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For a large class of isotrivial rational elliptic surfaces (with section), we show
that the set of rational points is dense for the Zariski topology, by carefully
studying variations of root numbers among the fibers of these surfaces. We also
prove that these surfaces satisfy a variant of weak-weak approximation. Our
results are conditional on the finiteness of Tate–Shafarevich groups for elliptic
curves over the field of rational numbers.

1. Introduction

1A. Del Pezzo surfaces of degree 1: a sample result. Let X be a smooth pro-
jective geometrically integral surface over a number field k. Fix an algebraic clo-
sure k̄ of k and assume that X is geometrically rational, i.e., the base extension
X k̄ := X ×k k̄ is birational to the projective plane P2

k̄ . A well-known result of
Iskovskikh [1979] guarantees that X is k-birational to either a rational conic bundle
or a del Pezzo surface.

Del Pezzo surfaces that are not geometrically isomorphic to P1
k̄ ×P1

k̄ are clas-
sified by their degree d := K 2

X , an integer in the range 1 ≤ d ≤ 9. Segre and
Manin have shown that if X is a del Pezzo surface with d ≥ 2, and if X contains
a k-point not lying on an explicitly computable locus, then X (k) is dense in the
Zariski topology; moreover, X is k-unirational in this case [Manin and Hazewinkel
1974, Theorem 29.4]. Surfaces X with d = 1 come furnished with a rational point
(the base point of the anticanonical linear system). Hence the question: is X (k)
dense for the Zariski topology? One of our goals in this paper is to shed some light
on this question, in the case when k =Q.

Theorem 1.1. Let A, B be nonzero integers, and let X be the del Pezzo surface of
degree 1 over Q given by

w2
= z3
+ Ax6

+ By6 (1)
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in PQ(1, 1, 2, 3). Assume that Tate–Shafarevich groups of elliptic curves over Q

with j-invariant 0 are finite. If 3A/B is not a rational square, or if A and B are
relatively prime and 9 - AB, then the rational points of X are Zariski dense.

See Section 2 for statements of our most general results.

Remarks 1.2. (i) Every del Pezzo surface of degree 1 is isomorphic to a smooth
sextic hypersurface in Pk(1, 1, 2, 3); conversely, a smooth sextic hypersurface
in this weighted projective space is a del Pezzo surface of degree 1 [Kollár
1996, Theorem III.3.5].

(ii) Using explicit rational base changes, it is shown in [Ulas 2007, Corollary 4.4]
that the conclusion of Theorem 1.1 holds unconditionally in the case A = 1.

(iii) The restriction in (1) that A and B are integers is not severe. If A and B
are rational numbers, one can clear denominators and rescale the variables to
obtain an equation of the form (1).

(iv) Using the methods in [Várilly-Alvarado 2008], we may compute Pic X for the
surfaces (1). If rk Pic X = 1, then X is Q-minimal, and is thus a “genuine” del
Pezzo surface of degree 1, i.e., X is not the blow-up of a higher degree surface
at closed Q-points. This is the case, for example, if A= B = p3, where p> 3
is a prime number; see Theorem 1.1 of that reference.

Blowing up the base point of the anticanonical linear system of a del Pezzo
surface of degree 1, we obtain a rational elliptic surface. These are the main objects
of study in our paper. However, we state our results in Section 2 in terms of hy-
persurfaces in PQ(1, 1, 2, 3) to emphasize the connection with del Pezzo surfaces
of degree 1.

1B. Rational elliptic surfaces. Let k be a number field, and let (E, ρ, σ ) be an
elliptic surface with base P1

k , i.e., a smooth surface E together with a morphism
ρ : E→P1

k that has a section σ : P1
k→E, such that ρ is a relatively minimal elliptic

fibration and has at least one (geometric) singular fiber. We often write E instead
of (E, ρ, σ ), the morphisms ρ and σ being understood. Suppose that E×k k̄ is
birational to P2

k̄ (in which case we say that E is rational). Then the generic fiber of
ρ is an elliptic curve E/k(T ) that can given by a Weierstrass equation of the form

Y 2
= X3

+ a(T )X + b(T ), a(T ), b(T ) ∈ k[T ], (2)

where

deg a(T )≤ 4, deg b(T )≤ 6 and 1 := 4a(T )3+ 27b(T )2 /∈ k.

Conversely, any elliptic curve E/k(T ) of the form (2) uniquely extends to a rational
elliptic surface with base P1

k (the Kodaira–Néron model of E).
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We associate to E a sextic hypersurface X in the weighted projective space
Pk(1, 1, 2, 3) as follows. Let k[x, y, z, w] be the graded ring where the variables
x, y, z, w have weights 1, 1, 2, 3, respectively. Set

Pk(1, 1, 2, 3) := Proj k[x, y, z, w]

and let X be the sextic hypersurface

w2
= z3
+G(x, y)z+ F(x, y), (3)

where
G(x, y)= y4a(x/y) and F(x, y)= y6b(x/y).

The schemes X and E are birational: X can be obtained from E by contracting the
image of the section σ as well as the components of the singular fibers of ρ that
do not meet σ(P1

k). In general, X will be a singular hypersurface.
We are interested in the qualitative distribution of the set E(k). In particular,

we want to determine if the set E(k) (equivalently, the set X (k)) is dense for the
Zariski topology. Our investigations rely heavily on the root numbers of the fibers
of ρ, and for this reason we focus our attention on the case k =Q.

To prove that E(Q) is Zariski dense, it suffices to show that for infinitely many
t ∈ P1(Q), the fiber Et of ρ is an elliptic curve with positive Mordell–Weil rank.
Assuming finiteness of Tate–Shafarevich groups, Nekovář, Dokchitser and Dok-
chitser have shown that the root number of an elliptic curve E/Q is (−1)rank(E)

(the parity conjecture; see [Nekovář 2001; Dokchitser and Dokchitser 2010]). We
study the variation of root numbers among the smooth fibers of E, hoping to find
infinitely many fibers with negative root number.

Rohrlich [1993] pioneered the study of variations of root numbers on algebraic
families of elliptic curves. Many authors followed suit; see, for example, [Man-
duchi 1995; Grant and Manduchi 1997; Grant and Manduchi 1998; Rizzo 2003;
Conrad et al. 2005]. Some authors (see notably [Conrad et al. 2005, p. 686]) have
observed that if the fibers of an elliptic surface lack “geometric variation,” then
often there are simple formulae that describe the root numbers of these fibers; see,
for example [Rohrlich 1996, Corollary to Proposition 10]. For this reason, we
restrict our attention to isotrivial rational elliptic surfaces, i.e., surfaces E as above
for which the modular invariant j (E) has no T -dependence. Such surfaces arise as
families of (quadratic, cubic, quartic or sextic) twists of a fixed elliptic curve E0/Q:

(i) (quadratic twists) Y 2
= X3

+ a f (T )2 X + b f (T )3 with a, b ∈ k, f (T ) ∈ k[T ]
and 1≤ deg f (T )≤ 2,

(ii) (cubic twists) Y 2
= X3

+ f (T )2 with f (T ) ∈ k[T ] and 1≤ deg f (T )≤ 3,

(iii) (quartic twists) Y 2
= X3

+ f (T )X with f (T ) ∈ k[T ] and 1≤ deg f (T )≤ 4,

(iv) (sextic twists) Y 2
= X3
+ f (T )with f (T )∈k[T ]\k[T ]2 and 1≤deg f (T )≤6.
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We use Rohrlich’s formulae for local root numbers, together with those of Halber-
stadt [1998] and Rizzo [2003], to assemble root number formulae for quartic and
sextic twists of elliptic curves over Q (see Propositions 4.8 and 4.4, respectively).
We then combine our explicit formulae for root numbers with an adaptation of a
sieve introduced by Gouvêa and Mazur [1991] and Greaves [1992]. The modified
sieve allows us to search for infinitely many pairs of fibers on a surface that have
opposite root numbers, which yields our density results (Theorems 2.1 and 2.3).
For a similarly motivated idea, see [Manduchi 1995].

Outline of the paper. In Section 2, we state our density theorems (Theorems 2.1,
2.3 and 2.6), and we relate them to the literature, where many similar results can
be found under the umbrella of Mazur’s conjecture on the topology of rational
points. In Section 3, we make precise the relation between isotrivial rational elliptic
surfaces and del Pezzo surfaces of degree 1. In Section 4, we present formulae for
the root numbers of elliptic curves Eα/Q of the form y2

= x3
+α or y2

= x3
+αx ,

where α is a nonzero integer. We use our formulae to give conditions on integers α
and β under which Eα and Eβ have opposite root numbers (Corollaries 4.5 and 4.9),
a crucial input in the proof of our density results. In Section 5, we turn our attention
to sieving, and present our modification of the squarefree sieve of Gouvêa, Mazur
and Greaves. In Section 6, we use this sieve to locate infinite families of fibers on
elliptic surfaces with opposite root number, and thus prove Theorems 2.1 and 2.3.
In Section 7, we specialize to the case of “diagonal” del Pezzo surfaces of degree 1
over Q. Finally, we prove Theorem 2.6 in Section 8.

