is oriented clockwise (see Definition 3.7). Thus, r := r1 + r2 is the number of
anticlockwise arrows of the nonoriented cycle and s := s1 + s2 is the number of
clockwise arrows of the nonoriented cycle.

We consider the quiver Q in normal form with notation as given in Figure 7 and
define the functions σ and ε for all arrows in Q:
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v0v1 vr+1

vr1−1 vr+s1−1

vrvr−1 vr+s−1

xr2 ys2

x1 y1

vr1

vr1+1

vr+s1

vr+s1+1

α1 αr+1

αr αr+s

αr1+1 αr+s1+1

αr1 αr+s1

β1,1 γ1,1

γ1,2β1,2

βr2,1
γs2,2

γs2,1
βr2,2

Figure 7. A quiver in normal form.

σ(αi ) = 1, ε(αi ) = −1 for all i = 1, . . . , r,
σ (αi ) = −1, ε(αi ) = 1 for all i = r + 1, . . . , r + s,
σ ( β j,1) = 1, ε( β j,1) = 1 for all j = 1, . . . , r2,

σ ( β j,2) = −1, ε( β j,2) = 1 for all j = 1, . . . , r2,

σ ( γ l,1) = −1, ε( γ l,1) = −1 for all l = 1, . . . , s2,

σ ( γ l,2) = 1, ε( γ l,2) = −1 for all l = 1, . . . , s2.

Here HA is formed by

hv1, . . . , hvr1−1, hvr+1, . . . , hvr+s1−1, γs2,2αrαr−1. . . α2α1,

βr2,2αr+sαr+s−1. . . αr+2αr+1, β1,1, β1,2β2,1, . . . , βr2−1,2βr2,1,

γ1,1, γ1,2γ2,1, . . . , γs2−1,2γs2,1.

The forbidden threads of A are px1, . . . , pxr2
, py1, . . . , pys2

, α1, . . . , αr1 ,
αr+1, . . . , αr+s1 and all the oriented 3-cycles.

Moreover, we can write

σ(hv1) = −ε(hv1) = −σ(α2) = ε(α1) = −1,
...

σ (hvr1−1) = −ε(hvr1−1) = −σ(αr1) = ε(αr1−1) = −1,
σ (hvr+1) = −ε(hvr+1) = −σ(αr+2) = ε(αr+1) = 1,

...

σ (hvr+s1−1) = −ε(hvr+s1−1) = −σ(αr+s1) = ε(αr+s1−1) = 1
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for the trivial permitted threads and

σ( pxi ) = ε( pxi ) = −σ( βi,1) = −ε( βi,2) = −1 for all i = 1, . . . , r2,

σ ( pyi ) = ε( pyi ) = −σ( γi,1) = −ε( γi,2) = 1 for all i = 1, . . . , s2

for the trivial forbidden threads.
Thus, we can apply Algorithm 5.6 as follows:

H0 = hv1 5−1
0 = α−1

1
H1 = βr2,2αr+sαr+s−1 . . . αr+2αr+1 5−1

1 = pxr2

H2 = βr2−1,2βr2,1 5−1
2 = pxr2−1

...
...

Hr2 = β1,2β2,1 5−1
r2

= px1

Hr2+1 = β1,1 5−1
r2+1 = α−1

r1

Hr2+2 = hvr1−1 5−1
r2+2 = α−1

r1−1
...

...

Hr−1 = hv2 5−1
r−1 = α−1

2
Hr = H0

m = l(50)+ l(5r2+1)+ l(5r2+2)+ · · ·+ l(5r−1)

= 1+ 1+ 1+ · · ·+ 1︸ ︷︷ ︸
(r−1)−r2 times

= 1+ (r − 1)− r2

= r − r2

= r1
→ (r, r1)

If we continue with the algorithm we obtain the second pair (s, s1) as follows:

H0 = hvr+1 5−1
0 = α−1

r+1
H1 = γs2,2αrαr−1 . . . α2α1 5−1

1 = pys2

H2 = γs2−1,2γs2,1 5−1
2 = pys2−1

...
...

Hs2 = γ1,2γ2,1 5−1
s2

= py1

Hs2+1 = γ1,1 5−1
s2+1 = α−1

r+s1

Hs2+2 = hvr+s1−1 5−1
s2+2 = α−1

r+s1−1
...

...

Hs−1 = hvr+2 5−1
s−1 = α−1

r+2
Hs = H0

→ (s, s1)
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Finally, we have to add r2 + s2 pairs (0, 3) for the oriented 3-cycles. Thus, we
have φA(r, r1) = 1, φA(s, s1) = 1 and φA(0, 3) = r2 + s2, where r = r1 + r2 and
s = s1+ s2.

Now, let A and B be two cluster tilted algebras of type Ãn with parameters
r1, r2, s1, s2, respectively r̃1, r̃2, s̃1, s̃2. From above we can conclude that φA =

φB if and only if r1 = r̃1, r2 = r̃2, s1 = s̃1 and s2 = s̃2 or r1 = s̃1, r2 = s̃2, s1 = r̃1

and s2 = r̃2 (which ends up being the same quiver).
Hence, if A is derived equivalent to B, we know from Lemma 5.7 that φA = φB

and thus, that the parameters are the same. Otherwise, if A and B have the same
parameters, they are both derived equivalent to the same cluster tilted algebra with
a quiver in normal form. �
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