2. Main results

Let F(x, y) ∈ Z[x, y] be a homogeneous binary form. We say that F has a fixed
prime divisor if there is a prime number p such that F(a, b) ∈ pZ for all a, b ∈ Z.
Note that if the content of F(x, y) is not divisible by p, then F(x, y) mod p has at
most deg F(x, y) zeroes in P1(Fp). Hence, if p is a fixed prime divisor of F(x, y),
then p+ 1≤ deg F(x, y).

2A. Sextic twists and del Pezzo surfaces of degree 1. Let

ρ : E→ P1
Q

be an isotrivial rational elliptic surface whose associated sextic hypersurface

X ⊆ PQ(1, 1, 2, 3)

is smooth (hence a del Pezzo surface of degree 1). We show in Section 3 that X
must be isomorphic to a sextic of the form

w2
= z3
+ F(x, y),
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where F(x, y) is a squarefree homogeneous form of degree 6. The generic fiber
E/Q(T ) of E is isomorphic to

Y 2
= X3

+ b(T ), where b(T )= F(T, 1) or F(1, T ),

and can be thought of family of sextic twists. We prove the following density result
for this class of surfaces.

Theorem 2.1. Let F(x, y) ∈ Z[x, y] be a homogeneous binary form of degree 6;
assume that the coefficients of x6 and y6 are nonzero. Let X be the del Pezzo
surface of degree 1 over Q given by

w2
= z3
+ F(x, y) (4)

in PQ(1, 1, 2, 3). Let c be the content of F and write F(x, y) = cF1(x, y) for
some F1(x, y) ∈ Z[x, y]. Suppose that F1 has no fixed prime divisors and that
F1 =

∏
i fi , where the fi ∈ Z[x, y] are irreducible homogeneous forms. Assume

further that
µ3 * Q[t]/ fi (t, 1) for some i, (5)

where µ3 is the group of third roots of unity. Finally, assume that Tate–Shafarevich
groups of elliptic curves over Q with j-invariant 0 are finite. Then the rational
points of X are dense for the Zariski topology.

Remark 2.2. The restriction that F(x, y) ∈ Z[x, y] in Theorem 2.1 is not severe;
see Remark 1.2(i). Also, the assumption that the coefficients of x6 and y6 are
nonzero is not a restriction: it can be achieved with a suitable linear transformation,
without so changing the isomorphism class of X .

We use Theorem 2.1 to deduce Theorem 1.1, which addresses the question of
Zariski density of rational points for “diagonal” del Pezzo surfaces of degree 1
over Q. We believe that the extraneous-looking hypotheses in Theorem 1.1, such
as “3A/B is not a rational square” or “9 - AB,” are not necessary. Our method
of proof, however, breaks down without them. For example, if (A, B) = (27, 16)
then all the nonsingular fibers of the corresponding elliptic surface ρ : E→ P1

Q

have positive root number, and thus (conjecturally) even rank. In this particular
example one can even show that all but finitely many fibers have rank at least
2, whence Zariski density of rational points on X is still true. However, if, for
example, (A, B) = (243, 16), then again all associated root numbers are positive,
but we are unable to show rational points on X are Zariski dense (see Example 7.1
and Remark 7.4).

2B. Quartic twists and (mildly singular) del Pezzo surfaces of degree 1. Let
ρ : E→ P1

Q
be an isotrivial rational elliptic surface and suppose that its generic
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fiber is of the form

Y 2
= X3

+ a(T )X, a(T ) ∈Q[t], deg a(T )≤ 4,

which can be thought of as a family of quartic twists over Q. The associated
hypersurface X ⊆ PQ(1, 1, 2, 3), given by

w2
= z3
+G(x, y)z, G(x, y) := y4a(x/y),

is not smooth (and hence not a del Pezzo surface of degree 1). However, X is not
too far from being smooth: for example, when G is squarefree, its singular locus
consists of four A2-singularities (w = z = G(x, y) = 0). We prove the following
density result for this class of surfaces.

Theorem 2.3. Let G[x, y] ∈ Z[x, y] be a squarefree homogeneous binary form
of degree 4; assume that the coefficients of x4 and y4 are nonzero. Let X be the
hypersurface given by

w2
= z3
+G(x, y)z (6)

in PQ(1, 1, 2, 3). Let c be the content of G and write G(x, y) = cG1(x, y) for
some G1(x, y) ∈ Z[x, y]. Suppose that G1 has no fixed prime divisors and that
G1 =

∏
i gi , where the gi ∈ Z[x, y] are irreducible homogeneous forms. Assume

further that

µ4 * Q[t]/gi (t, 1) for some i, (7)

whereµ4 is the group of fourth roots of unity. Finally, assume that Tate–Shafarevich
groups of elliptic curves over Q with j-invariant 1728 are finite. Then the rational
points of X are dense for the Zariski topology.

Remark 2.4. The assumption that the coefficients of x4 and y4 are nonzero is not
a restriction: it can be achieved with a suitable linear transformation, without so
changing the isomorphism class of X .

Remark 2.5. Ulas [2007; 2008] studied the question of Zariski density of rational
points on certain del Pezzo surfaces of degree 1 over Q by looking at explicit
rational base-changes of their associated elliptic surfaces. His results do not depend
on arithmetic conjectures and are thus stronger than ours, whenever there is an
overlap — compare our Theorem 2.1 with Theorems 2.1 and 2.2 of [Ulas 2007]
and our Theorem 2.3 with Theorems 3.1 and 3.2 of the same reference.

2C. Toward weak-weak approximation. Write �k for the set of places of a num-
ber field k, and let kv be the completion of k at v ∈�k . Recall that a geometrically
integral variety X over k satisfies weak-weak approximation if there exists a finite
set T ⊆�k such that for every other finite set S ⊆�k with S ∩ T =∅, the image
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of the embedding
X (k) ↪→

∏
v∈S

X (kv)

is dense for the product topology of the v-adic topologies. We say that X satisfies
weak approximation if we can take T =∅.

It is known that del Pezzo surfaces of low degree need not satisfy weak approx-
imation; see [Colliot-Thélène et al. 1987, Example 15.5; Swinnerton-Dyer 1962;
Kresch and Tschinkel 2008, Example 2, Várilly-Alvarado 2008, Theorem 1.1] for
counterexamples in degrees 4, 3, 2 and 1, respectively. It is believed, however, that
these surfaces satisfy weak-weak approximation. More generally, a conjecture of
Colliot-Thélène predicts that unirational varietes satisfy weak-weak approximation
(the conjecture implies a positive solution to the inverse Galois problem over num-
ber fields); see [Serre 2008, p. 30]. Following a suggestion of Colliot-Thélène,
we use our modified squarefree sieve to show that the surfaces of Theorems 2.1
and 2.3 satisfy a “surrogate” property that would be easily implied by weak-weak
approximation. For analogous results in this direction on certain elliptic surfaces
without section, see [Colliot-Thélène et al. 1998a], and for more general fibrations
over the projective line, see [Colliot-Thélène et al. 1998b].

Theorem 2.6. Let ρ : E→ P1
Q

be an elliptic surface associated to one of the hy-
persurfaces considered in either Theorem 2.1 or 2.3. Let R be the set of points
x ∈P1(Q) such that the fiber Ex = ρ

−1(x) is an elliptic curve of positive Mordell–
Weil rank. Assume that Tate–Shafarevich groups of elliptic curves over Q with j-
invariant 0 or 1728 are finite. Then there exists a finite set of primes P0, containing
the infinite prime, such that for every finite set of primes P with P ∩ P0 = ∅, the
image of the embedding

R ↪→
∏
p∈P

P1(Qp)

is dense for the product topology of the p-adic topologies.

Remark 2.7. The set P0 in Theorem 2.6 is effectively computed in the proof of
the theorem.

2D. Mazur’s conjecture and related work. Mazur has made a series of conjec-
tures on the topology of rational points on varieties, including the following.

Conjecture 2.8 [Mazur 1992, Conjecture 4]. Let E→ P1
Q

be an elliptic surface
with base P1

Q
. Then one of the following two conditions hold:

(1) for all but finitely many t ∈ P1(Q), the fiber Et is an elliptic curve with
Mordell–Weil rank equal to zero,

(2) the set of t ∈P1(Q) such that Et is an elliptic curve with positive Mordell–Weil
rank is dense in P1(R).
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Many authors have shown since that (2) holds for a range of elliptic surfaces.
In particular, the set E(Q) is dense in the Zariski topology for these surfaces. For
example, in [Rohrlich 1993, Theorem 3] Rohrlich shows, unconditionally and us-
ing elementary methods, that if f (t) ∈ Q[t] is a quadratic polynomial, then the
Kodaira–Néron model E of the elliptic curve over Q(T ) given by

Y 2
= X3

+ a f (T )2 X + b f (T )3 a, b ∈Q

satisfies part (2) of Conjecture 2.8, provided that there exists t ∈Q such that f (t) 6=
0 and that Et has positive Mordell–Weil rank. Munshi has recently extended this
result to rational elliptic surfaces over real number fields, provided there are at
least two fibers of positive rank and one fiber with a 2-torsion point defined over
the ground field [Munshi 2010, Theorem 2].

Kuwata and Wang have a similar result to Rohrlich’s for quadratic twists by
cubic polynomials [Kuwata and Wang 1993]. The resulting isotrivial elliptic sur-
faces, however, are not rational; they are K 3 surfaces. Munshi [2007] examined
Conjecture 2.8 for many kinds of isotrivial rational elliptic surfaces, including cubic
twists, by studying “horizontal” elliptic or conic bundle structures on these sur-
faces. There is surprisingly little overlap between Munshi’s and our investigations;
in fact, our methods cannot yield density results for cubic twists (the squarefree-
ness of F(x, y) in (4) is central to our sieving argument). We have conditionally
addressed the question of Zariski density of rational points on some of the isotrivial
cases left open in [Munshi 2007, §7].

Assuming the parity conjecture, Manduchi has shown that conclusion (2) of
Conjecture 2.8 holds for large families of nonisotrivial elliptic surfaces with base
P1

Q
; see [Manduchi 1995]. Over a general number field, and assuming the Birch–

Swinnerton-Dyer conjecture, as well as a conjecture of Deligne and Gross, Grant
and Manduchi have shown that rational points are potentially dense for nonisotriv-
ial elliptic surfaces over a rational or elliptic base; see [Grant and Manduchi 1997;
1998]. Ulas [2007, Theorems 5.1 and 5.3] has obtained density results on extensive
families of rational nonisotrivial elliptic surfaces by studying explicit rational base
changes (see Remark 2.5 as well). Helfgott [2004] has also obtained density results
for elliptic surfaces through his study of average root numbers in families. His
results depend on classical arithmetical conjectures.

Elkies (private communication, 2009) has suggested that Conjecture 2.8 is false;
he has a heuristic which indicates that certain families of quadratic twists by a
polynomial of high degree should yield counterexamples.

Colliot-Thélène, Swinnerton-Dyer and Skorobogatov study in [Colliot-Thélène
et al. 1998a] the vertical Brauer–Manin obstruction of a large class of elliptic
surfaces without section. In particular, they show that the set of rational points
of the elliptic surfaces they study is dense for the Zariski topology as soon as it
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is nonempty. Their results are conditional on the finiteness of Tate–Shafarevich
groups and Schinzel’s hypothesis (a wild generalization of the twin primes conjec-
ture).

3. Isotrivial elliptic surfaces and del Pezzo surfaces of degree 1

Let k be a number field, and let (E, ρ, σ ) be an isotrivial rational elliptic surface
with base P1

k . The generic fiber E/k(T ) of E is isomorphic to a curve in the
list (i)–(iv) on page 661. Suppose that the sextic hypersurface X ⊆ Pk(1, 1, 2, 3)
associated to E is smooth (and hence a del Pezzo surface of degree 1). Then
a straightforward (albeit tedious) application of the Jacobian criterion shows that
E/k(T )must be a family of sextic twists (iv), with f (T ) squarefree. Alternatively,
we may argue as follows. Since X k̄ is isomorphic to P2

k̄ blown-up at 9 distinct
points in general position [Manin and Hazewinkel 1974], it follows from [Shioda
1990, Theorem 10.11] that the Mordell–Weil lattice of Ek̄(T ) has rank 8. From
the Shioda–Tate formula [Shioda 1990, Corollary 5.3], we deduce that Ek̄ has no
reducible fibers, i.e., the singular fibers of ρk̄ : Ek̄ → P1

k̄ must be of type I0 or II,
in Kodaira’s notation. The isotriviality of E precludes singular fibers of type I0

(because these fibers are semistable). Looking at Persson’s classification [1990]
of rational elliptic surfaces, we conclude that Ek̄ must have six singular fibers of
type II. A quick application of Tate’s algorithm to the Kodaira–Néron models of
the possible generic fibers from the list leaves (iv) as the only possibility, under the
additional hypothesis that f (T ) is squarefree. We have thus shown:

Proposition 3.1. Let k be a number field and let (E, ρ, σ ) be an isotrivial ra-
tional elliptic surface with base P1

k . Suppose that the sextic hypersurface X ⊆
P1

k(1, 1, 2, 3) associated to E is smooth. Then X is isomorphic to a hypersurface
of the form

w2
= z3
+ F(x, y),

where F(x, y) is a squarefree homogeneous form. �

4. Root numbers and flipping

Let E be an elliptic curve over Q. The root number W (E) of E is defined as a
product of local factors

W (E)=
∏
p≤∞

Wp(E),

where p runs over the rational prime numbers and infinity, Wp(E) ∈ {±1} and
Wp(E) = +1 for all but finitely many p. The local root number Wp(E) of E at
p is defined in terms of epsilon factors of Weil–Deligne representations of Qp; it
is an invariant of the isomorphism class of the base extension EQp of E . For a
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definition of these local factors see [Deligne 1973; Tate 1979]. If p is a prime of
good reduction for E then Wp(E)=+1; furthermore, W∞(E)=−1 (see [Rohrlich
1993]). The computation of Wp(E) for primes of bad reduction in terms of data
associated to a Weierstrass model of E has been studied by various authors; see
particularly [Rohrlich 1993; Halberstadt 1998; Rizzo 2003]. In this section, we
build on their work to give formulae for the root numbers of elliptic curves over Q

of the form
y2
= x3
+α and y2

= x3
+αx (α 6= 0).

Our formula for the root number of y2
= x3

+ α has a flavor different from that
found in [Liverance 1995]; in particular, it is visibly insensitive to primes p ≥ 5
whose square does not divide α.

Conjecturally, the root number W (E) of an elliptic curve is the sign in the func-
tional equation for the L-series L(E, s) of E :

(2π)−s0(s)N s/2L(E, s)=W (E)(2π)2−s0(2− s)N (2−s)/2L(E, 2− s),

where N is the conductor of E , and 0(s) is the usual gamma function. According
to the Birch–Swinnerton-Dyer conjecture,

W (E)= (−1)rank(E). (8)

Equality (8) is itself known as the parity conjecture. By [Nekovář 2001] and [Dok-
chitser and Dokchitser 2010] the finiteness of Tate–Shafarevich groups is enough
to prove the parity conjecture.

Notation. In addition to the notation introduced above, we use the following con-
ventions. Throughout, for a prime p ∈ Z we denote the corresponding p-adic
valuation by vp. If a is a nonzero integer then

( a
p

)
will denote the usual Legendre

symbol; if m is an odd positive integer,
( a

m

)
will denote the usual Jacobi symbol.

4A. The root number of Eα : y2 = x3 + α. Let α be a nonzero integer. We give
a closed formula for the root number of the elliptic curve Eα/Q : y2

= x3
+ α, in

terms of α. Throughout, we write W (α) for this root number and Wp(α) for the
local root number of Eα at p. We begin by determining W2(α) and W3(α).

Lemma 4.1. Let α be a nonzero integer. Define α2 and α3 by

α = 2v2(α)α2 = 3v3(α)α3.

Then

W2(α)=


−1 if v2(α)≡ 0 or 2 mod 6

or if v2(α)≡ 1, 3, 4 or 5 mod 6 and α2 ≡ 3 mod 4,

+1 otherwise
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and

W3(α)=



−1 if v3(α)≡ 1 or 2 mod 6 and α3 ≡ 1 mod 3,
or if v3(α)≡ 4 or 5 mod 6 and α3 ≡ 2 mod 3,
or if v3(α)≡ 0 mod 6 and α3 ≡ 5 or 7 mod 9
or if v3(α)≡ 3 mod 6 and α3 ≡ 2 or 4 mod 9,

+1 otherwise.

Proof. According to [Rizzo 2003, §1.1], to determine the local root number at p of
an elliptic curve given in Weierstrass form, we must find the smallest vector with
nonnegative entries

(a, b, c) := (vp(c4), vp(c6), vp(1))+ k(4, 6, 12) (9)

for k ∈ Z, where c4, c6 and 1 are the usual quantities associated to a Weierstrass
equation (see [Silverman 1992, Chapter III]). For the curves in question we have

c4 = 0, c6 =−25
· 33
·α, and 1=−24

· 33
·α2,

whence

(vp(c4), vp(c6), vp(1))= (∞, vp(α), 2vp(α))+

{
(0, 5, 4) if p = 2,
(0, 3, 3) if p = 3,

Now it is a simple matter of using the tables in [Rizzo 2003, §1.1] to compute local
root numbers. We illustrate the computation of W2(α) in one example. Suppose
that v2(α) ≡ 4 mod 6. Then (a, b, c) = (∞, 3, 0), and according to the entries
under (≥ 4, 3, 0) in Rizzo’s Table III, we have W2(α) = −1 if and only if c′6 :=
c6/2v2(c6) ≡ 3 mod 4, i.e., if and only if α2 ≡ 3 mod 4. All other local root number
computations are similar and we omit the details. �

Remark 4.2. We take the opportunity to note that the entry (≥5, 6, 9) in Table II
of [Rizzo 2003] has a typo. The “special condition” should read c′6 6≡ ±4 mod 9.

The elliptic curve Eα has potential good reduction at every nonarchimedean
place. We will use the following proposition, due to Rohrlich, which gives a for-
mula for the local root numbers of an elliptic curve at primes p ≥ 5 of potential
good reduction.

Proposition 4.3 [Rohrlich 1993, Proposition 2]. Let p ≥ 5 be a rational prime,
and let E/Qp be an elliptic curve with potential good reduction. Write1∈Q∗p for
the discriminant of any generalized Weierstrass equation for E over Qp. Let

e :=
12

gcd(vp(1), 12)
.
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Then

Wp(E)=



1 if e = 1,(
−1
p

)
if e = 2 or 6,(

−3
p

)
if e = 3,(

−2
p

)
if e = 4. �

Proposition 4.4 (Root numbers for y2
= x3
+α). Let α be a nonzero integer, and

let

R(α)=W2(α)
(
−1
α2

)
W3(α)(−1)v3(α). (10)

Then

W (α)=−R(α)
∏
p2
|α

p≥5

{
1 if vp(α)≡ 0, 1, 3, 5 mod 6,(
−3
p

)
if vp(α)≡ 2, 4 mod 6.

(11)

Let β be another nonzero integer, and suppose that α ≡ β mod 2v2(α)+2
· 3v3(α)+2.

Then R(α)= R(β).

Proof. Since 1(Eα)=−2433α2, applying Proposition 4.3 we obtain

W (α)=−W2(α)W3(α)
∏
p |α
p≥5


1 if vp(α)≡ 0 mod 6,(
−1
p

)
if vp(α)≡ 1, 3, 5 mod 6,(

−3
p

)
if vp(α)≡ 2, 4 mod 6.

(12)

Let r be the product of the primes p ≥ 5 such that vp(α)= 1, let b = α/r and set

α2 :=
α

2v2(α)
, b2 :=

b
2v2(b)

.

Note that r = α2/b2 = α/b. We may rewrite (12) as

W (α)=−W2(α)W3(α)
(
−1
r

)∏
p | b
p≥5


1 if vp(α)≡ 0 mod 6,(
−1
p

)
if vp(α)≡ 1, 3, 5 mod 6,(

−3
p

)
if vp(α)≡ 2, 4 mod 6.

(13)

On the other hand, we have(
−1
r

)
=

(
−1
α2/b2

)
=

(
−1
α2

)
·

(
−1
b2

)
=

(
−1
α2

)
·

(
−1
3

)v3(α)

·

∏
p | b
p≥5

(
−1
p

)vp(α)

,
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so we can write (13) as

W (α)=

−W2(α)
(
−1
α2

)
W3(α)(−1)v3(α)

∏
p | b
p≥5



(
−1
p

)vp(α)

if vp(α)≡ 0 mod 6,(
−1
p

)1+vp(α)

if vp(α)≡ 1, 3, 5 mod 6,(
−3
p

)(
−1
p

)vp(α)

if vp(α)≡ 2, 4 mod 6.

This reduces to

W (α)=−R(α)
∏
p2
|α

p≥5

 1 if vp(α)≡ 0, 1, 3, 5 mod 6,(
−3
p

)
if vp(α)≡ 2, 4 mod 6.

as desired, because, for p ≥ 5, we have p | b⇐⇒ p2
|α.

To prove the last claim of the proposition, note that if

α ≡ β mod 2v2(α)+2
· 3v3(α)+2

then v2(α)= v2(β) and v3(α)= v3(β); thus we have

α

2v2(α)
≡

β

2v2(β)
mod 4 and

α

3v3(α)
≡

β

3v3(β)
mod 9.

The claim now follows from Lemma 4.1 �

The following corollary describes conditions on two nonzero integers α and β
which guarantee that the elliptic curves y2

= x3
+α and y2

= x3
+β have opposite

root numbers. This is one of the key inputs to the proof of Theorem 2.1. This
corollary is similar in spirit to [Manduchi 1995, Corollary 2.1].

Corollary 4.5 (Flipping I). Let α, β be nonzero integers such that

(1) α ≡ β mod 2v2(α)+2
· 3v3(α)+2,

(2) α = c`, where ` is squarefree and gcd(c, `)= 1,

(3) β = cq2+6kη, where η is square free, gcd(c, η)= gcd(q, cη)= 1, k ≥ 0, q ≥ 5
is prime and q ≡ 2 mod 3.

Then W (α)=−W (β).

Proof. The first condition ensures that R(α) = R(β). Since ` is squarefree and
gcd(c, `)= 1, the only primes greater than 3 contributing to W (α) are those whose
square divides c. Similarly, since η is squarefree and gcd(c, η)= gcd(q, η)= 1, the
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only primes greater than 3 contributing to W (β) are those whose square divides c,
and q . Since gcd(q, c)= 1, q ≥ 5 and q ≡ 2 mod 3, we have

W (β)=
(
−3
q

)
W (α)=−W (α) �

Remark 4.6. To prove Zariski density of rational points on the elliptic surface
E→ P1

Q
associated to a del Pezzo of degree 1 as in Theorem 2.1, it is enough to

do the following. First, prove that there exist infinite sets F1 and F2 of coprime
pairs of integers such that whenever (m1, n1) ∈ F1 and (m2, n2) ∈ F2 then

(1) α := F(m1, n1) and β := F(m2, n2) are nonzero integers, and

(2) the integers α and β satisfy the hypotheses of Corollary 4.5.

Then, by Corollary 4.5, we know that either

W (F(m, n))=−1 for all (m, n) ∈ F1,

or

W (F(m, n))=−1 for all (m, n) ∈ F2.

Hence, there are infinitely many closed fibers of E→ P1
Q

with negative root num-
ber. Assuming the parity conjecture, this gives an infinite number of closed fibers
with infinitely many points, and hence a Zariski dense set of rational points on E.

4B. The root number of Eα : y2 = x3 + αx. Next, we give a closed formula for
the root number of the elliptic curve Eα/Q : y2

= x3
+αx , in terms of the nonzero

integer α. The proofs mirror those of Section 4A, and thus we have omitted them.
Throughout this section, we write W (α) for the root number of Eα and Wp(α) for
the local root number at p of Eα.

Lemma 4.7. Let α be a nonzero integer. Define α2 and α3 by α = 2v2(α)α2 =

3v3(α)α3. Then

W2(α)=


−1 if v2(α)≡ 1 or 3 mod 4 and α2 ≡ 1 or 3 mod 8

or if v2(α)≡ 0 mod 4 and α2 ≡ 1, 5, 9, 11, 13 or 15 mod 16
or if v2(α)≡ 2 mod 4 and α2 ≡ 1, 3, 5, 7, 11 or 15 mod 16,

+1 otherwise;

W3(α)=

{
−1 if v3(α)≡ 2 mod 4,
+1 otherwise.

Proof. Proceed as in the proof of Lemma 4.1, using the quantities

c4 =−24
· 3 ·α, c6 = 0, and 1=−26

·α3. �
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Proposition 4.8 (Root numbers for y2
= x3
+αx). Let α be a nonzero integer, and

let
R(α)=W2(α)

(
−1
α2

)
W3(α)(−1)v3(α). (14)

Then

W (α)=−R(α)
∏
p2
|α

p≥5


(
−1
p

)
if vp(α)≡ 2 mod 4,( 2

p

)
if vp(α)≡ 3 mod 4.

Let β be another nonzero free integer, and suppose that α≡β mod 2v2(α)+4
·3v3(α).

Then R(α)= R(β). �

The following corollary, which parallels Corollary 4.5, describes conditions on
two nonzero integers α and β that guarantee that the elliptic curves y2

= x3
+ αx

and y2
= x3
+βx have opposite root numbers. This is one of the key inputs to the

proof of Theorem 2.3.

Corollary 4.9 (Flipping II). Let α, β be nonzero integers such that

(1) α ≡ β mod 2v2(α)+4
· 3v3(α),

(2) α = c`, where ` is squarefree and gcd(c, `)= 1,

(3) β = cq2+4kη, where η is square free, gcd(c, η) = gcd(q, cη) = 1, k ≥ 0,
q ≥ 5 is prime and q ≡ 3 mod 4; or β = cp3+4kη, where η is square free,
gcd(c, η)= gcd(q, cη)= 1, k ≥ 0, q ≥ 5 is prime and q ≡ 3 or 5 mod 8.

Then W (α)=−W (β). �

Remark 4.10. To prove Zariski density of rational points on the elliptic surface
E→ P1

Q
associated to a sextic hypersurface as in Theorem 2.3, it is enough to do

the following. First, prove that there exist infinite sets F1 and F2 of coprime pairs
of integers such that whenever (m1, n1) ∈ F1 and (m2, n2) ∈ F2 then

(1) α := G(m1, n1) and β := G(m2, n2) are nonzero integers.

(2) The integers α and β satisfy the hypotheses of Corollary 4.9.

Then, arguing as in Remark 4.6 (using Corollary 4.9) we find infinitely many closed
fibers of E→ P1

Q
with negative root number. This gives a Zariski dense set of

rational point for E, assuming the parity conjecture.

5. The modified square-free sieve

In this section we present a variation of a squarefree sieve by Gouvêa and Mazur
[1991] and Greaves [1992]. It is the tool that allows us to identify families of fibers
with negative root numbers on certain elliptic surfaces.

Let F(m, n) ∈ Z[m, n] be a binary homogeneous form of degree d , not di-
visible by the square of a nonunit in Z[m, n]. Write F =

∏t
i=1 fi , where the
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fi (m, n) ∈ Z[m, n] are irreducible, and assume that deg fi ≤ 6 for all i . Applying
a unimodular transformation we may (and do) assume that the coefficients of md

and nd in F(m, n) are nonzero. Call their respective coefficients ad and a0. Write
F(m, n)= ad

∏
(m− θi n), where the θi are algebraic numbers and 1≤ i ≤ d . Let

1(F)=
∣∣∣∣a0a2d−1

d

∏
i 6= j

(θi − θ j )

∣∣∣∣;
this is essentially the discriminant of the form F . It is nonzero if and only if F
contains no square factors.

Fix a positive integer M , as well as a subset S of (Z/MZ)2. Our goal is to count
pairs of integers (m, n) such that (m mod M, n mod M) ∈ S and F(m, n) is not
divisible by p2 for any prime number p such that p - M . This will allow us to give
an asymptotic formula for the number of pairs of integers (m, n) with 0≤m, n≤ x
such that

F(m, n)= ν · `,

where ν is a fixed integer and ` is a squarefree integer such that gcd(ν, `)= 1. The
case ν=1 is handled in [Gouvêa and Mazur 1991] under the additional assumption
that deg fi ≤ 3, and extended in [Greaves 1992] to the case deg fi ≤ 6. We build
upon their work to prove an asymptotic formula when ν > 1.

Remark 5.1. The role of the set S above is to “decouple” the congruence condi-
tions on (m, n) from the sieving process. This artifact, suggested to us by Bjorn
Poonen after an initial reading of the manuscript, cleans up the analytic proofs in
the main-term estimate for our sieve.

We make use of the following (mild variation of an) arithmetic function studied
by Gouvêa and Mazur: put ρ(1)= 1, and for k ≥ 2 let

ρ(k)= #{(m, n) ∈ Z2
: 0≤ m, n ≤ k− 1, F(m, n)≡ 0 mod k}.

By the Chinese remainder theorem, the function ρ is multiplicative; i.e., if k1 and
k2 are relatively prime positive integers then ρ(k1k2)= ρ(k1)ρ(k2).

Lemma 5.2 [Gouvêa and Mazur 1991, Lemma 3(2)]. For fixed F as above and
squarefree `, we have ρ(`2)= O(`2

·dk(`)) as `→∞, where k = deg(F)+1 and
dk(`) denotes the number of ways in which ` can be expressed as a product of k
factors. In particular, ρ(p2)= O(p2) as p→∞. �

We can now state the main result of this section.

Theorem 5.3. Let F(m, n) ∈ Z[m, n] be a homogeneous binary form of degree
d. Assume that no square of a nonunit in Z[m, n] divides F(m, n), and that no
irreducible factor of F has degree greater than 6. Fix a positive integer M , as well
as a subset S of (Z/MZ)2. Let N (x) be the number of pairs of integers (m, n) with
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0≤m, n ≤ x such that (m mod M, n mod M) ∈ S and F(m, n) is not divisible by
p2 for any prime p such that p - M. Then

N (x)= Cx2
+ O

(
x2

(log x)1/3

)
as x→∞,

where

C =
|S|

M2

∏
p - M

(
1−

ρ(p2)

p4

)
.

Remark 5.4. By Lemma 5.2, ρ(p2) = O(p2) as p →∞ for a fixed F , so the
infinite product defining C converges.

Heuristically, the condition that F(m, n) be squarefree outside a prescribed in-
teger is well approximated by the condition that F(m, n) not be divisible by the
square of a prime that is “small relative to x .” More precisely, let ξ = 1

3 log x and
define the principal term

N ′(x)=
{
(m, n)∈Z2

: 0≤m, n≤ x, F(m, n) 6≡ 0 mod p2 for all p≤ ξ, p - M
and (m mod M, n mod M) ∈ S

}
.

Let F =
∏t

i=1 fi be a factorization of F into irreducible binary forms. Define the
partial i-th error term Ei (x) by

E0(x)= #
{
(m, n) ∈ Z2

: 0≤ m, n ≤ x, p |m and p | n for some p > ξ
}
,

Ei (x)= #
{
(m, n) ∈ Z2

: 0≤ m, n ≤ x, p2
| fi (m, n) for some p > ξ

}
.

The proof of [Gouvêa and Mazur 1991, Proposition 2], essentially unchanged,
shows that E(x) :=

∑t
i=0 Ei (x) gives an upper bound for the error term of our

approximation, as follows.

Proposition 5.5. If ξ >max{1(F),M} then

N ′(x)− E(x)≤ N (x)≤ N ′(x). �

The proposition implies that

N (x)= N ′(x)+ O(E(x)),

which is why we think of ξ as giving us the notion of “small prime relative to x .”
The choice of 1

3 log x is somewhat flexible (see [Gouvêa and Mazur 1991, §4]);
what is important is that when ` is a squarefree integer divisible only by primes
smaller than ξ then

`≤
∏
p<ξ

p = exp
( ∑

p<ξ

log p
)
≤ e2ξ

= x2/3, (15)
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where the last inequality follows from the estimate∑
p<ξ

log p ≤
∑
p<ξ

log ξ = π(ξ) log ξ < 2ξ,

with π(x)= #{p prime : p < x}; see [Stopple 2003, p. 105].
Greaves [1992] showed that

E(x)= O
(

x2

(log x)1/3

)
as x→∞.

His proof requires the hypothesis that no irreducible factor of F have degree greater
than 6, which explains the presence of this hypothesis in Theorem 5.3. Thus
Theorem 5.3 follows from the next lemma.

Lemma 5.6. With C as in Theorem 5.3, we have

N ′(x)= Cx2
+ O

(
x2

log x

)
as x→∞.

Proof. Let ` be a squarefree integer divisible only by primes smaller than ξ , and
such that gcd(`,M)= 1. Let

N`(M,S; x)

be the number of pairs of integers (m, n) such that

0≤ m, n ≤ x, (m mod M, n mod M) ∈ S, and F(m, n)≡ 0 mod `2.

For a fixed congruence class modulo `2 of solutions of F(m0, n0) ≡ 0 mod `2,
satisfying (m0 mod M, n0 mod M) ∈ S, we count the number of representatives
in the box 0≤ m, n ≤ x , and obtain

N`(M,S; x)=
x2
· |S|

M2 ·
ρ(`2)

`4 + O
(

x ·
ρ(`2)

`2

)
,

where the implied constant depends on F,M and S, but not on ` or x . By the
inclusion-exclusion principle we have

N ′(x)=
∑
`

µ(`)N`(M,S; x),

where µ denotes the usual Möbius function and the sum runs over squarefree inte-
gers that are divisible only by primes smaller than ξ and that are relatively prime
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to M . Thus, by (15),

N ′(x)=
x2
· |S|

M2

∑
`

µ(`)
ρ(`2)

`4 + O
(

x
∑
`≤x2/3

ρ(`2)

`2

)

=
x2
· |S|

M2

∏
p<ξ, p - M

(
1−

ρ(p2)

p4

)
+ O

(
x
∑
`≤x2/3

ρ(`2)

`2

)
.

Assume that x is large enough so that ξ > M . Then, by Lemma 5.2, we have∏
p≥ξ

(
1−

ρ(p2)

p4

)
=

∏
p≥ξ

(
1− O

(
1
p2

))
= 1−

∑
p≥ξ

O
(

1
p2

)

= 1− O
(∫

t≥ξ

1
t2 dt

)
= 1− O

(
1
ξ

)
.

Hence

N ′(x)=
x2
· |S|

M2

∏
p - M

(
1−

ρ(p2)

p4

)
+ O

(
x2

ξ

)
+ O

(
x
∑
`≤x2/3

ρ(`2)

`2

)
.

By Lemma 5.2, we have

O
(

x
∑
`≤x2/3

ρ(`2)

`2

)
= O

(
x
∑
`≤x2/3

dk(`)

)
= O(x · x2/3 logk−1 x),

with k = deg F + 1, where we have used the well-known fact that∑
n≤x

dk(n)= O(x logk−1 x);

see, for example, [Iwaniec and Kowalski 2004, (1.80)]. Since ξ= 1
3 log x , it follows

that

N ′(x)=
x2
· |S|

M2

∏
p - M

(
1−

ρ(p2)

p4

)
+ O

(
x2

ξ

)
+ O(x · x2/3 logk−1 x)

=
x2
· |S|

M2

∏
p - M

(
1−

ρ(p2)

p4

)
+ O

(
x2

log x

)
,

which concludes the proof. �

5A. Making sure that C does not vanish. In this section we explore the possibil-
ity that the constant C for the principal term of N (x) is zero. This will depend on
the particular binary form F(m, n), the integer M and the set S. For any prime
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p - M , let

C p =

(
1−

ρ(p2)

p4

)
,

so that

C =
|S|

M2

∏
p-M

C p.

For p - M we know that ρ(p2)= O(p2) (see Lemma 5.2); hence C vanishes if and
only if either S=∅, or one of the factors C p vanishes.

Lemma 5.7. With notation as above, if p - M and p ≥ deg F , then C p 6= 0.

Proof. If p - M then C p = 0 if and only if ρ(p2)= p4, which happens if and only
if all pairs of integers (m, n) modulo Z/p2Z are solutions to F(m, n)≡ 0 mod p2.
But then all pairs of integers (m, n) give solutions to the given congruence equation.
This can happen only if p < deg(F); see the beginning of Section 2. �

5B. An application of the modified sieve.

Corollary 5.8 (Pseudosquarefree sieve). Let F(m, n)∈Z[m, n] be a homogeneous
binary form of degree d. Assume that no square of a nonunit in Z[m, n] divides
F(m, n), and that no irreducible factor of F has degree greater than 6. Fix

• a sequence S = (p1, . . . , pr ) of distinct prime numbers and

• a sequence T = (t1, . . . , tr ) of nonnegative integers.

Let M be an integer divisible by pt1+1
1 · · · ptr+1

r and by p2 for all primes p< deg F.
Suppose that there exist integers a, b such that

F(a, b) 6≡ 0 mod p2 whenever p |M and p 6= pi for any i, (16)

and such that
vpi (F(a, b))= ti for all i . (17)

Then there are infinitely many pairs of integers (m, n) such that

m ≡ a mod M, n ≡ b mod M, (18)

and
F(m, n)= pt1

1 · · · p
tr
r · `,

where ` is squarefree and vpi (`)= 0 for all i .

Proof. Let S={(a, b)}. By Theorem 5.3, there are infinitely many pairs of integers
(m, n) such that

m ≡ a mod M, n ≡ b mod M, F(m, n) 6≡ 0 mod p2 whenever p - M.
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(Note that |S| = 1 and C 6= 0 by Lemma 5.7.) Condition (16) then guarantees that
F(m, n) is not divisible by the square of any prime outside the sequence S. We
also have

m ≡ a mod pti+1
i , n ≡ b mod pti+1

i , for all i,

because pti+1
i |M for all i , and hence

F(m, n)= F(a, b) mod pti+1
i for all i.

Using condition (17), we conclude that

vpi (F(m, n))= ti . �

6. Proof of Theorems 2.1 and 2.3

For a finite extension L/k of number fields, we let S(L/k) denote the set of un-
ramified prime ideals of k that have a degree 1 prime over k in L . Given two sets
A and B, we write A .

= B if A and B differ by finitely many elements, and we
write A v B if x ∈ A H⇒ x ∈ B with finitely many exceptions.

Proposition 6.1 (Bauer; see [Neukirch 1999, p. 548]). Let k be a number field,
N/k a Galois extension of k and M/k an arbitrary finite extension of k. Then

S(M/k)v S(N/k) ⇐⇒ M ⊇ N .

Lemma 6.2. Let f (t) ∈ Z[t] be an irreducible nonconstant polynomial, and let
N = Q[t]/ f (t). Let µ3 denote the group of third roots of unity, and suppose
that Q(µ3) * N. Then there are infinitely many rational primes p such that p ≡
2 (mod 3) and such that there exists a degree-1 prime p⊆ N lying over p.

Proof. Since F×p contains an element of order 3 if and only if 3|(p− 1), it follows
that

S(Q(µ3)/Q)
.
= {p ∈ Z : p prime and p ≡ 1 mod 3}.

Suppose that the following implication holds (with possibly finitely many excep-
tions):

p ∈ Z has a degree 1 prime in N H⇒ p ≡ 1 mod 3.

Then
S(N/Q)v S(Q(µ3)/Q).

It follows from Proposition 6.1 that Q(µ3)⊆ N , a contradiction. �

A similar argument proves the following entirely analogous lemma.

Lemma 6.3. Let g(t) ∈ Z[t] be an irreducible nonconstant polynomial, and let
N =Q[t]/g(t). Let µ4 denote the group of fourth roots of unity, and suppose that
Q(µ4) * N. Then there are infinitely rational primes p such that p ≡ 3 (mod 4)
and such that there exists a degree-1 prime p⊆ N lying over p. �
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Proof of Theorem 2.1. Since the surface in PQ(1, 1, 2, 3) given by an equation of
the form (4) is smooth (by the definition of a del Pezzo surface), it follows that F1 is
a squarefree binary form of degree 6 (see Section 3). Blowing up the anticanonical
point [0 : 0 : 1 : 1] of X we obtain an elliptic surface ρ : E→P1

Q
whose fiber above

[m : n] ∈ P1(Q) is isomorphic to a curve in P2
Q

whose affine equation is given by

y2
= x3
+ F(m, n). (19)

This is an elliptic curve for almost all [m : n].
Write c = pα1

1 · · · p
αr
r , where the pi are distinct primes. Let S = (p1, . . . , pr ),

T = (0, . . . , 0) and let

M = (2 · 3 · 5)3 · (p1 · · · pr ).

Since F1(m, n) has no fixed prime divisors, we know that for each prime p |M
with p 6= pi for all i there exist congruence classes ap, bp modulo p2 such that

F1(ap, bp) 6≡ 0 mod p2.

Similarly, for a prime pi in the sequence S there exist congruence classes api , bpi

modulo pi such that
F1(api , bpi ) 6≡ 0 mod pi ;

in other words, vpi (F1(api , bpi )) = 0. By the Chinese remainder theorem there
exist congruence classes a, b modulo M such that

(a, b)≡
{
(ap, bp) mod p2 for all primes p such that p |M , p 6=pi for any i ,
(api , bpi ) mod pi for all primes pi in the sequence S.

(20)

By Corollary 5.8, applied to F1, S, T,M, a and b as above, there is an infinite set
F1 of pairs (m, n) ∈ Z2 such that

F1(m, n)= `,

where ` is a squarefree integer with gcd(c, `)= 1, by our choice of S and T . Note
that the elements m, n of each pair must be coprime since F1(m, n) is squarefree.
Furthermore, the congruence class of `modulo 23

·33 is fixed (by our choice of M)
and nonzero (because ` is squarefree). Thus, for (m, n) ∈ F1 we have

F(m, n)= c` gcd(c, `)= 1,

and the congruence class of c`/2v2(c`)3v3(c`) modulo 22
· 32 is fixed and nonzero.

By Lemma 6.2, applied to a number field N :=Q[t]/ fi (t, 1) such that (5) holds,
there is a rational prime q ≡ 2 mod 3 and a degree 1 prime q in N lying over q . In
fact, we may choose q so that q > 5, gcd(q, c)= 1, and so that it does not divide
the discriminant of fi (t, 1).
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We apply Corollary 5.8 again to F1(m, n). This time we let S= (p1, . . . , pr , q)
and T = (0, . . . , 0, 2+ 6k), where k is a large positive integer1. Let

M = (2 · 3 · 5)3 · (p1 · · · pr ) · q3+6k .

We claim that there exist integers mq , nq such that

vq(F1(mq , nq))= 2+ 6k.

Indeed, since q has a prime q of degree 1 in N and it does not divide the discrim-
inant of fi (t, 1), the equation

fi (t, 1)= 0

has a simple root in Fq . By Hensel’s lemma, this solution lifts to a root in Qq .
Hence F1(t, 1) = 0 has a root in Qq . Approximating this solution by a rational
number rq =mq/nq we can control vq(F1(rq , 1))modulo 6; i.e., there exists a pair
(mq , nq) ∈ Z2 of coprime integers such that vq(F1(mq , nq)) = 2+ 6k for some
(possibly very large) positive integer k. By the Chinese remainder theorem, there
exists a pair of integers (a, b) simultaneously satisfying (20) and

a ≡ mq mod q3+6k, and b ≡ nq mod q3+6k . (21)

By Corollary 5.8, applied to F1, S, T,M, a and b as above, there is an infinite set
F2 of pairs (m, n) ∈ Z2 such that

F1(m, n)= q2+6kη,

for some squarefree integer η with gcd(c, qη)= gcd(q, η)= 1, by our choice of S
and T . Suppose that (m, n) ∈ F2. Then

F(m, n)= cq2+6kη gcd(c, η)= gcd(q, cη)= 1.

Furthermore, we claim that gcd(m, n)= 1. To see this, note that since η is square-
free and F1 is homogeneous of degree 6, then gcd(m, n) is some power of q; by
(18), (21), and because gcd(mq , nq)= 1, this power of q must be 1. As before, the
congruence class of cq2+6kη/2v2(cη)3v3(cη) mod 22

·32 is fixed, nonzero, and equal
to that of F1(m, n) for (m, n) ∈ F1 (by our choice of a and b).

Whenever (19) is smooth, we write W (F(m, n)) for its root number. By Corol-
lary 4.5, if (m1, n1) ∈ F1 and (m2, n2) ∈ F2 then

W (F(m1, n1))=−W (F(m2, n2)).

Zariski density of rational points on X now follows by arguing as in Remark 4.6.
�

1We will pick k large enough to ensure that C 6= 0 upon application of the pseudosquarefree sieve.
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The proof of Theorem 2.3 is similar; we give enough details so that the interested
reader can reconstruct it from the proof of Theorem 2.1.

Proof of Theorem 2.3. Blowing up the singular locus of X , as well as the base-point
[0 : 0 : 1 : 1] of |−K X |, we obtain an elliptic surface ρ : E→P1

Q
whose fiber above

[m : n] ∈ P1(Q) is isomorphic to a curve in P2
Q

whose affine equation is given by

y2
= x3
+G(m, n)x, (22)

which is an elliptic curve for almost all [m : n].
We apply Corollary 5.8 twice, as in the proof of Theorem 2.1. First, we apply

it to G1(m, n) by taking S = (p1, . . . , pr ), T = (0, . . . , 0), where c = pα1
1 · · · p

αr
r ,

and the pi are distinct primes. We use

M = (22
· 3)3 · (p1 · · · pr ).

This way we obtain an infinite set F1 of coprime pairs of integers (m, n) such that

G(m, n)= c` with gcd(c, `)= 1,

and the congruence class of c`/2v2(c`)3v3(c`) modulo 24
· 32 is fixed and nonzero.

By Lemma 6.3, applied to a number field N :=Q[t]/gi (t, 1) such that (7) holds,
there is a rational prime q ≡ 3 mod 4 and a degree 1 prime q in N lying over q. In
fact, we may choose q so that q > 5, gcd(q, c)= 1, and so that it does not divide
the discriminant of gi (t, 1).

We apply Corollary 5.8 again to G1(m, n) with S = (p1, . . . , pr , q) and T =
(0, . . . , 0, 2+ 4k), where k is a large positive integer, and

M = (22
· 3)3 · (p1 · · · pr ) · q3+4k

Using Hensel’s lemma as in the proof of Theorem 2.1, we obtain a different infinite
set F2 of coprime pairs integers (m, n) such that

G(m, n)= cq2+4kη with gcd(c, η)= gcd(q, cη)= 1,

where η is a squarefree integer. As before, the congruence class of

cq2+4kη/2v2(cη)3v3(cη)

modulo 24
·32 is fixed, nonzero, and equal to that of G1(m, n) for (m, n) ∈F1 (by

our choice of a and b).
Whenever (22) is smooth, we write W (G(m, n)) for its root number. By Corol-

lary 4.9, if (m1, n1) ∈ F1 and (m2, n2) ∈ F2 then

W (G(m1, n1))=−W (G(m2, n2)).

Zariski density of rational points on X now follows by arguing as in Remark 4.10.
�
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7. Diagonal del Pezzo surfaces of degree 1

We begin this section with two examples of del Pezzo surfaces of degree 1 that
show how the sieving technique used in the proof of Theorems 2.1 and 2.3 can
fail. In one case, however, we can show that rational points are Zariski dense, by
exhibiting explicit nontorsion sections of the associated elliptic surfaces.

Example 7.1. Consider the del Pezzo surface of degree 1 given by

w2
= z3
+ 27x6

+ 16y6

in PQ(1, 1, 2, 3). Let ρ : E→ P1
Q

be its associated elliptic fibration. The elliptic
curve Em,n above the point [m : n] ∈ P1(Q) is given by

Em,n : y2
= x3
+ 27m6

+ 16n6.

We claim that W (Em,n) = +1 for all [m : n] ∈ P1(Q). We may assume that
gcd(m, n) = 1. Let α = 27m6

+ 16n6, and suppose that p ≥ 5 divides α (in
particular, p - m). Then

−3≡ (4n3/3m3)2 mod p,

and thus
(
−3
p

)
=1; hence the product over p2

|α in (11) is equal to 1. In the notation
of Proposition 4.4, it remains to see that R(α)=−1. Since gcd(m, n)= 1, we have
v2(α)= 4 or 0, according to whether 2 |m or not. In either case, using Lemma 4.1,
we see that

W2(α) ·
(
−1
α2

)
= 1 for all α.

Similarly, v3(α)= 0 or 3 according to whether 3 - n or not. By Lemma 4.1 it also
follows that

W3(α) · (−1)v3(α) =−1 for all α,

and hence R(α)=−1, as desired.
The flipping technique of Corollary 4.5 thus cannot possibly work! Furthermore,

assuming the parity conjecture, it follows that Em,n has even Mordell–Weil rank
for all [m : n] ∈P1(Q). In fact, we claim that all but finitely many fibers have even
rank ≥ 2. To see this note the family contains the points

(−3m2, 4n3) and
(

9m4

4n2 ,
27m6

8n3 + 4n3
)
.

We can check that these points are independent on the fiber above [m : n] = [1 : 1],
and thus they are independent as points on the generic fiber of E. Then Silverman’s
specialization theorem [1994, Theorem 11.4] shows that the points are independent
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for all but finitely many pairs (m, n). Hence, rational points are Zariski dense on
the original del Pezzo surface2.

Example 7.2. Consider the del Pezzo surface of degree 1 given by

w2
= z3
+ 6(27x6

+ y6)

in PQ(1, 1, 2, 3). The elliptic curve Em,n above a point [m : n] ⊆ P1(Q) of the
associated elliptic surface E→ P1

Q
is given by

Em,n : y2
= x3
+ 6(27m6

+ n6).

As in Example 7.1 we can show that W (Em,n)=+1 for all [m : n] ∈P1(Q). How-
ever, we cannot find readily available sections; Zariski density of rational points
on this surface remains an open question.

The key point behind both of examples above is that condition (5) on the form
F1(m, n) fails. The following lemma gives a necessary condition for the failure
of (5) to occur, and suggests how to find the above examples.

Lemma 7.3. Let F1(m, n)= Am6
+Bn6

∈Z[m, n], and assume that gcd(A, B)=1.
Write F1 =

∏
i fi , where the fi ∈ Z[m, n] are irreducible homogeneous forms. Let

µ3 denote the group of third roots of unity. Then

µ3 ⊆Q[t]/ fi (t, 1) for all i H⇒ 3A/B is a rational square. (23)

Proof. The proof is an exercise in Galois theory. We will prove the case where
F1 is irreducible to illustrate the method. Choose a sixth root ξ of −B/A and
an isomorphism Q[t]/(At6

+ B)
∼
−→ Q(ξ). Suppose that Q(µ3) ⊆ Q(ξ), so that

Q(ξ)/Q is a Galois extension of degree 6. Its unique quadratic subextension is
Q(µ3)=Q(

√
−3), hence

ξ 3
= a+ b

√
−3 for some a, b ∈Q.

Squaring both sides of the above equation and rearranging we obtain

−B/A− a2
+ 3b2

= 2ab
√
−3

so that ab = 0. Since ξ 3 /∈Q, it follows that a = 0 and B/A = 3b2. �

If 3A/B is a rational square, it is often the case that not all fibers of the associated
elliptic surface have positive root number: the 2-adic and 3-adic part of Am6

+Bn6

may vary enough to guarantee the existence of infinitely many fibers with root
number −1. This idea, together with Theorem 2.1, are the necessary ingredients
in the proof of Theorem 1.1.

2In fact, this surface is not minimal. The two nontorsion sections of E → P1
Q

correspond to
exceptional curves on X that are defined over Q. Contracting these curves gives a del Pezzo surface
of degree 3 with a rational point. This surface is unirational by the Segre–Manin Theorem.



Density of rational points on isotrivial rational elliptic surfaces 685

Proof of Theorem 1.1. Let F(x, y) = Ax6
+ By6 and put c = gcd(A, B). Write

F1(x, y) = A1x6
+ B1 y6, where cA1 = A and cB1 = B. One easily checks that

F1 has no fixed prime factors. Write F1 =
∏

i fi , where the fi ∈ Z[x, y] are
irreducible homogeneous forms. If 3A/B is not a rational square then it follows
from Lemma 7.3 that

µ3 * Q[t]/ fi (t, 1) for some i,

so by Theorem 2.1, X (Q) is Zariski dense in X .
If, on the other hand, 3A/B is a rational square, then by assumption c = 1

and 9 - AB. After possibly interchanging A and B, we may write A = 3a2 and
B = b2 for some relatively prime a, b ∈Z not divisible by 3. A smooth fiber above
[m : n] ∈ P1(Q) of the elliptic surface E→ P1

Q
associated to X is the plane curve

Eα : y2
= x3
+α,

where α = 3a2m6
+b2n6. Arguing as in Example 7.1 we see that the product over

p2
|α in (11) is equal to 1.
To conclude the proof, it suffices to show that there are infinitely many pairs

(m, n) of relatively prime integers such that R(α)= 1 (see Proposition 4.4 for the
definition of R(α)). To construct such pairs (m, n), first suppose that 3 | n (whence
3 - m). Then v3(α)= 1 and α3 ≡ 1 mod 3, so by Lemma 4.1

W3(α) · (−1)v3(α) = (−1) · (−1)= 1.

Next, we compute the product

w2 :=W2(α)
(
−1
α2

)
.

We proceed by analyzing two cases, according to the 2-adic valuation of b, which
we may assume is either 0, 1 or 2. We use Lemma 4.1 to compute the local root
number at 2:

(1) v2(b) = 0: choose n even. Then, regardless of the value of v2(a) (which we
may also assume is 0, 1 or 2), we obtain v2(α) even and α2≡3 mod 4, whence
w2 = 1.

(2) v2(b) = 1 or 2: choose m odd, so that v2(α) = 0 and α2 ≡ 3 mod 4, whence
w2 = 1.

In any case, there are infinitely many pairs (m, n)∈Z2 with R(3a2m6
+b2n6)= 1,

as desired. �

Remark 7.4. If 3A/B is a rational square, and either gcd(A, B) 6= 1 or 9 | AB,
then it can happen that all the elliptic curves that are fibers of the rational surface
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associated to X have root number +1 (see Examples 7.1 and 7.2). Even when
9 | AB there are examples of surfaces, such as

w2
= z3
+ 35x6

+ 24 y6,

where we were not able to find nontorsion sections.

8. Proof of Theorem 2.6

We carry out the details for the case of a surface X as in Theorem 2.1, the other
case being similar. The fiber of ρ above [m : n] ∈P1(Q) is isomorphic to the plane
curve

y2
= x3
+ F(m, n) (24)

which is an elliptic curve for almost all [m : n]. As in Theorem 2.1, we write c
for the content of F and F1(m, n) := (1/c)F(m, n). By Lemma 6.2, applied to
a number field N := Q[t]/ fi (t, 1) such that (5) holds, there is a rational prime
q ≡ 2 mod 3 and a prime q in N lying over q of degree 1 over Q. We may
assume that q > 5, gcd(c, q) = 1, and that q does not divide the discriminant
of fi (t, 1). Write c = pα1

1 · · · p
αr
r , where the pi are distinct primes. Let P0 =

{2, 3, 5, p1, · · · , pr , q,∞}.
Fix a finite set of distinct primes P={q1 . . . , qs} such that P∩P0=∅, as well as

a point [m p : n p] ∈P1(Qp) for each p ∈ P . We may assume that m p, n p ∈Zp, and
without loss of generality3 we will further assume that n p ∈ Z×p for every p ∈ P .
Let ε > 0 be given and choose an integer N large so that

1/pN < ε and vp(F1(m p, n p)) < N for every p ∈ P . (25)

Let
S = (p1, . . . , pr , q1, . . . , qs),

T =
(
0, . . . , 0, vq1(F1(mq1, nq1)), . . . , vqs (F1(mqs , nqs ))

)
,

and let
M = (2 · 3 · 5)3 · (p1 · · · pr ) · (q1 · · · qs)

N .

Since F1(m, n) has no fixed prime factors, for any prime p |M such that p 6= pi

for all i and p /∈ P , there exist congruence classes ap, bp modulo p2 such that

F1(ap, bp) 6≡ 0 mod p2.

Similarly, for a prime pi with 1 ≤ i ≤ r , there exist congruence classes api , bpi

modulo pi such that
F1(api , bpi ) 6≡ 0 mod pi .

3In fact, we may only really assume that either m p ∈ Z×p or n p ∈ Z×p . We can interchange the
roles of m p and n p in any one step of the proof without much difficulty, so the assumption that
n p ∈ Z×p is an artifact to clean up the details of the proof.
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By the Chinese remainder theorem there exist congruence classes a, b modulo M
such that

(a, b)≡


(ap, bp) mod p2 for primes p such that p |M , p /∈ P , and

p 6= pi for all i ,
(api , bpi ) mod pi for primes pi with 1≤ i ≤ r ,
(m p, n p) mod pN for primes p ∈ P .

(26)

By construction,

F1(a, b)≡ F1(m p, n p) mod pN for all p ∈ P.

It follows from (25) that

vp(F1(a, b))= vp(F1(m p, n p)) for all p ∈ P.

By Corollary 5.8, applied to F1, S, T,M, a, b as above, there is an infinite set F1

of pairs (m, n) ∈ Z2 such that

F1(m, n)= `,

where ` is a squarefree integer with gcd(c, `) = 1, by our choice of S and T .
Furthermore, the congruence class of ` modulo 23

· 33 is fixed (by our choice
of M) and nonzero (because ` is squarefree). Thus, for (m, n) ∈ F1 we have

F(m, n)= c` gcd(c, `)= 1,

and the congruence class of c`/2v2(c`)3v3(c`) modulo 22
· 32 is fixed and nonzero.

We apply Corollary 5.8 again to F1(m, n). This time we let

S = (p1, . . . , pr , q1, . . . , qs, q),

T =
(
0, . . . , 0, vq1(F1(mq1, nq1)), . . . , vqs (F1(mqs , nqs )), 2+ 6k

)
,

where k is a large positive integer (large enough to ensure that C 6= 0 upon appli-
cation of the sieve), and we let

M = (2 · 3 · 5)3 · (p1 · · · pr ) · (q1 · · · qs)
N
· q3+6k .

Arguing as in the proof of Theorem 2.1, using Hensel’s lemma and Lemma 6.2,
we can show that there exist integers aq , bq such that

vq(F1(aq , bq))= 2+ 6k

for some large positive integer k. By the Chinese remainder theorem, there exist
congruence classes a, b modulo M such that (26) holds, and in addition

a ≡ aq mod q3+6k and b ≡ bq mod q3+6k .
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By Corollary 5.8 there is an infinite set F2 of pairs (m, n) ∈ Z2 such that

F1(m, n)= q2+6kη, (27)

where η is a squarefree integer such that gcd(c, η)= gcd(q, cη)= 1 (by the choice
of S and T ). In summary, for (m, n) ∈ F2, we have

F(m, n)= cq2+6kη with gcd(c, η)= gcd(q, cη)= 1,

and the congruence class of cq2+6kη/2v2(cη) mod 22
·32 is fixed, nonzero, and equal

to that of F1(m, n) for (m, n) ∈ F1.
Whenever (24) is smooth, we write W (F(m, n)) for its root number. By Corol-

lary 4.5, if (m1, n1) ∈ F1 and (m2, n2) ∈ F2, then

W (F(m1, n1))=−W (F(m2, n2)).

Hence, there exists a pair (m0, n0)∈F1∪F2 such that W (F(m0, n0))=−1. By the
assumption that Tate–Shafarevich groups are finite we conclude that the fiber of ρ
above [m0 :n0] has positive Mordell–Weil rank, i.e., [m0 :n0]∈R. By construction,
n0 6= 0, and

m0 ≡ m p mod pN , and n0 ≡ n p mod pN for all p ∈ P.

Hence ∣∣∣∣m p

n p
−

m0

n0

∣∣∣∣
p
= |m pn0−m0n p|p ≤

1
pN < ε for all p ∈ P,

and [m0 : n0] is arbitrarily close to [m p : n p] for all p ∈ P . This concludes the
proof of the theorem. �
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